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Abstract 

This paper illustrates the usefulness of sequential Monte Carlo (SMC) methods in approximating 
DSGE model posterior distributions. We show how the tempering schedule can be chosen 
adaptively, explore the benefits of an SMC variant we call generalized tempering for “online” 
estimation, and provide examples of multimodal posteriors that are well captured by SMC 
methods. We then use the online estimation of the DSGE model to compute pseudo-out-of-
sample density forecasts of DSGE models with and without financial frictions and document the 
benefits of conditioning DSGE model forecasts on nowcasts of macroeconomic variables and 
interest rate expectations. We also study whether the predictive ability of DSGE models changes 
when we use priors that are substantially looser than those commonly adopted in the literature.  
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1 Introduction

The goal of this paper is to provide a framework for performing “online” estimation of

medium- and large-scale DSGE models using sequential Monte Carlo (SMC) techniques

that can be parallelized. We borrow the term online estimation from the statistics and

machine-learning literature to describe the task of re-estimating a model frequently as new

data become available. While our framework is tailored toward central bank applications

with its focus on forecasting and the use of real-time data, it should also be relevant to

academic researchers who are interested in estimating complex models in a stepwise fashion.

That is, either sequentially increasing the sample information used in the estimation or

mutating preliminary estimates from a relatively simple (linear dynamics, heterogeneous

agents models with a coarse approximation) model, which can be computed quickly, into

estimates of a more complex model (nonlinear dynamics, heterogeneous agents models with

a finer approximation), which would take a long time to compute from scratch.

SMC methods have been traditionally used to solve nonlinear filtering problems, an

example being the bootstrap particle filter of Gordon et al. (1993). Subsequently, Chopin

(2002) showed how to adapt particle filtering techniques to conduct posterior inference for a

static parameter vector. The first paper that applied SMC techniques to posterior inference

for the parameters of a (small-scale) DSGE model was Creal (2007). Subsequent work by

Herbst and Schorfheide (2014, 2015) fine-tuned the algorithm so that it could be used for

the estimation of medium- and large-scale models.

In order to frame the paper’s contributions, a brief summary of how SMC works is in

order. SMC algorithms approximate a target posterior distribution by creating intermediate

approximations for a sequence of bridge distributions. Under a version of SMC called likeli-

hood tempering, these bridge distributions are posteriors constructed based on a likelihood

sequence that is generated by raising the full-sample likelihood function to the power of

φn, where φn increases from zero to one. At each stage, the current bridge distribution is

represented by a swarm of particles. Each particle is associated with a value and a weight.

Weighted averages of the particle values converge to expectations under the stage-n distribu-

tion. The transition from stage n− 1 to n involves changing the particle weights and values

so that the swarm adapts to the new distribution.

This paper makes several contributions. First, we replace the fixed tempering schedule

for the DSGE model likelihood function by an adaptive tempering schedule. While adaptive
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tempering schedules have been used in the statistics literature before, e.g., Jasra et al.

(2011), their use for the estimation of DSGE model parameters is new. Adaptive tempering

is particularly attractive for online estimation because in some periods the new observation(s)

may be quite informative and shift the posterior distribution substantially, whereas in other

periods the posterior distribution remains essentially unchanged. In the former case, it is

desirable to use a larger number of intermediate stages to reach the new posterior to maintain

accuracy. In the latter case one would like to keep the number of intermediate stages small to

reduce the runtime. Our adaptive schedules are controlled by a single tuning parameter and

we assess how this tuning parameter affects the accuracy-runtime trade-off for the algorithm.

Second, we modify the SMC algorithm so that the initial particles are drawn from a

previously computed posterior distribution instead of the prior distribution. This initial

posterior can result from estimating the model on a shorter sample or a simpler version of

the same model (e.g., linear versus non-linear, as discussed above) on the full sample. In the

former case, our approach can be viewed as a form of generalized data tempering. Under

standard data tempering, the likelihood sequence is generated by adding progressively more

observations. Our approach is more general in that it allows users to add information from

fractions of observations and accommodates data revisions, which are pervasive in macro

applications.

Third, we contribute to the literature that assesses the real-time pseudo-out-of-sample

forecast performance of DSGE models. Here real-time means that for a forecast using a

sample ending at time t, the data vintage used to estimate the model is one that would

have been available to the econometrician at the time. Pseudo-out-of-sample means that

the forecasts were however produced ex-post.1 We use the proposed SMC techniques to

recursively estimate the Smets and Wouters (2007) model and a version of this model with

financial frictions. Our forecast evaluation exercises extend previous results in Del Negro

and Schorfheide (2013) and Cai et al. (forthcoming). Relative to the former study, we now

have access to a longer sample that includes the recovery from the Great Recession, and we

focus on log predictive scores rather than probability integral transforms. Relative to the

latter paper, we are focusing on density rather than point forecasts. Moreover, both of the

earlier papers were based on the widely-used Random Walk Metropolis Hastings (RWMH)

algorithm, whereas the current paper utilizes the SMC algorithm described above.

We find that the DSGE model with financial frictions generates more accurate forecasts

1Cai et al. (forthcoming) provide a genuine real-time forecast evaluation that uses the NY Fed DSGE

model’s forecasts.
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than the one without during and after the Great Recession, by and large confirming the

results of Del Negro and Schorfheide (2013) and Cai et al. (forthcoming). We also consider

the effects of dramatically loosening the prior informativeness on forecasting performance.

Despite the emergence of multiple modes in the posterior distribution, our SMC-based results

show that the large increase in the prior standard deviation has surprisingly small effects on

forecasting accuracy, thereby debunking the notion that priors in DSGE models are chosen

to improve the model’s predictive ability.

The remainder of this paper is organized as follows. In Section 2, we outline the basic

structure of an SMC algorithm designed for posterior inference on a static parameter vector

θ. We review different tempering approaches and present an algorithm for the adaptive

choice of the tempering schedule. Section 3 provides an overview of the DSGE models that

are estimated in this paper. In Section 4, we study various dimensions of the performance

of SMC algorithms: we assess the accuracy and runtime tradeoffs of adaptive tempering

schedules, we document the benefits of generalized data tempering for online estimation, and

we demonstrate the ability of SMC algorithms to capture multimodal posteriors. Section 5

contains various pseudo-out-of-sample forecasting assessments for models that are estimated

by SMC. Finally, Section 6 concludes. An Online Appendix provides further details on

model specifications, prior distributions, computational aspects. It also contains additional

empirical results.

2 Adaptive SMC Algorithms for Posterior Inference

SMC techniques to generate draws from posterior distributions of a static parameter θ are

emerging as an attractive alternative to MCMC methods. SMC algorithms can be easily

parallelized and, properly tuned, may produce more accurate approximations of posterior

distributions than MCMC algorithms. Chopin (2002) showed how to adapt particle filtering

techniques to conduct posterior inference for a static parameter vector. Textbook treatments

of SMC algorithms are provided, for instance, by Liu (2001) and Cappé et al. (2005). This

section reviews the standard SMC algorithm (Section 2.1), contrasts our generalized tem-

pering approach with existing alternatives (Section 2.2), and finally describes our adaptive

tempering algorithm (Section 2.3).

The first paper that applied SMC techniques to posterior inference in a small-scale DSGE

models was Creal (2007). Herbst and Schorfheide (2014) develop the algorithm further,
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provide some convergence results for an adaptive version of the algorithm building on the

theoretical analysis of Chopin (2004), and show that a properly tailored SMC algorithm

delivers more reliable posterior inference for large-scale DSGE models with a multimodal

posterior than the widely used RWMH algorithm. Creal (2012) provides a recent survey of

SMC applications in econometrics. Durham and Geweke (2014) show how to parallelize a

flexible and self-tuning SMC algorithm for the estimation of time series models on graphical

processing units (GPU). The remainder of this section draws heavily from the more detailed

exposition in Herbst and Schorfheide (2014, 2015).

2.1 SMC Algorithms for Posterior Inference

SMC combines features of classic importance sampling and modern MCMC techniques. The

starting point is the creation of a sequence of intermediate or bridge distributions {πn(θ)}Nφn=0

that converge to the target posterior distribution, i.e., πNφ(θ) = π(θ). At any stage the

(intermediate) posterior distribution πn(θ) is represented by a swarm of particles {θin,W i
n}Ni=1

in the sense that the Monte Carlo average

h̄n,N =
1

N

N∑
i=1

W i
nh(θi)

a.s.−→ Eπn [h(θn)]. (1)

as N −→ ∞, for each n = 0, . . . Nφ. The bridge distributions are posterior distributions

constructed from stage-n likelihood functions:

πn(θ) =
pn(Y |θ)p(θ)∫
pn(Y |θ)p(θ)dθ

(2)

with the convention that p0(Y |θ) = 1, i.e., the intial particles are drawn from the prior, and

pNφ(Y |θ) = p(Y |θ). The actual form of the likelihood sequences depend on the tempering

approach and will be discussed in Section 2.2 below. We adopt the convention that the

weights W i
n are normalized to average to one.

The SMC algorithm proceeds iteratively from n = 0 to n = Nφ. Starting from stage

n − 1 particles {θin−1,W
i
n−1}Ni=1 each stage n of the algorithm targets the posterior πn and

consists of three steps: correction, that is, reweighting the stage n− 1 particles to reflect the

density in iteration n; selection, that is, eliminating a highly uneven distribution of particle

weights (degeneracy) by resampling the particles; and mutation, that is, propagating the

particles forward using a Markov transition kernel to adapt the particle values to the stage

n bridge density.
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Algorithm 1 (Generic SMC Algorithm).

1. Initialization. (φ0 = 0). Draw the initial particles from the prior: θi1
iid∼ p(θ) and

W i
1 = 1, i = 1, . . . , N .

2. Recursion. For n = 1, . . . , Nφ,

(a) Correction. Reweight the particles from stage n− 1 by defining the incremental

weights

w̃in =
pn(Y |θin−1)

pn−1(Y |θin−1)
(3)

and the normalized weights

W̃ i
n =

w̃inW
i
n−1

1
N

∑N
i=1 w̃

i
nW

i
n−1

, i = 1, . . . , N. (4)

(b) Selection (Optional). Resample the swarm of particles {θin−1, W̃
i
n}Ni=1 and de-

note resampled particles by {θ̂i,W i
n}Ni=1, where W i

n = 1 for all i.

(c) Mutation. Propagate the particles {θ̂i,W i
n} via NMH steps of an MH algorithm

with transition density θin ∼ Kn(θn|θ̂in; ζn) and stationary distribution πn(θ). An

approximation of Eπn [h(θ)] is given by

h̄n,N =
1

N

N∑
i=1

h(θin)W i
n. (5)

3. For n = Nφ (φNφ = 1) the final importance sampling approximation of Eπ[h(θ)] is

given by:

h̄Nφ,N =
N∑
i=1

h(θiNφ)W i
Nφ
. (6)

The algorithm can be initialized with iid draws from the prior density p(θ), provided

the prior density is proper, with the initial weights W i
0 set equal to one. The correction step

is a classic importance sampling step, in which the particle weights are updated to reflect

the stage n distribution πn(θ). The selection step is optional. On the one hand, resampling

adds noise to the Monte Carlo approximation, which is undesirable. On the other hand,

it equalizes the particle weights, which increases the accuracy of subsequent importance

sampling approximations. The decision of whether or not to resample is typically based on
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a threshold rule for the variance of the particle weights. We can define an effective particle

sample size as:

ÊSSn = N
/( 1

N

N∑
i=1

(W̃ i
n)2

)
(7)

and resample whenever ÊSSn falls below a threshold N . An overview of specific resampling

schemes is provided, for instance, in the books by Liu (2001) or Cappé et al. (2005) (and

references cited therein). We are using systematic resampling in the applications below.

The mutation step changes the particle values. In the absence of the mutation step, the

particle values would be restricted to the set of values drawn in the initial stage from the

prior distribution. This would clearly be inefficient, because the prior distribution is typically

a poor proposal distribution for the posterior in an importance sampling algorithm. As the

algorithm cycles through the Nφ stages, the particle values successively adapt to the shape

of the posterior distribution. This is the key difference between SMC and classic importance

sampling. The transition kernel Kn(θn|θ̂n; ζn) has the following invariance property:

πn(θn) =

∫
Kn(θn|θ̂n; ζn)πn(θ̂n)dθ̂n. (8)

Thus, if θ̂in is a draw from πn, then so is θin. The mutation step can be implemented by using

one or more steps of a Metropolis-Hastings (MH) algorithm. The probability of mutating the

particles can be increased by blocking the elements of the parameter vector θ or by iterating

the MH algorithm over multiple steps. The vector ζn summarizes the tuning parameters of

the MH algorithm.

The SMC algorithm produces as a by-product an approximation of the marginal likeli-

hood. Note that

1

N

N∑
i=1

w̃inW̃
i
n−1 ≈

∫
pn(Y |θ)
pn−1(Y |θ)

[
pn−1(Y |θ)p(θ)∫
pn−1(Y |θ)p(θ)dθ

]
dθ =

∫
pn(Y |θ)p(θ)dθ∫
pn−1(Y |θ)p(θ)dθ

. (9)

Thus, it can be shown that the approximation

p̂(Y ) =

Nφ∏
n=1

(
1

N

N∑
i=1

w̃inW
i
n−1

)
(10)

converges almost surely to p(Y ) as the number of particles N −→∞.
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2.2 Likelihood, Data, and Generalized Tempering

The stage-n likelihood functions are generated in different ways. Under likelihood tempering,

one takes power transformations of the entire likelihood function:

pn(Y |θ) = [p(Y |θ)]φn , φn ↑ 1, (11)

The advantage of likelihood tempering is that one can make, through the choice of φn, consec-

utive posteriors arbitrarily “close” one another. Under data tempering, sets of observations

are gradually added to the likelihood function, that is,

pn(Y |θ) = p(y1:bφnT c), φn ↑ 1, (12)

where bxc is the largest integer that is less or equal to x. Data tempering is particularly

attractive in time series applications. But because individual observations are not divisible,

the data tempering approach is less flexible.

Our approach generalizes both likelihood and data tempering as follows. Imagine one

has draws from the posterior

π̃(θ) ∝ p̃(Ỹ |θ)p(θ), (13)

where the posterior π̃(θ) differs from the posterior π(θ) because either the sample (Y versus

Ỹ ), or the model (p(Y |θ) versus p̃(Ỹ |θ)), or both, are different.2 We define the stage-n

likelihood function as:

pn(Y |θ) = [p(Y |θ)]φn [p̃(Ỹ |θ)]1−φn , φn ↑ 1. (14)

First, if one sets p̃(·) = 1, then (14) is identical to likelihood tempering. Second, if

one sets p̃(·) = p(·), Y = y1:bφmT c, and Ỹ = y1:bφm−1T c, where φm ↑ 1 is the same se-

quence as in (12), then our approach generalizes data tempering by allowing for a gradual

transition between y1:bφm−1T c and y1:bφmT c. This may be important if the additional sample

ybφm−1T c+1:bφmT c substantially affects the likelihood (e.g., ybφm−1T c+1:bφmT c includes the Great

Recession).

Third, by allowing Y to differ from Ỹ we can accommodate data revisions between time

bφm−1T c and bφmT c. For online estimation conducted in central banks, one can use the

most recent estimation to jump-start a new estimation on revised data, without starting

from scratch. Finally, by allowing p(·) and p̃(·) to differ, one can transition between the

2It is straightforward to generalize our approach to also encompass differences in the prior.
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posterior distribution of two models that share the same parameters. We will evaluate the

accuracy of the generalized tempering approach in Section 4 and use it in the real-time

forecast evaluation of Section 5.

2.3 Adaptive Algorithms

The implementation of the SMC algorithm requires the choice of several tuning constants.

First and foremost, the user has to choose the number of particles N . As shown in Chopin

(2004), Monte Carlo averages computed from the output of the SMC algorithm satisfy a

CLT as the number of particles increases to infinity. This means that the variance of the

Monte Carlo approximation decreases at the rate 1/N . Second, the user has to determine

the tempering schedule φn and the number of bridge distributions Nφ. Third, the threshold

level N for ÊSSn needs to be set to determine whether the resampling step should be

executed in iteration n. Finally, the implementation of the mutation step requires the choice

of the number of MH steps, NMH , the number of blocks into which the parameter vector

θ is partitioned, Nblocks, and the parameters ζn that control the Markov transition kernel

Kn(θn|θ̂in; ζn).

Our implementation of the algorithm starts from a choice ofN , N , NMH , andNblocks. The

remaining features of the Algorithm are determined adaptively. As in Herbst and Schorfheide

(2015), we use a random-walk Metropolis Hastings (RWMH) algorithm to implement the

mutation step. The proposal density takes the form N(θ̂i, c2
n, Σ̃n). The scaling constant c

and the covariance matrix Σ̃n can be easily chosen adaptively; see Herbst and Schorfheide

(2015, Algorithm 10). Based on the MH rejection frequency, c can be adjusted to achieve a

target rejection rate of approximately 25-40%. For Σ̃n one can use an approximation of the

posterior covariance matrix computed at the end of the stage n correction step.

In the current paper, we will focus on the adaptive choice of the tempering schedule,

building on work by Jasra et al. (2011), Del Moral et al. (2012), Schäfer and Chopin (2013),

Geweke and Frischknecht (2014), and Zhou et al. (2015). The key idea is to choose φn to

target a desired level ÊSS
∗
n. Roughly, the closer the desired ÊSS

∗
n to the previous ÊSSn−1,

the smaller the increment φn− φn−1 and the information increase in the likelihood function.

In order to formally describe the choice of φn define the functions:

wi(φ) = [p(Y |θin−1)]φ−φn−1 , W i(φ) =
wi(φ)W i

n−1

1
N

N∑
i=1

wi(φ)W i
n−1

, ÊSS(φ) = N
/( 1

N

N∑
i=1

(W̃ i
n(φ))2

)
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We will choose φ to target a desired level of ESS:

f(φ) = ÊSS(φ)− αÊSSn−1 = 0, (15)

where α is a tuning constant that captures the tolerated deterioration in ESS. The algorithm

can be summarized as follows:

Algorithm 2 (Adaptive Tempering Schedule).

1. If f(φ) ≥ 0, then set φn = 1.

2. If f(φ) < 0, let φn ∈ (φn−1, 1) be the smallest value of φn such that f(φn) = 0.

For the tempering schedule to be “well-formed” it must be monotonically increasing.

This is guaranteed by construction of the adaptive schedule for the following reason. Suppose

that φn−1 < 1. First, note that f(φn−1) = (1 − α)ÊSSn−1 > 0. Second, if f(1) ≥ 0, we set

φn = 1 > φn−1 and the algorithm terminates. Alternatively, if f(1) < 0, then by continuity of

f(φ) and the compactness of the interval [φn−1, 1], there exists at least one root of f(φ) = 0.

We define φn to be the smallest one.3

3 DSGE Models

In the subsequent applications we consider three DSGE models. The precise specifications of

these models, including their linearized equilibrium conditions, measurement equations, and

prior distributions, are provided in Section B of the Online Appendix. The first model is a

small-scale New Keynesian DSGE model that has been widely studied in the literature (see

Woodford (2003) or Gali (2008) for textbook treatments). The particular specification used

in this paper is based on (An and Schorfheide, 2007; henceforth, AS). The model economy

consists of final goods producing firms, intermediate goods producing firms, households, a

central bank, and a fiscal authority. Labor is the only factor of production. Intermediate

goods producers act as monopolistic competitors and face downward sloping demand curves

for their products. They face quadratic costs for adjusting their nominal prices, which

generates price rigidity and real effects of unanticipated changes in monetary policy in the

model. The model solution can be reduced to three key equations: a consumption Euler

3A refined version of Algorithm 2 that addresses some numerical challenges in finding the root of f(φ) is

provided in Section A.2 of the Online Appendix.
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equation, a New Keynesian Phillips curve, and a monetary policy rule. Fluctuations are

driven by three types of exogenous shocks and the model is estimated based on output

growth, inflation, and federal funds rate data. We will subsequently refer to this model as

the AS model.

The second model is the Smets and Wouters (2007) model, henceforth SW, which is

based on earlier work by Christiano et al. (2005) and Smets and Wouters (2003), and is the

prototypical medium-scale New Keynesian model. In the SW model, capital is a factor of

intermediate goods production and in addition to price stickiness, the model also features

nominal wage stickiness. In order to generate a richer autocorrelation structure, the model

includes investment adjustment costs, habit formation in consumption, and partial dynamic

indexation of prices and wages to lagged values. The SW model is estimated using the

following seven macroeconomic time series: output growth, consumption growth, investment

growth, real wage growth, hours worked, inflation, and the federal funds rate.

Whenever we want to produce forecasts that are conditional on (survey) expectations

of future interest rates (which is important whenever we need to capture the effective lower

bound on nominal interest rates from 2009-2015, or forward guidance), we add these expec-

tations to the vector of observables and anticipated monetary policy shocks in the interest

rate feedback rules, following Del Negro and Schorfheide (2013).

In Section 5, we also consider an extension of the SW model based on Del Negro and

Schorfheide (2013) that includes a time-varying target inflation rate to capture low frequency

movements of inflation. To anchor the estimates of the target inflation rate, we include long-

run inflation expectations into the set of observables. We refer to this model as SWπ.

The third DSGE model, SWFF, is obtained by adding financial frictions to the SWπ

model and builds on work by Bernanke et al. (1999b), Christiano et al. (2003), De Graeve

(2008), and Christiano et al. (2014).4 In this DSGE model, banks collect deposits from

households and lend to entrepreneurs who use these funds as well as their own wealth to

acquire physical capital, which is rented to intermediate goods producers. Entrepreneurs

are subject to idiosyncratic disturbances that affect their ability to manage capital. Their

revenue may thus be too low to pay back the bank loans. Banks protect themselves against

default risk by pooling all loans and charging a spread over the deposit rate. This spread

varies exogenously due to changes in the riskiness of entrepreneurs’ projects and endogenously

4SWFF was also introduced in Del Negro and Schorfheide (2013). Its projections for the Great Recession

are studied in Del Negro et al. (2015).
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Table 1: Configuration of SMC Algorithm for Different Models

AS SW

Number of particles N = 3, 000 N = 12, 000

Fixed tempering schedule Nφ = 200, λ = 2 Nφ = 500, λ = 2.1

Mutation NMH = 1, Nblocks = 1 NMH = 1, Nblocks = 3

Selection/Resampling N = N/2 N = N/2

as a function of the entrepreneurs’ leverage. The estimation of the SWFF model includes an

additional time series for spreads.

4 SMC Estimation at Work

We now illustrate various dimensions of the performance of the SMC algorithm. Section 4.1

documents the shape of the adaptive tempering schedule as well as speed-versus-accuracy

trade-offs when tuning the adaptive tempering. Section 4.2 uses generalized tempering for

the online estimation of DSGE models and document its runtime advantages. Finally, in

Section 4.3 we show that the SMC algorithm is able to reveal multimodal features of DSGE

model posteriors.

4.1 Adaptive Likelihood Tempering

We described in Section 2.3 how the tempering schedule for the SMC algorithm can be

generated adaptively. The tuning parameter α controls the desired level of reduction in ESS

in (15). The closer α is to one, the smaller the desired ESS reduction, and therefore the

smaller the change in the tempering parameter and the larger the number of tempering steps.

We will explore the shape of the adaptive tempering schedule generated by Algorithm 2, the

runtime of SMC Algorithm 1, and the accuracy of the resulting Monte Carlo approximation

as a function of α. Rather than reporting results for individual DSGE model parameters,

we consider the standard deviation of the log marginal data density (MDD) defined in

(10), computed across multiple runs of the SMC algorithm, as a measure of accuracy (and

precision) of the Monte Carlo approximation.
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Table 2: AS Model: Fixed and Adaptive Tempering Schedules

Fixed α =0.90 α =0.95 α =0.97 α =0.98

Mean log(MDD) -1032.55 -1034.13 -1032.46 -1032.04 -1031.92

StdD log(MDD) 0.73 1.54 0.61 0.29 0.21

Schedule Length 200.00 111.92 218.77 350.04 505.79

Resamples 14.61 15.34 15.02 15.00 14.00

Runtime [Min] 2.00 0.83 1.60 2.56 3.70

Notes: Results are based on Nrun = 200 runs of the SMC algorithm. We report averages across runs for the
runtime, schedule length, and number of resampling steps.

We consider the AS and SW models, estimated based on data from 1966:Q4 to 2016:Q3.5

In addition to the adaptive tempering schedule, we also consider a fixed tempering schedule

of the form

φn =

(
n

Nφ

)λ
. (16)

This schedule has been used in the SMC applications in Herbst and Schorfheide (2014) and

Herbst and Schorfheide (2015). The user-specified tuning parameters for the SMC algorithm

are summarized in Table 1.

Results for the AS model based on adaptive likelihood tempering, see (11), are summa-

rized in Table 2. We also report results for the fixed tempering schedule (16) in the second

column of the table. The remaining columns show results for the adaptive schedule with

different choices of the tolerated ESS reduction α. The adaptive schedule length is increas-

ing from approximately 112 stages for α = 0.90 to 506 stages for α = 0.98. As mentioned

above, the closer α is to one, the smaller is the increase in φn. This leads to a large number

of stages which, in turn, increases the precision of the Monte Carlo approximation. The

standard deviation of log p̂(Y ) is 1.54 for α = 0.9 and 0.21 for α = 0.98.

The runtime of the algorithm increases approximately linearly in the number of stages.

The number of times that the selection step is executed is approximately constant as a

function of α. However, because Nφ is increasing, the fraction of stages at which the particles

are resampled decreases from 14% to 3%. The mean of the log MDD is increasing as the

precision increases. This is the result of Jensen’s inequality. MDD approximations obtained

5For the estimation of both models, we use a pre-sample from 1965:Q4 to 1966:Q3.
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Figure 1: Trade-Off Between Runtime and Accuracy
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Notes: AS results are based on Nrun = 200 and SW results are based on Nrun = 100 runs of the SMC
algorithm.

from SMC algorithms tend to be unbiased, which means that log MDD approximations

exhibit a downward bias.

The left panel of Figure 1 depicts the time-accuracy curve for the AS model. This curve

is convex, indicating that increasing the schedule length from 112 to 219 stages generated a

drastic increase in accuracy, whereas implicitly increasing Nφ from 350 to 506 had a relatively

small effect. Connecting the α = 0.90 and α = 0.95 dots, it appears that the fixed schedule

is slightly inefficient in terms of trading off accuracy on runtime.

In addition to the AS model, we also evaluate the posterior of the SW model using the

SMC algorithm with adaptive likelihood tempering. Because the dimension of the parameter

space of the SW model is much larger than that of the AS model, we are using more particles

and multiple blocks in the mutation step when approximating its posterior (see Table 1).

The right panel of Figure 1 depicts the time-accuracy curve for the SW model. For a given

α, the log MDD approximation for SW is less accurate than for AS, which is consistent with

the SW model having more parameters that need to be integrated out and a less regular

likelihood surface. Similar to the results for the AS model, the time-accuracy curve is also

convex for the SW model, and the point corresponding to the fixed-schedule lies slightly

within the curve.

In Figure 2 we plot the fixed and adaptive tempering schedules for both models. All

of the adaptive schedules are convex. Very little information, less than under the fixed
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Figure 2: Tempering Schedules
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Notes: The figure depicts (pointwise) median φn values across Nrun = 200 for AS and Nrun = 100 for SW.
The solid lines represent the fixed schedule, parameterized according to Table 1. The dashed lines represent
a range of adaptive schedules: α = 0.90, 0.95, 0.97, 0.98.

schedule, is added to the likelihood function in the early stages, whereas a large amount of

information is added during the later stages. This is consistent with the findings in Herbst

and Schorfheide (2014, 2015) who examined the performance of the SMC approximations

under the fixed schedule (16) for various values of λ.

4.2 Generalized Tempering for Online Estimation

To provide a timely assessment of economic conditions and to produce accurate forecasts

and policy projections, econometric modelers at central banks have to re-estimate their

DSGE models regularly, e.g., once a quarter or once a year. A key impediment to online

estimation of DSGE models with the RWMH algorithm is that any amendment to the

previously-used dataset requires a full re-estimation of the DSGE model, which can be quite

time-consuming and often requires supervision.6 SMC algorithms that are based on data

tempering, on the other hand, allow for efficient online estimation of DSGE models. This

online estimation entails combining the adaptive tempering schedule in Algorithm 2 with

the generalized tempering in (14). As mentioned above, our algorithm is also amenable to

data revisions.

6This is particularly true when the proposal covariance matrix is constructed from the Hessian of the log

likelihood function evaluated at the global mode, which can be very difficult to find.
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Scenario 1. In the following illustration, we partition the sample into two subsamples:

t = 1, . . . , T1 and t = T1 + 1, . . . , T , and allow for data revisions by the statistical agencies

between periods T1 + 1 and T . We assume that the second part of the sample becomes

available after the model has been estimated on the first part of the sample using the data

vintage available at the time, ỹ1:T1 . Thus, in period T we already have a swarm of particles

{θiT1 ,W
i
T1
}Ni=1 that approximates the posterior

p(θ|ỹ1:T1) ∝ p(ỹ1:T1|θ)p(θ).

Following (14) with Y = y1:T and Ỹ = ỹ1:T1 , we define the stage (n) posterior as

πn(θ) =
p(y1:T |θ)φnp(ỹ1:T1|θ)1−φnp(θ)∫
p(y1:T |θ)φnp(ỹ1:T1|θ)1−φnp(θ)dθ

.

We distinguish notationally between y and ỹ because some observations in the t = 1, . . . , T1

sample may have been revised. The incremental weights are given by

w̃in(θ) = p(y1:T |θ)φn−φn−1p(ỹ1:T1|θ)φn−1−φn

and it can be verified that

1

N

N∑
i=1

w̃inW
i
n−1 ≈

∫
p(y1:T |θ)φnp(ỹ1:T1|θ)1−φnp(θ)dθ∫

p(y1:T |θ)φn−1p(ỹ1:T1|θ)1−φn−1p(θ)dθ
. (17)

Now define the conditional marginal data density (CMDD)

CMDD2|1 =

Nφ∏
n=1

(
1

N

N∑
i=1

w̃i(n)W
i
(n−1)

)
(18)

with the understanding that W i
(0) = WT1 . Because the product of the terms in (17) simplify,

and because φNφ = 1 and φ1 = 0, we obtain:

CMDD2|1 ≈
∫
p(y1:T |θ)p(θ)dθ∫
p(ỹ1:T1|θ)p(θ)dθ

=
p(y1:T )

p(ỹ1:T1)
. (19)

Note that in the special case of no data revisions (ỹ1:T1 = y1:T1) the expression simplifies to

CMDD2|1 ≈ p(yT1+1:T |y1:T1). We consider this case in our simulations below.

We assume that the DSGE model has been estimated using likelihood tempering based

on the sample y1:T1 , where t = 1 corresponds to 1966:Q4 and t = T1 corresponds to 2007:Q1.

The second sample, yT1+1:T , starts in 2007:Q2 and ends in 2016:Q3.7 We now consider

7We use a recent data vintage and abstract from data revisions in this exercise.
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Table 3: AS Model: Generalized Tempering

α =0.90 α =0.95 α =0.97 α =0.98

Mean log(MDD) -1034.12 -1032.48 -1032.10 -1031.95

StdD log(MDD) 1.31 0.62 0.35 0.23

Schedule Length 24.18 47.20 75.56 106.45

Runtime [Min] 0.25 0.46 0.73 1.02

Notes: Results are based on Nrun = 200 runs of the SMC algorithm, starting from particles that represent
p(θ|Y1:T1

). We report averages across runs for the runtime, schedule length, and number of resampling steps.

two ways of estimating the log MDD log p(y1:T ). Under full-sample estimation, we ignore

the existing estimate based on y1:T1 and use likelihood tempering based on the full-sample

likelihood p(y1:T |θ). Under generalized tempering, we start from the existing posterior based

on y1:T1 and use generalized data tempering to compute CMDD2|1 in (18). We then calculate

log p(y1:T1) + logCMDD2|1.

Note that our choice of the sample split arguably stacks the cards against the generalized

tempering approach. This is because the second period is quite different from the first, as it

includes the Great Recession, the effective lower bound constraint on the nominal interest

rate, and unconventional monetary policy interventions such as large-scale asset purchases

and forward guidance.

We begin with the following numerical illustration for the AS model. For each of the

Nrun = 200 SMC runs, we first generate the estimate of log p(y1:T1|θ) by likelihood tempering

and then continue with generalized tempering to obtain logCMDD2|1. The two numbers

are added to obtain an approximation of log p(y1:T ) that can be compared to the results from

the full-sample estimation reported in Table 2. The results from the generalized tempering

approach are reported in Table 3. Comparing the entries in both tables, note that the mean

and standard deviations (across runs) of the log MDDs are essentially the same. The main

difference is that generalized tempering reduces the schedule length and the runtime by a

factor of roughly 2/3 because it starts from the posterior distribution p(θ|y1:T1).

In Figure 3 we provide scatter plots of average runtime versus the standard deviation

of the log MDD for the AS model and the SW model. The blue circles correspond to full

sample estimation and are identical to the blue circles in Figure 1. The yellow squares

correspond to generalized tempering. As in Table 3, the runtime does not reflect the time it
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Figure 3: Trade-Off Between Runtime and Accuracy
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Notes: AS results are based on Nrun = 200 and SW results are based on Nrun = 100 runs of the SMC
algorithm. Yellow squares correspond to generalized tempering and blue circles correspond to full sample
estimation.

took to compute p(θ|y1:T1) because the premise of the analysis is that this posterior has been

computed in the past and is available to the user at the time when the estimation sample

is extended by the observations yT1+1:T . For both models, the accuracy of the log MDD

approximation remains roughly the same for a given α when using generalized tempering,

but the reduction in runtime is substantial. To put it differently, generalized tempering shifts

the SMC time-accuracy curve to the left, which of course is the desired outcome.

Scenario 2. Rather than adding observations in a single block, we now add four observations

at a time. This corresponds to a setting in which the DSGE model is re-estimated once a

year, which is a reasonable frequency in central bank environments. More formally, we

partition the sample into the subsamples y1:T1 , yT1+1:T2 , yT2+1:T3 , . . ., where Ts − Ts−1 = 4.

After having approximated the posterior based on observations y1:T1 , we use generalized

tempering to compute the sequence of densities p(y1:Ts) for s = 2, . . . , S. At each step s we

initialize the SMC algorithm with the particles that represent the posterior p(θ|y1:Ts−1). To

assess the accuracy of this computation, we repeat it Nrun = 200 times. We fix the tuning

parameter for the adaptive construction of the tempering schedule at α = 0.95. The first

sample, y1:T1 ranges from 1966:Q4 to 1991:Q3, and the last sample ends in 2016:Q3.

Figure 4 depicts the time series of the mean and the standard deviation of the log MDD
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Figure 4: AS Model: Log MDD Increments log(p(yTs−1+1:Ts|y1:Ts−1))
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Notes: Results are based on Nrun = 200 runs of the SMC algorithm with α = 0.95.

increments

log p̂(yTs−1+1:Ts|y1:Ts−1) = log p̂(y1:Ts)− log p̂(y1:Ts−1)

across the 200 SMC runs. The median (across time) of the average (across repetitions) log

MDD increment is -17.6. The median standard deviation of the log MDD increments is 0.04,

and the median of the average run time is 0.1 minutes, or 6 seconds. The largest deviation

from these median values occurred during the Great Recession when we added the 2009:Q4

to 2010:Q3 observations to the sample. During this period the log MDD increment was

only -40.6 and the standard deviation jumped up to 0.4 because four observations lead to

a substantial shift in the posterior distribution. In this period, the run-time of the SMC

algorithm increased to 0.6 minutes, or 36 seconds.

Figure 5 depicts the evolution of posterior means and coverage intervals for two param-

eters, τ and σR. The τ sequence exhibits a clear blip in 2009, which coincides with the

increased run time of the algorithm. Most of the posteriors exhibit drifts rather than sharp

jumps and the time-variation in the posterior mean is generally small compared to the over-

all uncertainty captured by the coverage bands. Overall, generalized tempering provides a

framework online estimation of DSGE models that is substantially more acccurate than sim-

ple data tempering, at little additional computational cost, even when the additional data

substantially changes the posterior. Importantly, generalized tempering can also seemlessly

handle the data revisions inherent in macroeconomic time series.
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Figure 5: AS Model: Evolution of Posterior Means and Coverage Bands
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Notes: Sequence of posterior means (red line) and 90% coverage bands black lines. The dashed line indicates
the temporal average of the posterior means. We use α = 0.95 for the SMC algorithm.

4.3 Exploring Multimodal Posteriors

An important advantage of SMC samplers over standard RWMH samplers is their ability to

characterize multimodal posterior distributions. Multimodality may arise because the data

are not informative enough to be able to disentangle internal versus external propagation

mechanisms, e.g., Calvo price and wage stickiness and persistence of exogenous price and

wage markup shocks. Measuring the relative contribution of various structural shocks in-

cluded in a DSGE model is also often difficult based on the sample information. Herbst and

Schorfheide (2014) provided an example of a multimodal posterior distribution obtained in

a SW model that is estimated under a diffuse prior distribution. Below, we document that

a multimodal posterior may also arise if the SW model is estimated on a shorter sample

with the informative prior used by Smets and Wouters (2007) originally. Capturing this

bimodality correctly will be important for the accurate computation of predictive densities

that are generated as part of real-time forecast applications in Section 5.

Figure 6 depicts various marginal bivariate posterior densities for parameters of the SW

model estimated based on a sample from 1960:Q1 to 1991:Q3.8 The plots in the left column

of the figure corresponds to the “standard” prior for the SW model. The joint posteriors for

the parameters ιp and ρλf (weight on the backward-looking component in the New Keynesian

8For these results we match the sample used in Section 5, where we discuss the predictive ability of the

various DSGE models. See footnote 11 for a description of why the samples used in section 4 and 5 differ

slightly.
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Figure 6: SW Model: Posterior Contours for Selected Parameter Pairs
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Notes: Estimation sample is 1960:Q1 to 1991:Q3. We use α = 0.98 for the SMC algorithm.

price Phillips curve and persistence of price markup shock) on the one hand, and h and ρλf

(the former determines the degree of habit formation in consumption) on the other hand,

exhibit clear bimodal features, albeit one mode dominates the other. For the parameter pair

ιp and ηgz (loading government spending on technology shock innovations), the bimodality



21

is less pronounced.

The right column of Figure 6 shows posteriors for the same estimation sample but the

“diffuse” prior of Herbst and Schorfheide (2014). This prior is obtained by increasing the

standard deviations for parameters with marginal Normal and Gamma distributions by a

factor of three and using uniform priors for parameters defined on the unit interval.9 Under

the diffuse prior, the multimodal shapes of the bivariate posteriors are more pronounced and

for the first two parameter pairs both modes are associated with approximately the same

probability mass. Thus, using a sampler that correctly captures the non-elliptical features of

the posterior is essential for valid Bayesian inference and allows researchers to estimate DSGE

models under less informative priors that have been traditionally used in the literature. In

Section 5.3 we will examine the forecasting performance of the SW model under the diffuse

prior.

5 Predictive Density Evaluations

In this section we compare the forecast performance of two DSGE models, one without

(SW) and one with (SWFF) financial frictions, based on real-time data. The models are

estimated recursively, using the generalized tempering approach described in Section 4.2.

Our results complement existing work on the evaluation of DSGE model forecasts, e.g.,

Adolfson et al. (2007), Edge and Gürkaynak (2010), Christoffel et al. (2011), Del Negro and

Schorfheide (2013), Wolters (2015), Diebold et al. (2017), Cai et al. (forthcoming). Rather

than reporting root-mean-squared errors (RMSEs), we will focus on log predictive density

scores, which are a widely-used criterion to compare density forecasts across models; see, for

instance, Del Negro et al. (2016) and Warne et al. (2017) in the context of DSGE model

forecasting.

Section 5.1 provides details regarding the construction of the real-time dataset and of the

timing and ex post evaluation of the forecast. For the sake of comparison with the literature,

Section 5.2 evaluates the predictive ability of the DSGE models using what we have referred

to as the “standard” prior, that is, the prior used in previous work (which for most parameters

amounts to the prior used in Smets and Wouters, 2007). DSGE models estimated with

9The prior on the shocks standard deviations is the same for the diffuse and standard prior, as this prior

is already very loose under the standard specification (an inverse Gamma with only 2 degrees of freedom).

A summary is provided in Table A-2 of the Appendix.
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Table 4: Data series used in each model

Variable SW SWπ SWFF

GDP growth X X X

Consumption growth X X X

Investment growth X X X

Real wage growth X X X

Hours worked X X X

GDP deflator inflation X X X

Federal funds rate X X X

10y inflation expectations X X

Spread X

Bayesian methods have often been criticized however for using overly informative priors; see,

for instance Romer (2016)’s critique of the Smets and Wouters (2007) priors. It is therefore a

legitimate question to ask whether loosening the prior substantially changes the forecasting

performance of these models. This is the question addressed in Section 5.3. It is clear

from the results in Section 4.3 that, given the severe multimodalities present in the posterior

distribution under the diffuse prior, SMC techniques are necessary to accurately characterize

predictive densities.

5.1 Real-Time Dataset and DSGE Forecasting Setup

In this section, we first discuss the data series used for the DSGE model estimation, sum-

marized in Table 4, and the process of constructing a real-time dataset, which follows the

approach of Del Negro and Schorfheide (2013, Section 4.1) and Edge and Gürkaynak (2010).

Subsequently, we will discuss the DSGE forecast setup, which mirrors that of Cai et al.

(forthcoming).

Data on nominal GDP (GDP), the GDP deflator (GDPDEF), nominal personal con-

sumption expenditures (PCEC), and nominal fixed private investment (FPI) are produced

at a quarterly frequency by the Bureau of Economic Analysis, and are included in the

National Income and Product Accounts (NIPA). Average weekly hours of production and

non-supervisory employees for total private industries (AWHNONAG), civilian employment

(CE16OV), and the civilian non-institutional population (CNP16OV) are produced by the
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Bureau of Labor Statistics (BLS) at a monthly frequency. The first of these series is obtained

from the Establishment Survey, and the remaining from the Household Survey. Both surveys

are released in the BLS Employment Situation Summary. Since our models are estimated

on quarterly data, we take averages of the monthly data. Compensation per hour for the

non-farm business sector (COMPNFB) is obtained from the Labor Productivity and Costs

release, and produced by the BLS at a quarterly frequency.

The federal funds rate (henceforth FFR) is obtained from the Federal Reserve Board’s

H.15 release at a business day frequency. Long-run inflation expectations (average CPI

inflation over the next 10 years) are available from the SPF from 1991:Q4 onward. Prior

to 1991:Q4, we use the 10-year expectations data from the Blue Chip survey to construct a

long time series that begins in 1979:Q4.10 Since the BCEI and the SPF measure inflation

expectations in terms of the average CPI inflation and we instead use the GDP deflator

and/or core PCE inflation as observables for inflation, as in Del Negro and Schorfheide

(2013) we subtract 0.5 from the survey measures, which is roughly the average difference

between CPI and GDP deflator inflation across the whole sample. We measure interest-rate

spreads as the difference between the annualized Moody’s Seasoned Baa Corporate Bond

Yield and the 10-Year Treasury Note Yield at constant maturity. Both series are available

from the Federal Reserve Board’s H.15 release. All data series start in 1960:Q1 or the

first quarter in which the series is first available.11 Section B.5 in the Appendix provides

additional details on the construction of the observables.

We consider two samples for our forecast evaluation. The first sample starts in January

1992 (this is the beginning of the sample used in Edge and Gürkaynak, 2010, and Del Negro

and Schorfheide, 2013) and ends in January 2017, the last quarter for which eight period-

ahead forecasts could be evaluated against realized data. The second sample is the one

studied in Cai et al. (forthcoming), which covers the recovery from the Great Recession.

This sample starts in April 2011 and ends in April 2016. Within these samples, we construct

10Since the Blue Chip survey reports long-run inflation expectations only twice a year, we treat these

expectations in the remaining quarters as missing observations and adjust the measurement equation of the

Kalman filter accordingly.
11 This differs from the estimation sample start date in Section 4. The reason for this difference is

primarily computational. In order to feasibly run the large number of simulations required for Section 4,

we used the Chandrasekhar recursions (see Herbst (2015)) which can only be used when all data series are

entirely nonmissing. Since our hours series is not available until 1964:Q1, we chose to match the estimation

sample used by Herbst and Schorfheide (2014) (presample 1965:Q4 to 1966:Q3 and main sample starting in

1966:Q4). However in this section, we start all series in 1960:Q1 in order to match Cai et al. (forthcoming).
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real-time datasets using data vintages available on the 10th of January, April, July, and

October of each year.

We use the St.Louis Fed’s ALFRED database as our primary source of vintaged data.

Hourly wage vintages are only available on ALFRED beginning in 1997; we use pre-1997

vintages from Edge and Gürkaynak (2010). The GDP, GDP deflator, investment, hours,

and employment series have vintages available for the entire sample. The financial variables

and the population series are not revised.12 Our convention, which follows Del Negro and

Schorfheide (2013), is to call the end of sample T the last quarter for which we have NIPA

data, that is, GDP, GDP deflator, et cetera. So for instance T = 2010:Q4 for forecasts

generated using data available on April 10, 2011. Note that in light of our timing the T + 1

information for the financial data is available, given that this data is produced in real time

and that, say, in April 2011 the first quarter of 2011 is completed. We therefore always

incorporate this T + 1 financial information in our forecasts.

In our exercise we also consider projections that are conditional on external interest

rate forecasts following Del Negro and Schorfheide (2013, Section 5.4). We do so both

because these conditional projections were used in central banks during the zero-lower bound

(henceforth, ZLB) period, as documented in Cai et al. (forthcoming), and because it is in any

case interesting to find out whether such conditioning helps or hinders the DSGE models’

forecasting performance. In order to construct the conditional projections, we augment the

measurement equation to add

Re
t+k|t = R∗ + Et[Rt+k], k = 1, . . . , K

where Re
t+k|t is the observed k-period-ahead interest rate forecast, Et[Rt+k] is the model-

implied interest rate expectation, and R∗ is the steady-state interest rate.

For any given quarter t, the interest rate expectations observables Re
t+1|t, . . . , R

e
t+K|t come

from the BCFF forecast released in the first month of quarter t+ 1.13 For example, for t =

2008:Q4, we use the January 2009 BCFF forecasts of interest rates. Differently from Del

Negro and Schorfheide (2013), we use the expanded dataset containing interest rate forecasts

12For each real-time vintage, we use the Hodrick-Prescott filter on the population data observations avail-

able as of the forecast date.
13We take the number of anticipated shocks K to be 6, which is the maximum number of BCFF forecast

quarters (excluding the observed quarterly average that we impute in the first forecast period). Note that

since the BCFF survey is released during the first few days of the month, the information set of BCFF

forecasters is effectively t – that is, they have no information about quarter t+ 1.
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Table 5: Summary of T + 1 conditioning information

Conditioning on

Variable Source Neither FFR Exp. Nowcasts
Nowcasts and

FFR Exp.

Spread Observed Data X X X X

RT+1 Observed Data X X X X

RT+2|T+1 Re
T+2|T+1 X X

...
...

...
...

RT+K+1|T+1 Re
T+K+1|T+1 X X

GDP growthT+1|T+1
BCEI forecast of
T + 1 GDP growth

X X

GDP defl. inflationT+1|T+1

BCEI forecast of
T + 1 GDP
deflator inflation

X X

also in the estimation of the model’s parameters beginning in 2008:Q4—the start of the ZLB

period—reflecting the post-financial crisis era of central bank forward guidance.14 In order

to provide the model with the ability to accommodate federal funds rate expectations, the

policy rule in the model was augmented with anticipated policy shocks; see Section B in the

Appendix for additional details.

Some of the projections discussed below are conditional on nowcasts —that is, forecasts

of the current quarter — of GDP growth, GDP deflator inflation, and financial variables,

following Del Negro and Schorfheide (2013, Section 5.3). We accomplish this by appending

an additional period of partially observed data for period T + 1 (the current quarter, given

our timing convention).15 Specifically, for each real-time forecast vintage, we condition on

the corresponding BCEI release’s mean forecasts of GDP growth and GDP deflator inflation

in period T + 1. Our choice of forecast origin months means that the entire first forecast

quarter has already elapsed by the time the forecast is made, so quarterly averages of financial

variables have been observed in their entirety. Finally, when we also condition the projections

on interest rate expectations we use the BCFF interest rate forecast Re
T+2:T+K+1|T+1 as

observed expectations of future interest rates in quarter T +1. Table 5 summarizes the T +1

14Rather than estimating a separate standard deviation σrm,k for each of the K anticipated shocks, we

impose the restriction σ2
rm,k = σ2

rm/K, which implies that the sum of the variances of the anticipated shocks

equals the variance of the contemporaneous shock σ2
rm . We do so because at the beginning of the ZLB

period, we have too few observations to estimate these variances independently.
15Unlike in Del Negro and Schorfheide (2013), we treat the nowcast for T + 1 as a perfect signal of yT+1,

a specialization of both of the Noise and News assumptions in that paper in which we set ηT+1 = 0.
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conditioning information.16

Finally, the forecasts are evaluated using the latest data vintage, following much of the

existing literature on DSGE forecast evaluation. Specifically, for the results shown below we

use the vintage downloaded on April 18, 2019. Note that the predictive densities for real

GDP growth are computed on per capita data.

5.2 Log Predictive Density Scores with Standard Prior

Figure 7 shows the logarithm of the predictive densities for real GDP growth, GDP deflator

inflation, and both variables jointly (left, middle, and right column, respectively) computed

over the January 1992 to January 2017 sample for the two DSGE models we are considering:

SW (blue solid lines) and SWFF (red solid lines). At each time t, the predictive densities

are computed for h = 2, 4, 6, and 8 quarters ahead, and for different information sets

Imt , where m denotes the model. For each model, the information set always includes the

history of observables outlined in Table 4 up to time t (and hence differs across models), but

can also include additional information, as described in the previous section (see Table 5).

Specifically, the rows of Figure 7 show the predictive densities when It includes nowcasts for

period t + 1 and interest rate projections (first row), interest rate projections only (second

row), nowcasts only (third row), or neither (last row).

Before commenting on the results a few details on the computation of the predictive

densities are in order. First of all, the objects being forecasted are the h-period averages of

the variables of interest j,

ȳj;t+h,h =
1

h

h∑
s=1

yj;t+s.

While the previous literature on forecasting with DSGE models generally focused on h-period

ahead forecasts of yj;t+h, we choose to focus on averages as they arguably better capture the

relevant object for policy-makers: accurately forecasting inflation behavior over the next two

years is arguably more important than predicting inflation eight quarters ahead. Conditional

on a parameter vector θ, the time t h-period-ahead posterior predictive density for model m

16Note that we do not use any of this T + 1 information in estimating the model parameters—that is, the

models are estimated only using time T information. In fact, for the predictive density evaluation exercise,

we do not reestimate the DSGE model in every quarter, but only once a year using the January vintage.
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Figure 7: Average Log Predictive Scores for SW vs SWFF
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Note: These panels compare the log predictive densities from the SW DSGE Model (blue diamonds) with the SWFF DSGE
model (red diamonds) averaged over two, four, six, and eight quarter horizons for output growth and inflation individually, and
for both together. Forecast origins from January 1992 to January 2017 only are included in these calculations.

is approximated by

p(ȳj;t+h,h|Imt ,Mm) =
N∑
i=1

p(ȳj;t+h,h|θi, Imt ,Mm),
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where N is the number of SMC particles and p(ȳj;t+h,h|θi, Imt ,Mm) is the predictive density

conditional on the particle θi (Section A.1 in the Appendix provides the computational

details). The objects plotted in Figure 7 are average of the time t log predictive densities

across the sample [T0, T1], namely

1

T1 − T0

T1∑
t=T0

log p(ȳj;t+h,h|Imt ,Mm).

Figure 7 highlights three results. First, regardless of the variable being forecasted, the

forecast horizon, and the conditioning assumptions the SWFF model performs better than

the SW model: the log predictive scores for the SWFF model (red lines) are never lower

than those for SW (blue lines), and most of the times are higher. Second, conditioning on

nowcasts improves the forecasting performance of both models, regardless of whether one also

conditions on interest rates expectations or not. This can be appreciated by comparing the

first and the second row to the third and the fourth row. Not surprisingly the improvements

are more pronounced for shorter horizons.

Third, the benefits of conditioning on FFR expectations are less clear cut. Comparing

the first with the third row, and the second with the fourth row, the average log predictive

density scores are generally a bit lower when conditioning on interest rate forecasts. Of

course, from the policy perspective conditioning on a plausible path for interest rates is

often an institutional requirement, especially when forward guidance is in place, regardless

of whether this helps or hinders the forecasting performance.

Figure 8 shows the time series of the log predictive scores for GDP growth for 2 and 8

periods ahead forecasts (Section C.2 in the Appendix shows the log predictive scores over

time for all variables and forecast horizons). Recall that the main difference between the two

models is that the SWFF model incorporates financial frictions and, correspondingly, uses

spreads between corporate and Treasury yields as an additional observable. It is clear from

this figure that the superior forecasting performance of SWFF is due to better forecasting

accuracy from the Great Recession onward. Before the Great Recession, the red and the

blue line often cross one another. From 2009 on, the red line is almost always above the blue

line, particularly for eight period ahead forecasts.

Figure 9 confirms these results by showing the average log predictive scores for the post

Great Recession period, that is, from 2011 through 2016 (again, this is the same sample as



29

Figure 8: Log Predictive Scores for GDP Growth Over Time — SW vs SWFF
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Note: These panels compare log p(ȳt+h,h|Imt ,Mm) from the SW DSGE model (blue) with the SWFF DSGE model (red)
averaged over two, four, six, and eight quarter horizons for output growth. Forecast origins from January 1992 to January 2017
only are included in these calculations. The x-axis shows the quarter in which the forecasts were generated (time T + 1 in the
parlance of section 5.1).

Cai et al., forthcoming).17 It is clear from Figure 9 that the gap in forecasting accuracy

17Figure 9 only shows the results for two conditioning assumptions, “Conditioning on FFR Expectations”
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Figure 9: Average Log Predictive Density Scores for SW vs SWFF: Post-Recession Sample
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Note: These panels compare the log predictive densities from the SW DSGE model (blue diamonds) and with the SWFF DSGE
model (red diamonds) averaged over two, four, six, and eight quarter horizons for output growth and inflation individually, and
for both together. Forecast origins from April 2011 to April 2016 only are included in these calculations.

between the two models is larger for the post-Great Recession period than for the whole

sample, especially for output growth. It is also clear that conditioning on FFR expectations

widens the gap. In Cai et al. (forthcoming) we explain these results in terms of (i) the failure

of the SW model to explain the Great Recession, which affects its forecasting performance

thereafter, and (ii) the so-called “forward guidance puzzle” (Del Negro et al., 2012; Carl-

strom et al., 2015). The latter refers to the fact that rational expectations representative

agents model tend to overestimate the impact of forward guidance policies. As we discuss

in Cai et al. (forthcoming), this problem is particularly severe for the SW model, leading

to projections that were overoptimistic during the recovery from the Great Recession, when

forward guidance was in place.

5.3 Log Predictive Density Scores with Diffuse Priors

As illustrated in Section 4.3, the prior used in the estimation of DSGE models is often quite

informative, in the sense that it affects the posterior distribution. While from an economic

and “Conditioning on Neither”. Figure A-1 presents results for all conditioning assumptions.
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or econometric point of view informative priors are not necessarily problematic, in that they

incorporate a priori information gleaned from other studies (see for instance the discussion

in Del Negro and Schorfheide, 2008), it is interesting to examine the effect of these relatively

tight priors on the forecasting performance of the model. We therefore compute the log

predictive scores also under what we refer to as the “diffuse” prior specification.18

From a frequentist perspective, increasing the prior variance reduces the bias of the Bayes

estimator while increasing its variability. The net effect on the mean-squared estimation

(and hence forecast) error is therefore ambiguous. In models in which not all parameters (or

functions thereof) are identified, the prior serves as a “tie-breaker,” and introduces curvature

into the posterior in directions in which the likelihood function is flat. If a prior mainly adds

information where the likelihood is uninformative and parameters are not identified based

on the sample information, then making the prior more diffuse will not have a noticeable

effect on the forecasting performance of DSGE models because it mainly selects among

parameterizations that track the data equally well.

Figure 10 compares the average log predictive scores obtained with the standard (solid

line) and the diffuse (dashed line) prior for the SW (blue, top row), SWπ (purple, middle

row), and SWFF (red, bottom row) DSGE models. For brevity, we only show results for

forecasts generated conditioning on nowcasts and FFR expectations, but the results are

broadly similar under other conditioning assumptions (these are shown in Section C.3 of

the Appendix). The panels in Figure 10 show that the differences in average log predictive

scores between the standard and the diffuse prior are generally small.

The largest differences arise in the SW model. While the GDP forecast improves noti-

cably, the inflation forecast deteriorates as the prior becomes more diffuse. The latter result

is consistent with previous findings in the literature. A tight prior on the constant inflation

target around 2% in the SW model is key for estimating a target that is consistent with the

low inflation in the latter part of the sample. If the prior variance is increased, then the pos-

terior mean shifts closer to the average inflation rate during the estimation period, which is

18For the sake of comparison, under the diffuse prior we only increase the standard deviation for the

parameters that are common across the three medium-scale DSGE models, which is the vast majority of

the parameters. So for instance we do not change the standard deviations of the parameters pertaining to

the financial frictions in the SWFF model. We have, however, computed predictive densities for the SWFF

where the standard deviation of all parameters are increased, and we obtained results very similar to those

shown below. Finally, note that the prior on the π∗ parameter is already very loose under the standard

specification for the SWπ and SWFF models, so we leave it unchanged in the diffuse specification.
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Figure 10: Comparison of Predictive Densities under Standard and Diffuse Priors
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Note: These panels compare the predictive densities estimated with the standard (solid line) and the diffuse (dashed line) prior
for the SW (blue, top row), SWπ (purple, middle row), and SWFF (red, bottom row) DSGE models. The predictive densities
are averaged over two, four, six, and eight quarter horizons for output growth and inflation individually, and for both together.
Forecast origins from January 1992 to January 2017 only are included in these calculations. The forecasts associated with these
predictive densities are generated conditioning on nowcasts and FFR expectations.

substantially larger than inflation during and after the mid 1990s. When the constant target

is replaced by a time-varying one, as in model SWπ, and long-run inflation expectations are

added to the list of observables, then the predictive scores under the standard and diffuse

prior are essentially identical. For the SWFF model the diffuse prior leads to a uniform,

albeit small, improvement in the log predictive score.

To the extent the a tighter prior amplifies and downweighs competing modes in the

likelihood function, which are apparent from the multi-modal posterior densities plotted

Figure 6, the fact that a model estimated with a tight and a loose prior has similar forecast
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performance does not imply that the two versions of the model are indistinguishable in all

dimensions. The posterior distributions for some of the parameters determining the relative

importance of the endogenous and exogenous propagation mechanism may be very different.

In turn, this could result to different impulse response functions to structural shocks and the

predicted effect of policy interventions may well vary across estimations.

6 Conclusion

As the DSGE models used by central banks become more complex, improved algorithms

for Bayesian computations are necessary. This paper provides a framework for performing

parallel and online estimation of DSGE models using SMC techniques. Rather than starting

from scratch each time a DSGE model has to be re-estimated, the SMC algorithm makes

it possible to mutate and re-weight posterior draws from an earlier estimation so that they

approximate a new posterior based on additional observations that have become available

since the previous estimation. The same approach could also be used to transform posterior

draws for one model into posterior draws for another model that shares the same parameter

space, e.g., a linear and a nonlinear version of a DSGE model.
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A Computational Details

A.1 Predictive Density Formulas

This Appendix focuses on the computation of h-step predictive densities p(yt:t+h|Imt−1,Mm)

as well as their average over time, p(yt:t+h|Mm). The starting point is the state-space

representation of the DSGE model. The transition equation

st = T (θ)st−1 +R(θ)εt, εt ∼ N(0,Q) (A-1)

summarizes the evolution of the states st. The measurement equation:

yt = Z(θ)st +D(θ), (A-2)

maps the states onto the vector of observables yt, where D(θ) represents the vector of steady

states for these observables. To simplify the notation we omit model superscripts/subscripts

and we dropMm from the conditioning set. We assume that the forecasts are based on the

It−1 information set. Let θ denote the vector of DSGE model parameters. For each draw θi,

i = 1, . . . , N , from the posterior distribution p(θ|It−1), execute the following steps:

1. Evaluate

T (θ),R(θ),Z(θ),D(θ).

2. Run the Kalman filter to obtain st−1|t−1 and Pt−1|t−1.

3. Compute ŝt|t−1 = st|It−1 and P̂t|t−1 = Pt|It−1 as

(a) Unconditional forecasts: ŝt|t−1 = T st−1|t−1, P̂t|t−1 = T Pt−1|t−1T ′ +RQR′.

(b) Semiconditional forecasts (using time t spreads, and FFR): after computing ŝt|t−1

and P̂t|t−1 using the “unconditional” formulas, run time t updating step of Kalman

filter using a measurement equation that only uses time t values of these two

observables.

(c) Conditional forecasts (using GDP, GDP deflator, time t spreads, and FFR): after

computing ŝt|t−1 and P̂t|t−1 using the “unconditional” formulas, run time t up-

dating step of Kalman filter using a measurement equation that only uses time t

values of these four observables.
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4. Compute recursively for j = 1, .., h the objects ŝt+j|t−1 = T st+j−1|t−1, P̂t+j|t−1 =

T Pt+j−1|t−1T ′ +RQR′ and construct the matrices

ŝt:t+k|t−1 =


ŝt|t−1

...

ŝt+k|t−1


and

P̂t:t+k|t−1 =


P̂t|t−1 P̂t|t−1T ′ . . . P̂t|t−1T k

′

T P̂t|t−1 P̂t+1|t−1 . . . P̂t+1|t−1T k−1 ′

...
...

. . .
...

T kP̂t|t−1 T k−1P̂t+1|t−1 . . . P̂t+k|t−1

 .
This leads to: st:t+h|(θ, It−1) ∼ N(ŝt:t+h|t−1, P̂t:t+h|t−1).

5. The distribution of yt:t+h = D̃ + Z̃st:t+h is

yt:t+h|(θ, It−1) ∼ N(D̃ + Z̃ ŝt:t+h|t−1, Z̃P̂t:t+h|t−1Z̃ ′),

where Z̃ = Ih+1 ⊗Z and D̃ = 1h+1 ⊗D (note I1 = 11 = 1)

6. Compute

p(yot:t+h|θ, It−1) = pN(yot:t+h; D̃ + Z̃ ŝt:t+h|t−1, Z̃P̂t:t+h|t−1Z̃ ′), (A-3)

where yot:t+h are the actual observations and pN(x;µ,Σ) is the probability density func-

tion of a N(µ,Σ).

7. For linear functions Fyt:t+h (e.g., four quarter averages, etc.) where F is a matrix of

fixed coefficients the predictive density becomes

p(Fyot:t+h|θ, It−1) = pN(Fyot:t+h;F D̃ + F Z̃ ŝt:t+h|t−1, F Z̃P̂t:t+h|t−1Z̃ ′F ′). (A-4)

In the application we choose the matrix F such that Fyt:t+h = ȳt+h,h =
1

h

h∑
j=1

yt+j and

let

p(ȳot+h,h|It−1) =
1

N

N∑
i=1

p(ȳot+h,h|θi, It−1). (A-5)

Further, we show these densities averaged over a time horizon from T0 to T .

p(ȳot+h,h) =
1

NT

T∑
t=T0

p(ȳot+h,h|It−1). (A-6)
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A.2 Adaptive Tempering Schedule with Incremental Upper Bounds

One practical concern is the roots of the function in the early stages of SMC are located

very close to the lower bound of the proposed interval. This makes the algorithm inefficient

at finding a root, depending on the specified tolerance of convergence. One amendment we

can make to the adaptive algorithm is to find a smart way of proposing “incremental” upper

bounds for this interval so that the roots are more equidistant from each interval bound and

are thus more easily discoverable by the root-finding algorithm.

Algorithm 1 Adaptive Tempering Schedule (with incremental upper bounds)

1: j = 2, n = 2

2: φ1 = 0

3: φ̃ = φ1

4:
~̂
φ = {φ̂1, ...φ̂N−1, φ̂N} . Where φ̂1 = 0 and φ̂N = 1.

5: while φn < 1 do

6: f(φ) = ESS(φ)− αESSn−1

7: while f(φ̃) ≥ 0 and j ≤ N do

8: φ̃ = φ̂j

9: j = j + 1
end

10: if f(φ̃) < 0 then

11: φn = root(f, [φn−1, φ̃])

12: else

13: φn = 1.
end

14: n = n + 1
end

Notation:
~̂
φ is the grid of “proposed bounds”.

j is the index of the current “proposed bound”.

N is the number of elements in the grid of “proposed bounds”.

φ̃ is the current proposed upper bound.

In this algorithm, we generate a grid of proposed bounds,
~̂
φ, which could be either a

uniform grid from (0, 1], or some other kind of grid, e.g. a fixed schedule generated from

some Nφ and λ for a similar model/dataset. A bound, φ̃, is valid if f(φ̃) < 0. Starting from
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the previous valid upper bound φ̃ = φ̂j, the inner loop finds the next valid upper bound for

the interval [φn−1, φ̃] in {φ̂j+1, ..., φ̂N}. φ̃ could remain unchanged (φ̃ = φ̂j) if the bound still

remains valid (so the loop will never be entered) or could increment however many times is

necessary for φ̃ = φ̂k for some k > j to be a valid upper bound.

The reason for the last conditional “if f(φ̃) < 0” is if j > N , then there are no more

elements of the grid that are valid to propose as an upper bound, i.e. φ̃ = φ̂N = 1. However,

it could still be the case that there are valid upper bounds between φ̃ = φ̂N−1 and φ̃ = φ̂N = 1

that would cause ∆ESS = α.
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B DSGE Model Descriptions

This section of the appendix contains the model specifications for AS, SW, SWπ, and SWFF,

along with a description of how we construct our data, and a table with the priors on the

parameters of the various models.

B.1 An-Schorfheide Model (AS)

B.1.1 Equilibrium Conditions

We write the equilibrium conditions of the three equation model from An and Schorfheide

(2007), by expressing each variable in terms of percentage deviations from its steady state

value. Let x̂t = ln(xt/x) and write

1 = βEt
[
e−τ ĉt+1+τ ĉt+R̂t−ẑt+1−π̂t+1

]
(A-7)

0 =
(
eπ̂t − 1

) [(
1− 1

2ν

)
eπ̂t +

1

2ν

]
(A-8)

−βEt
[(
eπ̂t+1 − 1

)
e−τ ĉt+1+τ ĉt+ŷt+1−ŷt+π̂t+1

]
+

1− ν
νφπ2

(
1− eτ ĉt

)
eĉt−ŷt = e−ĝt − φπ2g

2

(
eπ̂t − 1

)2
(A-9)

R̂t = ρRR̂t−1 + (1− ρR)ψ1π̂t (A-10)

+(1− ρR)ψ2 (ŷt − ĝt) + εR,t

ĝt = ρgĝt−1 + εg,t (A-11)

ẑt = ρz ẑt−1 + εz,t. (A-12)

The equilibrium law of motion of consumption, output, interest rates, and inflation has to

satisfy the expectational difference equations (A-7) to (A-12).

Log-linearization and straightforward manipulation of Equations (A-7) to (A-9) yield the

following representation for the consumption Euler equation, the New Keynesian Phillips
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curve, and the monetary policy rule:

ŷt = Et[ŷt+1]− 1

τ

(
R̂t − Et[π̂t+1]− Et[ẑt+1]

)
(A-13)

+ĝt − Et[ĝt+1]

π̂t = βEt[π̂t+1] + κ(ŷt − ĝt)

R̂t = ρRR̂t−1 + (1− ρR)ψ1π̂t + (1− ρR)ψ2 (ŷt − ĝt) + εR,t

where

κ = τ
1− ν
νπ2φ

. (A-14)

B.1.2 Measurement Equation

The AS model is estimated using quarterly output growth, and annualized CPI inflation and

nominal federal funds rate, whose measurement equations are given below:

Output growth = γ + 100(yt − yt−1 + zt)

CPI = π∗ + 400πt

FFR = R∗ + 400Rt

(A-15)

where all variables are measured in percent. π∗ and R∗ measure the steady-state levels of net

inflation and short term nominal interest rates, respectively. They are treated as parameters

in the estimation.

B.2 Smets-Wouters Model (SW)

We include a brief description of the log-linearized equilibrium conditions of the Smets and

Wouters (2007) model to establish the foundation for explaining the later models. We de-

viate from the original Smets-Wouters specification by detrending the non-stationary model

variables by a stochastic rather than a deterministic trend. This is done in order to express

the equilibrium conditions in a flexible manner that accommodates both trend-stationary

and unit-root technology processes. The model presented below is the model referred to in

the paper as the SW model.

Let z̃t be the linearly detrended log productivity process, defined here as:

z̃t = ρz z̃t−1 + σzεz,t, εz,t ∼ N(0, 1) (A-16)
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All non-stationary variables are detrended by Zt = e
γt+ 1

1− α z̃t , where γ is the steady-

state growth rate of the economy. The growth rate of Zt in deviations from γ, which is

denoted by zt, follows the process:

zt = ln(Zt/Zt−1)− γ =
1

1− α
(ρz − 1)z̃t−1 +

1

1− α
σzεz,t (A-17)

All of the variables defined below will be given in log deviations from their non-stochastic

steady state, where the steady state values will be denoted by *-subscripts.

B.2.1 Equilibrium Conditions

The optimal allocation of consumption satisfies the following Euler equation:

ct = − (1− he−γ)
σc(1 + he−γ)

(Rt − IEt[πt+1] + bt) +
he−γ

(1 + he−γ)
(ct−1 − zt)

+
1

(1 + he−γ)
IEt [ct+1 + zt+1] +

(σc − 1)

σc(1 + he−γ)

w∗L∗
c∗

(Lt − IEt[Lt+1]) . (A-18)

where ct is consumption, Lt denotes hours worked, Rt is the nominal interest rate, and πt is

inflation. The exogenous process bt drives a wedge between the intertemporal ratio of the

marginal utility of consumption and the riskless real return, Rt − IEt[πt+1], and follows an

AR(1) process with parameters ρb and σb. The parameters σc and h capture the relative

degree of risk aversion and the degree of habit persistence in the utility function, respectively.

The optimal investment decision comes from the optimality condition for capital producers

and satisfies the following relationship between the level of investment it and the value of

capital, qkt , both measured in terms of consumption:

qkt = S ′′e2γ(1+βe(1−σc)γ)

(
it −

1

1 + βe(1−σc)γ
(it−1 − zt)−

βe(1−σc)γ

1 + βe(1−σc)γ
IEt[it+1 + zt+1]− µt

)
(A-19)

This relationship is affected by investment adjustment costs (S ′′ is the second derivative of

the adjustment cost function) and by the marginal efficiency of investment µt, an exogenous

process which follows an AR(1) with parameters ρµ and σµ, and that affects the rate of

transformation between consumption and installed capital (see Greenwood et al. (1998)).
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The installed capital, which we also refer to as the capital stock, evolves as:

k̄t =

(
1− i∗

k̄∗

)(
k̄t−1 − zt

)
+
i∗
k̄∗
it +

i∗
k̄∗
S ′′e2γ(1 + βe(1−σc)γ)µt (A-20)

where
i∗
k̄∗

is the steady-state ratio of investment to capital. The parameter β captures the

intertemporal discount rate in the utility function of the households.

The arbitrage condition between the return to capital and the riskless rate is:

rk∗
rk∗ + (1− δ)

IEt[r
k
t+1] +

1− δ
rk∗ + (1− δ)

IEt[q
k
t+1]− qkt = Rt + bt − IEt[πt+1] (A-21)

where rkt is the rental rate of capital, rk∗ its steady-state value, and δ the depreciation rate.

The relationship between k̄t and the effective capital rented out to firms kt is given by:

kt = ut − zt + k̄t−1. (A-22)

where capital is subject to variable capacity utilization, ut.

The optimality condition determining the rate of capital utilization is given by:

1− ψ
ψ

rkt = ut. (A-23)

where ψ captures the utilization costs in terms of foregone consumption.

From the optimality conditions of goods producers it follows that all firms have the same

capital-labor ratio:

kt = wt − rkt + Lt. (A-24)

Real marginal costs for firms are given by:

mct = (1− α) wt + α rkt . (A-25)

where α is the income share of capital (after paying markups and fixed costs) in the produc-

tion function.

All of the equations mentioned above have the same form regardless of whether or not

technology has a unit root or is trend-stationary. A few small differences arise for the

following two equilibrium conditions.
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The production function under trend stationarity is:

yt = Φp (αkt + (1− α)Lt) + I{ρz < 1}(Φp − 1)
1

1− α
z̃t. (A-26)

The last term (Φp − 1)
1

1− α
z̃t drops out if technology has a stochastic trend because then

one must assume that the fixed costs are proportional to the trend.

The resource constraint is:

yt = gt +
c∗
y∗
ct +

i∗
y∗
it +

rk∗k∗
y∗

ut − I{ρz < 1} 1

1− α
z̃t, (A-27)

The term − 1

1− α
z̃t disappears if technology follows a unit root process.

Government spending, gt, is assumed to follow the exogenous process:

gt = ρggt−1 + σgεg,t + ηgzσzεz,t (A-28)

The price and wage Phillips curves respectively are:

πt =
(1− ζpβe(1−σc)γ)(1− ζp)

(1 + ιpβe(1−σc)γ)ζp((Φp − 1)εp + 1)
mct

+
ιp

1 + ιpβe
(1−σc)γ

πt−1 +
βe(1−σc)γ

1 + ιpβe
(1−σc)γ

IEt[πt+1] + λf,t (A-29)

wt =
(1− ζwβe(1−σc)γ)(1− ζw)

(1 + βe(1−σc)γ)ζw((λw − 1)εw + 1)

(
wht − wt

)
− 1 + ιwβe

(1−σc)γ

1 + βe(1−σc)γ
πt +

1

1 + βe(1−σc)γ
(wt−1 − zt − ιwπt−1)

+
βe(1−σc)γ

1 + βe(1−σc)γ
IEt [wt+1 + zt+1 + πt+1] + λw,t (A-30)

where ζp, ιp, and εp are the Calvo parameter, the degree of indexation, and the curvature pa-

rameters in the Kimball aggregator for prices, with the equivalent parameters with subscript

w corresponding to wages.

The variable wht corresponds to the household’s marginal rate of substitution between con-

sumption and labor and is given by:

1

1− he−z∗∗
(
ct − he−z

∗
∗ct−1 + he−z

∗
∗zt
)

+ νlLt = wht . (A-31)
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where ηl is the curvature of the disutility of labor (equal to the inverse of the Frisch elasticity

in the basence of wage rigidities).

The mark-ups λf,t and λw,t follow exogenous ARMA(1, 1) processes:

λf,t = ρλfλf,t−1 + σλf ελf,t + ηλfσλf ελf ,t−1 (A-32)

λw,t = ρλwλw,t−1 + σλwελw,t + ηλwσλwελw,t−1 (A-33)

Lastly, the monetary authority follows a policy feedback rule:

Rt = ρRRt−1 +(1−ρR)
(
ψ1πt + ψ2(yt − yft )

)
+ψ3

(
(yt − yft )− (yt−1 − yft−1)

)
+rmt (A-34)

where the flexible price/wage output yft is obtained from solving the version of the model

absent nominal ridigities (without equations (3)-(12) and (15)), and the residual rmt follows

an AR(1) process with parameters ρrm and σrm .

The exogenous component of the policy rule rmt evolves according to the following process:

rmt = ρrmr
m
t−1 + εRt +

K∑
k=1

εRk,t−k (A-35)

where εRt is the usual contemporaneous policy shock and εRk,t−k is a policy shock that is known

to agents at time t − k, but affects the policy rule k periods later — that is, at time t. As

outlined in Laseen and Svensson (2011), these anticipated policy shocks allow us to capture

the effects of the zero lower bound on nominal interest rates, as well as the effects of forward

guidance in monetary policy.

B.2.2 Measurement Equations

The SW model is estimated using seven quarterly macroeconomic time series, whose mea-

surement equations are given below:

Output growth = γ + 100(yt − yt−1 + zt)

Consumption growth = γ + 100(ct − ct−1 + zt)

Investment growth = γ + 100(it − it−1 + zt)

Real Wage growth = γ + 100(wt − wt−1 + zt)

Hours = l̄ + 100lt

Inflation = π∗ + 100πt

FFR = R∗ + 100Rt

FFRe
t,t+j = R∗ + IEt[Rt+j], j = 1, ..., 6

(A-36)



Online Appendix xi

where all variables are measured in percent, π∗ and R∗ measure the steady-state levels of

net inflation and short term nominal interest rates, respectively, and l̄ represents the mean

of the hours (this variable is measured as an index).

The priors for the DSGE model parameters are the same as in Smets and Wouters (2007)

and are summarized in Panel I of the priors table listed in the SW++ section.

B.3 Smets-Wouters Model with Time-Varying Inflation Target

(SWπ)

The SWπ model builds on SW by allowing the inflation target to be time-varying. The

time-varying inflation target, π∗t , allows us to capture the dynamics of inflation and interest

rates in the estimation sample.

The time-varying inflation target evolves according to

π∗t = ρπ∗π
∗
t−1 + σπ∗επ∗,t (A-37)

where 0 < ρπ∗ < 1 and επ∗,t is an i.i.d. shock. π∗t is a stationary process, although the prior

on ρπ∗ forces this process to be highly persistent.

B.3.1 Measurement Equations

As in Aruoba and Schorfheide (2010) and Del Negro and Eusepi (2011), we use data on

long-run inflation expectations in the estimation of SWπ. This allows us to pin down the

target inflation rate to the extent that long-run inflation expectations contain information

about the central bank’s objective.

Thus there is an additional measurement equation for 10 year inflation expectations that

augments (A-36), given by

10y Infl. Expectations = π∗ + IEt

[
1

40

39∑
j=0

πt+j

]
(A-38)

B.4 Smets-Wouters Model with Financial Frictions (SWFF)

Financial frictions are incorporated into the SW model following the work of Bernanke et

al. (1999a) and Christiano et al. (2009).
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B.4.1 Equilibrium Conditions

SWFF replaces (A-21) with the following equation for the excess return on capital — that is,

the spread between the expected return on capital and the riskless rate — and the definition

of the return on capital, R̃k
t , respectively:

IEt

[
R̃k
t+1 −Rt

]
= −bt + ζsp,b(q

k
t − k̄t − nt) + σ̃ω,t (A-39)

and

R̃k
t − πt =

rk∗
rk∗ + (1− δ)

rkt +
(1− δ)

rk∗ + (1− δ)
qkt − qkt−1 (A-40)

where R̃k
t is the gross nominal return on capital for entrepreneurs, nt is entrepreneurial equity,

and σ̃ω,t captures mean-preserving changes in the cross-sectional dispersion of ability across

entrepreneurs (see Christiano et al. (2009)) and follows an AR(1) process with parameters

ρσω and σσω .

The following equation outlines the evolution of entrepreneurial net worth:

n̂t = ζn,R̃kt

(
R̃k
t − πt

)
− ζn,R̃kt (Rt−1−πt) + ζn,qK(qkt−1 + k̄t−1) + ζn,nnt−1−

ζn,σω
ζsp,σω

σ̃ω,t−1 (A-41)

B.4.1.1 Measurement Equations

SWFF’s additional measurement equation for the spread (given below) augments the stan-

dard set of SW measurement equations (A-36) along with (A-38).

Spread = SP∗ + 100IEt

[
R̃k
t+1 −Rt

]
(A-42)

where SP∗ measures the steady-state spread. Priors are specified for the parameters SP∗,

ζsp,b, ρσω , σσω , and the parameters F̄∗ and γ∗ (the steady-state default probability and the

survival rate of entrepreneurs, respectively), are fixed.
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B.5 Data Transformation

The data are transformed following Smets and Wouters (2007), with the exception of the

civilian population data, which are filtered using the Hodrick-Prescott filter to remove jumps

around census dates. For each financial variable, we take quarterly averages of the annualized

daily data and divide by four. Let ∆ denote the temporal difference operator. Then:

GDP growth = 100 ∗∆LN((GDP/GDPDEF )/CNP16OV )

Consumption growth = 100 ∗∆LN((PCEC/GDPDEF )/CNP16OV )

Investment growth = 100 ∗∆LN((FPI/GDPDEF )/CNP16OV )

Real wage growth = 100 ∗∆LN(COMPNFB/GDPDEF )

Hours worked = 100 ∗ LN((AWHNONAG ∗ CE16OV/100)/CNP16OV )

GDP deflator inflation = 100 ∗∆LN(GDPDEF )

FFR = (1/4) ∗ FEDERAL FUNDS RATE

FFRe
t+k|t = (1/4) ∗ BLUE CHIP k-QUARTERS AHEAD FFR FORECAST

10y inflation exp = (10-year average CPI inflation forecast− 0.50)/4

Spread = (1/4) ∗ (Baa Corporate− 10 year Treasury)

In the long-term inflation expectation transformation, 0.50 is the average difference be-

tween CPI and GDP annualized inflation from the beginning of the sample to 1992.

B.6 Prior Specifications

We estimate the model using Bayesian techniques. This requires the specification of a

prior distribution for the model parameters. For most parameters common with Smets

and Wouters (2007), we use the same marginal prior distributions. As an exception, we

favor a looser prior than Smets and Wouters (2007) for the quarterly steady-state inflation

rate π∗; it is centered at 0.75% and has a standard deviation of 0.4%. Regarding the fi-

nancial frictions, we specify priors for the parameters SP∗, ζsp,b, ρσω , and σσω , while we fix

the parameters corresponding to the steady-state default probability and the survival rate

of entrepreneurs, respectively. In turn, these parameters imply values for the parameters

of (A-41). Information on the priors is provided in the subsequent tables.



Table A-1: Prior Definitions: An Schorfheide Model

Type Mean Std Dev Type Mean Std Dev

eR - 0.45 0.00 ρg U 0.50 0.29

ey - 0.12 0.00 ρz U 0.50 0.29

eπ - 0.29 0.00 σR IG 0.40 4.00

rA G 0.50 0.50 σg IG 1.00 4.00

γQ N 0.40 0.20 σz IG 0.50 4.00

κ U 0.50 0.29 τ G 2.00 0.50

π∗ G 7.00 2.00 ψ1 G 1.50 0.25

ρR U 0.50 0.29 ψ2 G 0.50 0.25

Note: The table shows the prior specifications of each of the model parameters in the An and Schorfheide (2007, AS) model.
The table specifies the parameter name, the distribution type, where B, N, G, and IG stand for Beta, Normal, Gamma, Inverse
Gamma, and the parameter means and standard deviations (written in parentheses). The Inverse Gamma prior is characterized
by the mode and degrees of freedom.

Table A-2: Standard and Diffuse Priors for Medium Scale DSGE Models

Standard Prior Diffuse Prior

Parameter Type SW Common

SWFF

and

SWπ

SW Common

SWFF

and

SWπ

Policy

ψ1 N 1.500 (0.250) 1.500 (0.750)

ψ2 N 0.120 (0.050) 0.120 (0.150)

ψ3 N 0.120 (0.050) 0.120 (0.150)

ρ B 0.750 (0.100) 0.500 (0.289)

ρrm B 0.500 (0.200) 0.500 (0.289)

σrm IG 0.100 (2.000) 0.100 (2.000)

Nominal Rigidities

ζp B 0.500 (0.100) 0.500 (0.289)

ιp B 0.500 (0.150) 0.500 (0.289)

εp - 10.000 10.000

ζw B 0.500 (0.100) 0.500 (0.289)

ιw B 0.500 (0.150) 0.500 (0.289)

εw - 10.000 10.000

Other Endogenous Propagation and Steady State



Table A-2: Standard and Diffuse Priors for Medium Scale DSGE Models

Standard Prior Diffuse Prior

Parameter Type SW Common

SWFF

and

SWπ

SW Common

SWFF

and

SWπ

100γ N 0.400 (0.100) 0.400 (0.300)

α N 0.300 (0.050) 0.300 (0.150)

100(β−1 − 1) G 0.250 (0.100) 0.250 (0.300)

σc N 1.500 (0.370) 1.500 (1.110)

h B 0.700 (0.100) 0.500 (0.289)

νl N 2.000 (0.750) 2.000 (2.250)

δ - 0.025 0.025

Φ N 1.250 (0.120) 1.250 (0.360)

S′′ N 4.000 (1.500) 4.000 (4.500)

ψ B 0.500 (0.150) 0.500 (0.289)

L̄ N -45.00 (5.00) -45.00(15.00)

λw - 1.500 1.500

π∗ G 0.620 (0.100) 0.750 (0.400) 0.620 (0.300) 0.750 (0.400)

g∗ - 0.180 0.180

Financial Frictions (SWFF Only)

F (ω) - 0.030 0.030

spr∗ G - 2.000 (0.100) 2.000 (0.100)

ζspb B - 0.050 (0.005) 0.050 (0.005)

γ∗ - 0.990 0.990

Exogenous Process

ρg B 0.500 (0.200) 0.500 (0.289)

ρb B 0.500 (0.200) 0.500 (0.289)

ρµ B 0.500 (0.200) 0.500 (0.289)

ρz B 0.500 (0.200) 0.500 (0.289)

ρλf B 0.500 (0.200) 0.500 (0.289)

ρλw B 0.500 (0.200) 0.500 (0.289)

ηλf B 0.500 (0.200) 0.500 (0.289)

ηλw B 0.500 (0.200) 0.500 (0.289)

σg IG 0.100 (2.000) 0.100 (2.000)

σb IG 0.100 (2.000) 0.100 (2.000)
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Table A-2: Standard and Diffuse Priors for Medium Scale DSGE Models

Standard Prior Diffuse Prior

Parameter Type SW Common

SWFF

and

SWπ

SW Common

SWFF

and

SWπ

σµ IG 0.100 (2.000) 0.100 (2.000)

σz IG 0.100 (2.000) 0.100 (2.000)

σλf IG 0.100 (2.000) 0.100 (2.000)

σλw IG 0.100 (2.000) 0.100 (2.000)

ηgz B 0.500 (0.200) 0.500 (0.289)

Financial Frictions Exogenous Process (SWFF Only)

ρσω B - 0.750 (0.150) - 0.500 (0.289)

ρπ∗ - 0.990 0.990

σσω IG - 0.050 (4.000) 0.050 (4.000)

σπ∗ IG - 0.030 (6.000) 0.030 (6.000)

Note: The table shows the prior specifications of each of the model parameters in the SW, SWπ, and SWFF models for both a
“standard prior” and “diffuse prior”. The diffuse priors specification follows Herbst and Schorfheide (2014) Table A-3. The table
specifies the parameter name, the distribution type, where B, N, G, and IG stand for Beta, Normal, Gamma, Inverse Gamma,
and the parameter means and standard deviations (written in parentheses). The Inverse Gamma prior is characterized by the
mode and degrees of freedom. The priors for the parameters that are common across models are listed under the “Common”
column.
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C Additional Results

This section contains various robustness exercises that complement the results reported in

the main paper. In Section C.1 we show average log predictive scores for various samples

and model specifications. In Section C.2 we show the evolution of log predictive scores over

time. Finally, in Section C.3 we compare forecasts obtained under the standard and diffuse

priors.
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C.1 Average Log Predictive Scores

Figure A-1: Average Log Predictive Scores for SW vs SWFF: Post-Recession Sample
GDP GDP Deflator GDP and GDP Deflator
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Note: These panels compare the log predictive scores from the SW DSGE Model (blue diamonds) and with the SWFF DSGE
model (red diamonds) averaged over two, four, six, and eight quarter horizons for output growth and inflation individually, and
for both together. Forecast origins from April 2011 to April 2016 only are included in these calculations.
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Figure A-2: Average Log Predictive Scores for SWπ vs SWFF

GDP GDP Deflator GDP and GDP Deflator

Conditioning on Nowcasts and FFR Expectations
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Note: These panels compare the log predictive scores from the SWπ DSGE Model (blue diamonds) with the SWFF DSGE
model (red diamonds) averaged over two, four, six, and eight quarter horizons for output growth and inflation individually, and
for both together. Forecast origins from January 1992 to January 2017 only are included in these calculations.
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Figure A-3: Average Log Predictive Scores for SWπ vs SWFF: Post-Recession Sample

GDP GDP Deflator GDP and GDP Deflator
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Note: These panels compare the log predictive scores from the SWπ DSGE Model (blue diamonds) and with the SWFF DSGE
model (red diamonds) averaged over two, four, six, and eight quarter horizons for output growth and inflation individually, and
for both together. Forecast origins from April 2011 to April 2016 only are included in these calculations.
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C.2 Log Predictive Scores Over Time

Figure A-4: Log Predictive Scores Over Time for SW vs SWFF—Predicted Variable: GDP
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Note: The four panels show the predictive density comparisons across time for the SW (blue line) and SWFF (red line) DSGE
models averaged over 2, 4, 6, and 8 quarter horizons for output growth. Forecast origins from January 1992 to January 2017
only are included in these calculations. The x-axis shows the quarter in which the forecasts were generated (time T + 1 in the
parlance of section 5.1).



Online Appendix xxii

Figure A-5: Log Predictive Scores Over Time for SW vs SWFF—Predicted Variable: GDP

Deflator
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Note: The four panels show the predictive density comparisons across time for the SW (blue line) and SWFF (red line) DSGE
models averaged over 2, 4, 6, and 8 quarter horizons for inflation. Forecast origins from January 1992 to January 2017 only are
included in these calculations. The x-axis shows the quarter in which the forecasts were generated (time T + 1 in the parlance
of section 5.1).
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Figure A-6: Log Predictive Scores Over Time for SW vs SWFF—Predicted Variables:

GDP and GDP Deflator
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Note: The four panels show the predictive density comparisons across time for the SW (blue line) and SWFF (red line) DSGE
models averaged over 2, 4, 6, and 8 quarter horizons for output growth and inflation. Forecast origins from January 1992 to
January 2017 only are included in these calculations. The x-axis shows the quarter in which the forecasts were generated (time
T + 1 in the parlance of section 5.1).
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Figure A-7: Log Predictive Scores Over Time for SWπ vs SWFF—Predicted Variable:

GDP
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Note: The four panels show the predictive density comparisons across time for the SWπ (purple line) and SWFF (red line)
DSGE models averaged over 2, 4, 6, and 8 quarter horizons for output growth. Forecast origins from January 1992 to January
2017 only are included in these calculations. The x-axis shows the quarter in which the forecasts were generated (time T + 1
in the parlance of section 5.1).
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Figure A-8: Log Predictive Scores Over Time for SWπ vs SWFF—Predicted Variable:

GDP Deflator
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Note: The four panels show the predictive density comparisons across time for the SWπ (purple line) and SWFF (red line)
DSGE models averaged over 2, 4, 6, and 8 quarter horizons for inflation. Forecast origins from January 1992 to January 2017
only are included in these calculations. The x-axis shows the quarter in which the forecasts were generated (time T + 1 in the
parlance of section 5.1).
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Figure A-9: Log Predictive Scores Over Time for SWπ vs SWFF—Predicted Variables:

GDP and GDP Deflator
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Note: The four panels show the predictive density comparisons across time for the SWπ (purple line) and SWFF (red line)
DSGE models averaged over 2, 4, 6, and 8 quarter horizons for output growth and inflation. Forecast origins from January 1992
to January 2017 only are included in these calculations. The x-axis shows the quarter in which the forecasts were generated
(time T + 1 in the parlance of section 5.1).
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C.3 Comparing Forecasts with Standard and Diffuse Priors

Figure A-10: Comparison of Log Predictive Scores under “Standard” and “Diffuse” Priors,

SW model
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Note: These panels compare the log predictive scores from the SW DSGE model estimated with a standard prior (blue solid)
with the same model estimated with a diffuse prior (blue dashed) averaged over two, four, six, and eight quarter horizons for
output growth and inflation individually, and for both together. Forecast origins from January 1992 to January 2017 only are
included in these calculations.
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Figure A-11: Comparison of Log Predictive Scores under “Standard” and “Diffuse” Priors,

SWFF model

GDP GDP Deflator GDP and GDP Deflator

Conditioning on Nowcasts and FFR Expectations

2
N = 101

4
N = 101

6
N = 101

8
N = 101

-2.8

-2.6

-2.4

-2.2

-2.0

-1.8

-1.6

2
N = 101

4
N = 101

6
N = 101

8
N = 101

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

2
N = 101

4
N = 101

6
N = 101

8
N = 101

-6

-5

-4

-3

Conditioning on Nowcasts

2
N = 101

4
N = 101

6
N = 101

8
N = 101

-2.8

-2.6

-2.4

-2.2

-2.0

-1.8

-1.6

2
N = 101

4
N = 101

6
N = 101

8
N = 101

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

2
N = 101

4
N = 101

6
N = 101

8
N = 101

-6

-5

-4

-3

Conditioning on FFR Expectations

2
N = 101

4
N = 101

6
N = 101

8
N = 101

-2.8

-2.6

-2.4

-2.2

-2.0

-1.8

-1.6

2
N = 101

4
N = 101

6
N = 101

8
N = 101

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

2
N = 101

4
N = 101

6
N = 101

8
N = 101

-6

-5

-4

-3

Conditioning on Neither

2
N = 101

4
N = 101

6
N = 101

8
N = 101

-2.8

-2.6

-2.4

-2.2

-2.0

-1.8

-1.6

2
N = 101

4
N = 101

6
N = 101

8
N = 101

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

2
N = 101

4
N = 101

6
N = 101

8
N = 101

-6

-5

-4

-3

Note: These panels compare the log predictive scores from the SWFF DSGE model estimated with a standard prior (red solid)
with the same model estimated with a diffuse prior (red dashed) averaged over two, four, six, and eight quarter horizons for
output growth and inflation individually, and for both together. Forecast origins from January 1992 to January 2017 only are
included in these calculations.
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Figure A-12: Comparison of Log Predictive Scores under “Standard” and “Diffuse” Priors,

SWπ model
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Note: These panels compare the log predictive scores from the SWπ DSGE model estimated with a standard prior (purple solid)
with the same model estimated with a diffuse prior (purple dashed) averaged over two, four, six, and eight quarter horizons for
output growth and inflation individually, and for both together. Forecast origins from January 1992 to January 2017 only are
included in these calculations.
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Figure A-13: Comparison of Log Predictive Scores under “Standard” and “Diffuse” Priors,

SW model: Post-Recession Sample
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Note: These panels compare the log predictive scores from the SW DSGE Model estimated with a standard prior (blue solid)
with the same model estimated with a diffuse prior (blue dashed) averaged over two, four, six, and eight quarter horizons for
output growth and inflation individually, and for both together. Forecast origins from April 2011 to April 2016 only are included
in these calculations.
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Figure A-14: Comparison of Log Predictive Scores under “Standard” and “Diffuse” Priors,

SWFF model: Post-Recession Sample
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Note: These panels compare the log predictive scores from the SWFF DSGE Model estimated with a standard prior (red solid)
with the same model estimated with a diffuse prior (red dashed) averaged over two, four, six, and eight quarter horizons for
output growth and inflation individually, and for both together. Forecast origins from April 2011 to April 2016 only are included
in these calculations.



Online Appendix xxxii

Figure A-15: Comparison of Log Predictive Scores under “Standard” and “Diffuse” Priors,

SWπ model: Post-Recession Sample
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Note: These panels compare the log predictive scores from the SWπ DSGE Model estimated with a standard prior (purple solid)
with the same model estimated with a diffuse prior (purple dashed) averaged over two, four, six, and eight quarter horizons
for output growth and inflation individually, and for both together. Forecast origins from April 2011 to April 2016 only are
included in these calculations.
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