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MULTI-DOMAIN NEYMAN-TCHUPROV OPTIMAL
ALLOCATION

Jacek Wesołowski1

ABSTRACT

The eigenproblem solution of the multi-domain efficient allocation is identified as a
direct generalization of the classical Neyman-Tchuprov optimal allocation in strati-
fied SRSWOR. This is achieved through analysis of eigenvalues and eigenvectors
of a suitable population-based matrix D. Such a solution is an analytical compan-
ion to NLP approaches, which are often used in applications, see, e.g. Choudhry,
Rao and Hidiroglou (2012). In this paper we are interested rather in the structure
of the optimal allocation vector and relative variance than in such purely numerical
tools (although the eigenproblem solution provides also numerical solutions, see,
e.g. Wesołowski and Wieczorkowski (2017)). The domain-wise optimal allocation
and the respective optimal variance of the estimator are determined by the unique
direction (defined in terms of the positive eigenvector of matrix D) in the space I ,
where I is the number of domains in the population.

Key words: Neyman-Tchuprov allocation, multi-domain allocation, eigenproblem,
stratified SRSWOR.

MSC2010 Classification: 62D05

definition

1. Introduction

Consider a stratified SRSWOR in a population U of size N with strata W1, . . . ,WH ,
which form a partition of U and let Nh denote the size of the stratum Wh, h = 1, . . . ,H.
For a variable Y defined on U we denote yk = Y (k), k ∈U . The standard estimator
of the total τ = ∑k∈U yk has the form τ̂st = ∑

H
h=1 Nhȳh, where ȳh =

1
nh

∑k∈Sh
yk with nh

denoting the size of the sample Sh drawn from Wh, h = 1, . . . ,H. The variance of
τ̂st is D2 = ∑

H
h=1

(
1
nh
− 1

Nh

)
N2

h S2
h, where S2

h = 1
Nh−1 ∑k∈Uh

(yk − ȳh)
2 is the population

variance in Wh, h = 1, . . . ,H.
In such a setting one of the main issues is the optimal allocation, n= (n1, . . . ,nH),

of the sample among the strata. To this end one may assign a given (relative) vari-
ance of the estimator τ̂st and minimize the costs expressed, e.g. by the total sample
size ∑

H
h=1 nh. An alternative approach is by fixing the total sample size n = ∑

H
h=1 nh

and minimize the (relative) variance of τ̂st . Both cases are solved through the clas-
sical Neyman-Tchuprov optimal allocation procedure (see, e.g. Särndal, Swens-
son and Wretman, 1992). In particular, it is well known that under the constraint
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n = n1 + . . .+nH the Neyman-Tchuprov optimal allocation is

nh = n NhSh
∑

H
g=1 NgSg

, h = 1, . . . ,H. (1)

Then, the optimal relative variance assumes the form

D2
opt =

1
τ2

 1
n

(
H

∑
h=1

NhSh

)2

−
H

∑
h=1

NhS2
h

 . (2)

Note that in order for (1) to be a valid solution it is necessary that

n <
(∑

H
h=1 NhSh)

2

∑
H
h=1 NhS2

h
. (3)

Otherwise, (2) gives a non-positive value which is forbidden.
On the other hand, we may want to minimize ∑

H
h=1 nh under the constraint im-

posed on the variance of τ̂st of the form

H

∑
h=1

(
1
nh
− 1

Nh

)
N2

h S2
h = T,

where T is given. Then, it is well known that the optimal allocation is given by

nh =
NhSh

T+∑
H
g=1 NgS2

g

H

∑
g=1

NgSg, h = 1, . . . ,H. (4)

The optimal size of the sample is

nopt =
(∑

H
h=1 NhSh)

2

T+∑
H
h=1 NhS2

h
. (5)

Note that these two solutions are dual in the following sense: If we insert n := nopt

as given in (5) in the formula (1) we obtain (4). Similarly, if we insert T := D2
opt as

given in (2) in the formula (4) we obtain (1).
However, even if (3) is satisfied the Neyman solution may still not be satisfactory:

it may happen that the formula (1) yields nh > Nh for some h ∈ {1, . . . ,H}. Moreover,
nh as given in (1) typically is not integer-valued. Therefore, in recent years there has
been a growing interest in more refined allocation methods, mostly based on non-
linear programming (NLP), see, e.g. the monograph Valliant, Dever and Kreuter
(2013) and references given therein (actually, the literature on the subject is more
than abundant). Such procedures give remedies for the basic drawbacks of the
Neyman allocation, by imposing block constraints of the form 0 < mh ≤ nh ≤ Nh,
h = 1, . . . ,H, on entries of the allocation vector n. Recently numerical procedures
for optimal positive integer solutions also have appeared in the literature, see, e.g.
Friedrich, Münnich, de Vries and Wagner (2015) or Wright (2017). Nevertheless,
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the Neyman-Tchuprov solution remains the only one which gives insight into the
analytic structure of the optimal allocation and the optimal variance. For example,
it is obvious from (2) that, up to a constant additive term (which is typically small),
the optimal (relative) variance is of order 1/n.

The situation becomes much more complex in the case of multi-domain effi-
cient allocation. In such a setting the population is partitioned into disjoint domains
(eventually, domains are further partitioned into strata). The task is to allocate the
sample in the domains (eventually in the strata in each domain) in such a way that,
simultaneously, the estimators of the total value of a given variable in every domain
and in the whole population have minimal variances or related variances (the pre-
cise formulation of the problem is given at the beginning of Section 2). Apparently,
such a statement of the allocation problem is natural in many surveys when the goal
is to estimate the parameter of interest not only for the whole population but for all
the domains the population is partitioned into (e.g. admistration regions in a given
country).

NLP procedures are often relatively easily adjustable to multi-domain efficient
allocation. One example of such an adjustment is the procedure proposed in
Choudhry, Rao and Hidiroglou (2012) (referred to as CRH in the sequel), which
is explained in detail later on in this section. A respective useful adjustment of the
Neyman-Tchuprov approach seems to be far more challenging.

One example of such an approach is provided by Longford (2006), where the
author suggested to minimize (under a constraint given by the total sample size)
the objective function

I

∑
i=1

Pi D2(ȳi)+GP+D2(ȳst), (6)

where Pi, i = 1, . . . , I are relative preassigned weights which describe ”importance”
of domains, P+ = ∑

I
i=1 Pi and G is a weight responsible for a priority for the vari-

ance of the population mean estimator. Mathematically, this approach reduces to
the Neyman allocation scheme. The weights (Pi, i = 1, . . . , I) are designed in order
to cover, at least to some extent, jointly the optimality issue for domains and for
the whole population. As pointed out in Friedrich, Münnich and Rupp (2018), the
approach of Gabler, Ganninger and Münnich (2012), in which additional box con-
straints on the strata (or domain) sample sizes are imposed, can be used also in
this context. However, within such multi-domain adjustment it is not clear how to
assess the impact of values of weights Pi, i = 1, . . . , I, and GP+ on variances D2(ȳi),
i = 1, . . . , I, and D2(ȳst). In a numerical example given in the Appendix of Khan and
Wesolowski (2019) it is visible that the control on the domain-wise efficiency within
this kind of approach is rather problematic.

On contrary, the eigenproblem approach to the domain-optimal allocation gives
a full control of the domain-wise efficiency. Moreover, the optimal allocation is given
through explicit formulas, not just numerically. This is the essence of the present
paper, in which we describe the eigenproblem approach as a generalization of the
classical Neyman-Tchuprov methodology to the case of multi-domain optimal allo-
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cation. Such eigenproblem setting in the context of the domain-wise efficient allo-
cation originally was proposed in Niemiro and Wesołowski (2001), and developed
more recently in Wesołowski and Wieczorkowski (2017), and Khan and Wesołowski
(2019). In the first of these papers the authors considered two-stage sampling
schemes with SRSWOR and stratification either at the first or at the second stage.
The setting considered there imposed jointly two sample size constraints: one on
the sample size at the first stage (either in terms of the number of PSUs or SSUs)
and one on the sample size at the second stage. Such constraints setting was
studied also in the second paper, but for a wider family of sampling schemes: SR-
SWOR with stratification at both the first and the second stage and the Hartley-Rao
scheme at the first stage and stratified SRSWOR at the second stage. Each of
these schemes was also considered with additional constraints of equal SSU sam-
ple sizes within each of PSUs. The last of three papers dealt with the problem
under a single sample size constraint, which was formulated in terms of the ex-
pected overall cost. Except of two-stage stratified SRSWOR sampling schemes
taken into account in earlier papers, here a combination of pps sampling and strati-
fied SRSOWR either at the first or at the second stage was also considered. Finally,
the eigenproblem approach was applied in the three-stage sampling scheme with
SRSWOR (with no stratification) at each stage. Survey applications and some addi-
tional refinements of the eigenproblem approach were given, e.g. in Kozak (2004),
Kozak and Zieliński (2005) and Kozak, Zieliński and Singh (2008).

Before we move to a detailed description of the eigenproblem approach, we will
first analyze the setting of CRH. These authors consider a population U partitioned
into disjoint domains Ui, i= 1, . . . , I. In each domain Ui the sample of size ni is drawn
independently according to the SRSWOR, i = 1, . . . , I. The aim is to minimize the
total sample size

g(n) = n1 + . . .+nI

under the constraints for relative variances of estimators of the domain totals

Ti := 1
τ2

i

(
1
ni
− 1

Ni

)
N2

i S2
i ≤ RVoi, i = 1, . . . , I, (7)

where τi = ∑k∈Ui yk is the total for the ith domain, i = 1, . . . , I, and the constraint on
the relative variance of the estimator of population total

S := 1
τ2

I

∑
i=1

(
1
ni
− 1

Ni

)
N2

i S2
i ≤ RVo. (8)

Note that in this approach one specifies conditions for each of domains and for the
whole population separately by assigning (given) upper bounds RVoi, i = 1, . . . , I and
RVo. The problem was solved in CRH under additional box constraints of the form
0 < ni ≤ Ni, i = 1, . . . , I, by the NLP method involving the popular Newton-Raphson
algorithm. An extension of this approach to the case of stratified SRSWOR in each
of the domains is rather straightforward.
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Actually, in the case of the problem considered in CRH with constraints restricted
to (7), i.e. to those imposed on the relative variances of the estimators of domain
totals, the overall sample size is minimized by the trivial solution

ni =
⌈

NiS2
i

τ2
i Ti+NiS2

i

⌉
∈ (0,Ni], i = 1, . . . , I.

Of course, it may happen that for such values of ni’s, i = 1, . . . , I, condition (8) may
not hold and only then the numerical procedure is needed.

NLP solutions, as the one described in CRH, typically are efficient and rather
universal tools for optimal allocation in real surveys, when the practitioners need
just numerical values for allocation of the sample in the particular survey. Neverthe-
less, they have forms of black boxes, that is, they are fed with population data (or
estimates) and their output gives numbers responsible for allocation. Consequently,
such numerical methods do not provide any information on the structure of optimal
solutions (the allocation vector and the optimal relative variance), while such struc-
tural knowledge is important at the stage of survey design, e.g. for assigning proper
efficiency priorities or for strata and/or domains construction.

To shed more light on the structure of optimal solutions we will analyze the
eigenproblem approach. As it has been already mentioned, this methodology was
developed recently in Wesołowski and Wieczorkowski (2017), referred to as WW in
the sequel. To large extent, the results of the present paper depend on a correct
interpretation of introductory Th. 2.3 of WW, where stratified SRSWOR in each of
domains was analyzed. In comparison with WW, the formulas for domain optimal
allocation, which are given in terms of an eigenvector of certain population depen-
dent matrix, will be slightly modified here due to (known) priority weights assigned
to each of domains. More importantly, a new analytic formula for the optimal rela-
tive variance in terms of this eigenvector will be derived. Combined together, these
formulas allow one to conclude that the eigenvector solution is a direct generaliza-
tion of the classical Neyman-Tchuprov allocation. This is the main message of the
present article. In particular, we will see that in the case when there are no domains
(i.e. when I = 1), the new formulas are reduced directly to (1) and (2). Moreover, in
the situation when there are no strata in the domains the eigenvector solution is an
analytic alternative to the NLP solution of CRH. Last but not least, let us mention
that the analytic formulas we obtain can be also used for computing particular val-
ues of the optimal allocation vector (procedures for eigenvectors and eigenvalues
are available in many computer packages, e.g. procedure eigen in the R package).
Typically, numerical values obtained in this way, agree with NLP solutions.

Finally, let us mention that while being attractive at the analytical and theoretical
level, the eigenproblem apporach has its limitations: e.g. it may give the allocation
values which exceed the strata sizes. The NLP black box methods do not have
this deficiency. Therefore, it would be plausible to overcome this drawback of the
eigenproblem approach. In particular, it would be interesting to study the question
whether a recursive version of the proposed methodology, similar to the recursive
Neyman approach (see, e.g. Rem. 12.7.1 in Särndal, Swensson and Wretman
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(1992)), gives the domain-wise efficient allocation with sample strata sizes within
the strata size ranges. At present, this problem is under study. It would be also
interesting to investigate possibilites of multivariate extensions of the eigenproblem
methodology, since in many applications one would like to allocate the sample tak-
ing under account optimality with respect to more than one variable. A step in this
direction was made in Kozak (2004).

2. Minimization of domain-wise relative variances

In the case of stratified domains, Ui =
⋃Hi

h=1 Wi,h, i = 1, . . . , I, the domain relative
variances are

Ti =
1
τ2

i

Hi

∑
h=1

(
1

ni,h
− 1

Ni,h

)
N2

i,hS2
i,h, i = 1, . . . , I, (9)

where Ni,h = #(Wi,h), S2
i,h =

1
Ni,h−1 ∑k∈Wi,h

(yk− ȳi,h)
2, with ȳi,h =

1
Ni,h

∑k∈Wi,h
yk, τi =∑k∈Ui yk

and ni,h being the size of the sample in hth stratum of ith domain, i = 1, . . . , I. The
relative total variance is

S = 1
τ2

I

∑
i=1

Hi

∑
h=1

(
1

ni,h
− 1

Ni,h

)
N2

i,hS2
i,h. (10)

We will minimize simultaneously all Ti, i = 1, . . . , I, as well as S under the con-
straint on the total sample size. To this end to each domain Ui a (known) priority
weight κi > 0 will be assigned. These weights, describing domain-wise efficiency
priorities can be read out e.g. from CRH assignment of the domain-wise relative
variance boundary values RVoi, i = 1, . . . , I. That is, for any i = 1, . . . , I, the priority
weight κi can be taken as κi =

RVoi
RV , where RV = ∑

I
i=1 RVoi.

Then, (9) can be written as

1
τ2

i

Hi

∑
h=1

(
1

ni,h
− 1

Ni,h

)
N2

i,hS2
i,h = κiT, i = 1, . . . , I, (11)

where T is an unknown positive constant. Under (11) the parameter T controls both
the relative variances in domains and the overall relative variance S of the estimator
of the population mean. To see the latter, note that (10) implies

S =

(
1
τ2

I

∑
i=1

ρ
2
i

)
T, (12)

where ρi = τi
√

κi, i = 1, . . . , I. Therefore, T will be called the base of the relative
variance.

To formulate the main result we need to introduce and analyze properties of a
population I× I matrix

D = 1
n aaT −diag(c), (13)
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where

a = (a1, . . . ,aI)
T =

(
1
ρi

Hi

∑
h=1

Ni,hSi,h, i = 1, . . . , I

)T

, (14)

c = (c1, . . . . ,cI)
T =

(
1

ρ2
i

Hi

∑
h=1

Ni,hS2
i,h, i = 1, . . . , I

)T

(15)

and diag(c) is a diagonal matrix with the vector c being its diagonal.

Proposition 2.1 Assume that

n <
I

∑
i=1

(
∑

Hi
h=1 Ni,h Si,h

)2

∑
Hi
h=1 Ni,hS2

i,h

. (16)

Then, D has the unique, simple and positive eigenvalue λ ∗ and the unique unit
eigenvector v∗ ∈ RI associated to λ ∗, which has all coordinates positive.

The proof of this proposition is given in Section 3.
It appears that the eigenvalue λ ∗ and the eigenvector v∗ from Prop. 2.1 are

crucial for the multi-domain version of the classical Neyman-Tchuprov allocation,
which is the main result of this paper.

Theorem 2.2 Consider stratified SRSWOR in all domains (as described above)
with the total sample size

n =
I

∑
i=1

Hi

∑
h=1

ni,h (17)

and assume that (16) holds. Let λ ∗ and v∗ be as in Prop. 2.1.
Then, the multi-domain optimal allocation (with priority weights κi, i = 1, . . . , I),

that is the allocation satisfying (11) with the minimal base of relative variance under
the sample size constraint (17) has the form

ni,h = n v∗i Ni,hSi,h/ρi

∑
I
r=1 v∗r ∑

Hr
g=1 Nr,gSr,g/ρr

, h = 1, . . . ,Hi, i = 1, . . . , I. (18)

For the optimal base of the relative variance Topt we have Topt = λ ∗. Moreover,

Topt =
1

∑
I
i=1 ρ2

i

[
1
n

(
I

∑
i=1

ρi
v∗i

Hi

∑
h=1

Ni,hSi,h

)(
I

∑
i=1

v∗i
ρi

Hi

∑
h=1

Ni,hSi,h

)
−

I

∑
i=1

Hi

∑
h=1

Ni,hS2
i,h

]
. (19)

Remark 2.1 Note that (18), while inserted into (9), implies

Ti,opt =
ρi

nτ2
i v∗i

Hi

∑
h=1

Nh,iSh,i

I

∑
r=1

v∗r
ρr

Hi

∑
g=1

Nr,gSr,g− 1
τ2

i

Hi

∑
h=1

Ni,hS2
i,h. (20)

The proof of Theorem 2.2 is given in Section 3.
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Note that (19) together with (12) implies that, similarly as in the classical Neyman-
Tchuprov case, the overall relative variance is of order 1/n up to the additive (typi-
cally small) constant.

In the boundary case of I = 1, that is, when there are no domains in U , ρ1
v∗1

cancels out in (18) and (19). Consequently, these formulas are transformed into the
original Neyman-Tchuprov formulas (1) and (2), respectively. Also, (16) becomes
(3).

Another boundary case is when there are no strata in domains. Then, from Th.
2.2 we obtain an analytic solution which can be viewed as an alternative to the NLP
approach of CRH. In this case (no strata in domains) the matrix D, as defined in
(13), has a simple form since then

a =
(

Ni Si
ρi

, i = 1, . . . , I
)T

, c =
(

Ni S2
i

ρ2
i
, i = 1, . . . , I

)T
.

Since Hi = 1, i= 1, . . . , I, the inequality (16) is a consequence of the natural assump-
tion n < N, where N = ∑

I
i=1 Ni. Let v∗ be the unique unit eigenvector with positive

coordinates for the simplified D matrix given above (by Prop. 2.1 we know that such
vector v∗ exists).

Corollary 2.3 In the case of SRSWOR in each of domains (no strata) the optimal
domain-wise efficient allocation (with priority weights κi, i = 1, . . . , I) under the sam-
ple size constraint

I

∑
i=1

ni = n < N (21)

has the form
ni = n v∗i NiSi/ρi

∑
I
j=1 v∗j N jS j/ρ j

, i = 1, . . . , I. (22)

Then, the optimal base of the relative variance assumes the form

Topt =
1

∑
I
i=1 ρ2

i

[
1
n

(
I

∑
i=1

ρi
v∗i

NiSi

)(
I

∑
i=1

v∗i
ρi

NiSi

)
−

I

∑
i=1

NiS2
i

]
. (23)

On the other hand, we may want to minimize the sample size n = ∑
I
i=1 ∑

Hi
h=1 ni,h

under the constraints (9) with given Ti, i = 1, . . . , I. A straightforward application of
the Lagrange multipliers gives the analog of (4) of the form

ni,h = Ni,hSi,h
∑

Hi
g=1 Ni,gSi,g

τ2
i Ti+∑

Hi
g=1 Ni,gS2

i,g

, h = 1, . . . ,Hi, i = 1, . . . , I. (24)

Therefore,

nopt =
I

∑
i=1

(
∑

Hi
h=1 Ni,hSi,h

)2

τ2
i Ti+∑

Hi
h=1 Ni,hS2

i,h

. (25)

Similarly as in the original Neyman-Tchuprov case the two approaches are dual
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in the following sense: (18) follows by inserting Ti := Ti,opt as given in (20) into (24);
dually, we note that (20) (again with Ti := Ti,opt ) can be rewritten as the following
relation between elements of the eigenvector v∗

nv∗i

∑
I
j=1 v∗j ∑

Hi
h=1

N j,hS j,h
ρ j

=
ρi ∑

Hi
h=1 Nh,iSh,i

τ2
i Ti+∑

Hi
h=1 Ni,hS2

i,h

, i = 1, . . . , I

and this formula gives (24) when combined with (18).

3. Proofs

The proofs, to some extent, can be read out from Sec. 2 of WW. Nevertheless, to
make this article more self-contained we provide most of the arguments referring
only to a rather technical Prop. 2.2 from WW. The main new aspect of the argument
is related to the formula (19) for the base of relative variances.

[Proof of Prop. 2.1] We first refer to Prop. 2.2 of WW, the proof of which was
based on the Weyl inequalities (relating eigenvalue of the sum of two matrices to
eigenvalues of the summands). Then, see Rem. 2.1 in WW, it follows that there
exists a unique, positive eigenvalue of the matrix D, denoted here by λ ∗. Moreover,
the eigenvalue λ ∗ is simple, i.e. its eigenspace is one-dimensional.

To show that there exists a unit length eigenvector v∗ (associated with λ ∗) with
all coordinates positive we use the celebrated Perron-Frobenius theorem: If A is a
matrix with all strictly positive entries then there exists a unique positive eigenvalue
ν of A, it is simple and such that ν > |λ | for any other eigenvalue λ of A. The
respective eigenvector (attached to ν) has all entries strictly positive (up to scalar
multiplication) - see, e.g. Kato (1981), Th. 7.3 in Ch. 1.

Fix a number α > max1≤i≤I ci > 0. Note that the matrix Dα := D+αId, where Id
is an I× I identity matrix, has all entries strictly positive. For any eigenvalue λ of D
and the respective eigenvector w we have

Dα w = (λ +α)w, (26)

that is, µ = λ +α and w are eigenvalue and associated eigenvector of Dα , respec-
tively. By the Perron-Frobenius theorem, there exists an eigenvalue µ∗ of Dα such
that µ∗ > |λ +α| > λ +α for any other eigenvalue λ +α of Dα . Moreover, the unit
eigenvector v∗ associated with µ∗ has all coordinates positive.

We will show that λ ∗ = µ∗−α. Assume not. Then, there exists an eigenvalue
µ0 < µ∗ of Dα such that λ ∗ = µ0−α. Thus, λ ∗ < µ∗−α = λ̃ , where λ̃ is an eigen-
value of D. Since λ ∗ is the unique positive eigenvalue of D, we obtained a contra-
diction. Therefore, λ ∗ = µ∗−α and Dv∗ = λv∗.

Consequently, λ ∗ is the unique simple positive eigenvalue of the matrix D and
the respective eigenspace is spanned by the unit vector v∗ with all components
positive.

Now we are ready to prove the main result.
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[Proof of Theorem 2.2] With Ai,h =
Ni,hSi,h

ρi
and ci’s defined in (15), equation (11)

can be written as
Hi

∑
h=1

A2
i,h

ni,h
− ci = T, i = 1, . . . , I. (27)

Consequently, the Lagrange function for the minimization problem assumes the
form

F(T,n) = T +
I

∑
i=1

µi

(
Hi

∑
h=1

A2
i,h

ni,h
− ci

)
+µ

I

∑
i=1

Hi

∑
h=1

ni,h.

Upon differentiating with respect to ni,h we obtain

∂ F
∂ ni,h

= µ−µi
Ai,h
n2

i,h
= 0

which yields vi := µi/µ > 0 and ni,h = vi Ai,h, h = 1, . . . ,Hi, i = 1, . . . , I.
Since ai = ∑

Hi
h=1 Ai,h, see (14), the constraint (27) assumes the form

ai− civi = T vi, i = 1, . . . , I. (28)

Moreover, (17) yields 1
n ∑

I
j=1 v ja j = 1. Therefore, (28) can be written in the form

1
n

(
I

∑
j=1

v ja j

)
ai− civi = T vi, i = 1, . . . , I.

Equivalently, Dv = T v with D = 1
n aaT − diag(c), and v = (v1, . . . ,vI)

T . That is, v
which is a vector with positive components, is an eigenvector of D and T is the
eigenvalue associated to v. According to Prop. 2.1, the unique unit vector v satisfy-
ing positivity requirement is v = v∗ and then T = λ ∗. Consequently,

ni,h ∝ Ai,h v∗i , h = 1, . . . ,Hi, i = 1, . . . , I.

Using again the constraint (17) we obtain (18).
On the other hand, we plug ni,h, as given in (18), into the formula for the total

relative variance (10). Upon cancelations we get (19).

4. Conclusion

The minimization of the common base T of the relative variances in the domains
under domain-wise stratified SRSWOR can be achieved analytically through the
eigenproblem approach. The formulas for the allocation as well as for the optimal
relative variance are explicit in terms of the unique unit eigenvector with positive
coordinates of a properly designed population matrix D. Consequently, a direct
(but not straightforward) generalization of the classical Neyman-Tchuprov optimal
allocation is obtained. Although it has similar drawbacks to those of the Neyman-
Tchuprov allocation, it has its rather unique advantage: it reveals structural prop-
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erties of the domain-wise optimal allocation. Additionally, in typical situations, the
eigenproblem approach gives also numerical solutions which are either identical or
close to those obtained through NLP tools. Of course, the NLP procedures allow
one to obtain optimal sample strata sizes not exceeding actual strata sizes. The
eigenproblem approach may give optimal allocations which do not satisfy such re-
quirements. The proper adjustment of the eigenproblem methodology remains a
challenging issue.
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GABLER, S., GANNINGER, M., MÜNNICH, R., (2012). Optimal allocation of the
sample size to strata under box constraints, Metrika, 75(2) , pp. 151–161.

KATO, T., (1981), A Short Introduction to Perturbation Theory for Linear Operators,
Springer, New York.

KHAN, M. G. M., WESOŁOWSKI, J., (2019). Neyman-type sample allocation for
domains-efficient estimation in multistage sampling. Adv. Stat. Anal., 103 ,
pp. 563–592.

KOZAK, M., (2004). Method of multivariate sample allocation in agricultural sur-
veys. Biom. Collq., 34 , pp. 241–250.
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