




1 Introduction

How to model changes in monetary policy is an important and relevant question;
as in the last thirty years most advanced economies have experienced at least two
major changes in the way their central bank conducts monetary policy. The �rst
and the one this paper examines, is the adoption of in�ation-targeting, which
explicitly began in the early 1990s where beforehand, other nominal variables
such as exchange rates or the monetary base were targeted. The second is the
more recent move towards unconventional monetary policy instruments after the
nominal interest rate hit its e�ective lower-bound, prompted in most economies
by the global �nancial crisis of 2008. Despite these shifts in monetary policy,
estimated structural models that are used for policy analysis often assume the
behaviour of the central bank remains constant across the entire estimation
sample. The primary example is New Keynesian general equilibrium models,
that are widely used by central banks and typically estimated on at least two
decades of quarterly data. In this framework, the monetary policy instrument
is usually the nominal interest rate, and it is set following a systematic rule that
depends on how far target variables such as price in�ation and output are away
from target levels.

Recent advances in the literature propose empirical approaches to modeling
changes in monetary policy within this class of models that allow for time-
variation in parameters of the systematic rule. The time-varying parameters
are typically those that determine either the elasticity of the nominal interest
rate with respect to deviations of in�ation away from target level or the in-
�ation target. However, parameter change that is consistent with the rational
expectations hypothesis complicates the solution of these models, as additional
non-linearities are introduced to the underlying micro-founded model. Therefore
to keep additional complexities to a minimum, the time-varying parameters are
assumed to follow an exogenous process. This assumption implies that endoge-
nous model variables are not allowed to in�uence changes in monetary policy
regime directly. Therefore, when agents form expectations of future variables
needed to construct their optimal decision rules, the probability they assign to
future policy changes is not directly e�ected by the recent state of the economy.

The assumption of a completely exogenous source of time-variation although
simplifying, seems unrealistic as ultimately the state of the economy determines
how central banks choose their targets and the strength with which these targets
are pursued. Also, central banks, as public institutions are judged on their
performance, i.e. how well they deliver on their objectives; therefore, it seems
natural to assume that central banks will be under pressure to change their
policy approach if targets are considerably or persistently missed.

Therefore, this paper relaxes the assumption of a completely exogenous
source of time-variation by estimating New Keynesian general equilibrium mod-
els that allow for changes in the monetary authority's stance on in�ation to de-
pend on the performance of the economy and �nds supportive evidence of this
mechanism. The mechanism takes the form of a logit function that explicitly
links the probability of remaining in a monetary policy regime to endogenous
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model variables. Model dynamics are a�ected through the formation of agents
expectations as the probability of future regime change can now depend on vari-
ables that gauge the performance of the economy relative to target levels such
as in�ation and output gaps. This paper estimates three models with state-
dependence on U.S. data, in which, the in�ation gap, output gap or a monetary
policy shock that captures unsystematic changes in monetary policy, can in�u-
ence the probability of remaining in a monetary policy regime that is relatively
accommodative towards in�ation.

To estimate the e�ects of allowing for state-dependent monetary policy
regimes, I focus on the well-studied case of the adoption of in�ation target-
ing by the U.S. Federal Reserve, spearheaded by the appointment of chairman
Paul Volcker in 1979. During the regime prior to Volcker, the central bank is be-
lieved to have been more accommodative of in�ation and instead pursued other
nominal targets such as the monetary base and exchange rates, in addition to
placing more emphasis on in�uencing unemployment. The increased focus on
in�ation policy is put forward as one of the leading causes of the remarkable
stabilisation of the U.S. economy from the mid-1980s until the recent global
�nancial crisis in 2008, often referred to as the great moderation period. How-
ever, as the existing literature does not allow for the type of state-dependence
considered in this paper, this particular regime change is an ideal candidate for
evaluating the mechanism.

The best �tting model identi�es the period between 1973 and 1985 as being
relatively accommodative towards in�ation. In this model, the probability of
remaining in this regime has an inverse relationship to the amount of in�ation
in the previous period is above the target level. This form of state-dependence
reduces the expected duration of the accommodative regime from eight quarters
in 1973 to four quarters in 1978, when in�ation reached peak rates. The time-
varying probabilities show some evidence of dampening responses to cost-push
shocks relative to a model estimated with no state-dependence. Parameter
estimates are also a�ected, most importantly, the estimated in�ation target in
the accommodative regime is lower when state-dependence is enabled.

This rest of this paper is organised as follows. Section 2 presents a brief
review of how this paper �ts in with the existing literature. Section 3 illus-
trates the underlying New Keynesian model and introduces the concept of state-
dependent monetary policy regimes. Section 4 discusses the estimation strategy
and presents simulation results. In Section 5, I consider which of the estimated
models provides the best �t with the data. Section 6 presents impulse responses
from the selected model, as this model is state-dependent results are compared
to estimated models with no state-dependence. Finally, Section 7 concludes.

2 Existing literature

This paper extends the work of Barthélemy and Marx (2017) to estimate general
equilibrium models with state-dependent monetary policy regimes.
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Barthélemy and Marx (2017) develop an algorithm to solve general equilib-
rium models with regime-switching parameters in which the transition proba-
bilities are time-varying and smooth functions of endogenous model variables.
They then apply their method to solve a calibrated model with two monetary
policy regimes. The regime that is relatively accommodative towards in�ation,
with a higher in�ation target and a relatively weaker response to deviations
away from this target, is state-dependent. Speci�cally, the probability of leav-
ing this regime is a logit function of the distance past in�ation is away from the
in�ation target of this regime. As the degree of state-dependence is unknown,
Barthélemy and Marx (2017) experiment with a broad range of values to show
that the mechanism alters model-implied dynamics for macroeconomic variables
and their responses to shocks.

To extend the calibration exercise of Barthélemy and Marx (2017) to esti-
mation, I adopt a Bayesian approach and take this model to U.S. data. Thus
providing an estimate of the degree of state-dependence of the relatively in�a-
tion accommodating regime believed to be in place during the 1970s by the
seminal studies of Clarida, Gali and Gertler (2000) and Lubik and Schorfheide
(2004). Additionally, I also consider two alternative forms of state-dependence,
in which, the output gap and a monetary policy shock that captures unsystem-
atic changes in monetary policy, can in�uence the probability of remaining in a
monetary policy regime that is relatively accommodative towards in�ation.

From the models considered, the model preferred by the data is the one con-
sidered in Barthélemy and Marx (2017) and allows for state-dependence through
that deviations of in�ations from the relatively higher target level of the accom-
modative regime. This form of state-dependence in general equilibrium models
was �rst considered in Davig and Leeper (2008), who solve a model with two
similar monetary policy regimes that di�er with respect to their stance on in-
�ation. However, in the case of Davig and Leeper (2008), only the monetary
policy instrument's in�ation elasticity can discretely change, with the switch be-
ing triggered by the previous periods in�ation gap from a target level crossing a
certain threshold. Their threshold-switching approach relies on global approxi-
mation methods that can have large computational costs, which are undesirable
when following a Bayesian approach to estimation.12

Solutions algorithms that allow for feasible estimation of general equilibrium
models with state-dependence, such as those proposed by Barthélemy and Marx
(2017), Maih (2015) and Forester et al. (2018) have only recently become avail-
able. Therefore, to my knowledge only a handful of studies have conducted
empirical analysis with this class of models.

The closest current research to this paper is Chang, Tan and Wei (2018), who

1Applying Bayesian techniques to model estimation is now the conventional approach to
estimating New Keynesian general equilibrium models; bene�ts are described in detail in An
and Schorfheide (2003) and Herbst and Schorfheide (2015).

2Markov Chain Monte Carlo methods are used to approximate the posterior distribution
of parameters and object of interest which require solving the general equilibrium model over
a hundred thousand times, therefore a solution method with a low computational method is
highly desirable.
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also adopt the solution method of Barthélemy and Marx (2017) to estimate a
regime-switching model with state-dependent monetary policy regimes. Chang,
Tan and Wei (2018) consider a similar underlying model and also study the
Federal Reserve's adoption of a more aggressive stance towards in�ation during
1980s. The main di�erence between the work of Chang, Tan and Wei (2018)
with this paper is the form of state-dependence considered. Chang, Tan and
Wei (2018)assume the level of a latent factor determines the regime in place, and
state-dependence is allowed for by correlation between the latent factor and the
monetary policy shock. As the latent factor follows an autoregressive process,
their mechanism allows for an endogenous feedback channel in which, the recent
history of policy shocks lead to a cumulative e�ect on the regime factor that
eventually trigger a regime shift. The economic intuition behind this mechanism
is that assuming a monetary policy regime that accommodates in�ation is in
place a series of contractionary shocks agents would lead to agents expecting an
aggressive monetary policy regime would come in its place. Whereas, I follow
Barthélemy and Marx (2017) by enabling a logit function to link the probability
of switching regimes to endogenous model variables, which in the case of output
and in�ation are observed in the data. Chang, Maih and Tan (2018) conduct a
similar exercise using the latent factor to induce state-dependence but apply a
solution algorithm along the lines of Maih (2015). An additional di�erence in
this paper is that I allow the elasticity of the monetary policy instrument with
respect to in�ation and the in�ation target to change across monetary policy
regime. I present evidence of signi�cant change in both the in�ation target
and sensitivity of the monetary policy instrument to changes in in�ation across
regimes.

Forester et al. (2018) also estimate a state-dependent general equilibrium
model by allowing the probability of a crisis regime in Mexico to depend on the
country's leverage to output ratio. They assume state-dependence by directly
linking endogenous model variables to time-varying transition probabilities; they
do so via a logistic function. Maih, Linde and Wouters (2018) estimate a larger
scale general equilibrium model with monetary regimes on U.S. data, to consider
how to model periods where nominal interests rate reached the e�ective lower
bound. The model estimated with regimes that are not state-dependent com-
pares favourably with the other approaches the authors consider. However, they
suggest introducing state-dependence through time-varying transition probabil-
ities that are a logistic function of the shadow rate, would allow for changes
in the propagation mechanism during the period of the e�ective lower bound
regime.

Although the estimation of New Keynesian general equilibrium models with
state-dependent regimes is new, empirical work on regime-switching models is
a developed strand of literature since the seminal work of Hamilton (1989).
Markov-switching reduced-form models with state-dependence in the form of
time-varying transition probabilities were �rst considered in economic applica-
tions by Filardo (1994) and Filardo and Gordon (1998). Kim et al. (2003)
extend this method of introducing state-dependence to Markov-switching mul-
tivariate models. The theoretical work of Leeper and Zha (2003), emphasises
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that even small but persistent changes in monetary policy alter the way agents
form expectations and therefore a�ects their decision rules. Further theoretical
work by Davig and Leeper (2007) shows that allowing for monetary regimes
through discrete switches in the monetary policy instrument's in�ation elastic-
ity response to in�ation within a general equilibrium framework increases the
parameter space that yields determinate solutions.

Davig and Doh (2014) and Bianchi (2013) estimate New Keynesian general
equilibrium models with switching monetary policy rules and both concentrate
on the adoption of an aggressive stance to in�ation in the U.S. around the 1980s,
as in this paper. Davig and Doh (2014) estimate a small-scale model along the
lines of this paper and �nd a signi�cant reduction in in�ation persistence after
the 1980s is primarily explained by the change in monetary policy towards ag-
gressively pursuing in�ation. Whereas, Bianchi (2013) estimates a richer model
and constructs counterfactuals that suggest the possibility of moving to a mone-
tary policy regime with an even more aggressive in�ation stance than estimated
would considerably mitigate the recessions in the 1970s through expectations
e�ects.

Both Davig and Doh (2014) and Bianchi (2013) �nd that the best-�tting
models allow regime-switching in monetary policy in addition to independent
switching in the variance of structural shocks. However, despite their �ndings,
this paper does not allow for heteroskedasticity due to the additional compu-
tational time added to solve the model and leaves this for future work that is
ongoing.

The literature has yet to distinguish whether the monetary policy instru-
ment's in�ation elasticity response or in�ation target or both have changed in
the U.S. during the 1980s. Therefore I follow Barthélemy and Marx (2017) in
allowing for two monetary policy regimes, where the relative in�ation accom-
modating regime has a high in�ation target and a relatively low Taylor rule
response to deviations away from this target. Liu et al. (2011) model monetary
policy regimes in the U.S. as changes in the in�ation target rather than changes
in the Taylor rule response to in�ation. Although within this model the di�er-
ence between the in�ation targets of the two regimes is substantial, they �nd
that the data prefer alternative models allowing solely for stochastic volatility.
Forester (2017) conducts a simulation exercise to examine the implications of
modelling monetary policy regimes as changes in the in�ation target or changes
in the Taylor rule response to in�ation. The main �ndings indicate a switching
target alters the level of model-implied variables, whilst a switching in�ation
response alters the parameter space.

Outside from the U.S., regime-switching general equilibrium models have
been applied to examine the economic e�ects of adopting in�ation targeting
monetary policy regimes in small open economies as in Mumtaz and Liu (2011)
and Alstaheim, Bjørnland and Maih (2013).
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3 Modeling monetary policy regimes within a

general equilibrium framework

To explicitly allow for changing monetary policy, some form of parameter drift
must be introduced into the reaction function the central bank uses to set its
policy instrument. This paper estimates a class of models where the type of pa-
rameter drift is discrete and the state of the economy can in�uence the monetary
policy regime in place.

In this section, I brie�y describe the underlying economic model and then
spend more time introducing the concept of state-dependent monetary policy
regimes.

3.1 Benchmark model

For the empirical analysis presented in this paper, I consider a standard small-
scale New Keynesian monetary DSGE model. This model is admittedly elemen-
tary compared to those currently estimated by central banks but is selected as
this is one of the �rst passes at estimating a general equilibrium model with
state-dependent parameter changes. The model is identical to the setup of
Barthélemy and Marx (2017). Davig and Doh (2014) and Chang, Tan and Wei
(2018) also estimate similar models where the parameters of the monetary policy
rule are subject to regime shifts.

Households

The representative household chooses {Ct, Nt, Bt}∞t=0 to maximise liftime utility,

Et

∞∑
t=0

βt
(
C1−τ
t

1− τ
− Lt

)
,

where Ct denotes consumption of a composite good, Lt is hours worked,
β ∈ (0, 1) is the discount factor and τ measures the inverse of the intertemporal
elasticity of substitution. Utility maximisation is subject to the intertemporal
budget constraint

PtCt +QtBt = Bt−1 +WtLt + PtDt − PtTt,

where Bt are nominal bond holdings, the variable Pt denotes the price level,
Qt is the price of a zero-coupon bond at time t yielding 1 in period t+ 1, Wt is
the nominal wage per hour, Dt are the real pro�ts from ownership of �rms, and
Tt are lump-sum taxes. The preference shock ξt represents a shock a�ecting the
discount factor.
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Firms

A continuum of intermediate goods-producing �rms, denoted by the subscript
j ∈ [0, 1], �rm j produces output according to

Yjt = Ljt,

where Ljt is the labour input hired by �rm j and is the only input. The
labour market is perfectly competitive.

Nominal rigidities are introduced à la Rotemberg (1982). The monopolistic
intermediate goods-producing �rms pay a cost of adjusting their price, given by

AC =
φ

2

(
Pjt

Π∗stPjt−1
− 1

)2

Yt,

where φ ≥ 0 determines the magnitude of the price adjustment cost, Π∗st de-
notes the regime-dependent steady-state that coincides with the central bank's
in�ation target in regime st and Pjt denotes the nominal price set by �rm j at
time t. The price adjustment cost is in terms of the �nal good Yt. Each inter-
mediate goods-producing �rm maximises the expected present value of pro�ts,

∞∑
s=0

βsλt+s
Djt+s

Pt+s
,

where λt+s is the representative household's stochastic discount factor and
Djt are nominal pro�ts of �rm j at time t. Real pro�ts are

Djt

Pt
=
PjtYjt
Pt

− Wt

Pt
Yjt −

φ

2

(
Pjt

Π∗stPjt−1
− 1

)2

Yjt.

The pro�t-maximisation problem for the �nal-goods producing �rm implies
that the demand for each intermediate good is give by

yjt =

(
Pjt
Pjt−1

)−θt
Yt,

where θt > 0 is the time-varying elasticity of substitution between goods.
The steady-state elasticity of substitution is θ, and the steady-state markup

is given up u = θ
θ−1 .

Monetary Policy

The monetary authority set the short-term nominal rate using the following rule

Rt
R∗(st)

=

[
Rt−1

R ∗ (st−1)

]ρr [( Πt

Π∗(st)

)α(st)(Y t
Ȳ

)γ
εt

]
1−ρr

where Rt is the gross nominal interest rate, Πt = Pt

Pt−1
, Πt = 1 + πt and

R∗,Π∗ and Ȳ represent target values of the nominal interest rate, in�ation and
output the monetary authority pursues.
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The above rule suggests the central bank adjusts the nominal interest rate in
response to deviations of in�ation and output from their respective targets. The
shock εt captures unanticipated deviations from the policy rule and its standard
deviation is denoted by σr. The parameter ρ is the degree of interest rate
smoothing, and α and γ are the reaction coe�cients to in�ation and output gaps
respectively. The monetary policy shock εt captures unanticipated deviations
from the policy rule. This rule suggests that the targets a central bank sets and
the strength it pursues deviations away from these targets are constant and do
not change.

Shocks

The steady-state markup is given up u = θ
θ−1 , while the time t markup shock

follows an autoregressive process with drift

lnut = (1− ρu) lnu+ ρu lnut−1 + σξεξ.

The preference shock follows a autoregressive process

ln ξt = ρξ ln ξt−1 + σξεξ.

First-order conditions

The �rst-order conditions and equilibrium conditions lead to the following non-
linear system

θutC
τ
t −φ(θut−θ+1)

Π

Π∗(st)

[
Π

Π∗(st)
− 1

]
+βφ(θut−−θ+1)Et

[
Yt+1

Yt

C−τt+1

C−τt

(
Πt+1

Π∗(st+1)
− 1

)]
=

θ

θ − 1

(1)

Yt = Ct +
φ

2

[
Πt

Π(st)
− 1

]2

Yt (2)

Rt
R∗(st)

=

[
Rt−1

R ∗ (st−1)

]ρr [( Πt

Π∗(st)

)α(st)(Y t
Ȳ

)γ
εt

]
1−ρr (3)

Et
[
βRt
Πt+1

(
Ct
Ct+1

)τ (
ξt+1

ξt

)]
= 1 (4)

zt = Ct, Yt, Rt,Πt, ξt, ut︸ ︷︷ ︸
vt = εr, εξ, εu︸ ︷︷ ︸

θ = β, τ, κ, α, γ, σr, σξ, σu︸ ︷︷ ︸
The benchmark model has one constant monetary policy regime in place and

is the non-linear system of equations 1-4 which can be solved by applying per-
turbation methods as in Judd (1999). An equivalent method is to log-linearise
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the system of equations around steady-state values and then solve the linearised
system using the algorithm proposed by Sims (2002).

3.2 Monetary policy regimes with no state-dependence

The assumption of rational expectations implies that within a constant param-
eter model, agents know that monetary policy will not change regardless of how
well the central bank delivers on its targets. And to ensure equations to 1-4
have a unique and stable solution the central bank must increase the real inter-
est rate in response to in�ation, meaning α > 1. The constant policy rule can
be used to examine regime changes if estimated across subsamples. However,
this approach ignores the e�ect of regime changes on agents expectations and
therefore is not consistent with the rational expectations hypothesis.

Therefore, explicitly modelling policy regimes requires introducing time-
variation in the behaviour of the monetary authority. I allow for two monetary
policy regimes in the following rule

Rt
R∗(st−1)

=

[
Rt−1

R∗(st)

]ρr [( Πt

Π∗(st)

)α(st)(Y t
Ȳ

)γ
εt

]
1−ρr (5)

st ∈ {1, 2} ,Π∗ ∈ {Π∗L,Π∗H} , α ∈ {αL, αH}

Π∗L < Π∗H , αL < αH (6)

Accomodative
InflationTargeting

st = 1
st = 2

{
Π∗H , αL
Π∗L, αH

}
where α(st) dictates the regime-dependent response of nominal interest rates

to the deviations of in�ation from a regime-dependent target Π∗(st). These two
parameters follow the same two-state �rst-order Markov process governed by
the latent variable st. Equations 5 and 6 suggest when st = 1, the central bank
adopts a relatively accommodative stance towards in�ation by setting a high
in�ation target Π∗H and responding relatively weaker to deviations away from
this target captured by parameter αL. It is worth highlighting that αL can now
be lower than 1 as shown in Davig and Leeper (2007). Alternatively, when st =
2, the central bank adopts a regime that targets in�ation relatively aggressively
by setting a low in�ation target Π∗L and responds with increased sensitivity to
deviations away from this target captured by αH . In this case, regimes are not
state-dependent, therefore, the probability of moving across regimes depends
solely on the regime that is currently in place. Implying constant transition
probabilities, which are represented by

pij = Pr(st = j|st−1 = i), i, j = 1, 2; p =

[
p11 p12

p21 p22

]
.

Agents in the model know the transitions probabilities and use this informa-
tion when forming expectations and therefore approach maintains the rational
expectations hypothesis. A drawback is that the probability of moving across
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regimes is independent of the state of the economy and how close the of macro
variables are to central bank targets.

3.3 Monetary policy regimes with state-dependence

The probability of switching away from the regime with a relatively accommoda-
tive stance towards in�ation is now assumed to also depend on key endogenous
variables z̃t−1.

p1jt = Pr(st = j|st−1 = 1, z̃t−1); i, j = 1, 2; z̃t−1 =
{

Π̂t−1 or Ŷt−1 or εt

}

p11t =
eV11(z̃t−1)

1 + eV11(z̃t−1)
with V11(Πt−1) = p̃11 + λ11(z̃t−1)

The transition probability p11 is now assumed to be a logit function that
depends either on the distance that output or in�ation are away from their
respective targets or the level of an exogenous monetary policy shock. Therefore,
I consider three types of state-dependence where p̃11 will determine the steady-
state level of the probability of remaining in the accommodative regime (regime
1) and λ11 measures the degree of state-dependence. If λ11 = 0, monetary
policy regimes are independent of the economy and transition probabilities are
constant. I assume that the aggressive in�ation targeting regime is not state-
dependent. This assumption reduces the number of parameters estimated and
is consistent with the view that after the adoption of in�ation targeting the
approach remained in place until the end of the sample considered.

Past in�ation

State Dependence 1 : p11t =
eV11(Π̂t−1)

1 + eV11(Π̂t−1)
with V11(Πt−1) = p̃11+λ11(Πt−1−Π∗H)

The �rst case of state-dependence allows the transition probability p11t to
depend on the level of past in�ation. It would seem plausible to assume that
λ11 is negative, this implies a high rate of in�ation above target level leads
to a greater probability of switching to the regime that aggressively targets
in�ation. As the economy is in the high in�ation regime the in�ation target
is assumed to take the larger target value Π∗H , the one of this regime. The
economic rationale for this form of state-dependence is that if the central bank
delivers high in�ation, they will be opposed by political or public pressures to
adopt a new regime.

Output Gap

State Dependence 2 : p11t
=

eV11(Ŷt−1)

1 + eV11(Ŷt−1)
with V11(Ŷt−1) = p̃11+λ11(Yt−1−Ȳ )
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The next case allows the monetary policy stance on in�ation to be driven
by the size of the output gap. The rationale for this form of state-dependence,
comes through the output gap being a central variable in determining the state
of the economy. Empirical literature on state-dependence in structural VARs
usually links the output gap or an alternative measure of economic slack with
determining wether the economy is in a recession or in a period of expansion
state. Following this line of thought, I would expect λ11 to be negative; imply-
ing that agents would expect the central bank to be more accommodative to
in�ation during periods where the output gap is negative.

Monetary policy shock

State Dependence 3 : p11t
=

eV11(εt)

1 + eV11(εt)
with V11(εt) = p̃11 + λ11(εt)

The last form of state-dependence allows the monetary policy shock to in-
�uence the probability of remaining in the accommodative regime. This rule is
included to proxy the form of state-dependence introduced by Chang, Tan and
Wei (2018). Within their research, an exogenous latent factor determines the
monetary policy regime in place and state-dependence is introduced by allow-
ing for correlation with monetary policy shocks. As the latent factor follows
an autoregressive process, their mechanism allows for an endogenous feedback
channel in which, the recent history of policy shocks lead to a cumulative e�ect
on the regime factor that eventually trigger a regime shift. The economic in-
tuition behind this mechanism is that assuming a monetary policy regime that
accommodates in�ation is in place a series of contractionary shocks agents would
lead to agents expecting an aggressive monetary policy regime would come in
its place.

4 Solving and estimating a general equilibrium

model with state-dependent regimes

Allowing the state of the economy to in�uence parameter changes within a gen-
eral equilibrium framework introduces additional challenges in both the solution
and estimation of non-linear DSGE models.

To solve the model, I apply the solution algorithm introduced by Barthélemy
and Marx (2017) and employ Bayesian methods for estimation.

4.1 Solution

To the extent of my knowledge, the only methods that are capable of solving gen-
eral equilibrium models with state-dependent parameter changes are those pro-
posed by Davig and Leeper (2008), Maih (2015), Barthélemy and Marx (2017)
and Forester el al. (2018). These papers focus on approximate local solutions
and follow a perturbation approach. I choose the algorithm of Barthélemy and
Marx (2017) as it provides determinacy conditions that ensure a unique and
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stable equilibrium. I o�er a brief description of the algorithm below but refer
the reader to Barthélemy and Marx (2017) for a detailed exposition.

The problem of solving the non-linear general equilibrium model with state-
dependent regimes described in the previous section can take the following rep-
resentation

Et[fst(zt+1, zt, zt−1, σvt)] = 0 (7)

Pr(st = j|st = i) = pij(zt−1, σvt) (8)

where zt is a vector of state variables, vt, is a vector of exogenous shocks,
and σ is a perturbation parameter. st represents the current regime. For any
regime i, fi() is a smooth function and Et is the expectation operator given in-
formation available at the time period t. Equation 8 rea�rms that regimes are
state-dependent, that is, st follows a Markov process with time-varying transi-
tion probabilities that are a function of lagged endogenous variables or contem-
poraneous exogenous shocks. The only restriction on the transition probabilities
is that state-dependence cannot be introduced by contemporaneous endogenous
variables.3

The central proposition of the solution algorithm of Barthélemy and Marx
(2017) is that the determinacy of the solution of the regime-switching model with
state-dependence above can be deduced from a simpler version of the model that
is quasi-linear with no state dependence. Therefore the �rst step of the algo-
rithm requires checking if the linearised model assuming no state-dependence
admits a stationary equilibrium. Dynare is used to take �rst derivates of the
model represents in equation 7 around a regime-speci�c steady-state assum-
ing transition probabilities are constant. The linearised model considering no
state-dependence is

Et [A(st, st+1)ẑt+1] + B(st)ẑt + C(st)ẑt−1 + σD(st)vt (9)

where matrices a(st, st+1), b(st), c(st), d(st) are regime-dependent matrices
constructed using the �rst derivates of equation 7 around a regime speci�c
steady-state assuming transition probabilities are constant.

The existence of a unique and stationary equilibrium in the simpler model
of equation 9 is then assessed against the determinacy conditions proposed in
Barthélemy and Marx (2012) that focus on models that are stable when solved
forward and are similar to the forward conditions of Cho (2015).

The �nal step of the solution derives the Taylor expansion of the true solution
for small perturbations around regime-dependent steady-states. The �rst-order
approximation of the model solution is

ẑt = Ω(st)ẑt−1 + ∆(st)vt (10)

where Ω(st),∆(st) are solution matrices that are a non-linear function of
the model parameters and transition probabilities. To enable feasible estima-
tion of the model in equation 7, I only consider the �rst-order approximation

3This is not the case for the solution method of Maih (2015), where contemporaneous
model variables can introduce state-dependence, however, these variables must have a unique
steady-state.
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and avoid additional computational burdens associated with higher-order ap-
proximations.4

Nevertheless, the complications introduced by allowing for state-dependent
regimes impose a relatively higher computational burden when compared to a
constant parameter model. Resulting in a considerably longer solution time,
where the main proportion of time is spent on checking for the determinacy of
the solution.

4.2 Estimation

I adopt a full information Bayesian approach to model estimation. This in-
volves combining the approximate likelihood function with prior distributions
and then employing a Markov chain Monte Carlo (MCMC) algorithm to approx-
imate the posterior distribution of the model parameters. Adjustments must be
made to the procedure used to approximate the likelihood function to allow for
time-varying transition probabilities. However, the main problem I faced when
estimating these models was the estimation time; primarily, due to the consid-
erably longer time it takes to solve the model given a set of parameters. This
computational burden is the primary reason why estimating state-dependent
models with independent changes in the volatility of structural shocks is left as
future work.

Likelihood

The model solution in equation 10 is combined with a measurement equation
to form the following state-space representation

yt = z∗(st) + Hẑt

ẑt = Ω(st)ẑt−1 + ∆(st)vt, vt ∼ N(0,Σv)

where yt represents the data used for estimation and z∗(st) represents the
steady state of model variables that depend on the data; speci�cally, in�ation,
output and the nominal interest rate.

The presence of di�erent regimes causes the predictions of the Kalman �lter
to be conditional on the entire history of the regimes in place throughout the
sample leaving the standard Kalman �lter intractable. Therefore, an approxi-
mation of the likelihood function is formed following the algorithm proposed by
Kim (1994). The key feature of this approximation is that a limited number of
predictions of model variables are carried forward from the Kalman �lter iter-
ations each period, and these are then collapsed at the end of each iteration.
Following Kim and Nelson (1999) and Mumtaz and Liu (2011), I track forecasts
that depend on the regime in place in period t, t− 1 and t− 2 and accounts for
eight possible paths of the of model variables. However, their approach must

4Forester et al. (2018) estimate state-dependent regime-switching general equilibrium mod-
els with second-order approximations. However, their solution method does not allow for
regime-dependent steady-states which are used in the application of this paper.
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be amended when considering state-dependent regimes. I do this by replacing
constant transition probabilities with their now time-varying counterparts. The
equations governing state-dependence are used to obtain the transition proba-
bilities that are then passed directly to the �ltering algorithm in the cases where
state-dependence is linked to lagged observations of the data such as output and
in�ation. However, the contemporaneous monetary policy shock is unobserved
and as the �lter proposes multiple predictions of this state variable an average
is used. Chang, Tan and Wei (2018b), take an alternative alternative approach
by augmenting their state-space with the latent factor determining the regime
in place.

The algorithm begins with a Kalman �ltering step to predict the state vari-
ables ẑt

ẑ
(h,i,j)
t|t−1 = Ωjẑ

(i,j)
t|t−1

P
(h,i,j)
t|t−1 = Ωj ẑ

(i,j)
t|t−1Ωj

′
+ ∆jΣv∆

j′

η
(h,i,j)
t|t−1 = yt − z∗

j

−Hẑ(h,i,j)
t|t−1

f
(h,i,j)
t|t−1 = HP

(h,i,j)
t|t−1 H′

ẑ
(h,i,j)
t|t = ẑ

(h,i,j)
t|t−1 + P

(h,i,j)
t|t−1H′(f

(h,i,j)
t|t−1 )−1η

(h,i,j)
t|t−1

P
(h,i,j)
t|t = (I − P (h,i,j)

t|t−1 H ′(f
(h,i,j)
t|t−1 )−1)HP

(h,i,j)
t|t−1

where ẑ
(h,i,j)
t|t−1 represent the predictions the model state variables that are

conditioned on past information t− 1 and the regime in place at time t, in the

previous period t − 1 and in t − 2. Similarly P
(h,i,j)
t|t−1 is the covariance of this

predictions, η
(h,i,j)
t|t−1 denotes the forecast error and f

(h,i,j)
t|t−1 represents covariance

of the forecast error. ẑ
(i,j)
t|t−1 represents the collapsed states and represents the

predictions of the model that are conditioned on past information t − 1, the
regime in place at time t and the regime of the previous period t − 1. The
collapsing stage reduces the 8 predictions of the states to 4 and is conducted
using weights based on the joint and marginal probabilities of the regimes in
place.

ẑ
(i,j)
t|t =

Pr(st−2 = h, st−1 = i, st = j)

Pr(st−1 = i, st = j)
ẑ

(h,i,j)
t|t

To obtain the probability terms, the Hamilton �lter is applied, this step has
been modi�ed to allow for time-varying transition probabilities.
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Pr(st−2 = h, st−1 = i, st = j|ϕt−1) = Pr(st = j|st = i, ẑt−1)×
2∑
g=1

Pr(st−3 = g, st−2 = h, st−1 = i|ϕt−1)

where |ϕt−1 represents conditioning on information in time period t−1, this
term updated with ϕt

5

Pr(st−2 = h, st−1 = i, st = j|ϕt) =

f(yt|st−2 = h, st−1 = i, st = j, ϕt−1)× Pr(st−2 = h, st−1 = i, st = j|ϕt−1)∑2
h=1

∑2
i=1

∑2
j=1 f(yt|st−2 = h, st−1 = i, st = j, ϕt−1)

where the conditional densities are de�ned as

f(yt|st−2 = h, st−1 = i, st = j, ϕt−1) = 2π−n/2
∣∣∣f (h,i,j)
t|t−1

∣∣∣−1/2

exp

(
−1

2
η

(h,i,j)
t|t−1

(
f

(h,i,j)′

t|t−1

)−1

η
(h,i,j)′

t|t−1

)
and the �lter probability of a regime j being in place at time is given by

Pr(st = j|ϕt) =

2∑
h=1

2∑
i=1

Pr(st−2 = h, st−1 = i, st = j|ϕt)

The by-products of the �lter can be used to the calculate marginal density
of yt

f(yt|ϕt−1) = f(yt, st−2 = h, st−1 = i, st = j|ϕt−1)

the approximate log likelihood is then given by

LL =

T∑
t=1

log(f(yt|ϕt−1)).

Finally, the likelihood of parameter sets that do not meet the following nor-
malisation condition are set to extremely low values that ensure the parameter
draw is discarded.

Accomodative
InflationTargeting

st = 1
st = 2

{
Π∗H , αL
Π∗L, αH

}
where Π∗L < Π∗H and αL < αH . This condition is imposed to ensures identi�ca-
tion and avoid the problem of label-switching

5Information sets include observations of the data and lagged levels of the states.
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Table 1: Priors distributions for parameters of State-Dependent MS-DSGE
models

Mean Standard Deviation Domain Density
α 1.5 0.25 R+ Gamma

π∗(annualised) 2 0.1 R+ Gamma
p̄11 0.95 0.15 [0,1) Beta
p22 0.95 0.15 [0,1) Beta
λ11 0 150 R Normal
ρr 0.75 0.4 [0,1) Beta
γ 0.15 0.4 R+ Gamma
κ 0.5 0.2 R+ Gamma
τ 1.5 0.4 R+ Gamma
β 0.998 Fixed [0,1) Beta
θ 10 4 R+ Gamma
ρξ 0.5 0.4 [0,1) Beta

ρu 0.5 0.4 [0,1) Beta
100σε 0.21 0.16 R+ Inv. Gamma
100σξ 1 0.52 R+ Inv. Gamma
100σu 0.38 0.38 R+ Inv. Gamma

Priors

Incorporating prior information when estimating model parameters provides
additional curvature for the posterior density and excludes implausible estimates
of parameters. The prior distribution for the model parameters is set following
Lubik and Schorfheide (2004) and Davig and Doh (2014) and are presented
in Table 1. The prior distributions of switching parameters, i.e., annualised
in�ation target π∗ and monetary policy sensitivity to in�ation α, are the same
in each regime. The prior distribution of the transition probabilities are centered
around values of 0.95; this implies an expected duration of each regime to be
20 quarters. For the state-dependent regime, prior beliefs are expressed on the
steady-state of the probability of remaining in this regime p̄11. The degree
of state-dependence λ11 follows a normal distribution centered around zero,
though the prior variance allows for a wide range of possible values. This prior
distribution is set to re�ect an agnostic belief of the extent of state-dependence.

MCMC algorithm

The prior distributions and the approximate likelihood are combined to approx-
imate the posterior distribution of model parameters. A combination of numer-
ical optimisers is used to �nd the mode of the posterior to initiate the MCMC
procedure. The simplex algorithm is �rst applied to re�ne starting values that
are used as input into for Chris Sims' optimisation routine CSMINWEL.
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The posterior mode is used to initiate the Metropolis-Hastings algorithm. I
run 100,000 replications, burning the �rst 50,000 and then save every 10th draw
to leave 5000 draws that form the approximate posterior.

4.3 Data

Estimation is based on U.S. data consisting of output, in�ation and nominal
interest rates from 1965Q1-2009Q1. The sample dates are chosen to re�ect the
two monetary policy regimes accounted for. For example, after the global �nan-
cial crisis, the Federal Reserve hit the e�ective lower bound of nominal interest
rates and turned to alternative instruments to conduct monetary policy. There-
fore, this regime does not �t either the accommodative or in�ation targeting
regimes I allow for.

Output is log real GDP per capita HP detrended following Lubik and Schorfheide
(2004). In�ation is annualised percentage change in CPI. Nominal interest rate
is the e�ective federal fund rate in percent. All data is obtained from the FRED
database.

The data is related to the state variables via the measurement equation

yt = z∗(st) + Hẑt GDP per CaptiaDetrendedt
Inflationt

InterestRatet

 =

 Π∗(A)
Π∗(A) + r∗(A)

+ 100

 ŷt
4π̂t
R̂



4.4 Simulation Evidence

The validity of the estimation procedure is tested on data generated from a
general equilibrium model with state-dependent monetary policy regimes. The
data generating process is the solution of a version of the model presented in
section 3 simpli�ed by assuming a constant in�ation target of zero. Therefore,
a monetary policy regime is now de�ned as a change in the Taylor rule response
to in�ation. The model is state-dependent as the probability of remaining in
the relatively accommodative regime is inversely related to the level of in�ation
in the previous period.

Accomodative
InflationTargeting

st = 1
st = 2

{
αL
αH

}
, αL < αH

State Dependence : p11t =
eV11(Πt−1)

1 + eV11(Πt−1)
with V11(Πt−1) = p̄11 + λ11(Πt−1)

The model parameters are set to values assumed in the calibration exercise of
Barthélemy and Marx (2017) . The economy is assumed to begin in steady state
and is then simulated for 1000 periods. The data used for estimation discards
the �rst 100 generated observations and is plotted Figure 1below alongside the
regimes in place at each period of the sample. Initial values for estimation are
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Figure 1: Generated data from MS-DSGE model
Note: The �rst three panels display simulated data generated from the model economy with state-
dependent monetary policy regimes, while, the last panel displays the history of regimes.

prior values except for the degree of state-dependence that is set to −200. The
estimation procedure is the same as the one described in the previous subsection
and the results of the MCMC algorithm in Table 2. Overall, the posterior mean
estimates are close to the parameters values used to generate the data.

5 Results

This paper estimates three models that allow state variables to in�uence the
probability of remaining in a monetary policy regime that is relatively accom-
modative towards in�ation. To evaluate the empirical signi�cance of the non-
linearities considered I also estimate a model with switching regimes that are
not state-dependent and a constant parameter model.

5.1 Model comparison

To assess which form of state-dependence, if any, is accepted by the data, I
calculate two model comparison measures. The �rst, the marginal likelihood, is
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Table 2: Parameters comparison of simulation exercise to evaluate s

Actual Estimated
α 1.1 4.3 1.22

[1.0,1.61]
4.46

[3.76,5.2]

p11 0.90 0.93
[0.93,0.94]

p22 0.95 0.98
[0.98,0.99]

λ11 −400 −375
[-375,-374]

ρr 0.7 0.74
[0.72,0.76]

γ 0.2 0.25
[0.2,0.27]

κ 0.17 0.24
[0.21,0.27]

τ 1 0.95
[0.70,1.16]

β 0.998
(Calibrated)

0.998
(Calibrated)

ρξ 0.8 0.67
[0.62,0.72]

ρu 0.8 0.8
[0.78,0.83]

100σε 0.1 0.1
[0.09,0.1]

100σξ 0.1 0.09
[0.065,0.1]

100σu 0.2 0.17
[0.16,0.18]
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obtained by integrating the approximate posterior density of the entire param-
eter space in each model and is expressed as

Pr(Yt) =

∫
θ

f(Yt|θ) Pr(θ)

where θ denotes the model parameters, f(Yt|θ) is the likelihood while Pr(θ)
represents the prior distributions. The marginal likelihood can be approximated
using the modi�ed harmonic mean (MHM) method which employs the following
theorem

1

Pr(Yt)
=

∫
Θ

h(θ)

f(Yt|θ) Pr(θ)
f(θ|Yt)dθ

where h(θ) denotes a weighting function, i.e. a probability density function
whose support is in Θ. Numerically the integral above can be evaluated as

1

Pr(Yt)
=

N∑
i=1

h(θi)

f(Yt|θi) Pr(θi)

where i = 1...N indexes the draws from the MCMC samples. Following
Geweke (1999) a normal density is used as the weighting function. Although
Sims, Waggoner and Zha (2008) suggest an elliptical density is more appropri-
ate for comparing time-varying DSGE model. However, in practice Davig and
Doh (2014) and Mumtaz and Liu (2011) �nd that the resulting estimate of the
marginal likelihood using a elliptical density is unstable and highly sensitive to
draws away from the posterior.

Taking into account the di�culty in the accurate computation of the marginal
likelihood for the class of models estimated, the deviance information criterion
(DIC) introduced by Spiegelhalter et al. (2002), is also used for model compari-
son. The DIC is a generalisation of the Akaike information criterion; penalising
model complexity and emphasising model �t to the data. The DIC is de�ned
as

DIC = D̄ + pD

where D̄ measures model �t and is referred to as the deviance, it is the
average of the log likelihood multiplied by -2 after the evaluated for each MCMC
draw and is given as

D̄ =
1

N

N∑
i=1

(−2 ln(Yt|θi))

pD = D̄ − (−2 ln(Yt|θ̄))

pD is the e�ective number of parameters and is de�ned as the deviance
subtracted by the log-likelihood evaluated at the posterior mean multiplied by
-2.
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Table 3: Log marginal likelihood and Deviance Information Criterion for each
estimated model

Marginal Likelihood DIC
Time-Invariant −1538 2893

Switching Rule: Without state-dependence −1327 2673
State-Dependent: lag In�ation −1278 2640

State-Dependent: lag Output −1320 2690
State-Dependent: Monetary Policy shock −1325 2678

.

Table 3 below reports the values of the log marginal likelihood and DIC for
each model. The preferred model achieves the maximum marginal likelihood
and the minimum DIC value.

Both measures indicate that the preferred model allows for state-dependence
in the form of deviations of in�ation in the previous period from its target levels
and �rmly reject the time-invariant model. However there are di�erences be-
tween the rankings implied by each measure. The marginal likelihood indicates
that models allowing for state-dependence �t better than the switching model
without state-dependence. Whereas the DIC shows a preference to the model
without state-dependence relative to those that allow state-dependence to be
linked to the output in the previous period or the contemporaneous monetary
policy shock.

Re�ecting the model comparison exercise, the remainder of the paper will
focus on comparing the results of the preferred model that allows for state-
dependence linked to in�ation and the model with switching monetary policy
but no state-dependence.

5.2 Parameter estimates

The estimation results are presented in the Table 4. Parameter estimates are
the median of the approximate posterior with the 90% interval in brackets. The
�rst column displays the parameter estimates of the time-invariant model; which
are broadly consistent with those of Lubik and Schorfheide (2004) and Davig
and Doh (2014). The second column displays the estimates of the switching
model without state-dependence, and the last column presents the estimates of
the switching model where the accommodative regime is state-dependent and
linked to the distance of in�ation away from its target in the previous period.

There are two main results worth highlighting. Firstly, regardless of
state-dependence, both the accommodative and the in�ation targeting regime
are well identi�ed. There is no overlap in the 90% intervals of the annulised
in�ation target π∗ and the policy response to in�ation α across the regimes.
The �ltered probabilities of the state-dependent model suggests that the
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Table 4: Parameter estimates of alternative approaches to modelling monetary
policy regime shifts

Constant Without state-dependence State-dependence πt−1

α 1.48
[1.13,2]

1.05
[.92,1.26]

2.86
[1.92,3.2]

1.02
[0.94,1.34]

2.4
[2.14,2.75]

π∗(annualised) 2.72
[1.45,3.96]

4.10
[3.18,4.76]

1.56
[1.04,2.14]

3.23
[2.78,3.65]

1.65
[1.17,2.04]

p11 - 0.90
[0.82,95]

0.91
[0.86,94]

p22 - 0.98
[0.96,0.99]

0.98
[0.97,0.99]

λ11 - - −33
[−52,−8]

ρr 0.87
[0.71,0.95]

0.71
[.53,.96]

0.76
[0.62,0.83]

γ 0.43
[0.15,0.63]

0.41
[0.23,0.65]

0.47
[0.34,0.64]

κ 0.64
[0.13,1.53]

0.43
[0.19,0.73]

0.32
[0.16,0.53]

τ 1.12
[0.78,1.63]

1.27
[0.56,1.83]

1.44
[1.13,1.75]

β 0.998
(Calibrated)

0.998
(Calibrated)

0.998
(Calibrated)

θ 8.42
[4.2,13.63]

10.25
[5.66,14.83]

11.25
[6.13,14.75]

ρξ 0.75
[0.44,0.94]

0.65
[0.46,0.74]

0.59
[0.55,0.67]

ρu 0.77
[0.6,0.84]

0.65
[0.52,0.74]

0.59
[0.48,0.67]

100σε 0.45
[0.21,0.72]

0.29
[0.15,0.42]

0.32
[0.18,0.47]

100σξ 1.01
[0.55,1.32]

0.89
[0.35,1.42]

0.74
[0.52,0.92]

100σu 0.53
[0.18,0.83]

0.63
[0.27,0.92]

0.72
[0.42,0.95]
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Figure 2: Filter probabilities from MS-DSGE model with state-dependent mon-
etary policy regimes
Note: The solid blue lines are the posterior mean �lter probabilities and the shaded area represents
the 68% credible sets.

accommodative regime was in place from 1973-1985 and is consistent with
Davig and Doh (2014) and Bianchi (2013). However, the model also identi�es
a recession period during 1991-1992 as period of accommodative monetary

policy and is contrary to the narrative provided by Davig and Doh (2014) and
Bianchi (2013). This inconsistency may be due to not allowing for stochastic
volatility in the structural shocks, as the available monetary policy switch

detects large sources of variations which is further highlighted by decrease in
�lter probability at the end of the sample.

The second result and the main �nding of this paper is that the degree of
state-dependence is signi�cant. λ11 is negative as expected, taking a value of
−35 and the 90% interval is wide ranging between -52 and -8 but does not
include zero which implies no state-dependence. This �nding indicates that
the mechanism is accepted by the data and reinforces the result of the model
comparison exercise. The posterior mean of λ11 is -33 and is much lower than
the values of -400 and -800 that Barthélemy and Marx (2017) consider in their
calibration exercise. Although, it is worth mentioning that as the time-varying
transition probabilities are a logisitic function of endogenous, a value of -33 still
implies a large degree of state-dependence.
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Figure 3: Time-varying transition probabilities
Note: The black solid, black dashed and blue dashed line represents values of λ11 at the posterior
median, 10% and 90% percentile respectively. The red line with crosses represents the constant
probability of the switching model with no state-dependence.

The economic interpretation of the estimated magnitude of λ11 is best de-
scribed by observing the dynamics of the time-varying transition probabilities.
The logit function is plotted in Figure 3 for values of in�ation ±10% away from
a target of 3.23% and the steady-state transition probability is �xed to the pos-
terior mean estimate of 0.91. The black solid, black dashed and blue dashed
line represents values of λ11 at the posterior median, 10% and 90% percentile
respectively. The red line with crosses represents the constant probability of
the switching model with no state-dependence. As in�ation rises above the tar-
get level the probability of remaining in the accommodative regimes decreases,
implying a reduction in the expected duration of the regime given by 1

1−p11t
.

For example, looking at the period identi�ed when the accommodative regime
was in place, in�ation in 1973 was around 5% and reached a peak level of close
to 15% percent in 1979. Concentrating on the posterior mean estimates would
result in transitions probabilities moving from 0.88 to 0.77 and decreasing the
expected duration of the regime from eight quarters to four.
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6 Impulse responses

Figure 4 presents the impulse responses conditional on the accommodative
regime being in place at each period of the considered horizon of ten quarters.
All shocks are in�ationary and are of the magnitude of 1-standard deviation.6

To evaluate the e�ect of state-dependence on the propagation of shocks, three
sets of responses are considered. The solid black line represents the impulse
response implied by the state-dependent model; the solid red line represents
the responses implied by the model estimated imposing no state-dependence
and lastly the dashed black line represents the responses of the state-dependent
model setting the degree of state-dependence to zero.

Overall, the propagation of the shocks is theoretically consistent, as expected
from structural models. The responses of in�ation are the main di�erence be-
tween the models estimated with and without state-dependence. The median
response of in�ation is considerably lower for each in�ationary shock in the
model with state-dependence.

This result could come from two possible channels; the di�erence between
the set of parameters estimated and the expectations e�ects generated by the
reduction in transition probability of remaining in the accommodative regime.
A way to isolate the expectations e�ects is the comparison of the black solid and
dashed line. However, these are almost identical suggesting the non-existence
of the expectations channel. Therefore, the lower in�ation responses implied by
the state-dependent model are primarily caused by the correspondingly lower
in�ation target relative to the model with no-state dependence.

As a robustness check, I also follow Barthélemy and Marx (2017) in
considering the di�erence between the expected responses of a simulated
economy that is in the accommodative regime and hit by a shock at time t
with the same economy in the absence of this shock. The bene�t of this
de�nition of the impulse response is that it considers multiple histories of

regimes and provides a way of observing whether the �ndings of Barthélemy
and Marx (2017) hold when their model is taken data. The impulse responses

are presented in Figure 5 and can be de�ned mathematically as
E[yt+k|εt = σε, st = 1]− E[yt+k|εt = 0, st = 1]. All shocks are again

in�ationary with a magnitude of 1 standard deviation. I label these responses
as unconditional for ease of comparison.

The signs of these responses are comparable with the conditional impulse re-
sponses. It is also worth noting the e�ect of the lower in�ation target in the
state-dependent model is now removed as these are di�erences from simulated
paths. The responses of in�ation are similar across the model with and without
state-dependence. The expectations channel now emerges but only appears to
dampen the response of in�ation to a markup shock.

6In�ationary shocks are de�ned as an positive preference shock , a positive markup shock,
and an expansionary monetary policy shock.
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Figure 4: Impulse responses conditional on being in the less aggressive monetary
policy regime
Note: The solid black line represents the impulse response implied by the state-dependent model;
the solid red line represents the responses implied by the model estimated imposing no state-
dependence and lastly the dashed black line represents the responses of the state-dependent model
setting the degree of state-dependence to zero.
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Figure 5: Unconditional impulse response functions
Note: The solid black line represents the impulse response implied by the state-dependent model;
the solid red line represents the responses implied by the model estimated imposing no state-
dependence and lastly the dashed black line represents the responses of the state-dependent model
setting the degree of state-dependence to zero. Following Barthélemy and Marx (2017), the econ-
omy is initially (t = 0) at the steady state, and then simulated until a approximation of the ergodic
distribution is formed and then impulse responses are then computed (t=100, following Barthélemy
and Marx (2017). Simulation is across 200000 trajectories of regimes and shocks.
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7 Conclusion

This paper investigates the possibility of monetary policy regime changes being
in�uenced by the state of the economy in a small scale New Keynesian model
estimated on U.S. data. I estimate versions of the model that allow the proba-
bility of remaining in a monetary policy regime that is relatively accommodative
towards in�ation to vary over time and depend on endogenous model variables;
in particular, either deviation of in�ation or output from their respective targets
or a monetary policy shock. The model comparison exercise indicates that U.S.
data is best described by the model that allows for state-dependence linked to in-
�ation and the model with switching monetary policy but no state-dependence.
Estimates from this model suggest that the period between 1973-1985 was asso-
ciated with a regime characterised by a relatively accommodative stance towards
in�ation. The degree of state-dependence is signi�cant and implies that while
in an accommodative regime, higher levels of in�ation increase the probability
of switching to a regime that aggressively targets in�ation. I present mixed
evidence that state-dependence alters agents expectations through impulse re-
sponse analysis suggesting a dampening of in�ation responses only to cost-push
shocks relative when the mechanism is shutdown. The estimated in�ation target
in the accommodative regime is lower when state-dependence is enabled.

For future work I would like to examine the e�ect of state-dependent mon-
etary policy regimes in richer models and also allow for stochastic volatility of
structural shocks. I would also like to encourage work on the micro-foundations
of state-dependence in New Keynesian models.

8 Appendix

For the empirical analysis presented in this paper, I consider a standard small-
scale New Keynesian monetary DSGE model. This model is admittedly elemen-
tary compared to those currently estimated by central banks but is selected as
this is one of the �rst passes at estimating a general equilibrium model with
state-dependent parameter changes. After log-linearization, the model without
regime changes can be summarised by the following three equations:

Ŷt = βEtŶt+1 − τ−1(R̂t − Etπ̂t+1 − (ξt − Etξt+1)) (11)

π̂t = βEtπ̂t+1 + κ(Ŷt +
ut
τ

) (12)

R̂t = ρr(R̂t−1) + (1− ρr)[α(π̂t) + γ(Ŷt) + εt] (13)

ẑt = Ŷt, R̂t, π̂t, ξt, ut,EtŶt+1,Etπ̂t+1︸ ︷︷ ︸
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vt = εr, εξ, εu,︸ ︷︷ ︸
θ = β, τ, κ, α, γ, σr, σξ, σu︸ ︷︷ ︸

where the index t denotes time belong to integers, Y is output, π is in�ation,
and R the nominal interest. The variables with hats i.e Ŷ , π̂ and R̂ express log
deviations from their respective steady-states.

Equation (1) is an intertemporal Euler equation obtained from the house-
holds' optimal choice of consumption and bond holdings. The current out-
put gap Ŷt depends on it's expected future value EtŶt+1, the real rate interest
R̂t − Etπ̂t+1 and a preference shock ξt. The parameter β is the households'
discount factor and, τ denotes the elasticity of intertemporal substitution.

The new Keynesian Phillips curve in (2) suggests that in�ation is related to
expected future in�ation Etπ̂t+1 via discount factor β, the output gap through
the slope term κ and a markup level ut.

The third equation describes the behavior of the monetary authority. The
central bank adjusts the nominal interest rate in response to deviations of in�a-
tion and output from their respective targets. The shock εt captures unantici-
pated deviations from the policy rule and its standard deviation is denoted by
σr. The parameter ρ is the degree of interest rate smoothing, and α and γ are
the reaction coe�cients to in�ation and output gaps respectively.

The preference shock ξt and markup ût, evolve according to univariate AR(1)
processes with coe�cients ρξ and ρu, their innovations have standard deviations
by σξ and σu.

After collecting the state variables, shock innovations and model parameters
in vectors, zt, vt and θ. This constant parameter model can be written in the
canonical form

AEt [ẑt+1] + Bẑt + Cẑt−1 + Dvt. (14)

The model is then solved using the methods of Sims (2002) and estimated
using Bayesian methods. The Kalman �lter is applied to obtain the likelihood
function.
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