
Baillie, Richard; Calonaci, Fabio; Cho, Dooyeon; Rho, Seunghwa

Working Paper

Long memory, realized volatility and HAR models

Working Paper, No. 881

Provided in Cooperation with:
School of Economics and Finance, Queen Mary University of London

Suggested Citation: Baillie, Richard; Calonaci, Fabio; Cho, Dooyeon; Rho, Seunghwa (2019) :
Long memory, realized volatility and HAR models, Working Paper, No. 881, Queen Mary
University of London, School of Economics and Finance, London

This Version is available at:
https://hdl.handle.net/10419/210438

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your
personal and scholarly purposes.

You are not to copy documents for public or commercial
purposes, to exhibit the documents publicly, to make them
publicly available on the internet, or to distribute or otherwise
use the documents in public.

If the documents have been made available under an Open
Content Licence (especially Creative Commons Licences), you
may exercise further usage rights as specified in the indicated
licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/210438
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/




Long Memory, Realized Volatility and HAR Models∗

Richard T. Baillie

Michigan State University, USA

Kings College, University of London, UK

Rimini Center for Economic Analysis, Italy

Fabio Calonaci

Queen Mary University of London, UK

Dooyeon Cho

Sungkyunkwan University, Republic of Korea

Seunghwa Rho

Emory University, USA

January 8, 2019

(Initial version: June 2018)

Abstract

The presence of long memory in Realized Volatility (RV ) is a widespread stylized fact.

The origins of long memory in RV have been attributed to jumps, structural breaks, non-

linearities, or pure long memory. An important development has been the Heterogeneous

Autoregressive (HAR) model and its extensions. This paper assesses the separate roles of

fractionally integrated long memory models, extended HAR models and time varying pa-

rameter HAR models. We find that the presence of the long memory parameter is often

important in addition to the HAR models.
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1 Introduction

The long memory feature of many time series has long been of interest to statisticians, econo-

metricians and researchers in many of the physical sciences, who have become aware of the

very strong persistence in the autocorrelations and other measures of the temporal dependence

of some time series. Hurst (1951, 1957) and Mandelbrot and Wallis (1968) noted the phenom-

ena in river flow and hydrological data; and Greene and Fielitz (1977) in financial data. Some

of the historical developments are discussed by Baillie (1996). One of the fascinations with long

memory processes is their inherent ability to bridge both persistent stationary and non station-

ary time series. One of the most ubiquitous and also important examples of long memory are

to be found in Realized Volatility (RV ) time series.

The construction of observable RV series from high frequency financial market data has

now become standard practice in empirical finance. One of the attractions with using RV is to

reduce emphasis of the formulation and choice of model, with a direct measurement of volatil-

ity. It has been found that RV time series are characterized by very strong persistence in their

autocorrelations for a wide range of financial assets. An interesting issue has been to provide

an explanation for this phenomenon; and to assess whether it could be due to jumps, structural

breaks, omitted nonlinearities, contemporaneous aggregation, or to just “pure long memory”.

However, a popular way of describingRV has been the Heterogeneous Autoregressive (HAR)

model, which was originally due to Corsi (2009). The model is based on an additive cascade of

partial volatilities from high frequencies to low frequencies; with each additive cascade hav-

ing close to an AR(1) structure. This idea of multiple components in the volatility process has

been justified in terms of the differences of agents risk profiles, institutional structures, tempo-

ral horizons, etc. In general, theHARmodel appears attractive as a simplified regression based

procedure for approximating the persistence of many RV time series.

This paper examines the relationship between long memory models, the HAR model and

the extended versions of the HAR model, which include semivariances, signed jump varia-

tions, and “good” and “bad” volatility. We estimate HAR models from simulated fractional

white noise processes and find the simulated estimates have certain similarities with the HAR

estimates from actual RV data. We also estimate by MLE a restricted long memory model de-

noted by RARFIMA, which includes the long memory feature and also embodies parameter
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restrictions from the HAR model. The model is theoretically very similar to the basic HAR

model with long memory disturbances and is also estimated by a MLE procedure. The overall

conclusion is that in many cases both the long memory feature and theHAR structure for short

and medium term memory can be important in representing variation within RV series.

Finally, we also consider a time varying parameter, kernel weighted regression approach to

estimate HAR models. These estimated models indicate that the relative importance of the

partial volatility cascades typically varies throughout the samples. Such a Time Varying Para-

meter (TV P ) model, denoted by TV P − HAR, is quite effective in representing some of the

long memory characteristics of RV time series. However, model selection information based

criteria generally favor the simplerRARFIMA structure with constant long memory andHAR

parameters.

The plan of the rest of the paper is as follows: the next section defines some of the theoretical

aspects of RV and also includes details of the statistical quantities regularly implemented and

arising from RV series. Section 3 briefly describes the RV data and some of their basic char-

acteristics; while Section 4 describes the long memory models and inferential methods and

reportMLE of bothARFIMAmodels and also reports semi parametric estimation of the long

memory parameter. Section 5 describes the various HAR models and their estimates, includ-

ing various extensions including jumps and good and bad volatility components. Section 6 is

concerned with different methods for attempting to distinguish between HAR and long mem-

ory and also for combining these approaches. In particular, we provide simulation evidence

on the properties of OLS estimation of HAR models when the true data generating process is

a fractional white noise, long memory process. This section also includes results on the MLE

of unrestricted ARFIMA(22, d, 0) and RARFIMA(22, d, 0) models, where the restrictions are

from the HAR formulation. We also include MLE of extended HAR models which have long

memory disturbances. Section 7 describes an alternative approach based on a time varying pa-

rameter HAR model which involves kernel weighted regressions with time varying regression

coefficients based on the method by Giraitis et al. (2014). Section 8 discusses some of the results

concerning comparisons of the models and also provides a brief conclusion.
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2 Basics of Realized Volatility

The variable RV is a model free measurement of financial market volatility and was proposed

by Andersen et al. (2001, 2003) and Barndorff-Nielsen and Shephard (2002). We define a con-

tinuous time diffusion process for the log of price (pt) as

dp(t) = µ(t)dt+ σ(t)dW (t), t ≥ 0,

where dp(t) is the change in the logarithmic price, µ(t) denotes the drift term which has con-

tinuous and locally bounded variations, σ(t) is a strictly positive volatility process and W (t) is

standard Brownian motion. Assuming a unit for the time length of one day, daily returns can be

expressed as

rt = p(t)− p(t− 1) =

∫ t

t−1
µ(s)ds+

∫ t

t−1
σ(s)dW (s).

The volatility of an asset’s returns is related to the evolution of the spot volatility (σt) so that the

distribution of returns depends on both the drift and spot volatility components; hence

rt ∼ N
(∫ t

t−1
µ(s)ds,

∫ t

t−1
σ2(s)

)
.

RV at day t isRVt and is defined as the sum of high frequency, intraday squared returns. Hence

RVt =

m∑
τ=1

r2t,τ ,

where rt,τ = pt,τ − pt,τ−1 is the intraday return based on m intraday log-prices of the asset

{pt,τ}mτ=1 within day t observed at m fixed time intervals of τ = 1, . . . ,m. Andersen et al. (2003)

showed that under suitable conditions, including the absence of serial correlation in the intra-

day returns, RVt is a consistent estimator of integrated volatility (IVt). Hence

RVt =

m∑
τ=1

r2t,τ
p−→
∫ t

t−1
σ2sds.

The basic RV model has been extended to include the effects of jump components. Suppose

the log-price process is a Brownian Semi-Martingale with Jumps, then

dp(t) = µ(t)dt+ σ(t)dW (t) + κ(t)dq(t) t ≥ 0,
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where the jump component is κ(t)dq(t), with κ(t) as the size of the jump and dq(t) as a contin-

uous process with dq(t) = 1 if there is a jump at time t and is 0 otherwise. The corresponding

discrete-time daily returns are

rt =

∫ t

t−1
µ(s)ds+

∫ t

t−1
σ2(s)dW (s) +

N(t)∑
j=N(t−1)+1

κ(sj),

where N(t) counts the number of jumps occurring with possibly time varying intensity and

jump size κ(sj). In the presence of jumps, RVt converges uniformly in probability to

RVt
p−→
∫ t

t−1
σ2 (s) ds+

N(t)∑
j=N(t−1)+1

κ2(sj).

Hence, RVt is a consistent estimator of IVt only in the absence of jumps, while otherwise it

converges to a quantity that also accounts for the jump process,
∑N(t)

j=N(t−1)+1 κ
2(sj). Hence RV

provides an ex-post measure of the true total variation including the discontinuous jump part.

To decompose volatility into a component that relates only to positive high-frequency re-

turns and a component that relates only to negative high-frequency returns, we use the realized

semivariance quantity proposed by Barndorff-Nielsen and Shephard (2007). The positive (neg-

ative) realized semivariance RS+t (RS−t ) is computed by summing the squared intraday returns

associated with an increase (decrease) in the asset price. Hence,

RS+t =
m∑
τ=1

r2t,τI {rt,τ > 0} p−→ 1

2

∫ t

t−1
σ2sds+

∑
t−1<s≤t

∆p2sI {∆ps > 0}

RS−t =

m∑
τ=1

r2t,τI {rt,τ < 0} p−→ 1

2

∫ t

t−1
σ2sds+

∑
t−1<s≤t

∆p2sI {∆ps < 0} ,

where I (·) is an indicator function and ∆ps = ps − ps− captures a jump, if present. Note that

RVt = RS+t +RS−t .

Following Patton and Sheppard (2015), we compute the signed jump variation as

∆J2t = RS+ −RS− p−→
∑

t−1<s≤t
∆p2sI {∆ps > 0} −

∑
t−1<s≤t

∆p2sI {∆ps < 0} .

Note that the continuous part of RV cancels out and only the jump components remain. We

analyze whether the impact of jumps depends on the sign of positive and negative jump vari-
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ation. Hence, following Patton and Sheppard (2015), we further decompose the signed jump

variation as

∆J2t = ∆J2+t + ∆J2−t (1)

=
(
RS+t −RS−t

)
I
{
RS+t −RS−t > 0

}
+
(
RS+t −RS−t

)
I
{
RS+t −RS−t < 0

}
.

Consistent estimation of the continuous part of the volatility, or IV , has been achieved by

Barndorff-Nielsen and Shephard (2004), who proved that under the regularity condition that

jumps have finite activity, the normalized sum of products of the adjacent absolute values of

returns, i.e. Bipower Variation (BV ), is a consistent estimator of IV even in the presence of

jumps. At day t, BV is defined as

BV 0t =
π

2

m∑
τ=2

|rt,τ | |rt,τ−1| →
p

∫ t

t−1
σ2sds as m→∞.

Rather than using BV 0 directly, we use an average of skip-0 through skip-4 BV estimators as

in Patton and Sheppard (2015),

BVt =
1

5

4∑
q=0

BV q
t ,

where skip-q BV estimator is defined as

BV q
t =

π

2

m∑
τ=q+2

|rt,τ | |rt,τ−1−q| .

The skip-q BV estimator corrects small sample bias of the skip-0BV estimator.

Over the last few years, many techniques have been proposed to estimate, or to at least

proxy, asset return volatility from high frequency data. See Meddahi et al. (2011) and Andersen

et al. (2006) for details. Some methods have focused on correcting for microstructure noise

caused by trade imperfections, market frictions, or informational effects. The most commonly

used technique for computingRV is known as downsampling, which conventionally uses sam-

pling intervals from 5 to 30 minutes to derive daily RV series. This method does not use all

the high frequency data; and other methods have been suggested in the literature to try to deal

with the presence of possible micro-structure noise. In particular, Bandi and Russell (2008) have

considered the idea of finding the optimal sampling frequency; while Aït-Sahalia et al. (2005)
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have used anMLE of a model forRV which assumes additive i.i.d. microstructure noise. Zhou

(1996) considered corrections for first-order autocorrelation type noise in high frequency data;

Barndorff-Nielsen et al. (2008) use a realized kernel to correct for autocorrelation in a more gen-

eral approach. Zhang et al. (2005) and Zhang (2006) use two-scale and multi-scale estimators

which combine subsampled RV computed at lower and higher frequencies.

However, as noted by Liu et al. (2015), there is uncertainty as to the desirability and also

choice of the most appropriate method. After considerable amount of initial data analysis and

investigation of possible outliers and noise, we decided to use 5-minute data for the computa-

tion of RV . This seemed the most appropriate method for calculating RV given the purpose

of this study is to compare, contrast and to combine long memory and the HAR modeling ap-

proaches.

3 Data

In order to assess the relative merits ofHAR and long memory models we use five minute high-

frequency, intraday returns data on various assets. We examine five spot exchange rates of the

Australian dollar (AUD), the Canadian dollar (CAD), the Euro (EUR), the UK British pound

(GBP ), and the Japanese yen (JPY ) all against the numeraire US dollar (USD); for the period,

January 2, 2004 through December 29, 2017. In line with previous studies we exclude the slower

trading patterns induced over the weekends by discarding all observations from Friday 21:00

GMT through Sunday 22:00 GMT and measure the rates as the midpoint of the logarithms of

the bid and ask rates. This provides a sample size of T = 3, 627 daily observations from which

to compute RV and the semi-variance measures.

For the equity market data, we use the S&P500 index which consists of five minute tick

interpolated prices from January 2, 2001 through December 31, 2016. The trading hours span

from 9:30 through 16:00 with a total of 78 intraday observations and the total number of the

trading days after adjustments is T = 4, 172 observations.

[FIGURE 1 ABOUT HERE]

[FIGURE 2 ABOUT HERE]

Figure 1 plots the time paths of the various RV series and Figure 2 plots the first 50 lags of

the sample autocorrelation function of theRV series. It can be seen that all the autocorrelation
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functions for the RV series exhibit the strong persistence that is consistent with long memory

behavior.

4 Long Memory and RV

Some of the statistical features of the various RV series may be described in terms of the frac-

tionally integrated, or long memory time series process, as defined by

(1− L)dyt = ut, t = 1, . . . , T,

where L is the lag operator, ut is a short memory, I(0) process, and the observable time se-

ries yt is defined to be fractionally integrated of order d, or I(d). In this case yt is generally the

RV series. The process generates hyperbolic rates of decay in the autocorrelation function and

Impulse Response Function (IRF ). The I(d) process is defined as having partial sums that con-

verge weakly to fractional Brownian motion, while d represents the degree of “long memory”, or

persistence in the series. For −0.5 < d < 0.5 the process is stationary and invertible; while for

0.5 ≤ d ≤ 1, the process does not have a finite variance, but still has a finite cumulative impulse

response function. The IRF , or infinite order moving average representation of this process, is

given by

yt =
∞∑
k=0

ψkεt−k,

where E(εt) = 0, E(ε2t ) = σ2, E(εtεs) = 0, s 6= t. For large lags k, these coefficients decay at

the very slow hyperbolic rates of ψk ∼ c1k
d−1 and similarly the infinite autoregressive repre-

sentation coefficients decay at the rate of c2k−d−1 and autocorrelation coefficients at the rate of

c3k
2d−1, where c1, c2 and c3 are constants. The simplest discrete time parameterization is the

ARFIMA model, which combines long memory with short run I(0) dynamics and provides a

flexible extension of the ARIMA model and was introduced by Granger (1980), Granger and

Joyeux (1980), and Hosking (1981). The simplest time domain workhorse model for long mem-

ory processes is the ARFIMA(p, d, q) model of the form

φ(L)(1− L)dyt = θ(L)εt, (2)
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where φ(L) and θ(L) are polynomials in the lag operator of orders p and q respectively. Maxi-

mization of the Gaussian log likelihood is accomplished with respect to the complete vector of

parameters ϑ′ =
(
d, φ1, ...φp, θ1, ...θq, σ

2
)

. Under these conditions, the asymptotic distribution

of the MLE will be

T 1/2
(
ϑ̂− ϑ0

)
→ N{0, I(ϑ0)−1},

whereϑ0 denotes the true value of the vector of parameters and I(ϑ0) is the information matrix.

The results follow from Fox and Taqqu (1986) and for sake of simplicity a demeaned process is

assumed. Then the MLE are T 1/2 consistent and asymptotically Normal when the uncondi-

tional mean is zero or known. The inclusion of an intercept parameter will result in a T 1/2−d

consistent estimator of the intercept. In some circumstances the assumption of Gaussianity

may be inappropriate and can be replaced with the assumption that the innovations in equa-

tion (2) merely satisfy some mild mixing conditions. Given the results in Hosoya (1997), the

implementation of quasi MLE is then straightforward; and in particular,

T 1/2
(
ϑ̂− ϑ0

)
→ N{0,A(ϑ0)

−1B(ϑ0)A(ϑ0)
−1},

whereA(·) is the Hessian andB(·) is the outer product gradient, both of which are evaluated at

the true parameter values ϑ0; see Baillie and Kapetanios (2013) for further details.

It is worth noting that long memory characteristics can be induced in a time series by many

mechanisms. In particular, Granger (1980) showed that the aggregation of contemporaneous

stationary AR(1) processes could lead to an aggregate process with fractional integration. Also,

occasional break points as in Granger and Hyung (2004); and forms of regime switches, as

shown by Diebold and Inoue (2001), can also give rise to the appearance of long memory. In

many instances there may not be any obvious explanation as to the occurrence of long memory

in time series data. However, such fractional processes can simply be regarded as more general

forms of the Wold decomposition than the exponential decay implied by processes with rational

spectra, or stationary and invertible ARMA representations. Hence, in some sense, hyperbolic

rates of decay do not appear any more in need of justification than the standard exponential

rates of decay.

Table 1 reports the MLE of ARFIMA(p, d, 0) models where the order p is selected on the
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basis of minimizing Schwarz (1978) BIC for p ∈ {0, 1, 2, ..., 10}. This is predicated on the as-

sumption that the short memory components are sufficiently well approximated by a finite or-

der AR(p) process. For some of the RV series it was found necessary to have quite high order

autoregressive components to deal with fairly substantial short memory I(0) components in

addition to the long memory property. The estimated long memory parameters were statisti-

cally significantly different from zero for all of the RV series with several cases of borderline

non stationarity, which still imply finite cumulative IRFs. In all cases the estimates of the short

memory parameters are suppressed in the interests of conserving space and all the emphasis is

on the estimation of the long memory parameter, d.

A more parsimonious parameterization of the short memory component can theoretically

be found from the ARFIMA(p, d, q) model; and estimates of this model are also reported in

Table 11. It should be noted that while the ARFIMA(p, d, q) models are expected to provide a

more parsimonious parameterization of the short memory components, their use can be com-

plicated due to near cancellation of AR and MA roots. In general there is reasonable consis-

tency across the time domain results with borderline non stationary fractional integration for

many of theRV series; and we conclude that theRV series appears to be quite well suited to be

represented by the fractionally integrated ARFIMA models.

[TABLE 1 ABOUT HERE]

Following the seminal paper of Geweke and Porter-Hudak (1983), an alternative procedure

is to use semi parametric estimation of the long memory parameter, which complements the

linear ARFIMA model estimation in Table 1. We report estimates of the long memory para-

meter from two semi parametric procedures. First, the Local Whittle (LW ) estimator, which is

obtained by minimizing the objective function,

RLW (d) = ln

 1

m

m∑
j=1

ω2dj I(ωj)

− 2d

m

m∑
j=1

ln(ωj),

1The strategy for model selection of ARFIMA(p, d, q) requires estimation of models of orders of p ∈
{0, 1, 2, ..., P} and q ∈ {0, 1, 2, ..., Q}where P andQ are the maximum orders of the short memory parameters being
considered. In this study P = Q = 8, so that the implementation of minimizing the BIC required estimation of 81
models.
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with respect to d, where ωj = (2πj) /T for j = 1, 2, ..., T and I(ωj) is the periodogram defined as,

I(ωj) =
1

2πT

∣∣∣∣∣∣
T∑
j=1

yte
iωjt

∣∣∣∣∣∣
2

.

The estimator depends on the choice of bandwidth, m, which is generally chosen as m =
⌊
T δ
⌋

where 0 < δ < 4/5; and where b·c denotes the integer part. Several important extensions of the

LW estimator have been introduced in the literature. In particular, Shimotsu and Phillips (2005)

have proposed the Exact Local Whittle (ELW ) approach using a “corrected” discrete Fourier

transform of the series, where the objective function now becomes,

RELW (d) = ln

 1

m

m∑
j=1

I∇dy(ωj)

− 2d

m

m∑
j=1

ln(ωj),

where∇d = (1− L)d. Given the distinct possibility of non stationary long memoryRV series we

also use the method of Abadir et al. (2007), who have introduced the Fully Extended Local Whit-

tle (FELW ) where d ∈ (p− 1/2, p+ 1/2], for p = 0, 1, 2, ..., which has the particular attraction of

covering the region of nonstationarity for long memory processes. Then,

IFELW (ωj) =
∣∣1− eiωj ∣∣−2p I∇py(ωj),

where the FELW is obtained by minimizing,

RFELW (d) = ln

 1

m

m∑
j=1

j2dIFELW (ωj)

− 2d

m

m∑
j=1

ln(j).

The LW is known to be a consistent estimator of d in the stationary region of −1/2 < d < 1/2

with m1/2
(
d̂LW − d0

)
→ N {0, (1/4)} . While the ELW and FELW estimators are known to be

consistent for all values of d.

A particularly important issue concerns the choice of bandwidth, denoted by m, which is

generally chosen in the range of T 1/2 ≤ m ≤ T 4/5. The LW and FELW statistics are also

reported in Table 1 and similarly to the time domain methods they find very significant long

memory features of theRV series. However, both the LW and FELW statistics are very depen-

dent on the choice of bandwidth, m. For this reason the LW and FELW estimators are also

11



reported for a selection of bandwidth choices; including m = T 0.5, which tends to be the con-

ventional choice, and also m = T 0.3 and m = T 0.7. The latter gives considerably more weight

to the short frequency components that are apparently of importance as evidenced by the need

for relatively large number of short memory parameters selected in the ARFIMA estimation

and also the HAR model considered later.

Overall, there is clear evidence of long memory characteristics from the ARFIMA estima-

tion and also the complementary LW and FELW semi parametric results. The overall results

suggest that the estimated long memory is either inside, or very close to the region of nonsta-

tionarity.

It is possible that the very significant estimates of the long memory parameter are due to

nonlinear effects, or due to structural breaks. In particular, Granger and Hyung (2004) show that

occasional break points processes are hard to distinguish from a pure fractional, I(d) model.

Alternative nonlinear explanations have centered on the possibility of regime switches giving

rise to the appearance of long memory in a time series; see Granger and Ding (1996), Granger

and Teräsvirta (1999) and particularly Diebold and Inoue (2001) who showed that a Markov

Switching regime change model that can generate a long memory time series. Davidson and

Sibbertsen (2005) discuss other regime switching and nonlinear models which can generate

long memory. For these reasons we also used the tests of Sibbertsen (2004) and Wenger et al.

(2018), who have provided a CUSUM test to test for structural breaks in the intercept of long

memory process. This change in mean test is used to check the robustness of the long memory

hypothesis; and on applying this test to the fractionally filtered series, it is denoted asCUSUM−

∇d. The test statistic is defined as

QT = sup
r∈(0,1)

∣∣∣∣∣∣
(
σ̂2T

)−1/2 [rT ]∑
t=1

û∗t

∣∣∣∣∣∣ ,
where (1 − L)d̂yt = y∗t , and d̂ is the LW or FELW . Furthermore û∗t = y∗t − y∗, where y∗ =

1
T

∑T
t=1 y

∗
t and σ̂2 = 1

T

∑m
j=1 û

∗2
t . Wenger et al. (2018) show that the limiting distribution of QT

is pivotal with respect to d̂ and that the test statistic follows the conventional distribution as

defined by Ploberger and Krämer (1992). The critical values for QT at the 0.01, 0.05 and 0.10

significance levels are 1.63, 1.36 and 1.22 respectively. The CUSUM statistics results indicate

that the only RV series with some evidence for structural change in the mean is the Australian
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dollar.

[TABLE 2 ABOUT HERE]

5 HAR Models

The HAR models require defining h period averages of the observed RV series

RV t,t+h =
1

h

h∑
i=1

RVt+i,

where h = 1, 5, and 22 for the one day, one week, and one month cumulative volatilities. This

three parameter HAR model is motivated by the additive partial cascade of volatilities model.

On further defining RV
w
t = 1

5

∑4
j=0RVt−j as the weekly average, and RV

m
t = 1

22

∑21
j=0RVt−j as

the monthly average; then the HAR model reduces to

RV t,t+h = φ0 + φdRVt +

(
φw
5

) 4∑
i=0

RVt−i +

(
φm
22

) 21∑
i=0

RVt−i + εt+h (3)

which is a restricted parameter version of the general AR(22) model and is represented as,

RV t,t+h = φ0 + φd RVt + φwRV
w
t + φmRV

m
t + εt+h. (4)

The original model was proposed by Corsi (2009) to explain the persistence of RV series from

the heterogeneity of an agent’s behavior over distinct time horizons. The HAR model is gener-

ally described as an additive volatility cascade, from high frequencies to low frequencies; with

each additive cascade having close to anAR(1) structure. The notion of multiple components in

the volatility process is justified in terms of differences of agents risk profiles, institutional struc-

tures, temporal horizons, etc. The model has been extended by Patton and Sheppard (2015) to

include separate effects of volatility due to positive and negative returns and to include good

and bad volatility through the signed jump variation. While McAleer and Medeiros (2008) have

considered an alternative model formulation which combines smooth transition regimes and

long range dependence.

[TABLES 3 AND 4 ABOUT HERE]

Estimates of the HAR model are reported in Table 3 for the six RV series. The OLS esti-
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mates of the parameters are largely consistent with those of previous studies with the estimated

daily HAR parameter, φd being statistically significant and in the range of 0.22 to 0.42 for five of

the RV series. The value of the estimated φwvaries substantially across series and is generally

statistically significant. While the estimated φm parameter is in the range of 0.33 to 0.54 and is

very significant for all the six RV series. On comparing the estimated ARFIMA models in Ta-

ble 1 and the estimated HAR models in Table 3, it is clear that the ARFIMA models dominate

the HAR models in terms of BIC model selection. Also, in terms of BIC, the ARFIMA(p, d, 0)

model is preferred to theHAR and extendedHARmodels with semivariances, for all assets ex-

cept Canada. While the ARFIMA(p, d, 0) is preferred to EHAR with jumps for all but Canada

and the Euro; and the ARFIMA(p, d, q) is better than HAR and EHAR with semivariances for

all assets; and the ARFIMA(p, d, q) is preferred to EHAR with jumps for all but Canada. In

summary, when theHAR, or extendedHAR are combined with long memory the estimate of d

is significant. However, theARFIMA(p, q, 0) andARFIMA(p, d, q) models were preferred over

HAR or extended HAR in the majority of cases.

Table 4 reports estimates of three versions of theEHARmodel which supplement the terms

in the basic HAR model to include signed semivariances which distinguish between positive

and negative returns in equation (5), signed jumps with BV in equation (6) and separate posi-

tive and negative signed jumps as in equation (1) with BV in equation (7). These models are

RV t,t+h = φ0 + φ+d RS
+
t + φ−d RS

−
t + φwRV

w
t + φmRV

m
t + εt+h (5)

RV t,t+h = φ0 + φJ∆J2t + φCBVt + φwRV
w
t + φmRV

m
t + εt+h (6)

and

RV t,t+h = φ0 + φ+J ∆J2+t + φ−J ∆J2−t + φCBVt + φwRV
w
t + φmRV

m
t + εt+h. (7)

The last three models were all introduced in Patton and Sheppard (2015). Exactly the same

conclusions emerge from a comparison of the estimated ARFIMA models in Table 1 with the

extended HAR model in Table 4, where the daily RV component is omitted and replaced with

RS+ and RS− respectively. The φC parameter is associated with the “continuous” BV , which is

intended to make the continuous part of RV robust to the presence of the jumps. If there are

no jumps, then daily RV should be asymptotically identical to BV . Good jumps lead to lower
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volatility, and bad jumps lead to higher volatility in longer horizons. There is evidence in the

second panel of Table 4 that the presence of the signed jump variables are effective in explain-

ing the RV for Japan, but not for the other RV exchange rate series. However, the parameter

associated with the negative jump variable is highly and negatively significant for the S&P500

RV series. Similar results have been found by Busch et al. (2011).

However, the Bipower Variation BVt is highly significant and replaces the need for the daily

RV variable associated with the φd parameter. Interestingly, the estimated φm parameter is be-

tween 0.33 and 0.46 across the various assets RV series. The importance of the essentially

AR(22) term seems to indicate the need for higher order dynamics or for long memory. This

possibility is pursued in the next section.

6 Distinguishing HAR from Long Memory

So far we have presented favorable evidence for the presence of long memory and also for the

validity of theHARmodel. WhileBIC generally favors the long memory models overHAR it is

also worth further investigation to try to distinguish between these two theories. One issue with

empirical work in this area is to accurately distinguish between long memory and very persis-

tent short memory autoregressive behavior. This problem becomes particularly apparent in the

high correlation between the estimated long memory parameter and the estimated short mem-

oryARMA parameters and resulting instability of these parameter estimates in the presence of

higher order parameterizations. The same problem is apparent in the frequency domain LW

and FELW where the choice of bandwidth is so critical and the noted poor performance of

these semi parametric estimators in the presence of very persistent autocorrelation; e.g. see

Baillie and Kapetanios (2008) and Nielsen and Frederiksen (2005).

In this section we tackle these problems in several different directions. First, we estimate

HAR models from simulated long memory processes and tabulate the properties of the result-

ing simulatedHARparameter estimates. Second, we estimate both unrestrictedARFIMA(22, d, 0)

models and restricted ARFIMA models, (denoted as RARFIMA), where the parameter re-

strictions are implied by the HAR model. Third, we estimate by MLE a similar theoretical

model which estimates HAR models with long memory disturbances. The final and fourth ap-

proach is to use a FELW estimate of d to filter out the long memory properties of theRV series
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and to then estimate anAR(22) model to the filtered series. All of these methods provide differ-

ent pieces of evidence on the issue of distinguishing one model, or property, from another.

6.1 Simulating Estimated HAR Models from a Long Memory Process

The first approach is to generate realizations from ARFIMA(0, d, 0) model with different long

memory parameters of d ∈ {0.25, 0.30, 0.35, 0.40, 0.45}. Each generated series has T = 10, 000

observations and we perform 5, 000 replications for each design, to estimate the basic three pa-

rameter HAR models. In many respects the simulation results in Table 5 replicate many of the

features of HAR estimation in this paper and other literature. The mean of the simulated esti-

mated φd parameter is 0.20 for a data generating process of ARFIMA(0, 0.25, 0) and increases

monotonically as d increases to 0.41 for when the simulated series is from anARFIMA(0, 0.45, 0)

process. The interval 0.37 to 0.44 provides a 95% coverage of the monthly HAR parameter φd

from an ARFIMA(0, 0.45, 0) design and so appears relatively precise. Similar degrees of preci-

sion are found for the other simulated parameters. However, φw and φm have much less varia-

tion with the value of d and lie in the range of 0.23 to 0.29 for all cases.

The above results can be compared with those in Table 3, which have many similar features;

although GBP has considerably lower φd than predicted and rather higher φm than predicted.

6.2 Restricted ARFIMA Models

The second line of investigation focuses on usingMLE to estimate both unrestrictedARFIMA(22, d, 0)

models and restricted version of the model, anRARFIMA(22, d, 0). The parameter restrictions

on this latter model are those implied in equation (3). Hence the RARFIMA(22, d, 0) model is

(1− L)dλ(L)RVt = εt, (8)

where λ(L) = 1 − λ1L − λ2L
2 − λ2L

3 − λ2L
4 − λ2L

5 − λ3L
6 − λ3L

7 · · · − λ3L
22 with all the

roots of λ(L) outside the unit circle and εt denoting white noise. This model is identical to

φ(L)(1−L)dRVt = εt with 19 restrictions, φ2 = φ3 = φ4 = φ5 ≡ λ2 and φ6 = φ7 = · · · = φ22 ≡ λ3.

MLE of the RARFIMA(22, d, 0) model parameters are to be found in Table 6. Results for

the unrestricted ARFIMA(22, d, 0) models are not presented due to the high degree of cor-

relation between the long memory parameter and the twenty two unrestricted autoregressive
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parameters. This was found to cause both unstable parameter estimates and poor quality stan-

dard errors of the parameter estimates. However, robust Wald test statistics of the 19 parameter

restrictions which reduce the unrestrictedARFIMA(22, d, 0) model to theRARFIMA(22, d, 0)

are presented in Table 6. The Wald tests generally reject the restrictions that are consistent with

a HAR model. From Table 6 it can be seen that the HAR model restrictions cannot be rejected

for Canada, Japan or S&P500; although there is considerable variation among the short mem-

ory HAR parameters with several not being significant. While the MLE of the long memory

parameter d is around 0.30 for four of the RV series and is not significantly different from zero

for the Euro or the S&P500RV series. In general these results suggest that theHARmodel pro-

vides a useful representation of some of the low order dynamics of RV , but that long memory

also plays an important role to describe higher order dynamics.

[TABLE 5 AND 6 ABOUT HERE]

A related method to the above is to specify the long memory process as a disturbance around

the HAR specification and to estimate the model

(1− L)d
(
yt − x′tβ

)
= εt, t = 1, . . . , T, (9)

whereE(εt) = 0,E(ε2t ) = σ2,E(εtεs) = 0, s 6= t. While xt is a k dimensional vector of explanatory

HAR type variables at time t, and β is the corresponding vector of parameters.

[TABLE 7 AND 8 ABOUT HERE]

The implementation of MLE to the above model follows as in Section 3. If all the variables

are I(d) with −0.5 < d < 0.5 then conventional asymptotics are valid and the MLE should be

T 1/2 consistent. However, whenHAR variables are included in the regression, there is the possi-

bility of some variables having d > 0.5 and hence being non stationary long memory processes;

and also the possibility of forms of non standard fractional cointegration occurring.

The long memory property of RV is a feature shared by many other volatility series, which

gives rise to the possibility of fractional cointegration between volatility series. This has been

considered by Christensen and Nielsen (2006) and Bollerslev et al. (2013), who include the pos-

sibility that volatility predicts returns. In fact, several articles consider this in the context of long

memory models; see Christensen and Nielsen (2007) and Christensen et al. (2010) who use a

FIEGARCH − M model which builds on the FIGARCH model of Baillie et al. (1996) and
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FIEGARCH model of Bollerslev and Mikkelsen (1996). The latter paper deals with differences

from positive and negative returns and is particularly relevant in the context of realized semi-

variances and jump variation in RV . One attraction of high frequency data is that it is model

free and does not require the formulation of Stochastic Volatility or GARCH type models. The

interest in the HAR approach is that it provides possible alternatives to long memory and frac-

tional cointegration analysis.

The potential borderline non stationarity of long memory of the RV series creates particu-

larly challenging problems and is not pursued in this study. Hence while we believe the esti-

mates are likely consistent, we note that there is some uncertainty associated with the conven-

tional standard error estimates being reported. The resulting estimated models are reported

in Tables 7 and 8 with many of the φd estimates being particularly significant across assets RV

series; while the relative importance of the other volatility parameters φc and φw being less sta-

tistically important. Of particular interest is the magnitude and significance of the long memory

parameter d, which is highly statistically significant across allRV series except for the Canadian

dollar.

One relevant comparison is the basic HAR estimation in Table 3 with the estimated above

model from equation (9) in Table 7. The estimated long memory parameter is significant for

five of the six RV series and the BIC prefer the model with long memory to the basic HAR

formulation. Interestingly there appears to be less role for the long memory parameter when

estimating the extended HAR model with φc and signed jump variables. Also, the impact of

the negative signed jump variable for the S&P500 series still has a negatively signed parameter

estimate and is now not significant. This provides an interesting comparison with the results

in Table 4 and suggests that the presence of a jump variable maybe picking up discontinuities

which are otherwise giving rise to the presence of long memory.

6.3 Two Step Estimation of HAR from Filtered RV Series

The final approach was to use an initial semi parametric estimate of d from theFELW , denoted

by d̂FELW , from Table 1 and to then apply the filter

(1− L)d̂FELWRVt = vt
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to the RV series to obtain vt, which was then used to estimate a HAR model. This form of

two step estimation with long memory processes has been considered by Baillie and Kapetan-

ios (2008, 2013). In this context the fractional filter appeared too strong a transformation and

tended to remove higher frequency data characteristics associated withHAR as well as the long

memory features. The results are not reported in the interests of conserving space but are avail-

able from our websites.2

7 Time Varying Parameter Extended HAR Models

While long memory appears to be an important modeling feature to include with the extended

HAR formulation, another possibility worth considering is that the weights attached to the par-

tial cascade volatilities may not be constant over time. If this were the case, the non linearity

may well capture some of the long memory aspects of the RV series. If we view the partial

cascade volatilities reflecting agent’s risk preferences, access to information, geographical loca-

tion, etc then there are many explanations why the coefficients may have time variation. On

modifying equation (4), we can write the TV P −HAR model as

RV t,t+h = φ0,t + φd,t RVt + φw,tRV
w
t + φm,tRV

m
t + εt+h

where theφj,t coefficients are now time varying and are partial volatility parameters that depend

on time varying risk premium. This model is implemented as a kernel weighted regression

which is facilitated by an extension of the random coefficient approach of Giraitis et al. (2014).

Some of the details of the approach are provided in the appendix to this paper.

[FIGURE 3 ABOUT HERE]

Details of the means and standard deviations of the estimated parameters in the TV P −

HAR model for all RV assets are presented in Table 9. Similar results for the estimated TV P −

EHAR models are available in Table 10. Showing the first two moments of these parameter

estimates as they change over time is only part of the story and some idea about their variability

can be seen in Figure 3 which plots the time variation of the parameter estimates across the

sample. We only report results for the Australian dollar and the Euro vis a vis the US dollar to

2Estimation of truncated AR(p)models as in higher orderHARmodels can have their own distributional issues
when the true data generating process is long memory. See Poskitt (2007, 2008) and Baillie and Kapetanios (2013).
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conserve space. Full details of the figures for the remaining assets are available from the authors

on request. A potentially interesting topic for future research would be to see if the variation in

the parameter estimates are related to particular economic episodes.

However, in terms of model comparisons usingBIC, theRARFIMAmodel in equation (8),

which includes bothHAR parameters and long memory; and the related model in equation (9)

outperform the TV P−HAR alternatives in terms ofBIC. Hence theRARFIMA based models

with constant long memory parameter and constantHAR parameters appear preferable based

on model selection criteria.

[TABLES 9 AND 10 ABOUT HERE]

8 Conclusions

This paper has investigated the presence of long memory in Realized Volatility (RV ) through

analysis of the Heterogeneous Autoregressive (HAR) model and fractionally integrated long

memory models. We find that the presence of the long memory parameter is often important

in addition to the HAR models and that their relative importance seems to vary across the

asset process being considered. In several cases the preferred model is a combination of the

two approaches. The HAR restricted ARFIMA model, denoted by RARFIMA appears to be

a good approximation to the dynamic structure of several RV series.

Time varying parameter versions of the HAR model were also investigated and show the

relative importance of different HAR components at different time periods in the sample. In

general, the RARFIMA model is preferred to the time varying parameter models on informa-

tion criteria.

Our results suggest that RV series are quite complex and can involve both HAR compo-

nents and long memory components. In fact, RV potentially convey a lot of information and

are worthy of further research.

9 Appendix: Kernel weighted regression

In order to giveHARmodels the maximum opportunity to represent theRV process, we imple-

ment a non parametric approach for computing the time variation in the regression coefficients

that requires minimal theoretical restriction on the functional form. We extend the work of Gi-
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raitis et al. (2014) on autoregressive processes to that of a kernel smoothed regression. Giraitis

et al. (2014) consider the random coefficient AR(1) process

yt = φt−1yt−1 + ut,

where ut is a stationary ergodic martingale difference sequence with respect to some natural

filtration, Ωt, and there is some initialization of the process y0. Then φt−1 is the random coef-

ficient in the above TV P AR(1) process, and E [ut|Ωt−1] = 0 and E [φt|Ωt−1] = φ. The stability

of the model depends on the TV P nature of the AR parameters satisfying various smoothness

classes. Giraitis et al. (2014) model φt as a rescaled random walk, where {at} is a non stationary

process which defines the random drift, and −1 < φ < 1. In this context φt is a standardized

version of at so that

φt = φ
at

max0≤t≤T |at|
....t > 0,

where the stochastic process at is assumed to be a drift-less random walk, so that at = at−1 +wt

and where wt is a stationary process with zero mean. Also, φ ∈ (0, 1) and φt−1 is then bounded

away from the boundary points of−1 and 1. The above framework can be extended to the time

varying AR(p) model

yt =

p∑
i=1

φt−1,iyt−i + ut

and can be used with the boundary conditions

φt,i = φi
at,i

max0≤t≤T |at,i|
....t > 1,

where 0 < φ < 1 and each at,i are independent versions of the at process defined above. Under

these assumptions the maximum absolute eigenvalues of the matrix

At =



φt,1 φt,2 . . . . . . . . . φt,p

1 0 . . . . . . . . . 0

0 1 0 . . . . . . 0

. . . 0 1 0 . . . 0

. . . . . . . . . . . . . . . 0

0 . . . . . . 0 1 0


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are bounded above by unity for all t. Giraitis et al. (2014) show that the coefficient process

{φt; t = 1, ..., T} converges in distribution as T increases to the limit

{φt; 0 ≤ τ ≤ 1} →D {φW̃τ ; 0 ≤ τ ≤ 1}.

The approach for estimating the time varying parameter, φt, is to use the moving window esti-

mator for the AR(1) random coefficient model

φ̂t =

∑T
k=1K

(
t−k
H

)
ykyk−1∑T

k=1K
(
t−k
H

)
y2k−1

,

whereK
(
t−k
H

)
is a kernel and continuously bounded function, such as the Epanechnikov kernel

with finite support, or the familiar Gaussian kernel with infinite support. On generalizing a

generic regression which can be expressed as

yt = x′tβt + ut,

with βt = (β1,t, β2,t, .....βk,t) and it is assumed that each βj,t follows a bounded random walk. x′t

is the vector (m × 1) containing the time series of the factors. In general the kernel weighted

regression estimator for βj,t is

β̂t =

(∑
k=1

wktxkx
′
k

)−1(∑
k=1

wktxkyk

)
,

where wkt = K
(
t−k
H

)
. From Giraitis et al. (2014), it follows that

H1/2(1− β̂2j,t)−1/2(β̂j,t − βj,t) ∼ N(0, 1).

The authors prove that if the bandwidth is op
(
T h
)

with h = 1/2, and given homoskedasticity of

the error process, then

V ar
(
β̂t

)
= σ̂2u

(∑
k=1

wktxkx
′
k

)−1∑
k=1

w2ktxkx
′
k

(∑
k=1

wktxkx
′
k

)−1
,

22



where

σ̂2u =
1

T

T∑
i=1

(
yt − x′tβt

)2
One appealing characteristic of this approach is that they nest rolling window estimates of the

regression betas and are equivalent to kernel smoothing estimators using a uniform one-sided

kernel instead of a Gaussian two-sided kernel. A key role is played by the decision about the

bandwidth and for a given kernel function, K
(
t−k
H

)
, the bandwidth, H , represents the degree

of smoothness of the estimates. Giraitis et al. (2014) proved that a bandwidth of H = T h, with

h = 0.5, provides an estimator with desirable properties such as consistency and asymptotic

normality and in addition provides valid standard errors.
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Table 1. Estimates of Long Memory Parameter d

AUD CAD EUR GBP JPY S&P500

ARFIMA(p, d, 0)

p 7 4 3 4 0 6

d 0.786 0.625 0.553 0.598 0.396 0.728

(0.114) (0.067) (0.051) (0.099) (0.045) (0.180)

ln(L) –2919.626 14.173 84.690 –714.267 –2106.755 –6086.334

BIC 5921.213 29.028 –120.202 1485.907 4238.098 12247.694

ARFIMA(p, d, q)

p 7 3 3 3 2 3

q 2 3 3 5 3 1

d 0.725 0.793 0.670 0.685 0.488 0.733

(0.140) (0.210) (0.132) (0.193) (0.104) (0.202)

ln(L) –2875.159 83.275 123.603 –676.273 –2073.290 –6170.745

BIC 5848.672 –92.785 –173.440 1442.704 4212.150 12399.843

Key: The ARFIMA(p, d, 0) models are estimated for p ∈ {0, 1, . . . , 10} and the

model with the smallest BIC is chosen. The strategies for model selection of

ARFIMA(p, d, q) models involve estimation of (P + 1)(Q + 1) models where P

and Q are the maximum orders of the short memory parameters being consid-

ered. They were generally fixed at 8 requiring estimation of 81 models and the

model with the smallest BIC is chosen. Robust standard errors are in parentheses.

ln(L) represents the maximized log-likelihood and BIC represents the Bayesian

information criterion.
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Table 2. Estimates of Long Memory Parameter d using LW and FELW

AUD CAD EUR GBP JPY S&P500

LW (m = bT bc)

b = 0.3 d 0.316 0.606 0.385 0.381 0.541 0.312

(0.146) (0.146) (0.146) (0.146) (0.146) (0.143)

0.5 d 0.495 0.731 0.756 0.779 0.501 0.473

(0.270) (0.270) (0.270) (0.270) (0.270) (0.268)

0.7 d 0.678 0.598 0.558 0.643 0.380 0.734

(0.325) (0.325) (0.325) (0.325) (0.325) (0.323)

FELW (m = bT bc)

b = 0.3 d 0.274 0.495 0.294 0.344 0.390 0.245

(0.146) (0.146) (0.146) (0.146) (0.146) (0.143)

0.5 d 0.501 0.708 0.743 0.794 0.510 0.474

(0.270) (0.270) (0.270) (0.270) (0.270) (0.268)

0.7 d 0.606 0.564 0.518 0.556 0.336 0.681

(0.325) (0.325) (0.325) (0.325) (0.325) (0.323)

b = 0.5 CUSUM -5d 2.020 0.671 0.546 0.674 1.067 1.912

Key: The LW and FELW estimators are estimated with bandwidths (m)= bT bcwith

b ∈ {0.3, 0.5, 0.7}. Robust standard errors are reported in parentheses. CUSUM -

5d statistic is the usual CUSUM statistic applied to the d (estimated with FELW,

m = T 0.5) fractionally filtered series.
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Table 3. Estimation of the basic HAR Model

RV h,t+h= φ0+φdRV
(d)
t +φwRV

(w)
t +φmRV

(m)
t +εt+h

AUD CAD EUR GBP JPY S&P500

φd 0.415 0.270 0.272 0.077 0.223 0.222

(0.070) (0.083) (0.052) (0.054) (0.081) (0.122)

φw 0.119 0.275 0.244 0.145 0.197 0.330

(0.087) (0.096) (0.069) (0.069) (0.065) (0.144)

φm 0.343 0.370 0.401 0.542 0.364 0.337

(0.069) (0.070) (0.057) (0.060) (0.061) (0.106)

ln(L) –3001.364 28.371 48.230 –1266.077 –2191.938 –6376.967

BIC 6043.708 –15.762 –55.479 2573.134 4424.857 12795.614

Key: OLS estimates of the basic HAR model are reported with robust standard errors in paren-

theses. ln(L) is the maximized log-likelihood.
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Table 4. Estimation of the EHAR Model

RV h,t+h= φ0+φ
+
d RS

+
t +φ−d RS

−
t +φwRV

(w)
t +φmRV

(m)
t +εt+h

AUD CAD EUR GBP JPY S&P500

φ+d 0.601 0.355 0.285 –0.079 0.179 –0.009

(0.150) (0.107) (0.086) (0.019) (0.166) (0.194)

φ−d 0.157 0.185 0.260 0.550 0.252 0.425

(0.137) (0.102) (0.069) (0.189) (0.163) (0.177)

φw 0.140 0.278 0.242 0.106 0.202 0.352

(0.086) (0.084) (0.070) (0.059) (0.064) (0.145)

φm 0.354 0.367 0.401 0.462 0.365 0.333

(0.068) (0.070) (0.057) (0.072) (0.060) (0.105)

ln(L) –2979.832 32.935 48.333 –1133.620 –2191.037 –6344.528

BIC 6008.841 –16.694 –47.489 2316.417 4431.251 12739.072

Key: As in Table 3 with OLS estimates of the EHAR model with positive and negative semivari-

ances reported.
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Table 4 (cont’d). Estimation of the EHAR Model

RV h,t+h= φ0+φ
+
J ∆J2+t +φ−J ∆J2−t +φCBV t+φwRV

(w)
t +φmRV

(m)
t +εt+h

AUD CAD EUR GBP JPY S&P500

φ+J 0.362 0.017 –0.060 –0.085 –0.325 0.277

(0.308) (0.163) (0.089) (0.040) (0.053) (0.241)

φ−J 0.029 0.128 0.031 –0.135 0.312 –0.749

(0.176) (0.075) (0.090) (0.137) (0.184) (0.295)

φC 0.437 0.443 0.420 0.222 0.590 0.149

(0.107) (0.071) (0.096) (0.150) (0.074) (0.147)

φw 0.104 0.188 0.165 0.111 0.065 0.327

(0.098) (0.087) (0.075) (0.066) (0.047) (0.140)

φm 0.355 0.349 0.379 0.481 0.281 0.309

(0.069) (0.071) (0.061) (0.083) (0.055) (0.094)

ln(L) –2939.628 100.703 97.773 –1159.155 –2059.240 –6256.314

BIC 5936.630 –144.033 –138.174 2375.682 4175.853 12570.980

Key: As in Table 3 with OLS parameter estimates and robust standard errors of the EHAR model

with positive and negative signed variation and BV reported.
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Table 5. Simulated HAR Estimations from Fractional White Noise

d = 0.25 d = 0.30

φd φw φm φd φw φm

Mean(φ̂) 0.204 0.227 0.228 0.252 0.252 0.235

SD(φ̂) 0.017 0.033 0.048 0.017 0.032 0.044

Mean(se(φ̂)) 0.016 0.031 0.040 0.016 0.030 0.035

d = 0.35 d = 0.40

φd φw φm φd φw φm

Mean(φ̂) 0.302 0.270 0.232 0.354 0.281 0.222

SD(φ̂) 0.017 0.030 0.040 0.018 0.029 0.036

Mean(se(φ̂)) 0.017 0.029 0.031 0.016 0.027 0.027

d = 0.45

φd φw φm

Mean(φ̂) 0.407 0.285 0.206

SD(φ̂) 0.017 0.028 0.031

Mean(se(φ̂)) 0.016 0.026 0.024

Key: For each panel, Mean(φ̂) is the average value of each estimated HAR

parameters across 5,000 iterations. Similarly, SD(φ̂) is the standard devia-

tion of those estimates and Mean(se(φ̂)) refers to the average standard error

of those estimates.
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Table 6. Estimation of the RARFIMA(22, d, 0) model

The RARFIMA(22, d, 0) model isλ(L)(1−L)d(RVt−µ) = εt whereλ(L) = 1−λ1L−λ2L2−λ2L3−
λ2L

4−λ2L5−λ3L6−λ3L7−λ3L8−· · ·−λ3L22. This model is identical toφ(L)(1−L)d(RVt−µ) =

εt with 19 restrictions, φ2 = φ3 = φ4 = φ5 ≡ λ2 and φ6 = φ7 = · · · = φ22 ≡ λ3.

AUD CAD EUR GBP JPY S&P500

λ1 0.317 0.014 –0.163 –0.006 0.054 0.387

(0.121) (0.116) (0.037) (0.234) (0.102) (1.171)

λ2 0.045 0.044 –0.060 0.044 –0.008 0.062

(0.025) (0.043) (0.022) (0.076) (0.025) (0.120)

λ3 0.016 0.031 0.004 0.022 0.015 0.015

(0.008) (0.006) (0.012) (0.011) (0.013) (0.048)

σ2 0.305 0.058 0.057 0.089 0.187 1.142

(0.049) (0.006) (0.006) (0.021) (0.033) (0.199)

d 0.305 0.310 0.518 0.364 0.362 0.118

(0.119) (0.120) (0.325) (0.264) (0.085) (1.167)

ln(L) –2993.725 10.280 50.416 –756.124 –2105.726 –6196.369

BIC 6028.431 20.421 –51.655 1553.229 4252.434 12434.419

Wald 48.343 35.799 75.575 47.664 25.857 25.814

Key: In the last column, the Wald statistic is computed from the unrestricted ARFIMA(22, d, 0)

model with these 19 HAR restrictions as the null hypothesis. The 1% and 5% critical values for

χ219 distribution are 43.82 and 35.58, respectively. Robust standard errors are in parentheses.
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Table 7. Estimation of the HAR Model with Long Memory Error Process

AUD CAD EUR GBP JPY S&P500

φd 0.229 0.144 0.097 0.034 0.065 –0.023

(0.042) (0.168) (0.060) (0.012) (0.083) (0.076)

φw 0.035 0.170 0.077 0.050 0.071 –0.033

(0.133) (0.194) (0.105) (0.037) (0.081) (0.202)

φm 0.442 0.518 0.517 0.244 0.238 0.364

(0.180) (0.195) (0.103) (0.101) (0.171) (0.384)

d 0.298 0.146 0.239 0.365 0.295 0.478

(0.110) (0.173) (0.074) (0.060) (0.096) (0.152)

ln(L) –2937.37 35.832 79.35 –732.11 –2091.54 –6204.68

BIC 5923.92 –22.486 –109.52 1513.39 4232.25 12459.37

Key: Approximate MLEs of the HAR model with ARFIMA errors reported. QMLE standard

errors are in parentheses.
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Table 8. Estimation of the ARFIMA-EHAR Model

ARFIMA-EHAR model with positive and negative semivariances

AUD CAD EUR GBP JPY S&P500

φ+d 0.374 0.214 0.061 0.034 0.047 –0.211

(0.134) (0.222) (0.099) (0.031) (0.079) (0.147)

φ−d 0.074 0.111 0.120 0.033 0.077 0.137

(0.133) (0.190) (0.069) (0.086) (0.122) (0.128)

φw 0.058 0.192 0.075 0.050 0.074 –0.023

(0.142) (0.202) (0.107) (0.037) (0.079) (0.521)

φm 0.448 0.495 0.516 0.244 0.240 0.370

(0.175) (0.221) (0.105) (0.103) (0.176) (0.376)

d 0.272 0.124 0.244 0.366 0.294 0.487

(0.114) (0.192) (0.076) (0.058) (0.097) (0.254)

ln(L) –2926.69 37.38 80.00 –732.11 –2091.36 –6171.65

BIC 5910.75 –17.38 –102.62 1521.58 4240.09 12401.65

Key: Similar to Table 7 with approximate MLEs of the ARFIMA-EHAR model with positive

and negative semivariances reported.
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Table 8 (cont’d). Estimation of the ARFIMA-EHAR model

ARFIMA-EHAR model with positive and negative signed variations and BV

AUD CAD EUR GBP JPY S&P500

φ+J 0.201 0.067 –0.139 0.030 –0.262 0.104

(0.317) (0.218) (0.095) (0.025) (0.077) (0.197)

φ−J 0.073 0.107 0.054 –0.087 0.270 –0.469

(0.183) (0.088) (0.078) (0.192) (0.132) (0.304)

φC 0.305 0.473 0.278 0.048 0.416 –0.053

(0.079) (0.113) (0.167) (0.020) (0.121) (0.090)

φw 0.037 0.218 0.087 0.040 0.038 0.030

(0.161) (0.098) (0.111) (0.034) (0.059) (0.448)

φm 0.440 0.300 0.481 0.246 0.283 0.424

(0.161) (0.132) (0.112) (0.102) (0.082) (0.255)

d 0.236 –0.050 0.155 0.361 0.159 0.413

(0.114) (0.092) (0.137) (0.062) (0.090) (0.215)

ln(L) –2897.95 102.06 109.16 –724.77 –2039.08 –6142.23

BIC 5861.47 –138.55 –152.75 1515.12 4143.73 12351.14

Key: Similar to Table 7 with approximate MLEs of the ARFIMA-EHAR model with positive and

negative signed variations and BV reported.
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Table 9. Estimation of the TVP-HAR Model

AUD CAD EUR GBP JPY S&P500

φd,t 0.287 0.166 0.250 0.189 0.246 0.293

(0.196) (0.179) (0.186) (0.138) (0.165) (0.189)

φw,t 0.260 0.316 0.180 0.281 0.208 0.308

(0.206) (0.155) (0.142) (0.182) (0.191) (0.186)

φm,t 0.178 0.256 0.272 0.226 0.166 0.120

(0.127) (0.125) (0.168) (0.161) (0.149) (0.133)

BIC 7791.801 1679.234 1498.431 3241.878 5876.518 14621.189

Key: The mean values of the coefficients of the TVP-HAR are reported with

standard deviation in parentheses. The Gaussian kernel with a bandwidth of

T 0.5 is used for estimation.
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Table 10. Estimation of the TVP-EHAR Model

AUD CAD EUR GBP JPY S&P500

TVP-EHAR model with positive and negative semivariances

φ+d,t 0.555 0.307 0.290 0.226 0.128 0.024

(0.507) (0.328) (0.309) (0.222) (0.375) (0.238)

φ−d,t –0.002 0.033 0.221 0.168 0.358 0.553

(0.273) (0.185) (0.238) (0.232) (0.377) (0.261)

φw,t 0.269 0.311 0.178 0.278 0.223 0.322

(0.190) (0.141) (0.136) (0.182) (0.190) (0.188)

φm,t 0.187 0.257 0.270 0.225 0.163 0.129

(0.128) (0.123) (0.165) (0.157) (0.145) (0.133)

BIC 8140.775 2078.796 1936.916 3693.370 6276.771 15044.607

TVP-EHAR model with positive and negative signed variations and BV

φ+J,t 0.281 0.046 –0.004 0.048 –0.201 –0.062

(0.741) (0.339) (0.355) (0.260) (0.463) (0.250)

φ−J,t 0.244 0.200 0.020 –0.035 0.020 –0.445

(0.310) (0.329) (0.225) (0.424) (0.617) (0.412)

φC,t 0.397 0.333 0.398 0.311 0.445 0.331

(0.149) (0.189) (0.185) (0.141) (0.324) (0.227)

φw,t 0.213 0.231 0.117 0.230 0.158 0.288

(0.160) (0.138) (0.147) (0.163) (0.178) (0.195)

φm,t 0.176 0.247 0.257 0.212 0.152 0.134

(0.131) (0.129) (0.155) (0.147) (0.154) (0.127)

BIC 8496.352 2409.951 2345.089 4046.409 6635.650 15317.870

Key: Similar to Table 9 with the mean values of the coefficients of the TVP-

EHAR model reported with standard deviations in parentheses.
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Figure 1. Realized volatility for each financial series
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Figure 2. Autocorrelation function for each financial series
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(a) AUD

Figure 3. Estimation results from the TVP-EHAR model
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(b) EUR

Figure 3. Estimation results from the TVP-EHAR model (cont’d)
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