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Abstract

Sign-restricted Structural Vector Autoregressions (SVARs) are increasingly common. However, they

usually result in a set of structural parameters that have very different implications in terms of impulse

responses, elasticities, historical decomposition and forecast error variance decomposition (FEVD). This

makes it difficult to derive meaningful economic conclusions, and there is always the risk of retaining

structural parameters with implausible implications. This paper imposes bounds on the FEVD as a way

of sharpening set-identification induced by sign restrictions. Firstly, in a bivariate and trivariate setting,

this paper analytically proves that bounds on the FEVD reduce the identified set. For higher dimensional

SVARs, I establish the conditions in which the placing of bounds on the FEVD delivers a non-empty set and

sharpens inference; algorithms to detect non-emptiness and reduction are also provided. Secondly, under

a convexity criterion, a prior-robust approach is proposed to construct estimation and inference. Thirdly,

this paper suggests a procedure to derive theory-driven bounds that are consistent with the implications

of a variety of popular, but different, DSGE models, with real, nominal, and financial frictions, and with

sufficiently wide ranges for their parameters. The methodology is generalized to incorporate uncertainty

about the bounds themselves. Fourthly, a Monte-Carlo exercise verifies the effectiveness of those bounds in

identifying the data-generating process relative to sign restrictions. Finally, a monetary policy application

shows that bounds on the FEVD tend to remove unreasonable implications, increase estimation precision,

sharpen and also alter the inference of models identified through sign restrictions.

Keywords: Bounds, Forecast Error Variance, Monetary Policy, Set Identification, Sign Restrictions,

Structural Vector Autoregressions (SVARs). JEL: C32, C53, E10, E52.
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conference (MMF PhD conference, University of Kent), and QMUL Reading Groups and PhD Conference for valuable comments and ben-

eficial discussions. Financial support from Queen Mary University of London, School of Economics and Finance, International Association

for Applied Econometrics (IAAE), and Royal Economic Society (RES) is gratefully acknowledged. All errors are mine.
‡
Queen Mary University of London, School of Economics and Finance. Email: a.volpicella@qmul.ac.uk

1

https://www.dropbox.com/preview/Research/Robust%20Shrinkage/content/latex/Volpicella_Job%20Market%20Paper.pdf?role=personal


1 Introduction and Related Literature

Since the work of Sims (1980), structural vector autoregressions (SVARs) are the commonest

tool for studying the dynamics caused by macroeconomic shocks. Early studies employed zero

short-run, medium-run or long-run restrictions on impulse response functions (IRFs) for the

identification of structural shocks (Sims, 1980; Uhlig, 2004a; Blanchard and Quah, 1989). How-

ever, more recent research has relaxed controversial restrictions and has attempted to rely on

weaker assumptions. Specifically, since the works of Faust (1998), Canova and Nicolo (2002)

and Uhlig (2005), it has become increasingly common to identify structural shocks with sign

restrictions on either the impulse response functions or the structural parameters. Such re-

strictions are usually weaker than classical identification schemes, and are therefore more likely

to generate agreement amongst researchers. Additionally, because structural parameters and

IRFs are set-identified (or bounded), conclusions are robust across the set of structural mod-

els that satisfy the sign restrictions. However, this minimalist or agnostic approach comes

at a cost. Sign restrictions usually deliver a set of structural parameters with very different

implications for IRFs, elasticities, historical decomposition (HD) and forecast error variance

decomposition (FEVD). On the one hand, this makes obtaining precise estimation, informative

inference and meaningful economic results challenging (Uhlig, 2005; Paustian, 2007; Mount-

ford, 2005; Rafiq and Mallick, 2008; Arias, Caldara, and Rubio-Ramirez, 2019; Antoĺın-Dı́az

and Rubio-Ramı́rez, 2018; Amir-Ahmadi and Drautzburg, 2018). On the other hand, some

of the admissible structural models can contain implausible implications, which is even worse.

Specifically, under sign restrictions, a contractionary monetary policy shock has no significant

impact on real variables in the short-run (Uhlig, 2005; Mountford, 2005; Rafiq and Mallick,

2008) and does not necessarily lead to a decrease in real economic activity. Kilian and Murphy

(2012) found that sign restrictions on IRFs of a SVAR for the oil market induce highly question-

able implications for the price elasticity of the supply of oil to a demand shock. More recently,

Arias, Caldara, and Rubio-Ramirez (2019) showed that sign restrictions in the work of Uhlig

(2005) had a counter-intuitive impact on the systematic response of monetary policy; Antoĺın-

Dı́az and Rubio-Ramı́rez (2018) argued that sign restrictions on IRFs for the identification of

oil and monetary policy shocks lead to implausible HD. Thus, the challenge for scholars and

practitioners is to come up with a small number of additional uncontroversial restrictions that

help shrink the set of admissible structural parameters, eliminate unreasonable implications

and allow them to reach clear economic conclusions.

While sign restrictions typically impose inequality constraints on IRFs, this paper places

(upper- and/or lower-) bounds on the FEVD as a way of sharpening identification, reducing

the set of admissible structural parameters, increasing estimation precision and removing the
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implausible implications of sign-restricted models. The benchmark in the literature is to treat

the identifying constraints as if known with certainty (dogmatic restrictions); consistent with

the spirit of Giacomini, Kitagawa, and Volpicella (2017), Baumeister and Hamilton (2018),

and Baumeister and Hamilton (2019), the paper also introduces uncertainty about bounds on

the FEVD (nondogmatic restrictions). This makes sure the identification is robust to doubts

about the specific values used for bounding the FEVD.

In macroeconometrics, the FEVD is a very standard tool for evaluating whether, and to

what extent, shocks of interest explain the unexpected fluctuations of the target variables.

Put it another way, this paper bounds the average movements in the data, or unconditional

expectations, and differs from some recent literature, where specific historical events are used to

constrain the HD and identify shocks (Antoĺın-Dı́az and Rubio-Ramı́rez, 2018; Ludvigson, Ma,

and Ng, 2018, 2019).1 The empirical application fully illustrates the difference in estimation

and inference between restrictions on the FEVD and on the HD. On the other hand, the

identification strategy in this work, although completely novel, reminds the spirit of Kilian and

Murphy (2012), Baumeister and Hamilton (2018), and Baumeister and Hamilton (2019), who

placed bounds on particular structural parameters. Specifically, this research makes a number

of contributions to the literature on structural shock identification.

Firstly, in a bivariate and trivariate setting, I analytically prove that bounds on the FEVD

deliver a strictly smaller set for IRFs relative to sign restrictions. Interestingly, this also applies

to variables that are not subject to restrictions. For higher dimensional SVARs, I establish the

necessary conditions in which the placing of bounds on the FEVD leads to a reduced identified

set.

Secondly, the paper also addresses the trade-off between sharp identification and computa-

tion. In practice, it is unclear whether the identification is sharp enough so that the identified

set has a small but positive measure, or whether the constraints are too tight and the set

has a zero measure (empty set).2 As long as restrictions get tighter and reduce the identified

set, it can be hard to distinguish between small and empty sets. Thus, this paper establishes

sufficient conditions to determine whether the identified set implied by the constraints on the

FEVD has a positive measure; an algorithm provides a computationally-fast practical check

of the conditions. While recent studies (Giacomini and Kitagawa, 2018; Amir-Ahmadi and

Drautzburg, 2018; Gafarov, Meier, and Olea, 2018) establish conditions for non-emptiness un-

der zero and sign restrictions, this paper advances the literature by investigating non-emptiness

in the context of bounds on the FEVD.

1Chapter 4 of Kilian and Lütkepohl (2017) provides details about the difference between HD and FEVD.
2Uhlig (2017) summarized the trade-off as follows: “When a lot of draws are rejected, the identification is

sharp”.
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The current methodology for Bayesian estimation and inference of set-identified models

relies on drawing reduced-form parameters and an orthonormal matrix that maps the former

into structural parameters, IRFs and any other object of interest (Arias, Rubio-Ramirez, and

Waggoner, 2018). Within this setting, the common approach is to impose a uniform distribution

on the orthonormal matrix. However, it is well-known that (i) this choice does not imply a

uniform distribution over the identified set of the structural parameters, and (ii) the posterior of

structural parameters is proportional to the prior distribution, even asymptotically (Baumeister

and Hamilton, 2015). Under a convexity criterion, this paper presents a robust-prior procedure

through a numerical optimizer, where the identified set, which is constrained by bounds on

the FEVD, is distribution-free and does not depend on a specific prior over the orthonormal

matrix. This approach is line with the proposals put forward by Giacomini and Kitagawa

(2018), Gafarov, Meier, and Olea (2018) and Amir-Ahmadi and Drautzburg (2018) for sign

and zero restrictions only.

Once it has been established that bounds on the FEVD help in a bi- and trivariate frame-

work, it is necessary to find a way to choose a reasonable set of constraints in realistic settings.

This creates the need to adapt the procedure used by Canova and Paustian (2011) and derive

theory-driven bounds on the FEVD which are consistent with the implications of a variety of

common, but different, theoretical frameworks. As illustrative example, popular DSGE models,

with distinct real, nominal, and financial frictions, and with sufficiently wide ranges for their

parameters, are considered. The procedure is fully generalized to incorporate uncertainty, or

researchers’ doubts, about the bounds.

A Monte-Carlo exercise verifies the effectiveness of both dogmatic and nondogmatic bounds

as identifying restrictions in recovering the data-generating process (DGP) relative to sign

restrictions.

While sign restrictions typically suggest that contractionary monetary policy shocks have

no effects on real variables and are even likely to increase real activity, an empirical application

shows that a few bounds on the FEVD tend to be highly informative, remove unreasonable

effects of monetary shocks on real variables, increase precision of estimation and sharpen the

inference of sign-restricted models. Remarkably, nondogmatic bounds on the FEVD identify

structural parameters more successfully than sign restrictions and deliver very informative

results. The paper shows the approach here is also more effective than alternative strategies of

set-reduction, including standard equality restrictions on the FEVD, narrative sign restrictions

(Antoĺın-Dı́az and Rubio-Ramı́rez, 2018; Ludvigson, Ma, and Ng, 2018, 2019), constraints on

the monetary policy equation (Arias, Caldara, and Rubio-Ramirez, 2019) and the ranking of

IRFs (Amir-Ahmadi and Drautzburg, 2018).

As is amply clear, the aim of this work’s approach is to reduce the size of the identified set
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from a sign-restricted SVAR and remove implausible implications. This paper achieves this by

complementing sign restrictions with a totally novel methodology, namely imposing constraints

on the FEVD bounds. Although placing equality restrictions on the FEVD to identify shocks

in SVARs is relatively common,3 constraining the bounds of, or imposing inequality restrictions

on, the FEVD is a novel strategy.4 After earlier presentations of this paper, I became aware of

manuscript by Lovcha and Pérez Laborda (2016), who employed a specific parametrization of a

two-shock Real Business Cycle (RBC) framework to point-identify technology contributions in

the frequency variance decomposition. However, my work is dramatically different and much

more general because (i) the identification is based on the FEVD (time domain) rather than the

frequency variance decomposition (frequency domain); (ii) the constraints bound (set-identify)

the FEVD instead of point-identifying the frequency variance decomposition; (iii) restrictions,

rather than deriving from small-scale RBC model, are consistent with a multiplicity of DSGE

models with different nominal, real, and financial frictions; (iv) restrictions do not depend on

a specific parametrization; (v) uncertainty about the constraints is fully taken into account.

This paper is organized as follows: Section 2 provides the econometric framework for set-

identified SVARs; Section 3 introduces bounds on the FEVD, illustrates analytically the re-

duction of the identified set in a bivariate and trivariate setting, establishes conditions for

non-emptiness and reduction for higher dimensional SVARs, and delivers estimation and infer-

ence under constraints on the FEVD; Section 4 shows how dogmatic and nondogmatic bounds

on the FEVD can be derived; Section 5 presents a Monte-Carlo experiment to investigate the

performance of the identification through bounds on the FEVD; Section 6 provides the mone-

tary policy application; and finally, Section 7 provides the conclusion. An Appendix reports the

results of robustness checks; a Technical Appendix as supplementary material provides proofs

of the propositions in the main text.

2 The Econometric Framework

This section defines the SVAR. It then introduces the identification problem and the class of

standard equality and sign restrictions.

3See Uhlig (2004a), Uhlig (2004b) and subsequent papers.
4The only partial exceptions are Dedola and Neri (2007). As a robustness check, amongst the set of structural

impulse vectors that satisfy sign restrictions, they selected those that account for over 70 per cent of the FEV of

labor productivity to a technology shock after 10 years. To my knowledge, I am the first to formalize the idea

and develop the methodology.
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2.1 The Model

Consider a SVAR(p) model

A0yt = a+

p∑
j=1

Ajyt−j + εt (2.1)

for t = 1, . . . , T, where yt is an n× 1 vector of endogenous variables, εt an n× 1 vector white

noise process, normally distributed with mean zero and variance-covariance matrix In, Aj for

j = 0, . . . , p is an n×n matrix of structural coefficient. As is usual in the literature, structural

disturbances are assumed to be uncorrelated. The initial conditions y1, . . . ,yp are given. Let

θ = (A0,A+) collect the structural parameters, where A+ = (a,Aj) for j = 1, . . . , p. The

reduced-form VAR is as follows:

yt = b+

p∑
j=1

Bjyt−j + ut, (2.2)

where b = A−1
0 a is an n× 1 vector of constants, Bj = A−1

0 Aj , ut = A−1
0 εt denotes the n× 1

vector of reduced-form errors. var(ut) = E(utu
′
t) = Σ = A−1

0 (A−1
0 )′ is the n × n variance-

covariance matrix of reduced-form errors. Let φ = (B,Σ) ∈ Φ collect the reduced-form

parameters, where B ≡ [b,B1, . . . ,Bp], Φ ⊂ Rn+np ×Ξ, and Ξ is the space of symmetric pos-

itive semidefinite matrices. Note that Φ is such that the VAR(p) is invertible into a VMA(∞),

i.e., the model is stationary. Thus, the VMA(∞) representation of (2.2) is

yt = c+
∞∑
j=0

Cj(B)A−1
0 εt−j , (2.3)

where Cj(B) is the j-th coefficient matrix of (In −
∑p

j=1BjL
j)−1. Let the n× n matrix

IRh = Ch(B)A−1
0 (2.4)

be the impulse response at h-th horizon for h = 0, 1, . . . , where its (i, j)-element denotes the

effect on the i-th variable in yt+h of a unit shock to the j-th element of εt.

2.2 The Identification Problem

In the absence of any identifying restrictions, Uhlig (2005) showed that {A0 = Q′Σ−1
tr : Q ∈

Θ(n)} is the set of observationally equivalent A0’s consistent with reduced-form parameters,

where Σ relates to A0 by Σ = A−1
0 (A−1

0 )′, Σtr denotes the lower triangular Cholesky matrix

with non-negative diagonal coefficients of Σ, and Q ∈ Θ(n), known as rotation matrix, is the
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n × n orthonormal matrix belonging to the space of n × n orthonormal matrices Θ(n). The

likelihood function depends on φ and does not contain any information about Q, leading to

ambiguity in decomposing Σ. Thus, there is a multiplicity of Q’s which deliver A0 given φ.

Similarly, the rest of structural parameters A+ is a function of Q and the Cholesky decom-

position of reduced-form parameters. For simplicity, this section illustrates the identification

problem that relies on A0 only.

This paper focuses on set-identification, and therefore there will be fewer than n−j equality

restrictions on the j-th structural shock;5 thus, no matter how many sign restrictions are

imposed, point-identification fails and there will only be set-identification. I have followed the

example of Christiano, Eichenbaum, and Evans (1999) and assume that the diagonal elements

of A0 are non-negative, i.e., a structural shock is a one standard-deviation positive shock to

the related variable. As a result, the set of observationally equivalent A0’s becomes {A0 =

Q′Σ−1
tr : Q ∈ Θ(n), diag(Q′Σ−1

tr ) ≥ 0}, where diag(•) ≥ 0 implies that all diagonal elements of

• are non-negative. Thus, in the absence of any identifying restrictions, there is a multiplicity

of Q’s consistent with A0, given the reduced-form parameters:

Q(φ) = {Q ∈ Θ(n) : diag(Q′Σ−1
tr ) ≥ 0}.

Without loss of generality, suppose that one is interested in a specific (structural) impulse

response; for instance, the (i, j)−th element of IRh:

ghij(φ,Q) ≡ e′iCh(B)ΣtrQej ≡ c′ih(φ)qj ,

where ghij(φ,Q) ∈ R, ei is the i-th column vector of In, qj is the j-th column of Q and

c′ih(φ) represents the i-th row vector of Ch(B)Σtr. Since Q is orthonormal, q′jqi = 0 for

j 6= i. However, this orthogonality condition matters if and only if a multiplicity of shocks is

restricted; in fact, given an unrestricted shock j∗, in the Nullspace of the constrained shocks a

vector q such that q′j∗q = 0 can always be constructed. Note that the analysis for the impulse

responses can be easily extended to the structural parameters A0 and A+, since each structural

parameter can be expressed by the inner product of a vector, depending on φ, and a column

vector of Q.

5The set of A0 and A+ collapses to a singleton as long as identifying assumptions are able to deliver a

unique Q that recovers structural parameter A0 and A+, i.e., point-identification. Rothenberg (1971) proved

that the necessary conditions for point-identification require that the number of equality restrictions is greater

than or equal to n(n − 1)/2. Rubio-Ramirez, Waggoner, and Zha (2010) established sufficient conditions for

point-identification: there must be at least n− j equality restrictions on the j-th structural shock, for 1 ≤ j ≤ n,

and sign normalizations on the impulse responses to each structural shock.
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2.2.1 Equality Restrictions

Typical equality restrictions include zero restrictions on the off-diagonal elements of A0, which

correspond to a subset of the restrictions imposed by the classical recursive identification scheme

that sets the upper-triangular elements of A0 to zero, and on contemporaneous impulse re-

sponses IR0 = A−1
0 . The econometric framework here also allows one to place zero restrictions

on the lagged coefficients Al : l = 1, . . . p and restrictions on the long-run impulse responses

IR∞ = (In −
∑p

j=1Bj)
−1ΣtrQ. For simplicity and without loss of generality, this paper re-

duces the set of equality restrictions to zero restrictions only (in the short- or long-run). They

can be written as linear constraints on the columns of Q with coefficients depending on the

reduced-form parameters φ.6 As a result, zero restrictions can be represented as follows:

F (φ,Q) ≡


F1(φ)q1

...

Fn(φ)qn

 = 0, Fi(φ): fi × n, (2.5)

where fi × n matrix Fi(φ) depends on φ. Each row vector in Fi(φ) is the coefficient vector

of a zero restriction that constrains the correspondent column of Q. More generally, Fi(φ)

collects all the coefficient vectors that multiply qi into a matrix and fi denotes number of zero

restrictions constraining qi.

2.2.2 Sign Restrictions

Assume that the researcher is interested in imposing some sign restrictions on the impulse

response vector to the j-th structural shock, and let shj denote the number of sign restrictions

on impulse responses at horizon h. In this case, the impulse response is given by the j-th

column vector of IRh = Ch(B)ΣtrQ, and the sign restrictions are

Shj(φ)qj ≥ 0,

where Shj(φ) ≡ DhjCh(B)Σtr is a shj × n matrix and Dhj is the shj × n selection matrix

that selects the sign-restricted responses from the n × 1 response vector Ch(B)Σtrqj . The

nonzero elements of Dhj can be equal to 1 or to -1 depending on the sign of the restriction

on the impulse response of interest. By considering multiple horizons, the whole set of sign

restrictions placed on the j−th shock is

Sj(φ)qj ≥ 0. (2.6)

6For instance, zero restrictions on A0 are: (i, j)-th element of A0 = 0⇔ (Σ−1
tr ej)

′qi = 0.
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Specifically, Sj is a
(∑h̄j

h=0 shj

)
× n matrix defined by Sj(φ) =

[
S′

0j(φ), . . . ,S′
h̄jj

(φ)
]′

. Let

IS ⊂ {1, 2, . . . , n} be the set of indices such that j ∈ IS if some of the impulse responses to the

j-th structural shock are sign-constrained. Thus, the set of all sign restrictions is

Sj(φ)qj ≥ 0, for j ∈ IS . (2.7)

With abuse of notation, let S(φ,Q) ≥ 0 collect all sign restrictions Sj(φ)qj ≥ 0 for any

j ∈ IS .7

The sign restrictions above can be easily added to the zero restrictions; let Q(φ|F ,S) be

the set of Q’s that satisfy sign normalizations, zero and sign restrictions, given φ:

Q(φ|F ,S) = {Q ∈ Θ(n) : F (φ,Q) = 0, S(φ,Q) ≥ 0, diag(Q′Σ−1
tr ) ≥ 0}.

The identified set for the object of interest is a set-valued map from φ to a subset in R that

delivers the range of ghij(φ,Q) when Q varies over Q(Q|F ,S):

ISg(φ|F ,S) = {ghij(φ,Q) : Q ∈Q(φ|F ,S)}. (2.8)

3 Bounds on the Forecast Error Variance Decomposition

While zero and sign restrictions are well-established tools for identifying shocks, this section

introduces constraints on the bounds of the FEVD. Firstly, it explains how bounds on the FEVD

shape the identified set. Secondly, it illustrates analytically the reduction in the identified set

induced by bounds on the FEVD in static bivariate and trivariate models; interestingly, the

identified set gets smaller also for structural objects that are not subject to the restrictions.

Thirdly, for higher-dimensional SVARs, it provides conditions for non-emptiness and reduction.

Fourthly, it presents a robust-prior procedure for estimation and inference.

3.1 The Forecast Error Variance

The h̃-step ahead Forecast Error (FE) for a SVAR, as in equation (2.1), given all the data up

to t− 1, is FE(h̃) ≡ yt+h̃ − yt+h̃|t−1 =
∑h̃

h=0 IR
hεt+h̃−h. Thus, the FEV at horizon h̃ is

FEV (h̃) ≡ E
[
(yt+h̃ − yt+h̃|t−1)(yt+h̃ − yt+h̃|t−1)′

]
=

h̃∑
h=0

IRhIRh′ .

7Given the j-th shock, sign restrictions on A0 and A+ can be appended to equation (2.6), since they can be

expressed as linear inequalities on qj .
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As a result, the contribution of shock j to the FEV of variable z at horizon h̃ is

CFEV z
j (h̃) ≡

FEV z
j (h̃)

FEV z(h̃)
=

∑h̃
h=0(IRh

z,j)
2∑n

j=1

∑h̃
h=0(IRh

z,j)
2
, (3.1)

where FEV z
j (h̃) =

∑h̃
h=0(IRh

z,j)
2 is the FEV of variable z due to shock j at horizon h̃,

FEV z(h̃) =
∑n

j=1

∑h̃
h=0(IRh

z,j)
2 denotes the total FEV of variable z at horizon h̃, IRh

z,j

represents the (z, j)-th element of IRh, and 0 ≤ CFEV z
j (h̃) ≤ 1 by definition. Uhlig (2004b)

showed that equation (3.1) can be written as

CFEV z
j (h̃) = q′jΥ

z(φ)qj , (3.2)

where Υz(φ) =
∑h̃

h=0 czh(φ)c′zh(φ)∑h̃
h=0 c

′
zh(φ)czh(φ)

is a positive semidefinite n× n real matrix. Note that Υz(φ)

also depends on h̃; in order to avoid heavy notation, h̃ is omitted.

The quantity in equation (3.2) is commonly used to evaluate whether, and at what degree,

a shock of interest j drives the unexpected fluctuations of a target variable z at horizon h̃. This

is typically employed to illustrate the sources of variables fluctuation in the short-, medium-,

and long-run.

Suppose that a researcher believes that the contribution of shock j to FEV of variable z at

horizon h̃ is bounded between kzj and k̄zj , where 0 ≤ kzj ≤ k̄zj ≤ 1 and for simplicity h̃ is omitted

from kzj and k̄zj . This implies that

kzj ≤ q′jΥz(φ)qj ≤ k̄zj . (3.3)

Let IFEV be a set of of indices such that j ∈ IFEV if shock j is restricted as in (3.3); let Λj be

a set of of indices such that z ∈ Λj , where j ∈ IFEV , if the FEV of variable z ∈ {1, . . . , n} to

shock j is bounded as in (3.3). Thus, the set of all the bounds on the FEVD can be accordingly

expressed by

kzj ≤ q′jΥz(φ)qj ≤ k̄zj , for j ∈ IFEV and z ∈ Λj . (3.4)

As a shorthand notation, let k ≤ Γ(φ,Q) ≤ k̄ be the whole set of bounds on the FEVD

represented by (3.4), where Γ(φ,Q) collects q′jΥ
z(φ)qj for j ∈ IFEV and z ∈ Λj . Note that

sign restrictions impose linear constraints on the columns of Q; on the other hand, bounds on

the FEVD place quadratic inequalities.

Thus, the set of Q’s that satisfy sign normalizations, zero restrictions, sign restrictions and

restrictions on the FEVD is

Q(φ|F ,S,Γ) = {Q ∈ Θ(n) : F (φ,Q) = 0, S(φ,Q) ≥ 0, k ≤ Γ(φ,Q) ≤ k̄, diag(Q′Σ−1
tr ) ≥ 0}.
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The identified set for the object of interest is:

ISg(φ|F ,S,Γ) = {ghij(φ,Q) : Q ∈Q(φ|F ,S,Γ)}. (3.5)

Note that the identified set induced by inequality constraints on the FEVD and/or sign re-

strictions can be empty, as opposed to the case with zero restrictions only (Giacomini and

Kitagawa, 2018). Section 3.3 establishes conditions to deliver non-empty sets.

3.2 Small-Scale Framework

This section illustrates analytically the reduction in the identified set induced by bounds on

the FEVD in static bivariate and trivariate models; interestingly, the identified set gets smaller

also for structural objects that are not subject to the restrictions. Technical Appendix provides

the proofs.

3.2.1 Bivariate Setting

The structural framework is the following:

A0

(
y1t

y2t

)
=

(
ε1t

ε2t

)
, A0 =

(
a11 a12

a21 a22

)
, t=1,. . . ,T, (3.6)

where (y1t, y2t) are two endogenous variables, respectively. (ε1t, ε2t) denotes an i.i.d. nor-

mally distributed vector of structural shocks with variance-covariance the identity matrix.

θ = A0 collects the structural parameters, and the contemporaneous impulse responses are

elements of A−1
0 . The reduced-form model is indexed by Σ (the variance-covariance ma-

trix of the endogenous variables), which satisfies Σ = A−1
0 (A−1

0 )′. Let Σtr =

(
σ11 0

σ21 σ22

)
denote its lower triangular Cholesky decomposition, where σ11 ≥ 0 and σ22 ≥ 0. Thus,

φ = (σ11, σ21, σ22) ∈ Φ = R+ × R × R+ collects the reduced-form parameters. Following

the example of Uhlig (2005), A0 can be parametrized via the Cholesky matrix Σtr and a rota-

tion matrix Q =

(
cos ρ − sin ρ

sin ρ cos ρ

)
with spherical coordinate ρ ∈ [0, 2π]. The structural matrix

of impact responses can be written as

IR0 = A−1
0 = ΣtrQ =

(
σ11 cos ρ −σ11 sin ρ

σ21 cos ρ+ σ22 sin ρ −σ21 sin ρ+ σ22 cos ρ

)
.

Without loss of generality, let the structural object of interest α be the response of y1 to a unit

shock ε1, α ≡ σ11 cos ρ.

Two standard sign restrictions (SR) are imposed on IRFs:

11



• SR1

On impact, positive shock ε2 does not increase variable y1: σ11 sin ρ ≥ 0.

• SR2

Positive shock ε1 does not reduce variable y2: −σ22 sin ρ− σ21 cos ρ ≤ 0.

Note that standard sign restrictions impose linear inequalities on ρ. Technical Appendix

proves that the identified set for α is

ISα(φ) ≡


[
σ11 cos

(
arctan

(
σ22
σ21

))
, σ11

]
, for σ21 > 0,[

0, σ11 cos
(

arctan
(
−σ21
σ22

))]
, for σ21 ≤ 0.

(3.7)

• FEVR

Assume that the contribution of shock ε2 to the total error variance of y1 is bounded

between k and k̄; this constrains the FEVD. Following the notation introduced in Section

3, this restriction can be written as k ≤ CFEV y1
ε2 (0) ≤ k̄, where 0 ≤ k < k̄ ≤ 1.

SR1, SR2 and FEVR deliver the following identified set for α:

ISα(φ) ≡



[
σ11 cos(arcsin

√
k̄), σ11 cos(arcsin

√
k)
]
,

for {σ21 > 0, k̄ < k̄∗(φ)} ∪ {σ21 ≤ 0, k > k∗(φ)},[
σ11 cos

(
arctan

(
σ22
σ21

))
, σ11 cos(arcsin

√
k)
]
,

for σ21 > 0, k̄ ≥ k̄∗(φ),[
σ11 cos(arcsin

√
k̄), σ11 cos

(
arctan

(
−σ21
σ22

))]
,

for σ21 ≤ 0, k ≤ k∗(φ),

(3.8)

where k̄∗(φ) = sin2
(

arctan
(
σ22
σ21

))
and k∗(φ) = sin2

(
arctan

(
−σ21
σ22

))
. The following propo-

sition formally compares the identified set induced by sign restrictions only with that in (3.8).

Proposition 3.1 The identified set for the structural impulse response α in (3.8) is strictly

smaller than in (3.7) unless k = 0, k̄ ≥ k̄∗(φ), σ21 > 0 or k̄ = 1, k ≤ k∗(φ), σ21 ≤ 0, where

the identified sets are equivalent.

The proposition above provides some interesting insights. Firstly, if both lower and upper

bounds are imposed, i.e., k 6= 0, k̄ 6= 1, then such restrictions always shrink the identified

set of α with respect to the set induced by SR1 and SR2 for any φ = (σ11, σ21, σ22) ∈ Φ =

R+×R×R+. Secondly, suppose that CFEV y1
ε2 (0) is unbounded from below (k = 0); shrinkage

12



then occurs for any σ21 ≤ 0 or if k̄ < k̄∗(φ). In other words, if there is no lower bound and

the unconditional covariance is positive, the upper bound must be low enough to deliver a

restriction of the identified set. Thirdly, assume that CFEV y1
ε2 (0) is unbounded from above

(k̄ = 1); then there is shrinkage for any σ21 > 0 or if k > k∗(φ). This implies that if there is no

upper bound and the unconditional covariance is non-positive, the lower bound must be high

enough to deliver a restriction of the identified set.

Note that FEVR is restricting the FEVD of the variable of interest, namely y1. However,

conditions similar to those in Proposition 3.1 can be easily found for bounds on the FEVD of

variables other than y1.

• FEVR2

Suppose that the contribution of shock ε1 to the total error variance of y2 is bounded as

follows: k ≤ CFEV y2
ε1 (0) ≤ k̄, where 0 ≤ k < k̄ ≤ 1.

Technical Appendix provides the details of the following proposition, in which k̄∗∗(φ) and

k∗∗(φ) denote functions of reduced-form parameters.

Proposition 3.2 The identified set for the structural impulse response α induced by SR1,

SR2 and FEVR2 is strictly smaller than in (3.7) unless k = 0, k̄ ≥ k̄∗∗(φ), σ21 ≤ 0 or

k̄ = 1, k ≤ k∗∗(φ), σ21 > 0, where the identified sets are equivalent.

3.2.2 Trivariate Setting

The bivariate illustration shows that bounds on the FEVD shrink the set induced by sign

restrictions. Higher dimensional cases are more complex. However, while Proposition 3.1 and

3.2 are easily replicable in a trivariate framework, this is useful to show the effect of bounds on

the FEVD of variables and shocks other than those in the object of interest.

The structural framework is the following:

A0

y1t

y2t

y3t

 =

ε1tε2t
ε3t

 . (3.9)

The reduced-form model is indexed by Σ (the variance-covariance matrix of the endoge-

nous variables), which satisfies Σ = A−1
0 (A−1

0 )′. Let Σtr =

σ11 0 0

σ21 σ22 0

σ31 σ32 σ33

 denote its

lower triangular Cholesky decomposition, where σ11 ≥ 0, σ22 ≥ 0 and σ33 ≥ 0. φ =
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(σ11, σ21, σ22, σ31, σ32, σ33) collects the reduced-form parameters. Let the structural object of

interest α be the response of y1 to a unit positive shock ε1, α ≡ σ11 cos ρ, where ρ ∈ [0, 2π].

Three standard sign restrictions (SR) are imposed:

• SR1

On impact, positive shock ε3 does not increase variable y1: σ11 sin ρ ≥ 0.

• SR2

Positive shock ε1 does not reduce variable y2 on impact: σ21 cos ρ ≥ 0.

• SR3

Positive shock ε1 does not decrease variable y3 on impact: σ31 cos ρ+ σ33 sin ρ ≥ 0.

The implied identified set for α is

ISα(φ) ≡


[
σ11 cos

(
arctan

(
σ33
σ31

))
, σ11

]
, for σ31 > 0,[

0, σ11 cos
(

arctan
(
−σ31
σ33

))]
, for σ31 ≤ 0,

(3.10)

where sign restrictions are defined only over σ21 ≥ 0.

• FEVR3

Suppose that the contribution of shock ε3 to the total error variance of y2 is bounded as

follows: k ≤ CFEV y2
ε3 (0) ≤ k̄, where 0 ≤ k < k̄ ≤ 1.

The identified set induced by SR1, SR2, SR3, and FEVR3 is

ISα(φ) ≡



[
σ11 cos

(
arcsin

(√
k̄(σ2

21+σ2
22)

σ21

))
, σ11 cos

(
arcsin

(√
k(σ2

21+σ2
22)

σ21

))]
,

for {σ31 > 0, k̄ < k̄∗(φ)} ∪ {σ31 ≤ 0, k > k∗(φ)},[
σ11 cos

(
arctan

(
σ33
σ31

))
, σ11 cos

(
arcsin

(√
k(σ2

21+σ2
22)

σ21

))]
,

for σ31 > 0, k̄ ≥ k̄∗(φ),[
σ11 cos

(
arcsin

(√
k̄(σ2

21+σ2
22)

σ21

))
, σ11 cos

(
arctan

(
−σ31
σ33

))]
,

for σ31 ≤ 0, k ≤ k∗(φ),

(3.11)

where k∗(φ) =
σ2

21

σ2
21+σ2

22
sin2

(
arctan

(
−σ31
σ33

))
, k̄∗(φ) =

σ2
21

σ2
21+σ2

22
sin2

(
arctan

(
σ33
σ31

))
, and σ21 ≥

0. A comparison between (3.10) and (3.11) leads to the following proposition:
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Proposition 3.3 The identified set for the structural impulse response α in (3.11) is strictly

smaller than in (3.10) unless k = 0, k̄ ≥ k̄∗(φ), σ31 > 0 or k̄ = 1, k ≤ k∗(φ), σ31 ≤ 0, where

the identified sets are equivalent.

3.3 Non-Emptiness and Reduction of the Identified Set

The previous section showed that bounds on the FEVD reduce the identified set for small-scale

models. However, there is a well-known trade-off between sharp identification and computation

(Uhlig, 2017; Amir-Ahmadi and Drautzburg, 2018; Giacomini and Kitagawa, 2018; Gafarov,

Meier, and Olea, 2018). In fact, tight restrictions can potentially lead to sets with zero measure,

or empty sets; thus, it is crucial to distinguish when the identification is sharp because the

identified set has a reduced but positive measure, and when constraints are too tight and

lead to empty sets. Therefore, this section addresses this trade-off and (i) provides sufficient

conditions for assessing whether bounds on the FEVD deliver a non-empty set, (ii) establishes

necessary conditions for the reduction of the set in the context of bounds on the FEVD for

any-scale SVARs, especially useful when closed-form characterization of the identified set is

hard.

In order to elucidate the results in this section, it is helpful to introduce some more notation.

Let Υz
S(φ) = Υz(φ)+(Υz(φ))′

2 denote the symmetric part of Υz(φ), where z ∈ Λj ; λ
z
l,j for

l = {1, . . . , n} are the n real eigenvalues of Υz
S(φ). Note that λzmax,j = max{λz1,j , . . . , λzn,j}

and λzmin,j = min{λz1,j , . . . , λzn,j}. Finally, let q̃ be the eigenvector associated with λzl,j , namely

Υz
S(φ)q̃ = λzl,j q̃.

Proposition 3.4 establishes conditions for the non-emptiness of ISg(φ|F ,S,Γ).

Proposition 3.4 (Non-emptiness) Let {ghij∗(φ,Q) = c′ih(φ)qj∗ : i = 1, . . . , n, h = 0, 1, . . . }
denote the impulse responses to the j∗−th shock. Assume that identifying restrictions are

placed on the j∗−th structural shock only, i.e., fi = 0 for i 6= j∗, IS = IFEV = {j∗}, and let

z, z∗ ∈ {1, . . . , n}. If the following conditions hold

(a) ∃z ∈ Λj∗ | kzj∗ ≤ λzl,j∗ ≤ k̄zj∗ , Υz
S(φ)q̃ = λzl,j∗ q̃ for some l = {1, . . . , n},

(b) kz
∗
j∗ ≤ q̃′Υz∗(φ)q̃ ≤ k̄z∗j∗ ∀z∗ 6= z ∈ Λj∗ , Sj∗(φ)q̃ ≥ 0, Fj∗(φ)q̃ = 0,

then the identified set ISg(φ|F ,S,Γ) is non-empty and bounded.

The main assumption is that restrictions constrain a single shock; however, in the empirical

literature this is relatively common (Uhlig, 2005; Dedola and Neri, 2007; Vargas-Silva, 2008;

Scholl and Uhlig, 2008; Rafiq and Mallick, 2008; Fujita, 2011; Dedola, Rivolta, and Stracca,

2017). If there is a z ∈ Λj∗ satisfying condition (a), constraint kzj∗ ≤ q′j∗Υz(φ)qj∗ ≤ k̄zj∗ is

15



fulfilled for qj∗ = q̃, where q̃ is the eigenvector associated with λzl,j∗ and is as such analytically

available. If q̃ satisfies the remaining restrictions (condition b), then the set is non-empty.

If one wanted to verify whether a specific restriction on the FEVD induces a non-empty set,

she/he would need to apply conditions (a) and (b) to that constraint.

The following algorithm implements Proposition 3.4:

Algorithm 3.1

Step 1: Draw φ from posterior distribution of the reduced-form VAR.

Step 2: For a variable z ∈ Λj∗, compute the correspondent eigenvalues λzl,j∗ of Υz
S(φ) for l =

{1, . . . , n}.

Step 3: Store ∀λzl,j∗ | k
z
j∗ ≤ λzl,j∗ ≤ k̄zj∗; otherwise, i.e., @λzl,j∗ | k

z
j∗ ≤ λzl,j∗ ≤ k̄zjl∗, ISg(φ|F ,S,Γ)

is empty.

Step 4: If ∃λzl,j∗ such that the associated eigenvector q̃ satisfies the remaining restrictions, then

ISg(φ|F ,S,Γ) is non-empty. Otherwise, go back to Step 2 and select z∗ 6= z ∈ Λj∗.

Proposition 3.4 is potentially characterized by a gray area, where sufficient conditions do

not hold. However, in the empirical application sufficient conditions are satisfied in more than

75 per cent of the draws. If these conditions fail, a numerical procedure described in Section

3.4 is used to detect non-emptiness. Note that under some conditions specified in Section

3.4 emptiness detection methods in Gafarov, Meier, and Olea (2018) and Amir-Ahmadi and

Drautzburg (2018) can be also applied.

The following proposition builds on the non-emptiness to derive necessary conditions for

the reduction of the identified set; this is useful when an analytical characterization of the

identified set, e.g., the 2- and 3-variable model in Section 3.2, is not feasible.

Proposition 3.5 (Shrinkage) Let {ghij∗(φ,Q) = c′ih(φ)qj∗ : i = 1, . . . , n, h = 0, 1, . . . } denote

the impulse responses to the j∗−th shock. Assume that (i) identifying restrictions are placed

on the j∗−th structural shock only, i.e., fi = 0 for i 6= j∗, IS = IFEV = {j∗} and (ii)

ISg(φ|F ,S,Γ) is non-empty. Let z ∈ {1, . . . , n}. If ISg(φ|F ,S,Γ) ⊂ ISg(φ|F ,S), then

∃z ∈ Λj∗ | λzmin,j∗ < kzj∗ or λzmax,j∗ > k̄zj∗.

Note that conditions for the reduction relate to the eigenvalues of Υz
S(φ), which only depends

on the reduced-form, and are as such easy-to-check.
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3.4 Estimation and Inference

For set-identified SVARs, estimation and inference are not straightforward. The posterior

distribution of structural parameters and IRFs reflects uncertainty about the reduced-form

parameters φ and the rotation matrix Q. The common approach is to impose a uniform

distribution on Q in the space of orthonormal matrices. However, Baumeister and Hamilton

(2015) showed that this choice does not imply a uniform distribution over the identified set of

the structural parameters, because the latter are a function of reduced-form parameters and

rotation matrix. Additionally, since Q cannot get updated by data, as opposed to reduced-form

parameters, Baumeister and Hamilton (2015) stressed that, even asymptotically, the posterior

of structural parameters is proportional to the prior distribution. Furthermore, Arias, Rubio-

Ramirez, and Waggoner (2018) pointed out that practitioners are likely to combine sign and

zero restrictions by introducing unintended prior information.

This paper addresses the above criticisms by Baumeister and Hamilton (2015) and Arias,

Rubio-Ramirez, and Waggoner (2018) by computing, under a convexity criterion, the infimum

and supremum over all admissible rotation matrices. This implies that the identified set is

distribution-free, i.e., it does not depend on a specific prior over Q. Specifically, the set is

conditional on reduced-form parameters φ, and as such reflects the reduced-form parameter

uncertainty. For sign and zero restrictions only, a similar solution was proposed by Giacomini

and Kitagawa (2018), Gafarov, Meier, and Olea (2018), and Amir-Ahmadi and Drautzburg

(2018); this paper suggests a distribution-free identified set that is subject to bounds on the

FEVD and generalizes the optimization problem in Amir-Ahmadi and Drautzburg (2018) to

include quadratic inequality constraints. As is common in the literature (Giacomini and Kita-

gawa, 2018; Gafarov, Meier, and Olea, 2018), characterization of the set is defined for models

that place restrictions on a single shock.8

Specifically, Algorithm 3.2 describes the steps for estimating the identified set of ghij∗(φ,Q) =

c′ih(φ)qj∗ for some i = {1, . . . , n}, h = 0, 1, . . . , and a shock of interest j∗ ∈ {1, . . . , n}.

Algorithm 3.2

Step 1: Draw φ from posterior distribution of the reduced-form VAR.

Step 2: If ISg(φ|S,Γ) is non-empty, go to Step 3. Otherwise, go back to Step 1.

8Amir-Ahmadi and Drautzburg (2018) generalize to multiple shocks at cost of challenging and burdensome

practical implementation.
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Step 3: Compute the bounds of the set of ghij∗(φ,Q):

min
qj∗

and max
qj∗

c′ih(φ)qj∗

s.t. Sj∗(φ)qj∗ ≥ 0, kzj∗ ≤ q′j∗Υz(φ)qj∗ ≤ k̄zj∗ for any z ∈ Λj∗ , ||qj∗ || = 1.

Step 4: Repeat Step 1-3 L times.9

In the views of Giacomini and Kitagawa (2018) and Amir-Ahmadi and Drautzburg (2018),

Algorithm 3.2 delivers prior-robust estimation and inference because it is not dependent on

a specific prior over Q. Thus, according to DiTraglia and Garćıa-Jimeno (2016), it is also

frequentist friendly and fully complies with the principle of transparent parametrization invoked

by Schorfheide (2017). The algorithm relies jointly on a standard sampling from the posterior

of reduced-form parameters (Step 1), the detection of emptiness (Step 2) and a numerical

optimization to derive bounds of the set (Step 3), i.e., solving a constrained optimization

problem. The latter consists of a linear objective function with linear inequality, quadratic

inequality and equality constraints. Put another way, for medium- and high-scale models

Algorithm 3.2 mirrors the analytical characterization of the identified set in the 2- and 3-

variable framework in Section 3.2. In order to work, optimization problem in Step 3 needs to

be convex. The following proposition establishes the conditions for convexity:

Proposition 3.6 (Convexity) Let {ghij∗(φ,Q) = c′ih(φ)qj∗ : i = 1, . . . , n, h = 0, 1, . . . } denote

the impulse responses to the j∗−th shock. Assume that identifying restrictions are placed on

the j∗−th structural shock only, i.e., IS = IFEV = {j∗}, and that there are no zero restrictions,

and let z ∈ {1, . . . , n}. For z ∈ Λj∗, if one of the following conditions hold

(a) kzj∗ = 0,

(b) z subject to bounds on the FEVD up to horizon h̃ and responses ghzj∗(φ,Q) are sign-

restricted for h = 0, . . . , h̃,

then {qj∗ ∈ Rn|Sj∗(φ)qj∗ ≥ 0, kzj∗ ≤ q′j∗Υ
z(φ)qj∗ ≤ k̄zj∗ ∀z ∈ Λj∗ , ||qj∗ || = 1} and

ISg(φ|S,Γ) are convex.

Technical Appendix provides the proof. The intuition is that, under condition (a), the space

defined by quadratic constraints on qj∗ due to the bounds on the FEVD is always convex.

On the other hand, condition (b) linearizes the restrictions on the FEVD, i.e., it reduces the

constraints on the FEVD to linear inequalities on qj∗ ; in a nutshell, under condition (b) the

9In the empirical application, L = 1000.
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identifying restrictions are a set of linear inequality constraints on qj∗ . Thus, this offers great

flexibility because distribution-free algorithms in the works of Giacomini and Kitagawa (2018),

Gafarov, Meier, and Olea (2018), and Amir-Ahmadi and Drautzburg (2018) and emptiness

detection methods in Gafarov, Meier, and Olea (2018) and Amir-Ahmadi and Drautzburg

(2018) can be also applied as long as (b) holds ∀z ∈ Λj∗ . If the problem is not convex, the

common procedure of imposing a uniform specification onQ can be still used for estimation and

inference. Note that the Monte-Carlo exercise and the empirical application will (i) show that

convexity conditions are easy to satisfy and (ii) present results by both employing distribution-

free and standard approach.

Compared to the influential paper by Giacomini and Kitagawa (2018), there are three main

differences. Firstly, in order to compute bounds of the identified set, numerical optimization is

used rather than Monte Carlo integration. The latter may be very complicated and impractical,

especially for medium- and large-size SVARs, and tends to underestimate the set. Secondly,

there is an analytical criterion for checking for non-emptiness, while Giacomini and Kitagawa

(2018) relied on simulation to detect emptiness. Furthermore, the optimization problem con-

tains quadratic constraints on qj∗ , that are induced by bounds on the FEVD. This is also the

main departure from the works of Gafarov, Meier, and Olea (2018), and Amir-Ahmadi and

Drautzburg (2018).

Finally, when conditions in Proposition 3.4 fail, this paper considers the identified set empty

if the Step 3 in Algorithm 3.2 cannot find an interior solution for a multiplicity of starting points.

Alternatively, one can follow the standard literature and treat the set as empty whether, for

a number of draws from the orthonormal space, an admissible rotation matrix Q cannot be

found.

4 How to derive restrictions

The previous section showed that bounds on the FEVD can help in bi- and trivariate set-

tings. However, we still need to find a way to choose a reasonable set of constraints in realistic

SVAR frameworks. Specifically, the baseline case in this paper considers the following seven

key macroeconomic variables: real output, consumption, investment, wage, and hours worked,

inflation, and interest rates. The seven indicators are typically those covered in the commonly

used DSGE model of Smets and Wouters (2007), in several related analyses, such as Justini-

ano, Primiceri, and Tambalotti (2011), and in the growing literature about identification of

uncertainty shocks (Jurado, Ludvigson, and Ng, 2015; Carriero, Clark, and Marcellino, 2018).

This section presents a methodology to derive dogmatic and nondogmatic bounds on the

FEV. The former are identifying restrictions treated as if known with certainty, which is the
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standard approach in the literature; the latter introduce doubts, or uncertainty, about the

identifying assumptions.

4.1 Dogmatic Bounds

The current section presents a methodology to derive dogmatic theory-driven bounds on the

FEVD. To do so, I adapt to the FEVD the approach that Canova and Paustian (2011) used

to obtain sign restrictions from DSGE models for the IRFs.10 Generally, embodying theory-

driven implications of DSGE frameworks into SVARs as identifying restrictions is increasingly

common.11 The analysis starts from a framework with an approximate state space representa-

tion. I investigate the FEVD of the endogenous variables in response to the disturbances for

competing parametrizations. In doing so, I assume that all DSGE parameters are uniformly

and independently distributed over reasonable ranges derived from the literature. This allows

me to establish bounds on the FEVD that are robust towards parameter uncertainty and with-

out favoring any specific parametrization. Note that identification restrictions are explicitly

inferred and only robust restrictions are admitted. Thus, the methodology depends on generic

conditional dynamics and does not rely on a particular parametrization. However, the bounds

on the FEVD so obtained are still dependent on the specific state space representation; thus,

they are kept and used as identifying constraints if and only if less (or equally) restrictive than

those implied by alternative state space representations. The procedure can be summarized as

follows:

1. select a state space representation (Section 4.1.1);

2. adapt the methodology in Canova and Paustian (2011) to assure that bounds on the

FEVD are robust across parametrizations within the chosen state space framework (Sec-

tion 4.1.2);

3. verify whether those bounds on the FEVD are less (or equally) restrictive than those

induced by alternative state space models (Section 4.1.3).

It is of utmost importance to stress that there are alternative ways of deriving the bounds

on the FEVD. For instance, if the researcher was particularly confident of a specific state

10Among others, this methodology has been used by Dedola and Neri (2007), Pappa (2009), Peersman and

Straub (2009), and Lippi and Nobili (2012).
11See Canova and Paustian (2011) for details about the proper procedure to do so and how SVARs can be

employed for validation and selection amongst competing theoretical frameworks. On the other hand, Del Negro

and Schorfheide (2004) propose to (i) infer the prior of reduced-form VAR from the DSGE posterior and (ii) draw

the rotation matrix needed for point-identifying the SVAR from the posterior distribution of a DSGE model.

While (i) can be easily incorporated in this paper, (ii) represents an alternative (point-)identification strategy.
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space representation, Step 3 would be pointless. Similarly, posterior estimation of a specific

theoretical framework could fully replace the uniform support in Step 2 and the whole Step 3.

However, the choice of placing uniform specifications (Step 2) and then checking for alternative

state space forms (Step 3) guarantees additional robustness and delivers less restrictive, more

general bounds on the FEVD.

On the other hand, bounds on the FEVD can be descended from alternative sources, such

as researcher’s beliefs. For instance, Dedola and Neri (2007) argued that technology shocks

need to explain at least the 70 per cent of the FEV of the labor productivity in the medium-run.

In fact, this is a lower bound on the FEVD of the labor productivity to technology shock and

can be used as identifying assumption. The machinery in this section is therefore of separate

interest with respect to the rest of the paper and is not the only available option to get bounds

on the FEVD.

4.1.1 A Benchmark Model with Real and Nominal Frictions

To illustrate the fundamental restrictions that a theoretical structure imposes on the FEVD to

monetary policy shock in a setting with the macroeconomic variables listed above, the medium-

size New-Keynesian framework has been considered. However, it is vital to point out that the

medium-scale New-Keynesian framework here has an illustrative purpose only and it has been

selected because of its overwhelming diffusion after the seminal works by Smets and Wouters

(2005) and Smets and Wouters (2007). In fact, the methodology can be applied to any other

theoretical framework researcher believes in.

This section introduces the model; however, since the framework is currently well-established

and -known, to save on space, this paper refers to Smets and Wouters (2005) and Smets and

Wouters (2007) for the details about the micro-foundation of the model and its equilibrium

conditions. Table in Technical Appendix 2 provides details about the DSGE parameters and

their support; this is constructed to include commonly estimated values for the US.

The model contains many shocks and frictions. Specifically, it features sticky nominal

price and wage settings that allow for backward indexation, habit formation in consumption

and investment adjustment costs that create hump-shaped responses of aggregate demand,

and variable capital utilization and fixed costs in production. The stochastic dynamics is

driven by many structural shocks, including the total factor productivity shock, shocks that

affect the intertemporal margin, shocks that affect the intratemporal margin, and policy shocks

(exogenous spending and monetary policy shocks).

Households maximize a non-separable utility function with the consumption of goods and

their labor effort as arguments over an infinite horizon. An external habit variable appears in
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the utility function. Labor is characterized by the existence of a union, leading to a certain

level of monopoly power in relation to wages and an explicit wage equation, which allows for

different degrees of sticky nominal wages (Calvo model). Households rent capital services to

firms and establish how much capital to collect, subject to the capital adjustment costs. As

the capital rental price moves, the utilization of the capital stock can be amended at increasing

cost. Firms produce differentiated goods, settle upon labor and capital inputs, and set prices

(Calvo model). As an adjunct to the Calvo setting, both prices and wages can be (fully or

partially) indexed. Thus, prices are a function of current marginal costs, but are also affected

by the past and expected inflation rate. The marginal costs depend on wages, the rental rate of

capital, and productivity process. Similarly, wages are also determined by past and expected

future wages and past, current and expected inflation. The central bank follows the Taylor

rule by adjusting the policy interest rate to inflation and the output gap, namely the difference

between actual and potential output.12 A short-run effect from the current changes in the

output gap and inflation is also taken into account. The model features two monetary shocks:

a temporary i.i.d. interest rate shock, namely a standard monetary policy shock; a permanent

shock to the inflation objective.13

4.1.2 Deducing Robust Restrictions on the FEVD

I have drawn 10, 000 parameter vectors from the uniform distributions of the DSGE parameters.

The support of the standard deviation of the shocks is consistent with the estimates in literature,

follows Table 1b in Smets and Wouters (2007), and is omitted to save on space. Specifically, the

upper bound for the monetary shock is 55 basis points. However, as further check, increasing

the size to 75 and 100 basis point does not affect the results. Restrictions are therefore robust

to variation in the shocks size.

For each draw, I have computed the impulse responses and the FEVD to 1 standard devia-

tion positive (contractionary) monetary policy shock for output (yt), consumption (ct), invest-

ment (It), real wages (wt), hours worked (lt), inflation rate (πt), and interest rates (it). Table 1

shows the signs of the impact impulse responses14 and the FEVD at horizon h = 0. Specifically,

+(−) indicates that all the draws find that a certain variable has a positive (negative) response

upon impact; ? indicates that the sign of the response cannot be uniquely pinned down; the

bounds of the FEVD are computed as the maximum and minimum value of the FEVD across

12The potential output is the level of output under flexible wages and prices, and without mark-up shocks.
13Error variance decomposition to standard monetary policy shock shown in the next section is robust to

shutting down the permanent shock.
14These signs are sufficient to disentangle monetary policy shocks from other disturbances.
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the 10, 000 draws.15

The first row in Table 1 shows that upon the impact sign of the impulse responses to a

monetary policy shock is uniquely pinned down, with the significant exception of real wages.

Given the variety of parametrizations embodied, the FEVD in Table 1 shows relatively

large intervals; with the notable exception of interest rates, the lower bound is zero for most of

the variables. However, the upper bounds are well-below one for all the variables. According

to Table 1, in the short-run a monetary policy shock can explain a large share of the FEV of

interest rates, whereas the impact on the real variables and inflation rate, although well below

the 50 per cent, is more ambiguous, going from being negligible to being significant. This

reflects the parametrization uncertainty.

As discussed, a fully viable alternative is estimating a specific model and drawing from its

posterior distribution. For instance, the bounds on the FEVD from Smets and Wouters (2007)

are, as expected, much more restrictive than those reported in Table 1; posterior estimation

can be therefore viewed as a specific case of the general procedure presented in this section.

Table 1

yt ct It wt lt πt it

IRFs, h = 0 - - - ? - - +

FEV, h = 0 [0.00, 0.25] [0.00, 0.20] [0.00, 0.19] [0.00, 0.10] [0.00, 0.12] [0.00, 0.38] [0.30, 0.77]

Sign of impact responses and FEV at horizon h = 0 to contractionary monetary policy shock. +(−) indicates that all

the draws find that a certain variable has a positive (negative) response upon impact; ? indicates that the sign of the

response cannot be uniquely pinned down; the bounds of the FEVD are computed as the maximum and minimum value

of the FEVD across the 10, 000 draws.

4.1.3 Alternative State Space Forms

Although the framework illustrated in Section 4.1.1 contains several real and nominal frictions,

financial ones are absent. Thus, in order to evaluate further the robustness of the bounds in

Table 1, the models in Gertler and Karadi (2011), Christiano, Motto, and Rostagno (2014),

and Curdia and Woodford (2010) are considered. Note that the paper is focusing on medium-

size frameworks because they are increasingly common and more realistic than small-scale

representations. A wide spectrum of financial frictions and shocks is therefore added to the

baseline state space form and reduce the probability that the bounds on the FEVD are model

specific. Since the models employ different variables, I focus on the real output, inflation and

interest rate, which are common to the different specifications. I find that the FEVD of those

15An alternative is extracting 90 per cent intervals. This trades-off two elements: robustness, which would

lead to a selection of large intervals, and potential misspecification, whereby no restrictions would hold with a

probability of one. However, the results are identical to what presented in the main text.
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variables to (conventional) monetary policy shock as reported in Table 1 delivers larger bounds

than those in Gertler and Karadi (2011), Christiano, Motto, and Rostagno (2014), and Curdia

and Woodford (2010); this puts some additional evidence on the robustness of the results.

Amongst the alternative models considered here, Gertler and Karadi (2011) have the most

similar set of endogenous variables to that in the baseline specification of seven macroeconomic

variables. For instance, they include consumption and investment; it is therefore encouraging

that in Table 1 also the bounds on the FEVD of such variables are larger than those implied

by Gertler and Karadi (2011).

4.2 NonDogmatic Bounds

This section introduces uncertainty over the bounds on the FEVD, or nondogmatic identifying

assumptions. This is consistent with very recent and growing literature, including Baumeis-

ter and Hamilton (2019), Baumeister and Hamilton (2018), and Giacomini, Kitagawa, and

Volpicella (2017), arguing that researchers treat identifying assumptions as if known with cer-

tainty, while they need to acknowledge explicitly that there are substantial doubts about the

restrictions that are typically employed as identifying constraints. In other words, standard im-

position of identifying restrictions relies on an all-or-nothing approach. For instance, in Table

1 dogmatic bounds on inflation and interest rates imply

0.30 ≤ CFEV i
i (0) ≤ 0.77, (4.1)

CFEV π
i (0) ≤ 0.38. (4.2)

In other words, according to Table 1, CFEV i
i (0) = 0.30 is fully plausible, whereas CFEV i

i (0) =

0.29 is a violation of the identifying assumptions. This all-or-nothing approach is common to

any identifying constraints, including zero and sign restrictions, and is not therefore a specific

feature of the constraints on the FEVD; in fact, it is the benchmark in the literature.

The methodology proposed below exemplifies how to incorporate uncertainty, or doubts,

about the constraints on the FEVD. As illustrative example, consider inflation and interest

rates. Instead of looking upon bounds on CFEV i
i (0) and CFEV π

i (0) as fixed (or dogmatic)

values, assume that

kii ≤ CFEV i
i (0), (4.3)

CFEV π
i (0) ≤ k̄πi , (4.4)

where kii ∼ Beta(αi, βi) and k̄πi ∼ Beta(απ, βπ). Nondogmatic bounds are random variables

following Beta distributions; note that the upper bound on CFEV i
i (0) is left unrestricted, as

opposed to dogmatic bounds in (4.1). Parameters αi, βi, απ, βπ are set such that CFEV i
i (0)
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and CFEV π
i (0) vary across most of the values found in the literature. Specifically, (i) the

distributions are still centred at the values found in Section 4, namely E(kii) = 0.30 and

E(k̄πi ) = 0.38 and (ii) with 95 per cent probability, kii ≥ 0.06 and k̄πi ≤ 0.78. To my knowledge,

theoretical frameworks suggesting that, with significant probability, the effect of a monetary

shock explains more than 78 per cent of the unexpected fluctuations of inflation rates upon

impact are uncommon; a similar analysis of the literature has been carried out for kii. As a

result, the nondogmatic bounds give a small, but non-zero, probability to extreme values of

the FEVD.

In addition to the introduction of uncertainty about the identifying assumptions, nondom-

gatic bounds i) augment the dogmatic ones by analysing the literature and ii) make sure the

identification, estimation, and inference do not strictly depend on a specific value given to the

bounds of the FEVD. The Monte-Carlo simulation and empirical application fully illustrates

(ii). Computationally, the implementation of nondomgatic bounds requires to extract kzj∗ and

k̄zj∗ in Step 3 of Algorithm 3.2 from a stochastic process.

The next section describes how dogmatic bounds in Table 1 and nondogmatic bounds can be

used as identifying restrictions, and evaluates them through a Monte-Carlo exercise. Since the

literature typically considered dogmatic restrictions as the only source of identifying constraints,

from now on the terms “bounds” and “dogmatic bounds” will be used interchangeably.

5 A Monte-Carlo Experiment

The Monte-Carlo experiment in this section makes a comparison between the performance of

identification schemes based on restrictions on the FEVD and sign restrictions. The DGP is

the model in Smets and Wouters (2007), calibrated at its posterior means; the reduced-form

VAR includes the variables listed above in the first difference, with the exception of inflation

and interest rates, and has a lag length of five. Without loss of generality, I want to evaluate

the ability of theory-driven restrictions on the FEVD to replicate and identify the DGP output

response to monetary policy shock, as opposed to sign restrictions, where the shock size is

common across the competing models. Specifically, I have evaluated the following structural

models:16

• Sign Restrictions

This model identifies an interest rate shock through sign restrictions on impact responses.

Specifically, it employs the sign restrictions in Table 1. A contractionary interest rate

shock reduces inflation, consumption, investment and hours worked, and increases interest

16For those models the optimization problem illustrated in Algorithm 3.2 is convex.
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rates: IR0
ci ≤ 0, IR0

Ii ≤ 0, IR0
li ≤ 0, IR0

πi ≤ 0, IR0
ii ≥ 0. The object of interest IRyi, i.e,

the output response, is left unrestricted.

• Bounds on the FEVD

In addition to the sign restrictions, the FEVD of nominal variables is bounded as in

Table 1: 0.30 ≤ CFEV i
i (0) ≤ 0.77 and CFEV π

i (0) ≤ 0.38. Since the object of interest

is the real output response, the FEVD of real variables is not directly bounded. The

model therefore assumes that the monetary disturbance is free to potentially explain

a large share of the short-run unexpected movements in the interest rates, whereas its

contribution to the fluctuations of π may be large, but also unbounded from below.

• NonDogmatic Bounds on the FEVD

In addition to the sign restrictions, the FEVD of nominal variables is bounded as in

Section 4.2.

5.1 Analysis without Estimation Uncertainty

Firstly, I have considered the analysis without sample bias or estimation uncertainty, i.e.,

population analysis. Suppose that there is an infinite amount of data on observables; that

implies that the reduced-form VAR is estimated without error and is fixed at values implied

by the DGP. As a result, the only unknown object is the matrix A0 in equation (3.1). In

order to recover A0, I have used the true covariance matrix Σ and identifying restrictions.

The setting of this Monte-Carlo experiment isolates the identification uncertainty and excludes

sample bias by construction. For each model, Figure 1 reports the DGP output response to

a (contractionary) monetary policy shock and the identified set of output response computed

with Algorithm 3.2, where in Step 1 the reduced-form is fixed by the DGP. As long as there

is no estimation of the reduced-form VAR, such a set captures the identification uncertainty

implied by identifying restrictions. Additionally, the black solid line represents the median

induced by a uniform distribution on Q, i.e., the standard approach. Impulse responses are

non-cumulative.

While sign restrictions are unlikely to identify the theoretical response (panel c), dogmatic

and nondogmatic restrictions on the FEVD (panel a and b, respectively) shrink the identified

set, are able to pin down the sign of output response and deliver precise estimation. Further-

more, under a uniform prior for Q the median replicates the DGP response well, as opposed to

sign restrictions.17 Remarkably, the results are very robust to the introduction of uncertainty

17There is huge debate over which measure of central tendency should be used for set-identified SVARs. The

common measure is the median, but Fry and Pagan (2011) and Inoue and Kilian (2013) proposed alternative
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over the bounds on the FEVD: panel b shows that nondogmatic bounds on the FEVD identify

the DGP response and deliver a dramatic reduction of the response set implied by sign restric-

tions. As a result, the identification ability of the constraints on the FEVD does not strictly

depend on a specific value given to the bounds of the FEVD. In other words, the identification

is robust to doubts about the specific values used for bounding the FEVD.

measures. I have employed the median as a measure of central tendency because it is widely used in empirical

works and makes a comparison with the literature simpler. However, note that using the alternative measures

leaves the results unchanged; the same applies to the empirical application in Section 6.

27



0 5 10 15

−
0.

6
−

0.
2

0.
2

0.
6

(a) Bounds on the FEVD

horizon(quarterly)

ou
tp

ut
 r

es
po

ns
e

0 5 10 15

−
0.

6
−

0.
2

0.
2

0.
6

(b) NonDogmatic Bounds on the FEVD

horizon(quarterly)

ou
tp

ut
 r

es
po

ns
e

0 5 10 15

−
0.

6
−

0.
2

0.
2

0.
6

(c) Sign Restrictions

horizon(quarterly)

ou
tp

ut
 r

es
po

ns
e

●

●

DGP
Identified Set
Median

Figure 1: Population Analysis, Monte-Carlo Simulation

Figure 1 reports the theoretical DGP output response (blue line) to contractionary monetary policy shock, the output

response identified set (red vertical bars) as per Algorithm 3.2 and the median induced by a uniform distribution on Q

(black line). See Section 5 for details. The shock size is set to one standard deviation and is common to all the three

specifications. The response is measured in percentage.
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5.2 Estimation Uncertainty

The previous exercise focused on the uncertainty arising from the ability of identifying assump-

tions to recover the DGP response. There, the VAR coefficient matrices were held fixed at the

values implied by the DGP. However, in empirical works these matrices must be estimated

from finite samples. Thus, sampling, or estimation, uncertainty is an additional issue to take

into account. In order to assess the impact of estimation uncertainty, this section generates

1, 000 datasets and sets the length of time series to 1, 000, where the first 800 observations are

discarded in order to remove the impact of initial conditions, so that T ∗ = 200 is the artificial

sample size with quarterly frequency. At each replication, artificial data are used to estimate

the reduced-form VAR from a flat Normal Inverse Wishart distribution.

Figure 2 introduces the estimation uncertainty. Specifically, the red vertical bars depict

the 90 per cent Bayesian region across the replications of the identified set computed with the

distribution-free approach; the black line reports the median across the replications when a

uniform prior is imposed on Q. Sample bias does not affect the results, in which only the

dogmatic and nondogmatic bounds on the FEVD are able to recover and identify the sign of

the DGP response.

The mechanism behind the dramatic change in estimation and inference is extensively

discussed in Section 6.3. Here it is worthy of mention that bounds on the FEVD of inflation

and interest rate are sufficient, but not necessary, to obtain the meaningful results in Figure

1 and 2. For instance, bounds on the FEVD of ct, It, wt, and lt deliver a similar informative

outcome on their own; a full analysis of the issue is postponed to Section 6.3. The effect

of misspecification between the theoretical framework and the estimated model is studied in

Section 6.5.

In a controlled experiment, Paustian (2007) argued that a monetary policy shock that is

much larger (up to ten times) than the values implied by standard DSGE models helps (but

is not sufficient for) sign restrictions to identify the DGP. Specifically, he found that monetary

shocks that explain a large share (much more than what theory suggests) of the FEV of

real variables in the long-run are more likely to identify structural parameters if combined

with sign restrictions. The approach in this paper is radically different because I employ a

multiplicity of different standard DSGE models and investigate the literature to construct

bounds on the contribution of a monetary policy shock. Specifically, here i) the shock size is

normalized to be common across all the models; ii) the monetary shock does not dominate the

FEV of endogenous variables (most of them are left unrestricted, and bounds on the FEV of

the inflation and interest rate derive from a theory- and literature-driven methodology that

prevents the imposition of an artificially/unrealistically high contribution from the monetary
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disturbance). As a further check, in the model in which constraints on the FEVD are imposed

the contribution of monetary shocks to the FEVD of real variables and interest rates approaches

zero at long horizons, as opposed to Paustian (2007).

This Monte-Carlo exercise shows that dogmatic and nondogmatic constraints on the FEVD

shrink the identified set of the output response, yield precise estimation, and fully identify

the sign and magnitude of the DGP response, as opposed to sign restrictions, regardless the

approach over the rotation matrix. The next section evaluates the identification schemes in the

data and investigates the mechanisms and channels through which dogmatic and nondogmatic

bounds on the FEVD deliver a reduced and more plausible set.

30



0 5 10 15

−
0.

6
−

0.
2

0.
2

0.
6

(a) Bounds on the FEVD

horizon(quarterly)

ou
tp

ut
 r

es
po

ns
e

0 5 10 15

−
0.

6
−

0.
2

0.
2

0.
6

(b) NonDogmatic Bounds on the FEVD

horizon(quarterly)

ou
tp

ut
 r

es
po

ns
e

0 5 10 15

−
0.

6
−

0.
2

0.
2

0.
6

(c) Sign Restrictions

horizon(quarterly)

ou
tp

ut
 r

es
po

ns
e

●

●

DGP
Identified Set 90% Bayesian Region
Median

Figure 2: Sample Analysis, Monte-Carlo Simulation

Figure 1 reports the theoretical DGP output response (blue line) to contractionary monetary policy shock, the 90%

Bayesian credibility region of the output response identified set across replications (red vertical bars) as per Algorithm

3.2 and the median across replications induced by a uniform distribution on Q (black line). See Section 5 for details. The

shock size is set to one standard deviation and is common to all the three specifications. The response is measured in

percentage.
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6 Empirical Application: Monetary Policy Shocks

A considerable body of literature has studied the impact of monetary policy shocks on out-

put using SVARs, identified with zero restrictions (Christiano, Eichenbaum, and Evans, 1999;

Bernanke and Mihov, 1998), sign restrictions (Uhlig, 2005) and both (Arias, Caldara, and

Rubio-Ramirez, 2019). SVARs identified using zero restrictions have consistently found that a

contractionary monetary policy shock implies a significant reduction in short-run real economic

activity. This consensus view has been challenged by Uhlig (2005), who has argued against

imposing a controversial zero restriction on the IRF of output to a monetary policy shock upon

impact. Specifically, he identified a monetary policy shock by imposing sign restrictions only

on the IRFs of variables other than the output, that was therefore left unrestricted. The lack

of restrictions on output makes this approach appealing and explains why it has been used

extensively in empirical studies. Under this identification scheme, a contractionary monetary

policy shock has no significant impact on real variables in the short-run (Uhlig, 2005; Mount-

ford, 2005; Rafiq and Mallick, 2008), does not necessarily lead to a decrease in real activity

and the inference is largely uninformative; this outcome is robust to the choice of variables

in the SVAR, lag selection, prior specification and sample periods. Furthermore, Arias, Cal-

dara, and Rubio-Ramirez (2019) showed that sign restrictions on IRFs have counter-intuitive

consequences on the systematic response of monetary policy to real output; Antoĺın-Dı́az and

Rubio-Ramı́rez (2018) argued that sign-restricted IRFs yield implausible implications for HD.

Firstly, this section illustrates that dogmatic and nondogmatic bounds on the FEVD are

highly informative, deliver precise estimation, and tend to exclude implausible implications by

recovering significant effects of monetary policy shocks on real variables (Section 6.1). Both the

distribution-free approach in Algorithm 3.2 and placing a uniform distribution on Q (Arias,

Rubio-Ramirez, and Waggoner, 2018) have been used. Secondly, I have compared the results

with those induced by the most relevant and recent approaches to enrich sign restrictions,

including narrative sign restrictions (Antoĺın-Dı́az and Rubio-Ramı́rez, 2018), the ranking of

IRFs (Amir-Ahmadi and Drautzburg, 2018), and constraints on the systematic response of the

monetary policy equation (Arias, Caldara, and Rubio-Ramirez, 2019) (Section 6.2). I have then

investigated the mechanism behind the change in estimation and inference implied by bounds

on the FEVD (Section 6.3) and run a sensitivity analysis (Section 6.4). Finally, Section 6.5

analyses the effect of misspecification between the theoretical framework and the estimated

model.
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6.1 Seven-Variable SVAR

This section estimates the three models of the Monte-Carlo exercise and an augmented version

of sign restrictions, where the contribution of the monetary shock to real output in the long-

run is zero. Amongst others, this approach dates back to Faust (1998), Sims (1998), and

Christiano, Eichenbaum, and Evans (1999), who argued that for every reasonable identification,

the monetary policy disturbance needs to explain a small share of the FEV of output in the

long-run. This framework contains a zero restriction; in this case, convexity of the optimization

problem requires more stringent conditions and a number of starting points is employed in the

optimization algorithm, that always converges to the same infimum and supremum. The same

applies to the model with constraints on the structural component of the monetary policy

equation in Section 6.2.

The variables are the same as the Monte-Carlo simulation: real output, real consumption,

real investment, real wages, hours worked, the inflation rate and interest rates. I have used

the dataset constructed by Smets and Wouters (2007). This employs quarterly variables, and

I have considered the first differences of logs, except for the federal funds rate. The model

is therefore estimated using some variables differenced for stationarity; this implies that, for

some covariates, the long-run effects of transitory shocks do not vanish. The reduced-form

prior follows a flat Normal Inverse Wishart distribution and is common to any set of identify-

ing restrictions; difference in estimation and inference therefore can not be attributed to the

reduced-form, its prior, or sample bias. The cumulative impulse responses are shown for all

the variables with the exception of the interest rate and inflation rate. The monetary shock is

normalized to 15 basis points.

By using the distribution-free approach in Algorithm 3.2, Figure 3 characterizes the iden-

tified set of the impulse responses induced by dogmatic (panels a-g) and nondogmatic (panels

a’-g’) bounds on the FEVD. Specifically, it reports the posterior means of the set bounds (black

solid lines), the Bayesian credibility region of the sets (black dashed lines), and the zero line

(blue dashed lines). Figure 3 shows that a contractionary monetary shock induces a negative

and significant response of the real variables, including output, in the short-run. At longer

horizons, the effect of monetary disturbances tends to be no longer significant. The results

are therefore consistent with the textbook theory according to which monetary shocks matter

in the short-run, but are much less relevant at longer horizons. Remarkably, estimation and

inference induced by nondogmatic approach is similar to that delivered by dogmatic bounds.18

18The main text reports the 68 per cent Bayesian credibility region; however, results are very robust to

different credibility regions, e.g., with dogmatic and nondogmatic bounds on the FEVD, the output response in

the short-run is still negative and statistically significant under the 95 per cent credibility region. Furthermore,

to be thorough, for the case with uniform prior on the rotation matrix credibility regions up to 95 per cent are
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Thus, identification does not strictly depend on specific values given to the bounds on the

FEVD and the findings are extremely robust to reasonable doubts about the bounds. Figure 4

illustrates the impulse responses under a uniform distribution on the rotation matrix and fully

confirms the previous results.

Next figures introduce the comparison between (dogmatic and nondogmatic) bounds on the

FEVD and sign restrictions. In order to illustrate the difference in estimation and inference,

note that the pictures need a different scale with respect to the previous ones. Panel (b)

in Figure 5 and 6 displays the output response; with bounds on the FEVD, contractionary

monetary shock induces a negative and significant response of the real output; on the other

hand, sign restrictions with/without long-run constraint deliver a very large and disperse set,

supporting the neutrality of monetary shocks in the short-run. The IRFs of the other variables

confirm that the bounds on the FEV can shrink the set of structural parameters so that the

economic implications dramatically differ. The sample uncertainty does not affect the results

and bounds on the FEV yield very precise estimation, as opposed to sign restrictions. Figure 7

confirms that nondogmatic bounds on the FEVD greatly reduce the set of structural responses

induced by sign restrictions.

Sign restrictions lead to extremely imprecise estimation, some hard-to-justify results and

induce structural responses with different, and not rarely contradictory, economic implications;

for example, a contractionary monetary shock of only 15 basis points induces an output vari-

ation between −1.80 and +0.98 per cent upon impact. Under sign restrictions, it is therefore

challenging to obtain any meaningful, or informative, conclusion about both the magnitude

and the sign of the effects of a monetary shock. On the other hand, dogmatic and nondogmatic

bounds on the FEVD increase estimation precision, remove extreme or implausible results and

allow to reach informative outcomes; for instance, upon impact output varies between −0.02

and −0.77 per cent.

Figure 8, 9, and 10 illustrate the impulse responses under a uniform distribution on the

rotation matrix. For output (panel b), dogmatic and nondogmatic bounds on the FEVD drasti-

cally shrink the response set and lead to informative inference, whereas sign restrictions support

the neutrality of monetary policy even in the short-run, and are generally uninformative. The

same applies to the other variables.

reported.
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Figure 3: Dogmatic and Nondogmatic Bounds on the FEVD: Impulse Responses Identified

Set, Distribution-Free Approach

For panels (a)-(g), the black solid lines plot the posterior means of the response set bounds for the model with

dogmatic bounds on the FEVD; the black dashed lines plot the 68% Bayesian credibility region of the response set for

the model with dogmatic bounds on the FEVD. For panels (a’)-(g’), the black solid lines plot the posterior means of the

response set bounds for the model with nondogmatic bounds on the FEVD; the black dashed lines plot the 68% Bayesian

credibility region of the response set for the model with nondogmatic bounds on the FEVD. The blue dashed line is the

zero line. Monetary policy shock size is set to 15 basis points; vertical axis is measured in percentage, with the exception

of panel (a) and (a’), where 0.10 is equivalent to 10 basis points.
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Figure 4: Dogmatic and Nondogmatic Bounds on the FEVD: Impulse Responses, Uniform

Prior Approach

For panels (a)-(g), the black lines plot the 95% Bayesian credibility region (solid) and the posterior median (dashed) of

the response under dogmatic bounds on the FEVD. For panels (a’)-(g’), the black lines plot the 95% Bayesian credibility

region (solid) and the posterior median (dashed) of the response under nondogmatic bounds on the FEVD. Monetary

policy shock size is set to 15 basis points; vertical axis is measured in percentage, with the exception of panel (a) and (a’),

where 0.10 is equivalent to 10 basis points.
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Figure 5: Bounds on the FEVD vs Sign Restrictions: Impulse Responses Identified Set,

Distribution-Free Approach

In each panel, the black solid lines plot the posterior means of the response set bounds for the model with dogmatic

bounds on the FEVD; the black dashed lines plot the 68% Bayesian credibility region of the response set for the model

with dogmatic bounds on the FEVD; the red solid lines plot the posterior means of the response set bounds for the model

with sign restrictions; the red dashed lines plot the 68% Bayesian credibility region of the response set for the model with

sign restrictions. The blue dashed line is the zero line. Monetary policy shock size is set to 15 basis points; vertical axis

is measured in percentage, with the exception of panel (a), where 0.10 is equivalent to 10 basis points.
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Figure 6: Bounds on the FEVD vs Sign and Long-Run Restrictions: Impulse Responses

Identified Set, Distribution-Free Approach

In each panel, the black solid lines plot the posterior means of the response set bounds for the model with dogmatic

bounds on the FEVD; the black dashed lines plot the 68% Bayesian credibility region of the response set for the model

with dogmatic bounds on the FEVD; the red solid lines plot the posterior means of the response set bounds for the model

with sign and long-run restrictions; the red dashed lines plot the 68% Bayesian credibility region of the response set for

the model with sign and long-run restrictions. The blue dashed line is the zero line. Monetary policy shock size is set to

15 basis points; vertical axis is measured in percentage, with the exception of panel (a), where 0.10 is equivalent to 10

basis points.
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Figure 7: NonDogmatic Bounds on the FEVD vs Sign Restrictions: Impulse Responses

Identified Set, Distribution-Free Approach

In each panel, the black solid lines plot the posterior means of the response set bounds for the model with nondogmatic

bounds on the FEVD; the black dashed lines plot the 68% Bayesian credibility region of the response set for the model

with nondogmatic bounds on the FEVD; the red solid lines plot the posterior means of the response set bounds for the

model with sign restrictions; the red dashed lines plot the 68% Bayesian credibility region of the response set for the model

with sign restrictions. The blue dashed line is the zero line. Monetary policy shock size is set to 15 basis points; vertical

axis is measured in percentage, with the exception of panel (a), where 0.10 is equivalent to 10 basis points.
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Figure 8: Bounds on the FEVD vs Sign Restrictions: Impulse Responses, Uniform Prior

Approach

In each panel, the black lines plot the 95% Bayesian credibility region (solid) and the posterior median (dashed) of

the response under dogmatic bounds on the FEVD; the red lines plot the 95% Bayesian credibility region of the response

under sign restrictions. The blue dashed line is the zero line. Monetary policy shock size is set to 15 basis points; vertical

axis is measured in percentage, with the exception of panel (a), where 0.10 is equivalent to 10 basis points.
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Figure 9: Bounds on the FEVD vs Sign and Long-Run Restrictions: Impulse Responses,

Uniform Prior Approach

In each panel, the black lines plot the 95% Bayesian credibility region (solid) and the posterior median (dashed) of

the response under dogmatic bounds on the FEVD; the red lines plot the 95% Bayesian credibility region of the response

under sign and long-run restrictions. The blue dashed line is the zero line. Monetary policy shock size is set to 15 basis

points; vertical axis is measured in percentage, with the exception of panel (a), where 0.10 is equivalent to 10 basis points.
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Figure 10: NonDogmatic Bounds on the FEVD vs Sign Restrictions: Impulse Responses,

Uniform Prior Approach

In each panel, the black lines plot the 95% Bayesian credibility region (solid) and the posterior median (dashed) of the

response under nondogmatic bounds on the FEVD; the red lines plot the 95% Bayesian credibility region of the response

under sign restrictions. The blue dashed line is the zero line. Monetary policy shock size is set to 15 basis points; vertical

axis is measured in percentage, with the exception of panel (a), where 0.10 is equivalent to 10 basis points.
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6.2 Comparison with Alternative Methods

The previous results suggest that constraints on the FEVD lead to estimation and inference

that are dramatically different from those with sign restrictions. This section makes a com-

parison with alternative schemes of shrinkage in set-identified frameworks. Specifically, the

most recently used and increasingly common benchmarks in the field are restrictions on the

structural components of monetary policy (Arias, Caldara, and Rubio-Ramirez, 2019), narra-

tive inequality constraints (Antoĺın-Dı́az and Rubio-Ramı́rez, 2018; Ludvigson, Ma, and Ng,

2018, 2019), and slope restrictions (Amir-Ahmadi and Drautzburg, 2018). On the other hand,

in a small-scale SVAR, Baumeister and Hamilton (2018) incorporated information on both

structural parameters and impact of shocks to exclude an expansionary effect of contractionary

monetary shocks a-priori. Since dogmatic and nondogmatic bounds on the FEVD deliver very

similar results, any comparison between the forementioned alternative methods of shrinkage

and dogmatic bounds is common to nondomgatic bounds as well.

Amir-Ahmadi and Drautzburg (2018) ranked IRFs by magnitude. For the identification of

monetary policy shocks, they enriched sign restrictions by assuming that nominal rates decline

for two quarters after the initial shocks (slope restrictions). However, panel (b) in Figure 11

and 12 suggests that this strategy does not help much and does not sharpen the identification

induced by sign restrictions.

Antoĺın-Dı́az and Rubio-Ramı́rez (2018) used standard sign restrictions on IRFs and con-

straints on the HD and structural shocks around key historical events (narrative sign restric-

tions).19 In addition to the sign restrictions, the model is restricted as follows: for the specific

observation corresponding to the last quarter in 1979, the absolute value of the contribution

of monetary policy shock to the federal funds rate is larger than the sum of the absolute value

of the contributions of all other structural shocks; for the same period, the monetary policy

shock must be of positive value. However, panel (b) in Figure 13, which uses a specific scale to

exemplify the comparison, shows that there is still significant probability that the output can

increase upon impact and in the short-run. On the other hand, bounds on the FEVD deliver

different results and put evidence in favor of a significant and negative effect of contractionary

monetary shocks on the real activity. The same applies to the comparison across the other

variables.20

Finally, Arias, Caldara, and Rubio-Ramirez (2019) achieved set-identification of monetary

policy shocks by restricting the systematic components of monetary policy, while impulse re-

19Ludvigson, Ma, and Ng (2018) and Ludvigson, Ma, and Ng (2019) used a similar approach to identify

uncertainty and oil shocks.
20Estimation and inference procedure in Antoĺın-Dı́az and Rubio-Ramı́rez (2018) is expressly constructed for

imposing a uniform distribution on the rotation matrix, that is the case shown in Figure 13.
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sponses were left unconstrained. The roots of this approach date back to Leeper, Sims, and Zha

(1996), Leeper and Zha (2003), and Sims and Zha (2006), who argued that monetary policy

choices do not evolve independently of economic conditions, and also Taylor (1993), who asso-

ciated monetary policy changes with output and inflation. Let γy, γc, γI , γw, γl, γπ denote the

contemporaneous reaction of nominal rates to output, consumption, investment, real wages,

hours worked and the inflation rate, respectively. Constraints on the seven-variable model are

the following: γy > 0, γπ > 0, γl > 0 and γc = γI = γw = 0. This strategy provides mixed

results; on the one hand, according to Figure 14 and 15, it supports the view that monetary

shocks affect the real output in the short-run, but the estimation precision is lower than that

induced by the bounds on the FEVD. On the other hand, as opposed to the bounds on the

FEVD, the effect on interest rate, consumption, investment, and inflation rate is largely un-

informative, regardless of the approach in relation to the rotation matrix. Note the different

scale in Figure 14 and 15.

Overall, dogmatic and nondogmatic bounds on the FEVD reduce the identification un-

certainty, increase the estimation precision and tend to remove unlikely implications of set-

identification more than the current benchmarks in the literature.
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Figure 11: Bounds on the FEVD vs Slope Restrictions: Impulse Responses Identified Set,

Distribution-Free Approach

In each panel, the black solid lines plot the posterior means of the response set bounds for the model with dogmatic

bounds on the FEVD; the black dashed lines plot the 68% Bayesian credibility region of the response set for the model

with dogmatic bounds on the FEVD; the red solid lines plot the posterior means of the response set bounds for the model

with slope restrictions; the red dashed lines plot the 68% Bayesian credibility region of the response set for the model with

slope restrictions. The blue dashed line is the zero line. Monetary policy shock size is set to 15 basis points; vertical axis

is measured in percentage, with the exception of panel (a), where 0.10 is equivalent to 10 basis points.
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Figure 12: Bounds on the FEVD vs Slope Restrictions: Impulse Responses, Uniform Prior

Approach

In each panel, the black lines plot the 95% Bayesian credibility region (solid) and the posterior median (dashed) of

the response under dogmatic bounds on the FEVD; the red lines plot the 95% Bayesian credibility region of the response

under slope restrictions. The blue dashed line is the zero line. Monetary policy shock size is set to 15 basis points; vertical

axis is measured in percentage, with the exception of panel (a), where 0.10 is equivalent to 10 basis points.

46



0 5 10 15

−
0.

2
0.

0
0.

2

(a) Interest Rate

horizon(quarterly)

im
pu

ls
e 

re
sp

on
se

0 5 10 15

−
1.

5
−

0.
5

0.
5

(b) Output

horizon(quarterly)

im
pu

ls
e 

re
sp

on
se

0 5 10 15

−
1.

0
0.

0
0.

5
1.

0

(c) Consumption

horizon(quarterly)

im
pu

ls
e 

re
sp

on
se

0 5 10 15

−
4

−
2

0
1

2

(d) Investment

horizon(quarterly)

im
pu

ls
e 

re
sp

on
se

0 5 10 15

−
1.

0
0.

0
0.

5

(e) Hours Worked

horizon(quarterly)

im
pu

ls
e 

re
sp

on
se

0 5 10 15

−
0.

3
−

0.
1

0.
1

(f) Inflation Rate

horizon(quarterly)

im
pu

ls
e 

re
sp

on
se

0 5 10 15

−
1.

0
0.

0
0.

5
1.

0

(g) Wage

horizon(quarterly)

im
pu

ls
e 

re
sp

on
se

Figure 13: Bounds on the FEVD vs Narrative Sign Restrictions: Impulse Responses,

Uniform Prior Approach

In each panel, the black lines plot the 95% Bayesian credibility region (solid) and the posterior median (dashed) of

the response under dogmatic bounds on the FEVD; the red lines plot the 95% Bayesian credibility region of the response

under narrative sign restrictions. The blue dashed line is the zero line. Monetary policy shock size is set to 15 basis points;

vertical axis is measured in percentage, with the exception of panel (a), where 0.10 is equivalent to 10 basis points.
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Figure 14: Bounds on the FEVD vs Restrictions on the Monetary Policy Equation: Im-

pulse Responses Identified Set, Distribution-Free Approach

In each panel, the black solid lines plot the posterior means of the response set bounds for the model with dogmatic

bounds on the FEVD; the black dashed lines plot the 68% Bayesian credibility region of the response set for the model

with dogmatic bounds on the FEVD; the red solid lines plot the posterior means of the response set bounds for the

model with restrictions on the monetary policy equation; the red dashed lines plot the 68% Bayesian credibility region of

the response set for the model with restrictions on the monetary policy equation. The blue dashed line is the zero line.

Monetary policy shock size is set to 15 basis points; vertical axis is measured in percentage, with the exception of panel

(a), where 0.10 is equivalent to 10 basis points.
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Figure 15: Bounds on the FEVD vs Restrictions on the Monetary Policy Equation: Im-

pulse Responses, Uniform Prior Approach

In each panel, the black lines plot the 95% Bayesian credibility region (solid) and the posterior median (dashed) of

the response under dogmatic bounds on the FEVD; the red lines plot the 95% Bayesian credibility region of the response

under restrictions on the monetary policy equation. The blue dashed line is the zero line. Monetary policy shock size is

set to 15 basis points; vertical axis is measured in percentage, with the exception of panel (a), where 0.10 is equivalent to

10 basis points.
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6.3 Investigating the Mechanism

Section 6.1 and 6.2 show that few dogmatic or nondogmatic bounds on the FEVD dramatically

affect estimation and inference without constraining key variables of interest. This section fully

documents how, and to what extent, the mechanism works. In order to look into the machinery

further, I have studied the unbounded FEVD of the sign-restricted SVAR in the data. Upon

impact, 0.00 ≤ CFEV i
i (0) ≤ 0.75, 0.00 ≤ CFEV y

i (0) ≤ 0.70, 0.00 ≤ CFEV c
i (0) ≤ 0.67,

0.00 ≤ CFEV I
i (0) ≤ 0.70, 0.00 ≤ CFEV l

i (0) ≤ 0.72, 0.00 ≤ CFEV π
i (0) ≤ 0.64, and 0.00 ≤

CFEV w
i (0) ≤ 0.62 with a 99 per cent probability if only sign restrictions apply; the comparison

with theory-driven bounds on the FEVD of i and π in Table 1 shows that the restrictions on

the FEVD trim the structural parameters with a low contribution of the shock to the interest

rate fluctuations and a high contribution to the variance of the inflation rate. Such a trimming

alters the estimation and inference originally induced by sign restrictions.

The results above have highlighted that bounding the FEVD of nominal variables is highly

informative. It seems reasonable to verify whether imposing bounds on the FEVD of additional

variables affects the results reported above. This section therefore considers the following set

of restrictions:

• Augmented Bounds on the FEVD

In addition to the sign restrictions, the FEVD is bounded as in Table 1: 0.30 ≤ CFEV i
i (0) ≤

0.77, 0.00 ≤ CFEV c
i (0) ≤ 0.20, 0.00 ≤ CFEV I

i (0) ≤ 0.19, 0.00 ≤ CFEV l
i (0) ≤ 0.12,

0.00 ≤ CFEV π
i (0) ≤ 0.38, and 0.00 ≤ CFEV w

i (0) ≤ 0.10. The FEVD of real output is

left unbounded.21

Figures 16 and 17 in Appendix show the results using augmented bounds on the FEVD are very

similar to those employing only dogmatic or nondogmatic bounds on the FEVD of inflation

and interest rate, despite with narrower sets because of added information. Furthermore, it

is possible to obtain equally similar outcomes by just restricting the FEVD of consumption,

investment, hours worked, and wages on their own.22 Thus, restricting the bounds of the FEVD

of i and π is sufficient to obtain the estimation and inference shown in Section 6.1 and 6.2, but

it is not necessary. As a result, for the current application, the informativeness of bounds on

the FEVD does not necessarily depend on constraining nominal variables because bounds on

the FEVD of real variables are informative on their own.

Finally, the results are robust to the following checks: lag length three, four, six and seven;

selecting the reduced-form prior tightness by maximising the marginal likelihood rather than

21The optimization problem in Algorithm 3.2 induced by this model is convex.
22In this scenario, condition (a) in Proposition 3.3 is satisfied and the optimization problem in Algorithm 3.2

is convex.
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employing a flat specification; updating the dataset used by Smets and Wouters (2007); entering

the endogenous variables in level; constructing non-cumulative impulse responses. Although

some literature argued that set-identifying restrictions should be imposed in the short-run only

(Canova and Paustian, 2011; Fry and Pagan, 2011),23 as further check this paper also derives

and imposes constraints up to 4 quarters after the shock. The results are very similar to what

has been already shown.

6.4 Sensitivity Analysis

A sensitivity analysis in the form of perturbation about the dogmatic bounds on the FEVD

is introduced with respect to the baseline scenario, where the error variance of inflation and

interest rate is bounded as in Table 1; this exercise can be considered as a step in between

dogmatic and nondogmatic bounds. In particular, the upper bound on the FEVD of the

inflation rate to monetary shock is increased and set to 0.48; the lower bound on the FEVD

of the interest rate is decreased to 0.20. As long as the monetary disturbance explains a non-

negligible share of the interest rate unexpected fluctuations upon impact and its contribution

to the error variance of inflation rate is somehow bounded from above, Figure 18 and 19 in

Appendix show that perturbing the bounds does not affect the results. This confirms the main

result provided by nondogmatic bounds, namely the findings do not strictly depend on specific

values given to the restrictions; results are therefore very robust to reasonable changes to the

bounds on the FEVD. The same applies if the bounds of the real variables in Section 6.3 are

perturbed.

6.5 Misspecification

Step 1 and 2 in Section 4.1 derive dogmatic bounds on the FEVD robust to a variety of

parametrizations; however, theory offers no uncontroversial guideline on the number and ty-

pology of variables to be included. Although this issue has been mitigated by Step 3, in which

only bounds consistent with alternative models are used as identifying constraints, this section

introduces misspecification between the estimated model and the framework where dogmatic

theory-driven restrictions come from, i.e., the framework illustrated in Section 4.1.1. Specifi-

cally, I estimate the model without investment and real wages; in the sign-restricted model, a

contractionary monetary policy shock reduces inflation, consumption, and hours worked, and

increases interest rates. The framework with constraints on the FEVD restricts the nominal

variables as in Table 1: 0.30 ≤ CFEV i
i (0) ≤ 0.77 and CFEV π

i (0) ≤ 0.38. In other words,

23On the other hand, Inoue and Kilian (2013) have argued that medium-run sign restrictions can help identi-

fication. See Chapter 13 in Kilian and Lütkepohl (2017) for a survey.
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restrictions are derived from a theoretical framework that is misspecified with respect to the

estimated model. Figure 20 and 21 in Appendix display the results and confirm that sign

restrictions are largely uninformative, as opposed to the bounds on the FEVD. Thus, the

identification ability of the bounds seems to be robust to misspecification. Similar results are

obtained by introducing monetary aggregates, such as borrowed and nonborrowed reserves in

Uhlig (2005), and indices of financial conditions, such as the S&P index, in the estimated

model.

7 Conclusion

Sign-restricted SVARs, which relax exclusion restrictions and rely on weaker assumptions on

the sign of impulse responses, are becoming increasingly common. However this minimalist,

or agnostic, approach comes at a cost. Sign restrictions usually deliver a set of structural

parameters that have very different implications for IRFs, elasticities, HD and FEVD. On

the one hand, obtaining precise estimation, informative inference and meaningful economic

results is challenging, and on the other some of the admissible structural models may contain

implausible implications.

This paper introduced dogmatic and nondogmatic bounds on the FEVD to sharpen identifi-

cation, increase the estimation precision, reduce the set of admissible structural parameters and

remove implausible implications of sign-restricted models. Firstly, in a bivariate and trivariate

setting, I analytically proved that bounds on the FEVD deliver a strictly smaller set relative

to sign restrictions. Interestingly, this also applies to variables that are not subject to re-

strictions. For higher dimensional SVARs, I established the necessary conditions in which the

placing of bounds on the FEVD leads to a reduced identified set. Secondly, the paper also

addressed the trade-off between sharp identification and computation, and established suffi-

cient conditions to determine whether the identified set had a positive measure; an algorithm

provided a computationally-fast practical check of the conditions. While recent studies (Gia-

comini and Kitagawa, 2018; Amir-Ahmadi and Drautzburg, 2018; Gafarov, Meier, and Olea,

2018) established the conditions for non-emptiness under zero and sign restrictions, this paper

has advanced the relevant literature by investigating non-emptiness in the context of bounds

on the FEVD.

In order to address the criticism by Baumeister and Hamilton (2015) over the role of prior

for Q, under a convexity criterion this paper presented a robust-prior procedure through a

numerical optimizer, where the identified set, which was constrained by bounds on the FEVD,

was distribution-free and did not depend on a specific prior over the rotation matrix. This is

in line with the proposals made by Giacomini and Kitagawa (2018), Gafarov, Meier, and Olea
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(2018), and Amir-Ahmadi and Drautzburg (2018) for sign and zero restrictions only.

I developed a procedure to derive dogmatic and nondogmatic bounds on the FEVD, which

were consistent with the implications of a variety of popular DSGE models embodying different

nominal, real, and financial frictions and competing parametrizations. While the dogmatic ap-

proach is the benchmark in the literature and treats the identifying restrictions as if known with

certainty, the nondogmatic method introduced uncertainty about the bounds on the FEVD and

made sure the identification did not strictly depend on a specific value given to the constraints

on the FEVD. Results are therefore robust to doubts about the particular values given to the

bounds.

A Monte-Carlo exercise documented the effectiveness of those dogmatic and nondogmatic

bounds in recovering and identifying the data-generating process relative to sign restrictions.

While the latter typically suggest that contractionary monetary policy shocks have no effects

on real variables and are even likely to increase real activity, an empirical application showed

that a few dogmatic or nondogmatic bounds on the FEVD tend to be highly informative,

increase the estimation precision, remove unreasonable effects of monetary shocks on real vari-

ables, and sharpen the inference of sign-restricted models. As shown by nondogmatic bounds

and sensitivity analysis, estimation and inference are extremely robust to reasonable changes to

the bounds on the FEVD. The approach in this paper was also more effective than alternative

strategies of set-reduction, including long-run equality restrictions on the FEVD, constraints

on the monetary policy equation (Arias, Caldara, and Rubio-Ramirez, 2019), narrative sign

restrictions (Antoĺın-Dı́az and Rubio-Ramı́rez, 2018), and the ranking of IRFs (Amir-Ahmadi

and Drautzburg, 2018). The results are very robust to misspecification.
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Figure 16: Augmented Bounds on the FEVD vs Sign Restrictions: Impulse Responses

Identified Set, Distribution-Free Approach

In each panel, the black solid lines plot the posterior means of the response set bounds for the model with augmented

bounds on the FEVD; the black dashed lines plot the 68% Bayesian credibility region of the response set for the model

with augmented bounds on the FEVD; the red solid lines plot the posterior means of the response set bounds for the

model with sign restrictions; the red dashed lines plot the 68% Bayesian credibility region of the response set for the model
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with sign restrictions. The blue dashed line is the zero line. Monetary policy shock size is set to 15 basis points; vertical

axis is measured in percentage, with the exception of panel (a), where 0.10 is equivalent to 10 basis points.
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Figure 17: Augmented Bounds on the FEVD vs Sign Restrictions: Impulse Responses,

Uniform Prior Approach

In each panel, the black lines plot the 95% Bayesian credibility region (solid) and the posterior median (dashed) of

the response under augmented bounds on the FEVD; the red lines plot the 95% Bayesian credibility region of the response

under sign restrictions. The blue dashed line is the zero line. Monetary policy shock size is set to 15 basis points; vertical

axis is measured in percentage, with the exception of panel (a), where 0.10 is equivalent to 10 basis points.
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Figure 18: Perturbed Bounds on the FEVD vs Sign Restrictions: Impulse Responses

Identified Set, Distribution-Free Approach

In each panel, the black solid lines plot the posterior means of the response set bounds for the model with perturbed

bounds on the FEVD; the black dashed lines plot the 68% Bayesian credibility region of the response set for the model

with perturbed bounds on the FEVD; the red solid lines plot the posterior means of the response set bounds for the model

with sign restrictions; the red dashed lines plot the 68% Bayesian credibility region of the response set for the model with

sign restrictions. The blue dashed line is the zero line. Monetary policy shock size is set to 15 basis points; vertical axis

is measured in percentage, with the exception of panel (a), where 0.10 is equivalent to 10 basis points.
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Figure 19: Perturbed Bounds on the FEVD vs Sign Restrictions: Impulse Responses,

Uniform Prior Approach

In each panel, the black lines plot the 95% Bayesian credibility region (solid) and the posterior median (dashed) of

the response under perturbed bounds on the FEVD; the red lines plot the 95% Bayesian credibility region of the response

under sign restrictions. The blue dashed line is the zero line. Monetary policy shock size is set to 15 basis points; vertical

axis is measured in percentage, with the exception of panel (a), where 0.10 is equivalent to 10 basis points.
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Figure 20: Bounds on the FEVD vs Sign Restrictions, Misspecified Model: Impulse Re-

sponses Identified Set, Distribution-Free Approach

For the misspecification in Section 6.5, in each panel the black solid lines plot the posterior means of the response set

bounds for the model with dogmatic bounds on the FEVD; the black dashed lines plot the 68% Bayesian credibility region

of the response set for the model with dogmatic bounds on the FEVD; the red solid lines plot the posterior means of the

response set bounds for the model with sign restrictions; the red dashed lines plot the 68% Bayesian credibility region of

the response set for the model with sign restrictions. The blue dashed line is the zero line. Monetary policy shock size is

set to 15 basis points; vertical axis is measured in percentage, with the exception of panel (a), where 0.10 is equivalent to

10 basis points.
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Figure 21: Bounds on the FEVD vs Sign Restrictions, Misspecified Model: Impulse Re-

sponses, Uniform Prior Approach

For the misspecification in Section 6.5, in each panel the black lines plot the 95% Bayesian credibility region (solid)

and the posterior median (dashed) of the response under dogmatic bounds on the FEVD; the red lines plot the 95%

Bayesian credibility region of the response under sign restrictions. The blue dashed line is the zero line. Monetary policy

shock size is set to 15 basis points; vertical axis is measured in percentage, with the exception of panel (a), where 0.10 is

equivalent to 10 basis points.
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B Technical Appendix

B.1 Bivariate Setting

Proposition 3.1.

This proof proceeds as follows: firstly, it derives the identified sets in (3.7) and (3.8); it

then compares the two sets.

Following Uhlig (2005), A0 can be parametrized via the Cholesky matrix Σtr and a rotation

matrix Q =

(
cos ρ − sin ρ

sin ρ cos ρ

)
with spherical coordinate ρ ∈ [0, 2π]. The structural matrix of

impact responses can be written as

IR0 = A−1
0 = ΣtrQ =

(
σ11 cos ρ −σ11 sin ρ

σ21 cos ρ+ σ22 sin ρ −σ21 sin ρ+ σ22 cos ρ

)

and the parameter of interest is α ≡ σ11 cos ρ, where φ = (σ11, σ21, σ22) ∈ Φ = R+ × R ×
R+. Following Christiano, Eichenbaum, and Evans (1999), I impose the sign normalization

restrictions by constraining the diagonal elements of A0 to being nonnegative,

σ22 cos ρ− σ21 sin ρ ≥ 0 (B.1)

and

σ11 cos ρ ≥ 0. (B.2)

The identifying sign restrictions SR1 and SR2 in Section 3.2.1 are expressed as

σ11 sin ρ ≥ 0, (B.3)

−σ22 sin ρ− σ21 cos ρ ≤ 0. (B.4)

Given φ, the identified set for α = σ11 cos ρ is given by its range as ρ varies over the range

characterized by the restrictions (B.1) - (B.4).

Assume σ21 > 0. Constraints (B.2) and (B.3) induce ρ ∈ [0, π2 ]; constraints (B.1) and

(B.4) imply ρ ∈ [arctan(−σ21/σ22), arctan(σ22/σ21)]. Intersecting the two intervals leads to

[0, arctan(σ22/σ21)] as the identified set for ρ. Thus, for σ21 > 0 the identified set for α in (3.7)

follows. A similar argument applies for σ21 ≤ 0:

ISα(φ) ≡


[
σ11 cos

(
arctan

(
σ22
σ21

))
, σ11

]
, for σ21 > 0,[

0, σ11 cos
(

arctan
(
−σ21
σ22

))]
, for σ21 ≤ 0.

(B.5)

65



FEVR assumes that the contribution of shock ε2 to the total error variance of y1 is bounded

between k and k̄. Following the notation introduced in Section 3, this restriction can be written

as

k ≤ CFEV y1
ε2 (0) =

FEV y1
ε2 (0)

FEV y1(0)
≤ k̄, (B.6)

where 0 ≤ k < k̄ ≤ 1. Given specification of IR0, note that

FEV y1
ε2 (0) = σ11 sin2 ρ,

FEV y1(0) = σ2
11 sin2 ρ+ σ2

11 cos2 ρ = σ2
11.

Thus, restriction (B.6) can be written as

k ≤ sin2 ρ ≤ k̄ (B.7)

and imposes quadratic constraints on Q. Under constraints (B.1) - (B.4) and (B.7), the argu-

ment used above leads to the identified set for α in (3.8):

ISα(φ) ≡



[
σ11 cos(arcsin

√
k̄), σ11 cos(arcsin

√
k)
]

for {σ21 > 0, k̄ < k̄∗(φ)} ∪ {σ21 ≤ 0, k > k∗(φ)},[
σ11 cos

(
arctan

(
σ22
σ21

))
, σ11 cos(arcsin

√
k)
]

for σ21 > 0, k̄ ≥ k̄∗(φ),[
σ11 cos(arcsin

√
k̄), σ11 cos

(
arctan

(
−σ21
σ22

))]
for σ21 ≤ 0, k ≤ k∗(φ),

(B.8)

where k̄∗(φ) = sin2(arctan(σ22
σ21

)) and k∗(φ) = sin2(arctan(−σ21
σ22

)).

Firstly, assume that k 6= 0 and k̄ 6= 1. For σ21 > 0, k̄ < k̄∗(φ), ISα(φ) in (B.8) is

strictly smaller than ISα(φ) in (B.5) because σ11 cos(arcsin
√
k) < σ11 and σ11 cos(arcsin

√
k̄) >

σ11 cos
(

arctan
(
σ22
σ21

))
. For σ21 ≤ 0, k > k∗(φ), the reduction in the identified set follows from

the fact that σ11 cos(arcsin
√
k̄) > 0 and σ11 cos(arcsin

√
k) < σ11 cos

(
arctan

(
−σ21
σ22

))
. The

same argument applies under σ21 > 0, k̄ ≥ k̄∗(φ) and σ21 ≤ 0, k ≤ k∗(φ).

Secondly, suppose that k = 0 and k̄ 6= 1. The identified set in (B.8) then becomes

ISα(φ) ≡



[
σ11 cos(arcsin

√
k̄), σ11

]
for σ21 > 0, k̄ < k̄∗(φ),[
σ11 cos

(
arctan

(
σ22
σ21

))
, σ11

]
for σ21 > 0, k̄ ≥ k̄∗(φ),[
σ11 cos(arcsin

√
k̄), σ11 cos

(
arctan

(
−σ21
σ22

))]
for σ21 ≤ 0.

(B.9)
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For σ21 > 0, k̄ ≥ k̄∗(φ), ISα(φ) in (B.9) is equivalent to ISα(φ) in (B.5); otherwise, the

identified set in (B.9) is strictly smaller.

Finally, assume that k 6= 0 and k̄ = 1. The identified set in (B.8) is now

ISα(φ) ≡



[
σ11 cos

(
arctan

(
σ22
σ21

))
, σ11 cos(arcsin

√
k)
]

for σ21 > 0,[
0, σ11 cos(arcsin

√
k)
]

for σ21 ≤ 0, k > k∗(φ),[
0, σ11 cos

(
arctan

(
−σ21
σ22

))]
for σ21 ≤ 0, k ≤ k∗(φ).

(B.10)

For σ21 ≤ 0, k ≤ k∗(φ), ISα(φ) in (B.10) is equivalent to ISα(φ) in (B.5); otherwise, the

identified set in (B.10) is strictly smaller.

Proposition 3.2.

FEVR2 assumes that the contribution of shock ε1 to the total error variance of y2 is bounded

between k and k̄. Following the notation introduced in Section 3, this restriction can be written

as

k ≤ CFEV y2
ε1 (0) =

FEV y2
ε1 (0)

FEV y2(0)
≤ k̄, (B.11)

where 0 ≤ k < k̄ ≤ 1. Given specification of IR0, note that

FEV y2
ε1 (0) = (σ21 cos ρ+ σ22 sin ρ)2,

FEV y2(0) = σ2
21 + σ2

22.

Thus, restriction (B.11) can be written as

k ≤ (σ21 cos ρ+ σ22 sin ρ)2

σ2
21 + σ2

22

≤ k̄. (B.12)

The argument in the previous proof delivers Proposition 3.2.

B.2 Trivariate Setting

Proposition 3.3.

This proof firstly derives the identified sets in (3.10) and (3.11) and then makes the com-

parison.
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In the trivariate setting, Q can be written as the product of three Givens matrices Q12,

Q13 and Q23, each rotating a different pair of columns of the matrix to be transformed:

Q =

cos ρ12 − sin ρ12 0

sin ρ12 cos ρ12 0

0 0 1


cos ρ13 0 − sin ρ13

0 1 0

sin ρ13 0 cos ρ13


1 0 0

0 cos ρ23 − sin ρ23

0 sin ρ23 cos ρ23

 .

For simplicity, the main text limits the analysis to the case where ρ12 = ρ23 = 0, namely

Q12 = Q23 = I3, Q = Q13 and ρ = ρ13. Thus, there are the following sign normalizations:

σ11 cos ρ ≥ 0, (B.13)

σ22 ≥ 0, (B.14)

which is always satisfied, and

−σ31 sin ρ+ σ33 cos ρ ≥ 0. (B.15)

The identifying sign restrictions SR1, SR2 and SR3 in Section 3.2.2 are

σ11 sin ρ ≥ 0, (B.16)

σ21 cos ρ ≥ 0, (B.17)

σ31 cos ρ+ σ33 sin ρ ≥ 0. (B.18)

Under constraints (B.13) - (B.18), the argument used for Proposition 3.1 leads to the identified

set for α ≡ σ11 cos ρ in (3.10):

ISα(φ) ≡


[
σ11 cos

(
arctan

(
σ33
σ31

))
, σ11

]
, for σ31 > 0,[

0, σ11 cos
(

arctan
(
−σ31
σ33

))]
, for σ31 ≤ 0,

(B.19)

where sign restrictions are defined if and only if σ21 ≥ 0.

FEVR3 assumes that the contribution of shock ε3 to the total error variance of y2 is bounded

between k and k̄. This restriction can be written as

k ≤ CFEV y2
ε3 (0) =

FEV y2
ε3 (0)

FEV y2(0)
≤ k̄, (B.20)
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where 0 ≤ k < k̄ ≤ 1. Given specification of IR0, note that

FEV y2
ε3 (0) = σ2

21 sin2 ρ,

FEV y2(0) = σ2
21 + σ2

22.

Thus, restriction (B.20) can be written as

k ≤ σ2
21 sin2 ρ

σ2
21 + σ2

22

≤ k̄. (B.21)

Constraints (B.13) - (B.18) and (B.21) yields the identified set in (3.11):

ISα(φ) ≡



[
σ11 cos

(
arcsin

(√
k̄(σ2

21+σ2
22)

σ21

))
, σ11 cos

(
arcsin

(√
k(σ2

21+σ2
22)

σ21

))]
,

for {σ31 > 0, k̄ < k̄∗(φ)} ∪ {σ31 ≤ 0, k > k∗(φ)},[
σ11 cos

(
arctan

(
σ33
σ31

))
, σ11 cos

(
arcsin

(√
k(σ2

21+σ2
22)

σ21

))]
,

for σ31 > 0, k̄ ≥ k̄∗(φ),[
σ11 cos

(
arcsin

(√
k̄(σ2

21+σ2
22)

σ21

))
, σ11 cos

(
arctan

(
−σ31
σ33

))]
,

for σ31 ≤ 0, k ≤ k∗(φ),

(B.22)

where k∗(φ) =
σ2

21

σ2
21+σ2

22
sin2

(
arctan

(
−σ31
σ33

))
, k̄∗(φ) =

σ2
21

σ2
21+σ2

22
sin2

(
arctan

(
σ33
σ31

))
, and σ21 ≥

0.

Assume that k 6= 0 and k̄ 6= 1. For σ31 > 0, k̄ < k̄∗(φ), ISα(φ) in (B.22) is strictly smaller

than ISα(φ) in (B.19) because σ11 cos

(
arcsin

(√
k(σ2

21+σ2
22)

σ21

))
< σ11 and σ11 cos

(
arcsin

(√
k̄(σ2

21+σ2
22)

σ21

))
>

σ11 cos
(

arctan
(
σ33
σ31

))
. For σ31 ≤ 0, k > k∗(φ), the reduction in the identified set follows

from the fact that σ11 cos

(
arcsin

(√
k̄(σ2

21+σ2
22)

σ21

))
> 0 and σ11 cos

(
arcsin

(√
k(σ2

21+σ2
22)

σ21

))
<

σ11 cos
(

arctan
(
−σ31
σ33

))
. The same argument applies under σ31 > 0, k̄ ≥ k̄∗(φ) and σ31 ≤

0, k ≤ k∗(φ).
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Suppose that k = 0 and k̄ 6= 1. The identified set in (B.22) then becomes

ISα(φ) ≡



[
σ11 cos

(
arcsin

(√
k̄(σ2

21+σ2
22)

σ21

))
, σ11

]
,

for {σ31 > 0, k̄ < k̄∗(φ)},[
σ11 cos

(
arctan

(
σ33
σ31

))
, σ11

]
,

for σ31 > 0, k̄ ≥ k̄∗(φ),[
σ11 cos

(
arcsin

(√
k̄(σ2

21+σ2
22)

σ21

))
, σ11 cos

(
arctan

(
−σ31
σ33

))]
,

for σ31 ≤ 0,

(B.23)

where σ21 ≥ 0. For σ31 > 0, k̄ ≥ k̄∗(φ), ISα(φ) in (B.23) is equivalent to ISα(φ) in (B.19);

otherwise, the identified set in (B.23) is strictly smaller.

Finally, assume that k 6= 0 and k̄ = 1. The identified set in (B.22) is

ISα(φ) ≡



[
σ11 cos

(
arctan

(
σ33
σ31

))
, σ11 cos

(
arcsin

(√
k(σ2

21+σ2
22)

σ21

))]
,

for σ31 > 0,[
0, σ11 cos

(
arcsin

(√
k(σ2

21+σ2
22)

σ21

))]
,

for σ31 ≤ 0, k > k∗(φ),[
0, σ11 cos

(
arctan

(
−σ31
σ33

))]
,

for σ31 ≤ 0, k ≤ k∗(φ),

(B.24)

where σ21 ≥ 0. For σ31 ≤ 0, k ≤ k∗(φ), ISα(φ) in (B.24) is equivalent to ISα(φ) in (B.19);

otherwise, the identified set in (B.24) is strictly smaller.

B.3 Non-Emptiness and Shrinkage

The proofs given below use the following notation and concepts. Q = [q1, . . . , qn] ∈ Θ(n)

is a n × n orthonormal matrix belonging to the space of n × n orthonormal matrices Θ(n),

where n is the number of endogenous variables in a VAR(p) model. It follows that Q′ = Q−1

and qj ∈ Rn, q′jqi = 0 for j 6= i,
∑n

j=1 qjq
′
j = In, and ||qj || = 1 for every j ∈ {1, . . . , n}.

φ = (B,Σ) ∈ Φ collects the reduced-form parameters and Φ ⊂ Rn+n2p × Ξ, where Ξ is the

space of n × n symmetric positive semidefinite matrices; see Section 2.1 in the main text for

definition of B and Σ. The domain of Φ is restricted such that the VAR(p) is invertible into

a VMA(∞). ghij(φ,Q) ≡ e′iCh(B)ΣtrQej ≡ c′ih(φ)qj ∈ R is the (i, j)−th element of IRh for

i, j ∈ {1, . . . , n} and h = 0, 1, . . . .
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Let Q(φ|F ,S,Γ) denote the set of Q’s that satisfy sign normalizations, zero restrictions

(2.5), sign restrictions (2.7), and restrictions on the FEVD (3.4); let F ,S,Γ denote a short-

hand notation for zero restrictions, sign restrictions, constraints on the FEVD, respectively.

ISg(φ|F ,S,Γ) = {ghij(φ,Q) : Q ∈Q(φ|F ,S,Γ)} is the identified set for the object of interest,

defined as a set-valued map from φ to a subset in R that delivers the range of ghij(φ,Q) when

Q varies over Q(Q|F ,S,Γ). Let fj represent the number of zero restrictions constraining qj ;

IS ⊂ {1, 2, . . . , n} is the set of indices such that j ∈ IS if some of the impulse responses to the

j-th structural shock are sign-constrained; let IFEV be a set of of indices such that j ∈ IFEV
if shock j is restricted as in (3.3); Λj is a set of of indices such that z ∈ Λj , where j ∈ IFEV , if

the FEV of variable z ∈ {1, . . . , n} to shock j is bounded as in (3.3).

Let Υz
S(φ) = Υz(φ)+(Υz(φ))′

2 denote the symmetric part of Υz(φ), where z ∈ Λj ; λ
z
l,j for

l = {1, . . . , n} are the n real eigenvalues of Υz
S(φ). Note that λzmax,j = max{λz1,j , . . . , λzn,j}

and λzmin,j = min{λz1,j , . . . , λzn,j}. Finally, let q̃ be the eigenvector associated to λzl,j , namely

Υz
S(φ)q̃ = λzl,j q̃.

Proof of Proposition 3.4.

Under IFEV = {j∗}, the whole set of restrictions on the FEVD is reduced to

kzj∗ ≤ q′j∗Υz(φ)qj∗ ≤ k̄zj∗ for z ∈ Λj∗ . (B.25)

Υz(φ) is a positive semidefinite n × n real matrix and can be as such decomposed into its

symmetric and antisymmetric part:

Υz(φ) ≡ Υz
S(φ) + Υz

AS(φ),

where Υz
S(φ) = Υz(φ)+(Υz(φ))′

2 and Υz
AS(φ) = Υz(φ)−(Υz(φ))′

2 . This implies the following:

q′j∗Υ
z(φ)qj∗ =

q′j∗ (Υz
S(φ) + Υz

AS(φ)) qj∗ =

q′j∗

(
Υz(φ) + (Υz(φ))′

2
+

Υz(φ)− (Υz(φ))′

2

)
qj∗ =

q′j∗

(
Υz(φ) + (Υz(φ))′

2

)
qj∗ + q′j∗

(
Υz(φ)− (Υz(φ))′

2

)
qj∗ =

q′j∗

(
Υz(φ) + (Υz(φ))′

2

)
qj∗ =

q′j∗Υ
z
S(φ)qj∗

for z ∈ Λj∗ , (B.26)
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where the second last equality comes from the fact that q′j∗
(

Υz(φ)−(Υz(φ))′

2

)
qj∗ = 0. Thus,

restrictions (B.25) can be written as

kzj∗ ≤ q′j∗Υz
S(φ)qj∗ ≤ k̄zj∗ for z ∈ Λj∗ , (B.27)

where Υz
S(φ) = Υz(φ)+(Υz(φ))′

2 .

Υz
S(φ) is symmetric and can be as such diagonalized; thus, there must exist an orthogonal

matrix P such that

P ′Υz
S(φ)P = Dz,

where Dz is a diagonal matrix

Dz =


λz1,j∗ 0 . . . 0

0 λz2,j∗ . . . 0
... . . .

. . .
...

0 0 . . . λzn,j∗


and diagonal entries λz1,j∗ , . . . , λ

z
n,j∗ are real eigenvalues of Υz

S(φ).

Suppose that the n×1 orthogonal eigenvector associated to a specific λzl,j∗ ∈ {λz1,j∗ , . . . , λzn,j∗}
is q̃:

Υz
S(φ)q̃ = λzl,j∗ q̃ (B.28)

It follows that

q̃′Υz
S(φ)q̃ = λzl,j∗ q̃

′q̃ = λzl,j∗ , (B.29)

where the last equality comes from the fact that q̃′q̃ = 1 by construction. Combining (B.26)

and (B.29) yields

q̃′Υz(φ)q̃ = λzl,j∗ . (B.30)

If kzj∗ ≤ λzl,j∗ ≤ k̄zj∗ (condition (a)), constraint kzj∗ ≤ q′j∗Υz(φ)qj∗ ≤ k̄zj∗ is then satisfied

for qj∗ = q̃. Under condition (b), q̃ satisfies remaining bounds on the FEVD, zero restrictions,

and sign restrictions. This implies that there must exist a matrix Q̃ = [q1, . . . , q̃, . . . , qn] ∈
Q(φ|F ,S,Γ). In turn, this leads to Q(φ|F ,S,Γ) 6= ∅. Given the map between the im-

pulse response identified set ISg(φ|F ,S,Γ) and Q(φ|F ,S,Γ), ISg(φ|F ,S,Γ) 6= ∅ for ev-

ery i, j∗ ∈ {1, . . . , n}, z, z∗ ∈ Λj∗ , and h = 0, 1, . . . . Since |ghij∗ | ≤ ||cih(φ)|| < ∞ for any
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i ∈ {1, . . . , n}, j∗ ∈ {1, . . . , n}, and h = 0, 1, . . . , where ||cih(φ)|| is bounded due to the re-

striction on φ such that reduced-form VAR is invertible to VMA(∞), the boundedness of the

identified set follows.

Proof of Proposition 3.5.

This proof extensively builds on the arguments used above.

If ISg(φ|F ,S,Γ) ⊂ ISg(φ|F ,S), then Q(φ|F ,S,Γ) ⊂Q(φ|F ,S) must hold. This implies

that there must exist Q̃ = [q1, . . . , q̃, . . . , qn] such that Q̃ 6∈Q(φ|F ,S,Γ) and Q̃ ∈Q(φ|F ,S).

This leads to

∃z ∈ Λj∗ | q̃′Υz(φ)q̃ > k̄zj∗ ∪ q̃′Υz(φ)q̃ < kzj∗ (B.31)

and

Sj∗(φ)q̃ ≥ 0, Fj∗(φ)q̃ = 0. (B.32)

From the previous proof, it is easy to see that

λzmin,j∗ = min
qj∗

q′j∗Υ
z(φ)qj∗ (B.33)

and

λzmax,j∗ = max
qj∗

q′j∗Υ
z(φ)qj∗ . (B.34)

Combining (A.31), (A.32), (A.33), and (A.34) delivers ∃z ∈ Λj∗ | λzmin,j∗ < kzj∗ or λzmax,j∗ > k̄zj∗ .

B.4 Convexity

Proof of Proposition 3.6.

Let Λj∗ = Λ
(a)
j∗ ∪ Λ

(b)
j∗ ∪ Λ

(ab)
j∗ , where z ∈ Λ

(a)
j∗ if z satisfies condition (a) only, z ∈ Λ

(b)
j∗ if z

satisfies condition (b) only, and z ∈ Λ
(ab)
j∗ if z satisfies condition (a) and (b). For simplicity and

without loss of generality, suppose that Λ
(ab)
j∗ = ∅.

For z ∈ Λ
(a)
j∗ , the set of identifying assumptions on the FEVD is

q′j∗Υ
z(φ)qj∗ ≤ k̄zj∗ for any z ∈ Λ

(a)
j∗ , (B.35)

because kzj∗ = 0 under condition (a).
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Focus on condition (b). Let z ∈ Λ
(b)
j∗ and suppose that h̃ = 0. Firstly, let us derive how

bounds on the FEVD can be written. From Section 3, for any z ∈ Λ
(b)
j∗

Υz(φ) =

∑h̃
h=0 czh(φ)c′zh(φ)∑h̃
h=0 c

′
zh(φ)czh(φ)

. (B.36)

Since h̃ = 0,

Υz(φ) =
cz0(φ)c′z0(φ)

c′z0(φ)cz0(φ)
. (B.37)

This implies that

q′j∗Υ
z(φ)qj∗ = q′j∗

cz0(φ)c′z0(φ)

c′z0(φ)cz0(φ)
qj∗

= m(φ)q′j∗cz0(φ)c′z0(φ)qj∗

= m(φ)(c′z0(φ)qj∗)
2, (B.38)

where m(φ) = 1
c′z0(φ)cz0(φ)

is a positive scalar; the last equality derives from q′j∗cz0(φ) =

(q′j∗cz0(φ))′ = c′z0(φ)qj∗ . As a result, the whole set of constraints on the FEVD is reduced to

kzj∗ ≤ m(φ)(c′z0(φ)qj∗)
2 ≤ k̄zj∗ for z ∈ Λ

(b)
j∗ . (B.39)

Condition (b) also establishes that for any variable z ∈ Λ
(b)
j∗ , responses ghzj∗(φ,Q) are sign-

restricted for h = 0, . . . , h̃. Since ghzj∗(φ,Q) = c′zh(φ)qj∗ and h̃ = 0, this implies

c′z0(φ)qj∗ ≥ 0 for any z ∈ Λ
(b)
j∗ , (B.40)

where, without loss of generality, it is assumed that the sign of restrictions is positive. Com-

bining (B.39) and (A.40) shows that the whole set of bounds on the FEVD under condition

(b) is reduced to some linear inequalities in qj∗ :√
kzj∗

m(φ)
≤ c′z0(φ)qj∗ ≤

√
k̄zj∗

m(φ)
, (B.41)

c′z0(φ)qj∗ ≥ 0 for z ∈ Λ
(b)
j∗ . (B.42)

For h̃ > 0, a similar argument can used for proving that bounds on the FEVD can be reduced

to a set of linear constraint on qj∗ .
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As a result, the whole set of identifying restrictions is reduced to the following:

q′j∗Υ
z(φ)qj∗ ≤ k̄zj∗ for z ∈ Λ

(a)
j∗ , (B.43)√

kzj∗

m(φ)
≤ c′z0(φ)qj∗ ≤

√
k̄zj∗

m(φ)
and c′z0(φ)qj∗ ≥ 0 for z ∈ Λ

(b)
j∗ , (B.44)

Sj∗(φ)qj∗ ≥ 0. (B.45)

The set {qj∗ ∈ Rn|q′j∗Υz(φ)qj∗ ≤ k̄zj∗ ∀z ∈ Λ
(a)
j∗ } defined by constraint (B.43) is convex

because by construction Υz(φ) is positive semi-definite. Restrictions (B.44) and (B.45) impose

linear constraints on qj∗ and {qj∗ ∈ Rn|
√

kzj∗
m(φ) ≤ c

′
z0(φ)qj∗ ≤

√
k̄z
j∗

m(φ) ∀z ∈ Λ
(b)
j∗ , c

′
z0(φ)qj∗ ≥

0 ∀z ∈ Λ
(b)
j∗ ,Sj∗(φ)qj∗ ≥ 0} is as such a convex set (Giacomini and Kitagawa, 2018). Since

the intersection of convex sets is always convex, the intersection between the unit circle defined

by qj∗ (remark: ||qj∗ || = 1) and the sets induced by restrictions (B.43), (B.44), and (B.45)

determines a convex set:

{qj∗ ∈ Rn| q′j∗Υz(φ)qj∗ ≤ k̄zj∗ ∀z ∈ Λ
(a)
j∗ ,

√
kzj∗
m(φ) ≤ c

′
z0(φ)qj∗ ≤

√
k̄z
j∗

m(φ) ∀z ∈ Λ
(b)
j∗ , c

′
z0(φ)qj∗ ≥

0 ∀z ∈ Λ
(b)
j∗ ,Sj∗(φ)qj∗ ≥ 0, ||qj∗ || = 1} is convex and is as such path-connected. Since the

impulse response is a continuous function of qj∗ , ISg(φ|S,Γ) is an interval, as the range of a

continuous function with a path-connected domain is always an interval (Propositions 12.11

and 12.23 in Sutherland (2009)). Convexity of ISg(φ|S,Γ) follows because an interval defined

on R is always convex. Given the arguments above, the proof for Λ
(ab)
j∗ 6= ∅ is trivial.
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