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Abstract 

An n-variable structural vector auto-regression (SVAR) can be identified (up to shock order) from 

the evolution of the residual covariance across time if the structural shocks exhibit 

heteroskedasticity (Rigobon (2003), Sentana and Fiorentini (2001)). However, the path of 

residual covariances is available only under specific parametric assumptions on the variance 

process. I propose a new identification argument that identifies the SVAR up to shock orderings 

using the autocovariance structure of second moments of the residuals implied by an arbitrary 

stochastic process for the shock variances. These higher moments are available without 

parametric assumptions like those required by existing approaches. I offer intuitive criteria to 

select among shock orderings; this selection does not impact inference asymptotically. The 

identification scheme performs well in simulations. I apply it to the debate on fiscal multipliers. I 

obtain estimates that are lower than those of Blanchard and Perotti (2002) and Mertens and Ravn 

(2014), but in line with those of more recent studies.  
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1 Introduction

The central challenge of structural vector autoregression (SVAR) analysis is to iden-
tify underlying structural shocks from observable VAR innovations (one-step ahead
reduced-form forecast errors). For example, an innovation to tax revenues could rep-
resent either a true tax shock or the effect of automatic stabilizers as a response to
changing macroeconomic conditions. Policy analysis centers on the relationships be-
tween structural shocks and observables. In a SVAR, the reduced-form innovations,
ηt, are expressed as a linear combination of the underlying shocks, εt: ηt = Hεt for
some contemporaneous response matrix H. Up to second moments, these equations
have a multiplicity of solutions for H; economic assumptions are generally needed
for identification. The majority of approaches use “internal instruments”, restricting
elements of H to identify the remainder. These restrictions can be short-run exclu-
sions (Sims (1980)), long-run exclusions (Blanchard & Quah (1986)), on signs (Uhlig
(2005)), or calibrated parameters (Blanchard & Perotti (2002)). More recently, “ex-
ternal instruments” have been proposed as an alternative, as in Mertens & Ravn
(2013). However, these assumptions are frequently controversial.

A smaller literature offers identification based on statistical properties of the inno-
vations. Sentana & Fiorentini (2001) and Rigobon (2003) share the important insight
that if the variances of structural shocks change over time, shocks can be identified
from the reduced-form covariances at different points in time. However, this path
of reduced form covariances is available only under specific parametric models. The
method of Rigobon fits discrete variance regimes to the data, either based on ex-
ternal information or estimation. Sentana & Fiorentini (2001) use the full path of
covariances, feasible only under models like GARCH. Generalizations have been made
to Markov switching (Lanne, Lütkepohl, & Maciejowska (2010)) and smooth tran-
sitions between regimes (Lütkepohl & Netšunajev (2017)). All of these approaches
rely on knowledge of the path of variances over time or parametric features allowing
that path to be consistently estimated, which has so far limited researchers to choose
one of the few models that can be accommodated. There is compelling evidence of
time-varying volatility in US macroeconomic aggregates, as documented by Stock &
Watson (2002), Blanchard & Simon (2001), and Jurado, Ludvigson, & Ng (2015),
so identification based on heteroskedasticity has the potential to be very useful in
practice.
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I present a new identification argument based on heteroskedasticity that does not
refer to the variance path, and thus need not make use of a particular parametric
model. If time-varying volatility is present, in any (unspecified) form, identification
follows from the autocovariance of the volatility process. Since shocks are assumed to
be uncorrelated over time, the autocovariance of squared residuals picks up only dy-
namics of the volatility process. This autocovariance furnishes equations that identify
the response matrix and the structural shocks (up to an ordering), under very general
conditions. In a simple model, the use of the autocovariance for identification can
be motivated as an instrumental variables problem. The argument is similar in spirit
to the non-Gaussian identification of e.g. Gouriéroux & Monfort (2015, 2017) and
Hyvärinen, Zhang, Shimizu, & Hoyer (2010), which uses different higher moments, but
requires assumptions on the shocks that rule out common forms of heteroskedasticity.

Identification based on time-varying volatility (TVV-ID) should be seen as an
argument establishing identification under general conditions. Indeed, it separately
establishes identification via a novel channel for the models that have previously been
shown to offer identification via heteroskedasticity (e.g. GARCH of Sentana & Fioren-
tini (2001) and regimes of Rigobon (2003)). More importantly, it gives researchers
the freedom to develop new alternative models and procedures in contexts exhibit-
ing time-varying volatility, without having to stop to establish identification from
scratch. As opposed to identification via heteroskedasticity being a model-dependent
argument, TVV-ID progresses towards a model-free argument, which researchers can
apply in ways that best suit their data.

This means that any estimator that fits an autocovariance to the variance process
can implement TVV-ID. The most natural candidate is GMM, which needs no para-
metric assumptions. However, a researcher can also use a (quasi-) likelihood using
any model that implies such an autocovariance. I compare a variety of approaches
considered in the literature with some newly-admissible based on TVV-ID. I find
that an estimator based on an AR(1) stochastic volatility (SV) model performs best
across many DGPs. I also argue that the Rigobon approach, when regimes must
be estimated (the most comparably-agnostic identification approach to TVV-ID) is
susceptible to bias.

Identification via heteroskedasticity has been widely adopted in practice. Its use
has spread from macrofinance to fields including public finance, growth, trade, po-
litical economy, agriculture, energy, education, marketing, and even fertility. This
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proliferation illustrates that there is potential value in freeing applied researchers
from the strict parametric models they have been required to use, and understanding
any limitations of such models. The full flexibility offered by TVV-ID also shows that
macro models including time-varying volatility are often estimated without realizing
and exploiting its implications for identification. For example, Primiceri (2005) as-
sumes a triangular H matrix when his volatility model means doing so unnecessarily
restrictive.

As an empirical application, I use TVV-ID to estimate fiscal multipliers and test
previous identifying assumptions from the literature.1 The multipliers I estimate are
lower than those of Blanchard & Perotti (2002) or the comparative study of Mertens
& Ravn (2014). I show that the narrative tax shocks often used for identification may
not pass standard tests for validity. I reject the key parameter, the elasticity of tax
revenues to output, obtained by both and obtain a value, 1.58, in line with Follette &
Lutz’s (2010) estimate based on institutional data. My multipliers accord with recent
estimates of Caldara & Kamps (2017) and Ramey & Zubairy (2018).

The remainder of this paper proceeds as follows. Section 2 describes the identi-
fication problem in detail and presents the theoretical results. Section 3 addresses
the interpretation of results from TVV-ID. Section 4 compares of implementations of
TVV-ID and other identification schemes in simulation. The empirical application
follows in Section 5. Section 6 concludes.

2 Identification theory

In the canonical SVAR setting, a vector of innovations, ηt, is composed of unobserved
structural shocks, εt, via a response matrix, H. More broadly, this represents a
decomposition problem. ηt is n× 1, obtained from a reduced-form model, or directly
observed. For example, a structural vector auto-regression (SVAR) based on data Yt

1I have considered numerous other empirical applications. To summarize key results, I find
that the recursive structure of Bernanke, Boivin, & Eliasz (2005) can be rejected, causing the
price puzzle to return, and promoting other surprising behaviour at the contemporaneous horizon;
the recursive structure of Kilian (2009) summarizes the data well (assumed zeros correspond to
precisely estimated zeros); in Kilian & Park (2009) the zeroes assumed in the asset column of
the contemporaneous response matrix are at odds with point estimates, but cannot be rejected;
the assumptions of Blanchard & Quah (1989) are borne out strongly by TVV-ID; the exogeneity of
uncertainty assumed in Bloom (2009) can be rejected, and the shapes of key responses to uncertainty
shocks change somewhat.
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would yield A (L)Yt = ηt. Similarly, εt is n× 1, so H is n× n. Thus,

ηt = Hεt, t = 1, . . . , T, (1)

leaving H and, equivalently, εt, to be identified. Alternatively, (1) describes a fac-
tor model, for example. I present a simple example under special assumptions to
outline the identification problem and how heteroskedasticity may solve it. I then
derive a representation of higher moments of the reduced-form innovations to serve
as identifying equations. The following section establishes conditions under which
these equations have a unique solution. I discuss possibly restrictive assumptions and
the relation to previous approaches.

2.1 Intuition for the use of heteroskedasticity

Before the impact of heteroskedasticity can be illustrated, assumptions underlying
Equation (1), are required.

Assumption 0. (temporary) For all t = 1, 2, . . . , T,

1. Et [εtε
′
t | σt] = diag (σ2

t ) ≡ Σt (σt is the conditional variance of the shocks),

2. σt is a fourth-order stationary strictly positive stochastic process,

3. E [Σt] = Σε,

4. Shocks satisfy conditional mean independence, E [εit | ε−is] = 0 for all i, all
t, s = 1, 2, . . . T,

5. H is time-invariant, invertible, with a unit diagonal normalization.

The fourth point substitutes conditional mean independence for the usual slightly
weaker uncorrelated shocks assumption. While the variance of shocks may change,
fixing H means that the economic impact of a unit shock remains the same. It is
natural to seek to identify H from the overall covariance of ηt, E [ηtη

′
t] = Ση. However,

it is well-known that these equations can only identifyH up to an orthogonal rotation,
Φ (ΦΦ′ = I).2

2Observe Ση = HΣεH
′ = (HΦ) (Φ′ΣεΦ) (HΦ)

′
= H∗Σ∗εH

∗′ , where H∗ = HΦDH,Φ and Σ∗ε =
D−1
H,ΦΦ′ΣεΦD

−1
H,Φ, with DH,Φ the matrix that unit-normalizes the diagonal of HΦ. This means that
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Variation in Σt may allow the researcher to overcome this. Consider a simple two-
variable example, where one structural variance is time-varying and the other is fixed.
This admits the simplest form of the Rigobon approach, which yields closed form
solutions for H (see e.g. Nakamura & Steinsson (2018)). Without loss of generality,
assume σ2

2t changes and σ2
1t ≡ σ2

1, constant. Denote

σ2
t =

[
σ2

1

σ2
2t

]
, H =

[
1 H12

H21 1

]
.

The conditional variances of the reduced-form innovations are given by Et [ηtη
′
t | σt] =

HΣtH
′. Given two subsamples, A,B, containing the sets of time points TA, TB, it is

shown by Nakamura & Steinsson (2018) (and in the Supplement) that

ETA [η1tη2t]− ETB [η1tη2t]

ETA [η2
2t]− ETB [η2

2t]
=
H12∆ (σ2

2t)

∆ (σ2
2t)

= H12. (2)

where the ∆ (· ) operator represents the difference in expectation of the argument
between subsamples TA, TB. Assuming that ∆ (σ2

2t) 6= 0, H12 can thus be identified in
closed form. σ2t need only have finite second moments for all t ∈ TA, TB. While the
Rigobon identification scheme is motivated by a regime-based process, identification
holds even when misspecified, provided ∆ (σ2

2t) 6= 0, and σ1 is indeed fixed. If there are
regimes, they need not be known or correctly specified, as noted in Rigobon (2003).
However, if the value of the σ2t process is instead constant, ∆ (σ2

2t) would be zero in
population, and identification fails.3

Rigobon’s approach provides moment conditions based on means of the variance
process, which can yield identification for many processes, but arguments are possible
using other moments. Across periods, there is motivation for an instrumental variables

the pairs (H,Σε) and (H∗,Σ∗ε) are observationally equivalent. Alternatively, note that due to the
symmetry of Ση, it offers n (n+ 1) /2 equations, but there are n2 unknowns. This is the fundamental
identification problem posed by the SVAR methodology and indeed many related models (e.g. factor
models).

3In this case, if regimes are instead estimated from the values of ηt, the resulting estimates of
∆
(
σ2

2t

)
are not zero in population since regime selection is driven by realized shock values, but this

source of variation results in bias, as discussed in Section 4.
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approach. Noting

η2tη1t = H21ε
2
1t +H12ε

2
2t + ε1tε2t +H12H21ε1tε2t,

η2
2t = H2

21ε
2
1t + 2H21ε1tε2t + ε2

2t,

it is clear that H12 would be identified from the ratio of the H12ε
2
2t and ε2

2t terms.
This is not possible as only the values of ηt are observed, and not their separate
components. However, a lagged value of η2

2t can be an instrument for ε2
2t. Note

cov
(
η2tη1t, η

2
2(t−p)

)
cov
(
η2

2t, η
2
2(t−p)

)
= H12, cov

(
ε2

2t, ε
2
2(t−p)

)
,= cov

(
ε2

2t, ε
2
2(t−p)

)
,

by Assumption 0.4 and the fact that σ1 is fixed. H12 is then identified in closed form:

cov
(
η2tη1t, η

2
2(t−p)

)
cov
(
η2

2t, η
2
2(t−p)

) =
H12cov

(
ε2

2t, ε
2
2(t−p)

)
cov
(
ε2

2t, ε
2
2(t−p)

) = H12. (3)

This is the familiar IV estimator, where the dependent variable is η2tη1t, the endoge-
nous regressor is η2

2t, and the instrument is η2
2(t−p). This works because the previous

value η2
2(t−p) is uncorrelated with all period t terms except those containing ε2

2t. The
argument applies for any lag, p. σ2t is assumed to be fourth-order stationary (for
expositional simplicity) and E [ε4

2t] <∞. Identification holds provided

cov
(
ε2

2t, ε
2
2(t−p)

)
6= 0

for some p.
This requirement that the pth autocovariance of η2

2t is non-zero is satisfied by a
variety of processes for σ2

2t. If the true process is stochastic regime-switching, it follows
from the non-zero autocovariance around break dates. In a SV model, it holds if the
AR coefficient is non-zero. In a GARCH model at least one of the auto-regressive
parameters must be non-zero. This is the crux of TVV-ID: given the structure of the
autocovariance of ηtη′t, comparing elements of the autocovariance (in this simple case,
via a ratio) identifies the columns of H.

This flexibility of identification – independent of specification – is not shared by the
existing approaches. I have made no assumptions about whether the heteroskedas-
ticity is conditional or unconditional (either can imply a suitable autocovariance).
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Figure 1: Distribution of AR(1) coefficients of η2
t

Time series ηt are obtained as reduced-form innovations from AR(12) processes fitted to each of
McCracken & Ng’s 128 FRED-MD monthly time series. The figure displays the distribution of the
implied AR(1) coefficients of η2

t .

Section 4 demonstrates that the performance of both the Sentana & Fiorentini and
Rigobon approaches suffer under misspecification of the parametric model. In con-
trast, in this example, I have required that the stochastic process is stationary and
exhibits some degree of persistence.

Empirically there is strong evidence of such persistence, as discussed in Jurado et al
(2015), for example. Figure 1 displays AR(1) parameters of η2

t , where ηt are residuals
of AR(12) models fitted to each series McCracken & Ng’s FRED-MD database in
turn. I reject the null hypothesis of zero autocovariance at the 1% level for 96 of the
128 series, 5% for 98, and 10% for 101. A Ljung-Box test, as in Lanne & Saikkonen
(2007), for lnT autocovariances rejects homoskedasticity at the 1% level for 100 of
the series and the 5% level for 103. The identifying condition is frequently satisfied
empirically.

Multiple autocovariances can easily be combined; each yields moments of the form

cov
(
η2tη1t, η

2
2t−p
)
−H12cov

(
η2

2t, η
2
2t−p
)

= 0

which can be stacked to yield an overidentified GMM problem. Alternatively, it might
be natural to assume that the variances follow some loose parametric form, like an
AR(1), and let this imply the whole series of autocovariances.
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2.2 Identification via time-varying volatility

To this point, I have made strong assumptions to assist intuition. I now relax them
and develop TVV-ID in its general form. Again, let

ηt = Hεt, t = 1, 2, . . . T.

Write Ft−1 to denote ε1, . . . εt−1 and σ1, . . . σt−1. I replace Assumption 0 with As-
sumption A:

Assumption A. For every t = 1, 2, . . . , T,

1. Et (εt | σt,Ft−1) = 0 and Vart (εt | σt,Ft−1) = Σt,

2. Σt = diag (σ2
t ) , σ

2
t = σt � σt,

3. Et [σ2
t ] <∞.

In addition, I make a preliminary assumption on H:
Assumption B. H is time-invariant.

By explicitly conditioning on σt, these assumptions cover both SV and auto-
regressive conditional heteroskedasticity-type (ARCH) models (where σt is a function
of ε1, . . . εt−1), amongst others , including unconditional heteroskedasticity.

Decomposition

To obtain moments in terms of just H and the underlying volatility process, I work
with a transformation of ηt, (ζt, see below ), as my basic data. I begin by writing the
decomposition,

ηtη
′
t = HΣtH

′ + Vt, Vt = H
(
εtε

′

t − Σt

)
H ′,

where σ2
t is unknown. Define L to be an elimination matrix, and G a selection matrix

(of ones and zeros), see e.g. Magnus & Neudecker (1980).4 Then

ζt = vech (ηtη
′
t) = vech (HΣtH

′) + vech (Vt)

= L (H ⊗H) vec (Σt) + vt, vt = vech (Vt) (4)

= L (H ⊗H)Gσ2
t + vt, (5)

4This means vech (A) = Lvec (A) and vec (ADA′) = (A⊗A)Gd where d = diag (D).
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The simplification from (4) to (5) in the first term is surprising and follows due to
the diagonality of Σt using A.2. This feature plays a key role in properties estab-
lished later. From the definition of Vt, A.1, A.3, and B, Et [Vt | σt,Ft−1] = 0, so
Et [vt | σt,Ft−1] = 0 and

Et [ζt | σt,Ft−1] = L (H ⊗H)Gσ2
t .

This provides a signal-noise interpretation for the decomposition of the outer product
ηtη
′
t. It follows from A.3 that I can integrate over Σt to obtain Et [vt | Ft−1] = 0 and

similarly that Et [|vt|] <∞. Therefore vt is a martingale difference sequence.

Properties of ζt

Coupled with the decomposition derived above, Assumption C expands on A.3 to
establishuseful properties of ζt = vech (ηtη

′
t).

Assumption C. For every t,

1. Vart (σ2
t ) <∞,

2. Vart (εtε
′
t) <∞.

Using these additional assumptions, the autocovariance of ζt has a convenient form:

Proposition 1. Under Assumptions A.1-2, B, & C,

Covt,s (ζt, ζs) = L (H ⊗H)GMt,s (H ⊗H)′ L′, t > s (6)

where

Mt,s = Et,s

[
σ2
t σ

2′

s

]
G′ + Et,s

[
σ2
t vec (εsε

′
s − Σs)

′]− Et [σ2
t

]
Es

[
σ2′

s

]
G′.

This equation represents an “observable” quantity, Covt,s (ζt, ζs), as a product of
H and the n × n2 Mt,s (composed of moments of the underlying variance process).
If Et,s

[
σ2
it

(
εsε

′
s − Σs

)]
is diagonal (any ARCH effects come from own past shocks),

Mt,s can be replaced with M̃t,sG where M̃t,s is only n× n.
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An autocovariance of the vectorization of ηtη′t can thus be expressed as just a
product of H, a nuisance matrix, and known matrices of zeros and ones. This is
remarkably parsimonious for what is a covariance of random matrices. Note that
stationarity has not been assumed, merely the existence of higher moments. All of
the expectations used are well-defined for an object at a particular point in time, even
if the distribution might be different at another point in time. A single autocovariance
provides (n2 + n) /2× (n2 + n) /2 equations in 2n2−n unknowns, it remains to show
that this system of equations has a unique solution.

Uniqueness

Having derived a set of equations of adequate order to identify H, it remains to
show that they yield a unique solution. I strengthen the assumptions on H from
Assumption B:

Assumption B’. H is time-invariant, invertible, with a unit diagonal.5

Given Assumption B’, the conditions under which equation (6) yields a unique
solution for H are established by Theorem 1.

Theorem 1. Under Assumptions A.1-2, B’, & C, equation (6) holds. Then H and
Mt,s are jointly uniquely determined from (6) (up to labeling of shocks) provided
rank (Mt,s) ≥ 2 and Mt,s has no scalar multiple rows.

Theorem 1 states that (under certain conditions) Equation (6) will yield a unique
solution for the relative magnitudes of elements in each column of H. The solution
is unique up to column order, given the unit-diagonal normalization. However, there
are n! column orderings. The same is true for shocks identified via non-Gaussianity
(Lanne & Lütkepohl (2010), amongst others), many implementations of the Rigobon
approach, or identification in finite mixture models, and is discussed in Chapter 14
of Kilian & Lütkepohl (2017). In some cases, the labeling of shocks is unnecessary
(as in factor models), and identification is complete, but for policy analysis labeling
is required, as discussed in Section 3.

The identification argument is based on period specific moments – an autocovari-
ance between s, t – so stationarity has not been assumed. However, in practice, for the

5The unit diagonal assumption is a normalization, without loss of generality.

10



identifying moments to be feasible in standard settings, fourth-order stationarity of σt
or εt is generally needed so that the moment (6) can be consistently estimated across
the full sample. In contrast, for the Sentana & Fiorentini (2001) argument to become
implementable (and consistently estimable), a functional form akin to GARCH must
be assumed.

Crucially, unlike previous approaches, Theorem 1 does not require knowledge of
the path of Σt. The conditions impose interpretable restrictions on the dimension
of the process σ2

t . Jurado et al (2015) find that there are strong idiosyncratic com-
ponents in time-varying volatility that cannot be explained by common factors, sug-
gesting these assumptions are likely to hold. The rank condition is analogous to the
requirement in Rigobon identification that the two regimes do not evolve proportion-
ally. In a SV model, Mt,s is just the autocovariance of σ2

t and the rank assumption
is satisfied if the stochastic process σ2

t has at least two linearly independent dimen-
sions. For instance, the elements of σ2

t cannot all depend linearly on a single common
factor and idiosyncratic i.i.d. noise. If this were the case, (6) could be rewritten as
vech (HΛH ′) vech (HΛH ′)′ for some diagonal Λ, the square of original SVAR identifi-
cation problem. However, if one variance depends nonlinearly on the common factor,
the rank condition holds.

When n > 2, Mt,s must also satisfy a scalar multiple condition. This requirement
is weaker than a full-rank assumption. The most obvious violation occurs if two
variances are proportional. It is best regarded as a technical assumption pertaining
to a pathological case where the linear algebra arguments guaranteeing uniqueness
break down. In practice, there is little reason to think this condition will be violated;
rather, it is more likely to lead to a weak identification problem if nearly violated.
The Supplement offers a brief survey of weak identification in non-linear models.
Nevertheless, In some finance settings, see eg. Campbell, Giglio, Polk, & Turley
(2017), many volatilities are assumed to move proportionally. If such assumptions
are merely approximations to the truth, then weak identification could result. If
they are literally true, it is helpful to understand what can still be identified, which
motivates the next result.

Even if the scalar multiple condition were to fail, identification is still possible for
those columns of H unaffected, as shown by Corollary 1.

Corollary 1. Under Assumptions A.1-2, B’, & C, equation (6) holds. Then H(j) is
identified from (6) provided rank (Mt,s) ≥ 2 and Mt,s contains no rows proportional
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to row j.

The dimensionality and scalar multiple assumptions in Theorem 1 can be relaxed
further by supplementing additional equations. If, for example, the (often highly
informative) mean

Et [ηtη
′
t] = Et [ζt] (7)

is considered, Theorem 1 can be replaced with Theorem 2.

Theorem 2. Under Assumptions A.1-2, B’, & C, equation (6) holds. Then H is
uniquely determined from (6) and (7) (up to labeling of shocks) provided

[
Mt,s Et [σ2

t ]
]

has rank ≥ 2 and no scalar multiple rows.

Theorem 2 requires that, in order for identification to fail, a scalar multiple as-
sumption also relate Et [σ2

t ] toMt,s. Similar arguments can be made, adding in further
observable moments, requiring progressively more extensive scalar multiple deficien-
cies for identification to break down. Corollary 1 can also be extended using the logic
of Theorem 2.

Overidentification and Assumption B’

Even for n = 2, (6) is overidentified, with the degree increasing in n. Tests exploiting
overidentification can be conducted in contrast to most other identification schemes,
where strong assumptions are required to yield even a just-identified model. Mean-
ingful modeling assumptions that such tests could highlight are invertibility and that
H is stable. A growing literature considers issues surrounding invertibility or nonfun-
damentalness, see Chapter 17 of Kilian & Lütkepohl (2017) for a review. In short, if
there is not an invertible mapping between ηt and εt, the model cannot be identified.
In practice, invertibility must almost always be assumed unless the VAR is modified,
for example to allow for MA components (the recent work of Chahrour & Jurado
(2017) discusses some exceptions).

While TVV-ID focuses on the instability of the variances of structural shocks, H is
assumed fixed. While this may seem inconsistent, there are several points to consider.
No existing identification scheme flexibly handles time-varying H (Carreiro, Clark &
Marcellino (2017) and Angelini, Bacchiocchi, Caggiano, & Fanelli (2018) do so under
specific functional forms). Even simple identification based on Cholesky structure,
when the true structure is Cholesky, does not identify a known moment of H if H is
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time-varying. Compared to other schemes that assume time-varying volatility, such
as Rigobon (2003) (which already uses subsamples), TVV-ID is in a better position
to consider sub-sample estimation to evaluate the stability of H over time. Allowing
H to vary presents an interesting econometric problem, which is a prominent part of
an ongoing research agenda. However, even if H varies, provided it does so at a slower
rate than the variances, identification may still hold; H will be locally stationary over
intervals over which the variances are not. Theoretical work has embraced this; for
example, Barro & Liao (2017) split volatility into short-run and long-run components,
with agents’ behaviour driven by the slower moving component. Should a researcher
remain worried about the assumption of a fixed H, tests of overidentifying restrictions
remain an option. Further, Andrews (1993) develops tests for parameter instability in
a GMM context, for example the sup-Wald test, the conditions for which are satisfied
for a variety of time-varying volatility models.6

Connection to signal processing and identification via non-Gaussianity
TVV-ID is closely related to the signal processing literature, where the volatilities
of εt are signals and ηt noisy measurements. This problem appears in relation to
medical devices such as electroencephalograms, (see Blanco & Mulgrew (2005)) and
earthquake detection (Bharadwaj, Demanet, & Fournier (2017)). The extensive work
of Hyvärinen and co-authors (see e.g. Hyvärinen, Karhunen, & Oja (2001)) consid-
ers the model as a signal extraction problem, developing variants of the Independent
Components Analysis approach to exploit non-Gaussianity. This research also ex-
ploits higher moments – but central moments (or cumulants) – whereas, motivated
by heteroskedasticity – I focus on moments involving past values. Identification via
non-Gaussianity is growing in prominence in economics (e.g. Gouriéroux & Mon-
fort (2015, 2017)). In principle, non-Gaussianity encompasses heteroskedasticity, as
time-varying volatility makes shocks unconditionally non-Gaussian. However, identi-
fication via non-Gaussianity requires that, for i 6= j, shocks εit and εjt be mutually
independent, not just orthogonal. This rules out dependence in higher moments, and

6The less-familiar assumptions needed in Andrews (1993), those of Near-Epoch Dependence
(NED), can be replaced by stronger properties that hold for both GARCH and SV processes. Lind-
ner (2009) shows that GARCH satisfies β-mixing (and thus α-mixing with exponential rate) and
Davis & Mikosch (2009) show that SV models inherit the mixing properties of the log-variance pro-
cess. Andrews’ (1983) results show that an AR(1) variance process is α−mixing with exponential
rate. These mixing properties can be shown to imply NED; see Davidson (1994) Chapter 17 for
additional background.
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thus any correlation in volatility across shocks, restricting the forms of heteroskedas-
ticity that can be accommodated.

2.3 Nesting the existing approaches

TVV-ID holds in virtually any case where previously developed identification schemes
apply. While Proposition 4 of Sentana & Fiorentini (2001) shows that the presence
of time-varying volatility is sufficient to identify this model, conditional on the path
of variances, TVV-ID demonstrates that knowing the values the variance takes is not
necessary for identification. Sentana & Fiorentini’s ability to apply their result is
restricted by the need to know the path of HΣtH

′ for t = 1, ..., T . Generically, only
the noisy ηtη′t = Hεtε

′
tH
′, not the moments on which the argument rests, HΣtH

′, are
available to the researcher, or meaningfully estimable. This means that to apply the
result a functional form must be assumed that allows the variance path to be recovered
deterministically from a single realization of η1:T , H, and the GARCH parameters.
To this point, the only class proposed to do so is GARCH, by Sentana & Fiorentini,
where σ2

t is directly recoverable from past values of σ2
t and ε2

t . While misspecification
is often an issue for estimation, it is concerning for identification to rest on functional
form in such a knife-edge way. However, the GARCH model is nested by the TVV-ID
identification argument, using unconditional moments, as the (stationary) GARCH
process clearly implies a suitable collection of matricesMp for autocovariance p.7 The
one exception is models with a single dimension of heteroskedasticity, when TVV-ID
fails but the Sentana & Fiorentini approach could identify one column of H.

In a recent paper, Bertsche & Braun (2018) estimate a stochastic volatility model
for a SVAR, motivated by the identification result of Sentana & Fiorentini (2001).
However, such an argument cannot alone identify the model in a meaningful sense, as
it relies on moments cannot be well-estimated (the covariance of innovations period-
by-period). On the basis of TVV-ID though, their model is clearly identified from
the unconditional moments in (6).

Rigobon’s (2003) approach simplifies Sentana & Fiorentini’s argument to use the
unconditional variances of two (or more) discrete variance regimes. If regime dates
can be discerned using external information or estimation, then these moments are
feasible based on the data. While within a regime there is zero autocovariance in

7Milunovich & Yang (2013) offer a (local) identification argument for the GARCH model based
on reduced-form moments, more similar to the TVV-ID approach.
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the volatilities, at each transition there is non-zero autocovariance. Thus, provided
regime switches occur in the data, TVV-ID also establishes identification. As above,
an exception occurs if only one variance changes, in which case the Rigobon scheme
works but TVV-ID does not. If switches are very infrequent, it may also be the case
that identification offered by TVV-ID is weak. Conversely, I argue below in Section
4.1 that the Rigobon scheme faces its own challenges when regimes are estimated –
regimes are endogenous with respect to the structural shocks.

The fact that, in general, TVV-ID nests these approaches underscores its flexibility
as a general identifying argument. Indeed, it empowers researchers to specify new
models or approaches, secure in the knowledge that identification will follow provided
there is time-varying volatility that exhibits autocovariance. This freedom allows
models to be well-tailored to the data at hand on a case-by case basis, and means
that heteroskedasticity can be exploited in contexts where neither GARCH nor a
regime model would be satisfactory.

3 Interpreting results

Having identified H through TVV-ID, it is frequently still necessary to label the
resulting structural shocks, or, equivalently, the columns of H. Kilian and Lütke-
pohl (2017) discuss how there may in fact be some difficulty in interpreting these as
economically meaningful shocks, given the purely statistical methods used to derive
them; this step helps to develop such interpretations. I discuss how labeling can pro-
ceed, argue that it does not impact asymptotic inference on H, and highlight how
transparent the impact of economic assumptions can be. I sketch how labeling might
proceed based on several familiar assumptions below:

– If a recursive structure is thought a reasonable approximation to the truth,
the columns of H can be ordered to minimize the norm between the relevant
elements and zero. This lets the data dictate more realistic near -zeros instead of
assuming sharp zeros. Similar analogs exist for Uhlig’s (2005) sign restrictions,
or Blanchard & Quah’s (1989) long-run restrictions.

– Imposing a restriction on a column of interest labels that column ex ante (as
does restricting n−1 columns). This approach is adopted in Lanne & Lütkepohl
(2010).
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– Any aspect of the dynamics of the variance processes can be used to choose be-
tween shocks. This can be unconditional or with reference to historical episodes
(as is frequently done with the Rigobon approach).

– A forecast error variance decomposition can label H by supposing that within
a period, the majority of unpredictable variation in a particular series is driven
by a certain type of shock.

– If an external instrument exists, as described by Stock (2008), the shock that
is its best predictor can be selected.

– Certain magnitudes of responses can be ruled out as implausible. This is often
very helpful in practice, as columns with relatively small elements can produce
stark results under some labelings.

– Plotting IRFs for the recovered shocks and attempting to name the shocks based
on the dynamics is also an option, as in Brunnermeier, Palia, Sastry, & Sims
(2017).

– Comparison to the historical record (events when shocks of certain size or sign
should have occurred, as in Ludvigson, Ma, & Ng (2018)) can label shocks.

It is important to note that some consider the interpretation of shocks recovered using
statistical identification methods (like identification via heteroskedasticity) to be a
more difficult problem. Kilian & Lütkepohl (2017) argue that these shocks need not
be economically meaningful. The labeling exercise outlined above does not, however,
necessarily assume the shocks are meaningful - it is possible that no shock meets a
theoretically-motivated labeling criterion satisfactorily. A researcher so concerned can
test whether a statistically-recovered shock represents a particular economic shock by
formally testing conventional identifying assumptions as overidentifying restrictions.
An alternative is to informally evaluate the extent to which the impulse response
functions (IRFs) align with those based on economic theory, as in Brunnermeier et al
(2017) or Lütkepohl & Netšunajev (2014). While the labeling problem may be non-
trivial, TVV-ID improves on existing approaches by delivering the candidate shocks
under weaker assumptions.

Importantly, inference approaches that are valid for an estimated Ĥ will also
be valid for a labeled column of Ĥ, denoted Ĥ(j), under standard conditions. In
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general, the use of statistical measures to select a column of an estimated matrix will
impact the asymptotic distribution of the ultimate column estimates. However, for all
methods described that select a unique shock, the labeling criterion is consistent in the
probability limit sense. This means that as T → ∞, the probability of selecting the
correct column based on the criterion approaches unity. Pötscher (1991) establishes
asymptotic distributions in a discrete model selection setting building on intuition
dating back to at least Geweke & Meese (1981). The strong notion of consistency of
the labeling criterion in this context makes it direct to show that a strong form of
Pötscher’s results hold. This means that the if a labeling method is consistent, and
the asymptotic distribution of Ĥ is known, the selected column Ĥ(j) simply inherits
that asymptotic distribution. In other words, the labeling problem can be ignored for
the purpose of asymptotic inference.

A further advantage of statistical approaches to identification, which include TVV-
ID, is that it is straightforward to describe the impact of economic assumptions quan-
titatively. Because they are used for discrete decisions – one shock or another is the
policy shock – it is possible to report and compare estimated economic effects under
alternative labeling assumptions. In numerous empirical applications considered, a
large number of labeling assumptions agree on the policy shock. Reporting this makes
a single result compelling to readers believing any of that collection of assumptions.

4 Estimators and performance

The strengths of TVV-ID is that it is an identification argument not tied to any model
or estimator. It can thus be implemented by any estimator that fits an autocovariance
of the residuals to the data. This can either be explicit – in the case of GMM
on equation (6) – or implicit, in the case of many likelihood models. This is in
contrast to the Sentana & Fiorentini or Rigobon arguments, which require either
a GARCH-type model or regimes, respectively. This means that a researcher can
choose a completely non-parametric approach (GMM), whatever model she thinks
best describes the data (quasi-maximum likelihood, QML), or compare a variety of
different models for robustness.

As noted briefly above, while identification does not require stationarity, in order
for all of the estimators considered here to be well-behaved, Some degree of station-
arity must be assumed. In the case of GMM, for example, εt must be fourth-order
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stationary so that the identifying moments (6) can be consistently estimated. In an
SV model, log σ2

t must be second-order stationary so the parameters of the SV process
governing the autocovariance can be consistently estimated.

While GMM is the natural, entirely non-parametric implementation of TVV-ID,
the higher moments used for identification can be very noisily estimated in realisti-
cally short macro time series. This motivates turning to likelihood approaches, which
make parametric assumptions in exchange for possible efficiency gains. QML is a
natural way to incorporate the identifying information of multiple autocovariances,
implied by a functional form. The drawback of any likelihood-based approach is
the necessity of specifying a law of motion for the structural variances; to some ex-
tent this may seem a return to parametric assumptions this paper set out to avoid.
However, thanks to the general identification arguments offered above, identification
is not tied to a particular functional form. In particular, the SV model is a com-
mon, highly flexible model of time-varying volatility very popular in the financial
econometrics literature, where much work has compared its ability to describe the
data with GARCH and other models (e.g. Diebold & Lopez (1995), Kim, Shephard,
& Chib (1998), Barndorff-Nielsen & Shephard (2002)). There is reason to believe
it could at least be a competitor to GARCH-based approaches. Bertsche & Braun
(2018) adopt the model to estimate a SVAR under heteroskedasticity (without the
theoretical justification offered by TVV-ID), and find it performs well in simulation.
Carriero, Clark, & Marcellino (2018) use it to capture time-varying volatility in an
SVAR (identification follows from particular model features), as do many Bayesian
applications (e.g. Uhlig (1997), Primiceri (2005)).

In this section, I put the three heteroskedasticity-based identification schemes
discussed in this paper, as well as identification based on non-Gaussianity, to the
test. I consider several different implementations in simulation studies based on a
wide range of DGPs. The DGPs are empirically calibrated from a bivariate SVAR
(using an AR(1) SV model) where the two variables are the first principal component
extracted from the McCracken & Ng FRED-MD database and the Fed Funds rate.
For each further volatility process, the model is estimated for the structural shock
series resulting from the AR(1) SV estimates. The H matrix used in the simulations
is

H =

[
1 0.298

0.033 1

]
.
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Table 1: The presence of off-diagonal elements
E [ε1tε2t | t ∈ T ] E [ε1tε2t | t ∈ A] E [ε1tε2t | t ∈ B]

H = I2 -0.001 -0.002 0.000

H =
(
[1, 1]′ , [1, 1]′

)
-0.001 0.414 -0.415

The table computes the conditional expectations noted via simulation. The variance matrix is I2 for 500,000 obser-
vations and

(
[1, 0]′ , [0, 2]′

)
for 500,000. The data is split into subsamples based on the trace of ηtη′t. A is the subset

of observations with trace above the median; B is A’s complement.

Values of the parameters for the volatility models can be found in the Supplement.

4.1 Bias and sensitivity in the Rigobon model

First, I highlight a source of bias in the Rigobon model heretofore unaddressed in
the literature. Rigobon (2003) shows that estimates are robust to misspecification
of regimes, but the implicit assumption is made throughout the literature that the
structural shocks are orthogonal within each regime. However, when regimes must
be estimated, this is likely not the case. Since realized values of ηtη′t (and thus εtε′t)
are used to determine regimes, besides being based on the values of σt, the estimated
regimes are also partially driven by realized values of εt. Which values are conducive
to a “high” vs. “low” determination will depend on the norm considered and also the
value of H. This means that conditional on being in the high or low variance regime,
εt may no longer be orthogonal, since the regimes are in effect endogenous.

A simple numerical example demonstrates this phenomenon in Table 1. 500,000
draws are taken from each of two variance regimes (I2 and

(
[1, 0]′ , [0, 2]′

)
) for two

different H matrices. Regimes are determined from the median of tr (ηtη
′
t). For

H = I2, the shocks in each regime remain orthogonal, since the cross-term ε1tε2t does
not impact the trace. However, for H a matrix of ones, the cross-term ε1tε2t matters
just as much as the diagonal terms, and the shocks are strongly correlated (either
positively or negatively) within regimes, while remaining orthogonal overall.

A lack of orthogonality within the sub-samples biases estimates of H. Consider
the 2-dimensional case. When orthogonality holds, E [ε1tε2t | t ∈ A] = 0, where A is
one of the regimes, so

σ2
η1,A

= E
[
ε2

1t | t ∈ A
]

+H2
12E

[
ε2

2t | t ∈ A
]

= c1 +H2
12c2.
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Without orthogonality,

σ2
η1,A

= E
[
ε2

1t | t ∈ A
]

+H2
12E

[
ε2

2t | t ∈ A
]

+ 2H12E [ε1tε2t | t ∈ A]

= c1 +H2
12c2 +H12c3,

which includes an additional unknown, c3. It is clear that assuming c3 = 0, as the
literature does, biases estimates. Alternatively, the Rigobon argument, which yields
just-identification with two regimes, is now under-identified if c3 must be determined.

This issue is clearest in the Brunnermeier et al (2017) version of the Rigobon
argument. If SA = HΣAH

′ where ΣA ≡ E [εtε
′
t | t ∈ A] and similarly for B, then

SAS
−1
B = HΣAΣ−1

B H−1.

If ΣAΣ−1
B is diagonal, then those diagonal elements are the eigenvalues of the matrix

on the right hand side, and the columns of H are the corresponding right eigenvectors.
However, if ΣA,ΣB, and thus ΣAΣ−1

B are not diagonal, then the diagonal elements are
not the eigenvalues of the matrix, and the columns of H are not the eigenvectors.

This problem is likely to manifest if the true variance process is continuous. With
many small variance changes, the determination of regimes, on the margin, can be
strongly affected by off-diagonal values of Σt. In practice, regimes are usually esti-
mated based on a norm of ηtη′t calculated over some rolling window. A researcher
faces a trade-off: longer windows mean that the periods around regime transitions,
where non-orthogonality is likely most influential, are less important. On the other
hand, longer windows (particularly if there is continuous variation in volatility) can
lead to weak identification (as all regimes converge to the population mean of ηtη′t.
A Markov switching likelihood model can explicitly require orthogonality of shocks
within regimes, and is a natural solution when regimes are not known from exter-
nal information. Another alternative is to explicitly accept off-diagonal terms and
estimate them using additional regimes.

Finally, in light of these considerations, I illustrate the sensitivity of the Rigobon
approach to the norm of ηtη′t used, the rolling window over which it is calculated,
and the regime cut-off. I consider 1, 7, and 13 period rolling windows, the norms are
tr (ηtη

′
t) and η2

1t (the dimension with highest variation in volatility – approach adopted
in Rigobon & Sack (2003)), and thresholds are the median and the mean plus one

20



Table 2: Mean estimates for Markov-switching DGP
window 1-period 7-period 13-period oracle

norm threshold H21 H12 RMSE H21 H12 RMSE H21 H12 RMSE H21 H12

trace
median 0.077 -0.24 3.66 0.017 0.405 4.94 0.0021 0.382 4.45

0.033 0.288
mean+s.d. 0.058 -0.112 6.05 0.005 0.470 6.82 0.008 0.438 6.58

η̄21
median 0.061 -0.034 1.90 0.013 0.397 6.07 0.017 0.401 5.20 RMSE:

mean+s.d. 0.066 -0.150 4.35 0.009 0.413 7.21 0.008 0.425 6.92 2.38

Mean estimates of estimates for Rigobon estimates for the empirically-calibrated Markov-switching
DGP, T = 200, 5,000 draws. The window indicates the length of the rolling window over which
variances were computed to form subsamples. The norm indicates the method used to evaluate the
magnitude of the variance over each window. The threshold indicates the value a window had to
surpass for its central observation to be considered “high variance”. Estimation via Brunnermeier et
al (2017) method. Labeling proceeds via an infeasible method matching H estimate to the true H
to minimize L2 norm. RMSE is weighted sum of single parameter RMSE.

standard deviation (see Rigobon & Sack (2003)). The DGP is the Markov switching
model (where the regime model is well-specified). Table 2 displays the results. The
oracle (based on true regimes) performs very well. Otherwise, estimates are highly
sensitive to regime estimation. In general, longer windows appear to perform better.
The trace seems to be a more reliable norm, with the median a better threshold.
Similar results hold for an AR(1) SV process and are borne out by the full distribution
of estimates (Table 11 and Figures 10-12 in the Supplement).

4.2 Performance in simulation

I now compare the relative performance of the three heteroskedasticity identification
schemes plus non-Gaussianity and associated estimators across a variety of DGPs.
For TVV-ID, I consider an AR(1) SV QML implementation generalizing the EM
algorithm of Bertsche & Braun (2018), exploiting the expansions of Chan & Grant
(2016) in the E-step. I also use a 2-step GMM estimator, making use of the first
autocovariance augmented by E [ηtη

′
t]. For the Sentana & Fiorentini approach, I

adopt what I refer to as the “hybrid GARCH” estimator, a GARCH(1,1) model where
the autoregressive parameters are calibrated to macro data, but the mean parameters
are estimated, as well as the standard GARCH(1,1) model adopted in Normandin &
Phaneuf (2004) and many others. For the Rigobon approach, I use estimated regimes
based on the trace, median threshold, and 13 period windows, as recommended by

21



the results above. I also use an arbitrary split at T/2, as well as a Markov switching
model estimated via ML. Finally, for non-Gaussianity, I use the FastICA algorithm
described in Shimizu, Hoyer, Hyvärinen, & Kerminen (2006) (preliminary simulations
show performance superior to ML approaches). Details on selected estimators can be
found in the Supplement.

The empirically calibrated DGPs are a Markov switching model, a GARCH(1,1)
model (including a “weak” variant), an AR(1) SV model (including varied sample
size, a “weak” variant, non-Gaussian (t7) disturbances), and a homoskedastic model
with t7 disturbances. I take 5000 replications, and unless otherwise noted, T = 200.
Columns of H are labeled using the infeasible method of minimizing the norm to the
true value.

Table 3 reports the results. It lists the mean estimates for the off-diagonal elements
of H, RMSE (root of weighted sum of MSEs for both parameters), and rejection rates
for nominal 5% tests of the true parameter values using each estimator’s appropriate
standard errors (described in the Supplement). Histograms reported in the Supple-
ment show that distributions for most estimators and DGPs are centered around the
true parameters; large discrepancies in mean estimates are mostly driven by outliers.

Across DGPs, the QML implementation of the AR(1) SV model performs best.
The mean estimates are accurate, and even when misspecified the RMSE is often
only slightly worse than that for well-specified estimators. This makes it a compelling
choice to implement TVV-ID. A further benefit is that tests of true values are well-
sized.

The hybrid GARCH estimator and Markov switching estimators offer the next
best performance. The mean estimates are still accurate, but their RMSEs are higher
in general. They struggle in the face of weak variation in volatility. For the hybrid,
this this is largely because the calibrated parameters are no longer a good fit for the
data. The standard errors for both estimators offer minimal size distortions.

The FastICA estimator exploiting non-Gaussianity is also reliable. The mean
estimates are close to the true values except for DGPs with small sample sizes or
weak variation. In these cases, the higher moments on which this identification rests
seem very imprecisely estimated – moreso than the persistence of the process, which
TVV-ID exploits. In contrast, estimators like that for SV or GARCH models exploit
a path of variances for identification as well as these unconditional higher moments
of the data. The RMSE is accordingly higher, depending on the DGP. Naturally,
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its performance improves when disturbances are themselves non-Gaussian. The stan-
dard errors perform quite poorly with respect to rejection rates – this is because the
asymptotic variance depends on up to the sixth moment of the shocks, so is very
imprecisely estimated.

The GARCH estimator generally is close to the previous approaches, but breaks
down for SV with T = 400. This is because the empirical calibration dictates GARCH
parameters that are very close to non-stationarity. As a result, with a longer draw of
data, there is a reasonable chance of observing dynamics that appear explosive from
a GARCH-fitting perspective, negatively impacting the estimates. This also appears
in un-reported simulations for different empirical calibrations, generally manifest in
excess mass around zero for the H parameters when the GARCH parameters are
close to the boundary of stationarity. Since these calibrations are empirical, this is
a strike against adopting GARCH estimators for identifying SVARs in similar macro
data. The rejection rates are accurate when well-specified, but as expected, break
down when misspecified.

GMM generally struggles, especially with small samples and weak variation. Since
it relies mostly on higher fourth moments of identification, this makes sense, as these
moments are noisily estimated in those DGPs. Accordingly, the rejection rates are
also distorted. For progressively higher T , additional simulations suggest performance
does become acceptable. Thus, for larger sample sizes, GMM may offer an alternative
requiring no parametric assumptions.

23



Table 3: Mean estimates and rejection rates
QML

AR(1)

SV

GMM Hybrid GARCH Sub-

sample

(rolling)

Sub-

sample

(T/2)

Markov

Switch-

ing

Non-

Gaussianity

mean α mean α mean α mean α mean α mean α mean α mean α

Markov

switching,

T = 200

H21 0.03 6.8 0.01 39.9 0.02 10.0 0.03 47.2 0.02 17.0 0.01 22.6 0.03 4.1 0.03 38.5

H12 0.28 10.1 0.45 44.2 0.34 12.2 0.31 45.4 0.38 4.3 0.38 4.2 0.28 4.5 0.27 43.7

RMSE 2.70 6.78 5.49 4.87 4.45 6.61- 2.45 4.86

GARCH(1,1),

T = 200

H21 0.03 5.3 0.03 26.6 0.03 4.3 0.03 4.8 0.03 15.8 0.03 15.6 0.03 11.2 0.03 11.4

H12 0.29 6.8 0.40 32.0 0.33 5.3 0.30 4.7 0.19 2.3 0.36 2.8 0.37 11.1 0.41 13.3

RMSE 2.96 7.73 2.47 2.58 5.47 6.89 5.28 6.98

GARCH(1,1),

T = 200,

weak

H21 0.03 19.0 0.02 48.7 0.02 24.4 0.03 4.8 0.03 14.1 0.02 21.6 0.03 9.6 0.02 8.1

H12 0.32 21.7 0.84 51.9 0.98 24.6 0.27 5.8 0.11 1.6 0.83 2.3 0.58 9.5 1.19 11.2

RMSE 8.52 12.15 8.27 6.94 7.99 13.28 11.05 15.02

AR(1),

T = 100

H21 0.03 14.9 0.01 45.2 0.03 9.2 0.03 22.3 0.02 19.4 0.02 17.0 0.02 11.5 0.02 31.2

H12 0.29 16.3 0.74 49.8 0.35 10.2 0.37 21.5 0.38 4.3 0.39 3.4 0.43 10.6 0.41 31.7

RMSE 8.52 12.15 8.27 6.94 7.99 13.28 11.05 15.02

AR(1),

T = 200

H21 0.03 7.8 0.02 40.6 0.03 6.9 0.03 23.4 0.02 19.1 0.02 18.9 0.03 5.4 0.03 35.4

H12 0.29 9.6 0.51 44.1 0.32 7.7 0.30 22.1 0.37 3.3 0.36 3.3 0.34 5.1 0.33 38.5

RMSE 2.89 7.89 4.31 3.91 6.91 6.29 5.20 5.92

AR(1),

T = 400

H21 0.03 4.2 0.02 33.7 0.03 4.3 0.06 61.7 0.02 25.2 0.02 19.9 0.03 5.5 0.03 37.1

H12 0.30 5.9 0.45 38.7 0.29 4.9 0.74 51.6 0.31 3.4 0.37 3.1 0.28 5.1 0.33 41.1

RMSE 1.42 6.28 2.52 8.50 6.23 5.72 3.17 4.42

AR(1),

T = 200,

weak

H21 0.03 41.5 0.01 44.7 0.02 47.6 0.02 8.6 0.04 23.9 0.02 28.3 0.02 15.5 0.01 10.1

H12 0.33 42.9 0.63 45.2 0.50 48.6 0.50 10.1 0.09 2.8 0.47 3.6 0.51 14.9 0.52 12.0

RMSE 7.63 9.08 8.36 7.80 6.38 8.41 8.00 8.96

AR(1),

T = 200, t7

shocks

H21 0.03 4.7 0.02 40.1 0.03 8.7 0.03 32.8 0.02 18.8 0.02 17.6 0.03 4.0 0.03 32.4

H12 0.30 5.8 0.60 44.0 0.32 9.6 0.31 30.7 0.33 3.6 0.38 3.6 0.32 3.5 0.30 34.4

RMSE 2.24 8.45 5.62 4.95 6.38 6.27 5.65 4.54

homosked.

t7shocks

H21 0.03 5.8 0.01 39.3 0.00 66.4 0.01 4.6 0.05 20.2 0.01 26.3 0.02 19.8 0.03 16.7

H12 0.28 5.4 0.43 40.0 0.50 67.5 0.39 4.9 0.08 2.9 0.40 3.9 0.34 18.1 0.30 17.3

RMSE 3.07 6.78 8.16 7.06 4.23 6.93 5.45 3.88

Mean estimates for the full range of estimators for the specified DGPs. Labeling proceeds via an infeasible
method matching H estimates to the true H to minimize L2 norm. Rejection rates, α, are presented for a
nominally-sized 5% test for each draw. Details on standard errors can be found in the Supplement. Since
the RMSE must account for error in multiple parameter estimates, the MSE is computed for each, and then
normalized by the square of the true parameter, before the root of the sum is taken.
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The Rigobon estimates based on rolling windows are quite good, which is un-
surprising given the tuning parameters were optimized based on Section 4.1. Other
combinations might dramatically harm performance. However, the breakdown is dra-
matic for weak identification, which makes sense as that is when the argument for
bias presented in 4.1 is most impactful. However, it is not in general competitive
with the best estimators in terms of RMSE. Generally, the same remarks apply to
the simple T/2 split estimator. For both, the rejection rates are badly distorted.

The homoskedastic DGP with non-Gaussian shocks warrants a separate note. The
SV model estimates remain reliable (indeed better than FastICA in terms of RMSE).
Seeing as all estimators but FastICA rely on heteroskedasticity for identification, this
may be surprising. Recall that the SV estimator exploits a variance path for iden-
tification. Even though there is no variation in the true structural variances, the t7
distribution of shocks with constant volatility can be approximated by a Gaussian
model with time-varying volatility taking higher values when tail-draws are observed.
The GARCH estimator, while in principle similar, cannot provide as good an ap-
proximation, as innovations are restricted to be a multiple of previous shocks. The
finding that the SV estimates can be reliable even under homoskedasticity provides a
further commendation for its use in applied work. It effectively simultaneously har-
nesses both heteroskedasticity and non-Gaussianity for identification in a way other
methods do not.

5 Empirical application: fiscal multipliers

Considerable work has been devoted to estimating the value of fiscal multipliers, but
has resulted in considerable disagreement over their size. The range of estimates
is documented by Mertens & Ravn (2014), Caldara & Kamps (2017), and Ramey
(2011a). Prominent estimates range from less than zero to over three. While gov-
ernment spending multipliers are perhaps most familiar, tax multipliers capture an
equally important dimension of fiscal policy, and are central to current policy debates.
Blanchard & Perotti (2002) (henceforth BP) is seminal in the literature; recent work
by Mertens & Ravn (2013, 2014) and Mountford & Uhlig (2009) has obtained con-
trasting estimates. Caldara & Kamps (2017) show the discrepancy can be largely
explained by differing values for the elasticity of tax revenues with respect to output.
BP calibrate this parameter to 2.08 based on institutional information, Mountford &

25



Figure 2: Moving averages of squared residuals and shocks

2-year moving averages of the square of the specified series. For the first panel, this is the reduced
form residuals, BP structural shocks for the second, and MR structural shocks for the third.

Uhlig’s (2009) penalty-function identification is consistent with a prior for the elastic-
ity centered around 3, and Mertens & Ravn (2014) (henceforth MR) estimate a value
of 3.13 using Romer & Romer (2010) (henceforth RR) narrative shocks as external
instruments.

Theorem 1 shows that the autocovariance of volatility present in the data can
identify the structural parameters determining fiscal multipliers without the economic
assumptions required in prior work. BP need a calibrated value, there to be no
contemporaneous response of spending to output, and a recursive ordering between
tax revenue and spending, and MR require their instrument to be valid and there to
be no contemporaneous response of spending to output. Since I am able to depart
from these assumptions (making them over-identifying restrictions), I can test them
using the results of TVV-ID. To motivate TVV-ID, Figure 2 plots “eyeball” evidence
of heteroskedasticity in the data using moving averages of squared disturbances for the
reduced form residuals, BP’s shocks, and MR’s shocks in turn. Formal non-parametric
tests for the autocovariance of the structural shocks (as required by Theorem 1) are
difficult, requiring identification to hold without time-varying volatility. Applying a
suitable test proposed by Lanne & Saikkonen (2007) to BP’s and MR’s shocks rejects
the null of no autocovariance in the volatilities at the 5% level for a majority of
bandwidths. This is reasonable evidence, since Lütkepohl & Milunovich (2016) find
the test to have very low power; details can be found in the Supplement.
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5.1 Data & model

I adopt MR’s trivariate VAR with federal tax revenue, federal government consump-
tion and investment, and GDP, based on quarterly BLS data found in the NIPA
tables, spanning 1950Q1 to 2006Q4. Additional details on the data and de-trending
procedures (including federal vs. general government data) can be found in MR. I
use the replication code available on Mertens’ website to obtain identical residuals.

In MR’s notation, the BP benchmark model is

uTt =σT e
T
t + θGσGe

G
t + θY u

Y
t

uGt =γTσT e
T
t + σGe

G
t + γY u

Y
t

uYt =ζTu
T
t + ζGu

G
t + σY e

Y
t ,

where ut = ηt and et are structural shocks with E
[
e
′
tet
]

= I. Key parameters θY
and γY are the elasticities of tax revenue and government spending with respect to
output, respectively. These capture what are commonly referred to as “automatic
stabilizer” effects. This model is a transformation of the ηt = Hεt parameterization.
The transformations linking the parameters to H are

θG =
H12 −H32H13

1−H23H32

, θY = H13

γT =
H21 −H23H31

1−H31H13

, γY = H23 (8)

ζT =
H31 −H32H21

1−H21H12

, ζG =
H32 −H31H12

1−H21H12

,

This mapping allows for direct comparison with the TVV-ID results.

5.2 Estimates & tests

Estimation based on TVV-ID proceeds using the AR(1) SV approach recommended
by the simulation study. The estimates are reported in the third row of Table 4,
with BP and MR results for comparison.8 The structural shocks themselves are ex-
tremely well-correlated with the BP shocks and very well-correlated with the MR

8It is well-known that EM algorithms can be sensitive to start values; thus, optimization was
carried out across a grid of start values, and the median estimates used to initialize a final optimiza-
tion. The range of estimates across start values is very small, see Table 5 in the Supplement. As an
additional check, the estimates from a Markov switching model (same Table) are extremely similar.

27



Table 4: Estimates
BP MR TVV-ID

θG -0.06 -0.20 −0.13
(0.10)

θY 2.08 3.13 1.58
(0.18)

γT 0 0.06 0.11
(0.13)

γY 0 0 0.02
(0.39)

ζT -0.08 -0.35 −0.00
(0.02)

ζG 0.07 0.10 0.06
(0.045)

The first two columns are estimates obtained in Mertens & Ravn (2014). The third column maps
estimates of H obtained via TVV-ID to the parameters of BP and MR using (8). The TVV-ID
estimates result from fitting the AR(1) SV model, described in Section 4, with details provided in
Supplement 2.2.

shocks. The one statistically significant parameter estimate is that central to the
tax multiplier debate, θY , for which I obtain the value 1.58 with a 95% confidence
interval of [1.23, 1.94]. The estimated SV parameters offer parametric evidence of the
autocovariance exploited by TVV-ID in Theorem 1. The AR parameters are 0.71
(p = 0.002), 0.88 (p = 0.085), and 0.93 (p = 6× 10−10) for tax, spending, and output
shocks respectively. The innovations to the log-variance are imprecisely estimated,
but are on the same order as those in the simulation study.9 Figure 6 in the Sup-
plement plots the filtered means of the variance paths, which exhibit considerable
heteroskedasticity.

Testing the Blanchard & Perotti (2002) assumptions

The three identifying assumptions made by BP can be directly tested from the es-
timates of H. First, for the elasticity of tax revenues with respect to output, θY ,
I obtain a value of 1.58, and can reject BP’s calibrated value 2.08 at the 1% level.
In the version of their model documented in MR, spending is assumed to respond

9Identification of the shocks (and thus the precise decomposition of overall autocovariance into
the three series) is conditional on time-varying volatility, but the overall autocovariance properties
these estimates decompose are independent of the identification of H.
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contemporaneously only to its own shocks: γT = γY = 0. In the original paper,
θG = 0 (taxes do not respond to spending) is an alternative to γT = 0. None of these
exclusion restrictions can be rejected; they are consistent with TVV-ID results.

Testing the validity of Mertens & Ravn’s (2014) instruments

MR use the RR shocks as external instruments to identify tax shocks. Like standard
instruments, they must be both relevant and exogenous (see Montiel Olea, Stock,
& Watson (2016)). Thus, for relevance, I compute first-stage F−statistics under
both homoskedasticity and heteroskedasticity, and compare them to the F > 10 rule
of thumb of Staiger & Stock (1997) and the corresponding F > 23 rule following
Montiel Olea & Pflueger (2013). Under homoskedasticity the value is 4.13 and un-
der heteroskedasticity 1.76; the instrument is only weakly related to the endogenous
residual. This suggests there could be a weak identification problem. Table 6 in the
Supplement shows that this is true of all alternative narrative measures considered
by MR. These results are at odds with the reliability measure they report. This mea-
sure of how much variation in the instrument is explained by the structural shock is
asymptotically equivalent to the R2. There are reasons to favour conclusions based
on the first-stage F−statistic. The reliability measure can only be computed based
on estimated structural shocks; instrument validity is assumed to obtain these. The
F−statistic also conveys more information because established thresholds are based
on how a deficiency in the first-stage quantitatively impacts bias or size-distortion in
the second stage.10

Using the structural shocks from TVV-ID, I can also test the exogeneity assump-
tion required for the proxy VAR. I test the hypothesis that the coefficients in the
regression of the RR shocks on εGt and εYt are zero. The test rejects at the 5% level
for the shocks jointly, driven by a significant negative relationship with εYt . This
suggests that, despite careful construction, the narrative measure has not been fully
purged of cyclical behaviour, and still contains endogenous variation in tax revenues.
Table 6 in the Supplement repeats the exercise for the alternative shocks in MR; only

10Additionally, MR note that the reliability statistic requires the additive form of measurement
error specified in the text. However, it is reasonable to believe measurement error could scale with the
size of the tax shock being measured, in keeping with several common forms of heteroskedasticity
(in linear regression). The reliability itself also offers no measure of the uncertainty around the
relationship between the shocks and instrument. While MR do bootstrap the statistic, it is well-
known that bootstrapping procedures may not properly capture variability if weak identification is
present.
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series based on the full set of RR shocks (including shocks with implementation lags)
do not exhibit endogeneity. The strong negative relationship between the instrument
and output shocks implies that, for a tax cut, the estimated impact on output could
be biased upwards.

5.3 Multipliers

The parameter estimates of TVV-ID lead to important differences in dynamic multi-
pliers compared to previous work. Figure 3 plots the dynamic tax multiplier following
the methodology of MR. The shock corresponds to a tax cut of 1% of GDP. 95% con-
fidence intervals are computed using the same wild bootstrap as MR for the reduced
form portion of the IRF with the ML variance estimates of the structural parameters,
combined using the delta method. The differences compared to the BP and particu-
larly MR results in the first panel are stark. The MR IRF is rejected at all horizons;
the BP for horizons up to five quarters. As discussed above, endogeneity of the RR
shocks with respect to output shocks could be causing an upward bias for MR. The
response on impact is -0.02% (not significant) compared to 0.48% for BP and 1.99%
for MR. The peak multiplier occurs later and is lower: 0.86 at eight quarters com-
pared to 1.35% at seven quarters (BP) and 3.19% at four quarters (MR). It suggests
a more significant response lag of the economy to tax changes than previous results.
The second panel recomputes the IRF for BP using the new elasticity estimated via
TVV-ID. The path is virtually identical to the TVV-ID path, mimicking the result
when MR do the same using their estimated elasticity. This affirms the finding of
Caldara & Kamps (2017) that the elasticity explains virtually all estimated differ-
ences in multipliers, and shows that the results of BP can be reconciled with those of
TVV-ID via the calibrated parameter.

Figure 4 plots the government spending multipliers. The estimates here are much
more similar across approaches, as predicted by more similar values for θG and ζG.
On impact, the multipliers are 0.65% for TVV-ID, just lower than BP (0.69%) and
close to MR (0.80%). The maximum response is 0.75% for TVV-ID, compared to
0.81% for BP and 0.96% for MR, all after two quarters. The second panel plots the
BP response with the elasticity re-calibrated to TVV-ID; doing so barely impacts
estimates of H(G), so the paths are virtually identical.

Caldara & Kamps (2017) develop a new methodology using non-fiscal proxies as
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Figure 3: Response to a tax cut of 1% of GDP

Dashed lines are 95% confidence intervals computed using a wild bootstrap for the reduced form
and ML for the structural parameters, combined using the delta method. The BP estimates in the
left panel use their elasticity θY = 2.08; the right uses the value of 1.58 estimated via TVV-ID.

Figure 4: Response to a spending shock of 1% of GDP

Dashed lines are 95% confidence intervals computed using a wild bootstrap for the reduced form
and ML for the structural parameters, combined using the delta method. The BP estimates in the
left panel use their elasticity θY = 2.08; the right uses the value of 1.58 estimated via TVV-ID.
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instruments for identification and find that, in the short run, spending multipliers
are larger than tax multipliers. This is also true here, but tax multipliers do eclipse
spending multipliers around their peak impact, after two years. Figure 7 in the
Supplement plots their estimates agains mine. In general, the IRFs are similar, but
TVV-ID yields smaller multipliers on impact. Except for quarters 0-4 for tax cuts,
my point estimates lie within their 68% credible sets; all estimates lie within 95%
credible sets. They also find that the impact effect largely explains discrepancies in
dynamic multipliers across identification approaches, and in turn, that the impacts are
governed almost entirely by the elasticities with respect to output and the covariances
of ut (their equation (11)). Accordingly, for their version of BP, using a tax elasticity
of 1.7, they obtain an almost identical IRF to mine. For spending, the slightly higher
(though not statistically significantly so) spending elasticity I obtain can explain the
somewhat lower multipliers obtained. Differences in the shape of the IRFs result
from different reduced form coefficients (they use a 5-variable VAR and only a linear
time trend). Since the identifying conditions of both schemes hold up to testing
(their instruments pass validity tests), it is reassuring that, with the exception of
taxes on impact, the dynamic multipliers of each study cannot be rejected under the
methodology of the other.

The results under TVV-ID are also in line with the spending multipliers obtained
by Ramey (2011b) using a very different methodology based on isolating defense-
related spending events. For a sample from 1939-2008, excluding WWII, her estimates
range from 0.6-0.8, which includes the values estimated here. Ramey & Zubairy
(2018) consider how the multiplier changes across states of the economy using defense
spending and BP spending shocks as instruments, which they check carefully for
relevance. While in some relevant states of the economy they obtain somewhat lower
estimates, the 0.6-0.7 range found here accords with their results.

MR are skeptical of the results of RR and Favero & Giavazzi (2012), both of
which take a narrative approach, regressing on the RR tax shocks directly. They
argue that in general they are likely to underestimate the true multiplier. Figure
8 in the Supplement compares my results to those of RR and Favero & Giavazzi
(2012). While the RR dynamic multipliers are dramatically different, the Favero &
Giavazzi results are contained in my 95% confidence set after the first year. My
results on exogeneity of the RR shocks suggest that these papers may overestimate
multipliers. If the weak relevance results are caused by the series only picking up the
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most prominent episodes, that would offer another channel for the estimates to be
biased upwards.

The elasticity of revenues with respect to output

The differences in tax multipliers are largely determined by the lower elasticity of
tax revenues with respect to output that I estimate via TVV-ID. This discrepancy
between my elasticity and the original BP paper may be partially explained by the
fact that, in their calibration, they consider data on general government revenue and
spending, as opposed to federal government. The response of federal revenues should
be lower than that of federal, state, and local revenues combined. Significantly, Fol-
lette & Lutz (2010) develop a more detailed methodology and estimate the elasticity
of tax revenues with respect to output for just the federal government, and obtain a
value of 1.6 for the period 1986-2008 – nearly identical to what I obtain via TVV-ID.
They obtain 1.4 for 1960-1985. On average, their value is thus slightly lower than
mine, but they consider a mix of annual data and quarterly data. This accords with
BP’s argument that lower frequency data will deliver lower elasticities. MR discuss
discrepancies between institutional estimates of BP, Giorno, Richardson, Roseveare,
& van der Noord (1995), and others and results coming from their instrumental ap-
proach; such discrepancies seem less pronounced compared to TVV-ID.

The higher elasticity of MR, 3.13, may result from the weakness of the instru-
ment, as discussed above. In more recent work, Caldara & Kamps’ (2017) elasticity
estimated baseline using all of their non-fiscal instruments is lower at 2.18. Their
instruments pass all tests for relevance and exogeneity, unlike the RR shocks. Their
elasticity is still higher than mine, but is based on a different reduced-form VAR.
They also show that the high elasticity found in Mountford & Uhlig (2009) – about
3.2 – can be traced to their penalty-function identification approach, which maximizes
the systematic component of tax revenues.

6 Conclusion

This paper presents a general argument that structural shocks can be identified via
time-varying volatility. The previous literature offers identification arguments based
on a path of variances available for only very few parametric models of the variance
process. My identification approach makes minimal assumptions on the variances as
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a stochastic process. This argument highlights a novel channel of identification based
on heteroskedasticity that frees the researcher from needing to assume a particular
functional form (or, indeed, any functional form) to obtain identifying moments. This
empowers researchers to develop new models and approaches in contexts exhibiting
time-varying volatility without needing to re-establish identification for each. Eco-
nomic information usually used to identify such models need only be used to label
the shocks identified by TVVID. A variety of estimation methods are proposed. Sim-
ulation evidence shows that quasi-likelihood methods based on an auto-regressive
log-variance process work well even when the true process has a different form.

My empirical investigation of fiscal multipliers produces estimates that are quite
low, but broadly align with previous studies. The tax multipliers estimated by Blan-
chard & Perotti (2002) can easily be reconciled with TVV-ID by adjusting their
calibrated elasticity of revenues. The tax elasticity I obtain, about 1.6, is consis-
tent with the work of Follette & Lutz (2010). For both tax changes and government
spending, my results are fairly similar to those recently obtained by Caldara & Kamps
(2017). For government spending, my multipliers are consistent with the values in
Ramey (2011b) and Ramey & Zubairy (2018). Mertens & Ravn’s (2014) high values
might result from instrument endogeneity or weakness. These findings contribute
to an increasing body of empirical work in favour of multipliers below unity, and to
tax multipliers smaller than spending multipliers. This demonstrates the potential
of TVV-ID to offer new insights into old problems using an identification approach
radically different from those previous considered in the literature.
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A Notation

The following potentially unfamiliar notation is used in the paper. ⊗ represents the
Kronecker product of two matrices; � represents the element-wise product of two
matrices (i.e. Hadamard product); A(i) denotes the ith row of matrix A; A(j) denotes
the jth column of matrix A; Aij denotes the ijth element of matrix A; A(−i) denotes
all columns of A except for the ith, and similarly for rows and elements; matdiag (A)

is a vector of the diagonal elements of the square matrix A; diag (a) is a diagonal
matrix with the vector a on the diagonal; x1:t denotes {x1, x2, . . . , xt}; Et [·] denotes a
time-specific expectation, i.e. the mean value of xt at time t, as opposed to across t,
and similarly for Et,s [·] when both time t, s variables are contained in the argument.11

B Proofs

B.1 Derivation of Proposition 1

Proof. I start with
Et,s [ζt | σt,Ft−1] = L (H ⊗H)Gσ2

t .

Since vt was shown to be a martingale difference sequence and Vart (vt) < ∞ (As-
sumption C.2),

Covt,s (vt, vs) = 0, s 6= t.

This also implies that in the signal-noise decomposition, (5), vt is white noise. Using
this fact, Assumption B, Assumption C.1-2, and the decomposition of ζt above, it is
immediate that, for s 6= t,

Et,s (ζtζ
′
s) = L (H ⊗H)GEt,s

[
σ2
t σ

2′

s

]
G′ (H ⊗H)′ L′ (9)

+ L (H ⊗H)GEt,s
[
σ2
t v
′
s

]
+ Et,s

[
vtσ

2′

s

]
G′ (H ⊗H)′ L′.

11This notation is used to make explicit that stationarity is not being assumed, unless otherwise
noted, and to avoid the ambiguity (and possible non-existence) present in simply writing E [xt] in
a non-stationary context. The use of Et should not be confused with reference to the t information
set; when a specific information set is intended, I condition on it explicitly.
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By the law of iterated expectations, Assumption A.1 implies that

Et,s
[
Σt | σ2

s

]
= Et,s

[
εtε
′
t | σ2

s

]
, t ≥ s.

This, in turn, by the law of iterated expectations, implies that

Et,s

[
vec (εtε

′
t − Σt)σ

2′

s

]
= 0, t ≥ s.

Thus, setting t > s, the third term in (9) vanishes, leaving

Et,s (ζtζ
′
s) = L (H ⊗H)GEt,s

[
σ2
t σ

2′

s

]
G′ (H ⊗H)′ L′+L (H ⊗H)GEt,s

[
σ2
t v
′
s

]
. (10)

Finally, I can rewrite (10) as

L (H ⊗H)
(
GEt,s

[
σ2
t σ

2′

s

]
G′ +GEt,s

[
σ2
t vec (εsε

′
s − Σs)

])
(H ⊗H)′ L′

= L (H ⊗H)GMt,s (H ⊗H)′ L′ (11)

where Mt,s = Et,s
[
σ2
t σ

2′
s

]
G′ + Et,s

[
σ2
t vec (εsε

′
s − Σs)

′]. Mt,s is an n × n2 matrix.
Proposition 1 then follows directly.

B.2 Proof of Theorem 1

I begin by proving two lemmas for properties of the singular value decomposition
(SVD).

Definition 1. Define

– U1DUU
′
2 = V , a reduced SVD, V n1 × n2, DU d× d,

– Ci is a full rank matrix, mi × ni,mi ≥ ni,

– F = C1V C
′
2, non-defective.

Lemma 1. There exists a matrix Γ1 such that CU1Γ1 is an orthogonal matrix of
singular vectors from a SVD of F .

Proof. Define Q1R1 = CU1, a reduced QR decomposition, and similarly for CU2.
Then F = Q1R1DUR

′
2Q
′
2. R1 is d × d and full rank since, given CU1 is full rank d,
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it has no zeros on the diagonal (Trefethen & Bau (1997), Exercise 7.5). Now define
W1DRW

′
2 = R1DUR

′
2, another SVD; then F = (Q1W1)DR (W ′

2Q
′
2) is a reduced SVD

(it is easily shown DR are singular values of F , and the corresponding vectors are
clearly orthogonal). Thus write Q1R1

(
R−1

1 W1

)
= Q1W1 so Γ1 = R−1

1 W1, which is
guaranteed to exist.

Definition 2. Define

– S1DSS
′
2 = F , a reduced SVD

Lemma 2. The SVD of F is unique up to rotations characterized by F = S1T1DST2S
′
2

where Ti is orthogonal.

Proof. The singular values, DS, are unique, singular vectors corresponding to non-
repeated values are unique up to sign, and the space of vectors corresponding to k
repeated singular values corresponds to linear combinations of any k such vectors.
Thus F = (S1T1)DS (T2S

′
2) characterizes any reduced SVD as Ti can incorporate any

such sign changes or linear combinations. Since SiTi must be orthogonal, T ′iS ′iSiTi =

Id. Then since Si is orthogonal, T ′iTi = Id, so Ti is orthogonal.

Definition 3. Define

– In particular, C1 = (H ⊗H)G, n2 × n with rank n,

– G is a selection matrix such that vec (ADA′) = (A⊗ A)Gdiag (D),

– Ŝ1 = C1U1Γ1T1, an arbitrary reduced SVD of F ,

– V is n× n2 and has no scalar multiple rows,

– rank (V ) ≥ 2.

Proposition 4. H is uniquely determined from the equations F = C1V C
′
2 provided

V has no scalar multiple rows.

Proof. U1 is n×d. Note CU1 =
[
vec
(
Hdiag

(
U

(1)
1

)
H ′
)
, . . . , vec

(
Hdiag

(
U

(d)
1

)
H ′
)]

,
where d ≥ 2. By the scalar multiples condition on V , for any column j of H, there
exists at least one pair k, l such that U (l)

1,j/U
(l)
1,i 6= U

(k)
1,j /U

(k)
1,i for all i = 1, 2, ..., d, i 6= j.

By an argument due to Brunnermeier et al (2017), H(j) is unique up to scale and
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sign as the right eigenvector of Hdiag
(
U

(l)
1

)
H ′
(
Hdiag

(
U

(k)
1

)
H ′
)−1

corresponding

to the jth eigenvalue. The same argument applies to CŨ1 where Ũ1 = U1Γ1T1, pro-
vided Ũ1 has no scalar multiple rows. To establish this, take any two rows in U1 that
are not scalar multiples; multiplying by full-rank Γ1 cannot decrease their rank (so
they do not become scalar multiples). The same holds true for multiplication by the
orthogonal T1. Thus H remains the unique solution to CŨ1.

Proposition 4 is re-written in economic terms to yield Theorem 1.

B.3 Proof of Corollary 1

Proof. Corollary 1 follows directly from Proposition 4 above for any column j for
which a pair k, l exists such that U (l)

1,j/U
(l)
1,i 6= U

(k)
1,j /U

(k)
1,i for all i = 1, 2, ..., d.

B.4 Proof of Theorem 2

Proof. Theorem 2 is based on the argument underlying Proposition 4. Note that the
vectorization of Et [ζt] is given by vech (HEt [Σt]H

′), an additional equation of the
form found in CU1. Define U1,MDMU

′
2,M = Mt,s and M̂ =

[
U1,M Et [σ2

t ]
]
. Then

there is an additional column over which to find a k, l pair for j such that M̂ (l)
j /M̂

(l)
i 6=

M̂
(k)
j /M̂

(k)
i for all i = 1, 2, ..., d i 6= j. The condition on Mt,s ( V in Proposition 4)

guaranteeing this is augmented to require no scalar multiple rows in
[
Mt,s Et [σ2

t ]
]
.

Note that this logic can be extended to adding additional autocovariances, etc., in
each case making the length of the rows that must not be scalar multiples longer and
thus decreasing the plausibility of the condition failing.
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