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Abstract

Structural VAR models are frequently identified using sign restrictions on

impulse responses. Moving beyond the popular but restrictive Normal-inverse-

Wishart-Uniform prior, we develop a methodology that can handle almost any

prior distribution on contemporaneous responses. We then propose a new sam-

pler that explores the posterior just as efficiently as done by the existing al-

gorithm for the Normal-inverse-Wishart-Uniform case. We use this flexible and

tractable framework to combine sign restrictions with information on the volatil-

ity of the data, giving less prior mass to impulse effects that are inconsistent

with the data from a training sample. This approach sharpens posterior bands

and makes sign restrictions more informative. We apply the methodology to the

oil market and show that oil supply shocks have a non-negligible effect on oil

price dynamics.
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1 Introduction

Structural Vector Autoregressive models (SVARs) are extensively used in applied

Macroeconomics. To provide results that can be interpreted economically, SVARs

require identifying restrictions. It has become popular to introduce sign restrictions

on selected structural statistics using Bayesian informative priors that reflect the in-

tended signs (Uhlig, 2005, Baumeister and Hamilton, 2015, Arias et al., 2018).

This paper studies how to implement sign restrictions on the most frequently used

statistic, namely impulse responses. The literature often limits prior beliefs to the rel-

atively narrow family of Normal-inverse-Wishart-Uniform prior beliefs, in order to en-

sure a particularly tractable posterior distribution (Uhlig, 2005, Rubio-Ramirez et al.,

2010, Arias et al., 2018). Yet, as pointed out by Baumeister and Hamilton (2015),

since this traditional approach does not express prior beliefs directly on the structural

parameters of interest, it can introduce features that go beyond the intention of the re-

searcher. This limitation is important because, even in large sample, information from

the data does not fully dominate the prior, making the results dependent on the prior

distribution used. We complement the work by Sims and Zha (1998) and Baumeister

and Hamilton (2015) and study the popular case of prior beliefs on impulse responses,

rather than on the elasticities between variables.

The first contribution of the paper consists of developing a framework that can

handle almost any prior distribution on the contemporaneous impulse responses. We

parametrize the model in the reduced form autoregressive elements and in the contem-

poraneous impulse responses, as in Uhlig (2005), but express prior beliefs directly on

contemporaneous responses rather than on reduced form covariances. In being general

about prior beliefs on contemporaneous impulse responses, we offer a framework that

gives prior flexibility on the impulse response horizon where flexibility is needed the

most, as argued by Canova and Pina (2005) and Canova and Paustian (2011). We then

retain the normal prior distribution on the reduced form autoregressive component of

the model in order to ensure a more tractable posterior distribution, a restriction that
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is without loss of generality in a large sample. Overall, our approach offers a balance

between prior flexibility on the key structural parameters and conditional conjugate

priors on all the remaining parameters. We also extend our framework to allow for

shape restrictions on future horizons of the responses.

The second contribution of the paper consists of developing a posterior sampler that

ensures that the additional flexibility provided by our methodology does not come at

a computational cost. We show that while an importance sampler cannot be applied

directly on the structural parameter space (except for special cases, as for example in

Arias et al., 2018), it can be applied when sampling the posterior distribution on the

structural parameters in two stages, using two separate importance functions. The

key intuition is that if the sample size is not too small, the posterior distribution on

the reduced form covariances depends only mildly on the prior beliefs used, making

the Normal-inverse-Wishart familiy a suitable importance function. In addition, the

algorithm by Rubio-Ramirez et al. (2010) is a suitable importance function for the

mapping from the reduced form to the structural parameters, because it explores the

full space of orthogonal matrices. In resampling posterior draws from the Normal-

inverse-Wishart-Normal approach to make them consistent with a less restrictive prior

distribution, our approach shows that there is no trade-off between the flexibility

advocated by Baumeister and Hamilton (2015) and the numerical efficiency guaranteed

by Rubio-Ramirez et al. (2010). To further stress the efficiency of this sampler we

show that the results are the same when exploring the posterior using the more time-

consuming sequential approach by Waggoner et al. (2016).

Having developed a framework that combines posterior tractability with flexibility

on the prior beliefs on the key structural parameters, we illustrate how the results

can depend on the prior distribution used, further suggesting that prior beliefs on

structural parameters should be selected carefully in applied work. When mapping

reduced form parameters into structural parameters, the traditional approach does not

take into account the volatility of the data. Hence, it can for example imply that the
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impact of a one standard deviation shock on a variable is as big as the largest variation

ever observed in that variable. We propose a new prior specification that combines

sign restrictions with information on the scaling of the variables, based on a training

sample. We show that this new feature is enough to tighten posterior bands, making

sign restrictions more informative, with potentially wide consequences in applied work.

Alternative prior specifications are, of course, possible.

We first develop the intuition behind our methodology using data simulated from

the An and Schorfheide (2007) model. This exercise discusses in detail prior specifi-

cation, posterior sampling, and the key driver of the difference between our approach

and the traditional approach. We then apply our methodology to revisit a long lasting

debate on the effect of oil price dynamics on the real economy. In his seminal contri-

bution, Kilian (2009) shows how variations in the price of oil affect the US economy

differently depending on the underlying source of the oil price variation. Kilian and

Murphy (2012) revisit the results by Kilian (2009) by replacing the recursive iden-

tification scheme with sign restrictions on the effect of the shocks. However, they

conclude that sign restrictions alone are not enough to disentangle the different chan-

nels driving oil price dynamics. We show that applying the same sign restrictions using

our methodology does deliver results on the relative importance of different structural

shocks. We confirm the result by Kilian (2009) that demand shocks have a strong

and long lasting effect on the price of oil, but also show that supply shocks have a

non-negligible effect on the price of oil.

From the applied point of view, the paper relates to the wide literature on the oil

market. Starting from the aforementioned papers by Kilian (2009) and Kilian and

Murphy (2012), many studies have looked for identifying restrictions to study how oil

price dynamics affect the US economy. Kilian and Murphy (2012) restrict the price

elasticity of oil supply. Antoĺın-Dı́az and Rubio-Ramı́rez (2018) restrict the sign of

the estimated structural shocks and the historical decompositions of the variables.

Baumeister and Hamilton (2017) express sign restrictions on the price elasticity of oil
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supply and oil demand. Last, Caldara et al. (2018) develop an exact-identification

approach that relies on external estimates of the elasticities. Interestingly, several of

our results support the conclusions reached by these papers, despite using a different

methodology. For example, the result that oil supply shocks do have an effect on

the price of oil is consistent with Baumeister and Hamilton (2017), Caldara et al.

(2018). Our approach is relatively agnostic compared to Caldara et al. (2018), Antoĺın-

Dı́az and Rubio-Ramı́rez (2018) and Baumeister and Hamilton (2017) in that we only

introduce sign restrictions on the impact effect of the structural shocks. Yet, our results

are consistent with the additional restrictions used in some of these contributions. For

example, we find that oil supply shocks were indeed the prevailing driver of the drop

in oil production during the first Gulf War, a feature that Antoĺın-Dı́az and Rubio-

Ramı́rez (2018) introduce as an identifying restriction.

From the methodological point of view, we follow Baumeister and Hamilton (2015)

and express prior beliefs directly on the structural parameters of interest. However,

we study the case of beliefs on contemporaneous impulse responses rather than on the

contemporaneous relation among variables, as the former are more frequent in applied

work (Kilian and Lütkepohl, 2017). Baumeister and Hamilton (forthcoming) combine

prior beliefs on contemporaneous relations and contemporaneous impulse responses.

Relative to Baumeister and Hamilton (forthcoming) and Arias et al. (2018), we focus

on impulse responses and propose a different prior specification and posterior sampler.

We also depart from Plagborg-Møller (forthcoming), who expresses prior beliefs on

impulse responses at any horizon at the cost of working with a less tractable poste-

rior distribution. Kociecki (2010) departs from prior beliefs on impulse responses, but

works with the recursive identification scheme. As we document in the appendix, his

approach can be used to extend our methodology to shape restrictions on impulse

responses beyond the contemporaneous effect. Last, we relate to Giacomini and Kita-

gawa (2015) in stressing the mapping from reduced form to structural parameters, but

we concentrate on a single prior.
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The traditional approach to sign restricted SVARs frequently implies relatively

wide posterior bands for impulse responses, and for other statistics. For this reason,

many studies combine sign restrictions with additional information on other statistics,

as in Kilian and Murphy (2012), Antoĺın-Dı́az and Rubio-Ramı́rez (2018) and Amir-

Ahmadi and Drautzburg (2018). We argue that the traditional approach to sign

restrictions can be improved upon by introducing explicit information on which region

of the structural parameter space is plausible when mapping reduced form parameters

into structural parameters. We show that augmenting sign restrictions on impulse

responses with information on the volatility of the data is sufficient to deliver sharper

inference, possibly to the point that no additional information is needed to interpret

the results. Our tighter posterior bands are not trivially driven by tighter prior beliefs

on impulse responses, but by the fact the researcher can inform the mapping between

reduced and structural parameters with his knowledge of the scale of the data.

The paper is organized as follows. Section 2 outlines the methodology proposed

and discusses its relation to the existing literature. Section 3 shows the illustrative

example on simulated data from the An and Schorfheide (2007) model. Section 4

reports the application to the oil market. Section 5 concludes.

2 The methodology

In this section we first highlight why the data allows for different structural parametriza-

tions within the same SVAR model. We then summarize the approach to sign restric-

tions that is widely used in the literature. Last, we outline our methodology, introduce

an efficient sampler to make the methodology computationally unchallenging, and pro-

pose a prior specification.
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2.1 Parametrizations of the structural model

Structural VAR models can be written in different forms. A popular specification is

Ayt = a0 +

p∑
l=1

Alyt−l + εt,

= A+wt + εt, εt ∼ N(0, Ik), (1)

where yt is a k × 1 vector of endogenous variables, εt is a k × 1 vector of structural

shocks, and wt = (1,y′t−1, ..,y
′
t−p)

′ is an m × 1 vector of the constant and p lags

of the variables, with m = kp + 1. The k × k matrices A,A1, .., Ap are gathered in

A+ = [a0, A1, .., Ap], which is of dimension k×m. We normalize the covariance matrix

of εt to the identity matrix.1

Equation (1) highlights the structural nature of the model. Yet, as it is already

known, one can rewrite equation (1) after premultiplying both sides of the equality by

B = A−1, obtaining

yt = π0 +

p∑
l=1

Πlyt−l +Bεt,

= Πwt +Bεt, εt ∼ N(0, Ik), (2)

with π0 = A−1a0, Πl = A−1Al and Π = [π0,Π1, ..,Πp] = A−1A+. Matrix B captures

the contemporaneous effects of one standard deviation shocks, while future horizons

of the impulse responses are calculated using model (2) recursively. Equivalently, one

can compute impulse responses using the structural moving average representation of

the data,

yt = b0 +
∞∑
l=1

Blεt−l +B0εt, εt ∼ N(0, Ik), (3)

1In doing so, we depart from Baumeister and Hamilton (2015), who exploit conjugate priors for
the variance of the structural shocks. We apply this normalization because it is frequently used in
applications that employ sign restrictions on impulse responses, see for example Uhlig (2005) and
Arias et al. (2018).
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where it holds that B0 = B. For the full mapping of (Π, B) into {Bl}∞l=0 see, for

example, Kilian and Lütkepohl (2017), chapter 2.

Specification (1) and (2) of the structural model stress different features. Equation

(1) highlights the contemporaneous relations among the variables in the system, as

captured by matrix A. Because of these relations, a structural shock that hits one

variable potentially affects contemporaneusly all variables, in a way that is captured

by matrix B. Whether the model is more conveniently expressed as model (1) or (2) (or

even as a combined form) depends on whether the identifying restrictions introduced

by the researcher are more naturally expressed on A or B.2

The reduced form representation of the data is

yt = π0 +

p∑
l=1

Πlyt−l + ut,

= Πwt + ut, ut ∼ N(0,Σ), (4)

where it holds that ut = Bεt and Σ = BB′ = A−1A′−1. Matrices A, A+ and B contain

structural parameters while Π and Σ represent reduced form parameters. Orthogonal

matrices Q, which by construction satisfy QQ′ = Ik, allow for the mapping from

2For example, the literature on the identification of monetary policy shocks employs restrictions
either on B, as in Uhlig (2005), or on A, as in Arias et al. (forthcoming) and Baumeister and Hamilton
(forthcoming). In the terminology used by Lütkepohl (2005), model (1) represents the A form of the
SVAR while model (2) represents the B form. Alternatively, Amisano and Giannini (2012) refer to
models (1) and (2) as the K and C form of the SVAR, respectively. To appreciate the importance
of this distinction, note that restrictions imposed on one form might not be apparent in the other
form, due to the nonlinearities in the mapping from one to another. As an example, the A model

by Sims and Zha (2006) imposes the non-recursive zero restrictions A =

a11 a12 0
a21 a22 0
a31 0 a33

, which

implies B = A−1 =

b11 b12 0
b21 b22 0
b31 b32 b33

. A well-known special case is the recursive structure of A,

which implies a recursive structure of B. Going through the publications of all top-five journals and
the Journal of Monetary Economics since 1998, we found that around 13% of the total number of
issues checked included at least one application of Structural Vector Autoregressive models. Of the
total number of SVAR applications that we found, approximately 15% specifies the model in the A
form, 76% specifies the model in the B form, and 9% specifies the model in the hybrid AB form. The
detailed list is available at this link.
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reduced form to structural parameters, with

B = h(Σ)Q, (5)

and h(Σ) any decomposition of Σ satisfying h(Σ)h(Σ)′ = Σ, for example the Cholesky

decomposition. See Arias et al. (2018) for a thorough discussion.

2.2 The traditional NiWU prior used in the literature

Define π = vec(Π) as the vector of dimension km × 1 that stacks the columns of Π.

The most popular approach for sign restrictions in SVAR models starts from prior

beliefs on the parameters (π,Σ, Q), equations (4) and (5). In fact, as already known

in the literature, when p(π,Σ) falls within the independent Normal-inverse-Wishart

family, the joint posterior distribution p(π,Σ|Y ) can be conveniently explored using

a Gibbs sampler.3 More formally, with prior beliefs

π ∼ N(µπ, Vπ), (6)

Σ ∼ iW (d, S), (7)

with p(π,Σ) = p(π)p(Σ), it holds that

π|Y,Σ ∼ N(µ∗π, V
∗
π ), (8)

Σ|Y,Π ∼ iW (d∗, S∗), (9)

see Section B of the Appendix for the full derivations. Matrices Q, required in equation

(5), are drawn from a distribution that is uniform in the parameter space of orthogonal

3To make the analysis comparable to the direct approach discussed in Section 2.3, we do not restrict
the indirect approach to the more tractable case of conjugate priors, which impose Vπ = V ⊗ Σ, but
consider the more general independent Normal-inverse-Wishart prior specification. By not imposing
a Kronecker structure on Vπ, p(π) allows for the popular prior by Litterman (1986), treating the
variance on ‘own lags’ and ‘lags on other variables’ differently. See Koop et al. (2010) for a discussion
and Arias et al. (2018) for the analysis using conjugate priors.
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matrices, a feature satisfied when drawing Q from the popular sampler by Rubio-

Ramirez et al. (2010). The algorithm typically used to conduct posterior analysis with

this Normal-inverse-Wishart-Uniform prior specification is summarized in Algorithm

1.

Algorithm 1 (traditional Normal-inverse-Wishart-Uniform approach):

1. draw πi,Σi from p(π,Σ|Y ) using a Gibbs sampler based on (8) and

(9);

2. draw an orthogonal matrix Qi using the method by Rubio-Ramirez

et al. (2010);

3. map πi,Σi, Qi into the structural parameters of interest;

4. keep πi,Σi, Qi if the sign restrictions on the selected parameters of

interest are satisfied;

5. repeat steps 1-4 until the required nnumber of draws is obtained.4

The convenience of the above approach is that efficient algorithms like Algorithm

1 exist for the sampling of the posterior distribution. In addition, this approach allows

for the introduction of sign restrictions on a wide range of statistics, for example on

the contemporaneous relation among variables (in step 3, mapping {Σi, Qi} into {Ai},

model (1)), on the contemporaneous impulse responses (mapping {Σi, Qi} into {Bi}

model (2)) or on future impulse responses (mapping {πi,Σi, Qi} into {Bi,l, }∞l=1 from

model (3)). The inconvenience is that prior beliefs are not directly specified on the

structural parameters of interest (A, B or {Bl}∞l=0), but on reduced form parameters

and on orthogonal matrices (Π,Σ and Q). Importantly, since the structural model

is not exact-identified, prior beliefs on the structural parameters play a role also in

4To ensure a higher efficiency of the algorithm, the sign restrictions are assessed after taking
into account that shocks are identified only up to sign and ordering. The algorithm changes if zero
restrictions are introduced, see Arias et al. (2018) and Binning (2013).
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large sample (see Baumeister and Hamilton, 2015, and the illustrative example in

Section 3.3). Hence, it is important to minimize the unwanted curvature in the prior

that p(π,Σ, Q) implies for the prior beliefs on the structural parameters of interest,

and on the results.5

The above intuition can be expressed more formally using analytical derivations.

This paper studies the case in which the researcher has prior beliefs on contempo-

raneous impulse responses, namely on matrix B from model (2). Section B of the

Appendix derives the prior and posterior marginal distributions for B implied by the

prior distribution (6)-(7) and by the algorithm for Q by Rubio-Ramirez et al. (2010).

For simplicity we consider the case when no zero restrictions are introduced. These

distributions equal

p(B)NiWU ∝ I{sign} · |det(B)|−(d+k) · e−
1
2

{
vec(B−1)′(S⊗Ik)vec(B−1)

}
, (10)

p(B|Y )NiWU ∝ I{sign} · |det(B)|−(d+k+T )· (11)

e−
1
2

{
vec(B−1)′(S⊗Ik)vec(B−1)+ỹ′

(
IT⊗(BB′)−1

)
ỹ−µ′∗π V ∗

−1
π µ∗π

}
,

with I{sign} an indicator function equal to unity if B satisfies the sign restrictions and

the suffix NiWU indicating that the distribution refers to the Norma-inverse-Wishart-

Uniform case.6 From equation (10) we can appreciate to what extent the indirect

approach can be unintentionally restrictive. If there are values of the hyperparame-

ters d, S such that p(B)NiWU sufficiently approximates the resercher’s prior beliefs on

contemporaneous impulse responses, then the traditional approach offers a convenient

way to implement the analysis. Yet, as we outline in the illustrative example in Sec-

tion 3.3, p(B)NiWU can introduce undesirable features, because it is specified indirectly

5That prior beliefs on one parametrization imply questionable or unintended features on some
other parametrization is to some extent inevitable, as remarked, for instance, by Baumeister and
Hamilton (2015). We agree with the authors that prior beliefs should be judged relative to the
structural parametrization of interest, which in our application is B.

6The derivations of (10) build on Arias et al. (2018), who specify the model as in equation (1)
and derive the prior distribution that the prior (7) and the algorithm by Rubio-Ramirez et al. (2010)
imply for A.
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via p(Σ, Q), because p(Σ) is restricted to the Inverse-Wishart family, and because the

algorithm for Q does not necessarily ensure uniformity in the dimension of interest.

In addition, the popular hyperparameter specification d = 0, S = 0 (Uhlig, 2005,

Arias et al., 2018) implies an improper prior, which makes it difficult to appreciate the

functional form that p(B|Y )NiWU inherits from the prior.7

2.3 The approach proposed in this paper

To overcome the above limitations we propose to express prior beliefs directly on B.

To do so we parametrize the model as in equation (2) and express independent prior

beliefs

p(π, B) = p(π) · p(B). (14)

Since π is identified, p(π) matters less compared to p(B), as long as the sample has

sufficient length. Hence, as also in the traditional approach from Section 2.2, we

restrict p(π) to

π ∼ N(µπ, Vπ), (15)

with µπ and Vπ independent on B. By contrast, p(B) can fall within a wide range

of prior distributions, granting the researcher flexibility on the prior beliefs used to

express sign restrictions on structural parameters.8

7The parametrization d = 0, S = 0 is frequently used in applied work, because, once combined
with the conjugate prior specification, it implies E(Σ|Y ) = T−k

T−k−1 · Σ̂OLS ≈ Σ̂OLS , with Σ̂OLS the
least squared estimate of Σ. With d = 0, S = 0, p(B)NiWU and p(B|Y )NiWU become

p(B)NiWU ∝ I{sign} · |det(B)|−k, (12)

p(B|Y )NiWU ∝ I{sign} · |det(B)|−(k+T ) · e−
1
2

{
ỹ′
(
IT⊗(BB′)−1

)
ỹ−µ′∗π V

∗−1

π µ∗π

}
. (13)

8The approach discussed in this section can be extended without difficulty to the case in which
µπ and Vπ depend on B. Indeed, the derivations in Section C of the Appendix consider the general
case in which the independence restriction is not introduced. Here, we assume independence between
B and π to facilitate the comparison to the traditional approach, for which we use the more general
independent prior specification rather than the conjugate priors. Regarding p(B), as in Baumeister
and Hamilton (2015) and Baumeister and Hamilton (2017) the only requirement is that p(B) is
everywhere nonnegative, and when integrated over the set of all values of B it produces a finite
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As we show in Section C of the Appendix, the posterior distribution satisfies

p(π, B|Y ) = p(π|B, Y ) · p(B|Y ), (16)

π|B, Y ∼ N(µ∗π, V
∗
π ), (17)

p(B|Y )Np(B) ∝ p(B) · |det(B)|−T · |det(V ∗π )|
1
2 · e−

1
2

{
ỹ′
(
IT⊗(BB′)−1

)
ỹ−µ′∗π V ∗

−1
π µ∗π

}
, (18)

with

V ∗π = [V −1
π + (WW ′ ⊗ (BB′)−1)]−1, (19)

µ∗π = V ∗π ·
[
V −1
π µπ +

[
W ⊗ (BB′)−1

]
ỹ
]
, (20)

and ỹ = vec([y1, ...,yt, ...,yT ]), W = [w1, ...,wt, ...,wT ]. The suffix Np(B) indicates

that the distribution refers to our approach, which uses the normal distribution for π

and the general prior p(B) for B. The analysis of the joint posterior distribution then

requires a suitable posterior sampling procedure for the k2 elements in p(B|Y )Np(B),

or even for fewer parameters in case zero restrictions are introduced on B. Draws for

the km elements in π|B, Y can instead be obtained with a standard random number

generator.

The above approach strikes a balance between flexibility and tractability. On

the one hand, it grants the researcher flexibility on impulse responses at the horizon

where flexibility is needed the most. Since sign restrictions on impulse responses are

typically introduced contemporaneously rather than on future horizons, we do not

view our framework as particularly restrictive. On the other hand, it exploits the

normal prior distribution on π that the indirect approach employs to make posterior

sampling more tractable. Plagborg-Møller (forthcoming) develops a general approach

that works directly on the moving average representation of the data, model (3).

positive number.
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His approach is more challenging because a numerical simulator is required for all

parameters. Alternatively, one can follow Kociecki (2010) and derive the posterior

distribution for the SVAR model implicit in prior beliefs expressed on the moving

average representation of the data. His approach is numerically challenging when the

recursive structure by Kociecki (2010) is abandoned, as we discuss in Section C of the

Appendix.

The approach that we propose is also convenient for a number of additional reasons.

First, contrary to Arias et al. (2018), it makes it easier to introduce zero restrictions,

as long as such restrictions are expressed on B. Second, by parametrizing the model in

Π rather than in A+ = BΠ, it makes it straightforward to use the prior by Litterman

(1986) (which is applied directly on π), simplifying the analysis compared to Sims and

Zha (1998) and Baumeister and Hamilton (2015).9

2.4 The new posterior sampler proposed in this paper

To make our approach viable in applied work we require an efficient algorithm that

explores the posterior distribution p(B|Y )Np(B) from equation (18). We saw that when

prior beliefs p(B) take the special case implicit in the traditional approach (equation

(10)) the posterior distribution p(B|Y )Np(B) can be explored using an existing and

very popular algorithm, which we summarized in Algorithm 1 from Section 2.2. We

now develop an extension of Algorithm 1 to allow for the wider class of prior beliefs

on B.

We build our sampling procedure on the importance sampling techniques. Suppose

9Parametrizing the model in Π rather than in A+ simplifies the comparison of the direct and
the indirect approach, as p(π) appears in both parametrizations. The parametrization in Π rather
than A+ does not affect the number of parameters for which the algorithm is required, because both
p(Π|B, Y ) (when parametrizing the model in Π) and p(A+|B, Y ) (when parametrizing the model in
A+) have a common form that can be drawn from using available random number generators. In
the special case of the A form, Sims and Zha (1998) and Baumeister and Hamilton (2015) show
that the parametrization in A,A+ together with prior independence across the parameters in the
different structural equations of the model allow for posterior simulation equation by equation. In
the more general framework considered in this paper, the presence of B 6= Ik prevents from breaking
the analysis equation by equation.
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we are interested in sampling from the target distribution p(θ)target, and suppose we

cannot draw from p(θ)target directly, but can only evaluate it. In addition, suppose

that we can draw from the importance function p(θ)importance. To the extent that the

importance function fully covers the support of p(θ)target, we can obtain draws from

p(θ)target by resampling the draws {θi} from the importance function with replacement

using weigths w(θi) = p(θ=θi)
target

p(θ=θi)importance
(see for example Koop, 2003, chapter 4). One

can assess the performance of the sampler by ensuring that the effective sample size

ESS =
(∑

i

(
wi/
∑
i

(wi)
)2
)−1

, which captures the effective number of draws used to

represent the target probability, is not excessively small relative to the number of

draws from the importance function. If the importance function sufficiently covers the

support of the target function, a small effective sample size only suggests increasing

the number of draws from the importace function. If, instead, we cannot ensure that

the importance function gives sufficient mass to the support of the target function, a

low effective sample size suggests that the importance function must be changed.

In principle, one could use the posterior distribution from the traditional approach

as an importance function to study the posterior distribution associated with our more

flexible approach, setting p(θ)target = p(B|Y )Np(B) and p(θ)importance = p(B|Y )NiWU .

This procedure does not work in a general framework, because one cannot ensure that

p(B|Y )NiWU sufficiently covers the support of p(B|Y )Np(B), except for special cases.

We circumvent the above challenge by exploring p(B|Y )Np(B) indirectly. Call

p(Σ|Y )NiWU the posterior distribution on Σ from the Normal-inverse-Wishart-Uniform

approach, which can be sampled efficiently using Algorithm 1. Then call p(Σ|Y )Np(B)

the posterior distribution implicit in p(B|Y )Np(B). The first stage of our procedure

consists of converting draws from p(Σ|Y )NiWU into draws from p(Σ|Y )Np(B). Since Σ

is identified, p(Σ|Y )NiWU and p(Σ|Y )Np(B) are close to each other as long as the sample

size is not excessively small. This makes p(Σ|Y )NiWU a viable importance function to

explore p(Σ|Y )Np(B), a conjecture that can be directly verified from the corresponding

effective sample size.
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The second stage of our procedure consists of mapping posterior draws from p(Σ|Y )Np(B)

into posterior draws from p(B|Y )Np(B). Call p(Q|Σ)NiWU the uniform distribution on

Q used in the traditional approach given the sign restrictions used and call p(Q|Σ)Np(B)

the distribution onQ implicit in p(B) given Σ. Characterizing p(Q|Σ)Np(B) analytically

can be challenging, but not numerically. The mapping from Σ to B requires orthogonal

matrices Q from p(Q|Σ)Np(B), not p(Q|Σ)NiWU . However, by sampling the parame-

ter space of orthogonal matrices uniformly, the algorithm by Rubio-Ramirez et al.

(2010) fully explores the parameter space for Q, reducing to zero the probability that

p(Q|Σ)NiWU does not explore the relevant parameter space covered by p(Q|Σ)Np(B).

For the second stage, a low effective sample size only suggests the need to increase the

number of draws from the importance function, but not that the importance function

is not covering the relevant support of the target funcion.

In Section D of the Appendix we show that the above procedure can be made

operational through the following algorithm:

Algorithm 2 (this paper):

1. extract a wide number of draws from p(B) and compute numerically

the implicit value of E(Σ)Np(B);

2. set d = k + 2 and S = E(Σ)Np(B) · (d − k − 1), which ensures that

E(Σ) from Σ ∼ iW (d, S) is not far away from p(Σ)Np(B);

3. run Algorithm 1 from Section 2.2 and store a large number of draws

of Σi and Bi (ensuring Σi = BiB
′
i), which represent draws from

p(Σ|Y )NiWU and p(B|Y )NiWU , respectively;

4. for each Σi compute weigths

wstage A
i = |det(Σi)|

d+k
2 · e

1
2
tr[ΣiS], (21)

and assess that the effective sample size ESS stage A =
(∑

i

(
wstage A
i /

∑
i

(wstage A
i )

)2
)−1
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is sufficiently high;

5. compute the weights

wstage B
i = p(B = Bi); (22)

6. generate draws B̃i by resampling {Bi} with replacement using weigths

{wi} with wi = wstage A
i · wstage B

i . If the effective sample size com-

puted on {wi} is large enough, the draws {B̃i} represent draws from

p(B|Y )Np(B). If not, repeat the exercise by increasing the number of

draws in step 3.

Algorithm 2 resamples the posterior draws from the traditional approach by making

them representative of the posterior distribution associated with the generic prior

beliefs p(B) from our approach. In Section 3 we document that the sampling time of

Algorithm 2 is very close to the computational time from Algorithm 1, in that steps

4-6 of Algorithm 2 require a minimal running time. It is in this sense that the posterior

sampler proposed in this section is considered as efficient as Algorithm 1. Step 1 and

2 of Algorithm 2 can be changed to a different selection of d and S. We use this

approach to further limit the distance of p(Σ|Y )NiWU from p(Σ|Y )Np(B) and improve

the weigths in step 4.

To further assess the effectiveness of our algorithm we also explore p(B|Y )Np(B)

using the Dynamic Striated Metropolis-Hastings algorithm by Waggoner et al. (2016).

This altrnative algorithm is computationally more demanding, but can handle pos-

tentially irreguarly shaped posterior distributions and a large number of parameters.

Using the posterior distribution from this algorithm, we show that the sampling pro-

cedure proposed in this section does a good job in exploring p(B|Y )Np(B), provided

that the sample size is not too small. We discuss how we implement the algorithm by

Waggoner et al. (2016) in Section E of the Appendix.
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2.5 Proposing one possible prior

So far we have developed an approach that does not restrict prior beliefs to the Normal-

inverse-Wishart-Uniform prior beliefs, while still allowing for a fast and efficient poste-

rior sampler. We conclude the section on the methodology by discussing one possible

prior specification for p(B), which we have so far treated as general. We do so with

two goals in mind. First, to highlight that the prior distributions expressed on struc-

tural parameters implicit in the traditional approach matter for the results. Second,

to propose an alternative specification to the applied researcher.

Specifying prior beliefs p(B) is challenging, because the literature still provides

limited guidance on explicit prior beliefs on structural parameters. Baumeister and

Hamilton (2015) work with model (1) and use the existing literature to form prior

beliefs on the contemporaneous elasticities among variables. However, as discussed

by Kilian and Lütkepohl (2017), researchers may well lack explicit prior information

on the contemporaneous relationship among variables. Instead, they frequently have

prior beliefs that do not go beyond the sign of contemporaneous impulse responses. As

an example, one may entertain the belief that an exogenous, one standard deviation

monetary increase in the interest rate decreases inflation, but lacks prior beliefs on the

scale of such a decrease.10

To overcome this challenge, we propose a prior specification for p(B) that builds on

a conventional prior specification used in the literature for p(π). The proposed prior

aims to combine sign restrictions with information on the volatility of the data. To do

so, the crucial step is to take a reasonable stand on the scale of the parameters. With

the Minnesota Prior on π, one first associates each variable with a reasonable scale

capturing the volatility of the variables. This is usually implemented by estimating the

variance σi of the residual on univariate AR processes on each variable. Then, Bayesian

10The same challenge is present also in Plagborg-Møller (forthcoming) and in Kociecki (2010).
Plagborg-Møller (forthcoming) calibrates the prior distribution on the impulse responses using in-
formation from a DSGE model. Kociecki (2010) uses a normal distribution on B, but his recursive,
exact-identifying framework implies that the prior beliefs on structural parameters vanish asymptot-
ically.
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shrinkage is introduced through a set of hyperparameters that shrink the parameters

in π towards the random walk or the white noise process, taking the relative scale of

the variables into account (see Canova, 2007 and Kilian and Lütkepohl, 2017).

We extend the above procedure as follows. Call bij the entry of B capturing the

effect of a one standard deviation shock j to variable i. It can be shown that the

covariance restrictions Σ = BB′ imply

− Σ0.5
ii ≤ bij ≤ Σ0.5

ii , (23)

with Σii the i − th element of the diagonal of Σ.11 Accordingly, γi = Σ̂0.5
ii provides a

candidate assessment of the reasonable scale for bij, where Σ̂ is an estimate based on

a training sample. We then introduce two hyperparameters ψ1 and ψ2 that control

for the location and the spread of p(bij). We use independent, untruncated normal

distributions N(µij, σij) as follows: if no sign restriction is imposed on bij, set µij = 0

and σij = ψ2γi/1.96, so that the distribution is symmetric around 0, and 95% of

the prior mass is in the space (−ψ2γi, ψ2γi); if bij is restricted to be positive, start

from a normal distribution with µij = ψ1γi and calibrate the variance such that the

distribution truncated on the positive support has 95% prior mass in the space (0, ψ2γi)

(or (−ψ2γi, 0)); if bij is restricted to be negative, start from a normal distribution with

µij = −ψ1γi and calibrate the variance such that the distribution truncated on the

negative support has 95% prior mass in the space (−ψ2γi, 0). Last, for the shocks

that remain unidentified, we numerically introduce the restriction that they do not

replicate the sign restrictions of the identified shocks.

The convenience of the above approach is that the researcher sets a reasonable scale

for the effect of the shocks by selecting γi, and then introduces Bayesian shrinkage

through the hyperparameters ψ1 and ψ2. In this paper we use the parametrizations

ψ1 = 0.8 and ψ2 = 1.2, which ensure that the prior mass is given close to the estimated

11Given Σ = BB′, the restrictions corresponding to the diagonal elements of Σ are Σii = b2i1 +b2i2 +
...+ b2ik. Since Σii is nonnegative and since b2ij ≥ 0, each element bij must satisfy −Σ0.5

ii ≤ bij ≤ Σ0.5
ii .
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reasonable scale of each variable. The rest of the paper uses the prior specification

for B discussed in this section, and provides graphical intuition for it in Section 3.3.

Alternative specifications are also possible. We limit the analysis to an illustration

that employs these values of the hyperparameters, as developing an assessment of the

most robust way of specifying prior beliefs on structural parameters goes beyond the

purpose of the paper.

3 An illustrative example based on data simulated

from the model by An and Schorfheide (2007)

We first apply the methodology discussed in Section 2.3 to simulated data, and provide

further intuition on how the procedure works.

3.1 The data generating process and the model

We generate data using the linearized DSGE model by An and Schorfheide (2007),

which is given by the following set of equations:

xt = Etxt+1 + gt − Etgt+1 −
1

τ̃
(rt − Etπt+1 − Etzt+1), (24a)

πt = βEtπt+1 + κ̃(xt − gt), (24b)

rt = ρrrt−1 + (1− ρr)η1πt + (1− ρr)η2(xt − gt) + εrt, (24c)

gt = ρggt−1 + εgt, (24d)

zt = ρzzt−1 + εzt. (24e)

The variables of the model are the output gap (xt), inflation (πt), the interest rate (rt),

productivity (zt) and government spending (gt). They are driven by the technology

shock εzt ∼ N(0, σ2
z), the government spending shock εgt ∼ N(0, σ2

g), and an interest

rate shock εrt ∼ N(0, σ2
r). Equations (24a) to (24e) summarize a model economy
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of a representative household, perfectly competitive intermediate good producers, a

final good producer, a fiscal authority, and the central bank. Households gain utility

from consumption and real money balances, and disutility from labour. They supply

labour on competitive markets to intermediate good producers, who face a production

function subject to technology shocks and adjust prices after incurring a cost. The

fiscal authority consumes a stochastic fraction of final output, raises lump-sum taxes

and issues bonds. The interest rate is set by the central bank according to a Taylor

rule subject to monetary policy shocks.

The parameters of the model are ι = (τ̃ , rA, κ̃, ρr, ρg, ρz, ψ1, ψ2, σr, σg, σz)
′, with

β = 1
1+rA/400

.12 We calibrate ι using the parameter values that An and Schorfheide

(2007) employ for their data generating process, as summarized in Table G4 in the

Appendix. We then use the solution method by Sims (2002) to solve the model and

the factorization by Fernandez-Villaverde et al. (2007) to compute the associated VAR

representation. The DGP has the exact, reduced form VAR(1) representation


rt

xt

πt


︸ ︷︷ ︸
yt

=


0.6048 0 0.9017

0.0616 0.95 −1.9302

0.0103 0 0.4452


︸ ︷︷ ︸

Π(ι)


rt−1

xt−1

πt−1


︸ ︷︷ ︸
yt−1

+


uzt

ugt

urt


︸ ︷︷ ︸

ut

, (25)

with ut ∼ N
(
0,Σ(ι)

)
and

Σ(ι) =


0.0011 −0.004 −0.0001

−0.0004 0.0095 0.0004

−0.0001 0.0004 0.0001

 . (26)

The above model is used to generate data, which we then use to estimate a SVAR

model identified with sign restrictions.13

12To calibrate the model as in An and Schorfheide (2007), we treat β as a function of the funda-
mental parameter rA, which determines the steady state interest rate.

13While the model has a unique structural form, we emphasize its reduced form and avoid running
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3.2 Illustration of our approach

We use the data generating process to generate a dataset of 300 draws, and discard

the first 100 draws to make the data less dependent on the initial point, which we

set equal to the unconditional means of the variables. We then divide the remaining

200 draws into five different sub-datasets, including up to the first 40, 80, 120, 160

and 200 observations. For each sub-dataset, we estimate a model with a constant and

four lags. We parametrize µπ and Vπ from equation (15) as in the Minnesota Prior

(Litterman, 1986) and use the hyperparameter values discussed by Canova (2007),

chapter 10. We identify two structural shocks using the following sign restrictions:

that a technology shock that increases output increases the interest rate and inflation,

and that a monetary policy shock that increases the interest rate decreases output and

inflation. We set p(B) using the non-hierarchical specification discussed in Section 2.5.

The hyperparameter γi is set equal to the estimate Σ̂0.5
ii obtained on a training sample

that employs the first 20% of the sample, as in Primiceri (2005), except for the sub-

dataset including 40 observations, for which the sample size requires estimating Σ̂0.5
ii

based on the full sub-dataset.

For each sub-dataset, we explore p(B|Y )Np(B) using Algorithm 2 proposed in Sec-

tion 2.4. We first extract 100,000 from Algorithm 1 (step 3 of Algorithm 2) and then

apply the importance sampler from steps 4-6 of Algorithm 2. Figure 1 assesses the per-

formance of our posterior sampler. As should be expected, the smaller the size of the

sample, the lower the effective sample size when converting draws from p(Σ|Y )NiWU

into draws from p(Σ|Y )Np(B) (top panel of the figure). In this application, T = 40

leads us to effectively use only 6% observations of the initial 100,000, while T = 200

leads us to use as many as 72%. This confirms the intuition that as long as the sample

size is large enough, an importance sampler can be used to explore p(Σ|Y )Np(B). Ac-

a horse race on the ability of different approaches to better approximate the true data generating
process. The conclusion from such an analysis would be specific to the application used, and hard to
generalize to a more realistic framework. We use the model only for illustrative purposes, as it helps
clarify how our approach differs from the existing literature.
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Figure 1: Assessment of our posterior sampler using simulated data: effective sample size
(ESS) and running time
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counting then also for step B of the algoritm (middle panel), we find that for T = 200

the posterior p(B|Y )Np(B) is effectively explored using 5,910 draws, a number that can

be increased by increasing the number of initial draws from step 3 of the algorithm.

The computational time of Algorithm 2 effectively coincides with the computational

time of Algorithm 1 (bottom panel). In this application the resampling discussed in

steps 4-6 from Algorithm 2 takes around 14s irrespectively of the sample size consid-

ered, for a total computational time of less than 2m. Running the Dynamic Striated

Metropolis-Hastings algorithm took from 7m36s for T = 40 to 48m49s for T = 200.

See Section E of the Appendix for how we set the tuning parameters of the algorithm.

Figure 2 further provides intuition for our sampler by showing the posterior dis-

tribution for the (1, 1) entry of Σ and B. The solid line shows the posterior distri-

butions p(Σ|Y )NiWU and p(B|Y )NiWU sampled from step 3 of Algorithm 2. The blue

shaded area shows p(Σ|Y )Np(B) and p(B|Y )Np(B) obtained from Algorithm 2, while

22



Figure 2: Assessment of our posterior sampler using simulated data: Σ and B

A) Low sample size: T = 40
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B) High sample size: T = 200

0 0.5 1 1.5

10-3

0
-0.02 -0.01 0 0.01 0.02

0

Initial draws (step 3, i.e. Algorithm 1
Initial draws + resampling (steps 3-6)
Dynamic Striated Metropolis-Hastings algorithm

Note: The grey shaded area shows the ‘correct’ posterior distribution p(B|Y )Np(B), as explored
by the Dynamic Striated Metropolis-Hastings algorithm. The solid lines on the left panels show
the importance function used to explore p(Σ|Y )Np(B). The blue shaded area shows the posterior
distribution p(B|Y )Np(B) sampled from Algorithm 2. The higher is the sample size, the closer
the posterior distribution from Algorithm 2 is to the ‘correct’ posterior distribution detected by
the Dynamic Strated Metropolis-Hastings algorithm by Waggoner et al. (2016).

the light shaded area shows the same distributions sampled with the Dynamic Stri-

ated Metropolis-Hastings algorithm by Waggoner et al. (2016). The latter posteriors
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can be thought of as capturing the ‘correct’ posterior distribution, which Algorithm

2 aims to explore. For T = 40, p(Σ|Y )NiWU is still partly away from p(Σ|Y )Np(B).

This leads to a low effective sample size and a less precise sampling of p(B|Y )Np(B).

As the sample size increases, p(Σ|Y )NiWU and p(Σ|Y )Np(B) are closer to each other,

which makes p(Σ|Y )NiWU a valid importance function and improves the sampling of

p(B|Y )Np(B).

Figure 3: p(B|Y )Np(B), update of prior beliefs on B
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Figure 3 shows the prior and posterior beliefs on B corresponding to the sub-

sample with T = 120. The stars in the figure indicate the estimated reasonable scale

γi. Given γi, the mode of the marginal prior distribution p(bij) equals ψ1γi = 0.8γi,
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while 95% of the prior mass is concentrated in the support [0, ψ2γ] = [0, 1.2γ] or

[0,−ψ2γ] = [0,−1.2γ], depending on the sign restriction. The figure also shows the

posterior distribution explored using Algorithm 2 and using the algorithm by Waggoner

et al. (2016). The posterior distributions are very similar, suggesting that the sample

size is already sufficiently high for Algorithm 2 to efficiently explore p(B|Y )Np(B).

3.3 Comparison to the NiWU approach

We conclude the illustrative example by comparing our approach with the traditional

Normal-inverse-Wishart-Uniform approach. We make the two approaches more easily

comparable using decomposition (5), which we rewrite here for convenience:

B = h(Σ)Q. (27)

The two approaches differ in how they draw Σ and Q. The traditional approach draws

Σ from either p(Σ)NiWU or p(Σ|Y )NiWU , and draws Q from p(Q|Σ)NiWU . As outlined

by Algorithm 2, our approach effectively draws Σ from the distribution on Σ implicit

in either p(B)Np(B) or p(B|Y )Np(B), and draws Q from p(Q|Σ)Np(B) implicit in p(B).

Since Σ is identified, differences in the prior distributions on Σ vanish asymptotically.

This is not true for the distribution used for Q, implying that the difference between

the two approaches mainly relies on the difference in the stochastic process generating

Q (see Giacomini and Kitagawa, 2015).

As discussed, for example, by Baumeister and Hamilton (2015, forthcoming), the

traditional approach treats candidate draws of Q as equally plausible, irrespectively

of the curvature implied on the parameter space of B. Conditioning on a draw Σ,

only a subset of candidate orthogonal matrices is consistent with the sign restrictions.

Yet, all matrices Q within this subset are treated as equally plausible. By contrast,

while this subset is the same across the two approaches, the direct approach does not

treat Q matrices as equally plausible, but takes into account the part of the parameter
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space of B that they lead to, as reflected by p(B).

Figure 4: An illustration using a two variable model
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Figure 4 develops the above intuition using a simplified bivariate VAR that re-

computes the exercise using the interest rate and the output gap from the simulated

data. A bivariate case facilitates the illustration, as orthogonal matrices Q can be

generated using 2× 2 Givens transformations. The top-left plot of Figure 4 shows the

distribution of the angle of the rotation matrices that replicate draws of orthogonal

matrices from a uniform distributions of Q (see Section D.2 of the Appendix for the

discussion of the sampler). The distribution of the rotation angle is uniform in the

support [−π/2, π/2] (Fry and Pagan, 2011, Baumeister and Hamilton, 2015). The rest

of the figure conditions the analysis on a draw of Σ, which we set equal to the true

2× 2 upper left block of Σ(ι). Conditioning on such Σ, the rotation angles consistent

with the sign restrictions are the subset shown in the bottom-left plot of the figure.

While the traditional approach treats such angles as equally plausible, the direct ap-

proach does not. The middle and the right panels show the implied distribution on B.
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Figure 5: Compare asymptotic posterior distributions on B and Σ
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Note: Figure G5 in the Appendix complements the results from this figure.

Given the normalization used, the distributions on B reflect the effect of one standard

deviation shocks. We provide a sense of the volatility of the data by showing the 10th,

50th and 90th percentile of the absolute value in the period-by-period variation in the

data. The traditional approach introduces a wide and asymmetric distribution on all

four entries on B, with a strong spike above the median value of the period-by-period

variations in the variables. This distribution shows that since the traditional approach
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Figure 6: Compare finite sample posterior distributions on B and Σ
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Note: Figure G6 and Figure G7 complement the results from this figure.

does not express beliefs directly on the parameters of interest, it can introduce unin-

tended features into the prior on such parameters. By contrast, the direct approach

takes an explicit stand on the plausible shape implied on B.

Moving back to the three-variate simulation exercise, we first compare the posterior

distributions in the hypothetical case in which the researcher has access to a dataset of

infinite size. Figure 5 makes the differences more visible by showing the results on the
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first columns of Σ and B, leaving the full comparison to Section G of the Appendix.

We do as in Figure 4 and report the magnitude of the volatility of the variables

showing the 10th, 50th and 80th percentiles in the absolute value of the variations

in the data. The asymptotic scenario makes the prior distributions on Σ irrelevant

and isolates differences between p(Q|Σ)NiWU and p(Q|Σ)Np(B) (see Section D.3 in the

Appendix for the details on the sampler we use, and Baumeister and Hamilton, 2015

for a discussion of the asymptotic posterior distribution in this class of models). Since

Σ is identified, as the data increases in size the posterior distribution on Σ collapses

to a point mass in Σtrue = Σ(ι). Yet, the posterior distribution on B does not collapse

to a mass point, but reflects the different distributions for Q.

To conclude the analysis, Figure 6 shows the posterior distribution in the finite

sample used. In order to assess this distribution, we need a parametrization of the

Inverse-Wishart distribution for Σ. We set d = 0 and S = 0, as discussed in Sec-

tion 2.2. Other parametrizations are possible, but they imply very small differences,

given that Σ is identified. The figure shows that the sample is already large enough

for the posterior distributions on Σ to be very similar. Consistent with this result, the

features of the asymptotic results for B dominate on the prior beliefs, as p(B|Y )NiWU

is wider than p(B|Y )Np(B) despite p(B)NiWU being tighter than p(B). This suggests

that inference from the direct approach is sharper despite making use of the same sign

restrictions. Figure G8 in the Appendix shows that this result holds also in a sample

of only 20 observations.

4 An application to real data: demand and supply

shocks in the oil market

We now illustrate our methodology by revisiting the model of the oil market by Kilian

and Murphy (2012). This model is particularly suited for our application because it

employs sign restrictions on the contemporaneous impulse response to the shocks of
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interest. We show that inference becomes sharper when applying the sign restrictions

on the impulse responses by Kilian and Murphy (2012) using our methodology and

our prior specification, allowing for sharper results.

4.1 The model

We use the three-variate reduced form model by Kilian (2009) and Kilian and Mur-

phy (2012), which has become standard in the literature. The model includes the

percentage variation in global crude oil production, the detrended index of global real

economic activity developed by Kilian (2009), and the log of the real price of oil, mul-

tiplied by 100. We use the data updated by Antoĺın-Dı́az and Rubio-Ramı́rez (2018),

which covers the period from January 1971 to December 2015. To improve the compa-

rability with Antoĺın-Dı́az and Rubio-Ramı́rez (2018) we add a constant and 24 lags

in the model, and use a flat prior on π, setting V −1
π = 0 in equation (6).

Table 1: Sign restrictions on the contemporaneous impulse responses

oil supply shock aggregate demand shock oil demand shock

oil production – + +
economic activity – + –

real price of oil + + +

We label the structural shocks by introducing the sign restrictions on the con-

temporaneous impulse responses used by Kilian and Murphy (2012) and summarized

in Table 1. We then depart from Kilian and Murphy (2012) and Antoĺın-Dı́az and

Rubio-Ramı́rez (2018) and do not introduce restrictions on elasticities, nor on the sign

of the structural shocks, nor on the historical decomposition. By contrast, we model

the sign restrictions from Table 1 using the methodology discussed in Section 2.3. We

do so in order to inspect to what extent a more informed way of introducing the same

sign restrictions can affect the results. We first set the hyperparameters ψ1 = 0.8 and

ψ2 = 1.2 as in the illustrative example from Section 3.
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4.2 Results

The posterior distribution of the model is explored using the new algorithm proposed

in Section 2.4. We extract 100,000 draws from p(B|Y )NiWU and apply the proposed

modification of the importance sampling procedure to convert such draws into draws

from p(B|Y )Np(B). The effective sample size in stage A equals 88.70% of the initial

draws, suggesting that the sample size, which equals 540, is sufficiently large to allow

for the use of our procedure. Given the initial 100,000 draws, p(B|Y )Np(B) is effec-

tively sampled using 11,942 draws when accounting also for stage B of the procedure.

On Matlab, the algorithm takes 12m25s to extract draws from p(B|Y )NiWU and 18s

to resample the draws and make them representative of p(B|Y )Np(B). We also run

the Dynamic Striated Metropolis-Hastings to further show that our sampler correctly

explores the posterior distribution. The Dynamic Striated Metropolis-Hastings takes

20h15m23s to run on Fortran, and suggests that the 11,942 effective draws from our

sampler are enough to recover the ‘correct’ posterior distribution. The details of how

we set the tuning parameters are discussed in Section E of the Appendix.

Figure 7 shows the results for the impulse responses to one standard deviation

shocks, normalized such that the price of oil increases. The solid and dashed lines

display the 68 and the 95% pointwise credible sets and the pointwise median when

applying our methodology. The shaded areas and the dotted line show the same pos-

terior moments when applying the same sign restrictions using the indirect approach.

Consistent with Kilian and Murphy (2012), the indirect approach delivers relatively

wide posterior bands that do not allow for an assessment of whether supply or demand

shocks are more effective in driving the real price of oil. However, when applying the

same sign restrictions using our methodology, the posterior bands tighten, sharpening

inference. Consistent with Kilian (2009), oil demand shocks generate an immediate

and persistent increase in the price of oil, an increase that then progressively declines,

while aggregate demand shocks produce stronger effects also at longer horizons. How-

ever, while we confirm the results by Kilian (2009) that demand shocks are important
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Figure 7: IRFs, posterior, compare direct and indirect approach
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Note: The grey areas and the dotted line show the 68 and 95% pointwise credible sets and the
pointwise median under the indirect approach. The blue solid and dashed lines show the same
posterior moments under the direct approach proposed in this paper.

drivers of oil price responses, we find that this is more so for aggregate demand shocks

rather than oil specific demand shocks.

A notable result from Figure 7 is that oil supply shocks generate sizeable effects on

the price of oil, although with smaller effects when focusing on the longer horizon of the

response. We find it interesting that the result on the importance of supply shocks is

in line with the results by Caldara et al. (2018) and Baumeister and Hamilton (2017),

despite the different methodologies used. Caldara et al. (2018) build their analysis on a

point-identified model that minimizes the distance between the elasticities implied by
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the VAR model and external estimates. Yet, as they show, the actual parametrization

of the elasticities have an important effect on the results. Baumeister and Hamilton

(2017) also build their analysis on external information on price elasticities on oil,

and use a sign restricted framework. They then add information on the dynamics in

inventories and measurement error, weigh data differently depending on the period that

they correspond to, and combine sign restrictions on elasticities with sign restrictions

on the contemporaneous impulse responses. We show that results from Caldara et al.

(2018) and Baumeister and Hamilton (2017) are robust to a framework that focuses on

the sign restrictions on the contemporaneous impulse responses. Figure 8 shows that

the posterior distribution on the price elasticities of oil supply and oil demand implicit

in our approach are consistent with the estimates by Baumeister and Hamilton (2017)

and Caldara et al. (2018), especially for the supply elasticity.

Figure 8: Elasticities, compare direct and indirect approach

Note: Elasticities are computed from the A form of the structural VAR, equation (1). The figure
reports the upper limit used by Kilian and Murphy (2012) on the supply elasticity, and the
posterior medians estimated by Baumeister and Hamilton (2017), by Caldara et al. (2018) and
in our paper. The distribution of the demand elasticity under the traditional approach has some
mass where the support takes positive values. This mass is however negligible and equals 0.13%.
With our approach this mass is 0.

The analysis of forecast error variance decomposition, shown in Figure 9, confirms

that the traditional approach can deliver credible bands that are too wide to imply
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Figure 9: Forecast error variance decomposition, compare direct and indirect approach
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Note: The grey areas and the dotted line show the 68 and 95% pointwise credible sets and the
pointwise median under the indirect approach. The blue solid and dashed lines show the same
posterior moments under the direct approach proposed in this paper.

results that can be interpreted. The 95% pointwise credible band can go from close to

0 to close to 1, essentially failing to disclose the role of the structural shocks in driving

the variance of forecast errors. By contrast, the inference is much sharper when ap-

plying the same sign restrictions using our methodology. We find that the unexpected

variations in the price of oil are mainly driven by supply shocks and aggregate demand

shocks in similar proportions, while oil demand shocks have a more subdued effect.

The result that supply shocks have an important role in driving unexpected variations

in the price of oil is consistent with Caldara et al. (2018). As for the forecast errors in
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oil production, we find that aggregate demand shocks matter only very little, a result

consistent with Antoĺın-Dı́az and Rubio-Ramı́rez (2018), while oil demand shocks and

oil supply shocks matter in similar proportions. The result that unexpected variations

in oil production are largely driven by supply rather than aggregate demand shocks is

again consistent with Caldara et al. (2018).

We conclude the analysis by displaying the historical decomposition associated

with selected periods. Figure 10 and Figure 11 show the historical decomposition

for the period corresponding to the Gulf War and for the slump in oil prices from

2014-2015. The figures reports the contribution that the cumulative estimated shocks

of each structural shock had on each variable, starting from the beginning of the

sample. The figures highlight the results by reporting the decomposition of only oil

production growth and the price of oil, while reporting the full analysis in Section G

of the Appendix. See Kilian and Lütkepohl (2017), chapter 4, for a detailed discussion

of historical decompositions, as well as Antoĺın-Dı́az and Rubio-Ramı́rez (2018) for an

application in sign restricted models.

Figure 10 highlights an interesting result. Antoĺın-Dı́az and Rubio-Ramı́rez (2018)

achieve a sharpening of the credible sets by introducing the restriction that oil supply

shocks matter significantly in driving the drop in oil production in August 1990. In-

deed, this is the key event in their application, as they discuss. Figure 10 shows that

our approach delivers this feature as a result, rather than as a restriction. The credible

sets associated with our methodology leaves very little doubt that oil supply shocks

were the main drivers of the drop in the oil production, while the indirect approach

still leaves considerable uncertainty, leading Antoĺın-Dı́az and Rubio-Ramı́rez (2018)

to introduce the restriction. For the same period, Antoĺın-Dı́az and Rubio-Ramı́rez

(2018) introduce the restriction that aggregate demand shocks had a small role in

driving the price of oil. Our results are less consistent with this restriction. As also in

Caldara et al. (2018), the initial drop in oil production was driven by supply shocks.

We find that the price increase was due to oil supply shocks, followed by aggregate
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Figure 10: Historical decomposition, Gulf War, January-December 1990
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Note: The solid black line shows the data. At each period t and for each structural shock, the
data is decomposed into the cumulative contribution of the estimated structural shocks from the
beginning of the sample until period t. The grey areas and the dotted line show the 68 and 95%
pointwise credible sets and the pointwise median under the indirect approach. The blue solid and
dashed lines show the same posterior moments under the direct approach. We subtract from the
data and from the decompositions the value corresponding to June 1990, and then compute the
pointwise statistics. The figure can be interpreted as percent relative to June 1990. Figure G11
in the Appendix reports the results for all variables in the model.

demand shocks. Figure G9 to Figure G13 in the Appendix complement the analysis

by reporting the historical decomposition for the remaining periods for which Antoĺın-

Dı́az and Rubio-Ramı́rez (2018) introduce identifying restrictions. Last, Figure 11

confirms the result from Caldara et al. (2018) and Baumeister and Hamilton (2017)

that oil supply shocks contributed to the temporary decrease in the price of oil in
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Figure 11: Historical decomposition, January 2014 - December 2015
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Note: The solid black line shows the data. At each period t and for each structural shock, the
data is decomposed into the cumulative contribution of the estimated structural shocks from the
beginning of the sample until period t. The grey areas and the dotted line show the 68 and
95% pointwise credible sets and the pointwise median under the indirect approach. The blue
solid and dashed lines show the same posterior moments under the direct approach. We subtract
from the data and from the decompositions the value corresponding to January 2014, and then
compute the pointwise statistics. The figure can be interpreted as percent relative to January
2014. Figure G14 in the Appendix reports the results for all variables in the model.

2014. Compared to Antoĺın-Dı́az and Rubio-Ramı́rez (2018), we find that oil demand

shocks mattered less. Consistent with Caldara et al. (2018), we find that the initial

decrease was generated by oil supply shocks.
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5 Conclusions

Structural Vector Autoregressive models are frequently identified using sign restrictions

on the impulse response of selected structural shocks of interest. However, it is not

clear how this identification approach should be implemented in practice. On the one

hand, it is convenient to start from a specification on reduced form parameters, as

this makes posterior sampling highly tractable. On the other hand it is important

to retain flexibility on the prior beliefs implied for the key structural parameters of

interest, since such prior affects the posterior distribution even in a large sample.

We propose an approach that offers flexibility for the prior specification on the

impulse response horizon that matters the most, while ensuring that the joint posterior

distribution is tractable. We apply this approach to data simulated from the An and

Schorfheide (2007) model. We then develop an application to the oil market and

show that our approach delivers sharper inference. Consistent with Baumeister and

Hamilton (2017) and Caldara et al. (2018), we find that oil supply shocks have a

comparable role in explaining oil price dynamics relative to oil demand shocks.
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