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Abstract 

We study the conditional distribution of future liquidity in the secondary market for 

corporate bonds as a function of current liquidity. Increases in liquidity are persistent 

for investment-grade bonds and flighty for high-yield bonds. Greater liquidity of high-

yield bonds is associated with lower uncertainty about future liquidity of investment-

grade bonds, but greater liquidity of investment-grade bonds is associated with greater 

uncertainty about future liquidity of high-yield bonds. Finally, we show that measures of 

market-wide volatility and market-maker constraints do not contain information useful 

for predicting the distribution of future liquidity over and above that contained in the 

recent history of bid-ask spreads. 
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1 Introduction

“To date, observed changes in liquidity do not suggest that shifts in liquidity

are having a notable effect on the cost of trading. Nonetheless, the potential

for liquidity to evaporate in times of stress deserves careful scrutiny–along with

broader risks to financial stability associated with changes in markets.”

(Former Vice Chairman Stanley Fischer, November 15, 2016, Is There a Liquidity Problem

Post-Crisis?)

Traditional measures of liquidity focus on the cost, either in terms of money or in terms of

time, of buying or selling an asset given contemporaneous market conditions. By their nature,

such measures capture the contemporaneous state of market liquidity but remain silent on

whether market liquidity will change in the future. In this paper, we model empirically the

full distribution of future corporate bond market liquidity at the credit rating level as a

function of current liquidity and recent history of liquidity.

We estimate the distribution using quantile regressions and smooth the estimated quantile

distribution every week by interpolating between the estimated quantiles using the skewed-t

distribution. This allows us to transform the empirical quantile distribution into an es-

timated conditional distribution of credit-rating-level liquidity, plotted in Figure 1. Two

features are striking about the estimated distributions. First, the entire distribution evolves

over time, with both the mean and the higher moments fluctuating with aggregate market

conditions. Second, although on average investment grade bonds are more liquid than high

yield bonds, average future liquidity is lower and uncertainty about future liquidity is higher

for investment grade than high yield bonds during periods of market stress, such as the

recent financial crisis. That is, during the financial crisis, the downside risk to liquidity of

investment grade bonds was greater than the downside risk to liquidity of high yield bonds,

potentially reflecting market expectation of future downgrades of investment grade bonds.
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Figure 1. Distribution of liquidity over time. This figure plots the time series of one-
week-ahead predictive distribution of volume-weighted average (negative) bid-ask spread by
credit rating category, based on quantile regressions with current bid-ask spreads for both
investment grade and high yield bonds as conditioning variables.

(a) IG (b) HY

We estimate a quantile vector autoregression in the spirit of Koenker and Xiao (2006),

allowing the predictive distribution of liquidity for a given credit rating to depend on current

and lagged bid-ask spreads for both credit ratings. We find that the liquidity of investment

grade bonds is highly persistent across all quantiles while the persistence of high yield bonds

is asymmetric. In the left tail, the liquidity of high yield bonds is as persistent as the liquidity

of investment grade bonds but becomes increasingly more mean reverting when moving to

the right tail of the distribution: downside liquidity risk tends to be persistent while the

probability of high liquidity mean reverts quickly.

We argue that these relationships are a robust and stable feature of the data, and, thus,

that our approach can be used to monitor potential risks to liquidity in real-time. We

begin by showing that out-of-sample estimates of the conditional distributions of the future

bid-ask spreads are very similar to the in-sample distributions. We further document our

strong out-of-sample performance by analyzing predictive scores and probability integral

transforms. We show that the conditional distribution is well-calibrated and performs better
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out-of-sample than the unconditional distribution for both investment grade and high yield

bonds. This suggests that the recent history of bid-ask spreads for both credit ratings

robustly reflects information relevant for the future evolution of liquidity.

We illustrate how our methodology could be used to monitor market responses to un-

anticipated shocks, such as the Taper Tantrum in June 2013, as well as to evaluate the

evolution of the conditional distribution around anticipated shocks, such as the liquidation

of the Third Avenue Focused Credit Fund1 in December 2015. We show that the conditional

distribution can be informative about the duration of the market response to these shocks

and often interprets realized shocks as being less further in the left tail of the distribution

than the unconditional distribution does.

We show that including proxies of demand-side and supply-side funding liquidity pres-

sures in the market do not lead to consistent improvements in the in-sample accuracy of the

predicted distribution and, in most cases, lead to decreases in the out-of-sample accuracy

of the predictive distribution. That is, market-wide proxies for uncertainty, risk premia,

overall financial conditions, and measures of dealer activity in the corporate bond market

do not contain information useful for predicting future bond market liquidity above what is

contained in the recent history of bid-ask spreads for both credit ratings.

Finally, we summarize the downside and upside risks to the median liquidity forecast

using two metrics: (1) the upside and downside entropy of the unconditional distribution

of bid-ask spreads relatively to the empirical conditional distribution; (2) the five percent

expected shortfall and its upper tail counterpart, the five percent expected longrise. While

downside relative entropy captures the conditional risks of liquidity deteriorating in excess of

the downside risks predicted by the unconditional distribution, expected shortfall measures

the average level of liquidity conditional on the bottom five percent tail outcomes realizing.

Thus, downside relative entropy and the expected shortfall measure two complementary but
1Although the precise timing of the liquidation was unknown, market participants had anticipated distress

in funds with a focused investment in high yield bonds following distress in the oil production sector earlier
in 2015.
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distinct features of upside risk to liquidity. Downside relative entropy captures the prob-

ability of a negative liquidity shock occurring, relative to the probability predicted by the

unconditional distribution, while expected shortfall captures the expected extreme effects

of a negative liquidity shock. Similarly, upside relative entropy captures the probability of

a positive liquidity shock occurring, relative to the probability predicted by the uncondi-

tional distribution; the expected longrise captures the expected extreme effects of a positive

liquidity shock.

Our paper contributes to the large literature on liquidity of the corporate bond market.

Corporate bonds used to be traded in an opaque environment where transaction prices were

not made public. In July 2002, the Transaction Reporting and Compliance Engine (TRACE)

was introduced, requiring trades in publicly issued corporate bonds to be reported to the

National Association of Security Dealers, which in turn made transaction data available

with some delay to the public. This was a major evolution in the corporate bond market.

The impact of transparency on liquidity and on dealers’ propensity to provide liquidity have

been debated, but most academic papers find that the implementation of TRACE benefited

clients overall, lowering transaction costs (Bessembinder et al., 2006; Goldstein et al., 2007;

Edwards et al., 2007; Asquith et al., 2013). Asquith et al. (2013), however, find that market

activity, as measured by trading volume divided by issue size, declined significantly for high

yield bonds. Bessembinder and Maxwell (2008) provide an overview of the impact of the

increase in transparency on the market.

The 2007-2009 financial crisis highlighted the need to better understand corporate bond

market liquidity. Friewald et al. (2012) document that liquidity explains about one third of

the variation in the aggregate market corporate yield spread in the time-series, and about

half during the crisis. Direct measures of trading activity, such as trade volume, and other

commonly-used liquidity measures, do not show significant explanatory power. In the cross-

section, they find that the overall liquidity of bonds issued by financial firms is higher on

average, than those of industrial firms. Dick-Nielsen et al. (2012) document that liquidity
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deteriorated for both investment grade and high yield bonds, but it was slow and persistent

for the first and short-lived for the latter. Moreover, they find consistent evidence with

flight-to-quality only for AAA-rated bonds. Bao et al. (2011) calculate the Roll liquidity

measure at the bond-level and then aggregate the liquidity measure across individual bonds.

Using the aggregate measure they find that the aggregate illiquidity doubled relative to its

pre-crisis average when the credit problem first broke out in August 2007, and subsequently

tripled in March 2008 when Bear Stearns collapsed. Their measure peaks in October 2008,

after Lehman’s default and the bailout of AIG, and slowly declines thereafter. Adrian et al.

(2017) show that the relationship between bond-level liquidity and dealer-level constraints

changes with the introduction of post-crisis regulation, with bonds traded by more levered

institutions and institutions with investment bank like characteristics less liquid after the

financial crisis.

Our paper deviates from the prior literature in focusing on predicting the future evolution

of liquidity, forecasting both the expected future liquidity and the downside risks to liquidity.

In this aspect, our paper is related to prior literature that has investigated the time series

properties of liquidity in other markets. Chordia et al. (2004) estimate a vector autoregression

for stock and Treasury bond liquidity, and find cross-market dynamics from volatility to

liquidity in both markets. More recently, Nagel (2012) argues that market liquidity declines

during the financial crisis is partially explained by demands for higher expected returns by

liquidity providers. Similarly, Comerton-Forde et al. (2010) show that when the revenues of

NYSE specialists are low, liquidity on the NYSE is low as well. Relatedly, Baele et al. (2018)

find increases in the VIX and the TED spread are associated with decreases in Treasury bond

liquidity.

The relationship between VIX and liquidity is further investigated by Chung and Chu-

wonganant (2014), who show that VIX has a pervasive impact on liquidity. Karolyi et al.

(2012) examine additional proxies for demand-side and supply-side pressures and find that

liquidity in several countries varies across time because of demand-side reasons and not with
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proxies for funding liquidity. In contrast, Karnaukh et al. (2015) document that FX liq-

uidity declines with both funding constraints and global risk, with stronger comovement of

FX liquidity when funding is constrained, global volatility is high, and FX speculators incur

losses. Similarly, Mancini et al. (2013) find commonality across liquidity measures for FX,

U. S. stock, U. S. Treasury, and U. S. corporate bond markets. While our paper also finds

common variation in liquidity across investment grade and high yield bonds, unlike this prior

literature, we find that market-wide volatility and proxies for market-maker constraints do

not help predict future liquidity once we control for the recent liquidity of both credit rating

categories.

From a technical perspective, our paper contributes to the growing literature that has

uncovered interesting patterns by analyzing the entire predictive density. We use the method-

ology from Adrian et al. (Forthcoming), who find that financial conditions are an important

driver of macroeconomic vulnerabilities, measured as downside risk of GDP growth. Relat-

edly, Smith and Vahey (2016) show substantial asymmetries in that the forecast densities of

GDP growth and inflation during the great recession. In financial markets, Ghysels (2014)

documents that there are substantial and time-varying asymmetries of the predictive dis-

tribution of returns. Similarly, Schmidt and Zhu (2016) show that, while the tails of the

predictive distribution of stock returns vary over time, the median of the distribution is

essentially time invariant. Using the quantile regression approach of Adrian et al. (Forth-

coming), Crump et al. (2018) find that current realized volatility of stock returns has strong

predictive content for the uncertainty of future returns and, thus, for the overall future dis-

tribution of market returns. Our paper is complementary to this prior literature as it studies

the entire predictive density in a novel setting, the credit-rating-level liquidity of corporate

bonds.

The rest of the paper is organized as follows. Section 2 describes the construction of

measures of liquidity studied in this paper. Section 3 lays out the empirical methodology, and

documents the basic features of the conditional distribution of illiquidity. We present the out-
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of-sample evidence, and illustrate real-time monitoring applications using two event studies

in Section 4. Section 5 investigates the information contained in alternative explanatory

variables. We construct measures of flightiness of liquidity in Section 6. Section 7 concludes.

2 Data Description and Sample Construction

2.1 Corporate bond market liquidity

We use corporate bond transaction data from a supervisory version of TRACE, which con-

tains the uncapped trade size, price, buyer and seller identities. FINRA members are iden-

tified by a designated Market Participant Identifier, MPID, and non-FINRA members are

identified either as C (for client), or as A (for a non-member affiliate). Our trades dataset

spans from July 2002, when TRACE was introduced, to December 2017. Real-time, public

dissemination of trades was staggered, and its full implementation was completed on Febru-

ary 7, 2005, when all U. S. corporate bonds, except the TRACE-eligible Rule 144A bonds,

were subject to dissemination. Therefore, we limit our sample to start on January 2005. We

address the data issues in TRACE and clean the data as described in Adrian et al. (2017).

Using the traded prices in TRACE, we calculate the weekly effective bid-ask spread at

the bond-level. The effective bid-ask is the difference between the dollar weighted average

price of the buy trades and the dollar weighted average price of the sell trades (see Hong

and Warga 2000 and Chakravarty and Sarkar 2003):

BASb,t =
N∑
n=1

PB
n W

B
n −

M∑
m=1

P S
mW

S
m.

The measure is calculated using only client-dealer trades, and requires at least one client

buy trade and one client sell trade each day.

We merge the weekly measure of bond-level liquidity with Mergent FISD to get the

characteristics of the bonds. We exclude bonds denominated in foreign currency, which are
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agency backed, or issued as private placements, unit deals, perpetual, and preferred. We also

drop bonds with a maturity of less than one year, and unrated bonds. We exclude trades of

bonds 30 days prior to default, and, if the bond is reinstated, then we exclude the first 30

days after it was reinstated.

Using the credit rating information from Mergent FISD, we construct aggregate liquidity

measures for the portfolio of AAA-rated bonds, investment-grade (excluding AAA) rated

bonds, and high yield rated bonds as the gross-trading-volume-weighted average of bid-ask

spreads for the corporate bonds with the corresponding trading volume. Figure 2a plots the

time series of bid-ask spreads for these portfolios. Three features are worth noting about

these time series. First, bid-ask spreads increase dramatically during periods of market stress,

such as the 2007-2009 financial crisis. Second, during these stress periods, bonds with higher

credit ratings have higher bid-ask spreads than bonds with lower credit ratings, suggesting

that the market anticipates the eventual downgrade of these bonds. Finally, after August

2011, the bid-ask spread for the AAA category is extremely volatile. This is due to the fact

that, after August 2011, very few corporate bonds actually have AAA credit rating. Indeed,

Figure 2b shows that, after August 2011, the fraction of gross trading volume accounted

for by trades in AAA-rated bonds drops dramatically. Because of this dramatic decrease in

trading volume, we exclude AAA bonds from the results reported in the main body of the

paper.

Additionally, the bid-ask spread series for high-yield bonds exhibits a year-end seasonality

when trading in the corporate bond market is thin. We correct for this seasonality by

regressing the bid-ask spread of high-yield bonds on a year-end indicator, and work with

seasonality-adjusted bid-ask spreads for the rest of our analysis.

2.2 Market-wide variables

In some empirical specifications, we control also for market-wide proxies of liquidity demand

and supply. We proxy for liquidity demand using measures of option-implied equity volatility
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(VIX), Treasury volatility (MOVE 1M), and interest rate swap volatility (SMOVE 1M),

as well as the Baa-Aaa spread (which proxies for credit risk premia), the Treasury slope

(difference between yields on a 10 year and a 3 month Treasury, which proxies for term

premia), and the Chicago Fed National Financial Conditions Index (NFCI, which proxies

for economy-wide financial conditions). On the supply-side, we use data from FR 2004 on

corporate securities transactions and repo market activity by primary dealers, as well as

delivery fails into corporate securities borrowing agreements. While the first two measures

proxy for funding liquidity in the corporate bond market as they capture the willingness and

ability of the traditional market makers to trade in and provide financing against corporate

securities, the third measure captures the scarcity of desirable bonds. For VIX, MOVE 1M,

SMOVE 1M, Baa-Aaa spread and the Treasury slope, we aggregate the daily market prices

into weekly measures by averaging within the week. The rest of the variables are available

at a weekly frequency only.

3 Empirical Methodology

In this section, we describe how we apply the methodology in Adrian et al. (Forthcoming) to

construct conditional distributions of corporate bond market liquidity (rather than of real

GDP growth). We refer the interested reader to Adrian et al. (Forthcoming) for more details

on the quantile-regression methodology itself.

3.1 Conditional inverse CDF

We begin by characterizing the relationship between future bid-ask spreads and current bid-

ask spreads using quantile regressions. In particular, let yi,t+h be the log bid-ask spread

for portfolio i in future week t + h, and denote by xt the vector of conditioning variables,

including a constant. In a quantile regression of yi,t+h on xt, the regression slope βi,τ,h is
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chosen to minimize the quantile-weighted absolute value of prediction errors

β̂i,τ,h = argmin
βi,τ,h∈Rk

T−h∑
t=1

(
τ · 1(yi,t+h≥xtβi,τ,h) + (1− τ) · 1(yi,t+h<xtβi,τ,h)

)
|yi,t+h − xtβi,τ,h| , (1)

where 1(·) denotes the indicator function. Unlike ordinary least squares, which predicts the

average realization of yi,t+h conditional on xt, the predicted value from the regression above

is the quantile of yi,t+h conditional on xt

Q̂yi,t+h|xt (τ |xt) = xtβ̂i,t+h,τ .

To reduce the influence of outliers in bid-ask spreads on the estimated coefficients, we

estimate the quantile regression (1) for the natural logarithm of the bid-ask spread for a

particular portfolio. We include four lags of bid-ask spreads in our regressions to capture

the dependence on the whole pattern of liquidity over the previous month. That is, we

parametrize the quantile function of the negative log bid-ask spread of portfolio i in week t,

yi,t, as

Qyi,t+h|xt (τ |xt) = αi,h,τ +
4∑
l=1

ϕi,l,h,τyi,t−l+1 +
4∑
l=1

γi,l,h,τy−i,t−l+1 + εi,h,t,τ , (2)

where y−i,t is the realization of the negative log bid-ask spread for the other portfolio. We

focus on the negative logarithm of the bid-ask spread to have a measure of liquidity: higher

bid-ask spreads correspond to higher illiquidity of the bond, while higher negative (log) bid-

ask spreads correspond to higher liquidity of the bond. Including the lagged bid-ask spreads

of both portfolios into the specification (2) allows us to study the differential persistence

of bid-ask spreads at various quantiles (through the coefficients {ϕi,l,h,τ}), as well as the

differential correlation of bid-ask spreads across credit ratings at various quantiles (through

the coefficients {γi,l,h,τ}).

In the following, we report the cumulative effect of a change in either own or other credit
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rating log bid-ask spreads on the quantile function. That is, when we report regression

coefficients, we are reporting

ϕi,h,τ ≡
4∑
l=1

ϕi,l,h,τ , γi,h,τ ≡
4∑
l=1

γi,l,h,τ ,

respectively.

Figure 3 shows the scatter plot of one-week-ahead negative log bid-ask spreads for in-

vestment grade and high yield bonds against the current realization of negative log bid-ask

spreads for investment grade and high yield bonds, as well as the univariate quantile regres-

sion lines for the fifth, fiftieth and ninety-fifth quantiles and the OLS regression line. Consider

first the relationship between future bid-ask spreads and own current bid-ask spreads. For

investment grade bonds (Figure 3a), the slopes of the three quantile regression lines are

similar to each other and, moreover, similar to the linear regression slope, suggesting a lin-

ear relationship between current and future investment grade bid-ask spreads. Instead, for

high yield bonds (Figure 3d), the slope of the ninety-fifth percentile is noticeably different

from the slopes of the other two quantile regression lines and the OLS regression line, sug-

gesting that bid-ask spreads on high yield bonds have different persistence across different

quantiles. Turning next to the cross-credit-rating relationship between future and current

bid-ask spreads, we can see that there is a non-linear relationship between one-week-ahead

bid-ask spreads on investment grade bonds and current bid-ask spreads on high yield bonds

(Figure 3c), but a potentially linear relationship between one-week-ahead bid-ask spreads on

high yield bonds and current bid-ask spreads on investment grade bonds (Figure 3b).

We test formally the marginal effects of including the history of bid-ask spreads for

both credit ratings in a multivariate regression setting in Figure 4.2 Consider first the
2The confidence bounds plotted in Figure 4 are the 95 percent confidence bounds for the null hypothesis

that the true data-generating process is a flexible and general linear model for liquidity. In particular,
we estimate a vector autoregression (VAR) with four lags, Gaussian innovations, and a constant using the
full-sample evolution of log bid-ask spreads, and bootstrap 1000 samples to compute bounds at different
confidence levels for the OLS relationship. Quantile coefficient estimates that fall outside of this confidence
bound thus indicate that the relationship between log bid-ask spreads and the predictive variable is non-
linear.
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estimated coefficients from the quantile regression of one-week-ahead negative log bid-ask

spreads for investment grade bonds, plotted in the left column of Figure 4. Bid-ask spreads

for investment-grade bonds are extremely persistent, with the estimated autoregressive coef-

ficient of around 0.9. This persistence is mostly flat across quantiles but increases slightly for

the right-most quantiles (most liquid) and decreases slightly for the left-most quantiles (least

liquid). Turning next to the loading on current bid-ask spreads for the high yield bonds,

we see that there is a positive relationship between future bid-ask spreads on investment

grade bonds and current high yield bid-ask spreads in the left tail of the bid-ask spread

distribution. We also observe a negative relationship between the right tail of the future

bid-ask spreads on investment grade bonds and current high yield bid-ask spreads. That is,

when high yield bonds are relatively more liquid, both downside and upside risks to liquidity

of investment grade bonds are lower and the distribution is more concentrated around the

mean.

The right column of Figure 4 plots the estimated coefficients from the quantile regression

of one-week-ahead negative log bid-ask spreads for high yield bonds. Liquidity of high yield

bonds is much less persistent than the liquidity of investment grade bonds, with the estimated

autoregressive coefficient at the median of around 0.7. In addition, persistence increases for

the leftmost quantiles and decreases for the rightmost quantiles for high yield rated bonds,

with both of these extremes different from the median estimate at the 5 percent confidence

level. Taken together, the results for the autoregressive coefficients across quantiles and

credit ratings suggest that liquidity is more likely to evaporate for high yield bonds than for

investment grade bonds; that the risks of illiquidity of high yield bonds tend to be persistent;

and that upside risks to liquidity of investment grade bonds tend to be persistent but reverse

quickly for high yield rated bonds. Finally, turning to the loading on current bid-ask spreads

for the investment grade bonds, we see that higher liquidity of investment grade bonds is

associated with larger upside and downside risks to the liquidity of high yield bonds, so that

the future liquidity of high yield bonds is more uncertain when investment grade liquidity
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is higher. Figure A.1 in the Appendix shows that these patterns also hold for the estimated

coefficients for the four-weeks-ahead distribution.

Turning to the implications of these relationships for the dynamic evolution of risks to

liquidity, Figure 5 shows realized liquidity together with the conditional median and the

conditional 5th, 25th, 75th, and 95th percentile quantiles of the one-week-ahead and four-

weeks-ahead predicted distribution across credit rating categories.3 This figure demonstrates

one of the key results of the paper: while the distribution around the median for investment-

grade bonds is largely symmetric, there is significant asymmetry between the upper and

lower conditional quantiles for high yield bonds. That is, for high yield bonds, the lower

quantiles vary significantly over time but the upper quantiles are stable. Figure 6 shows

that, across credit ratings, the median and the interquartile range are strongly negatively

correlated, i.e., deteriorations in aggregate liquidity are associated with a decrease in median

liquidity for both credit rating categories and an increase in the uncertainty around the

median. Thus, the left tail of the distribution shifts to the left: the fifth quantile has a

negative relationship with the interquartile range. Figure 6 shows these decreases in median

liquidity and increases in the uncertainty around the median persist at the four-weeks-ahead

horizon.

3.2 Conditional distribution

The quantile regression (1) provides us with estimates of the quantile function, a represen-

tation of the inverse cumulative distribution function (ICDF). Prior literature has struggled

with inverting the empirical ICDF produced from quantile regressions to obtain a conditional

probability distribution function. Instead, we follow Adrian et al. (Forthcoming) and smooth

the quantile distribution function using the skewed-t distribution developed by Azzalini and
3We transform the conditional distribution for log bid-ask spread from the quantile regression (2) to the

conditional distribution for the negative bid-ask spread using the change of variables formula for distributions.
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Capitanio (2003):4

f (y;µ, σ, α, ν) =
2

σ
t

(
y − µ
σ

; ν

)
T

(
α
y − µ
σ

√
ν + 1

ν +
(
y−µ
σ

)2 ; ν + 1

)
(3)

where t(·) and T (·) respectively denote the PDF and CDF of the Student t-distribution. The

four parameters of the distribution pin down the location µ, scale σ, fatness ν, and shape

α. Relative to the t-distribution, the skewed t-distribution adds the shape parameter which

regulates the skewing effect of the CDF on the PDF. The skewed t-distribution is part of a

general class of mixed distributions proposed by Azzalini (1985) and further developed by

Azzalini and Dalla Valle (1996). The intuition for the derivation is that a base probability

distribution – in this case t
(
y−µ
σ
; ν
)
– gets shaped by its cumulative distribution function, and

rescaled by a shape parameter α. The notable special case is the traditional t-distribution

when α = 0. In the case of both α = 0 and ν = ∞, the distribution reduces to a Gaussian

with mean µ and standard deviation σ. When ν =∞ and α 6= 0, the distribution is a skewed

normal.

Besides its flexibility, an advantage of using the skewed-t distribution is that it has

closed-form expressions for both the PDF and the ICDF. This allows us to fit the skewed-t

distribution f in week t by minimizing the distance between the estimated quantile func-

tion Q̂yi,t+h|xt (τ) and the ICDF F−1 (τ ;µi,t,h, σi,t,h, αi,t,h, νi,t,h) of the skewed-t distribution.

More specifically, for each week and each credit rating, we choose the four parameters

{µi,t,h, σi,t,h, αi,t,h, νi,t,h} to match the fifth, twenty-fifth, fiftieth, seventy-fifth and ninety-

fifth percent conditional quantiles

{µ̂i,t,h, σ̂i,t,h, α̂i,t,h, ν̂i,t,h} = argmin
µ,σ,α,ν

∑
τ

(
Q̂yi,t+h|xt (τ)− F

−1 (τ ;µi,t,h, σi,t,h, αi,t,h, νi,t,h)
)2
,

4An alternative approach to smoothing the quantile densities is to interpolate the quantile function using
splines. Imposing monotonicity and smoothness requires additional modeling choices, as in for example
Schmidt and Zhu (2016).
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where τ ∈ {0.05, 0.25, 0.75, 0.95}, µ̂i,t,h ∈ R, σ̂i,t,h ∈ R+, α̂i,t,h ∈ R, and ν̂i,t,h ∈ N.5 This

can be viewed as an exactly identified nonlinear cross-sectional regression of the predicted

quantiles on the quantiles of the skewed-t distribution.6

Figure 7 plots the estimated conditional quantile distributions Q̂yi,t+h|xt (τ) and two ver-

sions of the fitted inverse cumulative skewed-t distribution F−1 (τ ;µi,t,h, σi,t,h, αi,t,h, νi,t,h) –

the one conditional on bid-ask spreads and the unconditional distribution – for two sam-

ples dates at different points in the liquidity cycle: September 19, 2008, the week after the

liquidation of Lehman Brothers; and January 13, 2006, which represents normal liquidity

conditions. Across both credit rating categories and both dates, the skewed-t distribution

is sufficiently flexible to smooth the estimated quantile function while passing through the

targets of interest. Figure 7 also shows that the conditional distribution can deviate sub-

stantially from the unconditional distribution. The conditional distribution is significantly

below the unconditional distribution for both credit rating categories during the height of

the financial crisis. Instead, for investment grade bonds, the conditional distribution is no-

ticeably above the unconditional distribution during normal times, and, for high yield bonds,

the conditional distribution mostly coincides with the unconditional distribution during nor-

mal times. Thus, conditioning information is particularly important during episodes of low

liquidity.

Figure 8 then plots the two versions of the density functions of negative bid-ask spreads

for the same two dates. Comparing the conditional density across the two dates and credit

ratings, we see significant variation in the conditional density across both time and credit

ratings. During liquidity dry-ups, the conditional distribution has higher variance, greater

negative skewness, and lower mean than the unconditional distribution. These changes

are particularly pronounced for investment-grade bonds, suggesting that the risks of fur-

ther liquidity deterioration are greater for higher rated bonds. This may be due to market
5Notice that these parameters are functions of the conditioning variables in week t.
6We fit the skewed-t distribution to the quantile function of log bid-ask spreads, and then use change of

variables formula for distributions to convert that to the distribution for bid-ask spreads.
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expectations of credit rating downgrades for such bonds.

The estimated skewed-t distribution allows us to formally test the in-sample differences in

the conditional and unconditional distributions in Table 1. For both credit ratings and both

forecast horizons, the conditional model significantly outperforms the unconditional model.

Thus, in-sample, lagged bid-ask spreads contain information that is crucial for predicting

the distribution of future liquidity outcomes.

4 Out-of-Sample Performance

The previous Section demonstrates that the predictive model which includes lagged bid-ask

spreads for both credit rating categories outperforms the unconditional model in-sample.

We now turn to evaluating the performance of the conditional and unconditional models

out-of-sample, and illustrate the out-of-sample gains of using the conditional model using

two event studies.

4.1 Statistical performance

We backtest the model by replicating the analysis that an economist would have done using

the proposed methodology in real time. We produce predictive distributions recursively for

two horizons (1 week and 4 weeks), starting with the estimation sample that ranges from

January 1, 2003 to August 1, 2007. The first out-of-sample estimates are thus for the average

liquidity in the week ending on August 8, 2007 (one-week-ahead) and the average liquidity in

the week ending on September 1, 2007 (4 weeks ahead). We then iterate the same procedure,

expanding the estimation sample one week at a time, until the end of the sample (December

31, 2017). At each iteration, we repeat the estimation steps above, estimating quantile

regressions and matching the skewed t-distribution. The outcome of this procedure is a ten

year time series of out-of-sample density forecasts for each of the two forecast horizons and

each of the two credit ratings.
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We perform two types of out-of-sample analyses. First, we study the robustness of our

predicted distributions by comparing the in-sample predicted distributions with their real

time counterparts. Second, we evaluate the out-of-sample accuracy and calibration of the

density forecasts by analyzing the predictive score and the probability integral transform

(PIT); that is, the predictive density and cumulative distribution evaluated at the outturn,

respectively.

We begin by comparing the in-sample and out-of-sample predicted distribution, presented

in Figure 9. The figure illustrates that the in-sample and out-of-sample estimates of the

quantiles are virtually indistinguishable for both horizons and both credit ratings. The

only case in which the in-sample and out-of-sample quantiles deviate noticeably is for the

bottom fifth percentiles of liquidity during the financial crisis, with the out-of-sample more

negative than the in-sample estimate. The full sample estimate incorporates the reversion of

bond liquidity to more normal levels in the post-crisis period, while the real time procedure

estimates a somewhat lower worst case outcomes. The similarities are more striking as

the financial crisis of 2007–2009 is a significant tail event that is not in the data when

estimating the out-of-sample distributions. The similarity between in-sample and out-of-

sample estimates suggests that our methodology can be used to detect liquidity risks in real

time.

Next, we assess the reliability of the predictive distribution using the predictive score,

computed as the predictive distribution generated by a model (either the conditional or the

unconditional model) and evaluated at the realized value of the time series. Higher predic-

tive scores indicate more accurate predictions on average as higher predictive scores indicate

that outcomes that the model considers more likely are closer to the ex-post realization.

Figures 10a and 10c plot the time series of the scores of the conditional and unconditional

one-week-ahead predictive distribution for investment grade and high yield bonds, respec-

tively. For both investment grade and high yield bonds, the predictive score for the condi-

tional distribution is almost always above the predictive score for the unconditional model,
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indicating that the conditional model is almost always more accurate than the unconditional

model. We test the predictive scores differences formally in Table 2. The conditional dis-

tribution outperforms the unconditional distribution across both horizons (one-week-ahead

and four-weeks-ahead) and both credit ratings.

We conclude the out-of-sample evaluation by analyzing the calibration of the predictive

distributions. We compute the empirical cumulative distribution of the PITs, which measures

the percentage of observations that are below any given quantile. A model is said to be better

calibrated the closer the empirical cumulative distribution of the PITs is to the 45 degree

line. In a perfectly calibrated model, the cumulative distribution of the PITs is exactly the 45

degree line, so that the fraction of realizations falling below any given quantile Qyi,t+h|xt (τ)

of the predictive distribution is exactly equal to τ . We plot the PITs for the conditional

and unconditional one-week-ahead distribution for investment grade and high yield bonds,

together with the corresponding confidence bounds,7 in Figures 10b and 10d. For investment

grade bonds, the empirical distribution of the PITs for the conditional model is well within

the confidence bands across all quantiles, while the empirical distribution of the PITs for the

unconditional model falls outside the confidence bands for the bottom half of the distribution.

For high yield bonds, for both the condition and unconditional distributions, the empirical

distribution of the PITs is well within the confidence bands for the lower quantiles, though

the empirical distribution falls outside the confidence bands in the center of the distribution.

Overall, the results in Figure 10, Figure A.3 in the Appendix, and Table 2 suggest that

the quantile regression approach generates robust predictive distributions, across multiple

predictive horizons and across both credit ratings, and is able to capture the downside

vulnerability of liquidity particularly well. We turn next to quantifying the amount of upside

and downside risks present in the conditional predictive distributions of liquidity.
7We follow Rossi and Sekhposyan (2017) in computing the bounds. The confidence bounds should be

taken as general guidance since they are derived for forecasts computed using a rolling, rather than expanding,
sample. For the one-week-ahead and the four-weeks-ahead, the bands are based on critical values derived
under the null of uniformity and independence of the PIT.
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4.2 Event studies

The fact that the conditional model outperforms the unconditional model both in- and

out-of-sample suggests that the method proposed in this paper can be used to monitor

upside and downside risks to liquidity in real time. We now illustrate that the conditional

distribution constructed in this paper performs well not just on average but in times of stress

for the corporate bond market using two event studies: the “Taper Tantrum” on June 19,

2013 in response to Chair Bernanke’s Congressional testimony, and the liquidation of the

Third Avenue Focused Credit Fund on December 11, 2015. The Taper Tantrum episode was

characterized by a sell-off of longer maturity Treasuries on fears of faster-than-anticipated

tapering of asset purchases by the Federal Reserve, and a resulting decline in liquidity across

fixed-income markets, including the U. S. corporate bond market. The period following the

liquidation of the Third Avenue Focused Credit Fund was also characterized by a decrease

in liquidity of corporate bonds due to concerns about possible distress of other bond mutual

funds. For both events, we compute the out-of-sample predicted distribution one- to four-

weeks-ahead of the event.

Taper Tantrum. Figure 11 plots the one- and four-weeks-ahead conditional and uncondi-

tional distribution for (negative) bid-ask spreads of investment grade and high yield bonds,

together with the realized bid-ask spreads the week of June 19, 2013. Two features are worth

noting. First, across both forecast horizons and both credit rating categories, the conditional

distribution is much more concentrated than the unconditional distribution. Thus, as with

the in-sample estimates in Figures 8b and 8d, during periods of low stress for the market,

the out-of-sample conditional distribution exhibits lower uncertainty than the unconditional

distribution. Second, the conditional distribution assigns a much higher probability to the

realized bid-ask spread in the week of June 19, 2013 than the unconditional distribution.
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Third Avenue Focused Credit Fund Liquidation. Figure 12 plots the one- to four-

weeks-ahead predictive distributions on December 11 and December 18, 2015 for investment

grade and high yield bonds. The difference between the distributions at these two dates can

be thought of as a density impulse response function in response to the liquidation of the

Third Avenue Fund on December 11, 2015. For both investment grade and high yield bonds,

the predictive distribution shifts down after the liquidation, reflecting decreased liquidity of

the market, and the left tail of the distribution shifts out (becomes more negative), reflecting

increased risk of further liquidity deterioration. Nonetheless, the realized path of the bid-

ask spread lies well within the uncertainty bands predicted as of December 11, 2015. For

investment grade bonds, the realized average bid-ask spread in the week ending on December

18, 2015, falls within the 10-25 percentile of the distribution as of December 11, 2015. The

liquidity of investment grade bonds rebound by the week ending on January 1,2016, falling

within the second quartile of the distribution as of December 11 and the third quartile of

the distribution as of December 18, 2015.

In contrast, the realized average bid-ask spread for high yield bonds in the week ending on

December 18, 2015, falls within the bottom fifth percentile of the distribution as of December

11, 2015, but their liquidity rebounds within one week. The average liquidity of high yields

bonds in the week ending on December 25, 2015 falls within the second quartile of the

distribution as of December 11 and the third quartile of the distribution as of December 18,

2015.

5 Other Predictors

Prior literature (see e.g. Nagel, 2012; Chung and Chuwonganant, 2014) has shown that

measures of market-wide volatility are correlated with measures of market liquidity. In this

Section, we examine whether such proxies for demand-side pressures as well as proxies for

liquidity supply contain additional information about the future distribution of corporate
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bond liquidity. In particular, we augment the quantile regression specification (2) to include

observations of market-wide variables zt as predictors

Qyi,t+h|xt (τ |xt) = αi,h,τ +
4∑
l=1

βi,l,h,τyi,t−l+1 +
4∑
l=1

γi,l,h,τy−i,t +
K∑
k=1

ηi,hzk,t−1+1 + εi,h,t,τ , (4)

where zk,t is the observation of the kth market-wide variable in week t. The market-wide

variables that we consider here are defined in Section 2.2. We compare the in-sample and

out-of-sample performance of the distribution conditional on lagged bid-ask spreads and

market-wide variables to the performance of the distribution conditional on lagged bid-ask

spreads only by conducting log-likelihood ratio tests for both credit ratings and both horizons.

5.1 In-sample performance

Consider first the results of the in-sample log-likelihood ratio comparisons, reported in Ta-

ble 3a. Each column (except for the first column, which reports the log-likelihood ratio

between the unconditional and the conditional models) in Table 3a corresponds to the log-

likelihood ratio between the augmented conditional distribution (4) and the baseline condi-

tional distribution (2) for different market-wide variables, with positive numbers indicating

better performance of the augmented model than the baseline model in-sample. Table 3a

shows the striking result that, even in-sample, market-wide predictors do not consistently

contain information about the future distribution of liquidity over and above the informa-

tion contained in lagged bid-ask spreads. For investment grade bonds, the augmented model

outperforms the baseline conditional model at the one week horizon only if all the dealer

condition variables or the first-order principal component of the market-conditions variables

(or both) are included; at the four week horizon, the augmented model outperforms the

baseline model only if VIX or all of the market-conditions variables are included. For high

yield bonds, instead, the one-week-ahead performance is improved if either the VIX, MOVE,

Treasury slope or the first-order principal component of the market-conditions variable are
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included, and the four-weeks-ahead performance is improved if either all the market condi-

tions variables or the gross volume of primary dealer activity in corporate securities-backed

repo (or both) are included. Thus, although proxies for demand-side pressures may help

predict future average liquidity, augmenting the conditional model (2) with these variables

does not consistently improve the ability of the model to predict the full distribution of

future liquidity.

5.2 Out-of-sample performance

Turn now to the out-of-sample performance of the augmented models reported in Table 3b.

For investment grade bonds, for both horizons, the augmented models consistently under-

perform the baseline conditional model. Strikingly, if we include either all the predictors

(for both horizons) or the first principal component of the market-conditions variables and

the first principal component of the dealer conditions variables (for the one week horizon),

the point estimate of the log-likelihood ratio is at least two standard deviations below zero,

suggesting that the corresponding augmented models underperform the baseline model in a

statistically-meaningful way.

For high yield bonds, the underperformance of the augmented models is not as persistent,

with the augmented models outperforming the baseline model in a statistically-meaningful

way when any of the dealer conditions (or their first principal component) are included.

At the four week horizon, only the model that includes the first principal component of

the market-conditions variables and the first principal component of the dealer conditions

variables outperforms the baseline model in a statistically-meaningful way; interestingly, the

model that includes instead all the predictive variables underperforms the baseline model in

a statistically-meaningful way.

Overall, the results of this Section suggest that market-wide measures do not consistently

improve the predictive performance of the conditional model in-sample and, for most spec-

ifications, either do not improve or even detriment the out-of-sample performance. Thus,
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market-wide measures of demand-side and supply-side pressures do not seem to contain in-

formation about future credit-rating-level liquidity beyond the information contained in the

history of bid-ask spreads.

6 Measuring Liquidity Flightiness

The median of the predicted density provides the modal forecast for liquidity one week or

four weeks ahead. However, as illustrated by the quote from former Vice Chairman Fisher

in the introduction, policymakers are frequently concerned with downside risks to liquidity

or, in other words, how likely is liquidity to evaporate. In this Section, we summarize the

risks encoded in the conditional distributions of bond liquidity using two measures proposed

by Adrian et al. (Forthcoming): upside and downside relative entropy and expected longrise

and shortfall.

6.1 Upside and downside relative entropy

We start with upside and downside relative entropy, which measures the “extra” proba-

bility assigned by the conditional model to outcomes above and below the median of the

distribution, respectively, relative to the probability assigned to the same outcomes by the

unconditional distribution. Put simply, upside relative entropy measures to what extent

“good” outcomes are more likely to happen under the conditional distribution than under

the unconditional distribution. Similarly, downside relative entropy measures to what extent

“bad” outcomes are more likely to happen under the conditional distribution than under the

unconditional distribution. Formally, we denote by ĝyi,t+h the unconditional density com-

puted by matching the unconditional empirical distribution of the log bid-ask spread on

bonds with credit rating i and by f̂yi,t+h|xt(y|xt) = f (yi; µ̂i,t+h, σ̂i,t+h, α̂i,t+h, ν̂i,t+h) the esti-

mated skewed t-distribution. Then the upside, LUi,t, and downside, LDi,t, entropy of ĝyi,t+h(yi)
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relative to f̂yi,t+h|xt(yi|xt) are defined as

LDi,t
(
f̂yi,t+h|xt ; ĝyi,t+h

)
= −

∫ F̂−1
yi,t+h|xt

(0.5|xt)

−∞

(
log ĝyi,t+h (yi)− log f̂yi,t+h|xt (yi|xt)

)
f̂yi,t+h|xt (yi|xt) dyi,

(5)

LUi,t
(
f̂yi,t+h|xt ; ĝyi,t+h

)
= −

∫ +∞

F̂−1
yi,t+h|xt

(0.5|xt)

(
log ĝyi,t+h (yi)− log f̂yi,t+h|xt (yi|xt)

)
f̂yi,t+h|xt (yi|xt) dyi,

(6)

where F̂yi,t+h|xt(yi|xt) is the cumulative distribution associated with f̂yi,t+h|xt(yi|xt) and

F̂−1yi,t+h|xt(0.5|xt) is the conditional median.

Figures 13a and 13b illustrate the downside entropy calculation for the one-week-ahead

distribution of liquidity of investment grade bonds on two dates at different points in the

liquidity cycle: September 19, 2008, the week after the liquidation of Lehman Brothers; and

January 13, 2006, which represents normal liquidity conditions. On September 19, 2008,

the conditional distribution is much more pessimistic than the unconditional distribution

so that the conditional distribution at the median is above the unconditional distribution,

and downside relative entropy is the area between the conditional and unconditional distri-

bution, shaded in grey. Thus, in periods of time when the conditional distribution is more

pessimistic than the unconditional distribution, the downside relative entropy is positive.

On January 13, 2006, instead, the conditional distribution is somewhat more optimistic

than the unconditional distribution, and the median of the conditional distribution is above

the median of the unconditional distribution. The downside relative entropy is then the

area between the conditional and unconditional distribution below the conditional median

and above the unconditional median (in grey) less the area between the conditional and un-

conditional distribution below the unconditional median (shaded in red). Thus, in periods

when the conditional distribution is more optimistic than the unconditional distribution, the

downside relative entropy is negative, and the upside relative entropy is positive.
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Figures 14a and 14c plot the time series of one-week-ahead upside and downside relative

entropy for investment grade and high yield bonds, respectively, and Figures A.4a and A.4c

plot the time series of four-weeks-ahead upside and downside relative entropy. On average,

upside relative entropy is more volatile than downside relative entropy for investment-grade

bonds, indicating that, on average, there is more uncertainty about whether investment grade

bonds become more liquid than uncertainty about whether investment-grade bonds become

less liquid than predicted by the unconditional distribution. For both investment grade and

high yield bonds, upside and downside entropy co-move positively during periods of market

stress, so that there is greater overall uncertainty about corporate bond liquidity during

market downturns. Since the financial crisis, the upside relative entropy is more volatile

than the downside relative entropy for high yield bonds as well. Thus, after the financial

crisis, there is more uncertainty about the upside risks to liquidity of high yield bonds than

about the downside risks.

6.2 Expected longrise and shortfall

In addition to upside and downside entropy, we also study the expected shortfall encoded in

the conditional distribution of liquidity together with its right tail counterpart, the expected

longrise. The expected longrise measures how high the average liquidity in the conditional

top fifth percentile is, while the expected shortfall captures how low the average liquidity in

the bottom fifth percentile of the conditional distribution is. Formally, for a chosen target

probability π, the expected shortfall and longrise are defined, respectively, as

SFi,t+h (π) =
1

π

∫ π

0

F̂−1yi,t+h|xt(τ |xt)dτ ; LRi,t+h (π) =
1

π

∫ 1

1−π
F̂−1yi,t+h|xt(τ |xt)dτ.

We illustrate the expected five percent shortfall calculation for the one-week-ahead dis-

tribution of investment grade bonds in Figures 13c and 13d. For both dates, the expected

shortfall is measured as the grey area between the zero line and the conditional ICDF for
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quantiles between 0 and 0.05.8 On September 19, 2008 (13c), that area is substantially larger

than the area on January 13, 2006 (13d), reflecting the greater illiquidity of the corporate

bond market during the financial crisis. Unlike the relative upside and downside entropy

calculation described above, expected longrise and shortfall do not compare the conditional

and unconditional distributions. Thus, the fact that the unconditional ICDF is uniformly

above the conditional ICDF during periods of market stress is not reflected in the expected

shortfall.

Figures 14b and 14d plot the time series of one-week-ahead expected longrise and shortfall

for investment grade and high yield bonds, respectively.9 For both credit rating categories,

expected longrise and shortfall co-move positively during the entire sample, with the expected

shortfall more volatile than the expected longrise. Thus, although the probability of liquidity

increases is more volatile than the probability of liquidity decreases, how adverse the bottom

five percent liquidity outcomes are is more volatile than how beneficial the top five percent

liquidity outcomes are.

7 Conclusion

This paper studies the predictability of liquidity and downside risk to liquidity of U. S.

investment grade and high yield corporate bonds. We find evidence of liquidity spillovers

across credit rating categories: greater current liquidity of high yield bonds is associated with

lower uncertainty about future liquidity of investment grade bonds, while greater liquidity

of investment grade bonds is associated with greater uncertainty about future liquidity of

high yield bonds. We find that augmenting the baseline model with proxies for demand-

side and supply-side pressures in the market does not improve the predictive performance

8A further measure of downside risk is “liquidity-at-risk”, or, in our notation, F̂−1yi,t+h|xt
(τ |xt) for a given

level of τ , which corresponds to, e.g., the fifth percentile worst outcome of liquidity. Expected shortfall,
instead, averages across all percentiles below (and including) the target quantile and thus provides a more
comprehensive metric of the severity of worst-case outcomes.

9Figures A.4b and A.4d plot the time series of four-weeks-ahead expected longrise and shortfall.
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of the model. This suggests that, although dealer balance sheet constraints affect liquidity

at the bond level, the current state of dealer balance sheets does not contain additional

information about the future evolution of credit-rating-level liquidity beyond that contained

in the current level of bid-ask spreads.

The global financial crisis highlighted the importance of understanding risks to liquidity

for both individual institutions and the financial system as a whole. As a result, a number of

jurisdictions have introduced liquidity stress tests, arguing that liquidity stress tests generate

valuable information on institutions’ liquidity profile beyond that captured by standardized

liquidity metrics, such as the Liquidity Coverage Ratio and the Net Stable Funding Ratio.10

In this paper, we show that the predictive model that conditions on recent history of liquidity

of investment grade and high yield corporate bonds performs well out-of-sample, both on

average and around stress events in the market, suggesting that the model could be used to

produce plausible, date- and horizon-dependent liquidity stress scenarios.

10See the overviews in e.g. BCBS (2013) and Jobst et al. (2017).
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Table 1: In-sample log-likelihoods. This table reports the in-sample log-likelihoods for the uncondi-
tional and conditional models for log bid-ask spreads. The conditional model includes four lags of log bid-ask
spreads. Numbers reported below the diagonal correspond to the log-likelihood ratio between the uncondi-
tional and conditional model. HAC standard errors reported in parentheses below the estimates. Bolded
estimates indicate point estimates at least two standard deviations away from 0.

(a) IG: 1-week ahead

Uncond BAS
Uncond -0.35
(s.e.) (0.10)
BAS 0.81 0.46
(s.e.) (0.08) (0.05)

(b) HY: 1-week ahead

Uncond BAS
Uncond 0.01
(s.e.) (0.08)
BAS 0.51 0.52
(s.e.) (0.07) (0.05)

(c) IG: 4-weeks ahead

Uncond BAS
Uncond -0.35
(s.e.) (0.10)
BAS 0.69 0.34
(s.e.) (0.08) (0.06)

(d) HY: 4-weeks ahead

Uncond BAS
Uncond 0.01
(s.e.) (0.09)
BAS 0.38 0.39
(s.e.) (0.06) (0.06)

Table 2: Out-of-sample log-likelihoods. This table reports the out-of-sample log-likelihoods for the
unconditional and conditional models for log bid-ask spreads. The conditional model includes four lags of
log bid-ask spreads. Numbers reported below the diagonal correspond to the log-likelihood ratio between
the unconditional and conditional model. HAC standard errors reported in parentheses below the estimates.
Bolded estimates indicate point estimates at least two standard deviations away from 0.

(a) IG: 1-week ahead

Uncond BAS
Uncond -0.53
(s.e.) (0.22)
BAS 1.08 0.55
(s.e.) (0.10) (0.05)

(b) HY: 1-week ahead

Uncond BAS
Uncond -0.07
(s.e.) (0.12)
BAS 0.39 0.33
(s.e.) (0.13) (0.11)

(c) IG: 4-weeks ahead

Uncond BAS
Uncond -0.55
(s.e.) (0.24)
BAS 0.91 0.36
(s.e.) (0.10) (0.09)

(d) HY: 4-weeks ahead

Uncond BAS
Uncond -0.09
(s.e.) (0.13)
BAS 0.37 0.28
(s.e.) (0.10) (0.07)
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Figure 2. Illiquidity and Trading Over Time. This figure plots the time series of
volume-weighted average bid-ask spread by credit rating category (2a), and the share of
total trading volume represented by each credit rating category (2b).
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Figure 3. Quantile Regressions. This figure shows the univariate quantile regressions
of one-week-ahead bid-ask spreads for investment grade and high yield bonds on current
bid-ask spread for investment grade (left column) and high yield bonds (right column).
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Figure 4. Estimated Quantile Regression Coefficients. This figure shows the esti-
mated coefficients in quantile regressions of one-week-ahead bid-ask spreads for investment
grade and high yield bonds on four lags of log bid-ask spreads for investment grade (left col-
umn) and high yield bonds (right column). Regression coefficients reported as the sum of the
coefficients on the four lag of the respective variable. We report confidence bounds for the
null hypothesis that the true data-generating process is a general, flexible linear model for
bid-ask spreads (VAR with 4 lags); bounds are computed using 1000 bootstrapped samples.
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Figure 5. Predicted Distributions. This figure shows the time series evolution of the
predicted distribution one-week-ahead (left column) and four weeks ahead (right column) of
volume-weighted average bid-ask spread by credit rating category. Shaded areas correspond
to the (5%, 95%), (10%, 90%) and (25%, 75%) interquantile ranges, respectively.
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Figure 6. Median, Interquartile Range and Tail Outcomes. This figure shows rela-
tionship between the interquartile range and the median (left column) and the interquartile
range and the 95th percentile (right column) of the one-week-ahead conditional distribution
of volume-weighted average bid-ask spread by credit rating category.
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Figure 7. The Conditional Quantiles and the Skewed-t Distribution. This fig-
ure shows the conditional quantiles together with the estimated skewed-t inverse cumulative
distribution functions for one-week-ahead volume-weighted average bid-ask spread by credit
rating category on two dates: September 19, 2008 (“stressed” market; left column) and Jan-
uary 13, 2006 (“calm” market; right column). The plots include the empirical unconditional
distribution for comparison.
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Figure 8. Probability Densities. This figure shows the estimated skewed-t density func-
tions for one-week-ahead volume-weighted average bid-ask spread by credit rating category
on two dates: September 19, 2008 (“stressed” market; left column) and January 13, 2006
(“calm” market; right column). The plots include the empirical unconditional density for
comparison.
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Figure 9. Out-of-Sample Predictions. This figure compares the in-sample and out-
of-sample predicted distribution one-week-ahead (left column) and four weeks ahead (right
column) of volume-weighted average bid-ask spread by credit rating category. The quantiles
plotted are the 5th, 50th and 95th percentile.
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Figure 10. Out-of-Sample Accuracy. This figure reports the predictive scores (left
column) and the cumulative distribution of the probability integral transform (PITs) for
the one-week-ahead predictive distribution of volume-weighted average bid-ask spread by
credit rating category. Predictive distribution conditions on lagged bid-ask spreads for both
credit rating categories. Scores and PITs for the unconditional distribution included for
comparison. Critical values obtained as in Rossi and Sekhposyan (2017).
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Figure 11. Conditional Distribution after Taper Tantrum. This figure shows the
conditional distribution of one-week-ahead (left column) and four weeks ahead (right column)
of volume-weighted average bid-ask spread by credit rating category after Taper Tantrum
(June 19, 2013). Predictive distribution conditions on lagged bid-ask spreads for both credit
rating categories. The unconditional distribution is included for comparison. Both distri-
butions are estimated using bid-ask spread and market volatility data up to June 21, 2013.
Reported p-values correspond to the upper tail quantiles.
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Figure 12. Conditional Distribution around Third Avenue Liquidation. This figure
shows the out-of-sample conditional ICDF the week before Third Avenue Fund liquidation
on December 15, 2015 and the week of the liquidation of volume-weighted average bid-ask
spread by credit rating category around Third Avenue Fund liquidation on December 15,
2015.
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Figure 13. Information Captured by Downside Entropy and Expected Shortfall.
This figure illustrates the information captured by downside relative entropy and the five
percent expected shortfall for the one-week-ahead out-of-sample predicted distribution of in-
vestment grade (excluding AAA) bid-ask spread on September 19, 2008 (“stressed market”;
left column) and January 13, 2006 (“calm” market; right column). Downside entropy is the
area below the conditional median between the conditional and the unconditional distribu-
tion. Expected shortfall is the expected bid-ask spread in the worst (bottom) five percent
outcomes.
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Figure 14. Measures of Liquidity Flightiness. This figure plots the time series evolu-
tion of the relative downside and upside entropy (left panel) and the five percent expected
shortfall and longrise (right panel) for one-week-ahead volume-weighted average bid-ask
spread by credit rating category.
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Figure A.1. Estimated Quantile Regression Coefficients. This figure shows the esti-
mated coefficients in quantile regressions of four-weeks-ahead bid-ask spreads for investment
grade and high yield bonds on four lags of log bid-ask spreads for investment grade (left col-
umn) and high yield bonds (right column). Regression coefficients reported as the sum of the
coefficients on the four lag of the respective variable. We report confidence bounds for the
null hypothesis that the true data-generating process is a general, flexible linear model for
bid-ask spreads (VAR with 4 lags); bounds are computed using 1000 bootstrapped samples.
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Figure A.2. Median, Interquartile Range and Tail Outcomes. This figure shows re-
lationship between the interquartile range and the median (left column) and the interquartile
range and the 95th percentile (right column) of the four-weeks-ahead conditional distribution
of volume-weighted average bid-ask spread by credit rating category.
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Figure A.3. Out-of-Sample Accuracy. This figure reports the predictive scores (left
column) and the cumulative distribution of the probability integral transform (PITs) for
the four-weeks-ahead predictive distribution of volume-weighted average bid-ask spread by
credit rating category. Predictive distribution conditions on lagged bid-ask spreads for both
credit rating categories. Scores and PITs for the unconditional distribution included for
comparison. Critical values obtained as in Rossi and Sekhposyan (2017).
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Figure A.4. Measures of Liquidity Flightiness. This figure plots the time series evo-
lution of the relative downside and upside entropy (left panel) and the five percent expected
shortfall and longrise (right panel) for four-weeks-ahead volume-weighted average bid-ask
spread by credit rating category.
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