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Abstract 

Identification via heteroskedasticity exploits differences in variances across regimes to identify 

parameters in simultaneous equations. I study weak identification in such models, which arises 

when variances change very little or the variances of multiple shocks change close to 

proportionally. I show that this causes standard inference to become unreliable, propose two tests 

to detect weak identification, and develop nonconservative methods for robust inference on a 

subset of the parameter vector. I apply these tools to monetary policy shocks, identified using 

heteroskedasticity in high frequency data. I detect weak identification in daily data, causing 

standard inference methods to be invalid. However, using intraday data instead allows the shocks 

to be strongly identified.  
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1 Introduction

Unobserved structural shocks, like those in the structural vector auto-regressions (SVARs)
of Sims (1980), are ubiquitous in economic models across fields, where observed innovations
are related to structural shocks by a linear combination matrix. Economists frequently study
the effects of such structural shocks to identify causal relationships. A variety of identification
approaches to recover the structural shocks exist, but identification via heteroskedasticity,
which does not require the researcher to impose assumptions on the responses themselves,
has grown in popularity in empirical work. Holding constant contemporaneous responses,
this methodology compares differences in innovation covariances across regimes to identify
those constant parameters as coefficients on the changing variances of the structural shocks.
This identification scheme is most popular in macro-financial contexts, but has also been
adopted in fields including public finance, growth, trade, political economy, environmental
economics, agriculture, energy, education, marketing, and even fertility studies.1 However,
no work has addressed the possibility of weak identification in these studies.

The identifying variation is the difference in covariances across regimes. If the structural
variances are in fact the same across regimes, then so too are the reduced-form covariances,
and there is no identifying variation. More subtly, if the structural variances all change by the
same factor across regimes, there is no new identifying information, as the covariance matrices
are just scalar multiples. This presents two cases that may lead to weak identification – if
the variances change by too little, or if they change (perhaps substantially) by too similar
a factor. The latter means that even if ample heteroskedasticity is present, identification is
not guaranteed. The effects are akin to the more familiar weak instruments (IV) context
– where an instrument that offers little information about an endogenous regressor leads
to poor identification of the parameter of interest. As a result, multiple sets of parameters
may be almost observationally equivalent, causing the asymptotic distribution of estimators
to be non-standard. Standard inference methods will be unreliable, as will any empirical
conclusions based on them. If not properly detected and accounted for, this can undermine
the credibility of empirical work.

I provide a framework for inference in models identified via heteroskedasticity when weak
1The macrofinance core includes Rigobon (2003), Rigobon & Sack (2003, 2004), Boyarchenko et al (2017),

Craine & Martin (2008), Ehrmann & Fratzscher (2016), Eichengreen & Panizza (2016), Hébert & Schreger
(2017), Nakamura & Steinsson (2018), and Wright (2012). Examples in other fields include public finance
(Jahn &Weber (2016)), growth (Islam et al (2017)), trade (Lin et al (2016), Feenstra &Weinstein (2017)), po-
litical economy (Rigobon & Rodrik (2005) Khalid (2016)), environmental economics (Millimet & Roy (2016)
Gong et al (2017)), agriculture and energy (Fernandez-Perez et al (2016)), education (Hogan & Rigobon
(2009), Klein & Vella (2009)), marketing (Zaefarian et al (2017)), and even fertility studies (Mönkediek &
Bras (2016)).
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identification causes standard methods to provide a poor approximation of the asymptotic
distribution. I present two tests for the presence of weak identification. In an empirically
common simple case, where only one variance changes, the model can be written as IV,
where the instrument is ±1 times one of the innovations, with the sign depending on the
regime. I propose a rule of thumb of F > 23 for the first-stage F−statistic. In the general
case, where all variances change, I propose the GMM approach of Andrews (2017), which
compares the size of standard and robust confidence sets. This test would be (perhaps
prohibitively) conservative using robust sets computed using the only previously available
option, projection inference, which I show to have very low size and power. However, I
extend robust inference results for the full parameter vector (e.g. Stock & Wright (2000),
Kleibergen (2005), Magnusson & Mavroeidis (2014)) to prove the validity of non-conservative
robust inference on subsets of the parameter vector. The resulting confidence sets can be used
with Andrews’ (2017) approach to detect weak identification and then to conduct inference
if necessary. I show that this subset inference result can also be applied to impulse response
functions (IRFs), treating the data as estimated residuals.

I demonstrate, both in data and empirically calibrated simulations, that weak identifi-
cation does in fact cause standard inference approaches to perform poorly. I consider the
application of Nakamura & Steinsson (2018), who attempt to exploit higher variance in mon-
etary policy shocks around monetary policy announcements, compared to ordinary days, to
identify monetary policy shocks. I find that the shocks are weakly identified in daily data,
while intraday data provides strong identification. In daily data, using robust confidence
intervals reverses a surprising finding that treasury yields respond significantly to noise in
forward rates; in intraday data, conclusions are unchanged. In simulations based on the
daily data, estimates of the effect of monetary policy are not well approximated by a normal
distribution. Accordingly, standard tests for the full parameter vector, as well as for this pa-
rameter in particular, exhibit dramatic size distortions. Conversely, robust projection-type
tests for this parameter of interest are severely under-sized. In contrast, the subset tests that
I propose are consistently well-sized and have desirable power properties, making them the
first viable option for this problem.

With the tools I propose, applied research using heteroskedasticity for identification can
address concerns of weak identification head-on. I hope that it can become best practice to
verify the strength identification using these methods, much like it has for IV following the
work of Staiger & Stock (1997).

The paper is organized as follows. Section 2 presents the intuition of identification via
heteroskedasticity and how weak identification can arise, characterizes a simple case of weak
identification analytically, and presents evidence of weak identification in empirically cali-
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brated simulations. Section 3 develops the model more formally and describes how weak
identification can arise. Section 4 presents existing robust inference approaches for the full
parameter vector and extends them to allow for non-conservative inference on a subset of
the parameter vector; the performance of tests based on these results is illustrated in sim-
ulations. Section 5 presents two tests to detect weak identification. Section 6 extends the
subset results to inference on IRFs. Section 7 applies the full collection of methods to the
data of Nakamura & Steinsson (2018). Section 8 concludes.

2 An illustration of the problem

In this section, I sketch the intuition behind identification via heteroskedasticity and how
weak identification may arise. I then derive the asymptotic distribution of parameter esti-
mates in an empirically common simple case. Finally, I show evidence of weak identification
in empirically-calibrated simulations.

2.1 Identification and when it might fail

The phenomenon of weak identification in models identified via heteroskedasticity is well-
captured in a simple bivariate model. I present the model here, informally, to clearly exposit
the issues I aim to address, before providing a fully general formal treatment in the subse-
quent section. Consider a 2 × 1 vector of non-serially correlated mean-zero innovations ηt.
These could be residuals from a VAR, daily changes in asset prices, or otherwise obtained.
These innovations are related to a 2× 1 vector of structural shocks, εt, by a time-invariant
invertible matrix H:2

ηt =

(
η1t

η2t

)
=

[
1 H12

H21 1

](
ε1t

ε2t

)
= Hεt. (1)

As a normalization, the diagonal of H is all ones.3 There are two regimes, R1, R2. For each
regime,

E [εt|t ∈ Rr] = 0, E [εtε
′
t|t ∈ Rr] = Σε,r, r = 1, 2 (2)

where Σε,1,Σε,2 are diagonal. This is the standard orthogonality assumption on structural
shocks. Correspondingly, Ση,1 = E [ηtη

′
t|t ∈ R1] = HΣε,1H

′ and similarly Ση,2 = HΣε,2H
′.

2Note that Rigobon & Sack (2003, 2004) consider bivariate models with 3 structural shocks. These models
can only be identified with additional application-specific structural assumptions. Instead, I focus on models
where identification follow exclusively from the heteroskedasticity.

3This is without loss of generality, simply imposing a scale on the columns of the H matrix.
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Figure 1: Distinguishing simultaneous responses using heteroskedasticity

Observations are simulated to replicate the setup in Figures 1 and 2 of Rigobon & Sack (2004).

Identification via heteroskedasticity requires that

Σε,2 6= aΣε,1 (3)

for any scalar a. This means that the two variances cannot change by the same factor across
regimes (or, consequently, both be stable across regimes). In practice, regimes are frequently
chosen using external information about volatility, like monetary policy announcement dates,
and are thus known ex ante.

Figure 1 presents the intuition of the identification approach. The first two panels follow
the example from Rigobon & Sack (2004), who identify the response of asset prices to
monetary policy via variance changes on policy announcement days; data is simulated to
crystalize the argument. The first panel plots ηt, asset price changes against interest rate
changes, on “control” days – those with no monetary policy announcement. Due to the
simultaneity of the problem, with two structural shocks impacting ηt contemporaneously,
the asset price response cannot be identified. The second panel plots what might happen
on days with monetary policy announcements if the variance of the policy shock increases
dramatically (and the asset price shock variance changes only slightly). Now – due to the
increase in volatility in the monetary policy shock – the data begin trace out the asset
price response. Since there is still non-negligible volatility in the second structural shock,
the response cannot be identified from the second regime alone, but it can be identified by
contrasting the information contained in both regimes.

More formally, in a model with a single variance regime, (1) furnishes three equations,
but there are four free parameters to estimate: two off-diagonal elements in H, and the two
variances of the structural shocks. Adding a second variance regime doubles the number of
equations to six, while adding an additional two parameters (the extra structural variances),
so the model may now be just identified. Rigobon (2003) establishes that these equations
have a unique solution provided (3) holds. In practice, these equations are often estimated
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via GMM, with the moment equations corresponding to Ση,1 = HΣε,1H
′ and Σ = HΣε,2H

′.

Inference then proceeds using either the standard GMM asymptotic distribution or a boot-
strap approach; see Rigobon (2003) for details. Brunnermeier et al (2017) offer an elegant
argument for identification, showing that H can be recovered (up to column order and nor-
malization) as the eigenvectors of Σ−1

η,1Ση,2. This simple estimator yields the GMM solution
in this just-identified context.

The condition in (3) surely holds in a literal sense in finite samples due to sampling
variability. But what happens if it is close to failing? First, the variances might not change
much at all across regimes. For example, if much of the information contained in monetary
policy announcements is anticipated, the volatility may not increase much on announcement
days over its average level. This would make the two variance regimes close to identical.
The third panel of Figure 1 depicts this concern; the variance of the monetary policy shock
increases but the cloud of data does not clearly trace out the asset price response curve. The
policy regime offers little additional identifying information over the control sample. Second,
all variances could change together. In the Great Moderation, many volatilities decreased
simultaneously, while during the Financial Crisis, many volatilities increased together. On
announcement days, there may be increased volatility in more than one shock, in particular
if there are multiple dimensions of monetary policy shocks. In such episodes, the variances of
structural shocks may be moving together. The closer the comovement, the less identifying
information the second variance regime provides about H. The final panel of Figure 1 depicts
this concern. There is a large increase in volatility in both dimensions, and the increase in
the variance of the policy shock does not dwarf that of the other shock. Again, the policy
regime offers little additional identifying information.

2.2 The weak identification distribution in a simple case

I now discuss the asymptotic behaviour of estimators of H in a simple case under the ad-
ditional assumption that only one structural shock variance changes; the general case is
discussed in Section 3. The assumption of a single variance change is common in practice
(e.g. Nakamura & Steinsson (2018), Rigobon & Sack (2004), Hébert & Schreger (2017),
Wright (2012)) and admits closed-form estimators for the parameter of interest that parallel
the instrumental variables model. This similarity allows for an intuitive illustration of the
problem of weak identification. In particular, I fix the first shock’s variance, with identifica-
tion following from the change in variance of the second. Weak identification arises if this
variance does not change dramatically, representing the scenario where there is essentially
no heteroskedasticity. Throughout the paper, I refer to this model as the “simple case”. The
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identifying equations are given by

Ση,1 =

[
σ2
ε1

+H2
12σ

2
ε2,1

−
H21σ

2
ε1

+H12σ
2
ε2,1

H2
21σ

2
ε1

+ σ2
ε2,1

]
, (4)

Ση,2 =

[
σ2
ε1

+H2
12σ

2
ε2,2

−
H21σ

2
ε1

+H12σ
2
ε2,2

H2
21σ

2
ε1

+ σ2
ε2,2

]
,

where σ2
ε1,1

= σ2
ε1,2
≡ σ2

ε1
by assumption. H12 is the parameter of interest. This off-diagonal

element measures the impact of a unit structural shock (say a policy shock) on a variable in
the system. For instance, in Nakamura & Steinsson (2018), the policy shock (ε2t) alone is
assumed to exhibit heteroskedasticity on policy announcement days, so H12 represents the
impact of monetary policy shocks on instantaneous Treasury forward rates (the “dependent”
variable). As before, the equations (4) can be estimated via GMM. However, in this setting,
H12 can be identified in closed form from (4), which admits two new estimation approaches.

First, following Rigobon & Sack (2004), writing the ratio of differences in second moments
across regimes yields

ση1η2,2 − ση1η2,1
σ2
η2,2
− σ2

η2,1

=
H12

(
σ2
ε2,2
− σ2

ε2,1

)(
σ2
ε2,2
− σ2

ε2,1

) =
H12∆

(
σ2
ε2

)
∆
(
σ2
ε2

) = H12, (5)

where ση1η2,j, σ2
η2,j

are elements of Ση,j and the ∆ (·) operator takes the difference in the
argument between regimes 2 and 1.4 A simple estimator uses the sample analogs of (5), as
in Nakamura & Steinsson (2018). Note that if the assumption that σ2

ε1,1
= σ2

ε1,2
fails, then

H12 will be misidentified by (5), which will instead yield

H12∆
(
σ2
ε2

)
+H21∆

(
σ2
ε1

)
∆
(
σ2
ε2

)
+H2

21∆
(
σ2
ε1

) , (6)

so this assumption should only be made carefully in practice.
I now move from H12, identified in population, to estimators, Ĥ12. The sample analogue

4This is in fact just one of three possible closed-form expressions for H12 implied by (4) (as the problem is
over-identified under the assumption σ2

ε1,1 = σ2
ε1,2 ≡ σ

2
ε1). The following development of weak identification

applies equally to either of the alternative identifying equations.
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of (5) is equivalent to an instrumental variables problem (Rigobon & Sack (2004)):

Ĥ12 =
∆ (σ̂η1η2)

∆
(
σ̂2
η2

) =
T
T2

∑
t∈R2

η1tη2t − T
T1

∑
t∈R1

η1tη2t

T
T2

∑
t∈R2

η2
2t − T

T1

∑
t∈R1

η2
2t

=

∑T
t=1 η1tZt∑T
t=1 η2tZt

, (7)

where Tr = |Rr|, (with Tr/T fixed), and

Zt =

[
1 (t ∈ R2)× T

T2

− 1 (t ∈ R1)× T

T1

]
η2t.

Thus, Ĥ12 can be estimated via TSLS, as suggested in Rigobon & Sack (2004), using

first stage: η2t︸︷︷︸
X

= ΠZt︸︷︷︸
ΠZ

+vt

second stage: η1t︸︷︷︸
Y

= H12η2t︸ ︷︷ ︸
βX

+ut,

where standard IV notation is indicated below the terms. If Zt is strongly correlated with the
innovation η2t (exogeneity follows from (1) and (2)), standard asymptotic results for TSLS
apply. First,

Ĥ12 =
1
T

∑T
t=1 η1tZt

1
T

∑T
t=1 η2tZt

p→ E [η1tZt]

E [η2tZt]
= H12, (8)

as long as the denominator, 1
T

∑T
t=1 η2tZt, does not converge to zero, so Slutsky’s theorem can

be applied. Thus, H12 is consistently estimated. Moreover, Slutsky’s theorem shows that,
provided the denominator does not converge to zero, the asymptotic distribution will be
characterized by the behaviour of the numerator. In particular, under regularity conditions
and a martingale central limit theorem,

√
T
(
Ĥ12 −H12

)
=

√
T 1
T

∑T
t=1 η1tZt

1
T

∑T
t=1 η2tZt

d→ N (0, Vstrong) ,

as long as 1
T

∑T
t=1 η2tZt

p
��→ 0. Vstrong is the usual White (1980) heteroskedasticity-robust

TSLS asymptotic variance, E [η2tZt]
−2E [u2

tZ
2
t ]. It can be consistently estimated for infer-

ence, but a bootstrap procedure is often used in practice.
What happens if the denominator is in fact close to zero? In the familiar IV setting,

standard inference methods are not reliable (e.g. Staiger & Stock (1997)). As the first stage
coefficient, Π, tends to zero, the instrument provides less information about the endogenous
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regressor. As a result, virtually all work using instrumental variables now reports tests to
detect instrument irrelevance (the first stage F−statistic). In identification via heteroskedas-
ticity, Π goes to zero as σ2

ε2,2
approaches σ2

ε2,1
, the case of no variance change.5 However, up

to now, no tests to detect this possibility have been proposed.
If σ2

ε2,2
= σ2

ε2,1
(Π = 0) , so H12 is unidentified, then the denominator (and numerator) of

(7) converges in probability to zero, so Slutsky’s theorem cannot be applied as in (8). To
obtain a limit distribution, multiplying (7) by

√
T√
T
leads both numerator and denominator to

converge in distribution to mean-zero normal random variables. This means that Ĥ12 con-
verges in distribution to the ratio of two correlated normal random variables, a Cauchy-like
distribution, so the standard normal approximation is not a good one. Thus, the conver-
gence of (7) is non-uniform with respect to

(
σ2
ε2,2
, σ2

ε2,1

)
: if σ2

ε2,2
6= σ2

ε2,1
it is normal, but

if σ2
ε2,2

= σ2
ε2,1

it is not. To derive an asymptotic distribution that well-approximates the
behaviour of Ĥ12 when σ2

ε2,2
is close to, but not equal to, σ2

ε2,1
, I model the difference as

“small”. In particular,
σ2
ε2,2

σ2
ε2,1

= 1 +
d√
T
. (9)

Rearranging yields
σ2
ε2,2

= σ2
ε2,1

(
1 + d/T 1/2

)
≡ σ2

ε2,1
+ dε/T

1/2,

so σ2
ε2,2

is “local to σ2
ε2,1

”.6 Employing this device means that, even as T → ∞, the proba-
bility of rejecting the hypothesis σ2

ε2,2
= σ2

ε2,1
tends to neither zero nor one, capturing the

intermediate case of weak identification.
With this model of σ2

ε2,2
and σ2

ε2,1
in hand, I derive an approximation to the asymptotic

distribution of Ĥ12 under weak identification:

Proposition 1. Under the device (9), if ηt is ergodic and stationary within regimes, then

Ĥ12 −H12
d→ z1

dε + z2

,

(
z1

z2

)
∼ N (0, Vweak) , (10)

where Vweak is determined by the parameters of the model and distribution of the data.

Proposition 1 follows from an argument in the spirit of Staiger & Stock (1997), presented
in the Appendix. It shows that the estimator is no longer consistent; Ĥ12 itself, as opposed

5Hébert & Schreger (2017) note that weak identification can also result using the other two possible
closed-form expressions for H12 if H12 = 0, as in those expressions, H12 scales the denominator as well as
the numerator. This is a particular concern when the null hypothesis is H12 = 0. However, this is not a
concern with (5).

6While in the present simple case it might be more direct to simply model ∆
(
σ2
2

)
= σ2

ε2,2−σ
2
ε2,1 as local

to zero, using relative changes will later allow me to unify the treatment of both the case where the variances
barely change and that where they change but by similar factors, which both represent weak identification.

8



to
√
T
(
Ĥ12 −H12

)
, has a non-degenerate sampling distribution. The reason for this is that,

asymptotically, the denominator 1
T

∑T
t=1 η2tZt

p→ 0. As this identifying variation becomes
small, the sampling variation in the otherwise consistently estimated means matters for the
asymptotic distribution of Ĥ12.

The estimator’s asymptotic distribution is thus better represented as the ratio of two
correlated normals. Inference approaches based on the normal approximation break down.
A bootstrap approach for Ĥ12 (for Wald-type inference) is also invalid, as shown in Moreira,
Porter, & Suarez (2005). Similarly, a GMM application of the IV estimator will fare no better
(Stock, Wright, & Yogo (2002)). Instead, robust methods developed for weak instruments
should be used. While this discussion is specialized to the simple case to allow closed-form
expressions for Ĥ12, the intuition applies to the fully general case developed in Section 3.

2.3 An illustration in simulation

To augment this theoretical interpretation of the weak identification problem, I now present
simulation evidence that illustrates the threat posed to valid inference. I calibrate my anal-
ysis to the bivariate model of Nakamura & Steinsson’s (2018) study of forward guidance
effects. They use a bivariate model with one-day changes in instantaneous Treasury for-
ward rates as a dependent variable and one-day changes in 2-year treasury yields as a policy
measure (or alternatively 30-minute changes in a “policy news” series). They compare two
regimes: monetary policy announcement dates and analogous days without such announce-
ments. They seek to identify the effects of forward guidance by using heteroskedasticity to
decompose changes in the forward rate into the response to the monetary policy shock and
another unnamed shock. In particular, I adopt their specification where the policy series is
the daily change in the 2-year nominal Treasury yield, and the “dependent variable” is the
daily change in the 2-year instantaneous nominal Treasury forward rate. The authors assume
that the non-policy shock’s volatility is fixed; throughout, I instead allow both variances to
change, estimating a slightly more general model. I do this for two reasons. First, I find
evidence in Section 7 that both shock variances do change. Second, it allows my simula-
tions to capture both potential sources of weak identification (negligible variance change and
proportional variance change). For additional details, see Section 7.

The particular calibration is given by

H =

[
1 −0.31

0.70 1

]
,Σε,C =

[
3.9 0

0 0.1

]
× 10−3,Σε,P =

[
7.1 0

0 0.5

]
× 10−3, (11)
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where C and P represent control and policy, with the forward rate ordered first and nominal
Treasury yield second (under the unit effect normalization, the second shock is the policy

shock). I calibrate strength of identification via δ =
σ2
ε2,P

/σ2
ε2,C

σ2
ε1,P

/σ2
ε1,C

− 1. I center simulations at

T = 800, with the fraction of control days 760
834

, in keeping with the data. I vary T by a factor
of 2 in each direction and vary δ by a factor of 10 in each direction. Estimation proceeds via
the Brunnermeier et al (2017) method, with inference based on efficient GMM using those
estimates.7

Figure 2 presents histograms of the t−ratio, Ĥ12−H12

se(Ĥ12)
, for 10,000 draws. It is clear that the

estimates are not normally distributed for low degrees of identification, even as T grows large.
However, for the “strong identification” specifications, the distribution is closer to a normal
distribution. This is prima facie evidence of weak identification. It is clear that relying
on standard inference, assuming asymptotic normality for estimates, may lead to unreliable
tests under weak identification, as it is a poor approximation to the true distribution of the
estimator. The distributions are strikingly similar to those for the IV problem presented by
Stock (2008).

The simulations for the empirical degree of identification illustrate just how far from
truly proportional the variances changes can be, while still causing problems. The policy
shock variance changes by a factor of 5, while the other changes by a factor of 1.8. Though
appreciably different factors, the results display the symptoms of weak identification. It is
also worth quantifying what sort of variance changes in the policy shock correspond to the
standard approximations being “reasonable” – the 10× δ calibrations. For δ, σ2

ε2,P
/σ2

ε2,C
= 5

and for 10 × δ, σ2
ε2,P

/σ2
ε2,C
≈ 34. Translated to the variance of η2t, daily changes in the

Treasury yield, this means an increase from 0.002 to 0.007 on policy days; empirically, the
increase is only from 0.002 to 0.004.

To further illustrate the implications of this problem in a macroeconomic context, I
consider how weak identification can propagate to IRFs. I impose a reduced form VAR(1)
specification using the lag coefficients A1 estimated in Section 7. I take A1 as known since,
in most settings, it will be estimated consistently, and contribute relatively little to the
variation in distribution of the IRFs. Figure 3 plots IRFs using 200 draws of Ĥ12. These
should be concerning to macroeconomists – under weak identification, the distribution of the
IRFs is highly diffuse.

7Given that the problem is just-identified, the weighting matrix is irrelevant to point estimates. There-
fore, estimation can be conducted without resorting to numerical optimization via the eigenvector method
described by Brunnermeier et al (2017). Given these point estimates, inference can be conducted by using
the efficient GMM moment function.
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Figure 2: Distribution of t−ratio for Ĥ12

The figure presents t−ratios, Ĥ12−H12

se(Ĥ12)
, calculated from 10,000 Monte Carlo draws, using the sample length

in the left margin and the degree of identification in the bottom margin. Extreme outliers are truncated to
allow comparison on the same axes. Calibration details are given in equation (11). Point estimation proceeds
via Brunnermeier et al’s (2017) eigenvector method, with inference using this solution for efficient GMM.

3 Weak identification in the general case

Having illustrated the problems posed by weak identification and presented asymptotic re-
sults for the simple case, I now consider the general model where all variances are permitted
to change across regimes. This is the case in much empirical work (e.g. Rigobon (2003),
Rigobon & Sack (2003), Craine & Martin (2008)). I first present the model more formally
and discuss identification and estimation under strong identification. Then, I characterize
how weak identification may arise.

3.1 Identification and estimation under strong identification

Having outlined the problem of weak identification in a simple bivariate setting, I now develop
the general model, identification, and estimation more formally. As before,

ηt = Hεt,

11



Figure 3: Distribution of IRFs

IRF paths for a unit shock for 200 Monte Carlo draws of Ĥ12, taking A1 as given. Sample length is given
in the left margin and the degree of identification in the bottom margin. Calibration details are given in
equation (11). The horizontal axis is calibrated to days. Point estimation of H proceeds via Brunnermeier
et al’s (2017) eigenvector method.

where ηt and εt are now n× 1 vectors, and H is n×n. Often, ηt results from a reduced-form
VAR of the form

A (L)Yt = ηt. (12)

Under standard assumptions, (correct specification, ergodicity, stationarity, and predeter-
mined regressors) the lag coefficients of A (L), and thus moments of the reduced form resid-
uals ηt, can be estimated consistently by OLS, see e.g. Hayashi (2000), pg. 109. The
approach of this paper applies equally in cross-sectional settings – the innovations need not
come from a VAR. Indeed, the i.i.d. assumptions common with cross-sectional observations
immediately imply many of the assumptions laid out for time series settings below. I gen-
erally treat ηt as observed, but account for the use of estimated VAR residuals in Section 6
when I consider inference on IRFs.

The second moments of ηt do not offer enough equations to recover H, furnishing only
n2+n

2
equations in n2 unknowns (n2 − n in the normalized H, n in Σε). Additional variance

regimes may offer additional identifying variation. For simplicity of exposition, I henceforth
focus on the two variance regime case.8

8For the most part, this is without loss of generality. It is mathematically straightforward to extend most
results to settings with additional regimes. However, the results become much more cumbersome to state
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To make the discussion precise, Assumption 1 outlines standard assumptions on the
model.

Assumption 1. For all t = 1, 2, . . . , T and regimes r ∈ {P,C},

1. H is fixed over time, invertible, and has a unit-diagonal,

2. E [εt | t ∈ Rr,Ft−1] = 0, E [εtε
′
t | t ∈ Rr,Ft−1] = Σε,r,

3. Σε,r is diagonal.

where the filtration Ft−1 = {ε1, ε2, . . . , εt−1}. The unit diagonal normalization takes the
impact of a unit realization of structural shock i on the reduced form innovation to the ith

series to be one. Assumption 1.2 guarantees covariance stationarity within each regime. The
addition of the filtration in the conditioning is less familiar, but satisfies the conditions for
a martingale central limit theorem (used to derive asymptotic distributions below) without
requiring full independence of the shocks over time.9 The use of P (policy) and C (control)
to denote the two regimes represents a typical framework that contrasts “event” observations
and “Control” observations, arguing that on the event days, when, for example, a Policy
announcement is made, the relevant structural shocks are likely to be more volatile than on
a typical day.10 This is the case in Nakamura & Steinsson (2018) (and many others - see e.g.
Boyarchenko, Haddad, & Plosser (2017) and Wright (2012)).

Under Assumption 1, each regime has reduced form covariances given by

Ση,r = HΣε,rH
′ for r ∈ {P,C} . (13)

Each variance regime offers (n2 + n) /2 identifying equations. Thus, two variance regimes
yield 2 × n(n+1)

2
= n2 + n equations, with n2 − n + 2 × n = n2 + n unknowns (adding an

additional n structural variances to the basic model). The system defined by (13) just meets
the order condition (the number of equations equals the number of parameters). There is a
unique solution (Rigobon (2003)), as long as the variances change non-proportionally across
regimes.

clearly. Since the majority of empirical work uses two regimes, I restrict my focus to that case.
9 Instead, weaker conditions like m−dependence can be substituted, and a central limit theorem for

m−dependent sequences can be used. However, such deviations may also necessitate the use of long run
variance estimators for each regime, adding further complexity.

10When regimes and breaks must instead be estimated, there can be substantial bias in identified param-
eters, as discussed in Lewis (2018).
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Equation (13) can be rewritten as moment equations of the form

m (ηt, H,Σε,r) = vech (Ση,r −HΣε,rH
′) , (14)

where date t is in regime r. Then, stacking the moment equations (14) from each regime,
and defining the vector θ ∈ Θ as the unique elements of H, Σε,C , and Σε,P , the resulting
moment function is

φ (θ, ηt) =

[
1 [t ∈ C] vech (ηtη

′
t −HΣε,CH

′)

1 [t ∈ P ] vech (ηtη
′
t −HΣε,PH

′)

]
, (15)

abusing notation to replace RC with C and RP with P in the indicator functions. Clearly,
E [φ (θ0, ηt)] = 0 at θ0, the true parameter value. The GMM objective function is defined as

ST

(
θ; θ̃
)

=

[
T−1/2

T∑
t=1

φ (θ, ηt)

]′
WT

(
θ̃
)[

T−1/2

T∑
t=1

φ (θ, ηt)

]
. (16)

where θ̃ is the parameter used to compute the weighting matrix, WT (·). For the purposes
of this paper, I focus on a continuous updating estimator (CUE) with the efficient weighting
matrix (on which most weak identification results are based). This means θ̃ = θ andWT (θ) =

ΩT (θ)−1, ΩT (θ) = 1
T

∑
φ (θ, ηt)φ (θ, ηt)

′. To characterize the asymptotic distribution of
GMM estimates, regularity conditions such as those of Assumption 2 are required:

Assumption 2. Assume

1. The process ηt is ergodic and stationary within regimes,

2. E
[
vech (ηtη

′
t) vech (ηtη

′
t)
′ | t ∈ Rr

]
<∞ for r ∈ {P,C},

3. Tr/T = τr > 0, for Tr = |Rr| , r ∈ {P,C}.

The first two points allow for the application of a martingale central limit theorem within
each regime. The first point strengthens the covariance stationarity assumed within regimes
in Assumption 1.2. The second is a standard moment existence condition. The third point
guarantees that the sample size within each regime increases at the same rate as the overall
sample size. Finally, I make a standard assumption on the parameter space:

Assumption 3. Θ is compact.

Under these assumptions, if there is a unique solution to (13), the usual arguments show
that the GMM estimates of θ will be consistent and have the standard asymptotically normal
GMM limiting distribution.
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3.2 Weak identification

The intuition for identification was presented in 2.1 and sketched for the n−variable
setting in 3.1. Now, I examine the argument in detail and show how weak identification can
arise. Sentana & Fiorentini (2001) provide identification results for models characterized
by equations of the form (13).11 In particular, they define conditions for H to be globally
identified (up to column order) in the presence of time-varying volatility from (13), which I
simplify in Proposition 2:
Proposition 2. Under Assumption 1, H is globally identified from Ση,C and Ση,P up to
column order provided the rows of

[
diag (Σε,C) diag (Σε,P )

]
are not proportional.

Under an additional assumption, distinguishing the columns of H (or the shocks), point
identification holds, instead of identification up to column order. I adopt Assumption 4, a
common choice to this effect:

Assumption 4. The shock of interest experiences the largest relative change in variance
across regimes.

Proposition 2 implies that identification can break down in two related ways. First, if
the variances do not change, then diag (Σε,C) = diag (Σε,P ), and the rows are clearly pro-
portional. Second, if two (or more) variances change by the same (potentially substantial)
factor, those two rows are again proportional. This means that even if ample heteroskedas-
ticity is present, identification is not guaranteed. As described in detail in the simple case,
I model the relationship between the variances of two shocks, i and j, as local-to-unity:

σ2
εi,P

/σ2
εi,C

σ2
εj,P

/σ2
εj,C

= 1 +
d√
T
,

where d is finite. In economic terms, the Great Moderation or Financial Crisis were offered
above as examples where variances might change together. This could also be the case
for many modern treatments of monetary policy that posit the existence of simultaneous
shocks to multiple dimensions of monetary policy; the volatility of all such shocks is likely
to increase together on announcement days. If instead the variances barely differ across
regimes, that too can be captured in this device, as both the numerator and denominator
on the left-hand-side are close to unity.

11I choose to work from their results, in conjunction with the argument offered by Brunnermeier et al
(2017) as the rank-like conditions for identification are immediately apparent.
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Now, denote σ2
εj,P

/σ2
εj,C

= γ, so

σ2
εi,P

= γσ2
εi,C

(
1 +

d√
T

)
≡ γσ2

εi,C
+

dε√
T
. (17)

The impact on identification is then characterized in Proposition 3:

Proposition 3. Adopting the modeling device in (17) and Assumption 1, H is asymptotically
unidentified.

Intuitively, under the modified local-to-unity modeling device, the non-proportionality
requirement of Proposition 2 fails asymptotically in population, as the variances converge to
the knife-edge case σ2

εi,P
= γσ2

εi,C
, resulting in an unidentified system. However, the limiting

probability of rejecting the hypothesis
σ2
εi,P

/σ2
εi,C

σ2
εj,P

/σ2
εj,C

= 1 from (infeasible) observations of εt is
neither zero nor one, capturing the spirit of the intermediate case of weak identification.
As identification breaks down, H cannot be consistently estimated, as argued by Stock
& Wright (2000). Similarly, standard asymptotic approximations used for inference also
fail. Dufour (1997) (Section 4) demonstrates the dramatic impact that such deficiencies
can have on testing problems. He shows that the size of Wald tests for affected parameters
tends to unity as such a system tends towards non-identification. In this setting, it is
straightforward to confirm, fixing d, that the size of a Wald test on the full parameter vector
is unity asymptotically. In fact, this is borne out by the Monte Carlo simulations in Table
1, illustrating the severity of the problems posed by weak identification.

4 Weak identification robust inference

Having characterized how weak identification may arise, I now present inference ap-
proaches robust to weak identification. I first consider existing results that apply when
the object of interest is the full parameter vector. I then extend these results to allow for
non-conservative inference on subsets of parameter vector. Finally, I demonstrate the power
improvements offered by these subset tests.

4.1 Asymptotic distribution of test statistics

The asymptotic behaviour of GMM estimators, robust to weak identification, was es-
tablished in Stock & Wright (2000). Instead of providing an asymptotic distribution for
the parameter estimates, as in strongly identified GMM problems, they show that ST (θ0)

follows a Chi-square distribution. Many refinements have since been developed, including
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the “K−statistic” of Kleibergen (2005), which is efficient under strong identification, ad-
ditionally making use of an estimated Jacobian. Most of this literature is limited to joint
tests on the full parameter vector or the subset of parameters that are weakly identified;
inference results for generic subsets of the parameter vector have proven difficult, even on a
case-by-case basis. However, the parameter(s) of interest in applied work is generally such a
subset. In this section, I present standard results for tests on the full parameter vector, and
then establish conditions under which test statistics for subsets of the parameter vector have
a more precise limiting distribution. Robust inference on the full parameter vector (and the
subset of all weakly identified parameters) in models identified via heteroskedasticity has
already been considered as a motivating example in Magnusson & Mavroeidis (2014), who
propose a variety of tests. However, the subset tests I develop constitute a generalization of
these results important for applied work.

I present my results using Kleibergen’s (2005) “K−statistic”. In the leading two-regime
case considered here, the K−statistic coincides with the S−statistic of Stock & Wright
(2000) since the model is just-identified. If additional regimes are used, the K−statistic
will be asymptotically efficient under strong identification, at the cost of possible power
loss otherwise. Numerous further refinements exist, frequently using convex combinations of
K and S (for example Conditional Linear Combination tests as in Andrews’ (2016)), and
can be considered by researchers using over-identified models. Readers interested in such
test statistics should consult Magnusson & Mavroeidis (2014), who establish the validity of
several test statistics for the full parameter vector; these tests can the be generalized for
subset inference using results I prove below.
Full vector inference

I begin by demeaning the moment function and its Jacobian,

φ̄ (θ, ηt) = φ (θ, ηt)− E (φ (θ, ηt)) ,

q (θ, ηt) = vec

(
∂φ (θ, ηt)

∂θ′

)
,

q̄ (θ, ηt) = q (θ, ηt)− E (q (θ, ηt)) ,

as in Kleibergen (2005), with φ replacing his f . Lemma 1 provides asymptotic distributions
for φ̄ (θ0, ηt) and q̄ (θ0, ηt):
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Lemma 1. Under Assumptions 1 & 2,

ψT (θ0) =
1√
T

T∑
t=1

(
φ̄ (θ0, ηt)

q̄ (θ0, ηt)

)
d→

(
ψφ

ψθ0

)

where ψ =

(
ψφ

ψθ0

)
is a 2 (n2 + n)-dimensional normally distributed random variable with

mean zero and positive semi-definite 2 (n2 + n)× 2 (n2 + n)-dimensional covariance matrix

V (θ) =

(
Vφφ (θ) Vφθ (θ)

Vθφ (θ) Vθθ (θ)

)
= lim

T→∞
var

[
1√
T

(
φT (θ)

qT (θ)

)]

where φT (θ) =
∑T

t=1 φ (θ, ηt) and qT (θ) =
∑T

t=1 q (θ, ηt).

Lemma 2 provides additional properties needed for the use of the estimated Jacobian in
the K−statistic:

Lemma 2. Under Assumptions 1 & 2, the moment covariance matrix estimator V̂ (θ0)

satisfies
V̂ (θ0)

p→ V (θ0)

and
∂vec

(
V̂φφ (θ0)

)
∂θ′

p→ ∂vec (Vφφ (θ0))

∂θ′

These lemmata, proven in the Appendix, mirror those of Kleibergen (2005), and similarly
establish Theorem 1 of that paper, which I replicate here:

Theorem 1. If Lemmata 1 and 2 hold,

KT (θ0)
d→ χ2

n2+n,

where KT (θ0) = 1
T
φT (θ0)′ V̂φφ (θ0)−1/2 PV̂φφ(θ0)−1/2D̂T (θ0)V̂φφ (θ0)−1/2 φT (θ0).

PA is the projection matrix A (A′A)−1A′ and D̂T (θ0) is Kleibergen’s (2005) Jacobian
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estimator. In particular,

D̂T (θ0) =
[
q1,T (θ0)− V̂θφ,1 (θ0) V̂φφ (θ0)−1 φT (θ0) ...

q(n2+n),T (θ0)− V̂θφ,(n2+n) (θ0) V̂φφ (θ0)−1 φT (θ0)
]
,

where V̂θφ (θ0) =
(
V̂θφ,1 (θ0)′ , . . . , V̂θφ,(n2+n) (θ0)′

)′
(V̂θφ,i (θ0) are n2 + n square matrices) and

qT (θ) =
(
q1,T (θ) , . . . , q(n2+n),T (θ)

)
(qi,T (θ) are n2 + n vectors). Theorem 1 provides an

asymptotic distribution for the K−statistic under the enumerated assumptions. This is not
novel; it is the split-KLM test considered by Magnusson & Mavroeidis (2014).

Monte Carlo: full vector

Monte Carlo evidence shows that tests based on these identification-robust asymptotics
perform far better than Wald tests under weak identification. The distributions of t−ratios
in the previous section suggests that strong identification asymptotics may break down.
To investigate the performance of such tests, I again calibrate Monte Carlo simulations to
equation (11). For each configuration, I take 10,000 draws and compute Wald statistics and
S/K−statistics testing the null hypothesis of the true parameter vector (a six-restriction
test). Rejection rates for nominally 5% tests are reported in Table 1. The Wald tests exhibit
extremely large size distortions, aligned with Dufour’s (1997) theoretical result that the size
of such tests will tend to unity as the degree of identification tends to zero. The distortions
improve with the strength of identification. The S/K−tests, however, are not systematically
affected by the degree of identification, as expected of robust tests. Their size does decrease
with sample size, which is indicative of small sample behaviour, not a lack of robustness.
It appears that the performance of Wald-based inference approaches an acceptable level
only for variance changes an order of magnitude larger than those observed empirically. As
noted in Section 2.3, the stronger calibration imposes over six times the empirically observed
change in the structural variance of the policy shock.

Subset inference

Inference on a subset of the parameter vector is challenging under weak identification. Pre-
vious work with identification via heteroskedasticity has skirted the problem of subset infer-
ence besides in the simple case, leaving interested researchers, should they worry about weak
identification, to rely on projection methods based on a full-vector test statistic, like the
S−statistic (see Dufour (1997), Dufour & Taoumouti (2005), Chaudhuri (2008), Chaudhuri
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Table 1: Size of tests on the full parameter vector

δ̂/10 δ̂ δ̂ × 10

Wald S/K Wald S/K Wald S/K

T = 400 94.6 14.0 75.9 14.7 33.6 13.9
T = 800 94.3 10.4 70.4 10.2 24.1 10.2
T = 1600 93.5 7.7 63.3 8.3 16.2 7.7

Rejection rate of the true parameter vector for a nominally 5% test, based on 10,000 Monte Carlo draws.
Calibration details are given in equation (11). Estimation via CUE GMM.

et al (2010), and Chaudhuri & Zivot (2011) for approaches to projection methods and possi-
ble refinements therein). Projection methods are notoriously conservative; the test statistic
is minimized conditional on the parameter(s) of interest, but is compared to the same critical
values as for the full-vector test.

However, Kleibergen (2005) provides a refinement over Theorem 1 for tests on a subset
of parameter vector. Partition θ into the parameter(s) of interest, β, and the remainder, α.
Assuming the asymptotic Jacobian conditional on the parameters in β,

Jα (α, β) = lim
T→∞

E

{
1

T

T∑
t=1

[(
∂φ ((α, β) , ηt)

∂α′

)∣∣∣∣
α,β

]}
, (18)

has rank equal to α, then the degrees of freedom of the limiting distribution of K−statistic
is lowered to the dimension of β (Kleibergen (2005), Theorem 2). This is a generalization of
the condition Stock & Wright (2000) use to derive their concentrated S−statistic for tests on
the subset of all weakly identified parameters. I present a global analogue to this Jacobian
assumption and then characterize conditions under which the class of models considered here
satisfies this assumption.

Assumption 5. Conditional on β, α is asymptotically strongly identified (globally).

DefineKT (β) = KT (β, α (β)), where α (β) = argmin
α

KT (β, α). Theorem 2 of Kleibergen

(2005) implies Theorem 2:

Theorem 2. If Lemmata 1 and 2 hold, then under Assumption 5,

KT (β0)
d→ χ2

pint
,

where pint is the dimension of β.

20



This lowers the degrees of freedom of the limiting distribution from n2 + n for the full
parameter vector (or projection tests) to pint. It nests the full-vector results of Theorem 1,
as β = θ clearly satisfies Assumption 5. I henceforth refer to the test comparing KT (β0) to
the χ2

pint
critical values as the “reduced” test due to the degrees of freedom reduction.

When does the model satisfy Assumption 5? I begin by extending Proposition 2 to allow
for partial identification of H. First, I introduce a partition of H:

Definition 1. Partition H as HI
...HW such that H(k) ∈ HI if and only if

(
σ2
k,C σ2

k,P

)
is

proportional to no other row in


σ2

1,C σ2
1,P

...
...

σ2
n,C σ2

n,P

, and conversely for HW .

Note that, by definition, if not empty, HW contains at least two columns. Now, HI is
always identified without reference to HW :

Proposition 4. Under Assumption 1, HI is identified from the covariance matrices across
regimes.

This result shows that Assumption 5 is satisfied if β includesHW and associated variances.
This is analogous to Theorem 3 of Stock & Wright (2000), the asymptotic distribution of the
concentrated S−statistic, for tests on all weakly identified parameters. This is not necessarily
helpful unless a researcher’s subset of interest contains all weakly identified parameters (in
the bivariate model, weak identification contaminates the full parameter vector, so this is
still just a test on the full parameter vector).

In empirical work, the object of interest is generally either the immediate impact of one
shock on one variable or its impact on all variables. The former consists of a single element
of H; the latter pertains to a full column. Therefore, I extend the identification result of
Proposition 4 from HI to all of H in Theorem 3, by conditioning on either an element of H
or a full column:

Theorem 3. Under Assumption 1, if HW contains two columns, H is conditionally identified
from the covariance matrices provided

1. A single element Hlk is fixed and Hlk 6= Hlm/Hkm for H(k), H(m) ∈ HW , or

2. The full column H(k) ∈ HW is fixed.

By explicitly incorporating the information to be used in the null hypothesis of the
subset test (fixing Hlk or H(k)), I obtain conditional (strong) identification for the remainder
of HW by Theorem 3. This means that a system of equations satisfying the conditions
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of Theorem 3 meets Assumption 5, so Theorem 2 applies. The ancillary condition on the
relative magnitudes of elements of HW can be thought of as strengthening the standard
invertibility condition on H to an invertibility assumption on a sub-block of H; in the
empirically common bivariate case, it coincides with the invertibility assumption.

Condition 1 interprets the result of Theorem 3 through the lens of the model, abstracting
from the knife-edge Hlk = Hlm/Hkm case.

Condition 1. If there are at most two variances, i, j, for which limT→∞
σ2
εi,P

/σ2
εi,C

σ2
εj,P

/σ2
εj,C

= 1, and
i or j is the shock of interest, then Assumption 5 is satisfied for tests where β contains a
single element of the corresponding column of H or the full column of H (plus any additional
parameters conditioned upon), and Theorem 2 holds.

The result constitutes an improvement on the previous possibilities for subset inference
since it permits the use of smaller critical values. Five remarks clarify its impact.

Remark 1. Condition 1 nests the case where β = θ and the case where β is the set of weakly
identified parameters.

Remark 2. The shock of interest must be one of those affected by any variance pathology.
Otherwise, fixing a parameter(s) in the column of interest of H conveys no information about
the columns impacted by the pathology.

Remark 3. Given how few variances are permitted to be affected by these pathologies, a
researcher should err towards minimizing the number of series in the system of equations
subject to the constraint that the reduced form innovations span the structural shocks (in-
vertibility).

Remark 4. In empirical practice, it is not uncommon to work with bivariate systems. In this
case, the limit of two proportional series is non-binding, and the condition on the relative
magnitudes of elements in Hk and Hm collapses to the usual invertibility assumption of H.

Remark 5. Condition 1 can be generalized further for less empirically common scenarios,
where particular combinations of parameters from across the columns of H are to be jointly
tested. For example, it could be extended to the case where there are two pairs of proportional
variances if columns of H from each pair are jointly fixed.

It is also important to note the relation between these subset results and partial iden-
tification. Proposition 4 shows H may be partially identified; the columns of HI can be
estimated, and robust tests on the full parameter vector will be valid. However, the subset
results do not immediately apply in the case of partial identification since, conditional on
the subset of interest, they require the remainder of the model to be identified, in line with
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Table 2: Size of t−test, projection S−test, and reduced test on Ĥ12

δ̂/10 δ̂ 10× δ̂

t Sproj
Sreduced/
Kreduced

t Sproj
Sreduced/
Kreduced

t Sproj
Sreduced/
Kreduced

T = 400 53.7 0.0 4.4 16.8 0.0 4.6 8.5 0.0 4.8
T = 800 48.3 0.0 4.7 12.8 0.0 5.1 6.6 0.0 4.6
T = 1600 40.4 0.0 4.9 9.7 0.1 4.9 5.4 0.0 4.8

Rejection rate of the true parameter value for H12 based on 10,000 Monte Carlo draws. The Sproj results
are not identically zero, but round to 0.0. Calibration details are given in equation (11). Estimation via
CUE GMM.

Remark 2. An exception arises if the reason for partial identification is that only the variance
of interest changes, when the results for the simple case apply.

Nakamura & Steinsson (2018) compute robust confidence intervals for a single parameter
of interest using what they refer to as a “Fieller’s method” bootstrap, drawing on Staiger,
Stock, & Watson (1997) (and Fieller (1954)). This approach only works in their simple case,
since this setting means means that their test statistic depends only on H12. With multiple
variance changes, the test statistic depends on structural parameters other than H12, and
thus cannot be used to test values of H12 without specifying values for the other parameters,
returning to the full parameter vector/projection problem. This is unsurprising, since their
test asymptotically coincides with an S−test.

Monte Carlo: subset

Repeating the Monte Carlo assessment of size-distortion for subset tests demonstrates scope
for improvement over standard procedures. I compare three testing approaches: the Wald
test, the projected S−test based on Theorem 1, and the newly proposed reduced S/K−test,
based on Theorem 2 and Condition 1. The results are displayed in Table 2. The projected
S−test represents the best available option for inference in this general setting, absent the
results of Condition 1. First, like Wald tests on the full parameter vector, the standard
t−test is substantially oversized, though the distortion is not as large as for the full vector.
As identification gets stronger, the distortions shrink. The S−test based on projection
methods is substantially undersized, with a rejection rate of effectively zero in simulation.
However, the reduced test is consistently well-sized, regardless of the degree of identification.
These improvements in size-control over previously available tests establish the usefulness of
Condition 1 for applied work.
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4.2 Power improvements in subset testing

The use of smaller critical values for the subset tests justified by Condition 1 relative to
projection tests imply automatic power improvements, which I explore in simulation. I fix
T = 800 and consider a range of strengths of identification, testing the null hypothesis of
H12 = −0.31 against a sequence of local alternatives. Panel (a) of Figure 4 computes power
curves based on these simulations. For the weakest identification calibration, the power of the
t−test unsurprisingly dominates that of the robust tests, but is still very low for alternatives
far left of the null. The reduced test is more powerful than the projection test, as expected;
they use the same test statistic, but the reduced test uses smaller critical values. For the
main calibration, the results are similar, except that the reduced test surpasses the t−test
with power tending to unity for alternatives left of the null, and approaches the t−test for
alternatives to the far right. It also diverges dramatically from the projection test. For the
strong identification calibration, the t and reduced tests are very similar, as expected in this
context. The projection test is dominated, but does approach the others for more distant
alternatives. The non-monotonic behaviour between H12 = 1 and H12 = 2 is discussed in
the Appendix.

Panel (b) repeats the above exercise, but now plots size-adjusted power instead of power
for the t−test and S/K−test (the projection vs. reduced distinction is mute since the size-
adjusted power of both tests is identical mechanically). Across the board, this increases
performance of the robust test compared to the t−test, even surpassing it for some distant
alternatives in weak calibrations. There is some power loss due to using robust inference,
particularly for alternatives close to the null, but for some alternatives, the reduced test
actually dominates the t−test. Any power loss must be weighed against the substantial
size distortion of standard inference. The reduced test certainly (mechanically) offers a
substantial improvement over projection tests. Recall that in some contexts, there may also
be scope for more powerful tests (for example, the Conditional Linear Combination test of
Andrews (2016)).

5 Tests for weak Identification

Tests for weak identification pose a challenge in general GMM settings. It is straightfor-
ward to reparametrize the GMM framework to afford tests of a complete lack of identification
(i.e. proportional variance changes, δ = 0); however, a suitable null is rather the presence
of weak identification (δ close enough to zero to cause some measure of unreliability in in-
ference). Existing tests for heteroskedasticity (e.g. Lütkepohl & Milunovich (2016)) are

24



Figure 4: Power curves

(a) Power (b) Size-adjusted-power

Power curves formed from estimates of rejection rates of the null hypothesis (H12 = −0.31) against a sequence
of local alternatives (x−axis) based on 1000 Monte Carlo draws. Panel (a) reports power and panel (b) size-
adjusted-power. The size-adjusted critical values are based on quantiles from 10,000 Monte Carlo draws.
The far right spikes in the robust methods is discussed in the Appendix and Figure 6. Calibration details
are given in equation (11). Estimation via CUE GMM.

parametric and test for non-identification, not weak identification. The simple case with
a single variance change coincides with just-identified linear IV with a single endogenous
regressor, and a rule of thumb based on bias is provided based on Montiel Olea & Pflueger
(2013), in the spirit of Staiger & Stock (1997) and Stock & Yogo (2005). For the general
case, I recommend the approach of Andrews (2017).

5.1 Single-variance change rule of thumb

The analogy to the just-identified linear IV model with a single endogenous regressor is
an appealing feature of the simple case, which has proven popular in the literature. However,
the simple case comes at the cost of the assumption that only the variance of the shock of
interest changes across regimes. The linear IV setting with a single endogenous regressor
is that of Staiger & Stock (1997), who derive the now ubiquitous “F > 10” rule of thumb.
Here, the first-stage F−statistic is based on the first-stage regression,

η2t = ΠZt + νt

= Π

[
1 (t ∈ P )× T

TP
− 1 (t ∈ C)× T

TC

]
η2t + νt,

and should be computed allowing for heteroskedasticity. Both Staiger & Stock (1997) and
Stock & Yogo (2005) assume homoskedasticity in deriving bias- and size-based rules of thumb.
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Table 3: Critical values for first-stage F−test based on TSLS bias

Bias 0.05 0.1 0.2 0.3

Critical Value 37.42 23.11 15.06 12.05
Critical values for the first-stage F−statistic from Montiel Olea & Pflueger (2013); estimates deliver bias
less than or equal to that listed in 95% of samples.

However, Montiel Olea & Pflueger (2013) develop a test that is valid under the presence of
arbitrary heteroskedasticity, autocorrelation, or clustering. They use a “scaled F−statistic”,
which, in this simplest setting, reduces to the standard F−statistic. They compare the Nagar
bias of a TSLS estimator to a “worst case” benchmark. The Nagar bias approximates the
distribution of the TSLS estimator under weak identification using a second-order Taylor
approximation and computes the bias of that distribution. The exercise coincides with
that of Staiger & Stock (1997) and Stock & Yogo (2005) under those papers’ distributional
assumptions. Table 3 presents the critical values for the first-stage weak instruments test
based on TSLS bias (with a single instrument) for the 5% level from Montiel Olea & Pflueger
(2013), analogous to Table 5.1 in Stock & Yogo (2005). Additional unreported simulations,
based on an identification via heteroskedasticity-specific DGP, produced critical values within
Monte Carlo error of those of Montiel Olea & Pflueger. The size exercise of Stock & Yogo
(2005) is not pursued as their sufficient statistic approach does not work in this nonlinear
model. The generally-adopted threshold in IV of F > 10 corresponds to the critical value
for relative bias of 10%, which here translates to a new rule of thumb of F > 23, which can
easily be adopted in future work in this setting.

5.2 Method for the general case

In the general case, more complex methods are required. Tests of the null of non-
identification are straightforward, as noted in Wright (2001), but testing for weak iden-
tification in GMM has long been a problem. However, Andrews (2017) offers a two-step
strategy. The necessary assumptions for its application are discussed and verified in the
Appendix. Briefly, given a user-specified maximum allowable size distortion, ξ, a prelimi-
nary robust confidence set is constructed to have asymptotic coverage 1− ν − ξ, regardless
of identification. Then, 1 − ν non-robust and robust confidence sets are constructed. If
the preliminary confidence set is contained by the non-robust confidence set, the non-robust
confidence set can be adopted (strong identification); otherwise, a robust set should be used
(weak identification). Asymptotically, the probability of making the correct determination
converges to unity. These confidence sets can be constructed using K−statistics and Wald
tests as elsewhere in this paper; Andrews, however, considers a linear combination of the
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K− and S−statistics due to favourable power properties. Determination of the strength of
identification can be conducted with respect to the full parameter vector or a subset of pa-
rameters of interest by employing confidence sets for the corresponding parameters. For the
full parameter vector, this test can be applied using full-vector confidence sets (established
by Magnusson & Mavroeidis (2014)). However, to test the strength of identification of a
single parameter, the exercise most relevant in empirical work, subset confidence sets are re-
quired. Projection tests lead to highly conservative subset confidence sets (as demonstrated
in Section 4), so are not well-suited to this exercise. Because they are too large, they are
unlikely to be contained by the non-robust confidence sets, even under strong identification.
This means that the test will detect weak identification even when the parameter of interest
is strongly identified, which is highly unappealing in practice. However, the non-conservative
subset tests valid under Condition 1 do not face these problems and thus make it possible to
conduct tests of identification for the parameter(s) of interest without systematically under-
rejecting weak identification. Both this test for the general model and the first stage F−test
for the simple case are applied in the empirical application.

6 Robust inference on impulse responses

The ability to perform robust inference on subsets of H enables robust inference on
another object of interest, the impulse response function (IRF). Much macroeconomic policy
analysis relies on dynamic effects traced out by IRFs. Based on (12), these are formed via
non-linear combinations of the SVAR lag coefficients that comprise A (L) and H. Little
work considers robust inference on IRFs. Montiel Olea, Stock & Watson (2016) develop a
method that exploits the linearity of the external instruments problem to offer an elegant
solution in that context. Chevillon, Mavroeidis, & Zhan (2016) consider the case of long-run
restrictions and develop a projection method that also accounts for cointegration issues they
face. Neither of those methods applies to identification via heteroskedasticity. I propose a
robust inference method for IRFs that can be extended to other SVAR identification schemes
for which conditional identification results analogous to Theorem 3 validate subset inference
on a column of H.

A structural impulse response function, Λh, at horizon h is computed as

Λ0 = H,

Λh =

[
h∑
v=1

Λh−vAv

]
h = 1, 2, . . . , (19)

where Av denotes the lag coefficient matrix corresponding to the vth lag. The response of
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the lth variable to a unit shock to k can be read off as the lk element of this object. It is
helpful to define the related object, Bh given by

B0 = I,

Bh =
h∑
v=1

Bh−vAv h = 1, 2, . . . ,

such that Λh = BhH. Thus, Bh = Bh (A (L)), entirely a function of the lag coefficients. An
element of interest in Λh, Λh

lk, is the product of the lth row of Bh and the kth column of H.
With necessary objects defined, I now present conditions under which the remainder of

Λh is strongly identified conditional on Λh
lk. First, I partition Λh as H was partitioned in

Definition 1 and state an analogue to the partial identification result of Proposition 4:
Definition 2. Partition Λh as Λh

I

...Λh
W such that Λh(k) ∈ Λh

I if and only if
(
σ2
k,C σ2

k,P

)
is

proportional to no other row in


σ2

1,C σ2
1,P

...
...

σ2
n,C σ2

n,P

, and conversely for Λh
W .

Proposition 5. Under Assumption 1, if Bh is invertible, Λh
I is identified up to scale from

the covariance matrices across regimes.

This follows the same argument as Proposition 4, simply replacing H with BhH; in-
vertibility of the product is guaranteed by invertibility of Bh and H. IRFs for shocks with
non-proportional variance processes are strongly identified. As in the case of H, the crucial
step is to extend this result (conditionally) to weakly identified shocks:

Theorem 4. Under Assumption 1, if Λh
W contains two columns, Λh is conditionally identified

up to scale from the covariance matrices provided

1. Bh is invertible,

2. A single element Λh
lk is fixed and Λh

lk 6= Λh
lm/Λ

h
km for Λh(k),Λh(m) ∈ Λh

W .

This is an analogue of Theorem 3, replacing H with Λh = BhH. Identification up to scale
may be unfamiliar for IRFs, but recall that IRFs for each shock are always implicitly scaled
by the normalization of the corresponding column of H. Theorem 4 implies that, after fixing
an element of interest in Λh, conditional identification in Assumption 5 is satisfied, subject
to the same remarks made following Condition 1.

Following Theorem 4, robust inference for Λh
lk may proceed using the appropriate ob-

jective function, the corresponding S−statistic, and χ2
1 critical values.12 Let A denote the

12I focus on the S−statistic to facilitate the simplification of the test inversion problem discussed below.
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vectorization of the parameters found in the lag coefficients A (L) . Denote the moment func-
tion for the reduced form VAR (12) as fA (A, Yt). With ηt implicitly a function of Yt and A,
define

fΛ
(
A,Λh,ΣC ,ΣP , Yt

)
= vech

(
1 [t ∈ C]

(
Bhηtη

′
tB

h′ − ΛhΣCΛh′
)

1 [t ∈ P ]
(
Bhηtη

′
tB

h′ − ΛhΣPΛh′
) )

The objective function, SstackT

(
A,Λh,ΣC ,ΣP

)
, is computed for a horizon h using the moments

f stack
(
A,Λh,ΣC ,ΣP , Yt

)
=

(
fA

fΛ

)
,

which stacks the moments yielding the reduced form VAR coefficients, fA (A), and those
pertaining to Λh, fΛ (·). Based on SstackT (·), a standard test-inversion procedure yields
a confidence set for Λh

lk. The resulting set need not be connected, a common feature in
weak identification settings. It is trivial to extend this method to cumulative IRFs. The
uncertainty of the test will generally be dominated by uncertainty over H(k). The critical
values are from the χ2

1 distribution, as in the method of Montiel Olea, Stock, & Watson
(2016) for the external instruments setting.

7 Empirical application

I demonstrate the use of my robust inference methods by studying the identification
of monetary policy shocks in the setting of Nakamura & Steinsson (2018).13 The authors
analyze the impact of policy shocks on nominal and real Treasury instantaneous forward rates
of varying maturities. They argue that the response of these forward rates captures forward
guidance effects. They use identification via heteroskedasticity as a robustness check on
their main results. They adopt a bivariate model with daily changes in a forward rate as the
“dependent” variable and a second series that serves as a policy instrument. They consider
two such instruments: the daily change in nominal 2-year Treasury yields and the 30-minute
or daily change in a “policy news” series, which they construct as the first principal component
of several interest rate series. They assume that the only shock exhibiting a variance change
on announcement days is the monetary policy shock. They use announcement days as
the “high-variance” regime, and a sample of analogous dates as the control period, or “low
variance” sample. I examine specifications using both the daily Treasury yields and the
authors’ 30-minute window “policy news” series as the policy instrument, with either nominal

13I am very grateful to Emi Nakamura and Jòn Steinsson for making their “policy news” series available
to me.
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or real 2-year Treasury instantaneous forward rates as the “dependent” variable. Thus,

ηt =

(
∆st

∆it

)

where st is a forward rate and it is the policy instrument.

7.1 Specifications & tests of identification

Nakamura & Steinsson (2018) assume only the variance of policy shocks changes on
announcement days. This places their analysis in the simple case, with analogy to just-
identified linear IV with a single endogenous regressor. However, this paper focuses on
estimators using all moments, allowing for the possibility that the variances of both structural
shocks might change. Economically, it might be the case that only the variance of the policy
shock should change, but if that is the case, the restriction need not be imposed mechanically,
as estimation will bear it out. I thus focus on the unrestricted model.

Table 5 reports estimates for this model. For the 30-minute “policy news” shock, the
results are extremely close to Nakamura & Steinsson’s restricted model; compare 1.07 to
1.10 and 0.97 to 0.96. Thus, at high frequencies, the single variance change assumption has
little impact on estimates of H12; this is because H21 is near-zero, eliminating the possible
bias in (6). Using daily changes in the nominal yield as the policy series gives varied results.
The point estimates for the real forward rate are in keeping with the intraday results and
those of Nakamura & Steinsson. In contrast, the negative pass-through to nominal forward
rates is starkly at odds with the other estimates, and theory. The strongly positive value for
H21 – the pass through of the second shock, interpretable as noise in the forward rates, to
the policy series – also differs from the near-zero estimates in the original paper (and here
when using the “policy news” shocks). These discrepancies suggest weak identification, and
motivate a closer examination.

I test formally for weak identification using the methods proposed in Section 5. Nakamura
& Steinsson reduce the model to the simple case; the first-stage F−statistic tests for weak
identification under this assumption. These results are reported in the first panel of Table 4.
For the daily nominal Treasury yield series, weak identification cannot be rejected at any level
considered. In contrast, for the 30-minute “policy news” series, the first stage F−statistic
is high and weak identification is rejected for all levels of bias. The general 2-step test for
the unrestricted model is reported in the second panel. The daily nominal Treasury yield
displays weak identification for all distortions. The 30-minute “policy news” series shows
only mild evidence of weak identification at the 5 and 10% distortion thresholds (owing to
the far right tail of the asymmetric robust confidence sets). These test results corroborate
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Table 4: Tests of Identification

First-stage F (bias) Andrews 2-step (size)

F 0.2 0.1 0.05 0.2 0.15 0.1 0.05

Nominal, daily shock 8.15 × × × × × × ×
Real, daily shock × × × ×

Nominal, 30-min shock 6891.94 X X X
X X × ×

Real, 30-min shock X X × ×
The first panel tests each shock series using the first-stage F−statistic bias-based critical values in Table 3.
The second panel conducts the Andrews 2-step size test for each specification. The acceptable distortions are
those greater than or equal to the maximum threshold, Andrews’ γmin, the value at which the 1− α− γmin

robust set is just contained by the strong identification set.

the less formal observations of Nakamura & Steinsson, who suspect moving from intraday
to daily data weakens identification.

7.2 Performance of tests

I now compare confidence sets robust to weak identification to those computed assuming
identification is strong. For the daily yield shocks (exhibiting weak identification), the robust
confidence intervals are much wider than standard confidence intervals. However, they are
substantially asymmetric, so do not always contain the standard confidence interval. Notably,
the surprising estimate of Ĥ21 = 0.70 (the impact of the unnamed second shock, potentially
noise in the forward rates) for the nominal forward rate specification is highly statistically
significant using standard methods, but not at all using the robust interval. For the 30-
minute window “policy news” shocks (exhibiting strong identification), the robust confidence
intervals are comparable with the standard ones, and the estimates ofH12 remain statistically
significant at the 5% or 1% level.14 For H21, I obtain (reasonably) precisely estimated zeros.
These two conclusions replicate Nakamura & Steinsson’s findings for the restricted model.

For the specifications using 30-minute shocks (treated as strongly identified), I can also
test the null hypothesis that the non-policy shock variance is fixed across regimes using
standard methods. This is the additional over-identifying assumption used in the original
paper to reduce the model to the simple case. For the model with nominal forwards, p = 0.12

for a simple Wald test. While equality may not be soundly rejected, it is neither strong
enough evidence of equality to maintain equality as an identifying assumption. For real
forwards, p = 0.65, which is more compelling evidence of equality. This ambiguity supports
the use of the unrestricted model in simulations in this paper, particularly since they are
calibrated to the nominal forward data.

14Under strong identification, they should be asymptotically equivalent, but even if the model is strongly
identified, this need not be true in finite samples.
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Table 5: Estimates

dep. var.,
policy inst.

Nominal fwd.,
one-day yield

Real fwd.,
one-day yield

Nominal fwd.,
30-min news

Real fwd.,
30-min news

H21

stnd. CI
robust CI

0.70
[0.52, 0.89]

[−42.25, 0.79]

−0.01
[−0.14, 0.12]
[−0.51, 0.49]

0.01
[−0.00, 0.02]
[−0.01, 0.02]

0.00
[−0.00, 0.01]
[−0.00, 0.91]

H12

stnd. CI
robust CI

−0.31
[−5.12, 4.50]
[−48.95, 1.50]

0.95
[−0.60, 1.3]

[−59.05, 2.36]

1.07∗∗

[0.14, 2.01]
[0.25, 3.49]

0.97∗∗∗

[0.41, 1.53]
[0.50, 2.46]

103 × σ2
s,C 3.9 5.9 3.9 5.8

103 × σ2
i,C 0.1 2.1 0.02 0.02

103 × σ2
s,P 7.1 2.9 6.2 7.8

103 × σ2
i,P 0.5 4.0 0.8 0.8

GMM estimates allowing for changes in all variances. The “dependent variable” is the one-day change in
either the nominal or real 2-year instantaneous forward rate on treasuries. The policy instrument is either
one-day changes in the 2-year nominal Treasury yield or 30-minute changes in Nakamura & Steinsson’s
“policy news” series. For the variances, i denotes the monetary policy shock and s the second shock. The
standard confidence interval is based on a t−statistic. The robust confidence interval is based on the reduced
K−test proposed in the text. Stars indicate significance from zero at the 5 or 1% levels based on the more
conservative of the two tests.

7.3 Application to IRFs

I also consider robust inference on the dynamic effects of monetary policy through IRFs.
The policy-control event-study approach of Nakamura & Steinsson is not immediately suited
to computing IRFs (which require a continuous sequence of observations for the VAR). Thus,
I consider the full time series for daily changes in the yield on 2-year nominal treasuries and
the 2-year nominal Treasury instantaneous forward rate for all trading days between January
2000 and March 2014, an extension of the Nakamura & Steinsson sample. I estimate a
VAR(1) on this data:

yt =

(
∆st

∆it

)
= A1yt−1 + ηt.

Estimation yields

Â1 =

(
−0.10 0.15

−0.16 0.18

)
.

Unsurprisingly, given weak identification, Ĥ differs from that for the main specifications; in
particular, now Ĥ12 = 0.12.

I apply the test-inversion procedure proposed in Section 6. For comparison, I compute
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Figure 5: IRF Confidence Sets

Cumulative response (in b.p.) of 2-year nominal forward rates on Treasuries to a 1 b.p. monetary policy
shock. The IRF path is computed based on the horizon-by-horizon IRF estimator (computing based on
H12 and A1 estimates from the 0th horizons results in negligible differences). A Wald 95% confidence set is
plotted, along with a bootstrap confidence interval following a block bootstrap. The collapse of the confidence
sets towards zero with the point estimate is due to the precision with which the near-zero Ah

1 values are
estimated.

two standard confidence sets. The first is a Wald confidence set using GMM and the delta
method. The second is computed using a conventional block bootstrap procedure with block
length equal to sixty days. Figure 5 plots the cumulative IRF with these 95% confidence
intervals. For the sake of clarity in the figure, the robust set is plotted as a connected
set, even though there are some “gaps” within it that can be rejected. The bootstrap set
captures the asymmetry of the robust set, not present in the Wald set. However, the Wald
and bootstrap sets are both dramatically under-sized. These results show that inference
based on non-robust confidence sets is likely to be misleading and exhibit substantial size
distortions.

8 Conclusion

This paper provides a comprehensive framework allowing researchers to conduct inference
robust to weak identification in models identified via heteroskedasticity. I describe and model
the deficiencies that can lead to such weak identification, and show that these properties can
significantly impact the reliability of standard inference in empirical data. I propose tests
to detect weak identification, allowing researchers to determine whether they ought consider
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these concerns.
I show that robust inference for a subset of the parameter vector can use smaller critical

values than those required for projection methods. Tests based on this result are consistently
well-sized, while standard tests are substantially over-sized and projection tests are highly
conservative. Given the difficult problem posed by subset robust inference in nonlinear
models, the approach taken here of deriving conditional identification results suggests an
outline for those interested in other models. I extend my results to IRFs in a way that can
also be followed for other cases of weakly-identified SVARs.

I apply these methods to the identification of monetary policy shocks, as in Nakamura &
Steinsson (2018). Daily data exhibits several symptoms of weak identification, but intraday
data strongly identifies monetary policy shocks. Daily data is frequently used in macro-
financial contexts, so this finding has implications for the design of empirical studies. It
remains to examine whether weak identification arises in lower frequency (e.g. monthly,
quarterly) data.

Following Staiger & Stock (1997), papers using IV report first-stage F−statistics to
justify instrument relevance. Up to now, this has not been possible for identification via
heteroskedasticity. I hope that it can become best practice to do so using the tests that I
provide.

34



9 Appendix

Notation

Mij denotes the ijth element of matrix M

M (j) denotes the jth column of matrix M

M(i) denotes the ith row of matrix M

vech (M) denotes the unique vectorization of matrix M

Ai denotes the matrix of coefficients corresponding to lag i of the lag polynomial
A (L)

Proof of Proposition 1

Proposition 1. Under the device (9), if ηt is ergodic and stationary within regimes, then

Ĥ12 −H12
d→ z1

dε + z2

,

(
z1

z2

)
∼ N (0, Vweak) , (20)

where Vweak is determined by the parameters of the model and distribution of the data.

Proof. The weak instruments literature models the first stage parameter, Π, as local-to-zero,
Π = C√

T
. However, the modified local-to-unity device I adopt implies a different structure,

Π = CT√
T
, where the numerator depends on T . I show that the asymptotic distribution of Ĥ12

under weak identification still takes the same form as that found in the weak instruments
literature. To derive this distribution, I examine the limit of Ĥ12−H12 itself (as opposed to√
T
(
Ĥ12 −H12

)
) as T →∞. Under the modified local-to-unity device, σ2

2,2 = σ2
2,1 + dε√

T
so
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σ2
η2,2

= σ2
η2,1

+ dε√
T
and ση1η2,2 = ση1η2,1 +H12

dε√
T
. Writing the estimator in (7) yields

Ĥ12 −H12 =
1
T2

∑
t∈R2

η1tη2t − 1
T1

∑
t∈R1

η1tη2t

1
T2

∑
t∈R2

η2
2t − 1

T1

∑
t∈R1

η2
2t

−H12

=
1
T2

∑
t∈R2

ση1η2,2 + (η1tη2t − ση1η2,2)− 1
T1

∑
t∈R1

ση1η2,1 + (η1tη2t − ση1η2,1)
1
T2

∑
t∈R2

σ2
2,2 +

(
η2

2t − σ2
η2,2

)
− 1

T1

∑
t∈R1

σ2
2,1 +

(
η2

2t − σ2
η2,1

) −H12

=
H12

dε√
T

+ 1
T2

∑
t∈R2

η1tη2t − ση1η2,1 −H12
dε√
T
− 1

T1

∑
t∈R1

η1tη2t − ση1η2,1
dε√
T

+ 1
T2

∑
t∈R2

η2
2t − σ2

η2,1
− dε√

T
− 1

T1

∑
t∈R1

η2
2t − σ2

η2,1

−H12

=

1√
T

(
H12dε +

√
T
T2

1√
T2

∑
t∈R2

η1tη2t − ση1η2,1 −H12
dε√
T
−
√

T
T1

1√
T1

∑
t∈R1

η1tη2t − ση1η2,1
)

1√
T

(
dε +

√
T
T2

1√
T2

∑
t∈R2

η2
2t − σ2

η2,1
− dε√

T
−
√

T
T1

1√
T1

∑
t∈R1

η2
2t − σ2

η2,1

) −H12

d→ H12dε + z12,2 − z12,1

dε + z2,2 − z2,1

−H12 =
H12dε + z12

dε + z2

−H12 =
z1

dε + z2

where

(
z1

z2

)
∼ N (0, Vweak). The convergence follows from a martingale central limit

theorem for each of the summations, which holds since ηt is assumed to be ergodic and
stationary within regimes. In the last line, z12 = z12,2 − z12,1, z2 = z2,2 − z2,1 , and z1 =

z12 −H12z2 to simplify the limiting distribution.

Proof of Proposition 2

Proposition 2. Under Assumption 1, H is globally identified from Ση,C and Ση,P up to
column order provided the rows of

[
diag (Σε,C) diag (Σε,P )

]
are not proportional.

Proof. The result follows directly from an argument due to Brunnermeier et al (2017). The
columns of H are the right eigenvectors of Ση,CΣ−1

η,P , corresponding to eigenvalues given
by the diagonal of Σε,CΣ−1

ε,P . Eigenvectors corresponding to unique eigenvalues are uniquely

determined, up to normalization. If no rows of
[
diag (Σε,C) diag (Σε,P )

]
are proportional,

then there are no repeated elements in Σε,CΣ−1
ε,P , so no repeated eigenvalues, and H is

uniquely determined from Ση,C and Ση,P . This is a slight modification of Proposition 3
of Sentana and Fiorentini (2001), who require the stronger condition of linear independence
of the rows of

[
diag (Σε,C) diag (Σε,P )

]
.

Proof of Proposition 3

Proposition 3. Adopting the modeling device in (17), H is asymptotically unidentified.
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Proof. I model the variance deficiency as

σ2
εi,P

/σ2
εi,C

σ2
εj,P

/σ2
εj,C

= 1 +
d√
T
.

Under this device, the ith row of
[
diag (Σε,C) diag (Σε,P )

]
is equal to

[
σ2
εi,C

σ2
εj ,P

σ2
εi,C

σ2
εj ,C

(
1 + d/T 1/2

)]
.

In the limit, for finite d, this equals
[
σ2
εi,C

σ2
εj ,P

σ2
εi,C

σ2
εj ,C

]
. However, this expression is

σ2
εiC

σ2
εjC

times the jth row,
[
σ2
εj ,C

σ2
εj ,P

]
, so the condition of Proposition 2 is violated, and only

the column space of H(i) and H(j) is identified.

Proof of Lemma 1

Lemma 1. Under Assumptions 1 & 2,

ψT (θ0) =
1√
T

T∑
t=1

(
φ̄ (θ0, ηt)

q̄ (θ0, ηt)

)
d→

(
ψφ

ψθ0

)

where ψ =

(
ψφ

ψθ0

)
is a 2 (n2 + n)-dimensional normally distributed random variable with

mean zero and positive semi-definite 2 (n2 + n)× 2 (n2 + n)-dimensional covariance matrix

V (θ) =

(
Vφφ (θ) Vφθ (θ)

Vθφ (θ) Vθθ (θ)

)
= lim

T→∞
var

[
1√
T

(
φT (θ)

qT (θ)

)]

where φT (θ) =
∑T

t=1 φ (θ, ηt) and qT (θ) =
∑T

t=1 q (θ, ηt) .

Proof. First, note that each block of φ̄ (θ0, ηt) forms a martingale difference sequence with re-
spect to Ft−1 = {η1, η2, . . . , ηt−1}. This follows from observing that the rth block of φ (θ0, ηt),
denoted φr (θ0, ηt), takes the form

1 [t ∈ Rr] (vech (ηtη
′
t)− vech (HΣε,jH

′))
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and Assumption 1.2. Then

E [φr (θ0, ηt) | Ft−1] = E [1 [t ∈ Rr] vech (ηtη
′
t) | Ft−1]− 1 [t ∈ Rr] vech (HΣε,rH

′)

=
Tr
T

(vech (Ση,r)− vech (HΣε,rH
′)) = 0

by Assumption 1. Finally, E |φ (θ, ηt)| < ∞ by Assumption 2.2, so φr (θ0) is a martingale
difference sequence. This means that, stacking the blocks, φ (θ, ηt) is a martingale difference
sequence. By Billingsley’s (1961) Ergodic Stationary Martingale Differences CLT, given
Assumption 2.1,

1√
T

T∑
t=1

φ̄ (θ0, ηt)
d→ N

(
0, E

[
φ̄ (θ0, ηt) φ̄ (θ0, ηt)

′]) .
Note that

E
[
φ̄ (θ, ηt) φ̄ (θ, ηt)

′] = lim
T→∞

1

T

T∑
t=1

var (φ (θ, ηt))

= lim
T→∞

var

[
1√
T

T∑
t=1

(φ (θ, ηt))

]
= Vφφ (θ)

as required, where the second-last equality follows from the fact that cov (φ (θ, ηt) , φ (θ, ηs)) =

0, t 6= s by Assumption 1.2 (using a similar argument to establishing the MDS property
above).

By definition, q̄ (·) = 0 deterministically; note that ∂φ(θ,ηt)
∂θ′

= −
∂
(
vech(ΣηC )

′
,vech(ΣηP )

′)′
∂θ′

=

E
[
∂φ(θ,ηt)
∂θ′

]
since it contains only parameters and no data (the moment equations are sepa-

rable in data and parameters). This is true for any θ ∈ Θ; θ need not equal θ0. Thus ψθ is
a degenerate random variable. It remains to show that V (θ) is positive semi-definite. Since
all but the top left block, Vφφ (θ), will be zeros, it suffices to show that Vφφ (θ) is positive
semi-definite. This follows as Vφφ (θ0) has the form E

[
φ̄ (θ, ηt) φ̄ (θ, ηt)

′].
Proof of Lemma 2

Lemma 2. Under Assumptions 1 & 2, the covariance matrix estimator V̂ (θ0) satisfies

V̂ (θ0)
p→ V (θ0)
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and
∂vec

(
V̂φφ (θ0)

)
∂θ′

p→ ∂vec (Vφφ (θ0))

∂θ′
.

Proof. By the Ergodic Theorem (e.g. Karlin & Taylor (1975), Theorem 9.5.5) and Assump-
tion 2, the natural covariance estimator is consistent, 1

T

∑
φ (θ0, ηt)φ (θ0, ηt)

′ p→ E
[
φ (θ0, ηt)φ (θ0, ηt)

′].
Then

V (θ0) = lim
T→∞

var

[
1√
T
φT (θ0)

]
= lim

T→∞

1

T

T∑
t=1

var (φ (θ0, ηt)) ,

by the same assumptions, which simplifies to E
[
φ (θ0, ηt)φ (θ0, ηt)

′] since cov (φ (θ, ηt) , φ (θ, ηs)) =

0, t 6= s by Assumption 1.2. Since q (θ, ηt) is deterministic, this establishes the first part of
the Lemma.

For the second part, note that ∂V̂ φφ(θ0)

∂θ′
=

∂[ 1
T

∑T
t=1 φ(θ0,ηt)φ(θ0,ηt)

′]
∂θ′

= 1
T

∑T
t=1

[
∂φ(θ0,ηt)

∂θ′
φ (θ0, ηt)

′
]
.

∂φ(θ0,ηt)

∂θ′
is a matrix of zeros, ones, and continuous functions of elements of θ; it is entirely

deterministic. Similarly, ∂V φφ(θ0)

∂θ′
= E

[
∂φ(θ0,ηt)

∂θ′
φ (θ0, ηt)

′
]

= ∂φ(θ0,ηt)

∂θ′
E
[
φ (θ0, ηt)

′], and since

E
[
φ (θ0, ηt)

′] is consistently estimated, so too is ∂Vφφ(θ0)

∂θ′
by Slutsky’s Theorem.

Proof of Theorem 1

Theorem 1. If Lemmata 1 and 2 hold,

KT (θ0)
d→ χ2

n2+n,

where KT (θ0) = 1
T
φT (θ0)′ V̂φφ (θ0)−1/2 PV̂φφ(θ0)−1/2D̂T (θ0)V̂φφ (θ0)−1/2 φT (θ0).

Proof. The result follows directly from Kleibergen (2005). Lemmata 1 and 2 establish As-
sumptions 1 and 2 from that paper, which are used to prove Theorem 1 therein. Note that
Lemma 1 and part of Lemma 2 also establish the required conditions of Stock & Wright
(2001) Theorem 2 (their Assumption A and the consistency of the covariance matrix for the
weighting matrix) so

ST (θ0)
d→ χ2

n2+n

as an immediate corollary.
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Proof of Theorem 2

Theorem 2. If Lemmata 1 and 2 hold, then under Assumption 5,

KT (β0)
d→ χ2

pint
,

where pint is the dimension of β.

Proof. As above, Theorem 2 follows directly from Theorem 2 of Kleibergen 2005. Again,
this also implies ST (β0)

d→ χ2
pint

as an immediate corollary.

Proof of Proposition 4

Proposition 3. Under Assumption 1, HI is identified from the covariance matrices across
regimes.

Proof. This follows directly from the proof of Proposition 2; columns of H corresponding to
unique eigenvalues are uniquely identified, while those corresponding to repeated eigenvalues
are not. This aligns with Sentana & Fiorentini (2001) Proposition 4.

Proof of Theorem 3

Theorem 3. Under Assumption 1, if HW contains two columns, H is conditionally identified
from the covariance matrices provided

1. A single element Hlk is fixed and Hlk 6= Hlm/Hkm for H(k), H(m) ∈ HW , or

2. The full column H(k) ∈ HW is fixed.

Proof. The proof follows from extending the argument of Proposition 4 in Sentana & Fioren-
tini (2001). They show that for a similarly partitioned H, the columns of HI are iden-
tified. However, the columns of HW are identified only up to an orthogonal rotation Q,
QQ′ = Q′Q = I. HW represents the portion of H pertaining to proportional variance pro-
cesses, and as such cannot contain just a single column. If HW contains two columns, then
Q is 2 × 2. Consider first a single fixed element of H(k), the subject of the null hypothesis
for the subset test. Without loss of generality, let it be H2k = x. This yields the system of
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equations 
1 H1m

x 1
...

...
Hnk Hnm


[
Q11 Q12

Q21 Q22

]
=


1 H̃1m

x 1
...

...
H̃nk H̃nm

 . (21)

Placing H(k) and H(m) as the first and second columns, with the associated unit normaliza-
tion, is without loss of generality, as identification is only up to scale of each column. Since
Q is orthogonal, fixing column order, Q2

11 +Q2
21 = 1. Given this and the equation

xQ11 +Q21 = x,

Q11 and Q21 can be solved for where the sign is pinned down by the unit normalization. This
yields two solutions for Q11 and Q21: {Q11 = 1, Q21 = 0} and

{
Q11 = x2−1

x2+1
, Q21 = 2x

x2+1

}
.

However, using an additional equation implied by (21), Q11 + H1mQ21 = 1, rules out the
second solution unless H1m = 1/x. Generalizing away from the case where H(k) and H(m)

are the first two columns yields the first condition of the theorem, Hkm 6= Hlm/Hlk. With
Q11 and Q21 thus pinned down, the other column of Q is unique, and thus the entirety of H
is identified.

This argument extends to the case where the entirety of H(k) is fixed. Now, however, the
solution is unique unless Hlm/Hmm = Hlk/Hmk for all l, in which case column m is a scalar
multiple of column k, making H non-invertible, which is false by Assumption 1.1. Thus, the
solution when a full column of H is specified is unique.

The restriction that HW contain at most two columns is necessary to yield conditional
identification without any assumptions on the variances. If three columns pertaining to
proportional variance processes were included, and column k’s value conditioned upon, the
remaining columns could not be distinguished.

Proof of Proposition 5

Proposition 5. Under Assumption 1, if Bh is invertible, Λh
I is identified up to scale from

the covariance matrices across regimes.

Proof. Proposition 5 follows similarly to Proposition 4 by replacing H with Λh = BhH,
where both are full-rank n× n matrices.
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Proof of Theorem 4

Theorem 4. Under Assumption 1, if Λh
W contains two columns, Λh is conditionally identified

up to scale from the covariance matrices provided

1. Bh is invertible,

2. A single element Λh
lk is fixed and Λh

lk 6= Λh
lm/Λ

h
km for Λh(k),Λh(m) ∈ Λh

W .

Proof. This follows from the proof of Theorem 3. The condition that Bh is full rank guar-
antees that, like H, Λh is full-rank, which is needed to yield Proposition 5, embedded in
the theorem. Then, H can simply be replaced in the proof of Theorem 3 with Λh. Note
that this requires a unit normalization of Λh, which is unfamiliar. However, Λh is always
normalized, at least implicitly, by any normalization applied to H. Thus, the unit normal-
ization is without loss of generality. Any identification results must similarly hold under a
different normalization, where Λh is rescaled back to the conventional BhH, where H has a
unit diagonal.

Verification of Andrews (2017) Assumptions
Andrews’ (2017) framework for weak identification relies on the necessary conditions for

his Theorem 1 being satisfied. This requires conditions on both the robust confidence sets
constructed and the non-robust confidence sets, as laid out in his Assumptions 2-6.

His Assumption 2 coincides with Lemma 1. His Assumption 3 largely coincides with
Lemma 2, requiring the consistent estimation of V (θ). It also requires consistent estimation
of the weighting matrix, which, given the focus on efficient CUE GMM in the present paper,
also follows from Lemma 2. His andAssumption 4 requires, for any draw of data, the existence
of normalizing matrices for both the Jacobian and orthogonalized Jacobian evaluated at
θ0 such that when normalized they converge to full-rank matrices. Since the Jacobian is
deterministic, it is identical to the orthogonalized Jacobian. Under strong identification, the
identity matrix serves as such a normalizing matrix; it is trivial to construct a matrix with
judiciously placed O

(
T 1/2

)
elements under the weak identification device considered here.

Unsurprisingly, if the system is unidentified, no such matrices exist.
Assumption 5 states four conditions underlying the performance of Wald tests under

strong identification. First, given the separability of φ (θ, ηt) in data and parameters, φT (θ)

converges uniformly over Θ since the sample second moments converge uniformly. Uniform
boundedness follows similarly. The third condition requires that the estimated weighting
matrix converges uniformly over Θ, which follows since W (θ) is continuous in θ and measur-
able, Θ is compact, and E

[
vech (ηtηt) vech (ηtηt)

′
]
< ∞ by Assumption 2.2. Since efficient
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CUE GMM is considered here, positive definiteness of W (θ) follows from the positive defi-
niteness of Vφφ (θ), which is established in the final point of Assumption 6 below. Finally, its
maximal eigenvalue is bounded by Assumption 2.2 and the minimal eigenvalue is bounded
away from zero since W (θ) is positive definite. The second and fourth conditions are identi-
fication requirements, ensuring the population objective is small if and only if it is evaluated
in neighbourhood of the true parameter value; these are satisfied if the system meets the
requirements for strong identification.

Assumption 6 imposes five conditions guaranteeing asymptotic normality of θ̂ under
strong identification. First, it requires that θ0 be in the interior of Θ. Second, it requires
φT (θ) and Ω̂ (θ) be continuously differentiable; the first part holds as the Jacobian is a deter-
ministic matrix of ones, zeros, and products of elements of θ, and the second part holds since
∂Ω̂(θ)

∂θ′
= 2∂φ(θ,ηt)

∂θ′
1
T
φT (θ)′ and 1

T
φT (θ) is continuous in θ. The third set of conditions, on the

Jacobian, are satisfied trivially since it is deterministic and of full rank under strong iden-
tification. supθ∈B(θ0)

∥∥∥∂Ω̂(θ)

∂θ′

∥∥∥ = Op (1) (stochastic boundedness) holds since 1
T
φT (θ) consists

of linear combinations of estimated second moments of the data (which have finite second
moments by Assumption 2.2) and multiplicative functions of θ (which are finite for θ in a
ball around θ0). For the fifth condition, since the moment function is continuous in θ and
the asymptotic variance is a continuous function of the moment function, the asymptotic
variance is continuous in θ. Thus, the covariance estimator is uniformly consistent on a ball
around θ0. Since, for all θ, Vφφ (θ) = E

[
φ (θ, ηt)φ (θ, ηt)

′] , an outer product, and φt are
linearly independent under strong identification, Vφφ (θ) is positive definite on a ball around
θ0.

Non-monotonicity of power curves

The non-monotonic behaviour between H12 = 1 and 2 is potentially surprising. Figure 6
suggests a possible explanation. Under this particular calibration, the minimum eigenvalue
of the moment covariance matrix approaches zero in this range. This matrix is assumed to
be positive definite and must be inverted to calculate the robust test statistics. The variance
of Ĥ12 also approaches zero around H12 = 1.4, where there is a kink in the Wald power
curves. As these values get closer to zero, it is natural that the rejection rate of tests based
on the inverse of the objects increase. The associated kinks in the power curves should be
viewed as calibration-specific artifacts, and not indicative of general power properties of the
tests in this context.
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Figure 6: Calibration details

Numerically calculated values for the minimum eigenvalue of the moment covariance matrix and the variance
(standard CUE GMM) of the estimator of Ĥ12 computed for various values of H12 and δ, T = 100, 000,
and 100 samples. The asymptote of the minimum eigenvalue of the moment covariance matrix, which is
assumed to be positive definite and must be inverted, may explain the unexpected behaviour of the robust
tests between values of H12 of 1 and 2. The asymptote of the variance to zero around a local alternative of
1.4 contributes to the kink in the Wald rejection rate visible in the power curves, Figure 4.
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