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Abstract

In recent years local projections have become a more and more popular methodology for the
estimation of impulse responses. Besides being relatively easy to implement, the main strength of this
approach relative to the traditional VAR one is that there is no need to impose any specific assumption
on the dynamics of the data. This paper models local projections in a time-varying framework and
provides a Gibbs sampler routine to estimate them. A simulation study shows how the performance
of the algorithm is satisfactory while the usefulness of the model developed here is shown through an
application to fiscal policy shocks.
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1 Introduction

Impulse response functions are a typical tool used in Macroeconometrics to study the dynamic
responses of economic variables to structural shocks of interest. In the empirical macroeconomic
literature, the most used way to obtain them is through the estimation of vector autoregressions
that allow the researcher to both identify the shock of interest and to trace the subsequent dynamic
responses. In recent years, besides the latter approach, another one has increased its popularity. In
fact, the local projections developed in Jorda (2005) have become a more and more widely used tool
to trace the responses to structural shocks of interest. Two are the main reasons. First, as a sequence
of predictive regressions, local projections are relatively easy to implement and, second, they do not
impose specific dynamics on the variables in the system analysed. As such, they have proven to be
relatively robust to model misspecifications.

Despite the increase in popularity, time variation in such a framework has been almost totally
neglected. To the best of my knowledge, the only two attempts in the literature are represented by
Auerbach & Gorodnichenko (2012) and Ramey & Zubairy (2018). In these works local projections ac-
commodate nonlinearities with the aim of disentangling how the dynamic responses of macroeconomic
variables of interest vary from an expansionary to a recessionary regime.

In this work my contribution is the introduction of time variation in the local projections framework.
More precisely, I provide a Bayesian setting to estimate time-varying local projections where the shock
of interest is identified through the use of a proxy used as an instrumental variable. This results in a
framework that allows the researcher not only to trace the time-varying dynamic response of structural
shocks of interest but also to assess how strong the narrative measure used to proxy such a shock is
and at what response horizon. Moreover, and in a similar way to the insights taken from the “proxy
SVAR” literature initiated with Stock & Watson (2008) and Mertens & Ravn (2013), the usage of a
proxy to be used within this instrumental variable procedure alleviates the estimation bias due to the
likely measurement error made when creating the narrative measure.

In order to assess the performance of the model developed in this work, I conduct a simulation
study through two small Monte Carlo experiments where data are artificially generated starting from
arbitrarily chosen parameters. The two experiments differs in the way they treat the errors of the
predictive regressions as the projection horizon grows large. Moreover, with the aim of providing
evidence of the usefulness of this setting, I carry out an empirical application to illustrate how this
methodology works when studying the time-varying effects of fiscal policy shocks. The latter is proxied
by a narrative measure that has already been developed and is available in the literature.

This paper is related to the growing literature that relies on local projections to estimate impulse
responses to structural shocks of interest. Since Jorda’s (2005) seminal paper, other works have tried to
improve upon this methodology. As already mentioned, Auerbach & Gorodnichenko (2012) and Ramey
& Zubairy (2018) accommodate regime-shifts. Some other works, e.g., Barnichon & Matthes (2017)
and Miranda-Agrippino & Ricco (2018), propose ways to regularise impulse responses estimated from
local projections while some others, e.g., Plagborg-Moller (2017), Barnichon & Brownlees (2018), El-
Shagi (2018) and Tanaka (2018), provide strategies to select methods to estimate smoother responses.
Finally, Ganics et al. (2018) propose a method to construct confidence intervals to assess the strength
of the instruments proxying a shock should the local projections be estimated through a two-stage
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least squares procedure within a frequentist framework.
In addition, this paper is related to the strand of literature, initiated with Cogley & Sargent (2005)

and Primiceri (2005), that uses time-varying parameter models to provide support to the evidence
of how the dynamic response to macroeconomic shocks is likely to change over time. With regard
to this strand of literature, two recent contributions deserve a particular mention, i.e., Paul (2017)
and Mumtaz & Petrova (2018), as they develop models that nest the proxy SVAR approach into a
time-varying parameters framework.

The rest of the paper is organised as follows. Section 2 represents the main block of this work.
More precisely, it presents the model developed here, i.e., the time-varying local projections, as well as
the settings and routine to estimate it. Section 3 presents a simulation study with artificially generated
data while section 4 presents an empirical application. It will show the usefulness of this model and
how it provides the researcher with superior information with respect to that obtainable from local
projections that do not account for time variation. Finally, section 5 concludes.

2 Econometric Methodology

This section lays out the econometric methodology. To be more precise, it describes the model and
how time variation is included in the local projections framework. In addition, it describes the priors
chosen and provides a Gibbs sampler routine to estimate the model as well as the settings that are
necessary to initialise it.

2.1 The Model

In Jorda’s (2005) seminal paper, local projections allow the researcher to estimate impulse responses
directly from a set of linear regressions. In the time-varying version developed in this work I begin
from the same starting point. As such, it follows that the model for an individual observation looks
as follows:

Yt+h = αt,h + βt,hXt−1 + γt,hWt + vt+h (1)

where h = 0, 1, ...,H represents the projection horizon, Yt+h is the variable of interest, i.e., the response

variable, while Xt−1 is a vector of control variables, e.g., lags of dependent and independent variables.
The contemporaneous value Wt is endogenous and described by:

Wt = θ + δZt + et (2)

where Zt is a set of instruments which are assumed to be correlated with Wt and uncorrelated with

vt+h. In equation 1, Bt,h = [αt,h, βt,h, γt,h] represents all the time-varying coefficients stacked into one
vector, i.e., intercept and slopes. The latter are assumed to evolve according to a random walk with
no drift:

Bt,h = Bt−1,h + ut,h (3)
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where ut,h is a vector of innovations which are assumed to have variance V ar(ut,h) = Qh and to be

uncorrelated both with vt+h and et, i.e., Cov(vt+h, ut) = 0 and Cov(et, ut) = 0, at each horizon h. In
equation 2, θ and δ respectively represent intercept and slope coefficients and summarize the relation
between the instrument(s) Zt and the endogenous variableWt. Note how both θ and δ are not assumed
to be time-varying and the reason is that I am only looking for the relation between instrument and
endogenous variable in its purest form. With the aim of keeping things simple, this allows me to
assess the strength of the instrument(s) by just looking at the highest posterior density distribution
of the coefficients in 21. Note how vt+h, at impulse response horizons bigger than 0, i.e., h > 0, is
serially correlated and heteroscedastic as it represents the sum of the errors made when forecasting
the response variable at horizons from 0 to h. Finally, the structural form errors are assumed to be
correlated and to have a variance-covariance matrix of the form:

Cov(et, vt+h) = Ωh =

(
σ11,h σ12,h

σ21,h σ22,h

)
(4)

Note how equation 4 is what distinguishes this Bayesian setting from a pure frequentist instrumental
variable approach. It is so, as the latter would assume a diagonal Ωh matrix as no correlation between
errors is allowed.

The main goal of the model is the identification of the parameter of interest γt+h which represents
the h− th horizon time-varying response of Yt+h to a shock in Wt which, in turn, is instrumented by
Zt.

2.2 Priors

As it is commonly done in time-varying modelling, following Cogley & Sargent (2005) and Primiceri
(2005), I set the priors by using a training sample without assuming time variation in the coefficients.
After selecting a proper training sample, for each horizon h = 0, 1, ...,H, the starting point is the
estimation of

Yt+h = αh + βhXt−1 + γhWt + vt+h (5)

where

Wt = θ + δZt + et (6)

is used as a first stage regression. It follows that, by substituting 6 into 5 we get:

 Wt = θ + δZt + et

Yt+h = αh + γhθ + βhXt−1 + γhδZt + γhet + vt+h

1This assumption may obviously be lifted and time variation in θ and δ can be allowed. However, this would add
a layer of complexity as, in this case, the strength of the instrument set Zt needs to be assessed at each time t of the
sample chosen.
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which implies that, by denoting the reduced form residuals as

(
ω1
t

ω2
t+h

)
, the relation between the

latter and the structural ones is

(
ω1
t

ω2
t+h

)
=

(
1 0

γh 1

)(
et

vt+h

)
or, equivalently,

(
1 0

−γh 1

)(
ω1
t

ω2
t+h

)
=

(
et

vt+h

)

As discussed in Rossi et al. (2005), this represents the basis for setting a prior for the covariance
matrix of the structural errors which is explicitly dependent on γh. This prior is assumed to follow an
Inverse Wishart distribution:

Ωh ∼ IW (Ωh0, TΩh0) (7)

By indicating with A the matrix capturing the relation between reduced and structural form re-

siduals

(
1 0

−γh 1

)
, the prior scale is Ωh0 = A

 σ2
ω1
t

0

0 σ2
ω2
t+h

A′ where σ2
ω1
t
and σ2

ω2
t+h

represent

the variances of the reduced form residuals. As discussed in the previous subsection, vt+h is serially
correlated and heteroscedastic at impulse response horizons bigger than 0 and so does ω2

t+h. Neglecting
to account for this characteristic results in misspecifying the model as this would lead to assume a
wrong variance of the error. With this aim in mind, it is necessary to HAC-correct (i.e., to correct for
heteroscedasticity and serial correlation) σ2

ω2
t+h

for h > 0 and I try to achieve this goal in the following
way. Denote σ̂j as an estimate of the j − th order autocovariance of ω2

t+h, then

σ2
ω2
t+h

= σ̂0 + 2

T−1∑
j=1

kj,hσ̂j (8)

where kj,h is the Bartlett kernel where the bandwidth parameter is set to be equal to h, i.e., kj,h = (1− j
h+1 )

0

for 0 ≤ j ≤ h

for j > h
. This particular choice of the bandwidth parameter will ensure that

the exact order of the serial correlation in the error is taken into account while the decaying value of kj,h
assigns a lower and lower weight as such order j increases. This way of accounting for heteroscedasticity
and serial correlation is clearly an approximation but, in its simplicity, it avoids to add further layers
of complexity by explicitly modelling the behaviour of vt+k, and consequently ω2

t+h, at each horizon
h. The prior degrees of freedom are TΩh0 = 2 + 1 where 2 is the number of equations in the system.

I set a normal prior for the intercept and the slope coefficients in equation 2 where mean and
variance are obtained by simply estimating 6 through ordinary least squares, i.e.,
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(
θ

δ

)
∆

∼ N


(
θ0

δ0

)
∆0

,

(
Σθ 0

0 Σδ

)
Σ∆0

 (9)

The initial values of the time-varying intercept and slope coefficients relative to equation 1 are
normally distributed

B0|0 ∼ N(B0,h, Vh) (10)

where the mean B0,h is obtained by performing a 2-stage least squares of equation 5 by using Zt

as an instrument for Wt. The reason why I do not follow equation 6 as a first stage regression in
this case is the necessity to find, within a frequentist environment, the fitted values of Wt which
can be considered to be uncorrelated with vt+h in order to properly identify γh. This is of crucial
importance as the latter will eventually play the role of starting value. Vh is the variance-covariance
matrix of the coefficients B0,h = [αh, βh, γh] obtained through this 2-stage least squares procedure and
is corrected for heteroscedasticity and serial correlation in the error vt+h for h > 0. Such a correction
is implemented through the Newey & West (1987) estimator where the bandwidth parameter is set to
be equal to the projection horizon h in order to account for the exact order of serial correlation of the
error.

Finally, the prior for the variance of the innovations ut,h, i.e., the innovations relative to the
coefficients’ law of motion in 3, is assumed to be an Inverse Wishart distribution

Qh ∼ IW (Qh0, Th0) (11)

where the prior scale is Qh0 = Vh ∗Train∗SF . Vh is the variance-covariance matrix of the coefficients

in B0,h = [αh, βh, γh] as previously discussed, Train is the training sample length while SF is a scaling
factor which is meant to govern the a priori degree of time variation of the coefficients in 1. The more
SF tends to zero the lower the time variation shown by the local projections. Finally, the prior degrees
of freedom Th0 is simply equal to Train+ 1.

2.3 Gibbs Sampler

The Gibbs sampling algorithm presented here, which implies drawing from the posterior distribu-
tions, can be considered as an extension of that developed in Rossi et al. (2005). As such, for each
projection horizon h, it implies the following steps:

1. Given a draw of Ωh and the residuals et the model can be written conditional on et. In particular,
as vt+h|et ∼ N(

σ12,h

σ11,h
et;σ22,h −

σ2
12,h

σ11,h
) it is possible to transform the data in the following way:

Y ∗t+h =
Yt+h − σ12,h

σ11,h
et

(σ22 −
σ2

12,h

σ11,h
)

1
2

and Γ∗t =
Γt − σ12,h

σ11,h
et

(σ22 −
σ2

12,h

σ11,h
)

1
2
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where Γt = [1, Xt−1,Wt]. Equation 1 then becomes:

Y ∗t+h = Γ∗tBt,h + v∗t+h

where Bt,h = Bt−1,h + ut,h and v∗t+h ∼ N(0;R∗h). Note that, as v∗t+h =
vt+h−

σ12,h
σ11,h

et

(σ22−
σ2

12,h
σ11,h

)
1
2

, it follows

that for h = 0 var(v∗t+0) = R∗0 = 1 while for h > 0 R∗h must be HAC-corrected as v∗t+h comprises
a combination of past forecast errors2.

2. Use the Carter & Kohn (1994) algorithm to sample B̃t,h = [α̃t,h, β̃t,h, γ̃t,h], i.e., the time series
of the time-varying coefficients.

3. Sample Qh = V ar(ut,h) from its posterior distribution Qh~IW (Qh,Posterior, TQh,Posterior) where
Qh,Posterior = (B̃t,h − B̃t−1,h)′(B̃t,h − B̃t−1,h)′ +Qh0 and TQh,Posterior = Train+ Th0.

4. Transform the data in the following way:

Ỹt+h =
Yt+h − (α̃t,h + β̃t,hXt−1)

γ̃t,h

and then rewrite the model in 1 and 2 as

 Wt = θ + δZt + et

Ỹt+h = θ + δZt + et + 1
γt,h

vt+h

where Cov(et, et + 1
γt,h

vt+h) = At,hΩhA
′
t,h and At,h =

(
1 0

1 1
γt,h

)
. This transformed model

can be seen as a Seemingly Unrelated Regressions (SUR) System. Pre-multiplying both sides of

the system by Ãt,h =

((
At,hΩhA

′
t,h

) 1
2

)−1

transforms the model into a stacked regression with

a unit variance and the draw for ∆ =

(
θ

δ

)
is standard, i.e., ∆ ∼ N(M∆, V∆) where

M∆ = (Σ−1
∆0 + Z ′SUR,tZSUR,t)

−1(Σ−1
∆0∆0 + Z ′SUR,tYSUR,t)

V∆ = (Σ−1
∆0 + Z ′SUR,tZSUR,t)

−1

where YSUR,t = vec(Ãt,h[Wt, Ỹt+h]) and ZSUR,t = [vec(Ãt,h[1, 1]), vec(Ãt,h[Zt, Zt])].

2This HAC-correction is implemented in a similar way to equation 8 shown in the previous subsection.
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5. Sample Ωh from IW (Ωh,Posterior, TΩh,Posterior) with TΩh,Posterior = T + TΩh0, where T is the
sample length once the training sample has been removed, and Ωh,Posterior is the HAC-corrected
posterior scale for h > 0.

In a similar way to what discussed in the previous subsection, neglecting to explicitly model the
autocorrelation and heteroscedasticity in vt+h implies that the time-varying local projections end up
being misspecified. As described in Muller (2013) and Miranda-Agrippino & Ricco (2018), in presence
of heteroscedasticity and serial correlation the true likelihood is still Gaussian and centred at the
Maximum Likelihood Estimator but has a larger variance. In order to soften such a misspecification
problem I adjust the posterior scale of Ωh in the 5th step of the Gibbs sampler in the following way:

denote with εt+h the structural form residuals

(
et

vt+h

)
and with Sj the j− th order scale parameter

given by Sj = ε′t+hεt+h−j , then

Ωh,Posterior = S0 + 2

T−1∑
j=1

kj,hSj (12)

where kj,h is the Bartlett kernel with bandwidth parameter equal to h. In a similar way to what seen

in the previous subsection, this easy and more frequentist way of accounting for heteroscedasticity
and serial correlation avoids the extra burden to add further steps in the Gibbs sampler in order to
explicitly model the behaviour of the error. As such, this correction allows to remain agnostic with
respect to the nature of the heteroscedasticity and serial correlation of vt+h.

Finally, notice that the estimation of the variance of et does not formally require any HAC-correction
as the latter is assumed to be homoscedastic and serially uncorrelated independently of the projection
horizon h. In order to show how the posterior scale correction applied in the algorithm does not
provide biased estimates of the covariance matrix between the structural errors, in the next section I
will perform a simulation study showing, inter alia, how the the elements of Cov(et, vt+h) are all well
estimated independently of the error being well behaved or not.

2.4 Estimation Setup

For each response horizon h = 0, 1, ...,H, the model is estimated by using the following setup. The
number of Gibbs sampler iterations is set to 20, 000 and the first 10, 000 are discarded in order to
minimise the effect of the initial draws. Moreover, in order to minimise the serial correlation across
draws, a thinning factor of 20 is used. As a result, once past the burn-in stage, inference is conducted
only on the retained 500 draws while the others are discarded. Finally, the scaling factor that governs
the amount of time variation in the coefficients in equation 1 is set to 3.5e − 04, i.e., a small number
to reflect the fact that the training sample is generally short and the estimates might be relatively
imprecise.
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3 Simulation Study

The aim of this section is to provide evidence that the model developed here works correctly. To
this end, I conduct two Monte Carlo experiments with artificially created data. On the one hand,
the first experiment is intended to evaluate how the algorithm performs in presence of a normally
distributed error vt which is not heteroscedastic nor serially correlated. To this end, it is meant to
show how the algorithm performs when h = 0. On the other hand, the second experiment aims at
assessing how the model works when the HAC-corrections shown previously are in order, which is the
case when h > 0.

In both cases data are generated from a system with one observation equation that comprises one
constant term, two exogenous regressors and one endogenous one. In order to show how the model
is flexible enough to accommodate any number of instruments, the endogenous regressor is in turn
explained by two instruments. Only the coefficients of the observation equation are assumed to be
time-varying and to be following a driftless random walk where the starting values are set to be equal
to zero.

For the sake of brevity, both experiments are conducted by only considering responses on impact.
Note that considering also longer horizon projections would just involve the estimation of a set of
equations where the only difference is that the response variable is shifted onwards as many times
as the projection horizon. As the true responses cannot be retrieved for horizons different from the
impact one, this exercise would prove of little utility with artificially generated data as it is not possible
to assess how the estimated responses are close to the true ones. The experiments are conducted by
generating 600 observations from the data generating processes and by discarding the first 100 in order
to remove the effect of initial conditions. In addition, equipped with the remaining 500 observations,
I use the first 100 as a training sample that will be necessary for setting the priors. Both experiments
are repeated 100 times and, for each of them, I run the algorithm and use the estimation setup outlined
in section 2. This means that, for each Monte Carlo iteration, inference is conducted by using only
the remaining 500 draws.

The data for the first Monte Carlo experiment are created from the following data generating
process:

 Wt = 0.2 + 0.9Z1,t − 0.1Z2,t + et

Yt = αt + β1,tX1,t−1 + β2,tX2,t−1 + γtWt + vt

where

(
et

vt

)
∼ N

[(
0

0

)
,

(
0.015 0.030

0.030 0.160

)]


Z1,t

Z2,t

X1,t−1

X2,t−1

 ∼ N



0

0

0

0

 ,


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1
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αt

β1,t

β2,t

γt

 =


αt−1

β1,t−1

β2,t−1

γt−1

+


uαt

uβ1

t

uβ2

t

uγt

 where


α0

β1,0

β2,0

γ0

 =


0

0

0

0




uαt

uβ1

t

uβ2

t

uγt

 ∼ N



0

0

0

0

 ,


0.001 0 0 0

0 0.001 0 0

0 0 0.001 0

0 0 0 0.001




Figure 1 shows the median estimated time-varying intercept and slope coefficients B̃t = [α̃t, β̃1t, β̃2t, γ̃t]

together with the 90% credible set. It is evident how the median estimates are able to closely match
the true ones. Whenever the estimated parameters less closely trace the true ones, the latter appear
to be well within the credible set. For the sake of clarity, here, the picture is related to only the first
Monte Carlo iteration3.

Figure 1: Time-Varying True (Blue) and Estimated Median Coefficients and 90% Credible Set (Red)
in Presence of Homoscedastic and Serially Uncorrelated Error

In order to further assess how well the algorithm performs I follow the suggestions in Primiceri
(2005) and look at the autocorrelation of the retained draws. Such convergence diagnostics are shown

3 The inclusion of all the remaining 99 iterations would imply to have 100 different sets of time-varying coefficients
in the same graph. This would make hard any attempt to draw conclusions regarding the performance of the algorithm
in estimating the true coefficients.
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in figure 2. More precisely, the picture shows the 20th order autocorrelation of the retained draws of
the time-varying coefficients B̃t. Rather than showing all of them in one graph, or in as many graphs
as the number of time-varying coefficients, I decide to split them into two graphs. To be more precise,
the top panel shows those relative to the retained draws of the time-varying [α̃t,β̃1t,β̃2t] stuck into one
vector while those relative to γ̃t are shown in the bottom one. By doing so, I can better highlight
how well the algorithm works with respect to the parameter of interest, i.e., the time-varying impulse
response γt. Low correlations are evidence of high efficiency of the algorithm as the draws are almost
independent. Similarly to the previous picture, for the sake of clarity, the convergence diagnostics
shown here are related to the first Monte Carlo iteration. For this exercise, all the autocorrelations
are well within the [−0.2, 0.2] interval and therefore they indicate a satisfactory performance of the
algorithm.

Figure 2: 20th-order Autocorrelation of the Retained Draws of (αt, β1,t, β2,t) (Upper Graph) and of γt
(Bottom Graph)

Finally, the next three pictures are relative to the full Monte Carlo experiment as they depict
all the draws that lead to the same posterior distributions independently of the artificially generated
data used. Figure 3 shows the posterior distributions of the intercept and slope coefficients relative
to equation 2, i.e., ∆ = (θ, δ1, δ2). Figure 4 shows the posterior distributions of the disturbances of
the law of motion of the time-varying coefficients, i.e., Q = var(ut), while figure 5 shows the posterior
distribution of the covariance matrix of the structural residuals, i.e., Ω = Cov(et, vt). All the posterior
distributions look well identified and relatively well centred around the values arbitrarily chosen above,
the latter being indicated by vertical red lines.
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Figure 3: Posterior Distributions of the ∆ = (θ, δ1, δ2) Coefficients

Figure 4: Posterior Distributions of the Elements of Q = var(ut)
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Figure 5: Posterior Distributions of the Elements of Ω = Cov(et, vt) in Presence of Homoscedastic and
Serially Uncorrelated Error

As previously stated, the second Monte Carlo experiment aims at showing how the algorithm
performs in presence of heteroscedastic and serially correlated error of the observation equation, which
is the case when h > 0. With this aim in mind, data are generated from the following data generating
process:

 Wt = 0.2 + 0.9Z1,t − 0.1Z2,t + et

Y HACt = αt + β1,tX1,t−1 + β2,tX2,t−1 + γtWt + vHACt

where, without loss of generality, I arbitrarily induce heteroscedasticity and serial correlation in vHACt

in the following way:

vHACt = 0.6vt−1 − 0.2vt−2 + 0.1vt−3 + ξt

where

(
et

vt

)
∼ N

[(
0

0

)
,

(
0.015 0.030

0.030 0.160

)]

ξt ∼ N(0, σ2
t ) where σ2

t ∼ IG(1, 1)
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All the rest is set as in the previous Monte Carlo experiment. Note how the superscript on the
response variable only aims at distinguishing it from that of the previous exercise. To be clearer, in
this second experiment, endogenous and exogenous regressors, instruments and coefficients of the two
equations are all generated in the same way as before. The only difference between Yt and Y HACt is
that the latter is now including a heteroscedastic and serially correlated error, i.e., vHACt .

As previously done, the first picture is meant to show how the estimated time-varying coefficients
perform in matching the true ones and, for the sake of clarity, the picture is related to only the
first Monte Carlo iteration. In order to compare these results with the case of homoscedastic and
uncorrelated error, I use the same set of artificially created data with the only difference that I replace
vt with vHACt and, as a consequence, Yt with Y HACt . This means that the true time-varying betas
that need to be estimated are exactly the same ones as those in figure 1.

Figure 6 shows the median estimated time-varying intercept and slope coefficients B̃t = [α̃t, β̃1t, β̃2t, γ̃t]

together with the 90% credible set. Notice how, differently from the previous case, i.e., as a result of
vHACt being heteroscedastic and serially correlated, the estimated time-varying coefficients appear to
match less closely the true ones. However, the 90% credible set appears wider and this helps keep the
true coefficients within the bands.

Figure 6: Time-Varying True (Blue) and Estimated Median Coefficients and 90% Credible Set (Red)
in Presence of Heteroscedastic and Serially Correlated Error

As an additional check of the good performance of the algorithm in presence of heteroscedastic and
serially correlated error, I check the posterior distributions of the elements of the covariance matrix
relative to the structural errors. Under this setting the covariance between artificially created structural
errors is4:

4Differently from the previous Monte Carlo exercise where Cov(et, vt) was arbitrarily chosen, here Cov(et, vHACt )
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Cov(et, v
HAC
t ) =

(
0.015 0.003

0.003 2.069

)

Figure 7 shows the posterior distribution of the covariance matrix of the structural residuals, i.e.,
Ω = Cov(et, v

HAC
t ). As in the previous case, this picture is related to the full Monte Carlo experiment

and the vertical red lines represent the true values. The picture shows how, even in this case, the
algorithm is able to estimate the values of Ω in a good way as the posterior distributions appear to be
well centred around the true values. Moreover, it is important to emphasise how the HAC-correction
works well. To be clearer, the variance of et does not show any difference with respect to the previous
case while the variance of vHACt instead does. More precisely, while the variance of et has remained
the same as the one of the previous exercise, that of vHACt is bigger than that of vt and the algorithm
is able to capture it well.

Figure 7: Posterior Distributions of the Elements in Ω = Cov(et, v
HAC
t ) in Presence of Heteroscedastic

and Serially Correlated Error

For the sake of space, for this second experiment, the convergence diagnostics and the posterior
distributions of ∆ = (θ, δ1, δ2) and Q = var(ut) are not shown as there are no relevant differences with
respect to the previous case5.

All in all, given the results of the two Monte Carlo experiments, there is evidence of how the
algorithm provides a good performance even in the case when the error is heteroscedastic and serially

needs to be estimated. To this end, I generate a sample of 10,000,000 observations and then I estimate the covariance
between the artificially created et and vHACt . Such long time series aim at improving the precision of the estimate.

5Nevertheless, they are available upon request.
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correlated. It is so as, independently of the characteristics of the error, the algorithm is able to
provide relatively good estimates of the time-varying coefficients B̃t = [α̃t, β̃1t, β̃2t, γ̃t] with almost
independent draws from their respective posterior distributions and, in addition, it is able to well
identify the posterior distributions of ∆ = (θ, δ1, δ2) , Q = var(ut) and Ω = Cov(et, vt) or, alternatively,
Ω = Cov(et, v

HAC
t ) when the error is heteroscedastic and serially correlated.

4 Empirical Application

In this section I perform an empirical application in order to demonstrate the usefulness of the model
developed in this work. The application aims at understanding the time-varying impact of military
news shocks for the United States of America. The exercise is conducted by replicating the main body
of the analysis, within the time-varying parameters framework developed here, of an empirical study
that is well known in the literature, i.e., Ramey & Zubairy (2018). For the sake of space, only the
main results are shown while the convergence diagnostics are presented in appendix 2.

In the macroeconometric literature many works develop narrative measures with the aim of proxying
fiscal shocks for subsequently estimating the effect of contractionary or expansionary policies. Ramey &
Shapiro (1998) create a dummy variable to capture major exogenous military buildups while a number
of follow-up papers, Edelberg et al. (1999) ad Burnside et al. (2004), included dummy variables to
capture war dates. The intuition behind these works is that major military events lead, among other
things, to an increase in the economic activity. More recent contributions have also looked at the effect
of tax changes. In Romer & Romer (2010) the authors develop a narrative measure of exogenous tax
changes which are those changes that are not related to or justified by current and/or prospective
economic conditions. In two follow-up works, Mertens & Ravn (2012) and Mertens & Ravn (2013),
the authors take the Romer & Romer (2010) series and first distinguish between anticipated and
unanticipated tax changes and then, in their second work, they further divide the unanticipated tax
changes series into personal and income tax changes.

The reason why, in order to show the usefulness of this model, I decide to replicate the study in
Ramey & Zubairy (2018) is one. Such a work, besides representing an example of renewed attention
on the effect of government spending shocks, develops a rich narrative measure that aims at capturing
the “news” component of the government spending shocks. This measure, being an extension of that
developed in Ramey (2011), provides an extraordinary base to assess whether, and to what extent, there
have been changes in the effectiveness of fiscal policy shocks. It is so because it covers a particularly
long time span, i.e., more than one hundred years of observations6.

By using the same notation outlined in section 2, the matrix of exogenous regressors Xt−1 contains
four lags of the Ramey and Zubairy’s (2018) series, of the gross domestic product and of the government
spending where all of them are expressed in real terms and scaled by potential real GDP (Gordon &
Krenn (2010) transformation)7. The inclusion of lags of the narrative measure helps remove any
potential serial correlation in the latter. The endogenous regressor Wt is the current change in the

6More details regarding data sources and transformations are shown in appendix 1.
7 Such a transformation allows the researcher to estimate both responses and fiscal multiplies by using the same

variables which are directly expressed in dollars. More precisely, in order to estimate the fiscal multipliers it is not
necessary to resort to ex-post conversions of the impulse responses. For a more detailed explanation see Ramey and
Zubairy (2018).
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government spending series while Zt is the current value of the military news shock measure. The data
is at quarterly frequency and the sample runs from 1889Q1 to 2015Q4. The first 60 observations are
used as a training sample while the maximum response horizon is set to 20 quarters. The use of such
a training sample together with four lags of the exogenous regressors make the effective sample run
from 1905Q1 to 2015Q4. Figure 8 shows the median responses of government spending and output to
a unit shock in the former where the shock is proxied by the military news shock series8.

Figure 8: Time-Varying Responses to Military News Shocks - Median Estimates - Effective Sample:
1905Q1-2015Q4

The graphs show the impulse response horizons on the Y-axis, the period of time the sample refers
to on the X-axis while the magnitude of the responses is on the Z-axis. The responses of government
spending are depicted on the left column while those of the real GDP on the right one. The two
graphs at the bottom represent the same local projections as those in the upper part of the figure but
they have been rotated by 180 degrees in order to better understand what the responses are at longer
horizons. When focusing on government spending, the left side of figure 8 shows how there is evidence
(even though little) of time variation at short impulse horizons. More precisely, over the four quarters
after the shock hits, the time-varying responses are smaller for the period prior to the second World
War but then they go up to around 1.5. When considering longer horizons, instead, things appear to
be slightly different as the time variation seems to dampen. Independently of the moment a military
news shock occurs, the response of the government spending variable decreases until reaching a value
of about 0.2 after 14 quarters. On the right hand side of figure 8, instead, the response of the real GDP
presents a clearer evidence of time variation throughout both the entire time span and the projection

8For the sake of clarity, credible sets are not shown.
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horizons considered. To be more precise, regardless of the projection horizon, output responses are
clearly the lowest during the Great Recession. If we focus on the responses on impact, they even reach
negative values of -0.7. In addition, figure 8 makes it evident how output responses are bigger at all
projection horizons after the Great Recession.

In order to better understand how time-variation produces a richer story about the responses to a
military news shock over time, as a comparison, figure 9 shows the same responses but estimated in a
linear framework. The responses are obtained from a simplified version of the Gibbs sampler routine
presented in section 2 that does not account for time variation in the coefficients of the observation
equation 19.

Figure 9: Linear Responses to Military News Shocks - Median Estimates and 68% Bands - Effective
Sample: 1905Q1-2015Q4

Figure 9 clearly shows how the linear responses resemble the time-varying ones shown in figure 8.
However, as they can be considered as an average response over the entire sample, they are not able
to capture how the transmission of a military news shock has changed over time. If, on the one hand,
and for this specific exercise, this does not seem to be particularly problematic for the response of the
government spending variable, on the other hand, it does for that of the real GDP. More precisely, these
linear projections are not able to capture how the responses of the latter become of bigger magnitude
after the 40s at any horizon. Notice how this is reflected in the width of the 68% bands which are
wider for the real GDP and narrower for the government spending which, as shown in figure 8, presents
smaller time variation in the responses.

9 More precisely, in this linear version of the Gibbs sampler, step 2 does not imply the use of the Carter & Kohn
(1994) algorithm as any time variation is no longer required. For this reason, the draw for Bh is obtained from Bh ∼
N(MBh , VBh ) where posterior mean and variance are given by

MBh = (Σ−1
Bh0

+ 1
R∗
h

Γ∗t
′Γ∗t )−1(Σ−1

Bh0
Bh0 + 1

R∗
h

Γ∗t
′Y ∗t+h)

VBh = (Σ−1
Bh0

+ 1
R∗
h

Γ∗t
′Γ∗t )−1

Moreover, R∗h is defined as in step 2 while the prior Bh ∼ N(Bh0,ΣBh0
) is obtained by means of a training sample in

a similar way to what done with other priors. Finally, step 3 has been suppressed while in step 4 the covariance matrix

between the SUR system errors is no longer time-varying as now A =

(
1 0
1 1

γh

)
.
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The results shown in figure 8, however, do not help understand whether the narrative measure to
proxy the shock of interest can be considered strong. To this end, in order to assess the strength of the
instrument chosen, table 1 presents the median draws and the 90% highest posterior density interval
of the parameter δ relative to the local projection where the real GDP is the response variable10. For
the sake of space, the results are shown only for selected horizons.

Horizon Median Draw HPDI 5th Percentile HPDI 95th Percentile Median/Std Error

0 0.09 0.07 0.11 7.54
4 0.09 0.06 0.12 4.96
8 0.09 0.06 0.12 5.36
12 0.09 0.06 0.12 5.24
16 0.09 0.06 0.12 5.74
20 0.09 0.06 0.12 5.28

Table 1: Strength of the Narrative Measure at Selected Response Horizons - Effective Sample: 1905Q1-
2015Q4

Table 1 clearly evidences how the highest posterior density interval suggests that the hypothesis
that δ = 0 is rejected for all the horizons considered. It is so as all the highest posterior density
intervals do not include zero. In other words, this means that the instrument maintains its strength
even when the response horizon gets bigger.

As a further step to illustrate the usefulness of this framework, and in a similar way to in Ramey
& Zubairy (2018), I proceed with the estimation of the cumulated fiscal multipliers. In a similar way
to the cited work, a fiscal multiplier is defined as the integral of the output response divided by the
integral of the government spending one or, alternatively, as the response of the cumulated output
given a shock in the cumulated government spending up to horizon h. I follow the second definition
and, in order to estimate horizon h fiscal multipliers, I transform the model in the following way:


h∑
i=0

Wt+i = θ + δZt + et

h∑
i=0

Yt+i = αt,h + βt,hXt−1 + γt,h
h∑
i=0

Wt+i + vt+h

(13)

where
h∑
i=0

Yt+i and
h∑
i=0

Wt+i respectively represent the cumulated real GDP and government

spending measures up to response horizon h while Xt−1 and Zt contain the same variables as before.
This allows to directly estimate the time-varying fiscal multipliers γt,h. Figure 10 shows the results:

10As equation 2 does not change with the response variable of the local projection, the statistics for the government
spending projection are not shown as they would deliver the same insights.
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Figure 10: Time-Varying Cumulative Spending Multipliers - Median Estimates - Effective Sample:
1905Q1-2015Q4

If we focus on short horizons, figure 10 clearly shows evidence of how the impact multipliers varied
according to the time a fiscal policy shock occurred. More precisely, in line with the insights drawn
from figure 8, impact multipliers are lower prior to the WWII and reach the lowest values during the
Great Recession. After the WWII they steadily increase. On the other hand, when focusing on longer
horizons, the time variation of multipliers seems to be more limited. It is evident from figure 10 how
fiscal multipliers tend to flatten as the horizon grows large.

As a comparison, figure 11 shows the cumulative spending multipliers estimated by means of the
linear projections model previously mentioned.
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Figure 11: Linear Cumulative Spending Multipliers - Median Estimates and 68% Bands - Effective
Sample: 1905Q1-2015Q4

Similarly to what seen with the impulse responses, the estimated linear multipliers resemble the
time-varying ones but are not able to capture the time variation that, as shown in figure 10, is evident
especially at short horizons.

In order to better evaluate how the spending multipliers have changed over time, figure 12 shows
them at selected horizons, i.e., 0, 4, 8, 12, 16, 20 quarters, together with the 68% credible sets. The
shaded areas represent the NBER recession dates while, as a comparison, the red horizontal lines the
estimated median linear multipliers.
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Figure 12: Time-Varying Spending Multipliers at Selected Horizons - Median Estimates and 68%
Credible Sets - Effective Sample: 1905Q1-2015Q4
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Figure 12 confirms what seen in figures 10 and 11, i.e., shorter horizon multipliers tend to be
lower in the pre WWII period while they somehow flatten, throughout the entire sample, at longer
horizons. The linear multipliers, being average multipliers over the entire period, closely match the
time-varying ones as the horizon grows large. On the contrary, they do not capture the remarkable
time variation displayed at shorter horizons and that is especially evident at impact. When focusing
on the first graph, impact multipliers are not significantly different from zero until the mid 20s and
then reach a value of about -0.4 during the Great Recession. Afterwards, they steadily increase and
remain significantly different from zero. The highest values of the impact multipliers are found in the
2000s when they hover 0.75. Similar behaviour is found for the 4-quarter multipliers. More precisely,
they are lower during the pre WWII period but then they steadily increase. It is interesting to notice
how they are positive and hovering a value of 0.25 during the Great Recession but such estimates
are not significantly different from zero. From the 8-quarter horizon on the multipliers seem to flatten
throughout the entire sample period and then they seem to stabilise at around the a value of nearly 0.8
as the horizon gets bigger (12, 16 and 20-quarter horizon). Finally, the 16 and 20-quarter multipliers
show how they reach a peak of nearly 0.9 during the early 30s.

5 Conclusions

In recent years local projections have become a more and more popular methodology for the
estimation of impulse responses. Since Jorda’s (2005) seminal paper, a number of works have tried to
improve upon such a methodology. Some studies have focused on the regularisation of local projections,
some others on techniques aiming at making the estimated responses smoother while some others on
the assessment of the strength of the instruments proxying a shock should the local projections be
estimated through a two-stage least squares procedure. Despite the increase of this strand of literature,
time variation has been almost entirely neglected. This paper tries to fill this gap by modelling local
projections in a time-varying framework. To this end, this work has provided a Bayesian approach to
estimate time-varying local projections where the shock of interest is identified through the use of a
proxy used as an instrumental variable.

The model’s performance is assessed through two small Monte Carlo exercises where the data are
artificially generated. The two exercises differ in the way the error of the observation equation is
treated, i.e., whether a correction for heteroscedasticity and serial correlation is necessary or not. In
both cases the algorithm shows a satisfactory performance. Subsequently, the usefulness of the model
is illustrated through an empirical application. The latter replicates the main body of a relevant recent
study relative to the transmission of military news shocks where the latter are identified through a
narrative measure which is used as a proxy, i.e., Ramey & Zubairy (2018). This empirical application
shows how the model developed in this work can provide a richer information regarding the effects of
fiscal policies with respect to that drawn from a model that does not account for time variation.

In conclusion, this study provides an additional step for further developing Bayesian local pro-
jections. Further improvements might include the possibility to make this framework more flexible.
A possibility, that is left for further research, could be to make this setting account for other shock
identification strategies that are commonly used in the literature besides the narrative one employed
here.
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Appendix 1 - Empirical Application - Data

The data used for the empirical application in section 4 are taken from the Valery Ramey’s website
and are part of the replication files and data relative to Ramey & Zubairy (2018). Figure 13 plots
the series used in the estimation, i.e., government spending, gross domestic product and the Ramey’s
military news shock series. As in Gordon & Krenn (2010), all of the three series are expressed in real
terms (by dividing each of them by a 1−quarter lag of the GDP deflator) and scaled by a measure of
potential real gross domestic product where the latter is obtained by using a 6-degree polynomial for
the logarithm of the real GDP.
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Figure 13: Empirical Application - Plot of Variables - Sample: 1889Q1-2015Q4

Appendix 2 - Empirical Application - Convergence Diagnostics

This appendix shows the convergence diagnostics relative to the empirical application presented in
section 4. As previously done for the simulation study, in order to assess the satisfactory performance of
the algorithm, the 20th-order autocorrelation of the retained draws is employed. For the sake of space,
figure 14 shows such a measure only relative to the γt,h parameter, i.e., the time-varying projection
coefficient, for each of the three objects of interest, i.e., the responses of government spending and gross
domestic product as well as the spending multipliers. The convergence diagnostics relative to the other
parameters, as well as those relative to the linear model, are available upon request. The red vertical
lines separate the autocorrelations by response horizon h in order to facilitate the comprehension of
the algorithm’s performance as the projection horizon lengthens.
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Figure 14: Empirical Application - 20th-order Autocorrelation of the Retained Draws of γh,t at each
Projection Horizon

Figure 14 shows how for both real gross domestic product and for the multipliers, all the autocor-
relations of the retained draws lie within the [−0.2, 0.2] interval. However, the same thing cannot be
said for the government spending variable. To be more precise, the autocorrelations related to the one
and two quarter horizon do not lie within the mentioned interval but show higher values hovering 0.5.
To conclude, except these two cases, all the draws appear to be nearly independent. On the basis of
these results, and in light of the high dimensionality of the model, the algorithm seems to perform in
a satisfactory way.
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