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Abstract 

We estimate the distribution of marginal propensities to consume (MPCs) using a new approach 

based on the fuzzy C-means algorithm (Dunn 1973; Bezdek 1981). The algorithm generalizes the 

K-means methodology of Bonhomme and Manresa (2015) to allow for uncertain group 

assignment and to recover unobserved heterogeneous effects in cross-sectional and short panel 

data. We extend the fuzzy C-means approach from the cluster means case to a fully general 

regression setting and derive asymptotic properties of the corresponding estimators by showing 

that the problem admits a generalized method of moments (GMM) formulation. We apply the 

estimator to the 2008 tax rebate and household consumption data, exploiting the randomized 

timing of disbursements. We find a considerable degree of heterogeneity in MPCs, which varies 

by consumption good, and provide evidence on their observable determinants, without requiring 

ex ante assumptions about such relationships. Our aggregated heterogeneous results suggest that 

the partial equilibrium consumption response to the stimulus was twice as large as what is 

implied by homogeneous estimates.  
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1 Introduction

Recent work highlights the importance of heterogeneity in marginal propensities to con-
sume (MPCs) out of transitory income shocks for fiscal policy, the transmission of mon-
etary policy, and welfare.1 Nonetheless, despite their importance, estimates of the dis-
tribution of MPCs are fairly elusive. Even with plausibly identified transitory income
shocks, estimating individual-level MPCs requires panel data with long horizons, which
are typically not available; it also usually requires the unappealing assumption that an in-
dividual’s MPC is time invariant.2 The existing literature, therefore, has followed one of
two avenues: estimating a fully structural model and simulating a distribution of MPCs,
or grouping observations by some presupposed observable characteristics and estimat-
ing group-specific MPCs out of transitory income shocks.3,4 However, because both of
these approaches require taking a stance on the source of MPC heterogeneity, they may
either fail to uncover the true degree of heterogeneity, miss other relevant dimensions of
heterogeneity that predict an individual’s MPC, or both.

In this paper, we propose a new way to estimate the distribution of MPCs directly. We
introduce a fuzzy C-means-based estimator (Dunn (1973), Bezdek (1981)) which jointly (i)
groups households together that have similar latent consumption responses to the 2008
tax rebate and (ii) provides estimates of the MPCs within these groups. More specifically,
the algorithm takes a standard regression of consumption changes on controls and the tax
rebate receipt (Johnson et al. (2006), Parker et al. (2013)), but allows the coefficient on the
rebate to be heterogeneous across groups; the groups as well as their rebate coefficients are
jointly estimated so as to minimize a particular objective based on regression residuals.
The approach is appealing because it allows us to estimate the unconditional distribution
of MPCs directly first, without taking a stand on correlates of the distribution. Moreover,
it does not require the assumption that an individual’s MPC is time-invariant, or, in fact,
any panel structure. We can therefore “let the data speak” by investigating ex post which
observables predict the uncovered individual MPCs, including time varying household
characteristics.5 Indeed, we find a considerable degree of heterogeneity, and document a

1The MPC distribution is a crucial object in Heterogeneous Agent New Keynesian (HANK) models of
monetary policy (see Kaplan et al. (2018)). For example, Auclert (2019) shows that the response of aggregate
consumption to monetary policy shocks depends on the covariance of the distribution of MPCs with the
cyclicality of income, net nominal position, and unhedged interest rate exposure.

2Nearly all theories of MPC heterogeneity have some form of state dependence.
3For the former, see for instance, Kaplan and Violante (2014) and Carroll et al. (2017).
4Fagereng et al. (2016) exploit lottery randomized winnings to identify transitory income shocks, and

subsequently group observations on observables to estimate group-level MPCs. See also Johnson et al.
(2006), Kaplan et al. (2014), Parker et al. (2013), and Crawley and Kuchler (2018).

5Other papers have used the “reported preference” approach, drawing MPC heterogeneity directly from
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robust and significant positive relationship between the MPC and the average propensity
to consume (APC), total income, and the presence of a mortgage on a household’s balance
sheet.

The approach we develop builds heavily on the K-means algorithm framework re-
cently studied by Bonhomme and Manresa (2015), but in a cross-sectional or short-panel
setting rather than a long panel data setting. Heuristically, the K-means algorithm begins
by randomly assigning households to groups, then estimates heterogeneous regression
coefficients, and finally reassigns households to groups by minimizing a residual-based
objective until convergence. We consider instead the more general fuzzy C-means ap-
proach, which allows uncertain group assignment via continuous weights, rather than a
binary assignment. Capturing this uncertainty means the algorithm is better suited to our
cross-sectional environment, and short-panel data more broadly, which we corroborate in
various simulation exercises. “Hard” K-means (HKM) remains a limiting case of fuzzy
C-means (FCM).

First, to motivate the use of FCM, we show analytically that it can have smaller bias
than HKM when T = 1, even in a simple cluster means case. We further show that there
always exists some parameterization such that FCM is unbiased in this setting. Then, we
extend the results of Yang and Yu (1992) and Yang (1994), who study the asymptotic prop-
erties of FCM for cluster means, to a fully general regression model. We start by showing
that the FCM regression problem with simultaneously-determined weights is equivalent
to a single-step nonlinear objective function. As a key contribution, we argue that this
objective function fits naturally into the GMM framework (Hansen (1982)). Computation-
ally, this eliminates the need for an iterative re-weighting algorithm, and, theoretically, it
allows us to characterize the asymptotic distribution of the resulting estimator. We offer a
further extension to two-stage least squares (TSLS) to accommodate the use of instrumen-
tal variables, providing a novel way that machine learning techniques can be exploited
in the second-stage of IV estimation.6 Based on our results, the fuzzy C-means approach
is well-suited for a wide variety of economic settings with cross-sectional or short-panel
data.7

Our estimator is attractive for various reasons. First, it is more flexible than standard
clustering approaches, because each individual is assigned a non-binary weight on the

responses to survey questions. Recent examples include Jappelli and Pistaferri (2014) and Fuster et al.
(2018).

6This differs from how machine learning techniques have generally been employed in IV settings, as a
prediction tool to develop a strong instrument in the first stage (e.g., Belloni et al. (2012)).

7Further extensions to time-series and nonlinear regression context, while outside the scope of this paper,
appear straightforward.
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estimated group-specific MPCs. This explicitly accommodates the uncertain assignment
inherent to common cross-sectional or short-panel data. The researcher can calibrate this
“fuzziness” via a tuning parameter, with “hard” K-means as a limiting case. Second, it is
computationally fast, because it can be solved nonlinearly without resorting to iterative
procedures, which can be prohibitively costly in realistically large datasets often encoun-
tered in applied settings. Third, the estimators have standard asymptotic distributions,
with analytical standard errors that perform well in simulations, when bootstrapping
would be computationally burdensome. We demonstrate these properties in various sim-
ulation exercises which vary the “fuzziness” parameter, the number of groups, and the
degree of cluster separation. We show that our FCM approach has advantages over HKM
when the data are not well separated, despite the fact that HKM more accurately repre-
sents the data generating process. These results are consistent with the analytical com-
parison we derive for the simple cluster means case.

We apply the FCM estimator to study heterogeneity in the MPC using the 2008 Eco-
nomic Stimulus Act, and we uncover a considerable degree of heterogeneity. Households
span the whole spectrum of propensities, from nearly no response to the receipt of the
rebate, to propensities of 1 and even slightly above, depending on the consumption good
studied. This suggests that some households are severely constrained, consuming the re-
bate in its entirety. The vast majority of individuals, despite arguably not being currently
constrained, display a positive MPC. Our results are consistent across different specifica-
tions and sample restrictions. Instrumenting the rebate with an indicator for its receipt,
as in Parker et al. (2013), leaves the results qualitatively unchanged and in fact increases
the estimated heterogeneity in MPCs. The same is true when we exclude from the sample
households that never received a rebate, or when we include lagged values of the rebate
to control for persistent effects of the rebate receipt.

We then show how the MPC distribution varies across consumption goods. A large
share of households do not consume additional nondurable goods out of the transitory
income shock, consistent with what would be expected from the perspective of the per-
manent income hypothesis (PIH, Friedman (1957)). Moreover, households at the right
of the distribution consume a smaller fraction of the rebate in nondurables than in total
expenditures. Furthermore, more than 75% of households do not adjust their durable con-
sumption in response to the tax rebate. The households that do purchase new durables,
however, display an MPC close to 1. These findings are consistent with the discrete-
ness and infrequency of durable purchases, resulting in lumpy adjustments. Correlat-
ing the household level MPCs across these consumption categories, we find positive, yet
small,correlation between MPCs out of durable and non-durable goods.
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Having characterized the distribution of marginal propensities to consume, we de-
scribe its main drivers. We document that many observable characteristics are individu-
ally correlated with household MPCs, but only three of them, however, are robust to the
inclusion of other controls. First, high-income households have greater propensities to
consume. This result crucially hinges on total income. That is, the result holds including
financial and business income, but does not hold for salary earnings. Second, having a
mortgage is associated with displaying a higher MPC out of total expenditures. Third, a
household’s MPC and APC are positively correlated. We regard this result as particularly
useful for disciplining macro models of household consumption and savings, as it is easy
to compute expenditure rates, both in structural models as well as in the data. Finally, our
best array of observable predictors is able to explain only 13% of the variance in estimated
MPCs. This suggests that a relevant portion of MPC heterogeneity might be driven by la-
tent, unobserved household traits. Such heterogeneity could never be recovered splitting
the sample by observable characteristics and estimating within-subsample homogeneous
MPCs, as typically done in the literature.8

Finally, correctly accounting for MPC heterogeneity also matters for the aggregated
consumption effects of the fiscal stimulus. We show that the sample average of our esti-
mated heterogeneous responses is larger than the homogeneous marginal propensity to
consume. When considering the cumulated heterogeneous responses over two quarters,
the aggregated response from our distribution is almost twice as large as its homoge-
neous counterpart. While still a partial-equilibrium object in nature, this result suggests
that correctly accounting for heterogeneity is important in order to correctly evaluate the
impact of the 2008 fiscal stimulus.

This paper relates to other approaches proposed to estimate heterogeneous responses,
besides Bonhomme and Manresa (2015) as described previously. Bonhomme et al. (2017)
consider a two-step grouped-fixed effects estimator, which classifies observations into
groups via HKM in the first stage, and estimates group-specific heterogeneity in the sec-
ond stage. First, our algorithm performs a joint estimation as in Bonhomme and Manresa
(2015) rather than a two-step procedure, as the cross-sectional structure of our data does
not make it well-suited for a sequential strategy. We extensively discuss the relationship
between our FCM approach and HKM in the following sections. The clustering approach
is also distinct from other machine learning methods used to recover heterogeneous ef-

8Preference heterogeneity might be elicited in survey questions. Using Nielsen panel data, Parker (2017)
finds that the MPC out of the tax rebate is indeed strongly correlated with a self-reported measure of im-
patience. Aguiar et al. (2019) use a two-asset model and the panel dimension of the PSID to show that
heterogeneity in discount factors and inter-temporal elasticities of substitution play a major role in explain-
ing MPC heterogeneity.
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fects (e.g., random forests, neural networks) as in Chernozhukov et al. (2017), since they
rely on using a wide array of observables to characterize heterogeneity. In our context,
which is typical of many datasets, few observables are available; moreover, we seek to
recover latent heterogeneity that may be entirely unrelated to observables.

Our approach is also distinct from that of Misra and Surico (2014), who study het-
erogeneous responses to the rebate using quantile regressions. Quantile regressions face
limitations in the present setting. If the true heterogeneity is continuous, then the way
in which it is discretized - and thus the results - is potentially driven by the researcher’s
choice of quantiles. If instead the heterogeneity is discrete (for example, a grouped struc-
ture), the researcher must rely on guessing the correct quantiles to line up with the distri-
bution of groups. Moreover, if there are multiple dimensions of heterogeneity (whether
continuous or discrete), the researcher must specify enough quantiles to accurately char-
acterize their joint distribution. Again, little guidance is available for the choice of quan-
tiles, and if too few are specified, the distribution recovered is likely to be biased, particu-
larly across dimensions of heterogeneity. In contrast, clustering algorithms are equipped
with theoretically-motivated model-selection tools to guide the researcher to choose the
correct number of discrete groups or appropriately discretize continuous heterogeneity.
Moreover, the size of each group is left unrestricted.

The rest of the paper proceeds as follows. In Section 2, we formulate the problem
at hand and derive the FCM grouped marginal effects estimator. We extend the FCM
from the cluster means case to a fully-general regression setting, as well as instrumental
variables regression, and derive asymptotic properties of the corresponding estimators
by showing that the problem admits a GMM formulation. The simulation studies pre-
sented in Section 3.2 demonstrate the performance of our FCM algorithm. We describe
our empirical strategy based on the 2008 tax rebate in Section 4, and provide estimates
of the distribution of MPCs for various consumption categories in Section 5. Section 5.3
discusses observable characteristics which correlate with the estimated MPCs. Section
6 aggregates the estimated household MPCs to arrive at a partial equilibrium effect on
aggregate consumption and Section 7 concludes.

2 The Fuzzy C-means grouped marginal effects estimator

The fuzzy C-means algorithm (or simply C-means, as it is sometimes known) is a general-
ization of the “hard” K-means algorithm as described in Bonhomme and Manresa (2015).
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In particular, the “hard” K-means (HKM) objective function can be written as

L1 (P, ψ) =
∫

min
g

∥∥y− ψg
∥∥2 P (dy) , (1)

where y ∈ RT is a vector of outcomes with probability measure P on RT, g ∈ {1, 2, . . . , G}
indexes groups, and ψ ∈ RG×T. ψg are known as the “cluster centers”. Alternatively,
Equation (1) can be rewritten using a weighted sum,

L1 (P, ψ) =
∫ G

∑
g=1

wg (y; ψ)
∥∥y− ψg

∥∥2 P (dy) , (2)

where wg = 1
[∥∥y− ψg

∥∥2 ≤ ‖y− ψh‖2 ∀ h 6= g
]
. The fuzzy C-means (FCM) objective

function generalizes the weights wg in Equation (2) so that they need not be binary. In
particular, the objective function is instead

Jm (P, µ, φ) =
∫ G

∑
g=1

µm
g (y; φ)

∥∥y− ρg
∥∥2 P (dy) (3)

where µg (y; ρ) are weights (or a “fuzzy partition” of y), m > 1 is a tuning parameter, and
ρ ∈ RG×T. The weights

µg (y; ρ) =

(
G

∑
h=1

∥∥y− ρg
∥∥2/(m−1)

‖y− ρh‖2/(m−1)

)−1

, g = 1, . . . , G, (4)

are optimal based on the mean squared error of Equation (3) (Theorem 11.1, Bezdek
(1981)), subject to the constraint that the weights µg (y; ρ) sum to unity.

Yang and Yu (1992) show that Equation (3) can be rewritten eliminating the parameter-
dependent weights. For fixed m, define µ (ρ) = (µ1 (y; ρ) , . . . , µG (y; ρ)). Then, a new
objective function can be defined as

Lm (P, ρ) = Jm (P, µ (ρ) , ρ)

=
∫ G

∑
h=1

(
G

∑
i=1

‖y− ρh‖2/(m−1)

‖y− ρi‖2/(m−1)

)∥∥y− ρg
∥∥2 P (dy)

=
∫ ( G

∑
g=1

∥∥y− ρg
∥∥−2/(m−1)

)1−m

P (dy) . (5)
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Significantly, Equation (5) has replaced an objective function with weights linked to the
parameters (Equation (3)) with a nonlinear function in

∥∥y− ρg
∥∥, since the weights them-

selves are simply a function of
∥∥y− ρg

∥∥. As far as we know, up to now the representation
in Equation (5) has only been used as a device to establish properties of Equation (3), as
opposed to an objective function in its own right.

As argued by Yang and Yu (1992), it is clear from Lm (P, ρ) that HKM can be seen as a
limiting case of FCM, although it is not strictly nested:

Lm (P, φ) −→
m→1

∫
min

g

∥∥y− ρg
∥∥2 P (dy) ,

as the weights become binary in the limit. In contrast to the discrete assignment of HKM,
the tuning parameter, m, allows the researcher to parametrize an appropriate degree of
uncertainty over group assignment based on the dataset. In empirically common panel
lengths and cross-sectional data, this is an important generalization over the HKM al-
gorithm considered by Bonhomme and Manresa (2015). In this sense, FCM exploits a
non-parametrically smoothed version of the HKM weights.

Yang and Yu (1992) prove the equivalence of Equation (3) and Equation (5), establish
the existence of a solution, and prove strong consistency of a sample estimator φ̂ for φ∗,
which minimizes Lm (P, ρ) and Jm (P, µ, ρ). Yang (1994) extends the analysis of Pollard
(1982) to the FCM setting to establish the asymptotic normality of ρ̂. In this paper, we
consider a more general form of the FCM objective function, just as Bonhomme and Man-
resa (2015) extend the HKM objective function. Specifically, we are concerned not just
with cluster centers ρ (a regression on a group-specific constant), but linear regression
more broadly. In particular, we consider an objective function based on

∥∥y− θgx
∥∥ (6)

where x ∈ Rk contains random variables and θg is T × k. The next section proves sev-
eral properties of this generalization of the FCM algorithm. We establish an equivalence
relationship similar to that between Equations (3) and (5), for the regression counterpart,
and prove that a common solution exists. By demonstrating the transformed problem fits
into the GMM framework, we harness familiar results (Hansen (1982)) to prove consis-
tency and asymptotic normality of an estimator, θ̂ for θ. We discuss extensions to allow
for common coefficients across groups for some set of regressors, as well as an analogue
to two-stage least squares.

Before considering these generalizations, in the next section we provide novel results
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that analytically characterize the relationship between ψ∗, ρ∗, and the true cluster centers
(which we will denote by ζ) in a tractable simple case. These motivate the use of FCM in
settings where neither FCM nor HKM will in general recover the true parameters.

2.1 Analytical comparison of HKM and FCM optima

The global optima of both HKM in fixed-T data (ψ∗) and FCM in general (ρ∗) represent
pseudo-true parameters. For HKM, this is because the group assignment cannot be con-
sistently estimated in the first stage. For FCM, this is because the objective function does
not correspond to the true DGP, since an observation has non-zero weight assigned to
multiple groups (whereas the true group assignment is binary). However, we are not
aware of any existing analytical results comparing the pseudo-true parameters across es-
timators. In this section, we characterize this relationship for a tractable simple case. In
particular, we consider the problem of estimating the cluster means of two groups, where
the data are generated from two Gaussian distributions with distinct means, the same
finite variance, and equal mass, where the econometrician observes a single outcome for
each observation. We show that even in this simplest of cases, FCM, despite technically
being misspecified, can improve on HKM due to having a pseudo-true parameter closer
to the truth. Our simulations reported in Section 3, calibrated to the regression problem
of our empirical application, bear these results out in a much more complicated setting.

First, we characterize the bias of HKM in this homoskedastic two-Gaussian setting.

Proposition 1. In the homoskedastic two Gaussian case, ψ∗1 , the HKM global optimum for the
lower mean, ζ1, is given by

ψ∗1 = Φ (−ζ1/σ)

(
ζ1 +

−φ (−ζ1/σ)

Φ (−ζ1/σ)

)
+ Φ (−ζ2/σ)

(
ζ2 +

−φ (−ζ2/σ)

Φ (−ζ2/σ)

)
,

and similarly for ζ2, the higher mean, where σ is the standard deviation of both Gaussian clusters.
ζ1 is negatively biased and ζ2 is positively biased unless σ→ 0.

Proposition 1 shows that each of the global minimum of the HKM objective function
for each of the cluster means is biased outwards (away from zero), with the lower mean
being further reduced, and the upper mean being increased. The intuition is that ψ∗1 repre-
sents the mean over two truncated normals (portions of the mean ζ1 and ζ2 distributions),
with the right tail of the distribution with mean ζ1 truncated and replaced with an equal-
mass portion of the ζ2 distribution that is situated to the left of that tail. In practical terms,
this means that HKM overstates cluster heterogeneity in this simple case.
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It is much harder to characterize the bias of FCM given the non-linearity of the objec-
tive function and the fact that closed-form solutions do not exist for ρ∗ except in degener-
ate cases. However, we offer a result below that situates ρ∗ relative to ψ∗.

Proposition 2. In the homoskedastic two Gaussian case, ρ∗1 , the FCM global optimum for the
lower mean, satisfies ρ∗1 ≥ ψ∗1 , and ρ∗2 ≤ ψ∗2 .

Proposition 2 shows that the FCM optima are located inwards relative to the HKM
optima. While it is not possible to make a general statement about their position relative
to the true parameters, ζ1, ζ2, since the HKM optima are biased outwards, this result
means that FCM has the potential to have lower bias than HKM. The distance relative
to HKM is increasing in m. Theorem 1 shows that given the correct choice of m, FCM is
unbiased in this simple setting.

Theorem 1. In the homoskedastic two Gaussian case, assuming ρ∗1 and ρ∗2 are unique, there exists
some m̃ ∈ (1, ∞) such that ρ∗1 (m̃) = ζ1, ρ∗2 (m̃) = ζ2.

Of course, in practice we do not know m̃, even in this simple case. However, even for
non-optimal m, Proposition 2 suggests that the pseudo-true parameters of FCM may be
less biased than those of HKM. To demonstrate this, we evaluate numerically the bias of
FCM relative to HKM for two values of m (one close to HKM, one in line with empirical
practice), as well as m̃, for a number of parameterizations of the two Gaussian setting. Ta-
ble 1 reports the results, with the right panel displaying the settings visually. In summary,
it is clear that some of these examples represent very difficult clustering problems where
it is natural to expect HKM to struggle; in these examples, FCM demonstrates smaller
bias due to its ability to accommodate uncertainty over group membership. However,
HKM does demonstrate smaller bias when the data are better separated (row 3). The
distance to HKM is increasing in m, and, depending on the parameterization, FCM may
be biased outwards, like HKM, or biased inwards. These results show that HKM and
FCM recover different pseudo-true parameters for the cluster means, and that in difficult
clustering problems with worse-separated data, the FCM pseudo-true parameters may
exhibit lower bias in an analytically tractable setting. Of course, given the results of Theo-
rem 1, when m = m̃, the bias of FCM is zero, as displayed in the final column. While such
closed-form results cannot be extended to the more general setting of our paper, they mo-
tivate the use of FCM in settings where T is small, so HKM is known to not recover the
true parameters.
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Figure 1: HKM and FCM performance in a simple 2-group model

(a) Numerical values of ψ∗2 and ρ∗2

σ2 ζ2 HKM FCM
(I) (II) (III) (IV) (V) (VI)

m = 1.1 m = 1.8 m = m̃
1.0 1.0 1.17 1.17 1.04 1.00

1.0 0.5 0.90 0.90 0.77 0.50

1.0 2.0 2.02 2.02 1.92 2.00

0.5 1.0 1.14 1.05 0.96 1.00

.01 1.0 1.00 1.00 1.00 1.00

(b) Distribution of data

Notes: Table 1 reports the HKM and FCM estimates (for both m = 1.1 and m = 1.8) in columns III-V. Each row corresponds to a
different empirical setting, with the variance and higher mean listed in columns I-II. Column VI reports the estimates for the m̃ which
delivers an unbiased FCM estimate. Appendix C.1 displays ρ∗2 as a function of m. Based on these results, m̃ is equal 1.9, 2.4, 1.5, 1.7
and 1.01 respectively. Figure 1 depicts visually the distribution of the data in each of the empirical setting studied. The first row in
Table 1 corresponds to the top panel in Figure 1 and so on.

2.2 Properties of fuzzy C-means

We begin by generalizing the FCM objective function for cluster centers to a regression
problem. Consider the model

yi =
G∗

∑
g=1

1 [i ∈ g] θgxi + εi, i = 1, . . . , N (7)

where yi ∈ RT, xi ∈ Rk, (yi, xi) are i.i.d. and E [εi | xi] = 0, according to the probabil-
ity measure Π on y, x (denoting the conditional for y by Πy|x and the marginal for x by
Πx), and θg is a T × k matrix. Equation (7) postulates that the outcomes, y, are generated
linearly from x, with the parameters depending on observation i’s group membership,
captured by the indicators 1 [i ∈ g]. However, the group assignments 1 [i ∈ g] are un-
known, and in general cannot be recovered with certainty.9 The natural FCM version of
Equation (7) for G groups is given by Jreg

m :

Jreg
m (Π, µreg, θ) =

∫ ∫ G

∑
g=1

(
µ

reg
g (y | x; θ)

)m ∥∥y− θgx
∥∥2 Πy|x (dy | x)Π (dx) , (8)

9For the moment, we take G as given, but return to the choice of G in Section 2.3.
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where θ ∈ Θ ⊂ RG×T×k, and

µ
reg
g (y | x; θ) =

(
G

∑
h=1

∥∥y− θgx
∥∥2/(m−1)

‖y− θhx‖2/(m−1)

)−1

, g = 1, . . . , G.

Denote µreg (θ) =
(
µ

reg
1 (y | x; θ) , . . . , µ

reg
G (y | x; θ)

)
. The objective function in Equation

(8) involves parameter-dependent weights. Existing implementations and convergence
results for FCM (based on group means only) suggest that an iterative procedure, updat-
ing µ

(
θ̂(r−1)

)
based on a previous estimate θ̂(r−1) and using these weights to estimate

and update θ̂(r), will converge and may in fact be consistent for θ. However, both from
theoretical and computational standpoints, it is desirable to work with a more compact,
weight-free representation. Theorem 2 generalizes the equivalence result of Yang and Yu
(1992) to the regression problem of Equation (8).

Assumption 1. Observations (yi, xi) are generated according to (7), jointly i.i.d. with probability
measure Π, G is finite, and E [εi | xi] = 0.

Theorem 2. (Equivalence) Under Assumption 1, Jreg
m (Π, µreg, θ) = Lreg

m (Π, θ), where

Lreg
m (Π, θ) =

∫ ∫ ( G

∑
g=1

∥∥y− θgx
∥∥−2/(m−1)

)1−m

Πy|x (dy | x)Π (dx) ; (9)

a minimizer θ∗ ∈ Θ of Lreg
m (Π, θ) is also a minimizer of Jreg

m (Π, µreg, θ) over Θ and weights µreg.

Theorem 2 demonstrates that we can turn our attention from the objective function
Jreg
m (Π, µreg, θ) to the simpler formulation in Lreg

m (Π, θ), without weights. Under addi-
tional regularity conditions, we now establish the existence of a solution to the FCM
problem in Equation (8).

Assumption 2. Assume

1. The second moments of y and x are finite under Π :∫ ∫
‖y‖2 Πy|x (dy | x)Π (dx) < ∞,

∫
‖x‖2 Π (dx) < ∞,∫ ∫

‖y‖ ‖x‖Πy|x (dy | x)Π (dx) < ∞,
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2. Additionally, the x are not collinear,

rank
(∫

xx′Π (dx)
)
= k.

3. Θ is compact.

Theorem 3. (Existence) If Assumptions 1-2 hold, then for any g = 1, 2, . . . , there exists a solu-
tion θ∗ such that

Lreg
m (Π, θ∗) = inf

θ
Lreg

m (Π, θ) .

The relationship between θ∗ and the true parameter, θ0, generating the data in Equa-
tion (7) merits further discussion. θ∗ is a pseudo-true parameter, which will not be in
general be equivalent to θ0, since it optimizes an objective function that is not perfectly
aligned with the the true data generating process (DGP). This is because the objective
function puts non-zero weight on observations being members of groups other than their
(unknown) true group. This is also the case for HKM in Bonhomme and Manresa (2015)
for fixed T; only a pseudo-true parameter can be recovered, since group membership
cannot be consistently estimated, even though the objective function appropriately rep-
resents the DGP. In general, the closer m is to unity, the closer the FCM objective function
corresponds to the true DGP, but the less uncertainty can be accommodated. Under two
special limiting cases, however, θ∗ = θ0. First, as the degree of separation of the groups

diverges, ∑G
h=1
‖y−θgo x‖2/(m−1)

‖y−θhx‖2/(m−1) → 1,where g0 is the true group, so the FCM objective func-

tion Lreg
m converges to its HKM counterpart. Second, as m → 1, under additional weak

dependence assumptions (like those in Bonhomme and Manresa (2015)), the weight on
the true group will likewise converge to unity asymptotically in T. While neither of these
cases is a plausible description of most macroeconomic datasets, we present evidence in
Section 3.2 that the pseudo-true parameters may still be very close to the true parameters
in practice.

Up to this point, our results generalize existing FCM results from Yang and Yu (1992)
to the regression problem in Equation (6) in order to establish that a solution to the mod-
ified FCM problem exists and can be obtained from Equation (9). Previously, the asymp-
totic properties of both HKM and FCM problems have proven quite difficult to establish,
requiring extensive technical arguments (e.g., Pollard (1981, 1982), Yang and Yu (1992),
Yang (1994), Bonhomme and Manresa (2015),Bonhomme and Manresa (2015)). However,
Theorem 4 shows that the solution to the FCM problem has a familiar form.
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Theorem 4. (Moments) The solution θ∗ satisfies the moment equations

E

( G

∑
h=1

∥∥yi − θgxi
∥∥2/(m−1)

‖yi − θhxi‖2/(m−1)

)−m (
yit − θg,(t)xi

)
xi

 = 0 for g = 1, . . . , G and t = 1, . . . , T,

(10)
where t indexes dimensions of yi and (t) rows of θg; FCM is a GMM problem.

Theorem 4 shows that FCM constitutes a standard generalized method of moments
(GMM) problem (Hansen (1982)). This has two important implications. First, reframing
FCM as a GMM problem allows the asymptotic properties of estimators θ̂ to be derived
using standard theory. Second, existing implementations of FCM have focused on itera-
tive procedures based on Equation (8). In this formulation, the weights µreg (θ) must be
simultaneously determined, as in weighted least squares, and then used to re-estimate θ,
and so on, until convergence. However, rather than just being a convenient theoretical
device, the representation in Equation (9) facilitates nonlinear optimization via a single
step procedure, with the familiar apparatus of GMM. We return to this second point in
Section 3.1.

Additionally, the moment equations in Theorem (4) can easily accommodate regres-
sors with common coefficients across groups, θg,tk = θh,tk, or across dimensions of yi,
θg,tk = θh,sk.10 In the former case, it is straightforward to show that the corresponding
moment condition is

E

( G

∑
h=1

∥∥yi − θgxi
∥∥−2/(m−1)

)−m G

∑
g=1

∥∥yi − θgxi
∥∥−2m/(m−1)

(
yit − θg,(t)xi

)
xik

 = 0

and in the latter,

E

( G

∑
h=1

∥∥yi − θgxi
∥∥−2/(m−1)

)−m T

∑
t=1

G

∑
g=1

∥∥yi − θgxi
∥∥−2m/(m−1)

(
yit − θg,(t)xi

)
xik

 = 0.

The moment conditions in Equation (10) have natural sample counterparts that can be
used to define the estimator θ̂.

10To trace a direct link with our baseline specification forthcoming in Equation (14), the parameter set θ
encompasses both group-specific constants αg and MPCs, as well as the coefficients on the common covari-
ates W.
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Definition 1. Let the estimator θ̂ be the solution to

SN (θ) =
1
N

N

∑
i=1

η (θ, yi, xi)
′

N

∑
i=1

η (θ, yi, xi) , (11)

where

η (θ, yi, xi) =

( G

∑
h=1

∥∥yi − θgxi
∥∥2/(m−1)

‖yi − θhxi‖2/(m−1)

)−m (
yit − θg,(t)xi

)
xi

 = 0

for g = 1, . . . , G and t = 1, . . . , T,

the (G× T × k)× 1 vector-valued moment function.

Assumption 3. θ∗ is the unique solution to E [η (θ, yi, xi)] = 0 (up to ordering of the groups).

Assumption 3 is an identification condition. In clustering models, if identification
holds, it does so up to a labeling of the groups g, which can always be permuted. The
FCM literature (and HKM when T is fixed, e.g., Pollard (1981, 1982)) always assumes the
uniqueness of θ∗. While it appears intractable to characterize primitive conditions under
which identification holds in the non-linear form of Equation (9), it is closely linked to
the OLS identification. With known membership, Assumptions 1-2 suffice for OLS to
uniquely identify the true parameters, and for relatively small m, the objective (9) is a
perturbation around the OLS objective. In a formal sense, identification in clustering
models when group membership cannot be recovered remains a topic for future work.
Theorem 5 establishes consistency.

Theorem 5. (Consistency) Under Assumptions 1-3, θ̂
p→ θ∗ as N → ∞.

With additional assumptions, the asymptotic distribution of θ̂ can be characterized.

Assumption 4. Additionally,

1. θ∗ is in the interior of Θ,

2. H = E
[

∂η(θ,yi,,xi)
∂θ′

]
is full rank,

3. E
[

supθ∈N

∥∥∥∥ ∂η(θ,yi,,xi)
∂θ′

∥∥∥∥] < ∞ in a neighborhood N of θ∗,

4. E
[
η (θ∗, yi,, xi) η (θ∗, yi,, xi)

′] is positive definite.

These are largely technical conditions. Theorem 6 gives the limiting distribution of θ̂.
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Theorem 6. (Asymptotic Normality) Under Assumptions 1 - 4,

√
N
(
θ̂ − θ∗

) d→ N
(

0, H−1VH−1
)

,

where
V = E

[
η (θ, yi, xi) η (θ, yi, xi)

′] ,

and H is the Hessian of Equation (9).

We provide explicit expressions for H in Appendix Section B, including the case of
common coefficients across groups. This result (as well as the underlying assumptions)
closely parallels that of Yang (1994), who establishes asymptotic normality for the simpler
cluster centers case.

Two important distinctions relative to HKM remain to be discussed. First, at no point
have we relied on an assumption that the data are well-separated, unlike Bonhomme and
Manresa (2015). They require this assumption so that the true group membership func-
tion can be consistently estimated. However, in FCM there is no need to estimate such a
function; ultimately, Lreg

m does not even have group-specific weights to be estimated. This
means that consistency for the pseudo-true θ∗ and asymptotic normality of the estimates
hold regardless of whether the groups are in fact well-separated. Nevertheless, it is the
case that the pseudo-true FCM parameters converge to the true parameters as separation
increases. Bonhomme and Manresa (2015) identify methods for inference that are robust
to a lack of group separation as an important question for future work. We suggest that
FCM presents such an option. In Section 3.2, we present evidence that FCM performs
very well in empirically calibrated simulations, while the empirical noise is such that
separation of the groups is doubtful and HKM performs poorly.

Second, we have at no point made assumptions on the relationship between G, the
econometrician’s number of groups, and G0, the true number of groups. This has been
possible since our results are relative to θ∗, a pseudo-true parameter, which is defined
with respect to G; this is also the case for the discussion of fixed-T inference in Bonhomme
and Manresa (2015). However, if G 6= G0, then there is reason to doubt the closeness of the
relationship between θ∗ and θ0, so selection of G remains an important question. Unfortu-
nately, the vast majority of methods to select G are derived under large N, T asymptotics,
which do not apply in our setting. For this reason, we discuss a flexible non-parametric
approach for selecting optimal G in Section 2.3.

Up to now, we have maintained the standard OLS assumptions, with strictly exoge-
nous regressors x, such that E [εi | xi] = 0. However, in some regression contexts, the
regressor of interest is potentially endogenous. A standard solution in the regression con-
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text is to use an instrumental variable(s), z, when available. If relevance (cov (xi, zi) 6= 0)
and exogeneity (E [εizi] = 0) conditions are satisfied, then the coefficient on the endoge-
nous x can be recovered via two-stage least squares (TSLS). Since FCM only permits the
recovery of pseudo-true parameters for the true model in Equation (7) even under strict
exogeneity, the motivation for IV is not as direct as in standard models, because it does
not necessarily allow the true parameters to be recovered. However, IV estimates do have
a similar interpretation as the marginal effect of exogenous variation in x on y. Moreover,
as with OLS, if either the degree of separation diverges or m tends to unity and T to in-
finity while additional weak dependence assumptions are maintained, TSLS with a valid
instrument will recover the true coefficient on an endogenous regressor. We consider
such a TSLS estimator in Section 5.11 In particular, for an endogenous regressor xe and
additional controls ω, we estimate the first stage-regression

xe
i = γzi + τωi + ui,

via OLS, and then generate x̃e
i = γzi + τωi. We define x̃ =

(
x̃e ω

′)′
, and input these

predicted values in Equation (11) to estimate the second stage. In Appendix Section B,
we extend all of the theoretical results presented above to this alternative problem, es-
tablishing the equivalence of the representations, existence of a solution in population,
consistency of a sample estimator for that solution, and asymptotic normality of the es-
timator. We also provide analytical expressions for the asymptotic variance. In keeping
with our empirical problem, we focus on the case of a single endogenous regressor with
a single instrument, but the results can be easily extended.

Our theoretical development has focused on linear regression models. However, there
is no reason that FCM could not similarly be applied to more general problems. In a non-
linear regression setting, for example, the residual from the linear regression function,
yi − θgxi, would simply be replaced by yi − f

(
θg, xi

)
, for some nonlinear function f (·)

(which, in principle, could itself depend on g). The theoretical results established here
would surely extend, following suitable modifications of the assumptions to accommo-
date the behavior of the function in question. To this extent, the FCM methodology is
highly flexible, and has the potential to be employed in a wide range of contexts exhibit-
ing potentially heterogeneous relationships in economics.

11To foreshadow what will come in our empirical context, we use this TSLS framework to instrument for
the rebate value - which is potentially endogenous - with the rebate receipt.
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2.3 Choosing the number of groups G

For a given G, it is easy to apply the fuzzy C-means algorithm as described above. How-
ever, G is unknown. To choose G, we extend the “gap statistic” from Tibshirani et al.
(2001) to the regression setting. In the Tibshirani et al. (2001) setting, the researcher has
data on some characteristic for observation i, yi, for each i ∈ N, where N is the number of
observations. Define the residual sum of squares Wss(G) under G groups as:

Wss (G) = ∑
g∈G

1
2Ng

∑
i′,i∈g

di′i

where di′i is the Euclidean distance between observations i and i′ and Ng is the number
of observations belonging to cluster g. The gap statistic identifies the number of clusters
by comparing the average within group sum of squares under G groups (Wss (G)) to the
expected within group sum of squares under G groups under the assumption that there is
no clustering present in the data (the “reference distribution”). Formally, the gap statistic
is:

Gap (G) = E [log (WSS (G))]− log (WSS (G)) (12)

The expected within group sum of squares is calculated on many samples of simulated
data generated under the assumption that there is no clustering present in the data. This
is achieved by sampling the outcomes from a uniform distribution on an interval [a, b]
where a and b are chosen as the maximum and minimum observed values of the outcomes
in the sample. Ideally, G is chosen such that the gap statistic is maximized. The basic
idea is to normalize the within group sum of squares (WSS) curve by what one would
expect to get regarding the WSS in a sample in which no clusters are present, and any
improvement in the WSS is simply due to fitting noise. In practice, Tibshirani et al. (2001)
find that the gap statistic may display local maxima when the data are not well-separated
or sub-clusters are present, and it is advisable to inspect the “gap curve” as opposed to
mechanically choosing its maximum.

The objective WSS above is tailored to the cluster mean setting of Tibshirani et al.
(2001). We opt to use our regression objective as a natural alternative: the weighted sum
of squared residuals, Equation (8). The selection procedure for G then proceeds as fol-
lows:

1. Run a homogeneous regression (one that assumes no group heterogeneity). Call the
residuals from the regression ε̂i.
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2. Generate B samples of simulated outcomes for each observation using the homoge-
neous coefficients, with an error that is uniformly distributed from the minimum to
the maximum of ε̂i.

3. Run the fuzzy C-means algorithm described in Section 1 on each of the B samples
and for each G ∈ Ḡ, where Ḡ is some upper bound. For each sample and each
G ∈ Ḡ, compute the weighted sum of squared residuals, Equation (8).

4. Run the fuzzy C-means algorithm on the actual data and compute the same object.

5. Choose G ≤ Ḡ corresponding to the maximum value of (12) that is statistically
significantly greater than the value for all g ∈ {1, ..., G− 1} and displays a positive
gradient.

The final point operationalizes the advice of Tibshirani et al. (2001) in not simply choosing
the maximum of the gap statistic. In particular, the requirement that the chosen G rep-
resents a statistically significant increase over all previous estimates through G− 1 avoids
spuriously increasing G when doing so does not offer a significantly better representation
of the data. We introduce the positive gradient requirement to ensure we identify impor-
tant sub-clusters and to address the possible non-monotonicity noted by Tibshirani et al.
(2001).12

3 FCM and HKM performance in simulations

In this section, we discuss the advantages of the FCM methodology in practice. First,
we consider computational advantages in the context of realistically-structured cross-
sectional economic datasets. We then present the results of simulation studies, in partic-
ular comparing FCM to HKM approaches, as well as the performance of the gap statistic.

3.1 Computational tractability

Our approach is computationally tractable and entails a sizable improvement compared
to alternative techniques. First, the equivalence shown in Theorem 2 implies a reduc-
tion in the computational time to solve the algorithm compared to the existing iterative

12This is particularly important in our empirical setting, where we group both on intercepts and MPCs,
but are interested only in the latter, since it is conceivable that the first level of clustering might only rep-
resent level heterogeneity in consumption changes. We additionally find that - in simulations in which the
data are not well-separated - without this requirement the gap statistic has a tendency to erroneously favor
homogeneous models.
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procedure, while improving precision. More generally, the FCM approach is considerably
faster than HKM. In the simulations outlined in the following subsection we consider two
versions of the algorithm proposed by Bonhomme and Manresa (2015). Appendix C.2
discusses the algorithms and presents some details on the computational performance.
We show next that FCM also outperforms even an enhanced version of the baseline HKM
algorithm, conditional on computational feasibility described in the appendix.

3.2 Simulation performance

To explore the comparative performance of FCM and HKM in practice, we conduct a
Monte Carlo study based on our empirical application. We calibrate our simulations
to our empirical baseline specification, which is forthcoming in Equation (14). Follow-
ing Bonhomme and Manresa (2015), we generate data according to this model, for total
expenditures (by fixing the values of the regressors to those from the true dataset, and
generating Gaussian errors ε̃i with a calibrated variance or resampling from the empirical
distribution). For each observation, we assign a true group based on the modal weight
recovered in our empirical study.

We consider four different estimation approaches. First, we estimate via FCM with
both m = 1.8 and m = 1.1. The choice of m = 1.8 mirrors suggestions in the literature; we
additionally assess m = 1.1 as an implementation close to the limiting case of HKM, as
discussed above.13 Next, we consider HKM Algorithm 1 from Bonhomme and Manresa
(2015), as well as a version of HKM Algorithm 2 from the same paper.14

Performance for G = 5

We begin by assessing the performance with a moderate number of groups, G = 5. This
corresponds to the specification selected by the gap statistic in our empirical setting. We
first calibrate the standard deviation of ε̃i to 583, the empirical value. We then generate
errors by resampling from the empirical distribution within each group.

Table 1 reports the results with normally-distributed errors. Panel 1 displays the mean

13The literature generally suggests 1.5 ≤ m ≤ 2.5 (e.g., Bezdek et al. (1984), Pal and Bezdek (1995), Yu, Jian
et al. (2004), Wu (2012)). While optimality results are not generally available (theoretically or numerically),
Yu, Jian et al. (2004) derive a data-dependent theoretical upper bound for m, below which the simple sample
mean is not recovered (in the cluster means setting); Wu (2012) shows that in some datasets this bound can
be as low as 1.77. Results in Torra (2015) generally favor 1.5 ≤ m ≤ 2. Following our reading of these
existing results, and the confirmatory results we obtain in this section, we adopt m = 1.8 in our empirical
study.

14In every simulation, we order groups by choosing the group order which minimizes the sum of the
squared error (summing over each FE and MPC) between the truth and the estimators.
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Truth FCM HKM
m = 1.8 m = 1.1 Algo. 1 Algo. 1.5

Point Estimates

0.651 0.653 0.653 0.650 0.650
0.423 0.419 0.422 0.423 0.423
0.245 0.248 0.245 0.246 0.246
0.516 0.517 0.515 0.516 0.516
0.289 0.293 0.293 0.289 0.289

RMSE

0.053 0.053 0.055 0.055
0.026 0.025 0.025 0.025
0.017 0.016 0.017 0.016
0.023 0.023 0.025 0.024
0.054 0.054 0.053 0.052

Rejection Rates

0.042 0.044 0.046 0.046
0.056 0.052 0.012 0.012
0.058 0.052 0.030 0.030
0.032 0.036 0.012 0.012
0.058 0.058 0.060 0.056

Share Misclassified 0.000 0.000 0.000 0.000

Table 1: Simulation, Gaussian errors, empirical noise, S = 500

point estimates for each MPC against the true values used to generate the data for each
of the four estimators. For this parsimonious model, all estimators deliver essentially the
true parameter values on average. The second panel reports the RMSE of each estimate,
which are all quite small and very similar. Additionally, misclassification (based on the
modal weight for FCM) is essentially zero across approaches. The third panel additionally
reports rejection rates for nominal 5% tests of each true MPC for each estimator using
the inference results derived in this paper.15 These rates, close to 5%, demonstrate the
inference methods proposed are well-sized, and suitable for empirical use in datasets
with our sample size. In summary, all estimators perform well for this specification.

Table 2 reports parameter estimates with errors sampled from the empirical distribu-
tion, which results in data that are much less well-separated. The results are more varied
than for the Gaussian errors. No method precisely estimates the highest MPC correctly,
with both FCM approaches actually missing by more than HKM. However, for the re-
maining MPCs, FCM with m = 1.8, corresponding to the highest level of smoothing,
produces the best results. With the exception of the second MPC, it recovers the true val-
ues very precisely, while all other approaches miss by some distance. The RMSE tells a

15In Section B.3 of the Appendix, we extend small T inference results from Bonhomme and Manresa
(2015) to the case of heterogeneous slope coefficients that we consider.
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Truth FCM HKM
m = 1.8 m = 1.1 Algo. 1 Algo. 1.5

Point Estimates

0.651 0.712 0.558 0.691 0.630
0.423 0.341 0.201 0.292 0.252
0.245 0.238 0.156 0.187 0.170
0.516 0.529 0.376 0.395 0.386
0.289 0.334 0.217 0.226 0.207

RMSE

0.792 0.783 0.847 0.791
0.317 0.459 0.399 0.429
0.106 0.150 0.168 0.144
0.458 0.414 0.494 0.410
0.468 0.474 0.463 0.468

Share Misclassified 0.053 0.048 0.064 0.055

Table 2: Simulation, empirical errors, S = 500

similar story.16 Misclassification rates are roughly consistent across approaches at 5%.

Performance for G = 10

We now turn to the G = 10 specification with empirical noise (261). As more groups are
introduced, clusters naturally become less well-separated, posing a sterner challenge to
the estimators. The first panel of Table 3 reports the mean estimates. Remarkably, even
in this very poorly-separated data, FCM with m = 1.8 continues to estimate the true
parameters quite closely. The additional smoothing introduced for the higher value of
m improves the estimator’s ability to overcome uncertainty in assignment; m = 1.1 now
shows weaker performance, substantially misestimating several MPCs. However, FCM
with m = 1.1 still displays an advantage over both HKM estimators, which misestimate
most of the MPCs. These results are further supported by the RMSE, reported in the
second panel; FCM with m = 1.8 recovers the true parameters quite precisely, despite the
challenges posed by the additional clusters and noisy data. The misclassification rates
reported below again demonstrate this advantage.

The third panel additionally reports rejection rates for nominal 5% tests. These remain
below 10% across MPCs for m = 1.8, with most close to 5%, but performance is naturally
weaker for the other estimators due to the bias in the estimates themselves.

In appendix C.3 we show that HKM mis-estimation of some MPCs is not confined to
a small share of observations. In contrast, our benchmark FCM model does a remarkably
better job at matching the empirical CDF of the MPC distribution from the DGP. More-

16A possible exception is the fourth MPC, where the m = 1.8 result is affected by outliers.

21



Truth FCM HKM
m = 1.8 m = 1.1 Algo. 1 Algo. 1.5

Point Estimates

0.844 0.784 0.668 -4.129 0.069
0.986 1.032 2.136 12.602 7.731
0.795 0.797 1.049 -1.225 1.177
0.646 0.646 0.499 -0.466 0.551
0.496 0.495 0.456 0.483 0.427
0.468 0.477 0.460 0.667 0.382
0.496 0.488 0.401 0.440 0.813
0.268 0.269 0.354 0.365 0.351
0.340 0.344 0.443 0.030 0.130
0.257 0.263 0.505 0.433 0.483

RMSE

0.676 5.932 10.110 8.869
0.771 17.218 20.519 16.644
0.029 3.829 6.737 5.222
0.023 2.530 4.298 3.323
0.094 1.599 1.890 1.765
0.129 3.547 2.246 2.258
0.174 1.769 2.143 2.111
0.023 0.389 0.484 0.649
0.048 0.910 1.344 1.391
0.056 0.421 0.410 0.471

Rejection Rates

0.088 0.758 0.982 0.962
0.106 0.928 0.998 0.984
0.074 0.904 0.954 0.914
0.086 0.892 0.938 0.876
0.066 0.882 0.770 0.704
0.058 0.880 0.744 0.700
0.060 0.754 0.750 0.674
0.054 0.456 0.554 0.458
0.070 0.610 0.720 0.902
0.058 0.508 0.536 0.632

Share Misclassified 0.007 0.409 0.775 0.743

Table 3: Simulation, Gaussian errors, empirical noise, G∗ = 10, S = 500
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over, we explore whether HKM can be enhanced by increasing the tuning parameters
governing computational time. While performance slightly improves, it is still weaker
than our benchmark model.

Gap statistic performance

We also assess the performance of the gap statistic in selecting the correct number of
groups. For this simulation, we draw 50 samples using as true structure G = 5 and
non-parametrically resampling from the empirical distribution of errors for each group
to preserve its properties. We find that in all 50 samples, the gap statistic correctly selects
G = 5 as the preferred specification. This evidence corroborates the original finding of
Tibshirani et al. (2001) that the gap statistic performs well for mean clustering problems
in our regression context. As an additional check on our methodology for selecting G, we
consider the Partition Coefficient and Partition Entropy measures proposed by Bezdek
(1981). These measures are not designed to select an “optimal” grouping, but rather in-
dicate specifications that are supported by the data. In the data, both support the G = 5
specification, increasing in value from G = 4. Additionally, we find that both measures
strongly favor the G = 5 specification in all 50 simulated samples.

In further related simulations, we also consider the consequences of mis-specifying
G. We estimate a specification with 5 groups when the true structure has 10 groups, and
vice versa. We find that quantiles of the distribution of coefficients recovered when G
is underspecified matches the true distribution quite well. The performance for over-
specified G is worse, since the additional coefficients spuriously fit noise in the tails of the
data. These results (and the computational challenges of richer models) suggest it may be
desirable to err towards models with fewer groups.

Discussion

The simulation results show that FCM, particularly with higher values of m, can ex-
hibit advantages over HKM when the data is less well-separated, which in practice may
coincide with models with more groups or, in our data, empirically-distributed (non-
Gaussian) noise. Interestingly, these results show that even though FCM is inherently
misspecified with respect to Equation (7), while HKM is well-specified, its performance
is not necessarily inhibited. In spite of the smoothing introduced by the weights relative
to the true objective function, both FCM and HKM recover the same parameters in lower
noise environments, and FCM may in fact remain closer to the truth than HKM in higher
noise or weakly-separated environments. We conjecture that this difference in perfor-
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mance is driven by the fact that observations that HKM would misclassify are not given
binary assignments by FCM, rather having some impact on estimates for their true group,
and a reduced impact on parameters of the incorrect group that HKM would assign. This
is supported by the fact that the weakened performance of HKM that we observe for
G = 10 is associated with an increased probability of misclassification. This interpreta-
tion is consistent with the analytical results reported in Section 2.1 for the Gaussian clus-
ter means case. The accommodation of uncertainty in group assignment via continuous
weights improves the performance of the FCM estimator.

4 Empirical methodology

We now apply our estimator to investigate heterogeneity in the marginal propensity to
consume, focusing our analysis on the 2008 Economic Stimulus Act (ESA), as in Parker
et al. (2013). Between April and July of 2008, $100 billion in tax rebates was sent to ap-
proximately 130 million US tax filers.17 The timing of the rebate receipt was determined
by the last two digits of the recipient’s Social Security Number (SSN), making the timing
of receipt random. As in Parker et al. (2013), we also exploit the randomized timing of the
rebate receipt, but instead estimate heterogeneous (and unobserved) propensities rather
than a homogeneous marginal propensity to consume. Our data come from the Con-
sumer Expenditure Survey (CEX), which contains comprehensive and detailed measures
of household-level consumption expenditures. The 2008 CEX wave also includes supple-
mental questions on the ESA, including the amount of each stimulus payment received.
While CEX expenditures are reported at the quarterly frequency, new households enter
the survey at each month, making the frequency of our data monthly. Since we depart
from Parker et al. (2013) by allowing for treatment heterogeneity, we present their homo-
geneous specification first as a useful benchmark, introducing our refinements thereafter.

4.1 Homogeneous MPC

Parker et al. (2013) consider the following specification:

∆Cj = β′Wj + θRj + α + εj (13)

where ∆Cj is the first difference of consumption expenditure of household i in quarter

17We defer to Parker et al. (2013) and Sahm et al. (2010) for an exhaustive discussion of the Economic
Stimulus Act.
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t.18 Wj is a set of controls including month dummies aimed at absorbing common time
effects such as aggregate shocks, as well as seasonal factors.19 The independent variable
of interest is Rj, which denotes the amount of the tax rebate received by each household. θ

is then interpreted as the causal effect of the rebate on expenditures, where identification
is achieved by comparing expenditure changes of households that received the rebate in
a certain period to expenditure changes of households that did not receive the rebate in
the same period.20

4.2 Heterogeneous MPCs

We depart from the homogeneous specification in Equation (13) and allow for hetero-
geneity in the expenditure responses to the tax rebate across households. In particular,
we follow the structure of Equation (7) and augment Parker et al. (2013)’s specification as
follows:

∆Cj = β′Wj + ∑
g∈G

(
θg1 [j ∈ g] Rj + αg1 [j ∈ g]

)
+ εj (14)

That is, we assume that heterogeneity in responses to the rebate can be summarized with
G groups, characterized by the vector of coefficients

{
αg, θg

}
. We include the group-

specific intercepts αg to correctly interpret θg as a marginal propensity to consume. For
example, since we cannot control for changes in income, without the group-specific level
effects, MPC heterogeneity might be biased by heterogeneity in income changes unrelated
to the tax rebate.21 1 [j ∈ g] is an indicator that takes a value of 1 if household i in period
t belongs to a certain group g ∈ G. Our object of interest is θg, which describes MPC het-

18To maintain consistent notation throughout the paper, we refer to j as the (i, t) combination. We wish to
emphasize that while we have information on the same households i in different periods t, identification is
not obtained by comparing individual responses over time. We do not exploit any limited panel structure,
except to construct consumption changes for the left-hand-side variable. We return to this point below.

19In Parker et al. (2013), the other controls are age, change in number of adults in the household, and
change in the number of children in the household. The controls we will use are the same, but additionally
include squared age.

20As discussed by Kaplan and Violante (2014), θ may not correctly measure the marginal propensity to
consume out of a transitory income shock, but is instead better thought of as a “rebate coefficient”. This is
because the control group of non-recipients in period t is made of three groups: (i) households that never
receive the rebate, (ii) households that did not receive a rebate yet, but may anticipate receiving the rebate
in the future, and (iii) households that have already received the rebate. The second group might display a
positive MPC out of news of the rebate, biasing the estimated rebate coefficient θ downward. Similarly, the
third group might also have a positive lagged MPC out of the rebate, further contributing to a downward
bias. We address these issues in Appendix Section D.3.

21The CEX has information on current income during the first interview, but not thereafter, so we cannot
construct measures of income changes for each quarter.
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erogeneity, while 1 [j ∈ g] tells us the group membership of each household. The vector
of coefficients, combined with 1 [j ∈ g], gives an approximation of the MPC distribution.
Section B.4 of the Appendix discusses the distinction between recovering MPCs based on
a parsimonious specification as in Equation (14) and subsequently investigating their re-
lationship with additional covariates, as compared to including additional covariates in
the regression itself.

5 Results

We apply our FCM approach to the rebate experiment, estimating Equation (14). Our
findings highlight a considerable degree of MPC heterogeneity whose extent varies de-
pending on the consumption category considered. We first show the distribution of
marginal propensities to consume out of total expenditures and illustrate how our results
are robust to different specifications and sample selection procedures. We then investigate
how the MPC distribution changes as we consider nondurable and durable goods as the
dependent variables. Importantly, our approach also allows us to directly test whether
households display similar propensities for different consumption goods, or instead sub-
stitute across expenditure types when they receive a transitory income shock such as a
tax rebate. Finally, we explore which observable household characteristics are correlated
with the estimated marginal propensities to consume.

5.1 The Distribution of Marginal Propensities to Consume

As for virtually all the empirical variables considered in this paper, we define total expen-
ditures as in Parker et al. (2013). Motivated by the simulation studies shown in Section
3.2 and the literature (see footnote 13), we set the fuzziness parameter m to 1.8. Following
Kaplan and Violante (2014), who show that properly accounting for outliers reduces the
homogeneous rebate coefficient, while increasing precision, we drop the top and bottom
1.5% of consumption changes.22 After solving the algorithm for G ranging from 2 to 10,
the gap statistic suggests that 5 is the optimal number of groups. For each household that
receives the rebate, we compute the weighted average MPC, using the household-specific
weights and the group-specific MPCs estimated by the algorithm.23 Figure 2 shows the
distribution of this object for those that received the rebate.

22This is the only way in which our sample departs from Parker et al. (2013), and explains why the
homogeneous MPC we estimate for total consumption differs from theirs.

23Appendix Section D shows the distribution of the modal MPC – the one associated with the single
highest weight at the individual level. The majority remains at an MPC of .25.
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Figure 2: Estimated distribution of MPCs out of the tax rebate

Notes: Figure 2 plots a histogram (light blue bars) of the estimated distribution of MPCs among households that received the rebate for
total expenditures, defined as in Parker et al. (2013). The homogeneous MPC (vertical red line) is estimated assuming a homogeneous
response to the tax rebate, also as in Parker et al. (2013) and following Equation 13. For each household we compute the weighted
MPC, weighted across groups g ∈ G. The black vertical line shows the average weighted MPC in our sample. The dash-dotted line
overlays data simulated from a Beta distribution, shifted to lie on the closed interval [.245, .651], fitting our MPC distribution, with
parameters 0.326 and 1.036.

The vast majority of households display a relatively low (but certainly non-negligible)
MPC (∼ 0.25), and the share of households with higher MPCs slowly decays as the MPC
increases. While under this specification no household can be strictly defined as hand-to-
mouth (MPC = 1), the majority of the sample exhibits a sizable propensity to consume;
our findings suggest that most households consume at least part of the rebate.

We also document how, aggregating the individual-level responses, we obtain a larger
propensity to consume than when running the homogeneous regression, as shown by the
black and red vertical lines respectively. In Appendix D.4 we provide intuition for this
result. The discrepancy is not driven by group-specific variation in the rebate, but by
the properties of the joint distribution of the rebate, the controls, and the estimated MPC
distribution. Our flexible approach allows us to account for non-linear heterogeneous
relationships, which matter for aggregated responses.24

24In a model with heterogeneous effects, it is not generally true that an estimated homogeneous effect
is equal to the weighted average of the heterogeneous effects. The sign, and the size, of this discrepancy,
however, is a complicated object which depends on the joint correlation between treatment effects and
covariates. In unreported results we find that individual controls do not separately account for the discrep-
ancy. We check this by shutting down the contribution of each control in Equation (24).
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Figure 3: Estimated distribution of maximum household weights

Notes: Figure 3 plots a histogram of modal estimated household weights for total expenditures, defined as in Parker et al. (2013).

Figure 3 depicts the distribution of estimated individual modal weights. Some house-
holds’ assignments are estimated with near certainty (those with a maximum weight of
~1). The distribution of weights, however, is clearly quite different from the binary as-
signment that would result from HKM. Our weighted approach therefore allows us to
recover the smoother distribution shown in Figure 2.

In Table 4 we show whether the estimated MPCs are statistically different from one
another. In Table 4a we make use of the analytical formulas outlined in Theorem 6 to com-
pute Wald tests of pairwise equality across MPCs. Groups 2 and 5 (ordered from lowest to
highest MPC), whose MPCs are not statistically significantly different from zero, are also
those with the smallest share of households.25 The FCM standard errors are larger than
standard errors on the equivalent weighted least squares regression, in which weights
are taken as given, exactly because they take into account that the weights are estimated
endogenously. Table 4b shows that - when group assignment is taken as given -all MPCs,
except one, are statistically different from zero in this framework. Moreover, various MPC
groups are statistically different from each other, at least at the 68% confidence level. Ap-
pendix Section D further shows that the distribution of MPCs is largely invariant when
re-estimated on bootstrap samples drawn from the data.26

254% and 3% of rebaters assign maximum weight on groups 2 and 5, respectively.
26In particular, we repeat the estimation of the distribution of MPCs out of total expenditures, with 5
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Table 4: Test for MPC equality

(a) Analytical standard errors

MPC

0.24 0.29 0.42 0.52 0.65

0.24 6.66
(0.01)

0.29 0.01 0.23
(0.92) (0.63)

0.42 1.04 0.05 3.33
(0.31) (0.82) (0.07)

0.52 3.79 0.18 0.17 7.60
(0.05) (0.67) (0.68) (0.00)

0.65 0.35 0.16 0.14 0.04 0.82
(0.55) (0.69) (0.71) (0.82) (0.37)

(b) Conditional on FCM weights

MPC

0.24 0.29 0.42 0.52 0.65

0.24 84.5
(0.00)

0.29 0.03 1.20
(0.87) (0.27)

0.42 8.49 0.24 51.8
(0.00) (0.62) (0.00)

0.52 23.3 0.71 1.45 92.1
(0.00) (0.40) (0.23) (0.00)

0.65 1.79 0.81 0.55 0.19 4.61
(0.18) (0.37) (0.46) (0.66) (0.03)

Notes: Total expenditures. The two tables show F-statistics from pairwise two-sided Wald tests of equality across MPCs (the diagonals
shows tests of equality with zero). Table 4auses the standard errors outlined in Theorem 6. Table 4b repeats the exercise, taking the
weights as given. These are equivalent to weighted least squares estimates where the weights are taken as given by those in Equation
(4), raised to the power m as described in Theorem (2). Therefore, to run the tests in Table 4b, we replicate the sample by the number of
groups and estimate ∆Cj = β′Wj + ∑g∈G

(
θg1 [j ∈ g] Rj + αg1 [j ∈ g]

)
+ εj via weighted least squares, with standard errors corrected

for heteroskedasticity, and compute the Wald tests. P-values are reported in parentheses.

The flexibility of the FCM methodology allows us to nest instrumental variable esti-
mation. This is particularly relevant in our framework, since the exogenous source of the
transitory income shock is driven by the random timing of the rebate receipt, but the value
of the rebate itself may be endogenous. We therefore follow the literature and instrument
the tax rebate with an indicator function for its receipt. In this “TSLS” specification, we
first regress the rebate value on a rebate indicator and the same controls as in Equation 14,
and then use the predicted value in the second stage. Figure 4 plots the resulting distribu-
tion of weighted MPCs, and shows how it remains qualitatively unchanged relative to the
OLS specification. If anything, instrumentation uncovers a small portion of households
that consume the rebate in its entirety and that even display an MPC slightly larger than
1.27 Moreover, the gap between aggregated and homogeneous response is even larger
than in OLS.

Another concern raised by Kaplan and Violante (2014) is the interpretability of the re-

groups, over 100 samples obtained with bootstrap with replacement. We find that the average quantiles
across bootstraps are very close to those estimated in the baseline sample, and fairly stable across boot-
straps.

27In this setting, understanding the direction of bias in the OLS specification is difficult, since group
membership is estimated simultaneously with the parameters. However, the correlation of individuals’ es-
timated weighted MPCs across specifications is .91, and the rank correlation is .94, suggesting little move-
ment in group membership by MPC.
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Figure 4: Estimated distribution of MPCs out of the tax rebate: two-stage least squares

Notes: Figure 4 plots histogram (light blue bars) of the estimated distribution of MPCs for total expenditures, defined as in Parker
et al. (2013), using the two-staged least squares specification. The homogeneous MPC (vertical red line) is estimated assuming a
homogeneous response to the tax rebate, also as in Parker et al. (2013) and following Equation (13). We estimate the models with
G = 5, to allow direct comparability with the distribution of MPCs out of total expenditures. For each household we compute the
weighted MPC, weighted across groups g ∈ G. The black vertical line shows the average weighted MPC in our sample. The dash-
dotted line overlays a histogram of data generated from a Beta distribution, shifted to lie in the closed interval [.240, 1.18], fitting our
MPC distribution, with parameters 0.322 and 1.203.

bate coefficient as a marginal propensity to consume. The concern arises from the obser-
vation that some households in the control group never receive a rebate (possibly because
they have different characteristics, like higher income), some households in the control
group have already received the rebate, and some households might anticipate receiving
the rebate in the future. In Appendix Section D.3, we show that the estimated distribution
maintains its main properties when we (i) drop households that never get the rebate and
(ii) include lagged values of rebate.

5.2 The MPC Distribution for Different Consumption Goods

We have shown how households differ with respect to their propensity to consume the re-
bate. How does the distribution of these propensities change across consumption goods?
The granularity of the CEX data allows us to tackle this question, while our approach
allows us to explore how good-specific MPCs vary at the household level.

First, in the left panel of Figure 5, we show the weighted MPC distribution out of
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Figure 5: MPCs out of the tax rebate: nondurables (left) and durables (right)

(a) Nondurables (b) Durables

Notes: Nondurable goods are defined, following Parker et al. (2013), as strictly nondurables (Lusardi (1996)) plus apparel goods and
services, health care expenditures (excluding payments by employers or insurers), and reading material (excluding education). The
homogeneous MPC (red line) is estimated assuming homogeneous response to the tax rebate. For each household we compute the
weighted MPC, weighted across groups g ∈ G. The black line shows the average weighted MPC in our sample. We estimate the
models with G = 5, to allow direct comparability with the distribution of MPCs out of total expenditures. We follow Coibion et al.
(2017) and define durables as durable health expenditures, entertainment durables, furniture, jewelry, durable personal care, vehicle
purchases, durable vehicle expenditures, housing durable expenditures (e.g., maintenance and repair commodities such as paint,
materials.).

nondurable goods.28 As expected, the distribution is shifted to the left with respect to the
distribution corresponding to total expenditures in Figure 2, as nondurable goods account
for, on average, only 57% of household total expenditures.

The vast majority of households consume a value of nondurables consistent with the
annuity value of the rebate, as suggested by the Permanent Income Hypothesis (Fried-
man (1957)): between 71% and 92% of households have an MPC that is not statistically
distinguishable from zero. A non-negligible portion of households, however, continue to
display relatively large propensities to consume nondurable goods. The heterogeneity in
nondurable MPCs is not only economically meaningful, but also statistically significant.
In Appendix (D.1) we show that nearly all the estimated MPCs are statistically differ-
ent from each other. Instrumenting the rebate with the rebate receipt indicator slightly
increases both the mass and the values at the right tail, similar to the results for total
expenditures.

As shown in the right panel of Figure 5, 86% of households are estimated not to change
their durable expenditures in response to the rebate; their weighted MPC is below 0.05

28Nondurable goods are defined, following Parker et al. (2013), as strictly nondurables (Lusardi (1996))
plus apparel goods and services, health care expenditures (excluding payments by employers or insurers),
and reading material (excluding education).
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Figure 6: The correlation of MPCs across consumption goods
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Notes: Figure 6 shows a binscatter of household MPC estimates for durables against nondurables. Each dot shows the average
weighted MPC out of durable goods for each decile of the distribution of weighted MPCs out of nondurable goods.

and the associated group-specific MPC is statistically indistinguishable from the annuity
value of the rebate. Moreover, 92% of the households have a modal MPC that is not statis-
tically distinguishable from 0.05. The remaining MPCs, however, are 0.64 and 0.76.29 The
dichotomy of this MPC distribution stems directly from the specific features of durable
goods. The discreteness of large purchases implies lumpy adjustment, and is consistent
with the fact that most households either use most of the rebate to purchase durables, or
do not adjust at all.

Finally, we check directly if households with high propensities to consume nondurable
goods are also more likely to consume durable goods after receiving the rebate. The
findings shown in Figure 6 suggest that this is the case. While we can rule out sub-
stitution between goods, the estimated complementarity - at the margin - is, however,
quantitatively small. The correlation between households-level weighted MPCs out of
nondurable goods with those for durables is 0.04, significant at the 5% level, while the
rank correlation is 0.03. Albeit small, the complementarity might signal the presence of
heterogeneous preferences or a small share of “spender” types, who are more prone to
adjust any type of consumption in response to transitory income shocks. While the struc-
ture of our data does not allow us to draw conclusions regarding permanent unobserved
heterogeneity in MPCs, we can investigate what observable characteristics explain the
estimated MPC distributions that we recover. We tackle this issue in the next section.

29In line with the tendency shown for different consumption categories, estimating durable MPC with
TSLS uncovers a group with larger propensity, up to 1.20.
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5.3 What Drives MPC Heterogeneity?

Our approach uncovers the distribution of marginal propensities to consume without
needing to take a stance on its observable drivers. Nevertheless, we can use the estimated
distribution to understand how MPCs correlate with observable characteristics. This ap-
proach would be nearly impossible using existing approaches, since estimating MPCs for
different observable subgroups (e.g., cut by age, income, wealth, and other observables
simultaneously) would come at the cost of substantial loss of statistical power.

While many observables individually correlate with the MPCs, only three of them
remain statistically significant explanatory variables even after the inclusion of additional
drivers. We focus on them in this section and report individual correlations in Appendix
Section D.30

First, we find that high-income households have a greater marginal propensity to con-
sume. While this is true for total income — defined as the sum of salary, financial and
business income – it does not hold for salary income, once we control for the former.
This effect does not seem to be driven by a particular category of households, such as en-
trepreneurs or investors (for example, those with a positive business or financial income),
but rather by the intensive margin of total income. We find that a 1% increase in total
income is associated with and increase in the MPC by 2 cents for each dollar of rebate;
put differently, a 5 percent increase in income predicts 1 standard deviation increase in
the MPC. While some studies find that low-income households have a higher marginal
propensity to spend,31 others are in line with our findings.32 It should also be noted that
income is measured in the CEX over the past 12 months and only in the first interview,
thus making it less suited to measure transitory income fluctuations. The positive cor-
relation between income and MPCs does not only hold for total expenditures, as shown
in the left panel of Figure 7, but also for nondurable MPCs, even when controlling for
additional covariates. In contrast, it holds only mildly and unconditionally for durable

30In unreported results we also show that our findings are virtually unchanged when considering the
weighted MPC distribution estimated via TSLS, or the modal MPC distribution. Correlations with observ-
ables are also robust to the exclusion of observations associated with statistically insignificant MPCs out of
total expenditures.

31For instance, Johnson et al. (2006) for the 2001 tax rebate and Jappelli and Pistaferri (2014), with respect
to cash on hand, for Italian data on reported MPCs.

32Kueng (2018) studies consumption responses to regular and predetermined payments from the Alaska
Permanent Fund and finds that MPCs monotonically increase with income. Misra and Surico (2014) also
find that median income is higher at the top of the conditional distribution of consumption changes, which
they find to be associated with higher propensities to consume, although the overall relationship is U-
shaped. Shapiro and Slemrod (2009) use data on self-reported propensity to spend the 2008 rebate to show
that low-income individuals were more likely to pay off debt. They also find that 21% of households
making more than $75,000 of total annual income reported to mostly spend the rebate, compared to 18%
for households with total income below $20,000.
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Figure 7: Correlation of MPCs with total income and mortgage interest
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Notes: Figure 7shows the binscatter of MPCs agains total income (left panel) and mortgage to interest income ratios (right panel).
Each dot shows the average weighted MPC out of total expenditures for each decile of the distribution of lagged log total income (left
panel) and for each decile of the distribution of the ratio between mortgage interest payments and total income (right panel). The red
line shows the quadratic fit. Log of total income takes a value of 0 when total income is 0 or negative. The mortgage interest to income
ratio is winsorized at the top 99%.

MPCs.
The second important dimension is whether the household owns a home, and if so,

whether the household has a mortgage. Homeowners are found to have greater MPCs,
a result that echoes Parker et al. (2013). Furthermore, we find that having a mortgage is
associated with an even higher propensity to consume, after we control for other drivers.
The intensive margin of mortgage value also seems important. We examine the ratio
between mortgage interest payments and total income, and find that a one percentage
point increase in this ratio predicts 9 additional cents to be spent in total expenditures
for each rebate dollar. The right panel of Figure 7 visually combines the extensive and
intensive margin of mortgage status.

The last relevant observable is the average propensity to consume (APC). Empirically,
we define the APC as the ratio between lagged consumption and lagged total income.
As previously mentioned, we consider income as measured in the first interview for each
households, and it refers to the previous 12 months. We lag expenditures to avoid a
mechanical positive correlation with the MPC. To ensure stability of APCs, we average
expenditures over all the available lagged quarters at the household-level, but the results
are virtually unchanged if we only consider the first lag. Households that spent 1 percent-
age point more of their income before receiving the rebate spent 4 additional cents out of
each rebate dollar. This effect is significant also for nondurable MPCs and conditional on
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Figure 8: Marginal and average propensities to consume
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Notes: Figure 8 shows a binscatter of the estimated MPCs against the household APCs, measured as mean lagged consumption
relative to lagged total income. Each dot shows the average weighted MPC out of total expenditures for each decile of the distribution
of the ratio between total expenditures and total income. The red line shows the quadratic fit. Expenditure rates are winsorized at
300%, corresponding to roughly the 97th top percentile. Observations with negative expenditure rates are dropped (0.03% of the
sample).

a wide array of controls.33 Figure 8 shows how this relationship is effectively linear.
We regard this result as particularly useful for disciplining macro models of household

consumption. First, the average propensity to consume can be easily computed in a large
number of micro datasets with minimal information. Second, this correlation can be di-
rectly tested in even the simplest of consumption/savings models. Yet, different models
will have strikingly different implications for this moment. Consider the workhorse life-
cycle model with incomplete markets. Households are born with zero assets and cannot
borrow. Early on in the life cycle they are hand-to-mouth (APC = 1) and they display a
large MPC. As they move up the income ladder, they start saving in order to accumulate a
buffer stock. The APC starts falling, and so does the MPC. This behavior generates a pos-
itive correlation between the APC and MPC across the working-age population. How the
remaining part of the population is modeled is important for the correlation. If agents are
infinitely lived, they will save until a certain target wealth and then stop saving. As they
approach the target, the MPC gradually falls towards the annuity value of the transitory
income shock, while the APC converges to 1. In the population, this implies an ambigu-
ous correlation between APC and MPC, in contrast with our results. In a life cycle model,
instead, households start dissaving as they approach their death. This implies they dis-
play an APC > 1. Similarly, they are more responsive to transitory income shocks, given

33A 1 percentage point increase in total expenditures’ APC predicts 2 additional cents per rebate dollar
were spent in nondurables. This effect goes up to when considering the ratio between nondurable expen-
ditures and total income.
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the increasingly lower effective discount factor. This model has therefore the potential to
generate a positive correlation between MPC and APC across the entire population.34

Finally, it is worth mentioning that all the observable drivers mentioned in this section
— as well as other household characteristics that do not strongly correlate with the MPC
— explain a relatively small portion of the variance of the weighted MPC distribution.
Indeed, our best linear regression framework of weighted MPC on observable character-
istics delivers an R2 of 13%. This could be partly explained by non-linear relationships
that are difficult to parametrize. Moreover, the CEX contains only sparsely populated in-
formation on wealth. In the Appendix, we show the relationship between the MPC and
liquid wealth, aware of the potential nonresponse bias highlighted by Parker et al. (2013).
We refrain from showing any relationship with total wealth, given the lack of reliable
data. While these unobservable — within our dataset — characteristics could potentially
explain some of the variation in MPCs, our results nevertheless suggest the presence of
unobserved or latent drivers in MPC heterogeneity, especially since some of those latent
characteristics may drive the observables we analyze in the first place. Our approach is
able to uncover the full MPC distribution, including its latent part, but we are not able
to clearly identify its source in the form of, for instance, preference heterogeneity. Some
survey datasets try to directly to uncover these features. Parker (2017) finds that the ma-
jority of consumption responsiveness to the tax rebate, in the Nielsen data, is driven by
a measure of impatience, defined as households reporting to be “the sort of people who
would rather spend money and enjoy it today or save more for the future”. Alternatively,
a long panel data structure could allow one to draw conclusions on the permanent com-
ponent of the MPC heterogeneity, as well as the evolution of the MPC distribution over
the business cycle. The application of our framework to these questions is left to future
research.

6 Aggregate partial equilibrium effects of the 2008 ESA

In this Section, we estimate the partial equilibrium (PE), aggregate response to the 2008
tax rebate based on our estimated heterogeneous coefficients. For this exercise, we use a
lagged specification which takes into account the possible persistent effects of the rebate
receipt, as in Parker et al. (2013). In particular, we estimate the following model:

34Retired households, on the other hand, are wealthier, which negatively affects the MPC in this class of
models. Eventually, the correlation between MPC and APC depends on the quantitative properties of the
model.
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Figure 9: Estimated distribution of total 2-quarter effect of the tax rebate

Notes: Figure 9 plots histogram (light blue bars) of the estimated distribution of the total effect of the 2008 ESA for total expenditures,
defined as in Parker et al. (2013), using the lagged specification in Equation 15. The homogeneous MPC (vertical red line) is estimated
assuming a homogeneous contemporaneous and homogeneous lagged response to the tax rebate, also as in Parker et al. (2013). For
each household we compute the weighted MPC, weighted across groups g ∈ G. The black vertical line shows the average weighted
MPC in our sample.

∆Cj = β′Wj + ∑
g∈G

(
θg1 [j ∈ g] Rj + θ

lag
g 1 [j ∈ g] Rlag

j + αg1 [j ∈ g]
)
+ εj (15)

where the coefficient θ
lag
g represents the lagged effect of the rebate for group g.35 We do

not force a household to remain in a particular group in each period. To correctly estimate
the cumulative response to the rebate, we therefore track individual weights over the two
quarters following the rebate. We use these to construct the individual 2-quarter total
effect of the rebate, by adding twice the weighted contemporaneous rebate coefficient to
the weighted lagged coefficient.36

Figure 9 plots a histogram of this object among those who received the rebate. Rela-
tive to the baseline results depicted in Figure 2, the distribution spreads out, with some
households having a total effect near zero. Moreover, as depicted in Figure 9, the es-

35See the Appendix, Section D.3 for further discussion of this specification.
36For example, a household may be categorized to be in some group a in the period in which they receive

the rebate, and then in some group b the period after they receive the rebate. For such an individual, we
construct the individual 2-quarter total effect of the rebate by adding twice the contemporaneous rebate
coefficient for group a to the lagged rebate coefficient of group b.
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timated partial equilibrium effect of the tax rebate doubles relative to its homogeneous
counterpart, from .28 to .58.

7 Conclusion

We develop a flexible approach to uncover latent heterogeneity in cross section and short
panel data, and use it to estimate heterogeneity in the marginal propensity to consume.
We adapt the fuzzy C-means methodology, which jointly estimates group-specific coef-
ficients and individual-specific membership weights, to a general regression framework.
We motivate the use of fuzzy C-means by first demonstrating analytically that there al-
ways exists an m such that FCM is unbiased when T = 1 in a simple cluster means
setting. We show equivalence between fuzzy C-means regression and the minimization
of a nonlinear, weight-free, objective function, and establish asymptotic properties of the
associated estimator using the fact that the new representation has a GMM formulation.
In simulations, we show that the estimators preform very well, even when the data are
not well-separated. As a further benefit, our estimator dramatically improves upon ex-
isting techniques in terms of computational speed. These features make fuzzy C-means
regression well-suited to a wide range of economic problems featuring cross-section or
short-panel data in the presence if unobserved heterogeneity.

We find that households display a considerable degree of heterogeneity in their marginal
propensities to consume. Moreover, we show that different consumption goods are asso-
ciated with different distributions, suggesting the need to take good-specific heterogene-
ity seriously in consumption/savings models. We do not find evidence of individual-
level substitution across consumption goods in response to transitory income shocks, but
rather a very mild positive correlation. Finally, we explore what observables best predict
different portions of the MPC distribution. Our findings suggest that there is a tight rela-
tionship between marginal and average propensities to consume, which is easy to derive
in many models of consumption behavior and yet has received relatively little attention.
Since observable characteristics explain a minor portion of the estimated MPC hetero-
geneity, we posit that other latent factors might be important in determining marginal
propensities to consume.

Finally, a few caveats are in order that highlight some open avenues for future work.
Importantly, we measure the distribution of MPCs to the 2008 tax rebate. This means our
estimated distribution uses a single cross-section of data during a recession; if an individ-
ual’s MPC is a function of the aggregate state, extrapolating our estimates requires cau-
tion. Second, because our empirical setting is one in which individuals only experience
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positive transitory shocks, we cannot speak to income windfalls, to which households
may respond differently (Fuster et al. (2018)). However, the fuzzy C-means approach we
develop can easily be extended to other datasets with suitably identified transitory in-
come shocks, so that comparisons can be done. We leave such exercises open for future
work.

39



References

AGUIAR, M., C. BOAR, AND M. BILS (2019): “Who Are the Hand-to-Mouth?” in 2019
Meeting Papers, Society for Economic Dynamics, 525.

AUCLERT, A. (2019): “Monetary Policy and the Redistribution Channel,” American Eco-
nomic Review, 109, 2333–67.

BELLONI, A., D. CHEN, V. CHERNOZHUKOV, AND C. HANSEN (2012): “Sparse Mod-
els and Methods for Optimal Instruments With an Application to Eminent Domain,”
Econometrica, 80, 2369–2429.

BEZDEK, J. (1981): Pattern Recognition With Fuzzy Objective Function Algorithms, Plenum
Press.

BEZDEK, J. C., R. EHRLICH, AND W. FULL (1984): “FCM: The Fuzzy C-Means Clustering
Algorithm,” Computers & Geosciences, 10, 191 – 203.

BONHOMME, S., T. LAMADON, AND E. MANRESA (2017): “Discretizing unobserved het-
erogeneity,” University of Chicago, Becker Friedman Institute for Economics Working Paper.

BONHOMME, S. AND E. MANRESA (2015): “Grouped Patterns of Heterogeneity in Panel
Data,” Econometrica, 83, 1147–1184.

CARROLL, C., J. SLACALEK, K. TOKUOKA, AND M. N. WHITE (2017): “The Distribution
of Wealth and the Marginal Propensity to Consume,” Quantitative Economics, 8, 977–
1020.

CHERNOZHUKOV, V., M. DEMIRER, E. DUFLO, AND I. FERNÁNDEZ-VAL (2017):
“Generic Machine Learning Inference on Heterogenous Treatment Effects in Random-
ized Experiments,” arXiv e-prints, arXiv:1712.04802.

COIBION, O., Y. GORODNICHENKO, L. KUENG, AND J. SILVIA (2017): “Innocent By-
standers? Monetary policy and inequality,” Journal of Monetary Economics, 88, 70–89.

CRAWLEY, E. AND A. KUCHLER (2018): “Consumption Heterogeneity: Micro Drivers and
Macro Implications,” Danish National Bank Working Paper 129.

DUNN, J. C. (1973): “A Fuzzy Relative of the ISODATA Process and Its Use in Detecting
Compact Well-Separated Clusters,” Journal of Cybernetics, 3, 32–57.

FAGERENG, A., M. B. HOLM, AND G. J. NATVIK (2016): “MPC Heterogeneity and House-
hold Balance Sheets,” Discussion Papers 852, Statistics Norway, Research Department.

FRIEDMAN, M. (1957): A Theory of the Consumption Function, Princeton University Press.
FUSTER, A., G. KAPLAN, AND B. ZAFAR (2018): “What Would You Do With $500? Spend-

ing Responses to Gains, Losses, News, and Loans,” Staff Reports 843, Federal Reserve
Bank of New York.

40



HANSEN, L. P. (1982): “Large Sample Properties of Generalized Method of Moments
Estimators,” Econometrica, 50, 1029–1054.

HAYASHI, F. (2011): Econometrics, Princeton University Press.
JAPPELLI, T. AND L. PISTAFERRI (2014): “Fiscal Policy and MPC Heterogeneity,” American

Economic Journal: Macroeconomics, 6, 107–36.
JOHNSON, D. S., J. A. PARKER, AND N. S. SOULELES (2006): “Household Expenditure

and the Income Tax Rebates of 2001,” American Economic Review, 96, 1589–1610.
KAPLAN, G., B. MOLL, AND G. L. VIOLANTE (2018): “Monetary Policy According to

HANK,” American Economic Review, 108, 697–743.
KAPLAN, G. AND G. L. VIOLANTE (2014): “A Model of the Consumption Response to

Fiscal Stimulus Payments,” Econometrica, 82, 1199–1239.
KAPLAN, G., G. L. VIOLANTE, AND J. WEIDNER (2014): “The Wealthy Hand-to-Mouth,”

Brookings Papers on Economic Activity, 45, 77–153.
KUENG, L. (2018): “Excess sensitivity of high-income consumers,” The Quarterly Journal

of Economics, 133, 1693–1751.
LUSARDI, A. (1996): “Permanent Income, Current Income, and Consumption: Evidence

from Two Panel Data Sets,” Journal of Business & Economic Statistics, 14, 81–90.
MISRA, K. AND P. SURICO (2014): “Consumption, Income Changes, and Heterogeneity:

Evidence from Two Fiscal Stimulus Programs,” American Economic Journal: Macroeco-
nomics, 6, 84–106.

NEWEY, W. K. AND D. MCFADDEN (1994): “Large Sample Estimation and Hypothesis
Testing,” Elsevier, vol. 4 of Handbook of Econometrics, 2111 – 2245.

PAL, N. R. AND J. C. BEZDEK (1995): “On Cluster Validity for the Fuzzy C-Means Model,”
IEEE Trans. Fuzzy Systems, 3, 370–379.

PARKER, J. A. (2017): “Why Don’t Households Smooth Consumption? Evidence from a
25MillionExperiment, American Economic Journal: Macroeconomics, 9, 153–83.

PARKER, J. A., N. S. SOULELES, D. S. JOHNSON, AND R. MCCLELLAND (2013): “Con-
sumer Spending and the Economic Stimulus Payments of 2008,” American Economic
Review, 103, 2530–53.

POLLARD, D. (1981): “Strong Consistency of K-Means Clustering,” The Annals of Statistics,
9, 135–140.

——— (1982): “A Central Limit Theorem for K-Means Clustering,” The Annals of Probabil-
ity, 10, 919–926.

SAHM, C. R., M. D. SHAPIRO, AND J. SLEMROD (2010): “Household Response to the
2008 Tax Rebate: Survey Evidence and Aggregate Implications,” in Tax Policy and the

41



Economy, Volume 24, National Bureau of Economic Research, Inc, NBER Chapters, 69–
110.

SHAPIRO, M. D. AND J. SLEMROD (2009): “Did the 2008 Tax Rebates Stimulate Spend-
ing?” American Economic Review, 99, 374–79.

SPIVAK, M. (1971): Calculus On Manifolds: A Modern Approach To Classical Theorems Of
Advanced Calculus, Avalon Publishing.

TIBSHIRANI, R., G. WALTHER, AND T. HASTIE (2001): “Estimating the Number of Clus-
ters in a Data Set via the Gap Statistic,” Journal of the Royal Statistical Society. Series B
(Statistical Methodology), 63, 411–423.

TORRA, V. (2015): “On the Selection of m for Fuzzy C-Means,” .
WU, K.-L. (2012): “Analysis of Parameter Selections for Fuzzy C-Means,” Pattern Recog-

nition, 45, 407–415.
YANG, M.-S. (1994): “On Asymptotic Normality of a Class of Fuzzy C-Means Clustering

Procedures,” International Journal of General Systems, 22, 391–403.
YANG, M.-S. AND K. F. YU (1992): “On Existence and Strong Consistency of a Class of

Fuzzy C-Means Clustering Procedures,” Cybernetics and Systems, 23, 583–602.
YU, JIAN, CHENG, QIANSHENG, AND HUANG, HOUKUAN (2004): “Analysis of the

Weighting Exponent in the FCM,” IEEE Transactions on Systems, Man, and Cybernetics,
Part B (Cybernetics), 34, 634–639.

A Proofs

Proof of Proposition 1

Proof. Without loss of generality, we assume that ζ1 = −ζ2, so (ζ1 + ζ2) /2 = 0 (we can
always demean all data before clustering). Denote the Gaussian with mean ζ1 as G1 and
similarly G2 for ζ2, with ζ1 < ζ2, and denote their variance as σ2. By symmetry, the
groups are separated at 0, so values y < 0 are assigned to cluster 1 and y > 0 are assigned
to cluster 2; y = 0 is a measure-zero event. Thus, the observations assigned to cluster
1 correspond to the portion of G1 left of zero and the left tail of G2. To compute ψ∗1 , it
suffices to compute the mean over these two truncated normal distributions, weighted by
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their relative contribution to the cluster’s mass:

E [y | g (y) = 1] =
PrG1 (g (y) = 1)

PrG1 (g (y) = 1) + PrG2 (g (y) = 1)
EG1 [y | g (y) = 1]

+
PrG2 (g (y) = 1)

PrG1 (g (y) = 1) + PrG2 (g (y) = 1)
EG2 [y | g (y) = 1] ,

where g (y) denotes the group to which a value y is assigned. By symmetry, the total mass
of the cluster is unity, so the relative contributions are simply Φ (−ζ1/σ) and Φ (−ζ2/σ)

respectively, where Φ is the standard normal c.d.f. Finally, it remains to compute the
means for each of the two truncated normals. Using standard results for the mean of the
truncated normal distribution, with lower bound equal to −∞ and upper bound equal to
0, we obtain the result,

ψ∗1 = Φ (−ζ1/σ)

(
ζ1 +

−φ (−ζ1/σ)

Φ (−ζ1/σ)

)
+ Φ (−ζ2/σ)

(
ζ2 +

−φ (−ζ2/σ)

Φ (−ζ2/σ)

)
,

with a symmetric argument giving a similar expression for ψ∗2 .
To conclude that ψ∗1 is negatively biased, note that in computing the mean over cluster

1, the right tail of G1 (right of zero) has been replaced by an equal mass to the left of zero,
shifting the overall mean to the left. ψ∗1 in general only recovers ζ∗1 by taking the limit as
σ→ 0.

Proof of Proposition 2

Proof. For any values of ρ1 and ρ2 and any 1 < m < ∞, the maximal weight placed on
a cluster for any value y is weakly lower under FCM than under HKM, in which it is
always unity (with equality if and only if y is equal to either ρ1 or ρ2). This follows from
the structure of the group weights,

µg (y; ρ) =

(
2

∑
h=1

∥∥y− ρg
∥∥2/(m−1)

‖y− ρh‖2/(m−1)

)−1

=

(
1 +

∥∥y− ρg
∥∥2/(m−1)

‖y− ρh‖2/(m−1)

)−1

≤ 1, h 6= g.

Start by considering ρ1 = ψ∗1 , ρ2 = ψ∗2 . At these values (as at any others), the FCM
weights on values corresponding to HKM cluster 1 are weakly lower than under HKM.
Take any value yi 6= ψ∗1 assigned to cluster 1 (with weight 1) by HKM (so yi < 0). Its
weight on cluster 1 membership is now 1− δ < 1. There is a corresponding value, −yi,
assigned to cluster 2 by HKM (with zero weight on cluster 1), with weight on cluster 1
membership now given by δ > 0, by symmetry. Jointly, the change in joint contribution to
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cluster mean by these two points by changing HKM weights to FCM weights (evaluated
at ρ1 = ψ∗1 , ρ2 = ψ∗2 ) is ((1− δ)− 1) yi + (δ− 0) (−yi) = −2δyi > 0, since yi < 0. This
argument can be repeated for all other values yj 6= ψ∗1 assigned to cluster 1 by HKM (for
yj = ψ∗1 the weights are unchanged so the net effect is zero). The total change in cluster
mean is given by ∫

y<0,y 6=ψ∗1

−2δ (yi) yiP (dy) > 0,

where δ (yi) expresses the change in weights from HKM to FCM as a function of yi. Thus,
the cluster mean computed based on FCM weights evaluated at ρ1 = ψ∗1 , ρ2 = ψ∗2 is less
than ψ∗1 . Of course, this is not the FCM optimum, since the weights were evaluated at
different values (and thus the parameters do not constitute a fixed point). However, this
argument can be repeated iteratively until a fixed point is obtained, since the weights
become smoother still the closer ρ1 becomes to ρ2.

However, this argument began by evaluating the weights at the HKM parameters, so
it remains to show that starting from values outwards of HKM does not yield a different
conclusion. Consider first evaluating the weights at some arbitrary finite values ρ′1 < ψ∗1
and ρ′2 > ψ∗2 . The maximal weights are still weakly lower relative to HKM, so after the
first iteration, the FCM cluster means are again inside those of FCM, and the argument
may continues exactly as above. Thus, ρ∗1 is located to the right of ψ∗1 , and ρ∗2 to the left of
ψ∗2 .

For bounded m and finite σ2, it is also the case that ρ1 6= ρ2 6= 0. This follows from
Theorem 1 of Yang and Yu (1992), which shows that the objective function is lowered from
the case of a single cluster mean by adding a second cluster mean.

Proof of Theorem 1

Proof. We begin by showing that ρ∗i (m) is everywhere differentiable in m. ρ∗i is implicitly
defined by the moment equation

fi (m, ρ) =
∫ ∞

−∞

1 +

∥∥yi − ρ∗i
∥∥ 2

m−1∥∥∥yi − ρ∗j

∥∥∥ 2
m−1


−m

(y− ρ∗i ) dP (y) = 0, i 6= j
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(for a formal argument that the FCM clustering problem can be represented as a method
of moments problem see (4)). By the implicit function theorem, since ρ∗1 and ρ∗2 are unique,

dρ∗i (m)

dm
=

[
− ∂ f

∂ρ′
(m, ρ∗ (m))

]−1 [
− d f

dm
(m, ρ∗ (m))

]
,

where ρ stacks ρ1, ρ2 in a vector (and similarly f stacks f1, f2). Since ρ∗ is assumed to be
the unique solution to f (m, ρ), the first term (the inverse of the Jacobian of the moments)
exists. The second term can be simplified to

∫ ∞

−∞
2 (m− 1)−2

1 +

∥∥y− ρ∗i − ζi
∥∥ 2

m−1∥∥∥y− ρ∗j − ζ j

∥∥∥ 2
m−1


−m

ln

1 +

∥∥y− ρ∗i − ζi
∥∥ 2

m−1∥∥∥y− ρ∗j − ζ j

∥∥∥ 2
m−1



×
∥∥y− ρ∗i − ζi

∥∥ 2
m−1∥∥∥y− ρ∗j − ζ j

∥∥∥ 2
m−1

ln


∥∥y− ρ∗i − ζi

∥∥∥∥∥y− ρ∗j − ζ j

∥∥∥ 2
m−1

 (y− ρ∗i − ζi) dP (y) .

For a given m (and thus ρ∗), the integrand is clearly finite for finite y except for at the
point where y = ρ∗j + ζ j (and infinite y are probability zero since the variance of each

Gaussian component is assumed to be finite). Further, denoting xj =
∥∥∥y− ρ∗j − ζ j

∥∥∥ 2
m−1 ,

ai =
∥∥y− ρ∗i − ζi

∥∥ 2
m−1 , ãi =

∥∥y− ρ∗i − ζi
∥∥

lim
xj→0

[
1 +

ai

xj

]−m

ln

[
1 +

ai

xj

]
ai

xj
ln

(
ãi

xj

)

= lim
xj→0

[
xj+ai

xj

]−m
ai ln

[
ai+xj

xj

]
ln
(

ãi
xj

)
xj

= lim
xj→0

xm−1
j ai

(
ln
(
ai + xj

)
− ln

(
xj
)) (

ln (ãi)− ln
(
xj
))(

xj + ai
)m

= lim
xj→0

ai(
xj + ai

)m

[
xm−1

j
(
ln
(
ai + xj

)
ln (ãi)− ln

(
ai + xj

)
ln
(
xj
)

.

− ln
(
xj
)

ln (ãi) + ln
(
xj
)

ln
(
xj
)) ]

The first part is clearly finite in the limit. We take the second part term-by-term. The first
is clearly zero in the limit. The limit of the third term is zero by l’Hôpital’s rule. The limits
of the second and fourth terms are zero by double application of l’Hôpital’s rule. Having
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argued that the integrand is finite for all points with positive probability under P, the
integral exists. Thus ∂ f

∂m (m, ρ∗ (m)) exists everywhere, so ∂ρ∗i (m)
∂m exists everywhere. Since

ρ∗i (m) is a univariate function, existence of the derivative is sufficient for differentiability
to hold. Since ρ∗i (m) is thus everywhere differentiable for m ∈ (1, ∞), ρ∗i (m) is every-
where continuous. We know that limm→1 ρ∗1 (m) = ψ∗1 < ζ1, and that limm→∞ ρ∗1 (m) = 0
(Proposition 2). Note that given the normalization (ζ1 + ζ2) /2 = 0, ζ1 < 0. Therefore, by
the intermediate value theorem, there exists some m̃ ∈ (1, ∞) such that ρ∗1 (m̃) = µ1. The
same trivially holds for ρ∗2 .

Proof of Theorem 2

Proof. The first point follows from simple algebra and the definition of µ
reg
g . In particular,

Jreg
m (Π, µreg, θ) =

∫ ∫ G

∑
g=1

µ
reg,m
g (y | x; θ)

∥∥y− θgx
∥∥2 Πy|x (dy | x)Π (dx)

=
∫ ∫ G

∑
h=1

 G

∑
j=1

‖y− θhx‖2/(m−1)∥∥y− θjx
∥∥2/(m−1)

∥∥y− θgx
∥∥2 Πy|x (dy | x)Π (dx)

=
∫ ∫ ( G

∑
g=1

∥∥y− θgx
∥∥−2/(m−1)

)1−m

Πy|x (dy | x)Π (dx) ,

which is the formulation of Lreg
m (Π, θ). Parallel to the development of Yang and Yu (1992)

for the cluster means case, we now show that minimization problem of Jreg
m is equivalent

to that of Lreg
m , based on two lemmata from that paper.

Lemma 1. (Yang and Yu (1992)) Let pg ≥ 0, ug > 0 for g = 1, . . . , G such that ∑G
g=1 pg = 1.

Then
G

∑
g=1

(
G

∑
i=1

u1/(m−1)
g

u1/(m−1)
i

)−1

ui ≤
G

∑
g=1

pm
i ui.

Proof. The proof is identical to that of Lemma 1 of Yang and Yu (1992).

A simple modification of Lemma 2 of Yang and Yu (1992) completes the proof:

Lemma 2. (Yang and Yu (1992)) Let θ∗ be a minimizer of Lm (Π, θ) among all θ ∈ Θ. Then the
pair (µreg (θ∗) , θ∗) is a minimizer of Jreg

m (Π, µ, θ) among all θ and weights µ.

Proof. The proof follows directly from that of Lemma 2 of Yang and Yu (1992).

Thus, the minimization of Lreg
m (Π, θ) is equivalent to the minimization of Jreg

m (Π, µreg, θ),
and we can restrict our attention to Lreg

m (Π, θ). �
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Proof of Theorem 3

Proof. The proof is a straightforward extension of the proof of Theorem 1 in Yang and Yu
(1992). Define a (G) = infθ Lreg

m (Π, θ) obtained for G groups. If Π is degenerate at some
set of T× k matrices θ̃g , then a (G) = 0 and θ∗ =

{
θ̃1, . . . θ̃G

}
. Therefore we can restrict our

attention to non-degenerate Π. When G = 1, (9) reduces to
∫ ∫
‖y− θx‖2 Π (dy | x)Υ (dx),

which is the standard OLS objective function, which has the familiar solution θ∗1 = E [yx′] E [xx′]−1

(the slightly different form accommodates y being T× 1, T possibly greater than 1). Con-
sider G = 2. Denote θ21 as the parameters for group 1 with G = 2, and let θ21 = θ∗1 , with
θ22 arbitrary. Then

a (2) ≤
∫ ∫ ( 2

∑
g=1

∥∥y− θ2gx
∥∥−2/(m−1)

)1−m

Πy|x (dy | x)Π (dx)

<
∫ ∫ ( 1

∑
g=1

∥∥y− θgx
∥∥−2/(m−1)

)1−m

Πy|x (dy | x)Π (dx) (16)

= a (1) < ∞,

where the second inequality is strict since Π is not degenerate and 1 − m < 0. Since
a (2) < ∞, there exists θ(r) (2) =

(
θ
(r)
21 , θ

(r)
22

)
such that as r → ∞,

∫ ∫ ( 2

∑
g=1

∥∥∥y− θ
(r)
2g x

∥∥∥−2/(m−1)
)1−m

Πy|x (dy | x)Π (dx)→ a (2) .
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We want to show that
{

θ(r) (2) , r ≥ 1
}

is bounded. Suppose the statement is false, so

there exists a subsequence θ
(rj)
21 such that

∥∥∥∥θ
(rj)
21

∥∥∥∥ goes to infinity. Then

a (2) = lim
rj→∞

∫ ∫ ( 2

∑
g=1

∥∥∥∥y− θ
(rj)
2g x

∥∥∥∥−2/(m−1)
)1−m

Πy|x (dy | x)Π (dx)

≥ lim inf
rj→∞

∫ ∫ ( 2

∑
g=1

∥∥∥∥y− θ
(rj)
2g x

∥∥∥∥−2/(m−1)
)1−m

Πy|x (dy | x)Π (dx)

≥
∫ ∫

lim inf
rj→∞

(
2

∑
g=1

∥∥∥∥y− θ
(rj)
2g x

∥∥∥∥−2/(m−1)
)1−m

Πy|x (dy | x)Π (dx)

≥
∫ ∫

lim inf
rj→∞

∥∥∥∥y− θ
(rj)
22 x

∥∥∥∥2

Πy|x (dy | x)Π (dx)

≥ a (1) ,

where the second inequality follows from Fatou’s Lemma and the third uses the fact that∥∥∥∥θ
(rj)
21

∥∥∥∥ goes to infinity. The result contradicts (16). Thus,
{

θ(r) (2) , r ≥ 1
}

is bounded and

there exist θ∗21, θ∗22 such that θ(r) (2) converges to θ∗ (2) = (θ∗21, θ∗22) along a subsequence,
say rj. Then for all δ > 0, there exists r0 such that for all rj > r0,

∥∥∥θ(rj) (2)− θ∗ (2)
∥∥∥ ≤ δ.

Thus (
2

∑
g=1

∥∥∥∥y− θ
(rj)
2g x

∥∥∥∥−2/(m−1)
)1−m

≤ max
1≤i≤2

∥∥∥∥y− θ
(rj)
2g x

∥∥∥∥2

≤
∥∥∥∥y− θ

(rj)
21 x

∥∥∥∥2

+

∥∥∥∥y− θ
(rj)
22 x

∥∥∥∥2

≤
(
‖y‖+

∥∥∥∥θ
(rj)
21 x

∥∥∥∥)2

+

(
‖y‖+

∥∥∥∥θ
(rj)
22 x

∥∥∥∥)2

≤
(
‖y‖+

∥∥∥∥θ
(rj)
21

∥∥∥∥ ‖x‖)2

+

(
‖y‖+

∥∥∥∥θ
(rj)
22

∥∥∥∥ ‖x‖)2

≤ (‖y‖+ ‖θ∗21‖ ‖x‖+ ‖διs×k‖ ‖x‖)2 + (‖y‖+ ‖θ∗21‖ ‖x‖+ ‖διT×k‖ ‖x‖)2 ,

where the third inequality follows from the triangle inequality, the fourth follows from
Cauchy-Schwarz, and the last line follows from the triangle inequality and the fact that
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δ ≥
∥∥∥θ(rj) (2)− θ∗ (2)

∥∥∥ implies
∣∣∣∣θ(rj)

2g,tk

∣∣∣∣ ≤ ∣∣∣θ∗2g,tk

∣∣∣+ δ for all g, t, k where t indexes dimen-

sions of y and k indexes dimensions of x, which then implies
∥∥∥∥θ

(rj)
2g

∥∥∥∥ ≤ ∥∥∥θ∗2g

∥∥∥+ ‖διT×k‖.
By Assumption 2, the last line provides a bound in expectation for the left hand side. Fi-

nally, since the last line establishes a bounding function for

(
∑2

g=1

∥∥∥∥y− θ
(rj)
2g x

∥∥∥∥−2/(m−1)
)1−m

,

the dominated convergence theorem shows that as rj tends to infinity,

a (2) = lim
rj→∞

∫ ∫ ( 2

∑
g=1

∥∥∥∥y− θ
(rj)
2g x

∥∥∥∥−2/(m−1)
)1−m

Πy|x (dy | x)Π (dx)

=
∫ ∫ ( 2

∑
g=1

∥∥∥y− θ∗2gx
∥∥∥−2/(m−1)

)1−m

Πy|x (dy | x)Π (dx) .

This establishes that the infimum a (2) is indeed obtained at θ∗ (2) , the limit of θ(r) (2)
for subsequence rj (which exists). A similar argument can then be made sequentially for
G = 3, 4, . . ., so by mathematical induction, the theorem is therefore true for all G =

1, 2, . . ..

Proof of Theorem 4

Proof. We start by differentiating the integrand of Lreg
m (Π, θ) with respect to θg,tk:

∂

∂θg,tk

(
G

∑
h=1
‖y− θhx‖−2/(m−1)

)1−m

= (1−m)

(
G

∑
h=1
‖y− θhx‖−2/(m−1)

)−m
∂

∂θg,tk

G

∑
g=1

∥∥y− θgx
∥∥−2/(m−1)

= (1−m)

(
G

∑
h=1
‖y− θhx‖−2/(m−1)

)−m
−2

m− 1

∥∥y− θgx
∥∥(1+m)/(1−m) ∂

∂θg,tk

∥∥y− θgx
∥∥

= 2

(
G

∑
h=1
‖y− θhx‖−2/(m−1)

)−m ∥∥y− θgx
∥∥−(1+m)/(m−1) yt − θg,(t)x∥∥y− θgx

∥∥ (−xk)

= −2

(
G

∑
h=1
‖y− θhx‖−2/(m−1)

)−m ∥∥y− θgx
∥∥−2m/(m−1)

(
yt − θg,(t)x

)
xk

= −2

(
G

∑
h=1

∥∥y− θgx
∥∥2/(m−1)

‖y− θhx‖2/(m−1)

)−m (
yt − θg,(t)x

)
xk,
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where θg,(t) denotes the row of θg corresponding to outcome yt. Note that since these
partial derivatives are continuous in θ (by inspection; see also Yang (1994) Lemma 2), the
integrand is (continuously) differentiable in θ (Spivak (1971) Theorem 2.8). Moreover,(

∑G
h=1 ‖y− θhx‖−2/(m−1)

)1−m
is Lebesgue-integrable for each θ as

(
G

∑
h=1
‖y− θhx‖−2/(m−1)

)1−m

≤
G

∑
h=1
‖y− θhx‖−2(1−m)/(m−1) =

G

∑
h=1
‖y− θhx‖2

since 1−m < 0 and

G

∑
h=1
‖y− θhx‖2 ≤

G

∑
h=1

(‖y‖+ ‖θhx‖)2

≤
G

∑
h=1

(‖y‖+ ‖θh‖ ‖x‖)2

=
G

∑
h=1
‖y‖2 + 2 ‖θh‖ ‖x‖ ‖y‖+ ‖θh‖2 ‖x‖2 , (17)

which is integrable by Assumptions 2.1 and 2.3. Moreover, (17) establishes a bounding
function for the integrand in terms of θ. From these conditions, the dominated conver-
gence theorem allows the interchange of differentiation and integration:

∂Lreg
m (Π, θ)

∂θg,tk
=

∂

∂θg,tk

∫ ∫ ( G

∑
g=1

∥∥y− θgx
∥∥−2/(m−1)

)1−m

Πy|x (dy | x)Π (dx)

=
∫ ∫ (

∂

∂θg,tk

G

∑
g=1

∥∥y− θgx
∥∥−2/(m−1)

)1−m

Πy|x (dy | x)Π (dx)

= E

( ∂

∂θg,tk

G

∑
g=1

∥∥yi − θgxi
∥∥−2/(m−1)

)1−m


= E

−2

(
G

∑
h=1

∥∥yi − θgxi
∥∥2/(m−1)

‖yi − θhxi‖2/(m−1)

)−m (
yit − θg,(t)xi

)
xi,k

 ,
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where we henceforth replace the Lebesgue integrals with expectations. Stacking the con-
ditions vertically for row t of θg yields the k× 1 vector

∂Lreg
m

∂θ′g,(t)
= E

−2

(
G

∑
h=1

∥∥y− θgx
∥∥2/(m−1)

‖y− θhx‖2/(m−1)

)−m (
yt − θg,(t)x

)
x

 .

Proceeding likewise across t = 1, . . . , T and for g = 1, . . . , G yields G× T × k conditions
which θ∗ must satisfy,

E

( G

∑
h=1

∥∥yi − θgxi
∥∥2/(m−1)

‖yi − θhxi‖2/(m−1)

)−m (
yit − θg,(t)xi

)
xi

 = 0, for g = 1, . . . , G, t = 1, . . . , T,

since θ∗ minimizes Lreg
m (Π, θ) . These G× T × k equations constitute moment conditions

for the G × T × k free parameters in θ. Thus, the system of equations constitutes a just-
identified GMM problem.

Proof of Theorem 5

Proof. By Assumption 2.1, (yi, xi) are i.i.d. By Assumption 3, θ∗ uniquely satisfies η (θ, yi, xi).
As noted in the proof of Corollary 4, the moment conditions η (θ, yi, xi) are continuous for
all θ ∈ Θ. Next, we show that the moments are bounded in expectation for all θ ∈ Θ (the

dominance condition). Observe that
(

∑G
h=1
‖y−θgx‖2/(m−1)

‖y−θhx‖2/(m−1)

)−m

is bounded between zero

and one (the supremum of the summation is infinity as the residuals y− θhx, h 6= g go to
zero and the infimum is 1 as y− θhx, h 6= g go to infinity). So

E

[
sup
θ∈Θ
‖η (θ, yi, xi)‖

]
≤ E

[
sup
θ∈Θ

sup
g

∥∥(yi − θgxi
)

x′i
∥∥]

= E

[
sup
θ∈Θ

sup
g

∥∥yix′i − θgxix′i
∥∥]

≤ E

[
sup
θ∈Θ

sup
g

∥∥yix′i
∥∥+ ∥∥θgxix′i

∥∥]

≤ E

[
sup
θ∈Θ

sup
g
‖yi‖ ‖xi‖+

∥∥θg
∥∥ ‖xi‖ ‖xi‖

]
< ∞,
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where the third inequality follows from the triangle inequality, the fourth from Cauchy-
Schwarz, and the final follows from Assumptions 2.1 and 2.3. These points jointly satisfy
the requirements of standard GMM arguments, (e.g., Newey and McFadden (1994), p.
2121—2, Hayashi (2011) Proposition 7.7), soθ̂

p→ θ∗.

Proof of Theorem 6

Proof. First, we provide expressions for H to establish the continuous differentiability of
η (θ, yi, xi) in θ. We focus on the cross-sectional case here (T = 1) for the sake of simplicity
and in keeping with our empirical focus , but provide fully general expressions for panel
data in Section B.1. Partition the blocks of H as

H =



H11 · · · H1g · · · H1G
... . . . ...

Hg1 Hgg HgG
... . . . ...

HG1 · · · HGg · · · HGG


,

where Hgh = ∂2Lreg
m

∂θg∂θ′h
,with Hgh = H′hg by symmetry of the Hessian. For the case where all

coefficients are group-specific, it can be shown that

Hgg = E
[

xix′i

{
−2m
m− 1

A−m−1
i

(
ei,g
)2 C2

i,g +
m + 1
m− 1

A−m
i Ci,g

}]
Hgh = E

[
xix′i

{
−2m
m− 1

A−m−1
i Ci,hei,hei,gCi,g

}]
, h 6= g,

where ei,g = yi − θgxi, Ai = ΣG
g=1

∥∥ei,g
∥∥−2/(m−1), Cig =

∥∥ei,g
∥∥−2m/(m−1). We also pro-

vide expressions for additional elements of the Hessian when there are covariates with
common coefficients across groups, such that θg,k = θh,k ≡ θ?,k, h 6= g. In this case,

∂2Lreg
m

∂θ?,k∂θ?,k
E

[
x2

i,k

{
−2m
m− 1

A−m−1
i B2

i +
m + 1
m− 1

A−m
i

G

∑
g=1

Ci,g

}]
∂2Lreg

m

∂θ?,k∂θ?,l
= E

[
xi,kxi,l

{
−2m
m− 1

A−m−1
i B2

i +
m + 1
m− 1

A−m
i

G

∑
g=1

Ci,g

}]
∂2Lreg

m

∂θ?,k∂θg,l
= E

[
xi,kxi,l

{
−2m
m− 1

A−m−1
i Ci,gei,gBi +

m + 1
m− 1

A−m
i Ci,g

}]
,
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where Bi = ∑G
g=1

[
ei,gCi,g

]
. By inspection, all elements of these Hessians are continuous in

θ, since ei,g, A−m
i , A−m−1

i , Cig, Bi are continuous in θ, and all elements of H are continuous
functions of these objects.

Next, we establish the asymptotic normality of 1√
N ∑N

i=1 η (θ, yi, xi). Since yi, xi are
assumed to be jointly i.i.d., η (θ, yi, xi) is i.i.d. across observations, so by the Lindeberg-
Levy central limit theorem,

1√
N

N

∑
i=1

η (θ∗, yi, xi)
d→ N (0, V) ,

where V = E
[
η (θ, yi, xi) η (θ, yi, xi)

′] is assumed to be positive definite in Assumption
4.4.

Combining these two results with the conditions of Assumption 4, the standard con-
ditions for asymptotic normality of a GMM estimator are satisfied (e.g., Hayashi (2011)
Proposition 7.10). Since the weighting matrix is the identity (the problem is just-identified),

√
N
(
θ̂ − θ∗

) d→ N
(

0, H−1VH−1
)

.

B Supplemental theoretical results

In this section, we report extensions of our main theoretical results. First, we provide
expressions for the Hessian to compute the asymptotic variance in the case of panel data.
Second, we extend all regression results from the main text to a TSLS implementation.
Third, we extend the fixed-T Hessians provided in the Appendix of Bonhomme and Man-
resa (2015) to the case of heterogeneous coefficients on regressors. Finally, we discuss the
implications of including additional controls in the regression function for recovering the
true heterogeneity of the data.

B.1 Hessian for panel data

The Hessian provided in the proof of Theorem 6 assumes T = 1, the cross-sectional data
case that is the focus of our empirical study. However, the results of the paper hold
in generality for T > 1. Here, we report the elements of the Hessian for the case of
T > 1, corresponding to a panel structure. Without common coefficients, the second
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partial derivatives are given by

∂2Lreg
m

∂θg,kt∂θg,lt
= E

[
xi,k

{
−mA−m−1

(
2

m− 1

∥∥ei,g
∥∥−2m/(m−1) ei,g,txi,l

)
ei,g,tCi,g

−A−mxi,lCi,g + A−mei,g,t

(
2m

m− 1

∥∥ei,g
∥∥−4m+2

m−1 ei,g,txi,l

)}]
= E

[
xi,kxi,l

{
−2m
m− 1

A−m−1C
2

i,ge2
i,g,t − A−mCi,g +

2m
m− 1

A−mC
2m−l

m
i,g e2

i,g,t

}]
∂2Lreg

m

∂θg,kt∂θg,ls
= E

[
xi,k

{
−mA−m−1

(
2

m− 1

∥∥ei,g
∥∥−2m/(m−1) ei,g,sxi,l

)
ei,g,tCi,g

+A−m × 0× Ci,g + A−mei,g,t

(
2m

m− 1

∥∥ei,g
∥∥−4m+2

m−1 ei,g,sxi,l

)}]
= E

[
xi,kxi,l

{
−2m
m− 1

A−m−1C
2

i,gei,g,tei,g,s +
2m

m− 1
A−mC

2m−l
m

i,g ei,g,tei,g,s

}]
∂2Lreg

m

∂θg,kt∂θh,lt
= E

[
xi,k

{
−mA−m−1

(
2

m− 1
‖ei,h‖−2m/(m−1) ei,h,txi,l

)
ei,g,tCi,g

+ A−m × 0× Ci,g + A−mei,g,t × 0
}]

= E
[

xi,kxi,l

{
−2m
m− 1

A−m−1Ci,gCi,hei,g,tei,h,t

}]
, h 6= g

∂2Lreg
m

∂θg,kt∂θh,ls
= E

[
xi,k

{
−mA−m−1

(
2

m− 1
‖ei,h‖−2m/(m−1) ei,h,sxi,l

)
ei,g,tCi,g

+ A−m × 0× Ci,g + A−mei,g,t × 0
}]

= E
[

xi,kxi,l

{
−2m
m− 1

A−m−1Ci,gCi,hei,g,tei,h,s

}]
, h 6= g.

With common coefficients across groups, additional partial derivatives with respect
to the common coefficients must be obtained. For this purpose, let Bit = ∑G

g=1
[
ei,g,tCi,g

]
.

Then the relevant derivatives are given by
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∂2Lreg
m

∂θ?,kt∂θ?,lt
= E

[
xi,k

{
−2m
m− 1

A−m−1
G

∑
g=1

(∥∥ei,g
∥∥−2m/(m−1) ei,g,txi,l

)
Bit

+ A−m
G

∑
g=1

(
−xi,lCi,g + ei,g,t

2m
m− 1

∥∥ei,g
∥∥−4m+2

m−1 ei,g,txi,l

)}]

= E

[
xi,kxi,l

{
−2m
m− 1

A−m−1
i B2

it + A−m
i

G

∑
g=1

(
2m

m− 1
C

2m−1
m

i,g e2
i,g,t − Ci,g

)}]
∂2Lreg

m

∂θ?,kt∂θ?,ls
= E

[
xi,k

{
−2m
m− 1

A−m−1
G

∑
g=1

(∥∥ei,g
∥∥−2m/(m−1) ei,g,sxi,l

)
Bit

+ A−m
G

∑
g=1

(
0× Ci,g + ei,g,t

2m
m− 1

∥∥ei,g
∥∥−4m+2

m−1 ei,g,sxi,l

)}]

= E

[
xi,kxi,l

{
−2m
m− 1

A−m−1
i BisBit + A−m

i

G

∑
g=1

(
2m

m− 1
C

2m−1
m

i,g ei,g,sei,g,t

)}]
∂2Lreg

m

∂θ?,k,∂θg,lt
= E

[
xi,k

{
−2m
m− 1

A−m−1 ∥∥ei,g
∥∥−2m/(m−1) ei,g,txi,lBit

+ A−m
(
−xi,lCi,g + ei,g,t

2m
m− 1

∥∥ei,g
∥∥−4m+2

m−1 ei,g,txi,l

)}]

= E
[

xi,kxi,l

{
−2m
m− 1

A−m−1
i Ci,gei,g,tBit + A−m

i

(
2m

m− 1
C

2m−1
m

i,g e2
i,g,t − Ci,g

)}]
∂2Lreg

m

∂θ?,kt∂θg,ls
= E

[
xi,k

{
−2m
m− 1

A−m−1 ∥∥ei,g
∥∥−2m/(m−1) ei,g,sxi,lBit

+ A−m
(

0× Ci,g + ei,g,t
2m

m− 1

∥∥ei,g
∥∥−4m+2

m−1 ei,g,sxi,l

)}]

= E

[
xi,kxi,l

{
−2m
m− 1

A−m−1
i Ci,gei,g,sBit + A−m

i

G

∑
g=1

(
2m

m− 1
C

2m−1
m

i,g ei,g,sei,g,t

)}]
.

B.2 Properties of TSLS FCM

In the text, we describe a TSLS-type procedure using FCM. Here, we describe its theoreti-
cal properties in detail. For the purposes of this development, we assume cross-sectional
data, so T = 1 (yi is a scalar). Let xe denote the endogenous regressors of interest, and let
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ω denote additional controls. Consider a homogeneous first-stage regression

xe
i = γzi + τωi + ui, (18)

for kz instruments z with kz ≥ ke, where ke is the number of endogenous regressors xe. We
henceforth consider the just-identified case with a single endogenous regressor, kz = ke =

1, for economy of notation and in keeping with our empirical focus, but the results can be
trivially extended to allow for additional dimensions, overidentification, and an arbitrary
weight matrix W in the first-stage. We also assume that xe has heterogeneous coefficients.

Denote x̃e
i = γzi + τωi, the predicted first-stage values, and x̃i =

(
x̃e

i , ω′
)′

, the vector
of predicted endogenous regressors and exogenous controls (so x̃e is ordered first). Using
these values, we define the FCM second-stage as

JTSLS
m = E

[
G

∑
g=1

µTSLS,m
g

(
yi | x̃i; θTSLS

) ∥∥∥yi − θTSLS
g x̃i

∥∥∥2
]

,

where

µTSLS
g

(
yi | x̃i; θTSLS

)
=

 G

∑
h=1

∥∥∥yi − θTSLS
g x̃i

∥∥∥2/(m−1)

∥∥yi − θTSLS
h x̃i

∥∥2/(m−1)


−1

, g = 1, . . . , G.

Assumption 5. 1.
(
yi, xe

i , wi, zi
)

are i.i.d. with probability measure Π̃ and E [εizi] = 0,

2. The second moments of y and x̃ are finite under Π̃:

E
[
y2

i

]
< ∞, E

[
x̃2

i

]
< ∞, E [x̃iyi] < ∞,

3. Additionally, neither x̃ nor

(
z
ω

)
is collinear,

rank
(
E
[
x̃i x̃′i

])
= k,

rank

(
E

[(
zi

ωi

)(
zi

ωi

)′])
= k− ke + kz.

Assumption 5 stipulates the TSLS assumptions and regularity conditions on the data.
The relevance condition is incorporated in point 3.
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Corollary 1. Define LTSLS
m = E

[(
∑G

g=1

∥∥∥y− θTSLS
g x̃

∥∥∥−2/(m−1)
)1−m

]
. If γ and τ are known

and Assumption 5 holds, then

1. LTSLS
m is equivalent to JTSLS

m ,

2. There exists a solution to LTSLS
m , θ∗,TSLS.

Proof. The results follow immediately from Theorems 2 and 3, simply replacing x with
x̃.

Corollary 1 establishes the existence of a solution to the FCM problem, θ∗,TSLS, which
minimizes LTSLS

m . LTSLS
m is identical to the regression objective function, just evaluated for

x̃ instead of x. Thus, it has first-order-conditions given by ρ
(
θTSLS, yi, x̃i

)
. Let κ

(
γ, τ, xe

i , zi, ωi
)
=

E

[(
zi

ωi

) (
xe

i − γzi − τωi
)]

be the standard OLS moment conditions corresponding to

(18) and let ξ
(
θTSLS, γ, τ, yi, xe

i , zi, ωi
)
≡ ξ

(
θTSLS, γ, τ, ·

)
be the stacked vector of moment

equations
(

κ
(
γ, τ, xe

i , zi, ωi
)′ , ρ

(
θTSLS, yi,, x̃i

)′ )′. Denote the parameter vector com-

bining both first and second stage coefficients as υ =
(

θTSLS′ , γ′, τ′,
)′

. Define υ̂ as

the estimated parameter vector solving the sample analogues of ξ
(
θTSLS, γ, τ, ·

)
. As in

the regression model, these moments constitute the basis for a GMM interpretation of the
TSLS FCM model. Some additional assumptions are needed to characterize the asymp-
totic properties of υ̂. Denote as υ∗ the vector of true parameters from the first stage, γ0, τ0,
and θ∗,TSLS.

Assumption 6. Additionally,

1. E
[
xe

i zi
]
< ∞,E

[
xe

i wi
]
< ∞, E

[
z2

i
]
< ∞,

2. υ is in the interior of Υ; Υ is compact.

3. θ∗,TSLS is unique,

4. Γ = E
[

∂ξ(υ∗,·)
∂υ′

]
is full rank,

5. E
[
supυ∈N

∥∥∥ ∂ξ(υ,·)
∂υ′

∥∥∥] < ∞ in a neighborhood N of υ∗,

6. E
[
ξ (υ, ·) ξ (υ, ·)′

]
is positive definite.

Theorem 7. Under Assumptions 5-2,

1. υ̂, is consistent for υ∗,
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2.
√

N (υ̂− υ∗)
d→ N

(
0, Γ−1VTSLSΓ

′−1
)

, where

VTSLS = E
[
ξ (υ, ·) ξ (υ, ·)′

]
.

Proof. The proof largely follows from those of Theorems 5 and 6.For consistency, first note
that γ0 and τ0 are unique solutions to the set of first-stage moment functions κ

(
γ, τ, xe

i , zi, ωi
)
=

E

[(
zi

ωi

) (
xe

i − γzi − τωi
)]

corresponding to the OLS problem (18) by Assumption 5.

υ∗ is thus the unique solution to ξ (υ). Since the second stage is just-identified (so the
corresponding moments are always equal to zero at the optimum regardless of the value
the first stage parameters take), the second stage has no influence on the first stage coeffi-
cients. It is immediate that κ (υ) is continuous in υ. As noted in the proof of Corollary 4,
the moment conditions ρ (θ, yi, xi) are continuous for all θ ∈ Θ. Since x̃ is continuous in
γ, τ, this means that ρ

(
θTSLS, yi, x̃i (γ, τ)

)
is continuous in υ. The moments are bounded

in expectation for all υ ∈ Υ by duplicating the argument in the proof of Theorem 5 for the
second stage under Assumption 5 and observing that the boundedness of the first-stage
moments follows immediately from Assumption 6.1-2. These points jointly satisfy the re-
quirements of standard GMM arguments, (e.g., Newey and McFadden (1994), p. 2121—2,
Hayashi (2011) Proposition 7.7), so υ̂

p→ υ∗.
For asymptotic normality, we first provide expressions for Γ to establish the continu-

ous differentiability of ξ (υ) in υ. Partition the blocks of Γ as

Γ =



Γγγ Γγτ Γγ1 · · · Γγg · · · ΓγG

Γτγ Γττ Γτ1 · · · Γτg · · · ΓτG

Γ1γ Γ1τ Γ11 · · · Γ1g · · · Γ1G
...

...
... . . . ...

Γgγ Γgτ Γg1 Γgg ΓgG
...

...
... . . . ...

ΓGγ ΓGτ ΓG1 · · · ΓGg · · · ΓGG


,

Note that since the moment conditions are no longer derived as the gradient of a single
objective function, Γ is no longer a Hessian, and no longer symmetric, in particular the
blocks linking the first and second stages. For the case where all second stage coefficients
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are group-specific,

Γγγ = E
[
z2

i

]
Γτγ = E [ωizi]

Γττ = E
[
ωiω

′
i

]
Γγg = 0

Γτg = 0

Γgg = E
[

x̃i x̃′i

{
−2m
m− 1

A−m−1
i

(
ei,g
)2 C2

i,g +
m + 1
m− 1

A−m
i Ci,g

}]
Γgh = E

[
x̃i x̃′i

{
−2m
m− 1

A−m−1
i Ci,hei,hei,gCi,g

}]
, h 6= g,
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with the elements of Γgγ and Γgτ given by

∂2LTSLS
m

∂θTSLS
g,1 ∂γ

= E

[{
−2m
m− 1

A−m−1
G

∑
h=1

(
‖ei,h‖−2m/(m−1) ei,hθTSLS

h,1

)
Ci,gei,g x̃e

i

+ A−m 2m
m− 1

∥∥ei,g
∥∥−4m+2

m−1 ei,gθTSLS
g,1 ei,g x̃e

i − A−mCi,gθTSLS
g,1 x̃e

i + A−mCi,gei,g

}
zi

]

= E

[
A−mCi,g

{
−2m
m− 1

A−1
G

∑
h=1

(
Ci,hei,hθTSLS

h,1

)
ei,g x̃e

i +
m + 1
m− 1

θTSLS
g,1 x̃e

i + ei,g

}
zi

]
∂2LTSLS

m

∂θTSLS
g,k ∂γ

= E

[{
−2m
m− 1

A−m−1
G

∑
h=1

(
‖ei,h‖−2m/(m−1) ei,hθTSLS

h,1

)
Ci,gei,g x̃ik

+ A−m 2m
m− 1

∥∥ei,g
∥∥−4m+2

m−1 ei,gθTSLS
g,1 ei,g x̃ik − A−mCi,gθTSLS

g,1 x̃ik

}
zi

]

= E

[
A−mCi,g x̃ik

{
−2m
m− 1

A−1
G

∑
h=1

(
Ci,hei,hθTSLS

h,1

)
ei,g +

m + 1
m− 1

θTSLS
g,1

}
zi

]
, k > 1

∂2LTSLS
m

∂θTSLS
g,1 ∂τ′

= E

[{
−2m
m− 1

A−m−1
G

∑
h=1

(
‖ei,h‖−2m/(m−1) ei,hθTSLS

h,1

)
Ci,gei,g x̃e

i

+ A−m 2m
m− 1

∥∥ei,g
∥∥−4m+2

m−1 ei,gθTSLS
g,1 ei,g x̃e

i − A−mCi,gθTSLS
g,1 x̃e

i + A−mCi,gei,g

}
ω′i

]

= E

[
A−mCi,g

{
−2m
m− 1

A−1
G

∑
h=1

(
Ci,hei,hθTSLS

h,1

)
ei,g x̃e

i +
m + 1
m− 1

θTSLS
g,1 x̃e

i + ei,g

}
ω′i

]
∂2LTSLS

m

∂θTSLS
g,k ∂τ′

= E

[{
−2m
m− 1

A−m−1
G

∑
h=1

(
‖ei,h‖−2m/(m−1) ei,hθTSLS

h,1

)
Ci,gei,g x̃ik

+ A−m 2m
m− 1

∥∥ei,g
∥∥−4m+2

m−1 ei,gθTSLS
g,1 ei,g x̃ik − A−mCi,gθTSLS

g,1 x̃ik

}
ω′i

]

= E

[
A−mCi,g x̃ik

{
−2m
m− 1

A−1
G

∑
h=1

(
Ci,hei,hθTSLS

h,1

)
ei,g +

m + 1
m− 1

θTSLS
g,1

}
ω′i

]
, k > 1

where ei,g = yi − θTSLS
g x̃i, Ai = ΣG

g=1

∥∥ei,g
∥∥−2/(m−1), Cig =

∥∥ei,g
∥∥−2m/(m−1) and we have

exploited the fact that
∥∥ei,g

∥∥2
= e2

i,g since T = 1. We also provide expressions for elements
of Γ that change when there are controls in ωk with common coefficients across groups,
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such that θTSLS
g,k = θTSLS

h,k ≡ θTSLS
?,k , h 6= g. In this case,

∂2LTSLS
m

∂θTSLS
?,k ∂θTSLS

?,k
= E

[
x̃2

i,k A−m
i

{
−2m
m− 1

A−1
i B2

i +
m + 1
m− 1

G

∑
g=1

Ci,g

}]
∂2LTSLS

m

∂θTSLS
?,k ∂θTSLS

?,l
= E

[
x̃i,k x̃i,l A−m

i

{
−2m
m− 1

A−1
i B2

i +
m + 1
m− 1

G

∑
g=1

Ci,g

}]
∂2LTSLS

m

∂θTSLS
?,k ∂θTSLS

g,l
= E

[
x̃i,k x̃i,l A−m

i

{
−2m
m− 1

A−1
i Ci,gei,gBi +

m + 1
m− 1

Ci,g

}]
,

∂2LTSLS
m

∂θTSLS
?,k ∂γ

= E

[
x̃i,kzi A−m

i

{
−2m
m− 1

A−1
i

G

∑
g=1

(
Ci,gei,gθTSLS

g,1

)
Bi +

m + 1
m− 1

G

∑
g=1

Ci,gθTSLS
g,1

}]
∂2LTSLS

m

∂θTSLS
?,k ∂τ′

= E

[
x̃i,k A−m

i

{
−2m
m− 1

A−1
i

G

∑
g=1

(
Ci,gei,gθTSLS

g,1

)
Bi +

m + 1
m− 1

G

∑
g=1

Ci,gθTSLS
g,1

}
ω′i

]

where Bi = ∑G
g=1

[
ei,gCi,g

]
. By inspection, Γ is continuous in υ, since ei,g, A−m

i , A−m−1
i , Cig, Bi

are continuous in θTSLS, and all elements of Γ are continuous functions of these objects.
Next, we establish the asymptotic normality of 1√

N ∑N
i=1 ξ (υ). Since yi, xe

i , ωi, zi are as-
sumed to be jointly i.i.d., ξ

(
υ, yi, xe

i , ωi, zi
)

is i.i.d. across observations, so by the Lindeberg-
Levy central limit theorem,

1√
N

N

∑
i=1

ξ (υ, ·) d→ N
(

0, VTSLS
)

,

where VTSLS = E
[
ξ (υ, ·) ξ (υ, ·)′

]
is assumed to be positive definite in Assumption 6.6.

Combining these two results with the additional conditions of Assumption 6, the stan-
dard conditions for asymptotic normality of a GMM estimator are satisfied (e.g.,Hayashi
(2011) Proposition 7.10). Since the weighting matrix is the identity (we assumed the prob-
lem is just-identified),

√
N
(
θ̂ − θ∗

) d→ N
(

0, Γ−1VTSLSΓ
′−1
)

.

61



B.3 Fixed−T asymptotic variance for HKM with heterogeneous coeffi-

cients

Here we report fixed-T analytical formulas that extend those reported in the Appendix of
Bonhomme and Manresa (2015) to the case of heterogeneous slope coefficients. We adjust
notation slightly from the remainder of our paper to be consistent with Bonhomme and
Manresa (2015), using αg for fixed effects, θg for group-specific coefficients, and β for
common coefficients; however, we limit our attention to the T = 1 and univariate x case
given our empirical focus.

The objective function given estimated groups ĝj (θ, α, β) takes the form

E
[(

yj − θĝj(θ,α,β)xj − αĝj(θ,α,β) −Wjβ
)2
]

,

which yields the moment equations

E
[
1
{

ĝj
(
θ̄, ᾱ, β̄

)
= g

}
xj

(
yj − θ̄ĝj(θ̄,ᾱ,β̄)xj − ᾱĝj(θ̄,ᾱ,β̄) −W ′j β̄

)]
= 0,

E
[
1
{

ĝj
(
θ̄, ᾱ, β̄

)
= g

} (
yj − θ̄ĝj(θ̄,ᾱ,β̄)xj − ᾱĝj(θ̄,ᾱ,β̄) −W ′j β̄

)]
= 0,

E
[
Wj

(
yj − θ̄ĝj(θ̄,ᾱ,β̄)xj − ᾱĝj(θ̄,ᾱ,β̄) −W ′j β̄

)]
= 0,

for the solution
(
θ̄, ᾱ, β̄

)
. Thus, the Jacobian of the moment conditions has the form

Γ =



Γββ Γβθ1 . . . ΓβθG Γβα1 . . . ΓβαG

Γθ1β Γθ1θ1 . . . Γθ1θG Γθ1α1 . . . Γθ1αG
...

... . . . ...
... . . . ...

ΓθGβ ΓθGθ1 . . . ΓθGθG ΓθGα1 . . . ΓθGαG

Γα1β Γα1θ1 . . . Γα1θG Γα1α1 . . . Γα1αG
...

... . . . ...
... . . . ...

ΓαGβ ΓαGθ1 . . . ΓαGθG ΓαGα1 . . . ΓαGαG


,

where notation follows Bonhomme and Manresa (2015) which means there are 9 unique
elements to characterize. Explicit expressions are given below.
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Γββ = E
[
WjW ′j

]
+

G

∑
g=1

∑
h 6=g

E

[(∫
S̄gh

f
(
y | xj

)
dy

) (
θ̄gxj + ᾱg

) θ̄hxj + ᾱh − θ̄gxj − ᾱg∥∥θ̄hxj + ᾱh − θ̄gxj − ᾱg
∥∥WjW ′j

]
,

Γβθg = E
[
1
{

ĝj
(
θ̄, ᾱ, β̄

)
= g

}
Wjxj

]
+ ∑

h 6=g
E

Wj
(
θ̄gxj + ᾱg − θ̄hxj − ᾱh

)∫
S̄gh

xj

(
y− xθ̄g − ᾱg −W ′j β̄

)
∥∥θ̄hxj + ᾱh − θ̄gxj − ᾱg

∥∥ f
(
y | xj

)
dy

 ,

Γβαg = E
[
1
{

ĝj
(
θ̄, ᾱ, β̄

)
= g

}
Wj
]

+ ∑
h 6=g

E

[
Wj
(
θ̄gxj + ᾱg − θ̄hxj − ᾱh

) (∫
S̄gh

y− θ̄gxj − ᾱg −W ′j β̄∥∥θ̄hxj + ᾱh − θ̄gxj − ᾱg
∥∥ f
(
y | xj

)
dy

)]
,

Γθgθg = E
[
1
{

ĝj
(
θ̄, ᾱ, β̄

)
= g

}
x2

j

]
− E

∑
h 6=g

∫
S̄gh

x2
j

(
y− θ̄gxj − ᾱg −W ′j β̄

)2∥∥θ̄hxj + ᾱh − θ̄gxj − ᾱg
∥∥ f

(
y | xj

)
dy


 ,

Γθgθg̃ = E

∫
S̄gh

x2
j

(
y− θ̄gxj − ᾱg −W ′j β̄

) (
y− θ̄g̃xj − ᾱg̃ −W ′j β̄

)
∥∥θ̄g̃xj + ᾱg̃ − θ̄gxj − ᾱg

∥∥ f
(
y | xj

)
dy

 ,

Γθgαg = E
[
1
{

ĝj
(
θ̄, ᾱ, β̄

)
= g

}
xj
]
− E

∑
h 6=g

∫
S̄gh

xj

(
y− θ̄gxj − ᾱg −W ′j β̄

)2∥∥θ̄hxj + ᾱh − θ̄gxj − ᾱg
∥∥ f

(
y | xj

)
dy


 ,

Γθgαg̃ = E

∫
S̄gh

xj

(
y− θ̄gxj − ᾱg −W ′j β̄

) (
y− θ̄g̃xj − ᾱg̃ −W ′j β̄

)
∥∥θ̄g̃xj + ᾱg̃ − θ̄gxj − ᾱg

∥∥ f
(
y | xj

)
dy

 ,

Γαgαg = E
[
1
{

ĝj
(
θ̄, ᾱ, β̄

)
= g

}]
− E

∑
h 6=g

∫
S̄gh

(
y− θ̄gxj − ᾱg −W ′j β̄

)2∥∥θ̄hxj + ᾱh − θ̄gxj − ᾱg
∥∥ f
(
y | xj

)
dy


 ,

Γαgαg̃ = E

∫
S̄gh

(
y− θ̄gxj − ᾱg −W ′j β̄

) (
y− θ̄g̃xj − ᾱg̃ −W ′j β̄

)
∥∥θ̄g̃xj + ᾱg̃ − θ̄gxj − ᾱg

∥∥ f
(
y | xj

)
dy

 .

Estimators can easily be constructed for these analytical expressions using the kernel ap-
proach of Bonhomme and Manresa (2015). The natural estimator for the moment condi-
tion covariance takes the form

V̂ =
1
N

N

∑
j=1


xjιĝj(θ̂,α̂,β̂)

ιĝj(θ̂,α̂,β̂)

Wj

 v̂j
(
θ̂, α̂, β̂

)2


xjιĝj(θ̂,α̂,β̂)

ιĝj(θ̂,α̂,β̂)

Wj


′

for residuals v̂j
(
θ̂, α̂, β̂

)
≡ v̂j

(
ĝj
(
θ̂, α̂, β̂

)
, θ̂, α̂, β̂

)
.
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B.4 Inclusion of controls in the objective function

In this section, we highlight the role that controls play in our model. In particular, we
show that the baseline specification in Equation (19) without controls included can be
seen as a non-parametric alternative to a specification with controls as the number of
groups, G, increases.

Consider two models. Suppose the true model has the form

∆Cj = β′Wj + ∑
g∈G

(
θg1 [j ∈ g] Rj + αg1 [j ∈ g]

)
+ εj. (19)

Second, suppose the econometrician estimates a simpler model, omitting the controls:

∆Cj = ∑
g̃∈G̃

(
θ̃g̃1 [j ∈ g̃] Rj + α̃g̃1 [j ∈ g̃]

)
+ ε̃j. (20)

In general, this second model could be susceptible to omitted variable bias (in particular,
if G̃ = G). However, this need not be the case if G̃ is allowed to vary. This is because the
model in Equation (19) can be rewritten in the form of Equation (20), with G̃ ≥ G. To see
this, consider a simple example where Wj is a scalar binary regressor and G = 2. Then if
G̃ = 4, there are four cases to consider, based on two “true” groups with heterogeneous
parameters, and two levels of Wj within each group. Then the following relationships
exist between

{
θg, αg

}
g=1,2 and

{
θ̃g̃, α̃g̃

}
g̃=1,...,4 (where the labels of groups are arbitrary):

expanded
group

true
group

control
value

slope intercept

g̃ = 1 g = 1 Wj = 0 θ̃1 = θ1 α̃1 = α1

g̃ = 2 g = 1 Wj = 1 θ̃2 = θ1 α̃2 =

α1 + β

g̃ = 3 g = 2 Wj = 0 θ̃3 = θ2 α̃3 = α2

g̃ = 4 g = 2 Wj = 1 θ̃3 = θ2 α̃4 =

α2 + β

The effect of Wj is absorbed entirely into the fixed effects α̃g̃, which now vary with an
individual’s Wj. The true values of θg and αg are still recovered, provided G̃ is chosen
correctly.

This argument can be extended to allow for effects of Wj other than simple level shifts.
For example, if the true model has the additional interaction term θW

g 1 [j ∈ g] RjWj, then
the θ̃g̃’s recovered would incorporate θW

g just like the expressions for α̃g̃ above incorporate
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β. The argument also extends to non-binary controls. For example, a discrete regressor
taking k values would expand a G−group model to a k×G group model. Admittedly, ex-
tending the argument to a continuous regressor introduces a computational challenge in
practice, but in our setting, available controls are generally discrete. Finally, the argument
generalizes in the same way when Wj is a vector and not a simple scalar.

There remains a question over whether estimating such a model accurately recovers
the heterogeneity in θg, or rather overestimates heterogeneity as G grows to G̃. In our
view, G̃ more accurately represents the true heterogeneity in the underlying data, seeing
as it incorporates any differences in MPCs arising from observable controls, Wj, as op-
posed to only residual heterogeneity after partialing out Wj. Individuals still have mean-
ingfully different MPCs, even if that difference is explained by observable characteristics.
We can then, of course, investigate the relationship between the recovered θ̃g̃ and Wj ex
post, as we do in Section 5.3. We seek to characterize the full heterogeneity of MPCs, as
opposed to the conditional heterogeneity of MPCs, as for instance in Kaplan et al. (2014),
Fagereng et al. (2016), Johnson et al. (2006), Parker et al. (2013), and Crawley and Kuchler
(2018).

A further advantage of estimating Equation (20) as opposed to (19) is that it allows
the relationship between Wj and ∆Cj to be completely non-parametric. Including Wj as in
Equation (19) assumes the term enters linearly; including an interaction with 1 [j ∈ g] Rj

likewise assumes a functional form. However, estimating a separate set of parameters
θ̃g̃, α̃g̃ for each g̃ ∈ G̃ takes no stance on the parametric structure relating Wj to Cj. On this
basis, as well as the desire to recover the full heterogeneity in MPCs, we proceed using
specifications based on Equation (20) as our baseline.

These insights inform our empirical specification in Equation (14). In particular, we
opt to include a minimal set of covariates, Wj, including time dummies, age, age squared,
and changes in household membership, and explore the relationship between additional
covariates and consumption behavior in Section 5.3.

C Supplemental numerical and simulation results

C.1 Numerical results for optimal m in Gaussian cluster means

In this section we consider the cluster means case of section 2.1. In figure 10 we show
how the estimated positive mean by FCM, as we change the fuzziness parameter m. As
documented analytically, there is a m = m̃ such that bias is zero. We report these m̃ in
table 1.
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1 1.5 2 2.5

 m

0.6

0.8

1

1.2

*

1 1.5 2 2.5

 m

0.4

0.6

0.8

*

1 1.5 2 2.5

 m

1.4

1.6

1.8

2

*

1 1.5 2 2.5

 m

0.6

0.8

1

1.2

*

1 1.5 2 2.5

 m

0.9

1

1.1

*

Figure 10: Numerical results for FCM estimated means as a function of m.

C.2 Computational performance

Our approach entails two computational improvements. First, thanks to the equivalence
shown in Theorem 2, we are able to improve vis a vis an iterative FCM approach. Second,
we greatly improve computational speed with respect to various HKM algorithms.

The structure of our problem is such that we can apply standard non-linear minimiza-
tion routines to the objective function, and make use of analytical gradients to further en-
hance performance. This strategy is substantially faster than an iterative procedure aimed
at achieving the minimizer weights via convergence algorithms. The improvements in
computational speed increase with the chosen number of groups. With 10 groups, for
instance, our GMM approach is more than twice as fast as its iterative counterpart.37

The FCM algorithm is also faster than HKM. In the simulations shown in Section 3.2,
we consider two versions of the algorithm proposed by Bonhomme and Manresa (2015).
“Algorithm 1”, directly from that paper, starts by randomly allocating observations to
a given number of groups, estimates the model, and iteratively reallocates observations
while estimating the model until convergence. This strategy is considerably slower than
FCM; moreover, it performs much more poorly in simulations, as we show later. It takes
about 6 seconds to solve our FCM algorithm with 5 groups, for one vector of initial
guesses. We show that 500 starting guesses are more than enough to obtain consistent
and stable results. Algorithm 1 takes instead between 5 and 9 minutes, over the same

37We solve the model, for one vector of initial coefficients, in 17 seconds, compared with 40 seconds
required to solve the model iteratively.
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machine (MacBook Pro, 2.7Ghz Intel Core with turbo boost up to 3.8Ghz, 16GB mem-
ory), with the same number of starting values. Moreover, we find that even 1,000 starting
values are not enough to ensure stable results.

Bonhomme and Manresa (2015) propose a variable neighborhood search algorithm,
“Algorithm 2”, which, in their framework, improves simulation performance and is of-
ten necessary to avoid local minima. In our relatively large cross-sectional dataset, this
algorithm proves infeasible.38 We therefore consider an intermediate version, which we
label “Algorithm 1.5”. This uses the best result of Algorithm 1 (with 500 starting val-
ues) as the start value of a variable neighborhood approach, which however excludes the
local search component. This algorithm repeats the assignment procedure relocating n
randomly selected individuals and iteratively proceeds until the objective function stops
improving. It increases nby 1 until nmax, until the objective decreases. When this happens,
it restarts nand repeats the procedure for j outer iterations. Jumps of size n allow escape
from local solutions trapped in valleys. In the simulations shown in section 3.2, we set
both nmax and j to 100. We also set a stopping rule of 30 iterations which exits the algo-
rithm if 30 consecutive j iterations do not improve the objective function.39 Within every
variable neighborhood iteration, Algorithm 2 systematically checks all re-assignments of
individual observations across groups, updating group assignment when the objective
function decreases. This step took more than 1 week to perform for only 1 starting value
in our dataset. Algorithm 1.5, instead, adds only a further 9 minutes to Algorithm 1. Its
nature, however, does not allow parallelization beyond the one on starting guesses used
for Algorithm 1.

C.3 Additional simulation results

In this section we complement the simulation results shown in section 3.2. We make use
of empirical CDFs to show that FCM performance has remarkable advantages not only
when looking at MPC point estimates, but also considering the whole MPC distribution.
We start, in figure 12a, from the simulation using Gaussian errors with empirical noise, as
in Table 1 . For each sample, we compute the empirical CDF of the estimated distribution
of modal MPCs, over a fixed grid bounded between 0 and 1.40 We then report the average
of these CDFs across samples. All models do very well in matching the true CDF. Aver-

38The infeasibility stems from the fact that one step of the algorithm - local search - requires looping over
all observations (~17K in our case) sequentially in every iteration, which cannot be parallelized.

39In appendix C.3 we increase those parameters and show that HKM performance improves only mildly,
at the expenses of remarkable increases in computational time.

40For FCM, we could also look the weighted MPC. Results are broadly unchanged after averaging across
samples.
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Figure 11: Empirical CDFs of the MPC distribution: G = 5
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(a) Gaussian errors, empirical noise
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(b) Empirical errors

Notes: 500 samples, generated as in section 3.2. Averages across samples of the empirical CDF of modal MPC distributions.

aging smooths the CDF, taking into account sample uncertainty as shown by the RMSE.
The median CDF almost perfectly replicates the DGP.

We then turn to the data simulated using empirical errors, as in Table 2. While the fit
is less good, our baseline model clearly does a better job in fitting the true distribution.
Since some of the estimated MPCs are beyond the fixed domain over which we evaluate
the CDF, there is some non-negligible mass at the left end of the distribution, especially
for HKM and FCM with small m.

In Table 3 we have shown how our benchmark performs better than the alternatives,
both in terms of point estimates and RMSE. We corroborate these findings showing the
empirical CDFs. When estimating the CDF over a narrow grid, between 0 and 1, HKM
predicts that almost 50% of the observations will have MPCs beyond those boundaries.
Our benchmark model, instead, does a strikingly good job at matching the data, as shown
in figure 13a. When we extend the grid to encompass most of the estimated MPCs in
HKM, it is even more clear the extent to which some MPCs are wrongly estimated, and
the portion of the population for which it matters.

Finally, we have discussed in section C.2 how HKM is a computationally intensive
algorithm, especially when the number of groups increases. We increase all the tuning
parameters in order to explore whether this delivers improvements in simulation perfor-
mance, albeit implying a remarkable increase in computational cost. In particular, we
increase the starting values in Algo. 1 to 2,000. Moreover, we increase j to 150, nmax to
200, and the stopping rule to 100, see C.2. In Table 5 we show that some point estimates
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Figure 12: Empirical CDFs of the MPC distribution: G = 10
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(a) Gaussian errors, empirical noise, narrow grid
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Notes: 500 samples, generated as in section 3.2. Averages across samples of the empirical CDF of modal MPC distributions.

get closer to the truth, and some RMSE fall, although the performance of our benchmark
FCM model seems to still be unambiguously better.
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Truth FCM HKM
m = 1.8 m = 1.1 Algo. 1 Algo. 1.5

Point Estimates

0.844 0.784 0.668 -6.797 2.320
0.986 1.032 2.136 2.636 16.766
0.795 0.797 1.049 1.610 1.684
0.646 0.646 0.499 0.715 0.410
0.496 0.495 0.456 0.703 0.535
0.468 0.477 0.460 0.705 0.745
0.496 0.488 0.401 0.469 0.598
0.268 0.269 0.354 -1.052 0.351
0.340 0.344 0.443 -2.839 0.276
0.257 0.263 0.505 16.448 0.545

RMSE

0.676 5.932 11.313 6.600
0.771 17.218 5.173 18.199
0.029 3.829 3.347 3.494
0.023 2.530 3.170 2.275
0.094 1.599 2.346 0.906
0.129 3.547 2.315 1.206
0.174 1.769 4.182 1.317
0.023 0.389 3.917 0.298
0.048 0.910 5.259 0.993
0.056 0.421 18.095 0.381

Rejection Rates

0.088 0.758 0.824 0.852
0.106 0.928 0.972 0.988
0.074 0.904 0.848 0.928
0.086 0.892 0.892 0.704
0.066 0.882 0.700 0.524
0.058 0.880 0.560 0.632
0.060 0.754 0.832 0.524
0.054 0.456 0.776 0.372
0.070 0.610 0.860 0.892
0.058 0.508 0.988 0.668

Share Misclassified 0.007 0.409 0.958 0.660

Table 5: Simulation, Gaussian errors, empirical noise, G∗ = 10, S = 250
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Figure 13: Estimated distribution of MPCs out of the tax rebate: modal MPC

Notes: Figure 13 plots a histogram of estimated MPCs out of total expenditures, defined as in Parker et al. (2013). The homoge-
neous MPC (red line) is estimated assuming homogeneous response to the tax rebate, as in Parker et al. (2013). The black line
shows the average modal MPC in our sample.

D Supplemental empirical results

D.1 The MPC distribution: additional results

Figure 13 shows the distribution of modal MPCs out of total expenditures.
Figure 14 reports the 68% and 90% confidence bands of our estimated MPCs out of

total expenditures, estimated via TSLS.
Moreover, we further confirm the reliability of our estimated MPC distribution as fol-

lows. We draw 100 samples via bootstrap with replacement. For each sample, we estimate
our FCM algorithm (using the baseline specification). Table 6 shows how, on average, the
bootstrapped samples generate quantiles of the weighted MPC distribution that are very
close to those of the empirical distribution shown in Figure 2. This shows that even
though MPC estimates may not be individually statistically significant, there is relatively
little sampling uncertainty surrounding the overall shape of the distribution.

We also show in table 7 that nearly all the nondurable MPCs are statistically different
from each other when we estimate a heterogeneous WLS taking weights as given, as
explained in Table 4.
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Figure 14: Estimated MPCs out of the Tax Rebate: TSLS

Notes: Figure 14 depicts the estimated MPCs for total expenditures (defined as in Parker et al. (2013)) each of the G = 5 groups
using the TSLS specification. 90% confidence intervals (black lines) and 68% confidence intervals (red lines) are depicted in vertical
lines. The confidence intervals are constructed using the analytical formulas derived in Theorem 6.

Table 6: Average quantiles of the MPC distribution across bootstrapped samples

Average p10 p25 p50 p75 p90
Data 0.341 0.245 0.249 0.293 0.422 0.506
Bootstrap 0.357 0.231 0.247 0.292 0.433 0.570

(0.142) (0.073) (0.121) (0.102) (0.116) (0.169)

Notes: Table 6 shows various statistics of the distribution of weighted MPCs in the data (first row) and in a bootstrap exercise. pxx, etc.
denotes the xxth percentiles. “Data” refers to Figure 2, while the row labeled “Bootstrap” shows the average of each moment across
100 bootstrapped samples with replacement. The last rows the standard deviation of each moment across bootstrapped samples.
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Table 7: Test for MPC equality: non-durables

MPC

0.01 0.08 0.15 0.18 0.33

0.01 14.9
(0.00)

0.08 12.8 0.23
(0.00) (0.63)

0.15 4.28 22.0 64.7
(0.04) (0.00) (0.00)

0.18 0.87 44.6 10.6 86.7
(0.35) (0.00) (0.00) (0.00)

0.33 4.88 52.4 31.8 18.0 60.5
(0.03) (0.00) (0.00) (0.00) (0.00)

Notes: The table shows F-statistics from pairwise two-sided Wald tests of equality across MPCs (the diagonals shows tests of equality
with zero). Weights are taken as given. P-values are reported in parentheses.

Table 8: Individual correlations with the MPC out of total expenditures

Log salary
income

Log total
income

Mortgage
interest to
income ratio

APC Age Log liquid
wealth

OLS
weighted

MPC

0.13*** 0.20*** 0.08*** 0.11*** -0.06*** 0.12***

TSLS
weighted

MPC

0.13*** 0.21*** 0.06*** 0.15*** -0.06*** 0.13***

Notes: Table 8 shows the correlations between estimates listed in rows and observables listed in columns. *, ** and *** denote signifi-
cance of the correlation at 10, 5 and 1% respectively.

D.2 What drives MPC heterogeneity: additional results

Some household characteristics individually correlate with the MPC distribution, although
this correlation breaks down or becomes insignificant when considering additional con-
trols. Table 8 shows the individual correlations between a set of observables and the MPC.

We then turn to analyze whether the linear correlation with age and liquid wealth
hides some non-linear pattern. Figure 16a suggests a positive and convex relationship
between the weighted MPC and log liquid wealth. The relationship looks instead concave
with respect to age, as shown in Figure 16b.

Neither relationship is robust to the inclusion of a set of controls. In table 9 we show
that the best array of observable predictors explains only 13% of the variance in weighted
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Figure 15: Marginal propensities to consume: liquid wealth and age
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Notes: Binscatter. Each dot shows the average weighted MPC out of total expenditures for each decile of the distribution of lagged
log liquid wealth (left panel) and for each decile of the distribution of age of the reference person in the household (right panel). Log
of liquid wealth takes 0 when liquid wealth is 0 or negative.

MPC. Moreover, we highlight how the relationship between the MPC distribution and
observable predictors is broadly unaltered when considered MPCs estimated via TSLS.
The same, is true, although to a lesser extent, for nondurable and durable MPCs, as shown
in table 10.

Finally, we explore nonlinear effects of observable predictors of the MPC distribution.
We estimate a multinomial logit model, using the modal MPC as the dependent variable.
Table 11 shows the estimation output, whereas Figure 16 plots the marginal effects for
the APC.41 The results confirm that total income, APC, and mortage are the three main
correlates with the MPC distribution, even when we allow for nonlinear effects.

D.3 Rebate coefficient versus MPC

Following Kaplan and Violante (2014), we modify specification 13 by introducing the lag
of the rebate variable Rlag

j so that the estimated rebate coefficient can be interpreted as an
MPC:

∆Cj = β′Wj + θRj + θlagRlag
j + α + εj (21)

41We report only the results for the MPC distribution estimated via OLS and an array of predictors that
excludes liquid wealth. Results are basically unchanged if we look at 2SLS MPC or include liquidity.
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Table 9: Explanatory variables: weighted MPC out of total expenditures

OLS weighted MPC TSLS weighted MPC
(I) (II) (III) (IV)

Log salary income 0.002 -0.0003 0.003 0.001
(0.02) (0.001) (0.030) (0.002)

Log total income 0.036*** 0.045*** 0.081*** 0.095***
(0.008) (0.006) (0.015) (0.012)

Mortgage interest to income
ratio

0.086*** 0.060** 0.141** 0.087*

(0.032) (0.027) (0.061) (0.052)
APC 0.044*** 0.053*** 0.111*** 0.127***

(0.008) (0.007) (0.016) (0.013)
Outright homeowner dummy 0.006 0.008 0.006 0.009

(0.011) (0.010) (0.021) (0.019)
Mortgagor dummy 0.029*** 0.023** 0.045** 0.035*

(0.011) (0.010) (0.022) (0.018)
Age -0.002 -0.001 -0.004 -0.004

(0.002) (0.001) (0.003) (0.003)
Age-squared 0.000 0.000 0.000 0.000

(0.001) (0.001) (0.001) (0.001)
Married dummy 0.011 0.011 0.032** 0.028**

(0.008) (0.007) (0.015) (0.013)
Number of children 0.006 0.0001 0.006 -0.002

(0.006) (0.003) (0.007) (0.006)
Log liquid wealth -0.001 -0.001

(0.001) (0.002)

R2 0.13 0.13 0.16 0.15
Number of observations 723 1,079 723 1,079

Notes: All logged variables takes 0 when the raw value is 0 or negative. *, ** and *** denote significance of the coefficients at 10, 5 and
1% respectively. Standard errors in parentheses. Age and its square are controls in our FCM estimation. While this does not pose an
issue for the point estimates shown in this table, it might affect inference. We repeated the same regressions shown here, excluding
age and age-sq, and all the coefficients were unaffected.
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Table 10: Explanatory variables: weighted MPC out of nondurables and durables

Nondurables weighted MPC Durables MPC (dummy)
(I) (II) (III) (IV)

Log salary income 0.001 -0.002 0.005 0.004
(0.001) (0.001) (0.004) (0.003)

Log total income 0.015** 0.021*** -0.002 0.009
(0.006) (0.005) (0.022) (0.016)

Mortgage interest to income
ratio

0.006 0.012 0.103 0.085

(0.025) (0.021) (0.091) (0.071)
APC 0.017*** 0.019*** -0.002 0.003

(0.006) (0.005) (0.002) (0.018)
Outright homeowner dummy 0.001 -0.002 -0.046 -0.030

(0.009) (0.008) (0.032) (0.026)
Mortgagor dummy 0.010 0.008 0.005 0.007

(0.009) (0.007) (0.032) (0.025)
Age 0.000 0.000 -0.000 -0.000

(0.002) (0.002) (0.002) (0.002)
Age-squared 0.000 0.000 -0.000 -0.000

(0.001) (0.001) (0.001) (0.001)
Married dummy 0.002 -0.001 0.059** 0.044**

(0.006) (0.005) (0.023) (0.018)
Number of children 0.001 0.004* 0.001 0.000

(0.003) (0.002) (0.011) (0.008)
Log liquid wealth -0.000 0.04

(0.001) (0.004)

R2 0.03 0.04 0.02 0.02
Number of observations 739 1,099 720 1,075

Note: The dependent variable in column (III) and (IV) is a dummy that takes 1 if the modal durable MPC is above 0.5. All logged
variables takes 0 when the raw value is 0 or negative. *, ** and *** denote significance of the coefficients at 10, 5 and 1% respectively.
Standard errors in parentheses.
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Table 11: Multinomial logit on modal MPC out of total expenditures

MPC 0.289 0.422 0.516 0.651
Log salary income 0.011 0.0003 -0.035 0.199

(0.067) (0.039) (0.035) (0.132)
Log total income 0.976** 1.057*** 0.802*** 2.530***

(0.391) (0.203) (0.186) (0.574)
Mortgage interest to income
ratio

-0.448 1.399* 2.183*** -2.091

(2.283) (0.791) (0.738) (2.614)
APC 0.947** 1.316*** 0.577*** 3.672***

(0.422) (0.218) (0.220) (0.539)
Outright homeowner dummy -0.404 -0.000 0.228 0.500

(0.589) (0.311) (0.305) (0.827)
Mortgagor dummy -0.408 0.177 0.663** 1.033

(0.555) (0.321) (0.309) (0.857)
Age 0.012 -0.057 -0.023 -0.009

(0.089) (0.042) (0.041) (0.110)
Age-squared 0.000 0.001 0.000 0.001

(0.001) (0.001) (0.001) (0.001)
Married dummy 1.179** 0.364* 0.306 0.463

(0.465) (0.212) (0.200) (0.536)
Number of children 0.025 0.053 0.021 -0.048

(0.200) (0.093) (0.090) (0.201)

Pseudo R2 0.08
Number of observations 1,079

Notes: Output of a single multinomial logit estimation. The excluded base outcome is the lowest MPC, 0.245. All logged variables
takes 0 when the raw value is 0 or negative. *, ** and *** denote significance of the coefficients at 10, 5 and 1% respectively. Standard
errors in parentheses.
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Figure 16: Marginal and average propensities to consume: multinomial logit

−
.3

−
.2

−
.1

0
.1

.2
m

a
rg

in
a
l 
p
ro

b
a
b
ili

ty
 e

ff
e
c
t

0.
24

0.
29

0.
42

0.
52

0.
65

MPC

Notes: Figure 16 shows the marginal probability effect of a household’s APC, measured as mean lagged consumption relative to
lagged total income, on the modal MPC. Total expenditures.

By absorbing the lagged consumption response, this modification accounts for the fact
that, in the baseline specification, the control group includes households that received
the rebate in the past, and whose consumption response might be persistent. 42 We then
interact the rebate, its lagged value, and the constant with the group indicators 1 [j ∈ g],
and solve the FCM algorithm to get the endogenous weights and the vector of coefficients{

θg, θ
lag
g , αg

}
.In Figure 17, we show that the distribution of weighted MPCs is very similar

to the one estimated in the baseline specification.
To address the fact that some households never receive the rebate (and thus may be

meaningfully different from those who do receive the rebate), we drop households who
do not receive a rebate within the sample period we cover.40% of the observations in the
sample are associated with households that do not receive a rebate in this time period.
Figure 18 shows the distribution of the weighted MPCs in this subsample. Our results are
very similar to those shown in Figure 2, with a slight rightward shift of the distribution.
Indeed, Parker et al. (2013) also estimate a larger homogeneous rebate coefficient in this
subsample.

42This is true so long as the persistent effect of the rebate lasts strictly less than four quarters. Moreover,
we assume that the policy is fully anticipated by all households. In an intermediate information case in
which, for instance, the policy enters the agents’ information set after the receipt of the first rebate, this
specification cannot fully account for anticipatory effects often labelled as MPC out of news.
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Figure 17: Estimated distribution of MPCs out of the tax rebate: control for lagged re-
sponses

Notes: Total expenditures, defined as in Parker et al. (2013). The homogeneous MPC (red line) is estimated assuming homoge-
neous response to the tax rebate, as in Parker et al. (2013). For each household we compute the weighted MPC. The black line
shows the average weighted MPC in our sample.
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Figure 18: Estimated distribution of MPCs out of the tax rebate: only rebate recipients

Notes: Total expenditures, defined as in Parker et al. (2013). The homogeneous MPC (red line) is estimated assuming homoge-
neous response to the tax rebate, as in Parker et al. (2013). For each household we compute the weighted MPC. The black line
shows the average weighted MPC in our sample. Red and black lines overlap almost exactly.

D.4 Homogeneous and average MPC

In a model with heterogeneous effects, it is not generally true that an estimated homoge-
neous effect is equal to the weighted average of the heterogeneous effects. In our context,
this point is important: even if a researcher is interested only in the average MPC, that
MPC will not generally be recovered by estimating a homogeneous effect. To see this,
consider a simple two-group model of the form

yi = 1 [i ∈ D1] θD1 xi + 1 [i ∈ D2] θD2 xi + ei, (22)

and assume that observations i = 1, . . . , N/2 are in group D1 and the remainder are in
group D2. Then, the population counterpart of the standard OLS estimator for a homo-
geneous slope, θ̄, is given by

θ̄ = E
[

x2
i

]−1
E [xiyi] =

(
E
[

x2
i | i ∈ D1

]
+ E

[
x2

i | i ∈ D2

])−1 (
E
[

x2
i | i ∈ D1

]
θD1 + E

[
x2

i | i ∈ D2

]
θD2

)
.

In this simple model, the true average MPC is (θD1 + θD2) /2. However, θ̄ is equal to this
value in general if and only if the distribution of xi is independent of group membership.
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In this case, E
[
x2

i | i ∈ D1
]
= E

[
x2

i | i ∈ D2
]
= E

[
x2

i
]
, so

θ̄ =
(

2E
[

x2
i

])−1 (
E
[

x2
i

]
θD1 + E

[
x2

i

]
θD2

)
=

θD1 + θD2

2
.

However, in general, if researchers hope to recover a causal effect, group membership
(and thus the treatment effect θgi) should be independent of xi. In our setting, this means
that rebate value should not be correlated with the MPC. Under these assumptions, the
homogeneous MPC estimated from (22) will recover the average MPC. However, this is
not the case if we consider a more complicated model, with additional regressors. In
particular, consider

yi = 1 [i ∈ D1] θD1 xi + 1 [i ∈ D2] θD2 xi + W ′i β + ei, (23)

where Wi is a vector of controls. In this case, the homogeneous coefficients will be given
by

θ̄aug = E
[
XiX′i

]−1 E [Xiyi]

=
E
[
XiX′i | i ∈ D1

]
θD2 + E

[
XiX′i | i ∈ D2

]
θD2

E
[
XiX′i | i ∈ D1

]
+ E

[
XiX′i | i ∈ D2

] (24)

where Xi =

(
xi

Wi

)
and θ̄aug stacks homogeneous coefficients on Xi. Now, for θ̄, the

coefficient on xi, to recover the average effect, the distribution of Xi must be indepen-
dent of group membership, or Wi must be independent of xi. This is a much stronger
assumption. Indeed, in our setting, this would require that any included controls have
no predictive power for an individual’s MPC. More broadly, this violates the basis for
the entire literature studying MPC heterogeneity correlated with observables. The same
argument also holds for the case with additional group-specific coefficients and is easily
extended to G > 2 groups.
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