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Abstract

What is the optimal default contribution rate or default asset allocation in

pension plans? Could active decision (i.e., not setting a default and forcing

employees to make a decision) be optimal? These questions are studied in

a model in which each employee is biased regarding her optimal contribution

rate or asset allocation. In this model, active decision is never optimal and the

optimal default is, depending on parameter values, one of three defaults. The

paper also explores how the parameters affect the optimal default and the total

loss in the population at the optimal default.
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1 Introduction

A large literature documents that the default contribution rate and the default asset

allocation in defined contribution pension plans have a large affect on employees’

saving for retirement.1 This raises the question of what is the optimal default policy.

This question can be broken down into two parts. First, what is the optimal default?

Second, how does the optimal default compare to “active decision” (AD), i.e., to not

setting a default and forcing employees to make a decision?

Although these questions have been studied previously, most of the existing liter-

ature on optimal default policies assumes either that individuals know their optimal

options or that they have unbiased beliefs about them.2 This assumption runs counter

to the common view that, left to their own devices, individuals would make systematic

mistakes (e.g., by undersaving) and defaults can be used to “nudge” them towards

better options.3

The current paper analyses a model in which employees are biased. In particular,

the model has the following key features. First, for each employee, there is an opti-

mal option, x, which corresponds to her optimal contribution rate or to the optimal

fraction of her pension plan portfolio invested in stocks (with the rest of the portfolio

being invested in risk-free bonds).

Second, each employee is biased in the sense that, if her optimal option is x, her

preferred option (i.e., the one she would choose) is x− b. One can interpret the bias,

b, as a mistake. In the context of contribution rates, this interpretation should be ap-

pealing for proponents of the view that individuals undersave for retirement from the

1See Madrian and Shea (2001), Choi et al. (2002, 2003, 2004a, 2004b, 2006), Beshears et al.
(2008), Carroll et al. (2009), and Chetty et al. (2014). Bronchetti et al. (2013) observe no default
effect.

2The only exceptions that I am aware of, Goldin and Reck (2018) and Ivanov (2019), are discussed
in section 6.

3For example, see Thaler and Sunstein (2003).
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point of view of their own interest.4 In the context of asset allocation, it is plausible

that young people underweight stocks because (i) as a result of exponential growth

bias,5 they underestimate the long-term difference in wealth that results from invest-

ing in stocks at a, say, 7% annual return rather than in bonds at a, say, 1% annual

return or (ii) they are not aware of the high historical equity premium6 or of the fact

that historically equity returns have dominated bond returns over long horizons.7,8

Alternatively, one can view the bias as reflecting an externality rather than a mistake.

For example, if a perfectly rational employee saves little for retirement because she

anticipates being bailed out by the government, she would not be undersaving from

the point of view of her own interest, but would be undersaving from the point of

view of the government.

Third, if an employee has to decide actively, either because she opts out of the

default or because the default policy is AD, she incurs a cost, c.

Fourth, employees are heterogeneous–their optimal options are assumed to be

distributed (for much of the paper, uniformly distributed) on an interval [x, x] of

length 2ǫ. The parameter ǫ will capture the degree of heterogeneity in the population.

Finally, if an employee ends up with option x′ when her optimal option is x, this

4There is currently a heated theoretical and empirical debate on whether individuals do indeed
undersave for retirement. For an overview of the issues as well as further references, see Poterba
(2015) as well as section 4.6 in Ericson and Laibson (2019).

5For evidence of exponential growth bias, see Eisenstein and Hoch (2005), Stango and Zinman
(2009), as well as Levy and Tasoff (2016).

6There is some suggestive evidence of such unawareness: Beshears et al. (2017) report that
experimental subjects invest more heavily in stocks when they are shown data on historical returns.

7Benartzi and Thaler (1999) report that experimental subjects invest more heavily in stocks when
shown 30-year rather than 1-year return distributions. Beshears et al. (2017) find that this effect is
not robust, at least when subjects are shown 5-year vs. 1-year return distributions.

8There is evidence that education (Campbell (2006) and Calvet, Campbell, and Sodini (2007))
and IQ (Grinblatt, Keloharju, and Linnainmaa (2011)) have a positive effect on stock market partic-
ipation. This is consistent with the view that nonparticipation, or, more generally, low investment
in equities, is often a mistake. Bach, Calvet, and Sodini (2016) show that wealthier households in
Sweden hold riskier financial portfolios. The associated higher average returns substantially increase
inequality in financial wealth. Thus, to the extent that limited exposure to stocks is a mistake, it is
one that contributes to inequality.
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entails a loss from deviations equal to l(x−x′). For much of the paper, we will assume

that l(·) is strictly convex and symmetric around zero. Each employee’s loss equals

her loss from deviations plus, possibly, the cost c. An optimal default policy is one

that minimises the total loss in the population.

After presenting the details of this model in section 2, we turn to the main findings

in sections 3-5. The first main finding is that AD is never an optimal default policy.

The second main finding is that, given the values of the parameters b, c, and ǫ,

the optimal default is one of three defaults. The first default is placed in the middle

of [x, x]. We call this the centre (C) default. If all employees would stay with the C

default, it is optimal.

The second default is such that employees with x = x think it’s too high, but are

only just willing to stay with it. We call this the x-perceived-equal-loss-from-in-or-out

(x-InOut-PEL) default. This default is optimal when (i) some employees would opt

out of the C default and (ii) an employee with x = x is close enough to the x-InOut-

PEL default that staying with it involves a loss lower than the loss from opting out.

When the x-InOut-PEL default is optimal, all employees stay with it.

The third default is such that it is below x and employees with x = x incur a

loss from staying equal to the loss they would incur from opting out. We call this

the x-equal-loss-from-in-or-out (x-InOut-EL) default. This default is optimal when

neither of the other two types of defaults are optimal. When this default is optimal,

employees with x’s above a cutoff stay while employees with x’s below the cutoff opt

out.

The third main finding is about how each parameter affects the optimal default.

Loosely speaking, increasing b or ǫ tilts the planner away from the C default and

towards the x-InOut-EL default, whereas increasing c has the opposite effect.

The fourth main finding is that the total loss in the population at the optimal
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default is weakly increasing in b, either weakly decreasing or nonmonotone in c, and

strictly increasing in ǫ. As a result, if the planner can lower employees’ bias or

decrease heterogeneity in the targeted population, doing so is beneficial (or at least

doesn’t hurt); if the planner can affect the cost c, she may want to either increase it

or decrease it depending on specifics.

For purposes of tractability, the model is designed to be as simple as possible.

As a result, it lacks realism in many ways. Section 6 discusses some of the model’s

assumptions as well as potentially relevant factors that are omitted from it. Because

the existing literature on optimal defaults deals with some of these factors, section 6

will also serves as a literature review. Section 7 concludes.

2 The Model

The model has the following components. First, for each employee, there is an optimal

option, x, which corresponds either to her optimal contribution rate or to the optimal

fraction of her pension plan portfolio invested in stocks (with the rest of the portfolio

being invested in risk-free bonds). Employees’ optimal options are distributed on

[x, x] ⊆ [0, 1], where x < x. We let 2ǫ denote the width of this interval.

Second, each employee is biased in the sense that, if her optimal option is x, her

preferred option is x − b.9 We assume b > 0, which is without loss of generality.10

Note that, if b > x, then x− b < 0 for some employees. Allowing some employees to

choose x−b < 0 is unrealistic given that employees typically cannot choose a negative

contribution rate or to short-sell stocks in their retirement portfolios. To avoid this

9An additive bias simplifies the analysis. However, there is no reason to believe that an additive
bias is more realistic than, say, a multiplicative bias.

10If each employee sets the contribution rate or the allocation to stocks too high, we can think
of x as the optimal fraction of her salary that she does not contribute towards her pension plan or
as the optimal fraction of her portfolio invested in bonds, respectively. With this relabelling, the
assumption b > 0 would be appropriate.
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possibility, we assume b ≤ x.

Third, if an employee has to decide actively, either because she opts out of the

default or because the default policy is AD, she incurs a cost, c > 0. We refer to

c as the opt-out cost, even though there is no opting out under AD. We interpret c

as reflecting implementation costs, i.e., the time and effort required to contact the

relevant people in the human resources department, to fill in the necessary paperwork,

etc.

Fourth, if an employee ends up with option x′ when her optimal option is x, we

assume this entails a loss from deviations equal to l(x−x′) and a perceived loss from

deviations (from the point of view of the employee) equal to l(x−b−x′). We maintain

throughout the following assumptions on l(·): (i) l(·) is continuous, (ii) l(0) = 0,

(iii) l(·) is strictly decreasing on (−∞, 0] and strictly increasing on [0,∞), and (iv)

limz→−∞ l(z) = limz→∞ l(z) = ∞. These assumptions should be uncontroversial.

Later, we will impose additional assumptions on l(·).

In this setup, how does an employee with optimal option x behave and what loss

does she incur? Under AD, the employee incurs the cost c and chooses x − b. As a

result, she incurs a loss equal to c+ l(x− (x− b)) = c + l(b).

How about if she faces a default, D? Letting ∆ = x−D, the loss associated with

staying with the default is l(∆). However, the perceived loss is l(x−b−D) = l(∆−b).

The employee stays with the default if and only if c ≥ l(∆− b). The latter inequality

can be written as ∆L ≤ ∆ ≤ ∆R, where ∆L and ∆R are the two values of ∆ that

solve the equation c = l(∆ − b) (see Figure 1). Note that, given that an employee

with ∆ = b thinks the default is ideal, an employee with ∆ = ∆L/∆ = ∆R thinks the

default is too high/low but is only just willing to stay with it. If an employee opts

out, she incurs the cost c and chooses x− b, so that her loss is the same as under AD,

namely c+ l(b).

6



l(�-b)

c

�L b �R
�

Figure 1: Determination of ∆L and ∆R.
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Figure 2: Graph of L(·).

Given the remarks in the previous paragraph, the loss of an employee with optimal

option x who faces a default D is captured by the following function:

L(∆) =







l(∆) if ∆L ≤ ∆ ≤ ∆R

c+ l(b) otherwise
. (1)

Figure 2 shows the graph of L(·) for each of the cases ∆L ≤ 0 and ∆L > 0. The

following lemma establishes that key features of Figure 2 hold more generally.11

Lemma 1

11All proofs are in the appendix.
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Figure 3: Actual loss, l(∆), and perceived loss, l(∆−b), from staying with the default.

1) If ∆L ≤ 0, L(∆L) < c.

2) If ∆L > 0, L(∆L) < l(b).

3) If l(·) is strictly convex, L(∆R) > c+ l(b).

The logic behind statement 1) goes as follows. Assume ∆L ≤ 0 and consider an

employee with ∆ = ∆L. The default is too high for this employee (∆ ≤ 0 is equivalent

to x ≤ D), and the employee recognises this (recall that an employee with ∆ = ∆L

thinks the default is too high). However, given her bias, she exaggerates the extent

to which the default is too high and, as a result, exaggerates the loss from staying

with it. Given that an employee with ∆ = ∆L thinks that the loss from staying with

the default is c, it must be that the true loss from staying, l(∆L), is less than c (see

the left panel in Figure 3).

Statement 2) holds because, when ∆L > 0, an employee with ∆ = ∆L is closer

to the default than an employee with ∆ = b, so that l(∆L) < l(b) (see the right

panel in Figure 3). Given that L(∆L) = l(∆L), the latter inequality is equivalent to

L(∆L) < l(b).
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The argument behind statement 3) is the following. An employee with ∆R − b

faces a loss of c from staying with the default (by the definition of ∆R). Given that

∆R−b > 0 and l(·) is strictly convex, the additional loss from staying for an employee

with ∆ = ∆R, l(∆R)− l(∆R − b), is larger than l(b)− l(0) = l(b).

Statements 1) and 2) in Lemma 1 imply that L(∆L) < c + l(b), so that L(·) has

a downward jump at ∆L. Statement 3) says that L(·) has a downward jump at ∆R.

The downward jumps of L(·) at ∆L and ∆R will play a key role in determining the

optimal default policy.

3 The Optimal Default Policy

Let us observe that, given that employees’ x’s lie in [x, x], employees’ corresponding

∆’s given a default D lie in [x − D, x − D]. Thus, by choosing D the planner is

effectively shifting around the latter interval on the horizontal axis in each panel in

Figure 2. Thus, denoting the upper endpoint of this interval as ∆̄ (i.e., ∆̄ = x−D),

we can think of the planner as directly choosing ∆̄ rather than D. In fact, this turns

out to be notationally more convenient. Moreover, given any ∆̄, it is easy to infer the

position of the corresponding default, D, relative to [x, x]. In particular, the position

of D relative to [x, x] is the same as the position of ∆ = 0 relative to [∆̄−2ǫ, ∆̄]. E.g.,

if ∆ = 0 is below/in the lower end of/in the middle of/in the upper end of/above

[∆̄ − 2ǫ, ∆̄], then D is below/in the lower end of/in the middle of/in the upper end

of/above [x, x].

3.1 AD

Before exploring how the planner optimally sets ∆̄, let us consider whether AD could

ever be an optimal default policy.

9



Proposition 1 AD is never an optimal default policy.

The logic for Proposition 1 is the following. By the fact that L(∆L) < c + l(b)

and the continuity of l(·), there exists η > 0, such that L(∆L + η) < c + l(b). If

the planner sets ∆̄ = ∆L + η, then (i) no employee incurs a loss strictly greater than

c+ l(b) because L(∆) ≤ c+ l(b) for all ∆ ≤ ∆L + η (see Figure 2) and (ii) employees

with ∆’s between ∆L and ∆L + η incur a loss strictly less than c + l(b) (again, see

Figure 2). Thus, the total loss in the population with ∆̄ = ∆L + η is strictly lower

than the total loss with AD.

3.2 The Optimal Default

From here on we maintain the following assumptions in addition to those imposed in

section 2: employees’ optimal options are uniformly distributed on [x, x] ⊆ [0, 1], l(·)

is strictly convex, and l(·) is symmetric around 0 (i.e., l(z) = l(−z) for all z). These

assumptions are discussed in section 6.

Given Proposition 1, an optimal default is an optimal default policy. We now turn

our attention to the question of how the planner sets the default, or equivalently ∆̄,

optimally.

Observe that the total loss in the population associated with a given value of ∆̄

equals 1
2ǫ

times the area under L(·) over the interval [∆̄−2ǫ, ∆̄]. An optimal ∆̄ solves:

min
x−1≤∆̄≤x

1

2ǫ

∫ ∆̄

∆̄−2ǫ

L(∆)d∆. (2)

The constraint is equivalent to 0 ≤ D ≤ 1, which reflects the natural constraint that

the planner cannot set a default contribution rate or a default allocation to stocks

outside of [0, 1].

The following proposition characterises the solution to problem (2).
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Proposition 2 Let ∆1 denote the value of ∆ > 0, such that L(∆) = c + l(b) (see

Figure 3). The unique solution to problem (2) is:

∆̄∗(b, c, ǫ) =



















ǫ if ∆L ≤ −ǫ

∆L + 2ǫ if ∆L > −ǫ,∆1 −∆L ≥ 2ǫ

∆1 if ∆1 −∆L < 2ǫ

. (3)

The first case in expression (3) is illustrated in Figure 4. The shaded area in the

figure represents the total loss in the population (scaled by 2ǫ). ∆̄ = ǫ corresponds

to the C default. As is evident from the figure, nobody opts out.

To see the intuition for why ∆̄ = ǫ solves problem (2) when ∆L ≤ −ǫ, consider

shifting ∆̄ slightly to the right or left away from ǫ in Figure 4.12 If we shift ∆̄ slightly

to the right by a small number δ > 0, the shaded area increases by the area under

L(·) over the interval [ǫ, ǫ+ δ] and decreases by the area under L(·) over the interval

[−ǫ,−ǫ + δ]. Because L(·) has higher values just to the right of ǫ than just to the

right of −ǫ, the shift to the right leads to a net increase in the shaded area and is thus

undesirable. A similar logic reveals that shifting ∆̄ slightly to the left is undesirable.

An analogous argument involving small shifts to the right or left of ∆̄∗(b, c, ǫ) will

apply to the second and third cases in expression (3), so that we don’t repeat the

argument when discussing these cases below.

The second case in expression (3) is illustrated in the two panels of Figure 5 (one

panel for ∆L ≤ 0 and one for ∆L > 0). ∆̄ = ∆L + 2ǫ corresponds to the x-InOut-

PEL default. As is evident from the figure, nobody opts out. Note that employees

with low x’s (i.e., with ∆’s near ∆L) incur a smaller loss than those with high x’s

(i.e., with ∆’s near ∆L+2ǫ). However, increasing the default to better accommodate

employees with high x’s (by lowering ∆̄ below ∆L + 2ǫ) is undesirable because it

12The argument given here merely shows that ∆̄ = ǫ is a local minimiser. The formal proof in the
appendix establishes that it is also a global minimiser.
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ΔL ΔR0-ϵ ϵ
Δ

c+l(b)

Figure 4: ∆̄∗(b, c, ǫ) = ǫ (C default).

causes employees with low x’s to opt out, which leads to even higher losses.

The third case in expression (3) is illustrated in the two panels of Figure 6 (one

panel for ∆L ≤ 0 and one for ∆L > 0).13 ∆̄ = ∆1 corresponds to the x-InOut-EL

default. As is evident from the figure, employees with x’s above a cutoff (i.e., with ∆’s

above ∆L) stay while employees with x’s below the cutoff (i.e., with ∆’s below ∆L)

opt out. Note that the planner could induce more employees to stay with the default

if she slightly lowers it, i.e., if she shifts ∆̄ slightly to the right of ∆1.
14 However, this

would lead employees with high x’s to incur losses above c+ l(b), which would more

than undo any gains from getting more employees with lower x’s to stay.

13The right panel is drawn so that ∆1 − 2ǫ > 0. However, we could just as well have ∆1 − 2ǫ ≤ 0.
14The proof of Proposition 2 shows that ∆1 < x in the third case in expression (3), so that shifting

∆̄ slightly to the right of ∆1 won’t violate the constraints in problem (2).
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Δ

c+l(b)

ΔL≤0

ΔL Δ1 ΔR0 ΔL+2ϵ
Δ

c+l(b)

ΔL>0

Figure 5: ∆̄∗(b, c, ǫ) = ∆L + 2ǫ (x-InOut-PEL default).

4 How Does Each Parameter Affect the Optimal

Default?

In this section, we explore how each parameter affects which of the three cases in

expression (3) holds and, hence, whether the C, x-InOut-PEL, or x-InOut-EL default

is the optimal one.

Let us start with the following lemma.

Lemma 2 ∆1 −∆L is strictly decreasing in b and strictly increasing in c.

The logic for why ∆1−∆L is strictly decreasing in b is the following. Increasing b

by σ > 0 shifts the c+l(b) line in each panel of Figure 3 up by l(b+σ)−l(b). Given the

fact that ∆1 > b15 and the strict convexity of l(·), l(∆1+σ)− l(∆1) > l(b+σ)− l(b),

so that ∆1 needs to increase by less than σ to accommodate the increase in b. Thus,

∆1 increases less than one-for-one with b whereas ∆L increases one-for-one with b (see

Figure 1).

15∆1 > 0 and l(∆1) = c+ l(b) > l(b) imply ∆1 > b.
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ΔL Δ1 ΔR0
Δ

c+l(b)

ΔL≤0

ΔL Δ1 ΔR0
Δ

c+l(b)

ΔL>0

Figure 6: ∆̄∗(b, c, ǫ) = ∆1 (x-InOut-EL default).

That ∆1 −∆L is strictly increasing in c follows from the fact that ∆1 is strictly

increasing in c and the fact that ∆L is strictly decreasing in c (see Figure 3).

We are ready to state the main result in this section.

Proposition 3

1) Increasing b contracts/expands the set of (c, ǫ)-pairs for which the C/x-InOut-

EL default is optimal.

2) Increasing c expands/contracts the set of (b, ǫ)-pairs for which the C/x-InOut-

EL default is optimal.

3) Increasing ǫ contracts/expands the set of (b, c)-pairs for which the C/x-InOut-

EL default is optimal.16

Statement 1) follows because increasing b (i) increases ∆L (see Figure 1), thus

making the inequality in the first case in expression (3) harder to satisfy, and (ii)

by Lemma 2, decreases ∆1 − ∆L, thus making the inequality in the third case in

expression (3) easier to satisfy.

16The terms “contracts” and “expands” are used in the sense of strict set inclusion.
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Statement 2) holds because increasing c (i) decreases ∆L (see Figure 1), thus

making the inequality in the first case in expression (3) easier to satisfy, and (ii)

by Lemma 2, increases ∆1 − ∆L, thus making the inequality in the third case in

expression (3) harder to satisfy.

Statement 3) follows because increasing ǫ makes the inequality in the first/third

case in expression (3) harder/easier to satisfy.17,18

5 How Does Each Parameter Affect the Total Loss?

How does each parameter affect the total loss in the population at the optimal default,

1
2ǫ

∫ ∆̄∗(b,c,ǫ)

∆̄∗(b,c,ǫ)−2ǫ
L(∆)d∆? The following proposition answers this question under an

additional assumption on l(·).

Proposition 4 If l(·) is differentiable on (0,∞), then 1
2ǫ

∫ ∆̄∗(b,c,ǫ)

∆̄∗(b,c,ǫ)−2ǫ
L(∆)d∆ is weakly

increasing in b, either weakly decreasing or nonmonotone in c,19 and strictly increas-

ing in ǫ.

The intuition for the comparative statics of 1
2ǫ

∫ ∆̄∗(b,c,ǫ)

∆̄∗(b,c,ǫ)−2ǫ
L(∆)d∆ with respect to

b or c depends on whether the C, x-InOut-PEL, or x-InOut-EL default is optimal.

When the C default is optimal, a small change in one of these parameters does not

affect the shaded area in Figure 4.

When the x-InOut-PEL default is optimal, consider Figure 5. A small increase in

b shifts up slightly ∆L (see Figure 1) and, hence, ∆̄∗(b, c, ǫ) = ∆L+2ǫ. This results in

17For each parameter, increasing it makes one of the inequalities in the second case in expression
(3) easier to satisfy whilst making the other inequality in the second case in expression (3) harder to
satisfy. As a result, it is not the case for any parameter that increasing it unambiguously contracts or
expands the set of pairs of the other two parameters for which the x-InOut-PEL default is optimal.

18The appendix considers additional relationships between the parameters and the optimal default.
19The proof shows that, at least when l(z) = z2, (i) there exist (b, ǫ)-pairs for which

1
2ǫ

∫ ∆̄∗(b,c,ǫ)

∆̄∗(b,c,ǫ)−2ǫ
L(∆)d∆ is weakly decreasing in c and (ii) there exist (b, ǫ)-pairs for which

1
2ǫ

∫ ∆̄∗(b,c,ǫ)

∆̄∗(b,c,ǫ)−2ǫL(∆)d∆ is nonmonotone in c.
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eliminating a sliver of shaded area just to the right of ∆L and expanding the shaded

area just to the right of ∆L+2ǫ in Figure 5. Given that L(·) has higher values around

∆L + 2ǫ than around ∆L, the net effect on the shaded area is positive, so that the

total loss increases. Analogously, a small increase in c shifts down slightly ∆L (see

Figure 1) and, hence, ∆̄∗(b, c, ǫ) = ∆L + 2ǫ, so that the total loss decreases.

When the x-InOut-EL default is optimal, consider Figure 6. A small increase

in b has two effects. First, it shifts up slightly ∆L, so that employees just to the

right of ∆L in the figure opt out. Because L(∆L) < c + l(b), these employees’ losses

increase. Second, it shifts the c + l(b) line up, which increases the loss of employees

with ∆’s in [∆1 − 2ǫ,∆L], thus reinforcing the first effect.20 A small increase in c has

analogous effects, except that the first effect on the total loss is negative because ∆L

shifts slightly down rather than up. As a result the two effects have opposite signs

and the overall effect of an increase in c on the total loss is ambiguous.

To see the intuition for why 1
2ǫ

∫ ∆̄∗(b,c,ǫ)

∆̄∗(b,c,ǫ)−2ǫ
L(∆)d∆ is strictly increasing in ǫ, ob-

serve the following. First, 1
2ǫ

∫ ∆̄∗(b,c,ǫ)

∆̄∗(b,c,ǫ)−2ǫ
L(∆)d∆ equals the average height of L(·) over

the interval [∆̄∗(b, c, ǫ)−2ǫ, ∆̄∗(b, c, ǫ)]. Second, in Figure 4/5/6 increasing ǫ expands

the interval [∆̄∗(b, c, ǫ) − 2ǫ, ∆̄∗(b, c, ǫ)] at both of its margins/at its right margin/at

its left margin, where the value of L(·) exceeds the average value of this function over

[∆̄∗(b, c, ǫ)− 2ǫ, ∆̄∗(b, c, ǫ)].

The bottom line is that if the planner can lower employees’ bias (e.g., through

education) or decrease heterogeneity in the targeted population (e.g., by customising

different defaults for, say, young vs. old employees), doing so is beneficial (or at least

doesn’t hurt). If the planner can affect the opt-out cost (e.g., by making employees

jump through more/fewer hoops to opt out), she may want to either increase it or

decrease it depending on which of the three cases in expression (3) applies and, if the

20The increase in b also raises ∆1 (see Figure 3), which results in transferring a sliver of shaded area
from just to the right of ∆1−2ǫ to just to the right of ∆1 in Figure 6. Because L(∆1−2ǫ) = L(∆1),
this effect is approximately 0.
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third case applies, depending on which of the two effects mentioned above dominates.

6 Assumptions and Omitted Factors

In this section, we discuss some of the model’s explicit and implicit assumptions.

Many of the implicit assumptions are about potentially relevant factors that are

omitted from the model.

6.1 Loss from Deviations and Distribution of Optimal Op-

tions

Propositions 2-4 assume that l(·) is strictly convex and symmetric. Proposition 4

assumes that l(·) is also differentiable on (0,∞). We also implicitly assume throughout

that the loss from deviations depends on x and x′ only through the difference x− x′.

For brevity, let us call this the difference assumption.

Although such assumptions are common in the literature, they are not derived

from deeper assumptions about utility functions, intertemporal budget constraints,

and how employees might change in future periods the option with which they end

up today. Notably, in the context of contribution rates, employer-match caps and

tax-bracket thresholds are likely to lead to violations of symmetry, differentiability,

and the difference assumption.21

Propositions 2-4 also assume a uniform distribution of optimal options, which is

also clearly a simplification. Notably, this assumption excludes the realistic possibility

21For example, suppose there is an employer-match cap of m and let l̃(x, x′) denote the loss from
deviations for an employee with optimal contribution rate x who ends up with contribution rate x′.
In that case, l̃(x, ·) probably exhibits a kink at m (so that differentiability fails) without a matching
kink at 2x − m (so that symmetry around x fails). Moreover, given that the location of the kink
does not depend on x, its position relative to x varies (so that the difference assumption fails). (I
suspect that the conclusion of Proposition 4 continues to hold if l(·) is not differentiable at finitely
many points, so that any failure of differentiability due to employer-match caps and tax-bracket
thresholds may not be a problem.)
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that there is a positive mass of employees with (i) optimal contribution rate equal

to zero or to the employer-match cap or (ii) optimal allocation to stocks that equals

zero or one.22

6.2 Normatively Irrelevant Opt-Out Costs

Within a standard model, employees’ empirical reluctance to switch from default

contribution rates implies opt-out costs in the thousands of dollars. Such opt-out

costs seem orders of magnitude higher than what is justified based on the value of

employees’ time.23

Motivated by these observations, Goldin and Reck (2018) allow the planner to

count a part of each employee’s opt-out cost as normatively irrelevant and to exclude

it from the social welfare function. Goldin and Reck also consider an extension of

their baseline model, which allows employees to be biased. In that extension, the

authors (i) derive (an approximation of) the first-order condition that an optimal

default must satisfy, (ii) discuss whether marginally raising or lowering a default that

is optimal in the absence of any bias improves welfare when a bias is present and (iii)

discuss how the presence of a bias might undermine the case for AD.

The model in the current paper is less general than Goldin and Reck’s extended

model. Notably, our planner necessarily counts employees’ full opt-out costs in the

social welfare function. However, the lower generality makes it possible to perform

a more complete analysis by explicitly solving for the optimal default policy and by

exploring how the parameters affect the optimal default policy and the total loss in

the population at the optimal default policy.

22The possibility of a positive mass of employees with optimal contribution rate equal to zero also
strains the assumption that b ≤ x.

23See Goldin and Reck (2018) and Section IIB in Bernheim et al. (2015).
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6.3 Updating from the Default

In the context of asset allocation, there is evidence that, upon seeing a default, em-

ployees update their preferred options in the direction of the default. In particular,

Madrian and Shea (2001) find that employees hired before automatic enrolment for

new hires allocated three times as much to new hires’ default investment fund if they

chose their asset allocation after the introduction of automatic enrolment for new

hires. Madrian and Shea also report evidence that employees hired after automatic

enrolment who had opted out of the default contribution rate or default investment

fund were still much more heavily invested in the default investment fund than em-

ployees hired before automatic enrolment.

In the context of contribution rates, the evidence is more mixed. On the one hand,

Madrian and Shea (2001) find that employees hired before automatic enrolment for

new hires had contribution rates that were unaffected by whether they chose their

contribution rates before or after the introduction of automatic enrolment for new

hires. On the other hand, if employees sufficiently update their preferred contribution

rates based on the default, this would explain their reluctance to opt out of the default

contribution rate without any need to invoke exorbitant opt-out costs (see Section II

D in Bernheim et al. (2015)).24

Ivanov (2019) modifies the model in the current paper by allowing for updating

from the default under the assumption of a linear loss from deviations.25 One finding

in that paper is that, in addition to the three defaults here, two other defaults emerge

as candidates for being the optimal default.26 Another key insight is about how

updating from the default can make AD the optimal default policy. Yet another

24Thus, in the presence of sufficient updating from the default, there is no need to consider a part
of opt-out costs normatively irrelevant.

25In a second extension to their baseline model, Goldin and Reck (2018) also allow for updating
from the default (but do not allow for any bias).

26The x-InOut-EL default here corresponds to the x-Out-x-In-EL default in Ivanov (2019).
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result is that, in contrast with Proposition 4, the total loss in the population at the

optimal default policy can be nonmonotone in b and ǫ. A limitation of Ivanov (2019)

is that the analysis is very complex and few simple intuitions for the main results

emerge.

One advantage of the current paper relative to Ivanov (2019) is that the analysis

here is more straightforward. Another advantage is that we can assume a strictly

convex loss from deviations, which is probably more realistic than a linear loss from

deviations. Of course, these advantages come at the cost of assuming away updating

from the default. However, given the evidence cited above, such an assumption may

be realistic in the context of contribution rates.

6.4 Procrastination

Adopting β = 1 as the normative benchmark, Carrol et al. (2009) solve for the optimal

default policy in a model in which employees with β-δ preferences procrastinate opting

out of suboptimal defaults. Given that the model in the current paper is static, it

cannot address the issue of procrastination. On the other hand, in Carroll et al.

(2009), employees are not biased regarding their optimal options.

6.5 Normative Ambiguity

The model here assumes that, for each employee, there is an option x, which is

unambiguously optimal for her. This assumption is nontrivial. For example, suppose

employees are dynamically inconsistent, so that they save differently (i) if they decide

in each period how much to save for that period vs. (ii) if they can commit in the

current period how much to save in the current period and in all future periods.

Although many papers assume that the savings decisions under (i) are biased and
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under (ii) are correct, the justification for this is unclear.27

Bernheim and Rangel (2009) develop a framework for conducting welfare analysis

in the case of such normative ambiguity. Bernheim et al. (2015) apply this framework

to the issue of optimal default policies in the context of contribution rates. Bernheim

et al. allow for normative ambiguity regarding whether employees should opt out of

the default. However, their analysis doesn’t allow us to say much about the optimal

default policy if employees misperceive their optimal options or if there is normative

ambiguity regarding their optimal options.28

6.6 Decision Costs

We interpreted c as reflecting only implementation costs. Thus, we were implicitly

assuming that employees face no decision costs, i.e., the time and cognitive costs of

collecting information and thinking about what is the optimal option. Given the

plausibility of nontrivial decision costs,29 it is tempting to reinterpret c as reflecting

both implementation and decision costs. However, this is problematic because of the

following features of the model. First, all employees staying with a default avoid

incurring c. However, this rules out the possibility that some employees incur the

decision costs and conclude that staying with the default is a good idea. Second,

employees’ preferred options are not affected by whether they incurred the decision

costs, which seems unrealistic.

There are papers which explore the implications of decision costs for the optimal

27See Bernheim and Rangel (2009) and Bernheim (2009).
28In their model with partially naive β-δ employees and their model with inattentive employees,

each employee has a unique, unbiased preferred contribution rate. In their anchoring model, unless
we are willing to assume that each employee correctly perceives her optimal option under AD but
misperceives her optimal option when faced with a default, there is normative ambiguity regarding
each employee’s preferred contribution rate. However, this normative ambiguity prevents us from
saying much about the optimal default policy.

29Based on a field experiment in Afghanistan, Blumenstock et al. (2018) conclude that decision
costs are a major reason for why the default savings rate has a large effect on saving in a savings
account.
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default policy. In Carlin et al. (2013) and Wisson (2016), each individual doesn’t

know her optimal option, but has an unbiased belief about it and can learn about

it if she incurs a cost. In Carlin et al. (2013), defaults are informative and, thus,

discourage individuals from learning about their optimal options.30 Because learning

involves a positive externality, AD may be optimal. In Wisson (2016), individuals

with β-δ preferences are excessively reluctant to incur the cost of learning or free-ride

by letting others incur this cost. As a result, the optimal default policy may be an

extreme default that induces individuals to incur the cost of learning.

6.7 The Presence of Sophisticated Employees

In the model here, all employees share the same parameters b and c. Such homogeneity

is probably unrealistic.

One way to incorporate heterogeneity is to assume that a fraction, ρ, of the popu-

lation is sophisticated in the sense that they have zero bias. Sophisticated employees

can also have their own opt-out cost parameter, which would be smaller than the

opt-out cost parameter for unsophisticated employees. Given that sophisticated em-

ployees would be less affected by the default in such a model, a natural guess is that

the optimal default policy would be geared more towards the interests of unsophisti-

cated employees, at least if ρ is not too high.

7 Concluding Remarks

The current paper analyses a model in which employees are biased regarding their

optimal options. There are four main findings. First, AD is never an optimal default

policy. This is largely due to the downward jump of the L(·) function at ∆L. Second,

given the values of the parameters, the optimal default is one of three defaults: the

30A similar mechanism is at work in Caplin and Martin (2017).
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default placed in the middle of [x, x] (the C default); the default, such that employees

with x = x think it’s too high, but are only just willing to stay with it (the x-InOut-

PEL default); and the default below x, such that employees with x = x incur a loss

from staying equal to the loss they would incur from opting out (the x-InOut-EL

default). The downward jumps of the L(·) function at ∆L and ∆R play a key role

in determining the optimal default. Third, loosely speaking, increasing b or ǫ tilts

the planner away from the C default and towards the x-InOut-EL default, whereas

increasing c has the opposite effect. Fourth, the total loss in the population at the

optimal default is weakly increasing in b, either weakly decreasing or nonmonotone

in c, and strictly increasing in ǫ.

Let us conclude with some cautionary remarks. First, as section 6 makes clear,

the model in the current paper lacks realism in many ways, so that any conclusions

should be taken with caution.

Second, any concrete policy advice would require estimating the model parameters

as well as any parameters in a richer model from which l(·) can be derived. Deciding

what value of b to use is likely to be especially hard. For example, there is no consensus

in the existing literature on whether people undersave (see footnote 4). The question

of whether people underweight stocks in their pension plan portfolios also hinges

on complex issues, such as whether there is an equity premium puzzle, what is a

reasonable expected return on the stock market going forward, and individuals’ levels

of risk aversion.
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8 Appendix: How Do the Parameters Affect the

Optimal Default? Further Analysis.

The conditions in expression (3) are written so as to make clear the relative positions

of various points on the horizontal axes in Figures 4-6. However, for the purposes of

the current section, it is more convenient to rewrite expression (3) as follows:

∆̄∗(b, c, ǫ) =



















ǫ if ǫ ≤ −∆L

∆L + 2ǫ if −∆L < ǫ ≤ ∆1−∆L

2

∆1 if ǫ > ∆1−∆L

2

. (4)

Letting l−1(·) denote the inverse of l(·) on (0,∞), we have ∆L = −l−1(c) + b

(see Figure 1). The following lemma, in conjunction with Lemma 2, will be useful in

discussing how the parameters affect the conditions in expression (4).

Lemma 3 Holding c fixed:
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1) limb↓0
∆1−∆L

2
= l−1(c);

2) limb→∞
∆1−∆L

2
≥ l−1(c)

2
.

Figure 7 shows the optimal default as a function of b and ǫ, holding c fixed. In

particular, the C default is optimal below the line plotting −∆L as a function of b;

the x-InOut-EL default is optimal above the line plotting ∆1−∆L

2
as a function of b;

the x-InOut-PEL default is optimal between the two lines. Based on this figure, the

following relationships hold between the parameters and the optimal default.

1. Fixing c and ǫ, such that ǫ ≤ limb→∞
∆1−∆L

2
, there is a cutoff value of b, such

that the C/x-InOut-PEL default is optimal for b below/above the cutoff.

2. Fixing c and ǫ, such that limb→∞
∆1−∆L

2
< ǫ < l−1(c), there are two cutoff values

of b, such that the C/x-InOut-PEL/x-InOut-EL default is optimal for b below

the lower cutoff/between the two cutoffs/above the higher cutoff.

3. Fixing c and ǫ, such that ǫ ≥ l−1(c), the x-InOut-EL default is optimal for all

b.

4. Fixing c and b, such that b < l−1(c), there are two cutoff values of ǫ, such

that the C/x-InOut-PEL/x-InOut-EL default is optimal for ǫ below the lower

cutoff/between the two cutoffs/above the higher cutoff.

5. Fixing c and b, such that b ≥ l−1(c), there is a cutoff value of ǫ, such the

x-InOut-PEL/x-InOut-EL default is optimal for ǫ below/above the cutoff.

6. Fixing b and ǫ, there are two cutoff values of c, such that the C/x-InOut-PEL/x-

InOut-EL default is optimal for c above the higher cutoff/between the two

cutoffs/below the lower cutoff. (To see this, observe that increasing c increases

the l−1(c) intercept on each axis in Figure 7.)
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Figure 7: Optimal default as a function of b and ǫ, holding c fixed.

9 Appendix: Proofs

9.1 Proof of Lemma 1

The logic given straight after the lemma in the main text is rigorous. Nevertheless,

it might be worth restating in more formal notation the arguments given there.

If ∆L ≤ 0, we have L(∆L) = l(∆L) < l(∆L − b) = c. The inequality follows

because ∆L − b < ∆L ≤ 0 and l(·) is strictly decreasing over (−∞, 0].

If ∆L > 0, we have L(∆L) = l(∆L) < l(b). The inequality follows because

0 < ∆L < b and l(·) is strictly increasing over [0,∞).

Finally, L(∆R) = l(∆R) = c+ l(∆R)− l(∆R − b) > c+ l(b)− l(0) = c+ l(b). The

second equality holds because l(∆R−b) = c (by the definition of ∆R). The inequality

holds because (i) the interval [∆R − b,∆R] represents a rightward translation of the

interval [0, b] and (ii) by the strict convexity of l(·), the increase in l(·) must be larger

over the former interval. Q.E.D.
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9.2 Proof of Proposition 1

The logic given straight after the proposition is rigorous. Here, we just need to add

that it implicitly assumes that there is a positive mass of employees in [x − η, x].

However, this assumption is without loss of generality–if it fails, just redefine x to be

the upper bound of the support of the distribution of x’s. Q.E.D.

9.3 Proof of Proposition 2

Let us first show that ∆̄, such that ∆̄ < ∆L or ∆̄ > ∆R, cannot be a solution to

problem (2) because setting ∆̄ = ∆1 is strictly better. If ∆̄ < ∆L or ∆̄ > ∆R, we

have

∫

[∆̄−2ǫ,∆̄]

L(∆)d∆ =

∫

[∆̄−2ǫ,∆̄]∩[∆1−2ǫ,∆1]

L(∆)d∆+

∫

[∆̄−2ǫ,∆̄]∩[∆1−2ǫ,∆1]c

L(∆)d∆ =

∫

[∆̄−2ǫ,∆̄]∩[∆1−2ǫ,∆1]

L(∆)d∆+

∫

[∆̄−2ǫ,∆̄]∩[∆1−2ǫ,∆1]c

L(∆)d∆+

∫

[∆̄−2ǫ,∆̄]c∩[∆1−2ǫ,∆1]

L(∆)d∆−

∫

[∆̄−2ǫ,∆̄]c∩[∆1−2ǫ,∆1]

L(∆)d∆ =

∫

[∆1−2ǫ,∆1]

L(∆)d∆+

∫

[∆̄−2ǫ,∆̄]∩[∆1−2ǫ,∆1]c

L(∆)d∆−

∫

[∆̄−2ǫ,∆̄]c∩[∆1−2ǫ,∆1]

L(∆)d∆ >

∫

[∆1−2ǫ,∆1]

L(∆)d∆+

∫

[∆̄−2ǫ,∆̄]∩[∆1−2ǫ,∆1]c

(c+ l(b))d∆−

∫

[∆̄−2ǫ,∆̄]c∩[∆1−2ǫ,∆1]

(c + l(b))d∆ =

∫

[∆1−2ǫ,∆1]

L(∆)d∆,

where the superscript “c” on an interval denotes its complement. The last equality
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holds because because the two intervals [∆̄−2ǫ, ∆̄]∩ [∆1−2ǫ,∆1]
c and [∆̄−2ǫ, ∆̄]c∩

[∆1 − 2ǫ,∆1] have equal length. To see that the inequality holds, let’s consider

separately the cases (i) ∆̄ < ∆L or ∆̄− 2ǫ ≥ ∆R and (ii) ∆̄ > ∆R and ∆̄− 2ǫ < ∆R.

In case (i), L(∆) = c + l(b) for all ∆ ∈ [∆̄ − 2ǫ, ∆̄] (and, hence, for all ∆ ∈ [∆̄ −

2ǫ, ∆̄] ∩ [∆1 − 2ǫ,∆1]
c), L(∆) ≤ c + l(b) for all [∆1 − 2ǫ,∆1] (and, hence, for all

∆ ∈ [∆̄−2ǫ, ∆̄]c∩ [∆1−2ǫ,∆1]), and L(∆) < c+ l(b) for a positive measure of ∆’s in

[∆̄−2ǫ, ∆̄]c∩ [∆1−2ǫ,∆1]. In case (ii), L(∆) ≥ c+ l(b) for all ∆ ∈ [∆̄−2ǫ, ∆̄]∩ [∆1−

2ǫ,∆1]
c, L(∆) > c+l(b) for a positive measure of ∆’s in [∆̄−2ǫ, ∆̄]∩[∆1−2ǫ,∆1]

c, and

L(∆) ≤ c+l(b) for all [∆1−2ǫ,∆1] (and, hence, for all ∆ ∈ [∆̄−2ǫ, ∆̄]c∩[∆1−2ǫ,∆1]).

Thus, we can safely assume that any solution to problem (2) is in [∆L,∆R].

Next, we show that ∆̄∗(b, c, ǫ) given in expression (3) is the unique solution to

problem (2). We have:

∫ ∆̄

∆̄−2ǫ

L(∆)d∆ =

∫ ∆̄

−∞

L(∆)d∆−

∫ ∆̄−2ǫ

−∞

L(∆)d∆ =

∫ ∆̄

−∞

L(∆)d∆−

∫ ∆̄

−∞

L(∆− 2ǫ)d∆ =

∫ ∆̄

−∞

(

L(∆)− L(∆− 2ǫ)
)

d∆.

It is apparent from Figures 4-6 that L(∆) < L(∆−2ǫ) for all ∆L ≤ ∆ < ∆̄∗(b, c, ǫ).

Thus,
∫ ∆̄

−∞

(

L(∆)−L(∆−2ǫ)
)

d∆ is strictly decreasing in ∆̄ over [∆L, ∆̄
∗(b, c, ǫ)]. Sim-

ilarly, it is apparent from Figures 4-6 that L(∆) > L(∆−2ǫ) for all ∆̄∗(b, c, ǫ) < ∆ ≤

∆R. Thus,
∫ ∆̄

−∞

(

L(∆)−L(∆−2ǫ)
)

d∆ is strictly increasing in ∆̄ over [∆̄∗(b, c, ǫ),∆R].

Thus,
∫ ∆̄

∆̄−2ǫ
L(∆)d∆ has a unique minimum over [∆L,∆R] at ∆̄ = ∆̄∗(b, c, ǫ).

It remains to verify that ∆̄∗(b, c, ǫ) satisfies x − 1 ≤ ∆̄∗(b, c, ǫ) ≤ x. The first
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inequality holds because ∆̄∗(b, c, ǫ) > 0 (see Figures 4-6) and x ≤ 1. In the first

case in expression (3), ∆̄∗(b, c, ǫ) = ǫ < x. In the second case in expression (3),

∆̄∗(b, c, ǫ) = ∆L + 2ǫ < b + 2ǫ ≤ x, where the last inequality follows from our

assumption b ≤ x. In the third case in expression (3), ∆̄∗(b, c, ǫ) = ∆1 = ∆1 −∆L +

∆L < 2ǫ + ∆L < 2ǫ + b ≤ x, where the last inequality follows from our assumption

b ≤ x. Q.E.D.

9.4 Proof of Lemma 2

The logic given straight after the lemma in the main text is rigorous. Nevertheless, it

might be worth restating in more formal notation the arguments given there for why

∆1 −∆L is strictly decreasing in b.

Let us write ∆L(b, c) and ∆1(b, c) to make explicit the dependence of ∆L and ∆1

on b and c. Given the fact that ∆1(b, c) > b and the convexity of l(·), for any σ > 0

we have:

l(∆1(b, c) + σ)− l(∆1(b, c)) > l(b+ σ)− l(b),

so that

l(∆1(b, c) + σ) > l(∆1(b, c)) + l(b+ σ)− l(b) = c+ l(b+ σ),

where the equality follows from l(∆1(b, c)) = c+ l(b).

Given that l(∆1(b, c)) < c+ l(b+ σ) < l(∆1(b, c) + σ), it must be that ∆1(b, c) <

∆1(b+ σ, c) < ∆1(b, c) + σ. Thus,

∆1(b+ σ, c)−∆L(b+ σ, c)− (∆1(b, c)−∆L(b, c)) < σ −∆L(b+ σ, c) + ∆L(b, c) = 0.

The equality follows from the fact that increasing the bias from b to b+σ increases

∆L one-for-one (see Figure 1). Q.E.D.
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9.5 Proof of Lemma 3

Statement 1) follows because, as b goes to 0, ∆1 is arbitrarily close to the positive

root of l(∆) = c (see Figure 3) and ∆L = −l−1(c) + b is arbitrarily close to −l−1(c).

Statement 2) hold because ∆1 −∆L is strictly decreasing in b (see Lemma 2) and

∆1 −∆L ≥ b−∆L = l−1(c). Q.E.D.

9.6 Proof of Proposition 3

Let us write ∆L(b, c) and ∆1(b, c) to make explicit the dependence of ∆L and ∆1 on

b and c.

Given Lemma 2 and the fact that ∆L(b, c) is strictly increasing in b and strictly

decreasing in c (see Figure 1), the statements in the proposition follow if we replace

“contracts” and “expands” with “weakly contracts” and “weakly expands”, respec-

tively. It remains to show that the statements continue to hold without the “weakly”

qualifier.31

First, consider statement 1) and suppose that b′ > b. If c is such that ∆L(b, c) <

032 and ǫ is such that ∆L(b, c) < −ǫ < ∆L(b
′, c), the C default is optimal given (b, c, ǫ),

but not given (b′, c, ǫ). If c is arbitrary and ǫ is such that ∆1(b
′, c)−∆L(b

′, c) < 2ǫ <

∆1(b, c) − ∆L(b, c), the x-InOut-EL default is optimal given (b′, c, ǫ), but not given

(b, c, ǫ). This establishes statement 1) without the “weakly” qualifier. The proof of

statement 2) without the “weakly” qualifier is analogous.

Next, consider statement 3) and suppose that ǫ′ > ǫ. Let b be arbitrary. If c is

such that −ǫ′ < ∆L(b, c) < −ǫ,33 the C default is optimal given (b, c, ǫ), but not given

31The terms “weakly contracts” and “weakly expands” are used in the sense of weak set inclusion.
32We can always find a value of c that is large enough, so that ∆L(b, c) < 0 (see Figure 1).
33Given that ∆L(b, ·) is continuous and its range is (−∞, b) (see Figure 1), we can find for any b,

ǫ, and ǫ′ > ǫ a value of c, such that −ǫ′ < ∆L(b, c) ≤ −ǫ.
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(b, c, ǫ′). If c is such that 2ǫ < ∆1(b, c) −∆L(b, c) < 2ǫ′,34 the x-InOut-EL default is

optimal given (b, c, ǫ′), but not given (b, c, ǫ). This establishes statement 3) without

the “weakly” qualifier. Q.E.D.

9.7 Proof of Proposition 4

The proof makes use of a sequence of claims. Before we launch into these, let us

introduce some additional notation.

Let Ψ(b, c, ǫ) = 1
2ǫ

∫ ∆̄∗(b,c,ǫ)

∆̄∗(b,c,ǫ)−2ǫ
L(∆)d∆. Let Ψp denote the partial derivative of Ψ

with respect to the parameter p ∈ {b, c, ǫ}. Let −p denote the two parameters other

than p and, with the usual abuse of notation, we will write ∆̄∗(p,−p), Ψ(p,−p), and

Ψp(p,−p). Let p(−p, i) denote the set of values of p that satisfy, given fixed −p, the

inequalities in the ith case in expressions (3) and (4). Finally, let l′(·) denote the

derivative of l(·) and let l−1(·) denote the inverse of l(·) on (0,∞).

Claim 1

Ψ(b, c, ǫ) = 1
2ǫ
×



















∫ ǫ

−ǫ
l(∆)d∆ if ǫ ≤ −∆L

∫ ∆L+2ǫ

∆L

l(∆)d∆ if −∆L < ǫ ≤ ∆1−∆L

2

(∆L −∆1 + 2ǫ)(c+ l(b)) +
∫ ∆1

∆L

l(∆)d∆ if ǫ > ∆1−∆L

2

.

(5)

Proof:

The claim follows directly from Figures 4-6. Q.E.D.

Claim 2

1) One of the following holds.

34Given that ∆1(b, ·) −∆L(b, ·) is continuous and its range is (0,∞) (see Figure 3), we can find
for any b, ǫ, and ǫ′ > ǫ a value of c, such that 2ǫ ≤ ∆1(b, c)−∆L(b, c) < 2ǫ′.
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(i) b(−b, 1) = b(−b, 2) = ∅ and b(−b, 3) = (0,∞) or

(ii) b(−b, 1) = (0, b1], b(−b, 2) = (b1,∞), and b(−b, 3) = ∅, where b1 > 0, or

(iii) b(−b, 1) = (0, b1], b(−b, 2) = (b1, b2], and b(−b, 3) = (b2,∞), where 0 <

b1 < b2.

2) c(−c, 3) = (0, c1), c(−c, 2) = [c1, c2), and c(−c, 1) = [c2,∞), where 0 < c1 < c2.

3) One of the following holds.

(i) ǫ(−ǫ, 1) = ∅, ǫ(−ǫ, 2) = (0, ǫ1], and ǫ(−ǫ, 3) = (ǫ1,∞), where ǫ1 > 0, or

(ii) ǫ(−ǫ, 1) = (0, ǫ1], ǫ(−ǫ, 2) = (ǫ1, ǫ2], and ǫ(−ǫ, 3) = (ǫ2,∞), where 0 <

ǫ1 < ǫ2.

Proof:

The claim follows from expression (4) and Figure 7, which plots the −∆L and

∆1−∆L

2
curves as functions of b, holding c fixed. (The key features of the curves in

the figure are based on Lemmas 2 and 3.) In particular, looking at the figure, it is

straightforward that statements 1) and 3) hold. To see that statement 2) also holds,

observe that increasing c increases the l−1(c) intercept on each axis in Figure 7.35

Q.E.D.

Claim 3 Assume that l(·) is differentiable on (0,∞). Then, the following hold.

1) l′(·) > 0 on (0,∞).

2) ∆L and ∆1 are continuously differentiable in each parameter.

3) ∂∆L

∂c
< 0.

35Figure 7 doesn’t make clear whether various intervals in Claim 2 should include their endpoints.
However, this can easily be ascertained by consulting expression (4).
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Proof:

Given that l(·) is increasing on (0,∞), we have l′(·) ≥ 0 on (0,∞). Given that

l(·) is strictly convex, l′(·) is strictly increasing, so that it cannot equal zero anywhere

on (0,∞).

Next, consider statement 2). Given that l(·) is differentiable on (0,∞) and convex,

it is continuously differentiable on (0,∞). Given that l(·) is continuously differentiable

on (0,∞) and l′(·) 6= 0 on (0,∞), l−1(·) is continuously differentiable on (0,∞).

Given that ∆L = −l−1(c) + b and ∆1 = l−1(c + l(b)), ∆L and ∆1 are continuously

differentiable in each parameter.

Statement 3) follows because ∆L = −l−1(c) + b and the derivative of l−1(·) evalu-

ated at c equals 1/l′(l−1(c)) > 0. Q.E.D.

Claim 4 The maximand in problem (2) is continuous in (∆̄, p).

Proof:

When p = ǫ, the integrand does not depend on p. The claim follows from the

continuity of the definite integral with respect to the bounds of integration.

From here on, we restrict attention to p ∈ {b, c}. We write L(∆, p), ∆L(p),

and ∆R(p) to make explicit the dependence on p of expression (1), ∆L, and ∆R,

respectively.

Take σ > 0. We need to find δ > 0, such that |
∫ ∆̄

∆̄−2ǫ
L(∆, p)d∆−

∫ ∆̄′

∆̄′−2ǫ
L(∆, p′)d∆| <

σ whenever (∆̄′, p′) is within δ Euclidean distance of (∆̄, p).

Let M = 1+sup
∆

L(∆, p) and r = min( σ
8M

, 1). Also, let I, J and K denote the sets

[∆̄−2ǫ, ∆̄], [∆̄′−2ǫ, ∆̄′], and [∆L(p)−r/4,∆L(p)+ r/4]∪ [∆R(p)−r/4,∆R(p)+ r/4],

respectively. We have:

|

∫

I

L(∆, p)d∆−

∫

J

L(∆, p′)d∆| =
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|

∫

I\K

L(∆, p)d∆+

∫

I∩K

L(∆, p)d∆−

∫

J\K

L(∆, p′)d∆−

∫

J∩K

L(∆, p′)d∆| ≤

|

∫

I\K

L(∆, p)d∆−

∫

J\K

L(∆, p′)d∆|+

∫

I∩K

L(∆, p)d∆+

∫

J∩K

L(∆, p′)d∆ ≤

|

∫

I\K

L(∆, p)d∆−

∫

J\K

L(∆, p′)d∆|+

∫

K

L(∆, p)d∆+

∫

K

L(∆, p′)d∆

Clearly, sup
∆∈K

L(∆, p) < M . Also, we can choose δ small enough that sup
∆∈K

L(∆, p′) <

M . In that case, the last expression is smaller than:

|

∫

I\K

L(∆, p)d∆−

∫

J\K

L(∆, p′)d∆|+ 2rM ≤

|

∫

I\K

L(∆, p)d∆−

∫

J\K

L(∆, p′)d∆|+
σ

4
=

|

∫

I\(K∪J)

L(∆, p)d∆+

∫

(I\K)∩J

L(∆, p)d∆−

∫

J\(K∪I)

L(∆, p′)d∆−

∫

(J\K)∩I

L(∆, p′)d∆|+
σ

4
≤

|

∫

(I\K)∩J

L(∆, p)d∆−

∫

(J\K)∩I

L(∆, p′)d∆|+

∫

I\(K∪J)

L(∆, p)d∆+

∫

J\(K∪I)

L(∆, p′)d∆+
σ

4
=

|

∫

(I∩J)\K

(L(∆, p)− L(∆, p′))d∆|+

∫

I\(K∪J)

L(∆, p)d∆+

∫

J\(K∪I)

L(∆, p′)d∆+
σ

4
≤

|

∫

(I∩J)\K

(L(∆, p)− L(∆, p′))d∆|+

∫

I\J

L(∆, p)d∆+

∫

J\I

L(∆, p′)d∆+
σ

4
.

We can choose δ small enough, so that (i) L(∆, p)−L(∆, p′) < σ
8ǫ

on (I ∩ J) \K,

(ii) the length of each of I \ J and J \ I is less than σ
4M

, and (iii) sup
∆∈J\I

L(∆, p′) < M .

In that case, the last expression is less than

σ

8ǫ
2ǫ+M

σ

4M
+M

σ

4M
+

σ

4
= σ.
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Q.E.D.

Claim 5 Ψ(·,−p) is continuous.

Proof:

By Claim 4, the maximand in problem (2) is continuous in (∆̄, p). The claim

follows from the Maximum Theorem applied to the special case when the optimisation

problem has a unique solution and the constraints do not depend on the parameters.

(Proposition 2 shows that problem (2) has a unique solution.) Q.E.D.

Claim 6 Assume that (i) f : (0,∞) → R is absolutely continuous and weakly mono-

tone on [a, b], and (ii) φ : R → R is absolutely continuous on f([a, b]).36 Then, φ ◦ f

is absolutely continuous on [a, b].

Proof: Assume that f is weakly increasing on [a, b].37 Given ǫ > 0, let δ > 0 be

such that, for any finite collection of pairwise disjoint intervals (ck, dk) ⊆ f([a, b])

satisfying
∑

k(dk − ck) < δ, we have
∑

k |φ(dk)− φ(ck)| < ǫ. Given this δ, let τ > 0

be such that, for any finite collection of pairwise disjoint intervals (ak, bk) ⊆ [a, b]

satisfying
∑

k(bk − ak) < τ , we have
∑

k |f(bk)− f(ak)| < δ. We have
∑

k |φ(f(bk))−

φ(f(ak))| =
∑

{k|f(ak)6=f(bk)}
|φ(f(bk))− φ(f(ak))|. Given that f is weakly increasing,

any two intervals (f(ak′), f(bk′)) and (f(ak′′), f(bk′′)), such that f(ak′) 6= f(bk′) and

f(ak′′) 6= f(bk′′), are disjoint. Thus, the latter sum is less than ǫ.38 Q.E.D.

Claim 7 Assume that l(·) is differentiable on (0,∞). Fix an arbitrary interval

[p′, p′′], where 0 < p′ < p′′. Ψ(·,−p) is absolutely continuous on [p′, p′′].

Proof:

36f([a, b]) denotes the image of [a, b] under f .
37The proof is analogous if f is weakly decreasing.
38This proof is based on the hint given at the end of problem 5.8.59 in Bogachev (2007).
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Given that ∆L and ∆1 are continuously differentiable in p (see Claim 3), they are

absolutely continuous on [p′, p′′]. Given that they are also weakly monotone in p and

the definite integral is absolutely continuous in each bound of integration, it follows

from Claim 6 that each integral in expression (5) is absolutely continuous in p on

[p′, p′′]. It is straightforward that each piece in expression (5) is absolutely continuous

on [p′, p′′].39

The absolute continuity of Ψ(·,−p) on [p′, p′′] follows from (i) the continuity of

Ψ(·,−p) (see Claim 5), (ii) the absolute continuity of each piece in expression (5) on

[p′, p′′], and (iii) the fact that there are finitely many points in [p′, p′′] at which there

is a switch between the cases in expression (5) (see Claim 2). Q.E.D.

Claim 8 Assume that l(·) is differentiable. Then, the following hold.

1) For almost all b, Ψb(b, c, ǫ) exists and

Ψb(b, c, ǫ) =



















0 if b ∈ b(−b, 1)

1
2ǫ
(l(∆L + 2ǫ)− l(∆L)) if b ∈ b(−b, 2)

1
2ǫ
((∆L −∆1 + 2ǫ)l′(b) + (c+ l(b)− l(∆L))) if b ∈ b(−b, 3)

.

(6)

2) For almost all c, Ψc(b, c, ǫ) exists and

Ψc(b, c, ǫ) =



















0 if c ∈ c(−c, 1)

1
2ǫ
(l(∆L + 2ǫ)− l(∆L))

∂∆L

∂c
if c ∈ c(−c, 2)

1
2ǫ

(

(∆L −∆1 + 2ǫ) + (c+ l(b)− l(∆L))
∂∆L

∂c

)

if c ∈ c(−c, 3)

.

(7)

39Given that l(·) is differentiable on (0,∞) and convex, it is continuously differentiable on (0,∞).
Hence, the term l(b) in the third piece in expression (5) is absolutely continuous in b.
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3) For almost all ǫ, Ψǫ(b, c, ǫ) exists and

Ψǫ(b, c, ǫ) =
1

ǫ

(

l(∆̄∗(b, c, ǫ))−Ψ(b, c, ǫ)
)

. (8)

Proof:

The claim follows by differentiating each piece in expression (5) with respect to

p. The differentiation of any integrals is done via the Leibnitz integral rule. Given

that ∆L and ∆1 are continuously differentiable in each parameter (see Claim 3), we

can use this rule when the limits of integration involve ∆L and ∆1.
40 Q.E.D.

Proof of Proposition 4:

Suppose that p′ and p′′ are such that 0 < p′ < p′′. By the absolute continuity of

Ψ(·,−p) (see Claim 7), we can write:

Ψ(p′′,−p)−Ψ(p′,−p) =

∫ p′′

p′
Ψp(p̃,−p)dp̃.

First, suppose that p = b. It is easy to see that each piece in expression (6) is

nonnegative. Thus, for any nondegenerate [b′, b′′] ⊆ (0,∞), Ψ(b′′, c, ǫ) − Ψ(b′, c, ǫ) =
∫ b′′

b′
Ψb(b̃, c, ǫ)db̃ ≥ 0.

Next, suppose that p = c. Whenever we wish to make the dependence of ∆L and

∆1 on c explicit, we will write ∆1(c) and ∆L(c). Let c1 and c2 be as in statement 2)

in Claim 2.

For all c ∈ [c2,∞), the first piece of expression (7) applies. Thus, for any nonde-

generate [c′, c′′] ⊆ [c2,∞), Ψ(b, c′′, ǫ)−Ψ(b, c′, ǫ) =
∫ c′′

c′
Ψc(b, c̃, ǫ)dc̃ = 0.

40At points p1 and p2 in each statement in Claim 2, different pieces of expression (5) apply to the
left and right, so that Ψp(p,−p) may not exist at p = p1 or p = p2. This does not invalidate Claim
8 given the “for almost all” qualification.
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For all c ∈ [c1, c2), the second piece of expression (7) applies. This second piece is

negative given that (i) l(∆L + 2ǫ) − l(∆L) > 0 whenever −∆L < ǫ and (ii) ∂∆L

∂c
< 0

(see Claim 3). Thus, for any nondegenerate [c′, c′′] ⊆ [c1, c2), Ψ(b, c′′, ǫ)−Ψ(b, c′, ǫ) =
∫ c′′

c′
Ψc(b, c̃, ǫ)dc̃ < 0.

We have shown that Ψ(b, ·, ǫ) is weakly decreasing on [c1,∞). It follows that

Ψ(b, ·, ǫ) is weakly decreasing or nonmonotone on (0,∞), which is the statement in

Proposition 4. However, here we go further by establishing that, depending on the

values of b and ǫ, both possibilities can in fact occur if l(z) = z2.41

Assuming that l(z) = z2, we consider the behaviour of Ψ(b, ·, ǫ) on (0, c1). For

all c ∈ (0, c1), the third piece of expression (7) applies. With a quadratic loss from

deviations, this third piece becomes:

1

2ǫ
(∆L(c)−∆1(c) + 2ǫ− b).

If b ≥ 2ǫ, we have ∆L(c) − ∆1(c) + 2ǫ − b < 0. Thus, for any nondegenerate

[c′, c′′] ⊆ (0, c1), Ψ(b, c′′, ǫ)−Ψ(b, c′, ǫ) =
∫ c′′

c′
Ψc(b, c̃, ǫ)dc̃ < 0.

If b < 2ǫ, we have limc↓0(∆L(c)−∆1(c)+2ǫ−b) = 2ǫ−b > 0. The equality follows

because limc↓0(∆L(c) − ∆1(c)) = 0 (see Figure 3). Thus, there exists c0, such that

0 < c0 < c1 and ∆L(c)−∆1(c)+2ǫ−b > 0 for all c < c0. Thus, for any nondegenerate

[c′, c′′] ⊆ (0, c0), Ψ(b, c′′, ǫ)−Ψ(b, c′, ǫ) =
∫ c′′

c′
Ψc(b, c̃, ǫ)dc̃ > 0.

Finally, let us turn to the case p = ǫ. Observe that (i) Ψ(b, c, ǫ) equals the average

height of L(·) over the interval [∆̄∗(b, c, ǫ) − 2ǫ, ∆̄∗(b, c, ǫ)] and (ii) l(∆̄∗(b, c, ǫ)) is

strictly larger than this average height (see Figures 4-6). Hence, expression (8) is

strictly positive. Thus, for any nondegenerate [ǫ′, ǫ′′] ⊆ (0,∞), Ψ(b, c, ǫ′′)−Ψ(b, c, ǫ′) =
∫ ǫ′′

ǫ′
Ψǫ(b, c, ǫ̃)dǫ̃ > 0. Q.E.D.

41I suspect this is true for any l(·) satisfying the assumptions behind Proposition 4, but I have
not proved this.
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