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LINEAR CHOLESKY DECOMPOSITION OF
COVARIANCE MATRICES IN MIXED MODELS WITH

CORRELATED RANDOM EFFECTS

Anasu Rabe1, D. K. Shangodoyin2, K.Thaga3

ABSTRACT

Modelling the covariance matrix in linear mixed models provides an additional ad-
vantage in making inference about subject-specific effects, particularly in the anal-
ysis of repeated measurement data, where time-ordering of the responses induces
significant correlation. Some difficulties encountered in these modelling procedures
include high dimensionality and statistical interpretability of parameters, positive def-
initeness constraint and violation of model assumptions. One key assumption in
linear mixed models is that random errors and random effects are independent,
and its violation leads to biased and inefficient parameter estimates. To minimize
these drawbacks, we developed a procedure that accounts for correlations induced
by violation of this key assumption. In recent literature, variants of Cholesky de-
composition were employed to circumvent the positive definiteness constraint, with
parsimony achieved by joint modelling of mean and covariance parameters using
covariates. In this article, we developed a linear Cholesky decomposition of the ran-
dom effects covariance matrix, providing a framework for inference that accounts for
correlations induced by covariate(s) shared by both fixed and random effects design
matrices, a circumstance leading to lack of independence between random errors
and random effects. The proposed decomposition is particularly useful in parameter
estimation using the maximum likelihood and restricted/residual maximum likelihood
procedures.

Key words: correlated random effects, covariance matrix, linear Cholesky decom-
position, linear mixed models.

1. Introduction

Linear mixed models are a class of models (Laird and Ware, 1982) that provide
parameter estimates (inference) for population (fixed effects) and subject-specific
(random effects) characteristics via separate covariance structures.
Let Yi = (yi1, . . . ,yini)

T be ni × 1 vector of responses measured on the ith subject
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(i = 1, . . . ,m) from a total of n = ∑
m
i=1 ni measurements. A linear mixed model (Laird

and Ware, 1982) for the ith subject is represented by:

Yi = Xiβ +Ziγi + εi (1.1)

where Xi is ni× p design matrix for the p×1 vector of fixed-effects regression coef-
ficients β , Zi is ni×q design matrix for the q×1 vector of random effects γi and εi is
ni×1 vector of error terms. For model (1.1), we assume that:

i. Error terms εi are independent within ith subject and are normally distributed
with zero mean and ni×ni covariance matrix Σi: E(εi) = 0 and εi ∼ N(0,Σi).

ii. The random effects γi are independent and normally distributed with mean
zero and qi×qi covariance matrix ∆i. X and Z share no covariate(s) so that γi

and εi are independent: E(γi) = 0, γi ∼ N(0,∆i) and Cov(γi,εi) = 0.

iii. The response variable yi is normally distributed with mean Xiβ and covariance
matrix Vi: yi ∼ N (Xiβ ,Vi), where Vi = Zi∆iZT

i +Σi.

In practice, assumptions on random effects are difficult to satisfy. For exam-
ple, non-normality of random effects has been proven in the literature by several
authors, with Lange and Ryan (1989) providing some concrete examples. Assump-
tion of independence between εi and γi may also not hold when research interest
require that X and Z have common covariate(s). For example (Gelfand et al., 1995),
in growth studies where individual profiles are centered about a population baseline
curve. In such cases, individual models incorporate the baseline population covari-
ate. Another example is the analysis of CD4 cell counts in HIV studies where all
subjects are HIV-positive at baseline, but not all were diagnosed for the disease.
Interest here is to develop a model that incorporates diagnosis as a baseline co-
variate and therefore should be incorporated in both X and Z. Also, in hierarchical
mixed effects models (Pinheiro and Bates, 2000), the model structure is conditional
on the random effects, making γ and εi inherently dependent.
Several approaches have been proposed in the literature to address these draw-
backs, and procedures based on Cholesky decomposition of the random effects
covariance matrix ∆i provide additional advantage of guaranteeing the positive def-
initeness of the resulting factors, circumventing constraints of high dimensionality
and statistical interpret-ability of the resulting parameters. We review some of these
Cholesky-based procedures in the following section.

2. Variants of Cholesky decomposition

The standard Cholesky decomposition of a real, symmetric, positive definite matrix
Σp×p is

Σ =UTU (2.1)
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where U is an upper triangular with positive diagonal elements. The main advan-
tage of this decomposition when used in parameter estimation procedures, such
as maximum likelihood (ML) and residual/restricted maximum likelihood (REML), is
that it provides an unconstrained parameterization of the parameters in Σ, circum-
venting the positive definiteness constraint. However, Pinheiro and Bates (1996)
showed that the Cholesky factors U are not unique and the unconstrained p(p+1)

2
parameters lack a meaningful statistical interpretation with respect to the entries in
Σ. To overcome these drawbacks, several classical and Bayesian approaches have
been proposed in the literature.
Under the classical approach, Pourahmadi (1999) proposed the modified Cholesky
decomposition (MCD) for modelling parameters of the precision matrix and devel-
oped a ML procedure (Pourahmadi, 2000) for normal generalized linear models:

Σ
−1 = LT D−1L (2.2)

where entries in the unit lower triangular Cholesky factor L are interpreted as nega-
tives of autoregressive coefficients when a response variable yt is regressed on its
predecessors yt−1, . . . ,y1 and entries on the diagonal factor D as logarithms of their
innovations.
However, despite the good performance of the proposed MCD, the procedure left a
number of questions unanswered:
First, the proposed ML estimation procedure (and its restricted extensions) works
well only when measurement times are identical across subjects, and hence may
not be applicable to unbalanced data sets, particularly since it utilizes the sample
covariance matrix S2 as an initial value for Σ, which does not exist in unbalanced
data settings (Pan and MacKenzie, 2006). In such cases, either the ML procedure
is enhanced (Holan and Spinka, 2007) or some numerical optimization approach is
adopted (Zimmermann et al., 1998). Second, the use of a saturated mean structure
may be unnecessary (Pan and MacKenzie, 2003), except when the mean model is
incorporated in searching the joint mean-covariance parameter space. Third, the
regressogram, as proposed and utilized in model selection for the dependence and
innovation variance, failed to capture the joint mean-covariance structure since the
mean model was not included. However, Garcia et al. (2012) showed that as a
data-driven graphical tool for model selection, they are powerful graphical tools in
joint mean-covariance model selection for incomplete longitudinal data. Fourth,
when subject-specific characterization is the focus of research interest, a linear
mixed modelling (LMM) framework may be more flexible than a generalized linear
modeling (GLM) framework.
These questions raised a number of issues and stimulated keen interest in mod-
eling covariance structures under different frameworks and perspectives. Pan and
Mackenzie (2003) observed that parameter estimates based on MCD are not op-
timal, and to address the first question, they proposed extending the procedure
to unbalanced data with optimal parameter estimates achieved via joint search of
the mean-covariance space. Zhang and Leng (2012) proposed a moving average
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Cholesky decomposition (MACD) for Σ as the inverse of precision matrix:

Σ = L−1DL−T (2.3)

where the entries in L−1 have a moving average (MA) interpretation. It has the
same advantages and limitations as MCD and only differs in its MA interpretation.
Li and Pourahmadi (2013) utilized MCD in developing a procedure that circumvent
the effect of violating normality assumption on random effects in linear mixed mod-
els. However, their procedure was based on the assumption that design matrices
X and Z share no common covariates and may result into inefficient parameters
when such assumptions are violated. More recently, Lee et al. (2017) proposed an
autoregressive moving average Cholesky decomposition (ARMACD) by combining
the modified Cholesky decomposition and moving average Cholesky decomposi-
tion to address high-dimensionality and positive definiteness constraints:

ΛiΣiΛ
T
i = LiDiLi

i (2.4)

where Λi is unit lower triangular matrix with generalized autoregressive parame-
ters (GARPs) −φi,t j at its (t, j)th position, Li is unit lower triangular with general-
ized moving average parameters (GMAPs) ιi,t j at its (t, j)th position ( j < t) and
Di = diag(σ2

i1, . . . ,σ
2
ini
) is diagonal with innovation variances (IV) σ2

i j. This decompo-
sition subsumes a wide variety of covariance structures which are more flexible and
with better forecasting performance than separate higher order AR or MA models.
The combination of MCD and MACD creates a unified framework with models that
allow nonstationarity and heteroscedasticity in parameter estimates.
Under a Bayesian framework, Daniels and Zhao (2003) proposed modelling the
random effects covariance matrix ∆i for the ith subject (i = 1, . . . ,m) using the modi-
fied Cholesky decomposition

Λi∆iΛ
T
i = Di (2.5)

where Di = diag(σ2
i1, . . . ,σ

2
iq) is diagonal with innovation variances (IV) σ2

i and Λi is
unit lower triangular with GARPs −φi,t j as its (t, j)th entry. This variant also provides
the advantages of overcoming the positive definite constraint and statistical inter-
pretation of parameters. By adopting a Bayesian approach, they gained additional
flexibility in obtaining the sampling distribution of the random effects using a simple
Gibbs sampler, which sample from the posterior distribution of parameters. To in-
corporate heterogeneity in ∆i, the random effects were allowed to depend only on
subject-specific covariates and parsimony was achieved by regressing the parame-
ters using these covariates. However, when random effects differ on different linear
combinations of these covariates, separate covariance structures need to be fit for
each combination and misspecification of a structure can lead to inefficient param-
eter estimates. Another drawback is their assumption of statistical independence
of the repeated measurement given the random effects. This assumption restricted
the application of their approach in longitudinal studies. Chen and Dunson (2003)
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proposed an alternative Cholesky decomposition for selecting the random effects
components. Their approach factored the random effects covariance matrix ∆ into

∆ = DΛΛ
T D (2.6)

where D is a diagonal matrix with elements proportional to standard deviation of
the random effects and Λ is a unit lower triangular matrix with off-diagonal ele-
ments describing correlations among the random effects. With separate factors for
variance and correlation, their approach is computationally more tractable and pro-
vides some flexibility in selecting the random effects components. However, their
approach is based on the assumption that components of the random errors and
random effects are mutually independent. Gaskins and Daniels (2013) extended
the Cholesky-based joint mean-covariance modelling to longitudinal data from sev-
eral groups of subjects. They proposed a data-driven nonparametric method that si-
multaneously estimates the covariance matrix from each group by developing non-
parametric priors using the matrix stick-breaking process. More recently, Han and
Lee (2016) proposed a variant ARMACD decomposition:

ΛiΣiΛi =Ci∆bCT
i +LiDiLT

i (2.7)

where Λi, Li and Di were as described above, ∆b is the random effects covariance
matrix and Ci = (ci1, . . . ,cini)

T is the random effects design matrix. This approach
has all the advantages of ARMACD as proposed by Lee et al. (2017), but model
parameters are obtained conditional on random effects in the linear mixed model.
By allowing X and Z to have common covariate(s), Gelfand et al. (1995) proposed a
modelling procedure in which parameters are hierarchically centred to account for
between-level correlations, and to ensure model identification. However, the ran-
dom effects covariance matrix of their proposed procedure is positive semi-definite,
leading to poor convergence properties in some parameter estimates.
To account for heteroscedasticity in the random errors εi via modelling the variance
function, Pinheiro and Bates (2000) proposed a variant Cholesky decomposition of
the random errors covariance matrix Σi as

Σi = DiCiDi (2.8)

where Di is diagonal, describing the variance of the random errors and Ci is trian-
gular with all diagonal elements positive, describing the correlation of the random
errors. The variance function model was proposed, conditional on the random ef-
fects γi, as a function of the conditional population mean response µi j = E(yi|γi).
Now, with these conditional dependencies, the assumption of independence be-
tween εi and γi no longer holds and Cov(εi,γi) 6= 0. To circumvent the consequences
of this violation, they allow common covariates between X and Z, approximating µi j

by the best linear unbiased predictor (BLUP)

µ̂i j = xT
i jβ + zT

i jγi (2.9)
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where xi j and zi j denote the jth rows of Xi and Zi, respectively.
In this article, we propose a more efficient approach to address the violation of
this key assumption. We improve efficiency in inference and gain more insight
into model bahaviour by modelling the correlation structure between εi and γi when
Cov(εi,γi) 6= 0, and to achieve this, we propose a linear Cholesky decomposition of
the random effects covariance matrix ∆i . Our approach is based on linear transfor-
mation of inner products of functions of Cholesky factors when subjected to left-right
or lu decomposition. We next discuss this transformation.

3. Linear Cholesky decomposition

The proposed linear decomposition is based on upper triangular Cholesky factor
U. Let ∆ =UTU be q×q standard Cholesky decomposition with U upper triangular.
We subject U to lu factorization, obtaining:

∆ = [lu(U)]T lu(U) = (Φ+Ψ)T (Φ+Ψ) (3.1)

∆−1 =
[
lu
(
U−1

)]T [lu(U−1
)]

=
(
ρ +Ψ−1

)T (
ρ +Ψ−1

)
(3.2)

where Φ(−φi,k j) and ρ(θi,k j) are upper triangular with zeros on the diagonal,
parameters −φi,k j and θi,k j in (k, j)th positions, respectively, and innovation Ψ =

diag(ψ11, . . . ,ψqq) with Ψ−1 = diag(ψ−1
11 , . . . ,ψ−1

qq ) as its inverse.
Expanding (3.1) and (3.2), we obtain

∆ = (Φ+Ψ)T (Φ+Ψ) = Φ
T

Φ+Φ
T

Ψ+Ψ
T

Φ+Ψ
T

Ψ (3.3)

∆
−1 =

(
ρ +Ψ

−1)T (
ρ +Ψ

−1)= ρ
T

ρ +ρ
T

Ψ
−1 +Ψ

−T
ρ +Ψ

−T
Ψ
−1 (3.4)

Definition 1 Let ∆ be represented by (3.3). Linear Cholesky decomposition is de-
fined by

∆ = ΦT Φ+ρT ρ +ΨT Ψ (3.5)

= ∆AR +∆MA +∆IV (3.6)

with Cholesky factors Φ, ρ and Ψ, respectively, describing the correlation struc-
ture in γi, the correlation structure between εi and γi, and the innovation of γi.

Also, for the precision matrix we have:

Definition 2 Let ∆−1 be represented by (3.4). Linear Cholesky decomposition is
defined by

∆
−1 = ρT ρ +ΦT Φ+[Ψ]−T

Ψ−1 (3.7)

= ∆MA +∆AR +∆
−1
IV (3.8)

The following theorem provides the basis for linear Cholesky decomposition:
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Theorem 1 Linear Cholesky decomposition of real, symmetric positive definite ∆ is

∆(Θ) = ΦT Φ+ρT ρ +ΨT Ψ

= ∆AR +∆MA +∆IV (3.9)

where Θ = (−φi, j,θi, j,ψii) with −φi j = corr(γi,γ j) for i 6= j, θi j = corr(εik,γ jk) and
ψii = log(diag [∆ii]).

Proof 1 Let Σp×p = UTU be the standard Cholesky decomposition, then lu de-
composition of upper triangular U results into ul (upper-lower) factors (see Stewart
(1998), page 183):

[lu(U)]T lu(U) = (U∗Ψ)T (U∗Ψ) (3.10)

= ΨTU∗TU∗Ψ (3.11)

with U∗ unit upper triangular and Ψ lower triangular (diagonal) matrices.
Let ’b’ be p×1 suitably chosen vector such that columns of U∗ can be sequentially
extracted via repeated multiplication, forming a Krylov sequence b,U∗b,U∗2b, . . . ,U∗(p−1)b.
Define as Krylov matrix

K =
[
b,U∗b,U∗2b, . . . ,U∗(p−1)b

]
= 〈b,U∗b〉 (3.12)

where 〈., .〉 is an inner product, with the columns forming an ordered basis whose
linear combinations span the Krylov subspaces K1, . . . ,Kp−1 = K(p−1) ⊆ Fp, where
Fp is p−dimensional vector field. lu decomposition described by (3.11) is nonlinear
in the factors. For a linear decomposition, we have from (3.3)

∆ = Φ
T

Φ+Φ
T

Ψ+Ψ
T

Φ︸ ︷︷ ︸+Ψ
T

Ψ

where Φ is strictly upper triangular with dependence parameters and Ψ is diagonal
with variance parameters. The under-braced equation is a function of inner prod-
ucts of the respective Cholesky factors. There are several, well-established matrix
linear transformations (such as Lyapunov stability transformation, see Carlson and
Datta (1979)) that can be used in obtaining meaningful interpretation of this function
of inner products.
If we let each product describe the rate of change in value of the correlation param-
eters θ between εi and γi (through shared covariate(s)) as

∂ f [Φ(φ)] =
[
ΦT (θ)Ψ(θ)

]
∂θ (3.13)

∂ f [Ψ(ψ)] =
[
ΨT (θ)Φ(θ)

]
∂θ (3.14)

then, we obtain the correlation between εi and γi (through shared covariates, with
respect to parameters in Φ) using a direct differentiation result by De Hoog et al.
(2011), as
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[
Φ

T (θ)Ψ(θ)+Ψ
T (θ)Φ(θ)

]
∂θ = ∂ f

[
Ψ(θ)Φ(θ)ΨT (θ)

]
= ΦT (θ)Ψ(θ)Φ(θ)

= 〈Φ,ΨΦ〉 (3.15)

The columns of Φ(θ) =
[
0,U∗b,U∗2b, . . . ,U∗(n−1)b

]
form linear combinations that

span the same Krylov subspaces, but Φ(θ) has the first column as zero vector,
with zeros on its diagonal while U∗

(
u∗i j

)
is a unit triangular with the first column

as a unit vector, having the first entry 1. However, congruence of 〈b,U∗b〉 to
〈Φ(θ),Ψ(θ)Φ(θ)〉 implies congruence of U∗(u∗i j) to Φ(θ) and can be exploited in
establishing an equivalence relation between them by changing the basis of U∗:
Define a new basis Z = (z1, . . . ,zp) ∈ K(p−1) for the column space of U∗ and let
Z = SU∗ where S is invertible, then

f (Z) = ZT
ΨZ = 〈Z,ΨZ〉= 〈SU∗,ΨSU∗〉

Now, 〈SU∗,ΨSU∗〉 is congruent to 〈Φ(θ),Ψ(θ)Φ(θ)〉 if there exists a non-singular
matrix Q such that

QΦ(θ) = SU∗Q ⇒ Φ(θ) = Q−1SU∗Q

QΨ(θ)Φ(θ) = Ψ(θ)SU∗Q ⇒ Ψ(θ)Φ(θ) = QT
Ψ(θ)SU∗Q (3.16)

Then, we have

Φ
T (θ)Ψ(θ)Φ(θ) =

(
Q−1SU∗Q

)T (QT Ψ(θ)SU∗Q
)

= QTU∗T ST Q−T QT Ψ(θ)SU∗Q

= (U∗Q)T ST Ψ(θ)S (U∗Q)

= (U∗Q)T I (U∗Q)

= (U∗Q)T (U∗Q) (3.17)

with invertible S diagonalizing Ψ(θ) to identity: ST Ψ(θ)S −→ I. The matrix Q =

[q1, . . . ,qp] is obtained using the Lanczos algorithm. The main advantage of the lu
factorization is that columns of U can be reconstructed using the non-zero rows
of U∗ as coefficients and we exploit this feature in estimating MA parameters by
reducing an upper Hessenberg matrix H to tridiagonal via column operations:
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U∗Q = [U∗q1, . . . ,U∗qp]

= [q1, . . . ,qp]



h11 h12 h13 . . . . . . h1p

h21 h22 h23 . . . . . . h2p

0 h32 h33 . . . . . . h3p

. . . 0 h43 . . . . . . . . .

. . . . . . . . . . . . . . . h(p−1)p
0 0 . . . . . . h(p−1)p hpp


= QH = ρ(θ) (3.18)

where ρ(θ) is tridiagonal. With U∗ being symmetric,

H = Q−1U∗Q

is also symmetric and tridiagonal. Note that Q need not be orthogonal. Now, using
the above relations, we have

Φ
T (θ)Ψ(θ)Φ(θ) = (U∗Q)T (U∗Q)

= ρT (θ)ρ(θ) (3.19)

To ensure that our approach also provides the basic advantage offered by Cholesky
decompositions, we show that ∆i is positive definite:

Theorem 2 Let ∆i be represented by the linear Cholesky decomposition (3.5). Then,
∆i is positive definite.

Proof 2 By definition (3.5), ∆i = ΦT Φ+ ρT ρ +ΨT Ψ. Then, for any conformable
nonzero vector x, we have

xT
∆x = xT

(
ΦT Φ+ρT ρ +ΨT Ψ

)
x

= xT ΦT Φx+ xT ρT ρx+ xT ΨT Ψx

= (Φx)T
Φx+(ρx)T

ρx+(Ψx)T
Ψx

= Y T
1 Y1 +Y T

2 Y2 +Y T
3 Y3

= ∑i y2
1i +∑ j y2

2 j +∑k y2
3k > 0 (3.20)

where Y1 = Φx,Y2 = ρx,and Y3 = Ψx. Therefore, xT ∆x > 0 and ∆ is positive definite.

4. Conclusions

We propose a linear Cholesky decomposition for estimating correlation parameters
between random errors εi and random effects γi in linear mixed models when the
independence assumption between the two does not hold. Our approach can be
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regarded as an extension of the Pinheiro and Bates (2000) result, in which their
Cholesky decomposition of Σi has two factors, while our decomposition of ∆i has
three factors. Application of this decomposition to parameter estimation using the
maximum likelihood and restricted/residual maximum likelihood procedures is the
topic of our ongoing research.

Acknowledgements

We would like to thank the editorial office and two referees for their constructive
feedback, which considerably improved the original version of the paper. The first
author is grateful to Umaru Musa Yar’adua University Katsina for funding his re-
search.

REFERENCES

CARLSON, D. H., DATTA, B. N., (1979). The Lyapunov matrix equation SA+A∗S =

S∗B∗BS. Linear Algebra and Its Applications, 28, pp. 43–52.

CHEN, Z., DUNSON, D. B., (2003). Random effects selection in linear mixed mod-
els. Biometrics, 59, pp. 762–769.

DANIELS, M. J., ZHAO, Y. D., (2003). Modeling the random effects covariance
matrix in longitudinal data. Statistics in Medicine, 22(10), pp. 1631–1647.

DE HOOG, F. R., ANDERSSEN, R. S., LUKAS, M. A., (2011). Differentiation of
matrix functions using triangular factorization. Mathematics of Computation,
80(275), pp. 1585–1600.

GARCIA, T. P., KOHLI, P., POURAHMADI, M., (2012). Regressogram and mean-
covariance models for incomplete longitudinal data, Journal of the American
Statistical Association, 66(2), pp. 85–91.

GASKINS, J. T., DANIELS, M. J., (2013). A nonparametric prior for simultaneous
covariance estimation, Biometrika, 100(1), pp. 125–138.

GELFAND, A. E., SAHU, S. K., CARLIN, B. P., (1995). Efficient parameterization
for normal linear mixed models, Biometrika, 82(3), pp. 479–488.

HAN, E-J., LEE, K., (2016). Dynamic linear mixed models with ARMA covariance
matrix, Communications for Statistical Applications and Methods, 23(6), pp.
575–585.



STATISTICS IN TRANSITION new series, December 2019 69

HOLAN, S., SPINKA, C., (2007). Maximum likelihood estimation for joint mean-
covariance models for unbalanced repeated measures data, Statistics and
Probability letters, 77, pp. 319–328.

LAIRD, N. M., WARE, J. H., (1982). Random-effects models for longitudinal data,
Biometrics, 38(4), pp. 963–974.

LANGE, N., RYAN, L., (1989). Assessing normality of random effects models, An-
nals of Statistics, 17, pp. 624–642.

LEE, K., BAEK C., DANIELS, M. J., (2017). ARMA Cholesky factor models for the
covariance matrix of linear models, Computational Statistics and Data Analy-
sis, 115, pp. 267–280.

LI, E., POURAHMADI, M., (2013). An alternative REML estimation of covari-
ance matrices in linear mixed models, Statistics and Probability Letters, 83,
pp. 1071–1077.

PAN, J-X., MACKENZIE, G., (2003). On modeling mean-covariance structures in
longitudinal studies, Biometrika, 90(1), pp. 239–244.

PAN, J-X., MACKENZIE, G., (2006). Regression models for covariance structures
in longitudinal studies, Statistical Modeling, 6, pp. 43–57.

PINHEIRO, J. C., BATES, D. M., (1996). Unconstrained parameterizations for
variance-covariance matrices, Statistics and Computing, 6, pp. 289–296.

PINHEIRO, J. C., BATES, D. M., (2000). Mixed-effects models in S and S-Plus,
Springer-Verlag, New York, pp. 205–207.

POURAHMADI, M., (1999). Joint mean-covariance models with application to lon-
gitudinal data: Unconstrained parameterization, Biometrika, 86(3), pp. 677–
690.

POURAHMADI, M., (2000). Maximum likelihood estimation of generalized linear
models for multivariate normal covariance matrix, Biometrika, 87(2), pp. 425–
435.

STEWART, G. W., (1998). Matrix algorithms volume I: Basic decompositions, SIAM
Publications, Philadelphia, U.S.A., p. 183.

ZHANG, W., LENG, C., (2012). A moving average Cholesky factor model in covari-
ance modelling for longitudinal data, Biometrika, 99(1), pp. 141–150.



70 Rabe A., Shangodoyin D. K., Thaga, K.: Linear Cholesky decomposition...

ZIMMERMANN, D. L., VINCENT, N-A., HAMMOU, E., (1998). Computational as-
pects of likelihood-based estimation of first order antedependence models,
Journal of Statistical Computation and Simulation, 60(1), pp. 67–84.


