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Abstract

We derive a model-free option-based formula to estimate the contribution of market

frictions to expected returns (CFER) within an asset pricing setting. We estimate

CFER for the U.S. optionable stocks. We document that CFER is sizable, it predicts

stock returns and it subsumes the effect of frictions on expected returns as expected

theoretically. The sizable alpha of a long-short portfolio formed on CFER is consis-

tent with the size of market frictions and it is not due to model mis-specification.

Moreover, we show that various option-implied measures proxy CFER, thus provi-

ding a theoretical explanation for their ability to predict stock returns.
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1 Introduction

In a frictionless market, asset expected returns are determined by the covariance risk

premium proxied empirically by a number of risk factors. However, in the presence of

market frictions such as margin constraints, short-sale constraints and transaction costs

asset expected returns will also be determined by the contribution of frictions to expected

returns (CFER). The estimation of CFER is far from being trivial because it typically

requires assumptions on the types of frictions and agents’ preferences. We circumvent

these obstacles and provide an option-based model-free formula to estimate the CFER

of any optionable stock derived within a formal asset pricing setting. The estimation of

CFER is of importance because CFER is inherently part of the expected return. Hence,

its estimate can be used to predict asset returns. In addition, its estimate can reveal the

impact of market frictions on expected returns and the dominant market frictions since

theoretically CFER arises because of market frictions.

To derive our CFER formula, we structure our theoretical setting as follows. We

consider a marginal agent who trades in both the stock and option market. We model

market frictions as constraints on the agent’s portfolio allocation, yet we do not specify

neither the number nor the type of constraints.1 The optimality condition of the agent

yields an asset pricing model, where the expected excess return equals the covariance risk

premium plus CFER which arises due to market frictions. In a frictionless market, the

expected excess return should equal the risk premium required by the agent, otherwise

buying (selling) a stock whose expected excess return is higher (lower) than the risk

premium she demands would improve her utility. On the other hand, market frictions may

prevent the agent from engaging in such an arbitrage strategy and hence the expected

excess return can deviate from the covariance risk premium term even at equilibrium.

1The existence of such an agent is realistic and it is in line with the recent literature. For example, a
number of studies document that financial intermediaries is the marginal investor who trades in various
financial markets simultaneously (e.g., Adrian et al. (2014), He et al. (2017)), and the market frictions
faced by intermediaries have important asset pricing implications (e.g., Brunnermeier and Pedersen
(2009), Gârleanu and Pedersen (2011), He and Krishnamurthy (2018), among others).
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This is formalized as the following asset pricing equation,

EP
t [Rt,t+1]−R0

t,t+1 = CFERt,t+1 −
CovPt (m∗t,t+1, Rt,t+1)

EP
t [m∗t,t+1]

, (1)

where Rt,t+1 and R0
t,t+1 are the gross return of the stock and the risk-free bond from

time t to t+ 1, respectively and m∗t,t+1 is the intertemporal marginal rate of substitution

(IMRS) of the agent under market frictions.2 CFER measures the part of the expected

excess return which is not explained by the covariance risk premium. Therefore, CFER

is not a compensation for risks, but it solely captures the effect of market frictions; it is a

function of the Lagrange multipliers of the respective constraints, and it does not depend

on the IMRS.

Next, we show that a stock’s CFER can be estimated as a scaled deviation from put-

call parity. To derive this result, first we prove that CFER theoretically equals the sum

of two terms; the first term is the degree of deviations from put-call parity scaled by the

ratio of the gross risk-free rate to the current underlying stock price, and the second term

is a function of the effect of market frictions on the market option prices. Then, we show

that the size of the latter term is negligible compared to that of the first term, and hence

CFER can be reliably estimated by the first term.3

Three remarks are in order regarding our approach to estimate CFER and the resulting

formula. First, the relation between CFER and deviations from put-call parity is intuitive.

Limits of arbitrage due to market frictions cause deviations from the law of one price

(LoOP) (e.g., Gârleanu and Pedersen (2011)). Put-call parity is an example of LoOP

between the underlying stock and a synthetic stock formed by a pair of European call

2There is another strand of literature on the limits of arbitrage, where no constraints on portfolio
allocations are imposed and hence no CFER term appears (e.g., De Long et al. (1990), Greenwood
(2005), Gabaix et al. (2007), Vayanos and Woolley (2013); see for a survey Gromb and Vayanos (2010)).
Instead, this strand of literature views the risk-averseness of the agents as a friction. This approach is
distinct from ours because the alternative approach does not render deviations from the law of one price,
which is a key ingredient of our option-based estimation formula of CFER.

3While the first term of the theoretical CFER formula can be calculated in a model-free manner, one
needs to make assumptions on the type of frictions and the associated effect of frictions on option prices
to calculate the second term. In Appendix C, we investigate the magnitude of the latter term under three
alternative ways of modeling the effect of frictions on option prices proposed by the previous literature,
and we document that the latter term is negligible for all cases.
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and put options with the same strike and time-to-maturity. Therefore, deviations from

put-call parity contain information about the degree of market frictions faced by the agent.

However, our CFER estimation formula shows that deviations from put-call parity (i.e.,

deviations in price levels) should be scaled in order to use the embedded information

to measure CFER, which is part of expected returns. Second, our approach to estimate

CFER is model-free in that no option pricing model or parameter estimation is required,

and the derivation of the theoretical relation between CFER and deviations from put-call

parity requires no assumptions on the agent’s preferences nor on the type of frictions.

Therefore, the estimated CFER does not reflect any effect from risk factors which may

drive the agent’s IMRS and it solely captures the effect of frictions. This is in line with the

theoretical foundation of CFER in equation (1) and in line with the results in Gârleanu

and Pedersen (2011), who show that deviations from LoOP do not depend on the IMRS.

Finally, the fact that we are agnostic about the type of frictions which affect asset returns

allows developing a reverse engineering approach to study the effect of market frictions

on stock returns. Rather than first postulating the possible types of frictions and then

measure their effect on stock returns, we estimate CFER first and then we examine how

it covaries with various proxies of market frictions. This will reveal the type of frictions

which predominantly give rise to CFER. This reverse approach is robust because it is

founded theoretically. CFER measures the overall effect of market frictions on expected

returns by circumventing model mis-specification concerns. In addition, CFER arises due

to market frictions and hence various types of frictions should covary with it. Therefore,

our approach allows us to learn about frictions from CFER.

We estimate CFER for each optionable U.S. common stock from January 1996 to

April 2016. Four are the main empirical findings. First, the estimated CFER can become

sizable, ranging from -1.24% to 0.89% per month in a 5th to 95th percentile range; CFER

can become twice as large in magnitude as the average U.S. equity premium (0.5% per

month; Mehra (2012)). This result also implies that there is considerable variation in

stocks’ expected returns due to market frictions.
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Second, we document that CFER predicts future excess stock returns cross-sectionally

as equation (1) predicts; the expected return should increase as CFER increases. We find

that a long-short spread portfolio of the CFER-sorted value-weighted decile portfolios,

where we long the portfolio of stocks with the highest CFER and short the portfolio of the

stocks with the lowest CFER, yields a positive and statistically significant average return

of 164 bps per month (t-stat: 5.76). Risk-adjusted returns with respect to standard asset

pricing models are also sizable and statistically significant. For example, the Carhart

(1997) four-factor alpha of the spread portfolio is 186 bps per month (t-stat: 6.56). Our

findings are robust to non-synchronous trading in the stock and equity option markets,

the portfolio construction method (equally- or value-weighted), possible outliers in the

estimated CFER and over alternative time periods. In addition, our results are robust to

recent data snooping concerns (e.g., Harvey et al. (2016), Harvey (2017), Hou et al. (2017)

thanks to the sufficiently high t-statistics even for the value-weighted portfolios and the

formal theoretical foundation for CFER. We discuss further below that the performance

of the CFER-based portfolio strategy is in line with the theoretical properties of CFER

and a typical estimate of transaction costs. Interestingly, our findings show that CFER

and its associated predictive power are sizable even for optionable stocks which tend to

be big (Cremers and Weinbaum (2010)), that is, market frictions have a considerable

effect even on the expected returns of big stocks.

Third, equation (1) implies that the regression of “CFER-adjusted excess returns,”

Rt,t+1 − R0
t,t+1 − CFERt,t+1 on risk factors should yield a zero intercept (i.e., an insig-

nificant alpha). We test this hypothesis on portfolios sorted by CFER and find that it

holds. The switch from significant alphas in the case where we regress excess returns on

risk factors to insignificant alphas in the case where we regress the CFER-adjusted excess

returns on risk-factors reinforces the evidence that the predictability of CFER originates

from capturing the effect of market frictions, rather than from omitted risk factors.

Fourth, we show that the theoretical range of CFER values should be approxima-

tely equal to twice the round-trip transaction costs. The range of our estimated CFER
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values verifies this prediction: it approximately equals twice the estimated round-trip

transaction costs for large optionable stocks (approximately 1%, see e.g., Lesmond et al.

(1999) and Hasbrouck (2009)). In addition, the theoretically derived range of CFER va-

lues implies a theoretical upper bound of the alpha of the CFER-sorted spread portfolio;

CFER has also an alpha interpretation because it is the part of the expected return which

cannot be explained by the covariance risk premium. The theoretical range of CFER sug-

gests that the upper bound of the average CFER of a CFER-sorted long-short portfolio

should be approximately twice the round-trip transaction costs. This implies that the

upper bound of the alpha of the CFER-sorted spread portfolio should be about 2%, that

is, the limits of arbitrage for trading (even big) stocks are large enough to generate a 2%

alpha per month. The empirical findings verify this prediction, too. Our estimated alp-

has of the CFER-sorted spread portfolio are below yet close to the upper bound implied

by transaction costs. Therefore, the estimated alpha of CFER-sorted spread portfolio is

consistent with the market frictions faced by investors.

Our theoretically derived range of CFER values also predicts that, for any given

stock, the dispersion of CFER values should increase with the size of transaction costs

(or more generally, with the size of market frictions). In line with this prediction, we

find that CFER takes more extreme values (either very negative or very positive) for

stocks which are subject to greater market frictions and that the variation of CFER

increases over distressed periods. Moreover, the fact that we are agnostic about the type

of market frictions and the theoretical foundation of CFER allows us to reverse engineer

the dominant market frictions which affect the returns of optionable stocks. Fama and

MacBeth (1973) regressions of CFER on a set of market frictions-related variables reveal

that transaction costs are of major importance for explaining variations in CFER. We

also find that the tighter short-sale constraints are, the more negative CFER is (i.e., the

greater the expected underperformance of stocks relative to the covariance risk premium).

This is in accordance with previous literature, which documents that stocks which are

subject to short-sale constraints underperform (e.g., Ofek et al. (2004) and Drechsler
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and Drechsler (2014)), yet we find that the effect of short-sale constraints to CFER is

of second order importance. This is expected because short sale constraints are less

pronounced among the universe of big stocks like our optionable stocks (e.g., D’Avolio

(2002) and Asquith et al. (2005)). The relation between CFER and proxies of various

market frictions confirms that CFER originates from limits to arbitrage and that it is a

“sufficient statistic” which subsumes the overall effect of any relevant market frictions on

expected returns.

Our study is related to three strands of literature. First, it draws upon the theoretical

literature on asset pricing under market frictions. Early studies by He and Modest (1995)

and Luttmer (1996) examine whether the equity risk premium puzzle may be solved by

taking market frictions into account. More recently, a strand of this literature develops

asset pricing models by assuming specific frictions such as liquidity risk (Acharya and

Pedersen (2005)), market and funding liquidity constraints (Brunnermeier and Pedersen

(2009)), margin constraints (Gârleanu and Pedersen (2011), Chabakauri (2013)), margin

and leverage constraints (Frazzini and Pedersen (2014)) and exclusion of strategies with

possible unlimited losses (Jarrow (2016)). Our model is in line with these studies in

that the Lagrange multipliers of binding constraints on agents’ portfolio allocation affect

expected returns. Our study is also related to Brennan and Wang (2010) and Hou et al.

(2016), who propose a reduced form model of frictions/mispricing and asset pricing.

Similar to our approach, these models make no assumption on the types of frictions, yet

they make assumptions on the dynamics of mispricing and the specification of the IMRS

to estimate the effect of mispricing/frictions on expected returns.

Our paper also complements empirical studies which examine the relation between

the cross-section of stock returns and market frictions such as stock-level illiquidity (Ami-

hud (2002)), short-sale constraints (e.g., Chen et al. (2002), Ofek et al. (2004), Asquith

et al. (2005), Drechsler and Drechsler (2014)), “betting against beta” effect due to le-

verage constraints (Frazzini and Pedersen (2014), Jylhä (2018)), uncertainty about future

shorting costs (Engelberg et al. (2018)), idiosyncratic volatility (Ang et al. (2006), Stam-
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baugh et al. (2015)), delay in the response of prices to information (Hou and Moskowitz

(2005)) and intermediaries’ liquidity constraints (Nagel (2012)).4 This strand of literature

documents that specific friction-related variables predict stock returns cross-sectionally.

We verify this finding using CFER, which encompasses the overall effect of any relevant

market frictions on expected returns. Similarly, rather than using specific friction-related

variables, Stambaugh et al. (2015) sort individual stocks into portfolios based on their

“alpha” proxied by the average ranking of each stock across eleven anomalies. Our paper

is similar to theirs in that our sorting variable, CFER, can be interpreted as alpha.

Finally, our research is pertaining to the literature on the informational content of op-

tion prices, especially to studies which document that measures based on deviations from

put-call parity (Ofek et al. (2004), Bali and Hovakimian (2009), Cremers and Weinbaum

(2010), Muravyev et al. (2016), Goncalves-Pinto et al. (2017)) predict future stock re-

turns.5 We contribute to this literature by showing that the properly scaled deviations of

put-call parity, i.e. our CFER formula, is part of the expected returns under a formal as-

set pricing setting. Hence, we provide a theoretical explanation to the ability of measures

of deviations from put-call parity to predict stock prices. Furthermore, we show theore-

tically that two popular measures, the implied volatility spread (the difference between

call and put implied volatilities) (Bali and Hovakimian (2009), Cremers and Weinbaum

(2010)), and Goncalves-Pinto et al.’s (2017) DOTS measure, proxy CFER. Consistently,

we document that CFER has at least as good predictive power as these option-implied

measures, as expected.

The rest of the paper is organized as follows. In Section 2, we provide the option-based

formula to estimate CFER within our asset pricing model under market frictions. We

also discuss the testable predictions of the model regarding CFER. Section 3 describes the

data, the way we implement our formula to compute CFER, and the summary statistics

4See also Hou et al. (2017) for the list of more than 100 friction-related anomaly variables.
5 Manaster and Rendleman (1982), Xing et al. (2010), Yan (2011), Chang et al. (2013), Conrad et al.

(2013), An et al. (2014), Stilger et al. (2017), Martin and Wagner (2018) also study the informational
content of market option prices to predict future stock returns; see also Giamouridis and Skiadopoulos
(2011) and Christoffersen et al. (2013) for reviews.
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of the estimated CFER. In Section 4, we study empirically the theoretical properties

of CFER. In Section 5, we study the relation between CFER and other option-implied

return predicting measures. Section 6 concludes and discusses the findings.

2 Theoretical framework

2.1 Asset pricing under market frictions

We assume that the time horizon is finite and discrete, indexed by t = 0, 1, 2, . . . , T .

Three types of assets, the stock, the risk-free bond, and European call and put options

written on the stock, are traded in the market. We denote the stock price by St and its

dividend payment at time t by Dt. The gross return of the stock is denoted by Rt,t+1 (i.e.,

Rt,t+1 = (St+1 + Dt+1)/St). The gross risk-free rate from time t to t + 1 is denoted by

R0
t,t+1. We assume that options written on the stock are one-period options (i.e., options

traded at time t mature at t+ 1) and traded at a set of strikes Kt. The time t call (put)

option price with strike price K ∈ Kt is denoted by Ct(K) (Pt(K)).

We assume that there exists an agent who participates in both the stock market

and the option market. She sets their optimal consumption and asset allocations by

maximizing her expected lifetime utility, yet her asset allocation is subject to constraints

caused by market frictions. The assumption of the existence of such an agent is realistic

and it is in line with recent literature; for example, large financial intermediaries trade

in multiple financial markets including the stock market and the option market under

market frictions, and a growing number of recent studies consider financial intermediaries

to be the marginal investors (e.g., Adrian et al. (2014), He et al. (2017)).

Let θ0t , θ
S
t , θct (K) and θpt (K) be the agent’s position on the risk-free bond, the stock,

the call and put options, respectively and let θt be the vector of these thetas. The agent

solves the following portfolio-consumption problem,

max
{cj ,θj}

T∑
j=t

βj−tEP
t [u(cj)], (2)
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where EP
t is the conditional expectation under the agent’s subjective belief P given the

information up to time t, β is the subjective discount factor, u(c) is the time-separable

utility function. The agent chooses a consumption stream {cj}j≥t and portfolio allocations

{θt}j≥t subject to the following conditions. First, the agent’s wealth at time t, Wt, changes

over time as follows:

Wt+1 = θ0tR
0
t,t+1 + θSt (St+1 +Dt+1) +

∑
K∈Kt

[
θct (K)(St+1−K)+ + θpt (K)(K −St+1)

+
]
, (3)

where (x)+ = max(x, 0). Second, the consumption at time t is given by

ct = Wt − θ0t − θSt St −
∑
K∈Kt

[
θct (K)Ct(K) + θpt (K)Pt(K)

]
. (4)

In equations (3) and (4), we normalize the price of the one-period bond at time t to unity

and view R0
t,t+1 as its payoff at time t + 1. Third and most importantly, we formalize

market frictions as constraints on the portfolio allocation of the agent. Even though we

do not specify the types of frictions, we assume that there are L types of constraints on

the portfolio allocation of the agent:

glt(θt) ≥ 0, l = 1, 2, . . . , L. (5)

Let Vt(Wt) be the time-t value function of the constrained maximization problem (2)

subject to equations (3) to (5). Then, the Bellman equation is given by

Vt(Wt) = max
ct,θt

{
u(ct) + βEP

t [Vt+1(Wt+1)]
}

s.t. equations (3)–(5). (6)

Given equations (3), (4) and the constraints in (5), the first-order condition of the Bellman

equation (6) regarding the allocation to the stock θSt yields

St = EP
t [m∗t,t+1(St+1 +Dt+1)] +MS

t , with MS
t =

L∑
l=1

λlt
u′(ct)

∂glt(θt)

∂θSt
, (7)

where m∗t,t+1 = βV ′t+1(Wt+1)/u
′(ct) is the intertemporal marginal rate of substitution

(IMRS) between time t and t+ 1, and λlt is the Lagrange multiplier of l-th constraint of
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equation (5).6 The second term in the right-hand side of equation (7), MS
t , captures the

effect of market frictions on the market price of the stock. It can be interpreted economi-

cally as the nominal shadow cost of frictions incurred by their existence.7 Equation (7)

shows that the current stock price deviates from the IMRS-discounted expected future

cum-dividend stock price in the case where some of the constraints are binding. Equiva-

lently, equation (7) shows that the standard asset pricing formula 1 = EP
t [m∗t,t+1Rt,t+1],

which holds in frictionless markets, does not hold. This result is also derived by He and

Modest (1995). Option prices satisfy the analogous first-order conditions to equation (7):

Ct(K) = EP
t [m∗t,t+1(St+1 −K)+] +M c

t (K), with M c
t (K) =

L∑
l=1

λlt
u′(ct)

∂glt(θt)

∂θct (K)
, (8)

Pt(K) = EP
t [m∗t,t+1(K − St+1)

+] +Mp
t (K), with Mp

t (K) =
L∑
l=1

λlt
u′(ct)

∂glt(θt)

∂θpt (K)
. (9)

In analogy to MS
t in equation (7), M c

t (K) and Mp
t (K) capture the effect of market

frictions on the market call and put option prices, respectively.8

The following Theorem provides the asset pricing model under market frictions.

Theorem 2.1. Under market frictions, the following asset pricing model holds:

EP
t [Rt,t+1]−R0

t,t+1 = CFERt,t+1 −
CovPt (m∗t,t+1, Rt,t+1)

EP
t [m∗t,t+1]

, (10)

where CFERt,t+1 is the contribution of frictions to the expected return from t to t + 1,

6The value function Vt depends on t because we consider a finite horizon model, and the constraint
functions glt may also depend on time-varying parameters. Note also that the standard envelop condition
u′(ct) = V ′t (Wt) does not necessarily hold in our model because glt may depend on the agent’s wealth.

7 To exemplify this, consider the case of the margin cosntraint function gMC
t (θt) = Wt − |θSt |µS

t St −∑
K∈K(|θct (K)|µc

t(K)Ct(K) + |θpt (K)|µp
t (K)Pt(K)), where µS

t , µc
t(K) and µp

t (K) are the margin rates
of the stock, call option and put option, respectively. Then, MS

t = (λMC
t /u′(ct)) × sgn(−θSt )µS

t . The
former term is the nominal shadow price of one unit of wealth pledgeable as margin and the latter part
equals the amount of margin that needs to be posted for trading one unit of the stock. Note that the
effect of market frictions on the stock price, MS

t may depend on the agent’s allocations to other assets,
as well. For example, in the above margin constraint example, the value of MS

t depends on whether the
margin constraint is binding and hence it depends on the total amount of margins the agent needs to
post, which is a function of the vector of allocations θt.

8Regarding the risk-free bond, to simplify the exposition, we assume that EP
t,t+1[m∗t,t+1] = 1/R0

t,t+1

holds, which is equivalent to assuming that there is no effect of frictions on the risk-free bond market.
In Appendix D, we extend the model to allow for a non-zero effect of frictions on the risk-free bond
market. Then, we demonstrate that the effect of frictions on the risk-free rate has no impact on the
results presented in the main body of the paper.
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defined as

CFERt,t+1 = −R0
t,t+1

MS
t

St

= −
R0

t,t+1

St

L∑
l=1

λlt
u′(ct)

∂gl(θt)

∂θSt
. (11)

Proof. See Appendix A.1. 2

Three remarks are in order at this point. First, equation (10) nests the standard

frictionless market model. When no constraints are binding, equation (11) shows that

CFERt,t+1 = 0 and thus equation (10) boils down to the standard asset pricing equation.

In addition, equation (10) nests Gârleanu and Pedersen (2011) as a special case for the

case where L = 1 and the constraint is the margin constraints. Then, CFERt,t+1 becomes

what they call the alpha, which is the product of the Lagrange multiplier of the margin

constraints and the margin rate of the stock. Second, the decomposition of expected

excess returns in equation (10) suggests that CFER does not represent compensation for

risk. Instead, CFER is part of the expected excess return, which cannot be explained by

the covariance risk premium term in the presence of frictions, where the covariance risk

premium term is calculated as the covariance between the asset return and the IMRS. The

CFER term appears because of the binding constraints on asset allocations as equation

(11) shows. Third, the IMRS is affected by frictions, that is, m∗t,t+1 depends on the agent’s

optimal asset positions θt, which are formed under frictions. However, m∗t,t+1 does not

subsume the full effect of frictions.

2.2 Estimation of CFER: The formula

Equation (11) shows that CFER is a function of the unobservable Lagrange multipliers.

Hence, equation (11) cannot be used to estimate CFER unless further assumptions on

the form of frictions and the IMRS are made. To circumvent these obstacles, we develop

an option-based formula which enables us to proxy CFER without imposing assumptions

on the IMRS nor on the types of market frictions; instead, the formula relates CFER to

observable terms. To derive our formula, we proceed as follows. First, we assume that

the dividend payment at t + 1, Dt+1, is deterministic given the information up to time
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t. This assumption is plausible when the time length between t and t + 1 is short (e.g.,

one-month as it will be the case in the subsequent empirical analysis) because the near

future dividend payments are usually pre-announced. Second, we define the price of a

synthetic stock S̃t(K) as

S̃t(K) = Ct(K)− Pt(K) +
K +Dt+1

R0
t,t+1

. (12)

This combination of long call, short put and risk-free bond position is called a synthetic

stock because it has the same payoff at time t+ 1 as the underlying stock, St+1 +Dt+1.

Theorem 2.2. Assume that Dt+1 is deterministic given the information up to time t.

Then, for any strike K, CFER is decomposed as

CFERt,t+1 = CFERMF
t,t+1(K) + Ut,t+1(K), (13)

where

CFERMF
t,t+1(K) =

R0
t,t+1

St

(S̃t(K)− St) (14)

is a scaled deviation from put-call parity between the stock price St and the synthetic stock

price S̃t(K).9 The second term Ut,t+1(K) in equation (13) is given by

Ut,t+1(K) = −
R0

t,t+1

St

[M c
t (K)−Mp

t (K)], (15)

where M c
t (K) and Mp

t (K) are defined in equations (8) and (9).

Proof. The proof of Theorem 2.2 relies on the idea that deviations from put-call parity,

St − S̃t(K), is a function of the effect of market frictions on the options’ and the under-

lying stock’s prices. To see this, under the conditionally deterministic dividend payment

assumption, substitution of equations (8) and (9) into equation (12) yields the synthetic

stock price as

S̃t(K) = EP
t [m∗t,t+1(St+1 +Dt+1)] + (M c

t (K)−Mp
t (K)). (16)

9The superscript MF of CFERMF stands for “model-free” because equation (14) can be calculated
from data without estimating parameters.
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Since the first term in the right hand side of equations (7) and (16) are the same, devia-

tions from put-call parity equal

St − S̃t(K) = MS
t − (M c

t (K)−Mp
t (K)), (17)

that is, the difference between the effect of market frictions on the underlying stock MS
t

and those on the synthetic stock M c
t (K) −Mp

t (K). Then, by scaling equation (17) by

−R0
t,t+1/St, we obtain

CFERMF
t,t+1(K) = CFERt,t+1 − Ut,t+1(K) (18)

given equations (11), (14), and (15). This proves equation (13). 2

Theorem 2.2 shows that the stock’s CFER is the sum of the scaled deviation from

put-call parity CFERMF
t,t+1(K) which can be computed from market option prices as long

as a pair of European call and put options with the same maturity and strike is available,

and the unobservable term Ut,t+1(K), which is a function of the effect of market frictions

on option prices, M c
t (K) and Mp

t (K) (see equations (8) and (9)). Given that CFERt,t+1

is a function of the effect of frictions on the underlying MS
t (equation (11)), the Ut(K)

term originates from the fact that deviations from put-call parity are determined by both

the effect of market frictions on the underlying stock price MS
t and also on the synthetic

stock price M c
t (K) −Mp

t (K) (equations (17) and (18)). Subsequently, we show that we

can estimate CFER reliably by using only the model-free observable part CFERMF
t,t+1(K).

In particular, we estimate Ut,t+1(K) by examining three alternative models of the effect

of market frictions on option prices (i.e., models for M c
t and Mp

t ) and we find that the

magnitude of Ut,t+1(K) is of second-order importance compared to CFERMF
t,t+1(K). We

discuss this issue in detail in Section 3.3.

Equation (17) echoes equation (29) of Gârleanu and Pedersen (2011), which shows

that a deviation from the law of one price is a function of market frictions (i.e., the

Lagrange multipliers term), and it does not depend on the preference nor the subjective

beliefs. As a result, our CFER formula requires no assumptions on the preferences (IMRS
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m∗) and subjective beliefs (P).

Four more remarks are in order regarding the use of CFERMF
t,t+1(K) as a proxy of

CFER. First, the “scaling coefficient” R0
t,t+1/St of CFERMF

t,t+1(K) converts the deviation

in prices (S̃t(K) − St) to a return metric, hence making CFER a quantitative measure

of the effect of market frictions on expected stock returns.10 Second, deviations from

put-call parity are equivalent to a non-zero implied volatility spread (IVS, Cremers and

Weinbaum (2010)). In line with this, in Section 5 we show that CFERMF
t,t+1(K) can be

approximated using IVS.

Third, the scaled deviations from put-call parity, CFERMF
t,t+1, proxy the part of ex-

pected return, which is not explained by the covariance risk premium. On the other hand,

deviations from put-call parity should not be interpreted as a measure of the current le-

vel of mispricing in the underlying stock price, or equivalently, the synthetic stock price

should not be interpreted as a measure of the “fundamental” price. Indeed, the synthetic

stock price is “contaminated” by the effect of frictions even when M c
t (K) −Mp

t (K) is

zero; the synthetic stock price equals the expected IMRS-discounted value of the payoff

at time t+ 1, St+1 +Dt+1, where St+1 is affected by the market frictions (this can be seen

by considering equation (7) for time t+ 1).

Fourth, the fact that we do not specify the number and types of frictions makes us

agnostic about what are the actual market frictions which affect the returns of optionable

stocks. This approach is similar to Brennan and Wang (2010) and Hou et al. (2016), who

investigate how mispricing or frictions contribute to stock returns based on a reduced

form model of mispricing and market frictions, respectively. Moreover, we take a reverse

engineering approach to study the effect of market frictions on stock returns. Rather

than first postulating the possible types of frictions and then measure their effect on

asset returns, we estimate CFER first and then we examine how it covaries with various

proxies of market frictions. This will reveal the type of frictions which predominantly

10Indeed, CFERMF
t,t+1(K) can be rewritten as CFERMF

t,t+1(K) = R0
t,t+1(S̃t(K)/St− 1). Then, dividing

equation (16) by St yields the relation S̃t(K)/St = EP
t [m∗t,t+1Rt,t+1]−Ut,t+1(K)/R0

t,t+1, that is, the ratio

of the two stock prices S̃t(K)/St is a function of the underlying stock return.
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give rise to CFER. This reverse approach is robust because it is founded theoretically.

CFER measures the overall effect of market frictions on expected returns by circumventing

model mis-specification concerns. In addition, CFER arises due to market frictions and

hence various types of frictions should covary with it. Our subsequent empirical analysis

confirms that the estimated CFER covaries with some know types of frictions such as

transaction costs, short-sale constraints, and stock level and market level liquidity.

2.3 Properties of CFER and testable hypotheses

Our CFER formula allows us to study the properties of CFER dictated by theory. Our

asset pricing model yields three testable hypotheses regarding the relation between CFER,

expected asset returns and frictions.

HYPOTHESIS 1. The asset’s expected return is increasing with CFER.

Equation (10) shows that the greater CFER is, the greater the asset’s expected re-

turn. Hence, we expect that when we sort stocks in portfolios based on their respective

estimated CFER, the post-ranking portfolios’ average return and CFER will be positively

related and a long-short spread portfolio should earn a positive average return and alpha.

HYPOTHESIS 2. In the case where the IMRS m∗ is described by a linear combination

of risk factors, then the regression of the CFER-adjusted excess return, Rt,t+1−R0
t,t+1−

CFERt,t+1 on the risk factors should yield a zero intercept.

In the case where the IMRS m∗ is described by a linear combination of risk factors

f , then our asset pricing equation (10) implies that

EP
t [Rt,t+1]−R0

t,t+1 − CFERt,t+1 = β′REP
t [ft+1], (19)

where βR is the vector of the factor betas. Next, let us consider the following regression

model:

Rt,t+1 −R0
t,t+1 − CFERt,t+1 = α + β′ft+1 + εt+1. (20)
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Then, the intercept α of equation (20) should be zero under the second hypothesis. This

theoretical result is a generalization of the expected return-beta representation theorem

from the case of frictionless markets (Cochrane (2005), Chapter 12.1) to the case where

market frictions and hence a non-zero CFER exist. Failing to reject the null hypothesis

of a zero intercept confirms one of the testable implications of our model.11

HYPOTHESIS 3. Higher transaction costs imply a wider range of CFER values.

Hypothesis 3 is about the relation between CFER and transaction costs. To prove

this hypothesis, we follow He and Modest (1995) and assume that there is a proportional

transaction cost ρ > 0 (i.e., ρSt is charged as transaction costs when traders buy or sell

the stock); without the loss of generality, no other types of frictions are assumed. Then,

under our asset pricing model, the following Proposition holds.

Proposition 2.1. The following expression holds:

− 2ρ

1 + ρ
R0

t,t+1 ≤ CFERt,t+1 ≤
2ρ

1− ρ
R0

t,t+1. (21)

Proof. See Appendix A.2. 2

Proposition 2.1 yields the third testable implication: stocks which exhibit higher

transaction costs may take more extreme CFER values (either very negative or very

positive). Equation (21) shows that the range of CFER values should be approximately

equal to twice the round-trip transaction costs (4ρ). Given that theoretically CFER is a

function of market frictions, it is not surprising that the range of CFER is confined by

transaction costs, which is a type of market frictions. Moreover, equation (21) implies

a theoretical upper bound of the alpha of the CFER-sorted spread portfolio; CFER has

also an alpha interpretation because it is the part of the expected return which cannot

be explained by the covariance risk premium. The theoretical range of CFER suggests

that the upper bound of the alpha of the spread portfolios should be approximately twice

11 Note that a zero intercept is a necessary but not a sufficient condition for asset pricing models to
be valid. The latter would require testing whether the factors are priced something which is beyond the
scope of this paper since our focus is not on testing asset pricing models.
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the round-trip transaction costs. In Sections 3.4 and 4.1, we assume plausible values of ρ

for the average stock of our sample, and confirm the consistency of our empirical CFER

estimates and alphas with the theoretically predicted ones.

We will test the hypothesis implied by Proposition 2.1 via three alternative routes.

First, we will eyeball the times-series evolution of the CFER’s variation and discuss it

in the light of major market events. We expect that the more distressed the market is,

the greater the CFER’s variation will be. Second, we will examine the relation of CFER

with firms’ and stocks’ characteristics; this will be done by sorting stocks in portfolios

according to their CFER values. We expect that the portfolios in which CFER takes

extreme values are subject to greater frictions. Third, we will investigate the performance

of spread portfolios formed by dependent bivariate sorting exercises. In particular, we

will first sort stocks in portfolios by their respective proxy for transaction costs. Then,

within any given portfolio, we will sort stocks in portfolios based on their respective

CFER and calculate the spread portfolios’ returns. We expect that the average return

of the spread portfolios will increase as a function of the transaction costs proxy. This is

because the higher transaction costs are, the more extreme CFER will be and hence the

greater the expected return of the spread portfolios due to Hypothesis 1. We examine

these conjectures in Sections 3.4 and 4.3.

3 Data and CFER estimation

3.1 Data sources

We obtain end-of-month U.S. equity option prices and implied volatilities (IVs) from

the OptionMetrics Ivy DB database (OM) via the Wharton Research Data Services.

Our dataset spans January 1996 to April 2016 (244 months). Options written on the

U.S. individual equities are American style. OM calculates IVs via the Cox et al. (1979)

binomial tree model, which takes the early exercise premium of American options into

account. Given that our formula to estimate CFER (Theorem 2.2) relies on European
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option prices, we convert OM-IVs to the corresponding European option prices via the

Black and Scholes (1973) option pricing formula.12 We also obtain the risk-free rate and

dividend payment data from the OM database to calculate the present value of dividend

payments over the option’s life time. We remove IVs if the recorded corresponding option

bid price is non-positive, the IV is missing, and the option’s open interest is non-positive.

We discard data with time to maturity shorter than 8 days or longer than 270 days. We

keep option data only when the moneyness K/St is between 0.9 and 1.1 to ensure that

the most liquid option contracts are considered.

We obtain stock returns from the Center for Research in Security prices (CRSP). In

line with the literature, our stock universe consists of all U.S. common stocks (CRSP

share codes 10 and 11). We obtain the time-series of risk factors in the CAPM, Fama

and French (1993) 3-factor model (FF3), Carhart (1997) 4-factor model (FFC), and Fama

and French (2015) 5-factor model (FF5) from Kenneth French’s website. We obtain the

factors in the Stambaugh and Yuan (2017) mispricing factor model (SY) from Yu Yuan’s

website. We construct various firms’ and stocks’ characteristics variables (e.g., size, book-

to-market, bid-ask spread) based on CRSP and Compustat database. For the definition

and the data source of the various characteristics variables, see Appendix B.

3.2 Estimation of CFER: Choice of strikes and maturities

We estimate stocks’ CFER as the model-free observable term CFERMF
t in equation

(13) with European option prices converted from OM-IV as described in Section 3.1.

Specifically, we first calculate CFERMF
t (K,T ) for any available strikes K and maturities

T , at which both the call IV and put IV are available. The value of CFERMF
t (K,T )

generally differs across different strikes and maturities and we deal with the choice of K

and T as follows.

Regarding the choice of K, on each end-of-month date t and for each traded option

12This approach is often taken in the literature (see e.g., Martin and Wagner (2018)).
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maturity T , we take the weighted average of CFERMF
t (K,T ) to define AVE CFER as

CFERAV E
t (T ) =

∑
K∈K

ω(K) CFERMF
t (K,T ), (22)

where K is a set of strike prices with valid call IV and put IV and ω(K) is a weight. We

follow the previous literature on option implied measures to use the open interest of the

corresponding options as the weight (e.g., Cremers and Weinbaum (2010)). This weighted

average procedure is in line with the literature to reduce possible measurement errors in

the options data. As a robustness check, we also compute the forward-at-the-money

(ATM) CFER for a given maturity T , defined as CFERATM
t (T ) = CFERMF

t (K∗, T ),

where K∗ is the traded strike price closest to the “forward price” ft,T = R0
t,T (St−PV Dt,T )

and PV Dt,T is the present value of dividend payments during [t+ 1, T ].

Regarding the choice of the options’ maturity, we proceed as follows. In the subse-

quent empirical analysis, we will conduct monthly frequency portfolio analysis, where at

the end of each month, we sort stocks based on the estimated CFER and we will examine

certain properties of the post-ranking monthly returns. Therefore, the horizon of the esti-

mated CFER should correspond to the horizon of expected returns. To this end, first we

multiply each estimated CFER by 30/dtm, where dtm denotes days-to-maturity. Then,

we construct the 30-day constant maturity CFER (CM CFER) by linearly interpolating

the two traded maturities surrounding the 30-day maturity. Note that a similar inter-

polation is employed in the CBOE’s calculation of the VIX index, which represents the

model-free implied volatility over the next 30 days. The estimated CFER is treated as

missing if the 30-day maturity is not bracketed by two traded maturities. As a robustness

check, we also use the estimated CFER from the closest to 30-days to-maturity options

(CLS CFER) as an alternative to the CM CFER. It is expected that the CLS CFER

becomes noisy as a predictor of the future monthly stock return when the closest to the

30-day traded maturity is distant from the 30-days to maturity target. To minimize this

risk, we calculate this proxy only when the closest options’ maturity is between 15-day

and 45-day, otherwise we treat CFER as missing.
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In sum, we have two ways to estimate CFER at each maturity, averaged across strikes

(AVE) versus closest to forward-ATM (ATM), and two ways on the choice of maturi-

ties, linearly interpolated 30-day constant maturity CFER (CM) versus closest to 30-day

(CLS). Thus, there are in total four corresponding cases to analyze labeled, AVE-CM

CFER, ATM-CM CFER, AVE-CLS CFER, and ATM-CLS CFER, respectively. We use

the AVE-CM CFER as the baseline estimated CFER for the purposes of our subsequent

analysis, yet this is highly correlated with the other three CFER measures.

3.3 The unobservable term in the CFER formula: Discussion

Given that we estimate CFER using only the model-free observable term CFERMF
t,t+1,

these estimates may contain a bias due to ignoring the Ut,t+1 term (see equation (13)).

To address this issue, we estimate the order of magnitude of this possible bias for the

case of our baseline AVE-CM CFER. Note that the bias in AVE-CM CFER, which we

denote by U t,t+1 is an average of the bias term Ut,t+1(K) for each pair of call and put

options across different strikes and maturities we use to calculate AVE-CM CFER.

To quantify the size of U t,t+1, we model the effect of frictions on option prices, M c
t (K)

and Mp
t (K) (and hence Ut,t+1(K), see equation (15)), in three different ways based on

the previous literature on the effect of measurement errors and market frictions on option

prices and option returns. First, we regard M c
t (K) and Mp

t (K) as measurement errors

and we assume that they are independently and identically distributed with zero mean as

in Bliss and Panigirtzoglou (2002) and Dennis and Mayhew (2009). Next, we consider the

so-called embedded leverage effect documented by Frazzini and Pedersen (2012). They

theoretically and empirically show that options with high embedded leverage attract

investors who are subject to leverage constraints and hence these options have lower

returns. Their finding suggests that leverage constraints affect option prices (i.e., non-

zero M c
t (K) and Mp

t (K) arise) and hence this may yield a non-zero Ut,t+1(K). Finally,

we quantify M c
t (K) and Mp

t (K) based on the margin constraints model analyzed in

Hitzemann et al. (2017). Santa-Clara and Saretto (2009) and Hitzemann et al. (2017)
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document that margin constraints affect option returns and hence they may also yield a

non-zero Ut,t+1(K).

In Appendix C, we provide the details. Two are the main findings from our analysis

in Appendix C. First, the distribution of U t,t+1 is fairly symmetric around zero for all

three cases we examine. This suggests that the model-free proxy of CFER is on average

accurate. Second, the magnitude of U t,t+1 is small for all three cases. For the first

case, we show that the magnitude of U t,t+1 is less than 6.5 bps with probability greater

than 90%. This magnitude is less than one thirtieth of the width of the 5th to 95th

percentile range of AVE-CM CFER, which is estimated based on the observable model-

free term CFERMF
t,t+1, and hence it can be viewed as being negligible. For the latter two

cases, we directly estimate Ut,t+1(K) for each pair of call and put options based on either

the embedded leverage model or the margin constraints model. Then, we construct

a “fully-estimated” CFER as CFERMF
t,t+1(K) + Ut,t+1(K) and take the average across

available strikes and maturities to construct the “fully-estimated” AVE-CM CFER.13

We find that the baseline model-free AVE-CM CFER and the fully-estimated AVE-CM

CFER are almost perfectly correlated (correlation above 0.96) for both the embedded

leverage and the margin constraints models. We also find that the results on the cross-

sectional predictive power of each one of these two fully-estimated CFER as a sorting

variable (i.e., Hypothesis 1) is statistically indifferent from that of the baseline model-free

CFER; there are no statistically significant differences between the alphas of the zero-

cost spread portfolio of stocks formed by sorting stocks based on the baseline model-free

AVE-CM CFER and each one of the fully-estimated AVE-CM CFER, respectively. These

results suggest that any bias in the model-free AVE-CM CFER caused by ignoring U t is

negligible. In other words, the model-free AVE-CM CFER estimates the effect of frictions

on stock’s expected return accurately.

Our findings suggest that market frictions have a negligible effect on U t. This should

not be interpreted as evidence that the option market is frictionless, though. In fact,

13Note that the fully-estimated CFER is no longer model-free, because the assumption on the form of
market frictions is necessary to estimate the Ut term.
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our finding does not contradict the previous empirical evidence that market frictions

affect option returns (Santa-Clara and Saretto (2009), Frazzini and Pedersen (2012),

Hitzemann et al. (2017)). This becomes evident by considering the factors which affect

the magnitude of Ut(K); it may be small because of the following two reasons. First, it

becomes small if M c
t (K)/St and Mp

t (K)/St are small. Indeed, empirically, these ratios

are much smaller than the ratios M c
t (K)/Ct(K) and Mp

t (K)/P (K); the latter ratios are

the ones which measure the effect of frictions on option returns (one can show this by

transforming equations (8) and (9)). Second, Ut,t+1(K) is determined by the difference

between M c
t (K) and Mp

t (K) and therefore Ut,t+1(K) will be small if M c
t (K) and Mp

t (K)

have the same sign and similar sizes; in this case, they will offset each other to some

extent. In Appendix C.4, we provide a detailed discussion.

3.4 CFER: Summary statistics

Table 1, Panel A, reports the summary statistics of the estimated CFER at the end of

each month for each one of the four ways of estimating CFER. We can see that there are

about 333,000 stock-month CFER observations for the case of the AVE-CM and ATM-

CM CFER, whereas this number increases to about 347,000 observations for the case of

the AVE-CLS and ATM-CLS CFER. This yields on average about 1,370 (1,420) stocks in

each month in the case of AVE-/ATM-CM CFER (AVE-/ATM-CLS CFER) given that

there are 244 months in our sample. This is a sufficient number to form well diversified

decile portfolios in the subsequent analysis. The mean and the median of the estimated

CFER are about -0.1% and -0.04% per month (30-day), respectively. Results are similar

across the four construction methods of CFER. The distribution of CFER is skewed to

the left and it is highly leptokurtic. The estimated CFER is sizable; it takes both positive

and negative values, ranging from -1.24% to 0.89 % per month (-14% to 11% per year) in

a 5th to 95th percentile range of AVE-CM CFER. Note that this range is consistent with

the theoretically derived CFER bounds as a function of transaction costs, equation (21).

Lesmond et al. (1999) and Hasbrouck (2009) document that the round-trip transaction
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costs (i.e., 2ρ in equation (21)) for large stocks are in the order of 1.0%. Hence, equation

(21) predicts that the lower and upper CFER bound will be around -1% and 1% per

month, respectively (the gross risk-free rate is about 20 basis points on average during

our sample period).

CFER also has fairly large variations; the standard deviation is about 1% and the

interquartile range (IQR, the difference between 75th and 25th percentile points) is bet-

ween 47–60 bps on average across stocks over time depending on the CFER construction

method. This magnitude of variation is relatively large compared to the long-run average

U.S. equity risk premium, which is about 50 bps per month (or 6% per year, see e.g.,

Mehra (2012)). The percentage of the negative observations of CFER is about 55% in

any of the four construction ways of CFER; CFER takes more often negative than posi-

tive values over the full sample period. Table 1, Panel B, reports that the four ways of

computing CFER are almost perfectly correlated. Therefore, the subsequent analysis is

expected to be robust to the choice of the method to estimate the 30-day CFER.

[Table 1 about here.]

Figure 1a shows the time-series evolution of the monthly median of AVE-CM CFER.

This takes mostly negative values until the recent financial crisis. A negative median

CFER implies that there are more stocks with negative than positive CFER (the pro-

portion of negative CFER is around 62% until 2006). This observation is consistent with

Ofek et al. (2004), who study deviations from put-call parity from July 1999 to Novem-

ber 2001. They find that the underlying stock prices is greater than the synthetic stock

prices (i.e., negative CFER, see equation (13)) in two thirds of their sample. This is very

close to our result of 63% of negative CFER during the same period (i.e., 1999 to 2001).

However, after the financial crisis, the median of the estimated CFER takes both positive

and negative values and its variability has increased.

[Figure 1 about here.]
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Figure 1b shows the time-series evolution of the monthly IQR of AVE-CM CFER.

We measure the dispersion of the estimated CFER by using this statistic rather than the

standard deviation because the distribution of CFER is highly skewed and leptokurtic.

As we have discussed in Section 2.3, the degree of the dispersion in CFER is determined

by the size of transaction costs and hence by the degree of market frictions (Hypothesis

3). The time-series fluctuations in the IQR are in line with this predictions: most of the

spikes in the IQR correspond to market turmoils, such as Russian default and LTCM

crisis (August to September 1998), the collapse of Lehman Brothers and ensuing market

meltdown (September to November 2008), European debt crisis (November 2011, un-

certainty was the highest around the general election in Greece), and the Chinese stock

market turmoils (June 2015 to January 2016).14

Finally, note that the calculation of CFER requires option price data. As a result,

our universe of stocks is confined to the optionable stocks (i.e., stocks which have options

written on them). However, this should not be viewed as a shortcoming of this study.

In line with the results of Cremers and Weinbaum (2010), our optionable stocks are big

stocks; the average market capitalization of stocks with (without) AVE-CM CFER is

about 9.1 billion (0.5 billion) U.S. dollars over our sample period from 1996 to 2016.

Relatedly, albeit we can estimate AVE-CM CFER for about 27% of stocks (about 1,350

optionable stocks out of 5,000 all common stocks in each month), these stocks on average

account for about 90% of the aggregate market capitalization of U.S. common stocks over

our sample period. In addition, even though our cross-section of U.S. optionable stocks

is subject to smaller frictions compared to the non-optionable stock universe, still the

CFER values as well as the effect of market frictions on expected returns is sizable as

reported and we will further demonstrate in Section 4.15

14 This is in line with the literature that the degree of market frictions intensify during market distress
periods. Gârleanu and Pedersen (2011) and Nagel (2012) find that the margin and liquidity constraints,
respectively become tighter during market turmoil periods. Hou et al. (2016) find that their microstruc-
tural friction measure takes greater values during recessions and market distress periods.

15For example, the average Amihud’s (2002) illiquidity measure of the optionable (non-optionable)
stocks is 0.01 (5.28), and the average relative bid-ask spread of optionable (non-optionable) stocks is
0.48% (2.50%) over our sample period.
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4 Testable predictions: Empirical evidence

In this section, we examine the testable predictions (Hypotheses 1, 2, and 3) of our CFER

asset pricing model discussed in Section 2.3.

4.1 Predictive power of CFER for future returns

First, we test Hypothesis 1 that CFER predicts future stock returns; stocks with higher

CFER should earn a higher expected return compared to stocks with a lower CFER. To

this end, we examine whether CFER predicts equity returns cross-sectionally by taking

a portfolio sorting approach. We sort stocks in decile portfolios by using the estimated

CFER as a sorting criterion. Portfolio 1 (10) contains the stocks with the lowest (highest)

CFER. We form portfolios at the end of each month. Then, we calculate the post-ranking

monthly return of each portfolio and the zero-cost long-short spread portfolio, where we

go long in Portfolio 10 and short in Portfolio 1. Our testable hypothesis suggests that

this zero-cost long-short portfolio will earn a positive average return.

Table 2 reports the results for both the value-weighted and equally-weighted decile

portfolios cases, where we use the AVE-CM CFER as a sorting variable. In line with the

model’s prediction, we can see that there is a monotonically increasing relation between

the portfolios’ average returns and CFER. Moreover, the average return of the long-short

value-weighted spread portfolio is 1.64% per month. This value is sizable and statistically

significant (t-stat: 5.77). We also calculate the risk-adjusted returns, in terms of alpha

with respect to the CAPM and FFC model.16 Both the CAPM- and FFC-alpha are

sizable and statistically significant; αCAPM is 1.70% and αFFC is 1.86% per month and

their t-statistics are above five which is above the threshold proposed by Harvey (2017) for

the purposes of addressing data snooping concerns. These results show that the estimated

CFER predicts future stock returns over and above other well known risk factors.

The order of magnitude of the estimated alphas for the spread portfolio is in accor-

16 For all portfolio sort exercises in this Section, we also estimate alphas with respect to FF3, FF5, and
SY models. Results are qualitatively similar and hence we do not report them due to space limitations.
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dance with the alpha predicted by equation (21) once we set ρ equal to 0.5% in line with

the empirical evidence on the transaction costs of big stocks. Equation (21) predicts

that the bounds for alphas in the presence of frictions (i.e., CFER) of the long and short

portfolios should be 1% and -1%, respectively. This amounts to an upper bound of alpha

of 2% per month for the spread portfolio. This would explain the large alpha of the

CFER-sorted spread portfolio; the limits of arbitrage for trading (even big optionable)

stocks are large enough to generate a 2% alpha per month. Therefore, the alphas reported

in Table 2 are not excessive given the degree of market frictions investors face.

The equally-weighted portfolio earns an even more significant average return compared

to the value-weighted portfolio; the average return is 1.73% per month, αCAPM and αFFC

are 1.76% and 1.81% per month, respectively and t-statistics are above nine. Even though

the equally-weighted result is stronger than the value-weighted result, in the subsequent

analysis, we focus on the value-weighted results for two reasons. First, a number of

studies recommends the value-weighted portfolio construction over the equally-weighted

construction.17 Moreover, as the value-weighted construction tends to result in lower

alphas and t-statistics, our judgment on the predictive ability of CFER will be more

conservative and hence even more credible.

Interestingly, our results suggest that the use of the model-free estimated CFER as a

predictor of the cross-section of stock returns yields significant alphas even though our

universe of optionable stocks corresponds to big stocks; Hou et al. (2017) document that

the alphas found in a number of asset pricing studies become insignificant once small

stocks are weighted less in the universe of test portfolios.

[Table 2 about here.]

17For example, Hou et al. (2017) recommend the value-weighted portfolio construction because equally-
weighted portfolios exaggerate anomalies in microcap stocks, which are difficult to exploit in practice due
to high transaction costs and illiquidity. Asparouhova et al. (2013) find that microstructure frictions can
bias upward the cross-sectional monthly mean of equally-weighted returns. Based on a similar reasoning,
Bali et al. (2016) state that “value-weighting is most appropriate when the entities in the analysis are
stocks” (Bali et al. (2016)), footnote 1, Chapter 5).
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4.2 Alpha of the CFER-adjusted excess returns

Next, we examine our second hypothesis. This hypothesis is about a test of linear factor

model under market frictions (i.e., non-zero CFER). Especially, the left hand side of the

regression of equation (20) should be the “CFER-adjusted return,” R−R0 − CFER.

Table 3, Panel A, reports the intercepts of the CFER-adjusted regressions, equations

(20), where we regress the CFER-adjusted excess returns of the CFER-sorted value-

weighted decile portfolios and the spread portfolio on a set of factors f . We examine five

models (CAPM, FF3, FFC, FF5, SY). We can see that the intercept of the regression

is statistically insignificant at a 5% significance level whenever a decile portfolio return

is used as a dependent variable. An exception occurs in the case where the spread

portfolio return is used for the case where we use the CAPM to proxy the covariance

risk premium. Moreover, Gibbons et al. (1989) (GRS) test (untabulated) does not reject

the null hypothesis that all eleven alphas are jointly insignificant for any one of the five

models examined even at a 10% significance level.

We repeat our analysis by discarding CFER values below 1st percentile point or above

99th percentile point of the CFER distribution across all stocks. Then, we sort stocks by

the estimated CFER. This approach removes possible outliers in the estimated CFER;

the possible outliers of the estimated CFER may affect the value of the CFER-adjusted

returns and hence the estimated alphas. This data cleaning procedure is similar to the

standard convention in the Fama and MacBeth (1973) regressions (see e.g., Bali et al.

(2016)). Table 3, Panel B, reports the results. All intercepts now become insignificant at

a 5% level. In Panel C, we conduct a further robustness test and report the result from

a quintile portfolio sort analysis (without the previous truncation of the most extreme

CFER values). A quintile portfolio sort is expected to be more robust to outliers because

the formed portfolios contain more stocks and thus they are more diversified. We can see

that the intercept is not statistically different from zero in all cases.

[Table 3 about here.]
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Two remarks are in order regarding the results obtained from the CFER-adjusted re-

gressions. First, the fact that we find insignificant alphas for all asset pricing models does

not mean that all these models are valid. It simply verifies the testable hypothesis of our

model. To make a statement about the validity of an asset pricing model, one should test

whether the factors are priced, i.e., insignificant alpha is a necessary but not a sufficient

condition about the validity of a model. Second, the insignificant alphas obtained from

the analysis of the CFER-adjusted returns of the CFER-sorted portfolios imply that the

large alphas obtained from the analysis of the non-CFER-adjusted expected returns of

the CFER-sorted portfolios originate from market frictions as these are measured by the

CFER term and they are not due to model mis-specification.

4.3 Relation between CFER and friction variables

Next, we provide two alternative ways to test Hypothesis 3 as discussed in Section 2.3.

First, we examine the relation between the estimated CFER and various firms’ and stocks’

characteristics. Table 4 reports these characteristics for the CFER-sorted value-weighted

decile portfolios, where we use the AVE-CM CFER as a sorting variable. Hypothesis

3 suggests that stocks with higher transaction costs are likely to exhibit more extreme

CFER values. Our results confirm this conjecture. We can see U-shaped relations between

the relative bid-ask spread (BAS), Amihud’s (2002) illiquidity measure, stock price level,

and the estimated CFER, that is, stocks with extreme estimated CFER values tend to

have a wider bid-ask spread, greater illiquidity and lower stock prices.

There is an inverse U-shaped relation between CFER and the SIZE (the logarithm

of the market equity). This is also consistent with Hypothesis 3; smaller size stocks are

subject to larger market frictions and hence larger transaction costs (see e.g., Hasbrouck

(2009) and Hou et al. (2016)). We also observe a U-shaped relation between the estimated

CFER and the idiosyncratic volatility (IVOL) and the beta; stocks with extreme CFER

value tend to have larger idiosyncratic risk and systemic risk. These relations are again

consistent with Hypothesis 3 because a higher IVOL can be interpreted as an increase in
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the market friction in the sense that the higher riskiness of a stock discourages traders

to trade the stock (see e.g., Stambaugh et al. (2015)). We also see that there is a U-

shaped relation between CFER and variables which proxy short-sale constraints, that is,

the relative short interest (RSI) (see Asquith et al. (2005)), and the estimated shorting

fee (ESF) of Boehme et al. (2006). This may seem to be at odds with the literature,

which documents that tight short-sale constraints are related to future underperformance

(i.e., negative CFER); this implies that CFER should be monotonically (negatively)

related with the size of short-sale frictions. However, our result may be driven by the

correlation between RSI/ESF and other characteristics, which univariate sorts cannot

take into account. Subsequently, we shed light on this relation by running Fama and

MacBeth (1973) (FM) regressions, where we control for other characteristic variables

such as firm size and liquidity. Finally, we also find a U-shaped relation between the

book-to-market ratio (B/M) and the estimated CFER.

[Table 4 about here.]

Second, we examine Hypothesis 3 by conducting dependent bivariate sorts as discussed

in Section 2.3; the variation of CFER will be greater within a group of stocks that is

subject to larger transaction costs. The CFER-spread portfolio formed from stocks with

larger CFER variation is expected to earn a higher average return because larger CFER

variation means that the expected relative outperformance (underperformance) of the

stocks in the long (short) leg is more pronounced. Therefore, in the case where we sort

stocks first by a transaction costs-related variable and then by the estimated CFER, the

CFER-spread portfolios’ average returns will be higher for the bin of stocks which have

the higher transaction costs. To confirm this conjecture, we conduct bivariate dependent

sorts first by a transaction cost-related variable, then by the estimated CFER. Table 5,

Panel A, reports the bivariate dependent sort, first by BAS, then by CFER. The result

verifies our conjecture. The average CFER of the CFER-sorted spread portfolio increases

with the level of the bid-ask spread. The average return and αFFC of the CFER-sorted
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spread portfolios also increase with the level of the bid-ask spread. We find a similar

pattern in the CFER-sorted portfolios in Table 5, Panel B, where we use the SIZE as an

alternative sorting proxy for transaction costs. In general, the average CFER, average

return, and αFFC of the CFER-sorted spread portfolios decrease in the level of SIZE.18

[Table 5 about here.]

Finally, in addition to the portfolio sort approach, we also examine the relation bet-

ween CFER and friction-related variables by conducting FM regressions. This constitutes

a reverse engineering approach to identifying the dominant market frictions for optiona-

ble stocks; theoretically, CFER arises due to market frictions and hence it is expected

to covary with them. To this end, we run univariate as well as multivariate regressions

of CFER on SIZE, BAS, IVOL, Amihud’s (2002) measure and RSI which are popular

proxies of market frictions. For each month t (t = 1, 2, ..., T ), we estimate the following

cross-sectional regression across individual stocks indicated by i (i = 1, 2, ..., n):

CFERi,t,t+1 = α + β′Xi,t, (23)

where we use AVE-CM CFER as the left hand side variable and Xi,t is a vector that

contains the characteristics variables of individual stocks. Then, we calculate the time-

series average and the t-statistics of the estimated T cross-sectional intercept α and the β

coefficients. To ensure that our estimates are not driven by extreme values, we truncate

AVE-CM CFER and variables in Xi,t at a 1% threshold level.

Given that the previous analysis has documented a non-linear relation between CFER

and firm characteristics, we conduct the regressions by splitting our CFER sample to

positive and negative values. For the positive CFER subsample, our third hypothesis

suggests that more extreme (i.e., higher) CFER corresponds to stocks which are subject

to larger transaction costs and frictions. Therefore, we expect that the coefficient of

SIZE is negative, and the coefficient of BAS, Amihud and IVOL are positive (smaller

18We obtain similar results which confirm our third hypothesis when we use idiosyncratic volatility, or
Amihud’s (2002) illiquidity measure as a proxy for transaction costs.
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firms, wider bid-ask spread, lower liquidity and higher IVOL correspond to more extreme

CFER). For the negative CFER subsample, we expect the opposite sign for the coefficients

of these four variables. On the other hand, we expect that the coefficient of RSI will be

always negative both for the positive and negative CFER subsamples, because higher

RSI always implies severer short-sale constraints, which in turn implies lower CFER.

Table 6 reports the results. We can see that the coefficients of the SIZE, BAS, IVOL

and Amihud variables have the expected signs both in the univariate and multivariate

regressions. Moreover, they are statistically significant; the only exception is Amihud’s

measure for the positive CFER subsample. These findings corroborate that CFER is

related to various liquidity- and transaction costs-related variables in the theoretically

predicted manner. Regarding RSI, we obtain the expected negative sign in the mul-

tivariate regressions for both subsamples. This shows that, once controlling for other

friction-related variables, RSI and CFER are negatively related as theory predicts. Note

that the adjusted R2 of the univariate regression of CFER on RSI is lower than those

of the other friction-related variables. This may suggest that short-sale constraints are

of second-order importance to explain CFER variations compared to the other friction-

related variables for our universe of optionable stocks. This is expected because optiona-

ble stocks correspond to big stocks for which short-sale constraints are not pronounced

(see e.g., D’Avolio (2002) and Drechsler and Drechsler (2014)). Most importantly, the

documented relation between CFER and proxies of various market frictions suggests that

CFER is a “sufficient statistic” which subsumes the overall effect of any relevant market

frictions on expected stock returns.

[Table 6 about here.]

4.4 Robustness tests

In this subsection, we report a number of further robustness checks. We examine whether

our baseline results may differ across the four possible ways of constructing CFER. We

also investigate whether results are driven by outliers, stock reversals, non-synchronous
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trading in the option and underlying market. We also conduct FM regression tests to see

whether CFER is related to stock returns.

First, we examine whether the average return and αFFC of the decile spread portfolio

differ across the four CFER proxies. Table 7, Panel A, reports the results. We can see

that the average return and αFFC are sizable and statistically significant in both the

value-weighted and equally-weighted portfolios for any of the four ways of computing

CFER. In addition, we can see that CFER computed by the AVE-CM method delivers

the highest average return and alpha. This may be due to the fact that AVE-CM CFER

reduces any measurement errors in CFER at each strike by averaging them and hence the

signal to sort stocks in portfolios has greater predictive power. It may also be the case

that the 30-day constant maturity CFER gives cleaner signals for future outperformance

or underperformance in the succeeding month than the CFER extracted from options

with maturity closest to 30-day does.

[Table 7 about here.]

Second, regarding the effect of extreme CFER values, we check whether the predictive

power of CFER is driven by few stocks that have extreme CFER value. We perform two

alternative robustness tests based on two respective ways of forming portfolios. First, we

remove stocks whose CFER is below the 1st percentile point or above the 99th percentile

point. Second, we form quintile rather than decile portfolios; each quintile portfolio has

twice as many stocks compared to decile portfolios, portfolio returns are more robust to

the effect of outliers. Table 7, Panel B, reports the average returns and alphas of the long-

short portfolio. The first two columns report the average return and the risk-adjusted

return of the decile spread portfolio, where we remove stocks whose CFER is below

1st percentile point or above 99th percentile point. We form two spread portfolios as the

difference of Portfolio 10 minus Portfolio 1, and Portfolio 9 minus Portfolio 2, respectively.

By construction, the latter spread portfolio contains stocks which have less extreme CFER

values. We can see that albeit the average return and alpha decrease compared to the

32



full sample results, results are still economically and statistically significant. The third

and fourth column of Table 7 show the analogous results for the CFER-sorted quintile

portfolios. Again, the average and risk-adjusted returns are economically and statistically

significant. The results suggest that even though we use optionable stocks, their CFER

values are not negligible. This is because we can construct a CFER spread portfolio with

significant alphas even after we discard 40% of our initial sample with the most extreme

CFER observations.

Third, the predictability of CFER may be a manifestation of the short-term reversal

effect of Jegadeesh and Titman (1993), which is typically attributed to mispricing due to

microstructural frictions (see Chapter 12 of Bali et al. (2016)). To examine this conjec-

ture, we conduct a 5× 5 dependent bivariate sort, where we first sort stocks according to

the previous month return Rt−1,t, and then sort by the AVE-CM CFER. Hence, we can

test whether CFER has predictive power after the previous month return is controlled.

We report results in Table 8. The first five columns of Table 8 report the average re-

turns of the 25 bivariate-sorted portfolios. The sixth to last columns report the average

returns, αFFC , and the average CFER of the long-short portfolios of CFER, respectively,

after controlling the previous month returns. Overall, the spread portfolios’ risk-adjusted

returns (seventh column) are still statistically and economically significant after control-

ling the previous month return. This suggests that the predictive power of CFER is not

subsumed by the short-term reversal phenomenon.

[Table 8 about here.]

Fourth, we examine whether our results on the documented predictive ability of CFER

are of use to real time investors in the presence of non-synchronous trading in the option

and the underlying stock market (Battalio and Schultz (2006)). The CBOE option market

closes after the underlying stock market. Consequently, in real time, the CFER value

computed from option closing prices may not be available to investors on the close of the

stock market. As a result, in real time it may be the case that investors cannot exploit the
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CFER signal since the stock market has closed and hence they cannot trade stocks.19 In

this case, inevitably, investors will trade stocks at the open of the next day. To examine

whether the calculated at the end-of-day CFER may be of use to an investor, we calculate

post-ranking returns using the open-to-close monthly stock return, where the open stock

price is that of the first trading day after the day on which CFER is estimated.

Table 9, Panel A, reports the portfolio analysis results, where the open-to-close return

is used. The average return of the spread portfolio is 1.60% per month and it is almost the

same as the average return obtained from the baseline analysis using close-to-close returns,

1.64%. The FFC alpha is 1.83%, which is again almost the same as the corresponding

alpha in the close-to-close return case, 1.86%. This result implies that the predictive

power of the estimated CFER prevails even in the presence of non-synchronous trading

in the stock and option market; the predictive power of CFER does not change overnight.

[Table 9 about here.]

Fifth, we examine whether results are robust in the case where we exclude stocks with

low prices. Table 9, Panel B, reports the results, where we exclude stocks whose price

level is lower than $10. This filtering criteria removes about 10% of stocks compared to

the baseline analysis. We can see that the average return and the alphas of the spread

portfolio decrease when we remove the low priced stocks. However, the returns are still

highly statistically and economically significant. This is in contrast with the literature

on the predictability of friction-related variables, where the predictability mainly stems

from small, low priced stocks which are more susceptible to market frictions.20

Sixth, we examine whether the predictive cross-sectional power of CFER prevails

in the case where we use different breakpoints to form the decile portfolios. Table 9,

19The underlying market closes at 4:00 p.m. (EST). Prior to June 23, 1997, the closing time for CBOE
options on individual stocks was 4:10 p.m. On June 23, 1997, CBOE changed the closing time to 4:02
p.m. (i.e., only two minutes after the closing of the underlying stock market). From March 5, 2008, OM
reports option prices at 15:59 p.m. These changes minimize the potential non-synchronicity bias during
our sample period. Nevertheless, in the absence of intra-day option prices, it is not known whether the
CFER estimates were available in real time before the stock market close prior to March 5, 2008.

20 For example, Hou et al. (2016) report that the predictive power of their FRIC measure, which
captures the degree of microstructural frictions effect on expected return, decreases considerably when
penny stocks (stock price ≤ $1 or $5) are excluded.
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Panel C, reports the portfolio sort result, where we form decile portfolios based on the

NYSE breakpoints. Hou et al. (2017) recommend using only NYSE stocks to compute

breakpoints rather than using all stocks. This is because the latter method allows smaller

and more volatile NASDAQ stocks to have a greater relative importance in the extreme

decile portfolios and amplifies asset pricing anomalies. We can see that the predictive

ability of CFER is robust irrespective to the breakpoint method. The average return

and alpha of the spread portfolio are still significant, albeit smaller compared to these

obtained in the baseline analysis.

A remark is in order at this point regarding the validity of our findings in the light of

the growing concerns on data snooping among the asset pricing literature (e.g., Harvey

et al. (2016), Hou et al. (2017), Harvey (2017)). Our results are reassuring because the

CFER-sorted decile spread portfolio earns significant alphas even when we follow the

construction method recommended by Hou et al. (2017) (i.e., value-weighted and NYSE

breakpoints) and the t-statistics are above five, which is above the thresholds based

on the Bayesianized t-statistics proposed by Harvey (2017). Furthermore, these recent

studies emphasize the importance of relying on a sound theoretical model to explain

why a certain variable should predict asset returns. Our approach satisfies this criterion

since the predictive power of CFER is justified based on a formal asset pricing model.

Moreover, these studies also emphasize that the design and practical specifications of

empirical studies should not allow ad-hoc flexibility as possible. The computation of

CFER allows little flexibility because it does not require any parameter estimations nor

historical data. The only flexibility is in the choice of strike prices and maturities, yet

we have shown that the predictive power of CFER is robust to the CFER construction

methods (Table 7, Panel A).

Seventh, we examine whether the predictive power of CFER still exists over alter-

native sub-periods. We divide our initial sample period into January 1996 to December

2006 and January 2007 to April 2016. We choose December 2006 as a splitting point for

the following two reasons: first, 2007 is the onset of the financial crisis and hence market
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frictions have increased in the period thereafter. This may have an effect on the cross-

section of CFER values as Figures 1a and 1b have indicated. Second, 2007 coincides with

the period where the academic research, which demonstrates that the option-implied me-

asures extracted from individual equity options predict the cross-section of future stock

returns, has appeared.21 McLean and Pontiff (2016) find that the publication of acade-

mic research on asset pricing anomalies eliminates the predictability of variables which

manifest asset pricing anomalies. Panels A and B of Table 10 report the results. The

spread portfolio’s average return and αFFC decrease by 68 bps and 119 bps, respectively,

from the earlier to the more recent sub-sample. However, the average return and alpha

of the spread portfolio are still statistically and economically significant. These results

show that the predictive power of CFER is not solely driven by financial crisis period.

[Table 10 about here.]

Finally, we complement the portfolio sorts with FM regressions, where we regress

stock returns on stocks’ characteristics including the estimated CFER. These regressions

provide additional robustness checks for our results since they employ all firms without

imposing portfolio breakpoints and allow for control variables (see Hou et al. (2016)).

Similar to the estimation in Section 4.3, for each month, we estimate cross-sectional

regressions of stock returns on characteristics variables of individual stocks. Then, we

calculate the time-series average and the t-statistics of the estimated T cross-sectional

intercept and the coefficients on characteristics variables. To ensure that our results are

not driven by extreme values, we truncate left-hand side variables at a 1% threshold level.

Table 11 reports the result. Model (1) shows that the estimated CFER is positively

related to the stock returns. In Model (2), we employ various control variables including

market beta, SIZE, log of book-to-market ratio, momentum (Rt−12,t−1). We also include

the previous month return Rt−1,t, IVOL, asset growth rate and profitability since it is

well-known that these variables have predictive power for future stock returns (see e.g.,

21For instance, Cremers and Weinbaum (2010) and Bali and Hovakimian (2009) working paper versions
appeared on the SSRN website in March 2007 and November 2007, respectively.
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Jegadeesh and Titman (1993) for the short-term reversal, Ang et al. (2006) for IVOL,

and Hou et al. (2015) for asset growth and profitability). The coefficient of the estimated

CFER is still positive and statistically significant even after controlling for these varia-

bles.22 In Model (3), we further add three liquidity related variables, Amihud’s (2002)

illiquidity measure, the relative bid-ask spread and the turnover rate. The estimated

coefficient of CFER is virtually unchanged from Model (2).

In columns (4) to (9), we report results from conducting FM regressions on two sepa-

rate sub-samples. First, as we have discussed above (Table 9, Panel C), NASDAQ stocks

are smaller and more volatile than NYSE and Amex stocks. Hence, the FM regression

results may be driven by the NASDAQ stocks (see Hou et al. (2016)). To examine this

possibility, we repeat the FM regression by splitting our sample into NYSE/Amex stocks

and NASDAQ stocks. Columns (4) and (5) report respective results. The coefficients of

CFER are still highly significant regardless of whether we use only NYSE/Amex stocks

or NASDAQ stocks. Next, as we have seen in Table 4, CFER and various firm and stock

characteristics exhibit (inverse) U-shaped relations. Therefore, it might be the case that

this non-linear structure affects the FM regression results. To address this issue, we split

our initial sample based on the sign of CFER; we split our sample into two parts where

the splitting points is a zero CFER value. Hence, the two parts roughly correspond to

the left and right part of the U-shaped relations so that each subsample has a monotonic

relation between CFER and the firm and stock characteristics. This would be closer to

the structure of the FM regressions. Columns (6) and (7) demonstrate that the coefficient

of CFER is larger for negative CFER samples, but the coefficient of CFER is significant

for both subsamples. Finally, we split our sample into January 1996 to December 2006

and January 2007 to April 2016 as before and we re-apply the FM regressions. We can

22In our FM regression results, many traditional return predictors such as log book-to-market ratio
and momentum are insignificant. To explore this further, we conduct FM regressions by excluding CFER
from the set of control variables and using all common stocks including non-optionable stocks. In the
case where our stock dataset commences in 1972, these traditional variables have significant coefficients,
whereas if we use the data starting from 1996, they become insignificant. This suggests that well-known
effects such as value and momentum effects are weaker in the recent period covered by the OM database.
Therefore, the insignificant coefficients we obtain for some traditional variables should not be attributed
to the narrower universe of optionable stocks neither on the inclusion of CFER in the regressions.
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see from the last two columns that the estimated coefficient on CFER becomes slightly

smaller in the latter period, but they are statistically significant in both sub-periods.

[Table 11 about here.]

5 Relation to other option-implied measures

In this Section, we discuss the relation of CFER with two measures of deviations from

put-call parity, which have been documented to predict stock returns cross-sectionally:

implied volatility spread (IVS) defined as the difference between the BS-IV of the call

and put options with the same strike (e.g., Bali and Hovakimian (2009), Cremers and

Weinbaum (2010)), and maturity and the DOTS measure of Goncalves-Pinto et al. (2017).

In particular, we show that both IVS and DOTS are approximately proportional to

CFERMF
t,t+1(K), which is the observable model-free part of CFER (equation (13)). We

begin by providing the following Proposition which establishes the relation between CFER

and IVS. Note that the following result is in line with the observation by Cremers and

Weinbaum (2010) that a non-zero IVS reflects a violation of put-call parity.

Proposition 5.1. Let IV c
t (K) and IV p

t (K) be the Black-Scholes call and put implied

volatilities (BS-IVs), respectively. Then, the following approximate equation holds.

CFERMF
t,t+1(K) ≈

R0
t,t+1Vt(K)

St

(IV c
t (K)− IV p

t (K)), (24)

where Vt(K) is the Black-Scholes vega evaluated at a strike K and a volatility equal to

(IV c
t (K) + IV p

t (K))/2.

Proof. See Appendix A.3. 2

Next, we show the relation between CFER and Goncalves-Pinto et al.’s (2017) DOTS

measure. DOTS is calculated from a pair of American call and put option prices as

DOTSt(K) :=
SU
t (K)+SL

t (K)

2
− St

St

, (25)
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where SU
t (K) = Cask

t (K)−P bid
t (K)+K+Dt+1/R

0
t,t+1 and SL

t (K) = Cbid
t (K)−P ask

t (K)+

K/R0
t,t+1 are the no-arbitrage bounds for the stock price (i.e. SL

t ≤ St ≤ SU
t ) calculated

from the bid and ask prices of American call and put options (Cbid, P bid, Cask, and P ask)

with strike K. One can show that the mid-price of the American option-implied bounds

SU
t and SL

t approximates a synthetic stock price. Therefore, as the following Proposition

shows, the DOTS measure can be regarded as a function of deviations from put-call parity

and hence as a function of CFERMF .

Proposition 5.2. Let ηct and ηpt be the early exercise premium of the American call and

put option, respectively. Then, the following relation holds:

DOTSt(K) =
CFERMF

t,t+1(K)

R0
t,t+1

+ ut, ut =
1

St

[
ηct −

Dt+1

2R0
t,t+1

−
(
ηpt −

K(R0
t,t+1 − 1)

2R0
t,t+1

)]
.

(26)

Proof. See Appendix A.4. 2

Proposition 5.2 shows that DOTS is the discounted CFERMF
t,t+1(K) term plus an

additional term ut which is a function of the early exercise premium of the American call

and put options.

Propositions 5.1 and 5.2 provide a theoretical explanation for the empirically docu-

mented predictive power of IVS and DOTS for future stock returns; they are approx-

imately proportional to the observable part of CFER, CFERMF
t,t+1(K). Therefore, IVS

and DOTS ought to predict future stock returns, too. Moreover, these results explain

formally Goncalves-Pinto et al.’s (2017) finding that DOTS and IVS are highly corre-

lated. However, the empirical performance of CFER versus IVS and DOTS as cross-

sectional predictors of stock returns may differ since IVS and DOTS are approximations

of CFERMF
t,t+1(K); the strength of the predictive power will depend on the size of the ap-

proximation error in equation (24) in the case of IVS and on the size of ut in the case of

DOTS. The predictive power of IVS itself also depends on the impact of omitting the vega

scaling factor. DOTS is constructed from options which have different time-to-maturities

which may not correspond to the 30-days return horizon and this may also incur biases.
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In sum, our proxy of CFER, CFERMF , is expected to perform at least as good as the

other discussed option-implied measures in terms of predicting future stock returns. This

is because our theoretical model suggests that our CFER formula is the most appropriate

way to utilize the informational content embedded in deviations from put-call parity.

We compare the cross-sectional predictive ability of AVE-CM CFER to that of IVS

and DOTS. We follow Bali and Hovakimian (2009) and calculate IVS by taking the

average of the IVS of available pairs of call and put options across different strikes and

maturities (see Appendix B for the detailed construction method of IVS). We construct

DOTS in line with Goncalves-Pinto et al. (2017). Table 12 reports the average returns,

and alphas for the spread portfolios formed on AVE-CM CFER, IVS and DOTS. We

can see that the CFER-sorted spread portfolio earns greater alphas by 45–49 bps (27–

42 bps) compared to the IVS-sorted (DOTS-sorted) portfolio. The difference between

CFER and DOTS alphas is smaller than that between CFER and IVS. This result is

expected because DOTS is not subject to the vega scaling point encountered in IVS,

and the additional term in ut in over our sample period is small.23 In sum, in line with

the previous literature and Propositions 5.1 and 5.2, both IVS and DOTS predict stock

returns, and our proxy of CFER performs at least as good as these two measures.

[Table 12 about here.]

6 Conclusions and implications

We derive a formula to estimate the contribution of frictions to expected returns (CFER)

within a formal asset pricing setting, and then we study empirically the theoretically

founded properties of CFER. CFER is the part of the asset’s expected return which is

not explained by the covariance risk premium. We make no assumptions on the type of

market frictions nor on investors’ preference to derive the CFER formula. The formula

relates CFER to the observable scaled deviations from put-call parity, thus formalizing

23 We calculate ut as DOTSt(K)−CFERMF
t,t+1(K)/R0

t,t+1 and find that the monthly time series of the
median of ut is close to the half of the net risk-free rate, which is close to zero over our sample period.

40



the intuition and previous evidence that deviations from put-call parity are related to

future stock returns. We show that the properly scaled deviations from put-call parity

estimate CFER accurately. We also show theoretically that a number of measures of

deviations from put-call parity such as the implied volatility spread proxy CFER.

We estimate CFER for each optionable U.S. common stock and we confirm the theore-

tically founded properties of CFER. Four are our main empirical findings. First, both the

magnitude and variation in the estimated CFER is sizable. Second, CFER predicts future

stock returns cross-sectionally; the predictive power of CFER is sizable and statistically

significant (t-statistics exceed the value of five), and robust to the recent data snooping

concerns. Third, the regressions of the CFER-adjusted excess returns (i.e., excess return

minus the estimated CFER) of CFER-sorted decile portfolios on a set of standard risk

factors yield non-significant intercepts for a number of asset pricing models. This suggests

that the predictability of CFER originates from capturing the effect of market frictions,

rather than from omitted risk factors. Fourth, we document that the cross-section of

CFER becomes more dispersed when transaction costs and market frictions are larger

and that CFER is related to a number of market frictions with transaction costs being

the dominant one. This implies that CFER can be regarded as a sufficient statistic of

the overall effect of market frictions on stock returns.

Three final remarks are in order. First, the empirical findings imply that even the

expected returns of large stocks such as optionable stocks are considerably affected by

market frictions. Second, we also document that the large alphas earned by the CFER-

sorted portfolio are not “excessive” given typical estimates of transaction costs. The

degree to which this alpha is exploitable in practice depends crucially on the type of

investors and the degree of market constraints they face. Finally, even though CFER can

be estimated only for optionable stocks (which tend to be large) and the period starting

from 1996, our results on CFER provide a conservative measure of market inefficiency due

to market frictions; smaller non-optionable stocks are subject to larger market frictions,

and transaction costs, which we show to be the dominant type of frictions for optionable
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stocks, were more intense before 1996 (see e.g., Hasbrouck (2009)).

A Proofs for Section 2 and Section 5

A.1 Proof of Theorem 2.1

First, note that dividing equation (7) yields

1 = EP
t [m∗t,t+1Rt,t+1] +

1

St

L∑
l=1

λlt
u′(ct)

∂glt(θt)

∂θSt
. (A.1)

The following equation follows from the covariance formula Covt(X, Y ) = Et[XY ] −

Et[X]Et[Y ],

EP
t [m∗t,t+1Rt,t+1] = CovPt (m∗t,t+1, Rt,t+1) +

EP
t [Rt,t+1]

R0
t,t+1

(A.2)

because EP
t [m∗t,t+1] = 1/R0

t,t+1. Substituting (A.2) to (A.1) and rearranging terms yields

equation (10), where CFERt,t+1 is defined as equation (11). 2

A.2 Proof of Proposition 2.1

Under the assumption that the proportional transaction cost ρ is the only market frictions,

He and Modest (1995) derive the following inequalities:

1− ρ
1 + ρ

≤ EP
t [m∗t,t+1Rt,t+1] ≤

1 + ρ

1− ρ
. (A.3)

Equations (A.1) and (11) show that the expectation term in the middle of the inequalities

posed by (A.3) relates to CFER as follows:

EP
t [m∗t,t+1Rt,t+1] =

1

R0
t,t+1

CFERt,t+1 + 1. (A.4)

Substituting equation (A.4) to (A.3) and rearranging terms yields equation (21). 2
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A.3 Proof of Proposition 5.1

Deviations from put-call parity S̃t(K)−St can be rewritten as the difference between the

observed call price Ct(K) and the hypothetical call price C̃t(K), which is calculated as if

put-call parity would hold, that is,

C̃t(K) = Pt(K) + St −
K +Dt+1

R0
t,t+1

. (A.5)

Let BScall(IV ) (BSput(IV )) be the Black-Scholes call (put) option function viewed

as a function of the implied volatility parameter. Then, by the definition of the BS-

IV, IV c
t (K) and IV p

t (K) satisfy Ct(K) = BScall(IV
c
t (K)) and Pt(K) = BSput(IV

p
t (K)),

respectively. Moreover, it follows that

C̃t(K) = BSput(IV
p
t (K)) + St −

K +Dt+1

R0
t,t+1

= BScall(IV
p
t (K)), (A.6)

because the pair of the Black-Scholes European call and put option prices with the same

volatility satisfies the put-call parity. This shows that Ct(K)−C̃t(K) = BScall(IV
c
t (K))−

BScall(IV
p
t (K)). Therefore, a first-order Taylor series approximation of BScall(IV

c(K))−

BScall(IV
c(K)) around the mid volatility point (IV c

t (K) + IV p
t (K))/2 yields

Ct(K)−C̃t(K) = BScall(IV
c
t (K))−BScall(IV

p
t (K)) ≈ Vt(K)(IV c

t (K)−IV p
t (K)), (A.7)

where Vt(K) is the Black-Scholes vega, ∂BScall(σ)/∂σ, evaluated at (IV c
t (K)+IV p

t (K))/2.

By substituting this approximation in equation (13), we obtain equation (24). This

derivation shows that the approximation error in (24) stems from the higher-order terms

of the Taylor series approximation of BScall(IV
c
t (K))−BScall(IV

p
t (K)). 2

A.4 Proof of Proposition 5.2

Substituting the definition of SU
t and SL

t in equation (25) yields

DOTSt =
1

St

(
Cmid

t (K)− Pmid
t (K)− St +

1

2

(
1 +

1

R0
t,t+1

)
K +

Dt+1

2R0
t,t+1

)
, (A.8)
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where Cmid
t and Pmid

t are the mid price of American options. By the definition of ηct

and ηpt , Ct := Cmid
t − ηct and Pt := Pmid

t − ηpt are the European option prices. Then, by

substituting the definition of the synthetic stock price (equation (12)), we obtain

DOTSt =
S̃t(K)− St

St

+
1

St

[(
ηct −

Dt+1

2R0
t,t+1

)
−
(
ηpt −

1

2

(
1− 1

R0
t,t+1

))]
. (A.9)

Since the first term in the right hand side of equation (A.9) is CFERMF
t,t+1(K)/R0

t,t+1, we

prove equation (26). 2

B Description of variables

Relative bid-ask spread (BAS): We calculate the daily relative bid-ask spread as

BASi
d = (Sask,i

d − Sbid,i
d )/(0.5(Sask,i + Sbid,i)). Then, we average the daily bid-

ask spread over the past one year. We require there are at least 200 non-missing

observations. Data are obtained from the CRSP database.

Amihud’s illiquidity measure: We calculate daily Amihud’s (2002) illiquidity mea-

sure as the ratio of the absolute daily return to the dollar trading volume, Illiqid =

|Ri
d|/(Si

dV ol
i
d), where Ri

d and V olid are the daily return and the trading volume

of i-th stock on day d. Then, we average daily illiquidity measure over the past

one year. We require there are at least 200 non-missing observations. The stock

returns, stock prices, and trading volumes are obtained from the CRSP database.

The trading volume of the NASDAQ equities is adjusted by following Gao and

Ritter (2010).

SIZE: Size is the natural logarithm of the market equity. The market equity is calculated

as the product of the number of outstanding share with the price of the stock at

the end of each month. Data are obtained from the CRSP database.

Idiosyncratic volatility (IVOL): In each month, we regress the daily excess returns

over the past 12 months on the Fama and French (1993) three factors to obtain the
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residual time-series εid. Then, we calculate the idiosyncratic volatility (IVOL) as

IV OLi
t =

√
1

N(d)− 1

∑
d∈D

(εid)
2,

where D is the set of non-missing days in the past 12 months. We require there

are at least 200 non-missing observations. Stock return data are obtained from the

CRSP database and the Fama and French (1993) three factors data are obtained

from Kenneth French’s website.

Beta: In each month, we regress daily stock excess returns over past 12 months on the

daily excess market return to obtain the beta. We require there are at least 200

non-missing observations. Stock return data are obtained from the CRSP database.

We use the excess market return provided at Kenneth French’s website.

Relative short interest (RSI): The relative short interest (RSI) is calculated as the

ratio of the number of short interest to the number of outstanding share. The short

interest data is obtained from the Compustat North America, Supplemental Short

Interest File via the WRDS. Until the end of 2006, the Compustat records the short

interest at the middle of any given month (typically 15th day of each month). Since

2007, the short interest file contains the short interest at the middle of months and

the end of months. We use the end-of-month short interest data since 2007 because

we sort stocks in portfolios at the end-of-each month in our analysis. The number

of outstanding share is obtained from the CRSP database.

Estimated shorting fee (ESF): We follow Boehme et al. (2006) to calculate the esti-

mated shorting fee as

ESF = 0.07834 + 0.05438V RSI − 0.00664V RSI2 + 0.000382V RSI3 − 0.5908Option

+ 0.2587Option · V RSI − 0.02713Option · V RSI2 + 0.0007583Option · V RSI3,

where V RSI is the vicile ranking of the RSI, that is, V RSI takes the value 1 if the

firm’s RSI is below 5th percentile, 2 if the RSI is between 5th and 10th percentile
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and so on. Option is a dummy variable that takes 1 if option trading volume in the

month is non-zero and takes 0 otherwise. Option trading volume data is obtained

from the OM database.

Book-to-Market equity (B/M): We follow Davis et al. (2000) to measure book equity

as stockholders’ book equity, plus balance sheet deferred taxes and investment tax

credit (Compustat annual item TXDITC) if available, minus the book value of

preferred stock. Stockholders’ equity is the value reported by Compustat (item

SEQ), if it is available. If not, we measure stockholders’ equity as the book value of

common equity (item CEQ) plus the par value of preferred stock (item PSTK), or

the book value of assets (item AT) minus total liabilities (item LT). Depending on

availability, we use redemption (item PSTKRV), liquidating (item PSTKL), or par

value (item PSTK) for the book value of preferred stock. From June of each year t

to May of t+ 1, the book-to-market equity (B/M) is calculated as the ratio of the

book equity for the fiscal year ending in calendar year t − 1 to the market equity

at the end of December of year t− 1. We treat non-positive B/M data as missing.

Profitability: We follow Fama and French (2015) to measure profitability as revenues

(Compustat annual item REVT) minus cost of goods sold (item COGS) if available,

minus selling, general, and administrative expenses (item XSGA) if available, minus

interest expense (item XINT) if available all divided by (non-lagged) book equity.

From June of year t to May of t+1, we assign profitability for the fiscal year ending

in calendar year t− 1.

Investment: We follow Fama and French (2015) to measure investment as the change

in total assets (Compustat annual item AT) from the fiscal year ending in year t−1

to the fiscal year ending in t, divided by t− 1 total assets. From June of year t to

May of t+ 1, we assign investment for the fiscal year ending in calendar year t− 1.

Turnover rate: We calculate daily turnover rate as the ratio of trading volume to the

number of outstanding share. Then, we average daily turnover rate over the past one
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year. We require there are at least 200 non-missing observations. Trading volume

and the number of outstanding share are obtained from the CRSP database. The

trading volume of the NASDAQ equities is adjusted by following Gao and Ritter

(2010).

Implied-volatility spread (IVS): We follow Bali and Hovakimian (2009) to construct

IVS. Specifically, we keep IV data for options which have (i) positive bid price, (ii)

positive open interest, (iii) bid-ask spread is smaller than 50% of the mid price.

Then, we average all available IVS extracted from options with maturities between

30 days and 91 days and with the absolute value of the log moneyness | log(K/S)|

smaller than 0.1.

DOTS: We follow Goncalves-Pinto et al. (2017) to keep pairs of call and put options

with the same maturity and strike if (i) their day-to-maturity is between 8-days

and 31-days, (ii) their IV does not exceed 250%, (iii) their bid prices are strictly

positive and (iv) their open interest is greater than zero.

On each end of month t, DOTS of i-th stock at j-th strike price is calculated as

follows:

DOTSi
t,j =

Si,U
j +Si,L

j

2
− Si

t

Si
t

,

where Si,U
j = Ci,ask

t (Kj)−P i,bid
t (Kj)+Kj+PV D

i
t and Si,L

j = Ci,bid
t (Kj)−P i,ask

t (Kj)+

PV Ki
t,j. PV Di

t and PV Ki
t,j are the present value of dividend payments and the

strike price Kj. Then, DOTS of i-th stock in month t is calculated as

DOTSi
t = 100×

J∑
j=1

(Ci,ask
t (Kj)− Ci,bid

t (Kj) + P i,ask
t (Kj)− P i,bid

t (Kj))
−1∑J

k=1(C
i,ask
t (Kk)− Ci,bid

t (Kk) + P i,ask
t (Kk)− P i,bid

t (Kk))−1
DOTSi

t,j,

where J is the number of option pairs. Option and dividend data are obtained from

the OM database.
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C CFER estimation: Size of biases

Theorem 2.2 shows that CFER equals the sum of two terms: the model-free CFERMF
t,t+1(K)

term and the unobservable Ut,t+1(K) term, which is a function of the effect of frictions

on market option prices. In this Section, we quantify the magnitude of the bias in our

baseline model-free estimator AVE-CM CFER, which we denote by U t,t+1. The bias term

U t,t+1 is a weighted average of the bias term Ut,t+1(K) for each pair of call and put op-

tions involved in the calculation of AVE-CM CFER (see equation (13)). To assess the

magnitude of Ut,t+1(K), which is proportional to M c
t (K) −Mp

t (K) (equation (15)), we

examine three alternative ways of modeling the effect of market frictions on individual

option prices, M c
t (K) and Mp

t (K). Then, we assess the magnitude of U t,t+1, which is the

average of Ut,t+1(K) across strikes and maturities.

Two remarks are in order at this point. First, to quantify the size of the omitted

Ut,t+1(K) term, one needs to introduce additional assumptions on the effect of frictions

on option prices/returns. However, our theoretical result (Theorem 2.2) holds regardless

of the additional assumptions on M c
t (K) and Mp

t (K). Second, the subsequent analysis

reveals that U t,t+1 is negligible compared to the model-free AVE-CM CFER. However,

this does not imply that the effect of market frictions on option prices and returns is

negligible. Indeed, Frazzini and Pedersen (2012) and Hitzemann et al. (2017) document

that this is not the case. In Appendix C.4, we discuss this point further.

C.1 M c
t (K) and Mp

t (K) modeled as measurement errors

Assume that M c
t (K) and Mp

t (K) follow a zero-mean i.i.d. random variable. This setup is

in line with Bliss and Panigirtzoglou (2002) and Dennis and Mayhew (2009), who assume

that observed option prices contain zero-mean measurement errors arising from various

frictions such as illiquidity issues and discrete option price quotes.

In this setup, AVE-CM CFER is unbiased because the unconditional mean of Ut,t+1(K)

equals zero. To evaluate the order of the magnitude of the bias in AVE-CM CFER, we
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follow Bliss and Panigirtzoglou (2002) and Dennis and Mayhew (2009) to assume that

M c
t (K) and Mp

t (K) follow an i.i.d. uniform distribution over [−d/2, d/2], where d > 0 is

the width of the support of the uniform noise variable. When N pairs of call and put

options are involved in the calculation of AVE-CM CFER, the bias term in the estimated

CFER is the average of 2N i.i.d. uniform random variables scaled by R0
t,t+1/St.

In our dataset, the one-month risk-free rate is on average R0
t,t+1 = 1.002 (i.e., 20

bps per month), the median stock price is around St = $30. The median number of

pairs of call and put options used to estimate AVE-CM CFER is N = 3. Regarding the

value of d, we follow Dennis and Mayhew (2009) and set d equal to the tick size of option

quotes, which is at most $0.1 according to the CBOE contract specification. The previous

literature uses this value to consider the rounding error in option quotes; if the true option

price is rounded to the nearest discrete quote, the maximal size of the measurement error

is d/2. Given these values, we can numerically calculate the probability distribution of

U t,t+1 and we find that |U t,t+1| is less than 6.5 bps with probability greater than 90%.24

Since the AVE-CM CFER ranges from -1.24% to +0.89% per month in a 5th to 95th

percentile range (see Table 1), the unobserved term U t,t+1 is negligible.

Next, to provide more conservative evaluation, we examine an alternative larger value

of d = $0.25, which is the average dollar bid-ask spread of the options we use to estimate

AVE-CM CFER, calculated based on OM database. This setup considers the possibility

of the mid-option prices (or IVs calculated from the mid prices) containing measurement

errors due to the existence of option bid-ask spreads. In this case, |U t,t+1| is smaller than

16 bps with the probability approximately equal to 90%. Again, this magnitude is much

smaller than the variations in the estimated AVE-CM CFER. These results imply that

measurement errors due to discrete quotes and wide bid-ask spread have a limited effect

on the determination of CFER.

24For simplicity, we assume that the equally-weighted average is taken across strikes and two maturities.
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C.2 M c
t (K) and Mp

t (K) modeled as the embedded leverage effect

Frazzini and Pedersen (2014) theoretically and empirically show that investors prefer

assets which have high beta, when their leverage constraints are binding. Based on

this so-called betting against beta theory, Frazzini and Pedersen (2012) document that

the returns of options are lower because options provide embedded leverage and attract

demand from leverage-constrained investors. In particular, they document that option

returns are lower by 1.25% per month per unit of embedded leverage.

In line with their empirical findings, we model the CFER term arising due to the

embedded leverage effect as kΩt(K), where Ωt(K) is option’s embedded leverage and k is

the sensitivity of option returns to the embedded leverage. Call (put) option’s embedded

leverage is defined as Ωc
t(K) = |∆c

t(K)St/Ct(K)| (Ωp
t (K) = |∆p

t (K)St/Pt(K)|), where

∆c
t(K) (∆p

t (K)) is the call (put) option’s delta. Then, option returns are expressed as

EP
t [Rc

t,t+1(K)]−R0
t,t+1 = −R0

t,t+1Cov
P
t (m∗t,t+1, R

c
t,t+1(K)) + kΩc

t(K), (C.1)

EP
t [Rp

t,t+1(K)]−R0
t,t+1 = −R0

t,t+1Cov
P
t (m∗t,t+1, R

p
t,t+1(K)) + kΩp

t (K), (C.2)

where Rc
t(K) = (St+1 −K)+/Ct and Rp

t (K) = (K − St+1)
+/Pt are the return of call and

put options, respectively. Given that it can be shown that equations (C.1) and (C.2)

are equivalent to M c
t (K) = kCtΩ

c
t(K)/R0

t,t+1 and Mp
t (K) = kPtΩ

p
t (K)/R0

t,t+1, Ut,t+1(K)

satisfies the following equation under this embedded leverage model (the superscript el

stands for “embedded leverage”):

Ut,t+1(K) = UEL
t,t+1(K) = −

R0
t,t+1

St

(
kCtΩ

c
t(K)

R0
t,t+1

− kPtΩ
p
t (K)

R0
t,t+1

)
= k(|∆p(K)| −∆c(K)).

(C.3)

Equation (C.3) shows that UEL
t,t+1(K) can take both negative and positive value since

the difference between the absolute value of put and call deltas is positive (negative) for

higher (lower) strikes. Moreover, UEL
t,t+1(K) is close to zero around the at-the-money point

(i.e., strikes where options’ deltas are close to 0.5). This suggests that the distribution of

UEL
t,t+1(K) for near ATM options is fairly symmetric around zero.
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This model allows us to construct the “fully-estimated” CFER for each strike and

maturity, defined as CFEREL
t,t+1(K) = CFERMF

t,t+1(K) + UEL
t,t+1(K). Then, we can con-

struct the fully-estimated AVE-CM EL-CFER by following the same procedure described

in Section 3.2. To estimate UEL
t,t+1(K), we set the coefficient on the embedded leverage k

to -1.25% per month by following Frazzini and Pedersen (2012). For option deltas, we

use the deltas provided by the OM database.

Next, we assess the magnitude of the U t bias in two ways. First, we investigate

the correlation between our baseline model-free AVE-CM CFER (henceforth, AVE-CM

MF-CFER, where MF stands for “model-free”) and the fully-estimated AVE-CM EL-

CFER. The correlation coefficient is 0.96 and hence the two CFER are almost perfectly

correlated. Second, we compare the cross-sectional stock return predictive ability of AVE-

CM MF-CFER and AVE-CM EL-CFER. If there is no significant difference in their return

predictive ability in terms of the alphas of the spread portfolio, this would imply that the

embedded leverage effect has only a negligible effect on the estimation of CFER based

on deviations from put-call parity. Table A.1, Panel A, shows the average return and

αCAPM , αFF3, αFFC , αFF5, αSY of the value-weighted decile spread portfolio where we sort

stocks based on the AVE-CM EL-CFER. We can see that the AVE-CM EL-CFER also

predicts future stock returns cross-sectionally just as it was the case for the baseline AVE-

CM MF-CFER, which ignores the UEL
t,t+1 term; the average return and alphas are sizable

and statistically significant for the AVE-CM EL-CFER. We also calculate the t-statistics

of the difference between the portfolio sort results based on AVE-CM MF-CFER and

AVE-CM EL-CFER; these are reported in the square brackets. To this end, we examine

the average return and alphas of the spread portfolio, where we long the spread portfolio

based on MF-CFER and short the spread portfolio based on EL-CFER (that is, we

examine a spread portfolio of spread portfolios). We can see that these t-statistics are

insignificant. This means that the average returns and alphas of the spread portfolio

based on AVE-CM EL-CFER are not statistically significantly different from those based

on the baseline AVE-CM MF-CFER. These results suggest that distortions in option
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prices due to the embedded leverage effect have a negligible effect on the estimation of

stocks’ CFER.

[Table A.1 about here.]

C.3 M c
t (K) and Mp

t (K) modeled as margin constraints

Finally, we assume that margin constraints are the only type of market frictions. We

consider this particular type of market frictions because the literature documents that

margin constraints affect option returns (e.g., Santa-Clara and Saretto (2009), Hitzemann

et al. (2017)) and hence it is possible that margin constraints can result in non-negligible

Ut,t+1(K).

Under this setup, Ut,t+1(K) is given by the following equation (the superscript MC

stands for “margin constraints”):

Ut,t+1(K) = UMC
t,t+1(K) =

R0
t,t+1

St

λMC
t

u′(ct)

(
∂gMC

t (θt)

∂θct (K)
− ∂gMC

t (θt)

∂θct (K)

)
. (C.4)

To estimate UMC
t,t+1(K), we need to specify the margin constraint function gMC

t and

we also need empirical evidence on the magnitude of the Lagrange multiplier λMC
t /u′(ct).

First, we follow Gârleanu and Pedersen (2011) to formalize the margin constraint function

gMC
t as follows:

gMC
t (θt) := Wt−|θSt |µS

t St−
∑
K∈Kt

(
|θct (K)|µc

t(K)Ct(K)+|θpt (K)|µp
t (K)Pt(K)

)
≥ 0, (C.5)

where µS
t > 0, µc

t(K) > 0 and µp
t (K) > 0 are the margin rates, that is, µS

t St, µ
c
t(K)Ct(K)

and µP
t (K)Pt(K) are the initial margin traders need to hold when they trade one unit of

the corresponding asset. This constraint imposes that the aggregated margins the agent

need to hold should not exceed her wealth Wt. The absolute values of asset allocations

are involved since typically traders need to hold margins both when they long and short

assets (see also the discussion in Gârleanu and Pedersen (2011)). The margin rates of

options, µc
t(K) and µp

t (K) are determined by the option exchange rule and depend on
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the strike price and whether options are bought or sold. Under the CBOE margin rule,

they are given by the following equations (see Hitzemann et al. (2017) for a detailed

discussion):25

µi
t(K) = 1, when an option is longed, θit(K) > 0, i ∈ {c, p} (C.6)

µc
t(K) =

max(0.2St − (K − St)
+, 0.1St)

Ct(K)
, when a call option is shorted, θct (K) < 0

(C.7)

µp
t (K) =

max(0.2St − (St −K)+, 0.1K)

Pt(K)
, when a put option is shorted, θpt (K) < 0

(C.8)

To simplify the calculation of the call and put margin rates, we focus on strikes which

satisfy 8/9 ≤ K/St ≤ 1.1. This examined range of strikes is not restrictive because we

only use options whose moneyness satisfy 0.9 ≤ K/St ≤ 1.1 in our empirical exercises.

In this case, the calculation of the two max functions in equations (C.7) and (C.8) yields

µc
t(K)Ct(K) = 0.2St − (K − St)

+ and µp
t (K)Pt(K) = 0.2St − (St − K)+. Under these

specifications of gMC
t , µc

t(K) and µp
t (K), we obtain the following expression for UMC

t :

Proposition C.1. For any strike price K satisfying 8/9 ≤ K/St ≤ 1.1, the following

equation holds:

UMC
t,t+1(K) = Et(K)×R0

t,t+1λ
MC
t /u′(ct), where (C.9)

Et(K) =



(Ct(K)− Pt(K))/St when θct (K) > 0 and θpt (K) > 0

−(St −K)/St when θct (K) < 0 and θpt (K) < 0

(0.2 + [Ct(K)− (St −K)+]/St) when θct (K) > 0 and θpt (K) < 0

− (0.2 + [Pt(K)− (K − St)
+]/St) when θct (K) < 0 and θpt (K) > 0.

(C.10)

Proof. See Appendix C.5. 2

25 Even though each option exchange can have a different margin rule, Hitzemann et al. (2017) docu-
ment that the CBOE margin rule is the de facto standard margin rule in the U.S. option exchanges.
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Equation (C.10) shows that the sign and magnitude of Et(K) (and hence those of

UMC
t,t+1(K)) depends on the signs of thetas and the moneyness of options in a complex

manner. For example, Et(K) is always positive (negative) for the third (fourth) case. On

the other hand, for higher moneyness options (i.e., K > St), Et(K) is negative for the

first case while it is positive for the second case. These signs flip for lower moneyness

options. Our empirical analysis of Et(K) suggests that the distribution of Et(K) (and

hence Ut(K)) is close to symmetric around zero.

We estimate UMC
t,t+1(K) = Et(K)R0

t,t+1λ
MC
t /u′(ct) by relying on previous empirical evi-

dence. To this end, we separately estimate R0
t,t+1λ

MC
t /u′(ct) and Et(K) and take their

product. First, R0
t,t+1λ

MC
t /u′(ct) corresponds to the shadow cost of capital in Gârleanu

and Pedersen (2011), which is shown to be equal to the spread between the uncollatera-

lized and collateralized risk-free bond rates. We can show that the spread of these two

bond rates coincides with R0
t,t+1λ

MC
t /u′(ct) if we extend our model to include both the

collateralized and uncollateralized risk-free bonds.26 Gârleanu and Pedersen (2011) find

that the shadow cost of capital is time-varying and become higher during market distress

periods. Moreover, their empirical estimations and calibration results suggest that the

shadow cost during the recent financial crisis is about 10% per year (page 1982 and Figure

1).

We examine three specifications for R0
t,t+1λ

MC
t /u′(ct). In the first specification, it is

assumed to be constant and equal to 10% per year, based on the maximum of the estima-

ted shadow cost of capital in Gârleanu and Pedersen (2011). In the second specification,

we set R0
t,t+1λ

MC
t /u′(ct) as 5% per year (constant) considering the fact that 10% is the

26 Let Ru
t,t+1 be the return of the uncollateralized bond and θut be the market-maker’s position on the

uncollateralized bond. The equations for the consumption (4) and the margin constraint (C.5) change
to

ct = Wt − θ0t − θut − θSt St −
∑

K∈Kt

[
θct (K)Ct(K) + θpt (K)Pt(K)

]
,

gMC
t (θt) = Wt − θut − |θSt |µS

t St −
∑

K∈Kt

[
|θct (K)|µc

t(K)Ct(K) + |θpt (K)|µp
t (K)Pt(K)

]
≥ 0.

The first order conditions of the collateralized bond (θ0t ) is unchanged and given by 1 = EP
t [m∗t,t+1R

0
t,t+1],

whereas the first order condition of the uncollateralized bond (θut ) is 1 = EP
t [m∗t,t+1R

u
t,t+1]−λMC

t /u′(ct).

From these two first order conditions, we obtain Ru
t,t+1 −R0

t,t+1 = R0
t,t+1λ

MC
t /u′(ct).
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highest value during the financial crisis and thus the time-series average of the shadow

price of capital is much lower. To consider the time-varying nature of the shadow cost

of capital, we also examine the case where R0
t,t+1λ

MC
t /u′(ct) is given by the scaled TED

spread, whose maximum value matches 10% per year during the financial crisis.27

For each one of the four cases in equation (C.10), the value of Et(K) can be calculated

as long as the sign of the call and put positions are known. To this end, we impose

additional structure of the market participants, following Gârleanu et al. (2009) and

Hitzemann et al. (2017). In particular, we assume there are two types of agents, the

market-maker and the end-user. We identify the agent, who is the market participant we

focused on in the main body, as the market-maker.28

Let dct(K) and dpt (K) be the end-users’ demand for the call and put option, re-

spectively. Then, at equilibrium, dct(K) = −θct (K) and dpt (K) = −θpt (K) hold be-

cause options are in zero net supply. Therefore, it follows that sgn(θct ) = −sgn(dct)

(sgn(θpt ) = −sgn(dpt )). We estimate the signs of the end-users’ demand instead of the

market-maker’s position and take the opposite signs.

To infer the signs of the end-users’ demand, we rely on Gârleanu et al.’s (2009)

empirical finding that end-user’s demand for option is highly related to the options’

expensiveness, which they proxy by the difference between the historical volatility and

the implied volatility. Specifically, we assume that the options’ expensiveness is above

(below) the reference point s if and only if the end-user’s demand dt(K) is positive

(negative), that is, the end-user buys (sells) the option:

expensivenessit(K) < s ⇔ dit(K) < 0 ⇔ θit(K) > 0, i ∈ {c, p}. (C.11)

We estimate the expensiveness measure (i.e., the left hand side of equation (C.11)) as

27Note that Gârleanu and Pedersen (2011) regress the estimated shadow price of capital on the TED
spread to obtain the coefficient on the TED spread about 1.8, while we multiply the TED spread by the
factor of about 3.3 to match the 10% maximum value. Our choice of the scaling factor is conservative
for our robustness check purposes, because it results in bigger (absolute value of) estimated UMC

t,t+1.
28This is in line with the definition of the agent in the main body since the option market-maker (i)

is a sophisticated marginal investor (as assumed in Gârleanu et al. (2009) and Hitzemann et al. (2017))
and (ii) takes part in both the stock and option market.
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the difference between the BS-IVs and the one-year historical volatility, both of which

are provided by the OM database. To select the value of s, we rely on Gârleanu and

Pedersen’s (2011) finding that the end-user is the net seller of individual options, that

is, the end-user sells more options than buys, implying that there are more “cheap”

options than “expensive” options. This suggests that the proportion of options whose

expensiveness is below s should be above 50%. Given this finding, we examine three

values for the reference point, s = 0, s = 0.01 and s = 0.02. Under these parameters, the

estimation rule (C.11) yields the results that in our sample, roughly 50%, 55%, and 62%

of options are “cheap,” respectively.

In analogy to Appendix C.2, we construct the “fully-estimated” CFER under the mar-

gin constraints model, CFERMC
t,t+1(K) as CFERMC

t,t+1(K) = CFERMF
t,t+1(K)+UMC

t,t+1(K) for

each strike and maturity, where we estimate the latter term as the product ofR0
t,t+1λ

MC
t /u′(ct)

and Et(K). Since we examine three cases each for R0
t,t+1λ

MC
t /u′(ct) and Et(K) (by con-

sidering three reference point value s to determine the signs of θct (K) and θpt (K)), re-

spectively, we have in total nine estimates of UMC
t,t+1(K) and hence CFERMC

t,t+1(K). Then,

we construct the fully-estimated margin-constraints-based AVE-CM CFER (AVE-CM

MC-CFER) by following the same procedure described in Section 3.2.

In analogy with the analysis for the embedded leverage model in Appendix C.2, we

examine how the incorporation of the margin constraints model-based U term affects the

estimated CFER. First, the pairwise correlations between our baseline AVE-CM MF-

CFER (which ignores the U term) and each one of the nine AVE-CM MC-CFER are

at least 0.998, that is, the baseline estimated CFER and all of the nine UMC
t,t+1-adjusted

CFER are almost perfectly correlated. Next, we compare the predictive ability of AVE-

CM MF-CFER and that of the nine AVE-CM MC-CFER in terms of the alphas of the

spread portfolios. Table A.1, Panel B, reports the results. First, similar to AVE-CM

EL-CFER, all nine margin constraints-based CFER strongly predict the cross-section of

future stock returns; the average return and alphas are sizable and statistically significant

for each one of the nine alternative methods to compute UMC
t,t+1. We also calculate the
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t-statistics of the differences between the baseline result and each one of the AVE-CM

MC-CFER results and they are reported in the square brackets. We can see that all nine

results based on AVE-CM MC-CFER are not statistically significantly different from the

baseline result. These results suggest that distortions in option prices due to margin

constraints have a negligible effect on the estimation of stocks’ CFER.

C.4 Why is the U term negligible even though market frictions

affect option returns?

Even though Frazzini and Pedersen (2012) and Hitzemann et al. (2017) document that

the embedded leverage effect and the margin constraints have a non-negligible effect on

option returns, respectively, our analysis suggests that these two types of market frictions

have a negligible effect on U t,t+1. This is possible due to the following two reasons.

First, the findings in the previous literature on option returns suggest that the ratios

M c
t (K)/Ct(K) and Mp

t (K)/Pt(K) are not negligible. To see this point for the case of

call options (put options can be treated similarly), the transformation of the first-order

condition of the call option, equation (8), yields

EP
t [Rc

t,t+1(K)]−R0
t,t+1 = −R0

t,t+1Cov
P
t (m∗t,t+1, R

c
t,t+1(K))−R0

t,t+1

M c
t (K)

Ct(K)
, (C.12)

where the second term in the right-hand side denotes the effect of market frictions on call

option returns. On the other hand, Ut(K) becomes small if M c
t (K)/St and Mp

t (K)/St

are small (equation (15)). Empirically, these ratios are much smaller than the ratios

M c
t (K)/Ct(K) and Mp

t (K)/Pt(K) because the denominators of the former (i.e., the stock

price) is much larger than those of the latter (i.e., option prices).29 Therefore, it is

possible that the effect of market frictions on option returns is not negligible, yet Ut(K)

is negligible.

Second, Ut,t+1(K) is proportional to the difference between M c
t (K) and Mp

t (K). The-

29For example, Ct(K)/St is less than 0.05 for a one-month ATM option price under the BS model
with typical volatility of 40%.
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refore, they would mostly offset each other in the case where they have the same sign and

they are of similar size. Their signs are always the same for the embedded leverage effect

model because M c
t (K) = k∆c

t(K) and Mp
t (K) = k|∆p

t (K)| always have the same sign (see

equation (C.3)). For the margin constraints model, M c
t (K) and Mp

t (K) have the same

sign when the agent’s allocation to call and put options have the same sign. We find that

call option and put options’ “expensiveness” are strongly correlated, and hence the signs

of θct (K) and θpt (K) determined based on equation (C.11) are the same for approximately

90% of call and put option pairs used to estimate AVE-CM CFER, regardless of the three

choices of the threshold value s. Moreover, the degree of the offsetting effect is stronger

for near ATM options because the absolute value of the delta of call and put options are

similar, and the amount of margins required for call and put options are similar when

the sign of allocations to them (θct and θpt ) are the same. These results suggest that the

offsetting effect between M c
t (K) and Mp

t (K) reduces the size of Ut(K) for most of the

cases, especially for near ATM options which we use in the estimation of CFER.

C.5 Proof of Proposition C.1

It suffices to show− 1

St

(
∂gMC

t (θt)

∂θct (K)
− ∂gMC

t (θt)

∂θpt (K)

)
= Et(K). The calculation of the partial

derivatives given the margin constraint function, equation (C.5), yields

− 1

St

(
∂gMC

t (θt)

∂θct (K)
− ∂gMC

t (θt)

∂θpt (K)

)
=

1

St

[
sgn(θct (K))µc

t(K)Ct(K)−sgn(θpt (K))µp
t (K)Pt(K)

]
,

(C.13)

where the sign function sgn(x) returns 1 (-1) if x is positive (negative). Then, we can furt-

her calculate the right hand side of equation (C.13) for each of four possible combinations

of the signs of θct (K) and θpt (K).

When θct (K) > 0 and θpt (K) > 0, the margin rule is µc
t(K) = µp

t (K) = 1 and the right

hand side of equation (C.13) boils down to (Ct−Pt)/St. When θct (K) < 0 and θpt (K) < 0,

the margin rule are given by µc
t(K)Ct(K) = 0.2St − (K − St)

+ and µp
t (K)Pt(K) =

0.2St − (St −K)+ under our assumption that 8/9 ≤ K/St ≤ 1.1, . Therefore, the right

58



hand side of equation (C.13) simplifies to

1

St

[
−(0.2St − (K − St)

+) + (0.2St − (St −K)+)
]

= −St −K
St

. (C.14)

When θct (K) > 0 and θpt (K) < 0, the margin rule becomes µc
t(K) = 1 and µp

t (K)Pt(K) =

0.2St − (St −K)+ and the right hand side of equation (C.13) is calculated as

1

St

[
Ct + (0.2St − (St −K)+)

]
= 0.2 + [Ct − (St −K)+]/St. (C.15)

Finally, when θct (K) < 0 and θpt (K) > 0, the margin rule becomes µc
t(K)Ct(K) =

0.2St− (K−St)
+ and µp

t (K) = 1 and the right hand side of equation (C.13) is calculated

as

− 1

St

[
Pt + (0.2St − (K − St)

+)
]

= −
(
0.2 + [Pt − (K − St)

+]/St

)
. (C.16)

These complete the proof of equation (C.10). 2

D The risk-free bond market with market frictions

In the main body, we assume that market frictions have no effect on the risk-free bond

to keep the exposition simple. In this Appendix, we provide the extended model where

we relax this assumption. Then, we show that this modification has a negligible effect on

our model-free CFER measure. This justifies our approach in the main model to employ

a simplifying assumption regarding the effect of frictions on the risk-free bond market.

D.1 The generalized definition of CFER

When market frictions also affect the risk-free bond, the first-order condition for the bond

analogous to equation (7) is given by

1 = EP
t [m∗t,t+1R

0
t,t+1] +M0

t,t+1, (D.1)
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where M0
t,t+1 =

∑L
l=1(λ

l
t/u
′(ct))∂g

l
t(θt)/∂θ

0
t . By defining R̃0

t,t+1 = 1/EP
t [m∗t,t+1], equation

(D.1) can be transformed into

R̃0
t,t+1 −R0

t,t+1 = R̃0
t,t+1M

0
t,t+1. (D.2)

The difference R̃0
t,t+1 −R0

t,t+1 can be interpreted as the effect of frictions on the risk-free

rate. Consistent with this interpretation, equation (D.2) shows that R̃0
t,t+1 = R0

t,t+1 holds

if and only if the effect of frictions on the risk-free bond is zero (i.e., M0
t = 0).

By using the new expression for EP
t [m∗t,t+1] to transform the Euler equation (7), the

asset pricing equation is generalized to

EP
t [Rt,t+1]−R0

t,t+1 = −
CovPt (m∗t,t+1, Rt,t+1)

EP
t [m∗t,t+1]

− R̃0
t,t+1

MS
t,t+1

St

+ (R̃0
t,t+1 −R0

t,t+1). (D.3)

Since CFER is the part of the expected return which is not explained by the covariance

risk premium, the definition of CFER is generalized to

CFERt,t+1 = −R̃0
t,t+1

MS
t,t+1

St

+ (R̃0
t,t+1 −R0

t,t+1). (D.4)

Note that equation (D.4) nests the definition of CFER presented in the main body; in

the case where the risk-free rate is not affected by frictions, the equality R̃0
t,t+1 = R0

t,t+1

holds and equation (D.4) boils down to equation (11). Moreover, this generalization of

the definition of CFER does not affect the cross-sectional variation in CFER because

R̃0
t,t+1 − R0

t,t+1 is common across all stocks; the variation in CFER is determined again

by the value of MS
t,t+1/St just as it was the case with the definition of CFER in the main

body, equation (11). As a result, the evidence on the cross-sectional predictability of

CFER presented in Section 4 is not affected by assuming that there is no effect of market

frictions on the risk-free bond market.
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D.2 Scaled deviations from put-call parity

Under the generalized framework, the synthetic stock price S̃t(K) = Ct(K) − Pt(K) +

(K +Dt+1)/R
0
t,t+1 becomes

S̃t(K) = EP
t [m∗t,t+1(St+1 +Dt+1)] + (M c

t (K)−Mp
t (K))

+

(
1

R0
t,t+1

− 1

R̃0
t,t+1

)
(K +Dt+1).

(D.5)

The last term in the right-hand side of equation (D.5) reflects the fact that the effect of

frictions on the risk-free bond transmits to the synthetic stock price because the synthetic

stock position involves the investment in the risk-free bond by the amount of K +Dt+1.

Then, taking the difference between St and S̃t(K) yields

St − S̃t(K) = MS
t − (M c

t (K)−Mp
t (K))−

(
1

R0
t,t+1

− 1

R̃0
t,t+1

)
(K +Dt+1). (D.6)

Scaling the both sides of equation (D.6) by −R0
t,t+1/St yields

CFERMF
t,t+1 =

R0
t,t+1

St

(S̃t(K)− St) = −
R0

t,t+1

St

MS
t − Ut(K) +

(
R̃0

t,t+1 −R0
t,t+1

) K +Dt+1

R̃0
t,t+1St

,

(D.7)

where Ut(K) is the same as equation (15). Subtracting equation (D.7) from (D.4) and

rearranging terms yields

CFERt,t+1 = CFERMF
t,t+1 + Ut(K)− (R̃0

t,t+1 −R0
t,t+1)

[
K +Dt+1

R̃0
t,t+1St

− 1 +
MS

t,t+1

St

]
. (D.8)

Equation (D.8) shows that CFERt,t+1 now contains an additional unobservable term

− (R̃0
t,t+1 −R0

t,t+1)

[
K +Dt+1

R̃0
t,t+1St

− 1

]
︸ ︷︷ ︸

A1

− (R̃0
t,t+1 −R0

t,t+1)
MS

t,t+1

St︸ ︷︷ ︸
A2

(D.9)

in addition to the Ut(K) term (see equation (18)).
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D.3 The evaluation of the additional term

In what follows, we demonstrate that the additional terms in equation (D.9) due to a non-

zero effect of frictions to the risk-free bond market is negligible. Therefore, the model-free

CFER (i.e., scaled deviations from put-call parity) still proxies the true CFER accurately

even when we allow the risk-free bond market to be affected by frictions just as it was

the case with the analysis presented in the main body of the paper, where we allowed for

a non-zero effect of frictions to the stock and option market.

We begin by discussing a plausible value for R̃0
t,t+1 − R0

t,t+1, which measures the size

of the effect of market frictions on the risk-free rate. The effect of market frictions on

the risk-free rate has been studied extensively from the perspective of the risk-free rate

puzzle; the empirically observed risk-free is too low given standard theoretical models with

plausible values for the preference parameters. A strand of studies considers a model

with market frictions, especially the borrowing constraints, which makes the observed

risk-free rate (i.e., R0
t,t+1) lower than R̃0

t,t+1. The consensus in this literature is that

R̃0
t,t+1 −R0

t,t+1 > 0.

However, there is no consensus on its empirical magnitude. Kogan et al. (2007)

consider a borrowing constraints model and report a calibrated simulation result that the

short-term risk-free rate is lowered possibly by 1.5% per year. Constantinides et al. (2002)

calibrate their borrowing constrained model and report that the borrowing constraints

lower the long-term bond rate by about 4% to 6% per year. Even though this value

is much higher than that in Kogan et al. (2007), it may be due to the difference in

the maturity of bond under consideration. Heaton and Lucas (1996) examine whether

borrowing constraints and transaction costs can solve the equity risk premium puzzle and

the risk-free rate puzzle simultaneously. They report that unrealistically large transaction

costs are necessary to decrease the risk-free rate to solve the risk-free rate puzzle, and in

such a case, the model’s risk-free rate decreases by about 4% per year.

Given the results in the previous literature, we set R̃0
t,t+1 −R0

t,t+1 to 0.5% per month

(or 6% per year) in the subsequent discussion. The choice of this value sets a high hurdle
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to to our attempt to show that the magnitude of the extra term in equation (D.7), which

arises due to the effect of frictions on the risk-free bond, is small.

Now, we evaluate A1 and A2 in equation (D.9) separately. First, we transform A1 as

A1 =
R̃0

t,t+1 −R0
t,t+1

R̃0
t,t+1

[(
K

St

− 1 +
Dt+1

St

)
− (R̃0

t,t+1 − 1)

]
. (D.10)

Then, taking the absolute value and using R̃0
t,t+1 ≥ R0

t,t+1 ≥ 1 yields

|A1| ≤ |R̃0
t,t+1 −R0

t,t+1| ×
(∣∣∣∣KSt

− 1

∣∣∣∣+
Dt+1

St

+ |R̃0
t,t+1 − 1|

)
. (D.11)

To further evaluate this inequality, recall that we use only near ATM options (|K/St −

1| ≤ 0.1). Given a plausible yet conservative dividend yield of 4% per year, Dt+1/St is

about 0.01 (= 4%/4) because U.S. firms typically pay dividends quarterly. The value of

R̃0
t,t+1 − 1 = (R̃0

t,t+1 − R0
t,t+1) + (R0

t,t+1 − 1) is at most 1% per month (i.e., R̃0
t,t+1 ≤ 1.01)

under our numerical assumption on R̃0
t,t+1 − R0

t,t+1 because the observed risk-free rate

R0
t,t+1 − 1 is at most 0.5% per month during our sample period. Therefore, we obtain

|A1| ≤ 0.5%× (0.1 + 0.01 + 0.01) ≈ 6 bps. (D.12)

Note that this is an upper bound and usually |A1| is much smaller because the moneyness

of options used is much closer to one (i.e., |K/St − 1| ≈ 0). Therefore, we can conclude

that the A1 term is negligible compared to the variation in the estimated CFERMF
t,t+1.

Next, we evaluate A2. To this end, by ignoring the negligible Ut(K) and A1 terms in

equation (D.8), we obtain the following approximation relation:

CFERMF
t,t+1 ≈ CFERt,t+1 + A2 = −R0

t,t+1

MS
t,t+1

St

+ (R̃0
t,t+1 −R0

t,t+1). (D.13)

With some more algebra, we obtain the following approximation relation:

A2 = (R̃0
t,t+1−R0

t,t+1)
MS

t,t+1

St

≈ −
(R̃0

t,t+1 −R0
t,t+1)

R0
t,t+1

CFERMF
t,t+1 +(R̃0

t,t+1−R0
t,t+1)

2. (D.14)

Under the assumption of R̃0
t,t+1−R0

t,t+1 = 0.5%, the value of the second term in the right-

63



hand side of equation (D.14) is negligible (0.25 bps). The first term in the right-hand side

of equation (D.14) is proportional to CFERMF
t,t+1 by the factor of (R̃0

t,t+1−R0
t,t+1)/R

0
t,t+1 ≈

0.5%. Therefore, this term results in a negligible relative error; when |CFERMF
t,t+1| is

smaller than 3%, it results in at most only 1.5 bps of absolute error.30 All in all, we

conclude that A2 is negligible.

To sum up, the additional term in the CFERMF
t,t+1 formula caused by the effect of

frictions on the risk-free rate, equation (D.9), is negligible. Therefore, the model-free

CFER (i.e., the scaled deviations from put-call parity) is still a good proxy of the true

CFER even when market frictions affect the risk-free bond market.
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(a) Median

(b) IQR

Figure 1. Time Series of the monthly Median and IQR of AVE-CM CFER.
Figure 1a illustrates the time-series of the monthly median of AVE-CM CFER and Figure
1b illustrates the time-series of the monthly IQR (difference between the 75th and 25th
percentile points) of AVE-CM CFER. At the end of each month, we calculate the median
and IQR of the individual stocks’ AVE-CM CFER values. The unit of the y-axis is %
per 30-day. The estimation period spans January 1996 to April 2016 (244 months).
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Table 1. Estimated CFER: Summary statistics

Entries in Panel A report the summary statistics of the estimated CFER at the end of each month

for the four different ways of estimating CFER. These are denoted by a combination of the method of

choosing strikes (AVE or ATM) and the method of choosing maturities (CM or CLS) of options. In AVE

methods, (1) and (3), we average CFER across available strikes, whereas in ATM methods, (2) and (4),

we choose the strike closest to the forward price. In CM methods, (1) and (2), we interpolate CFER

across the estimated CFER of traded maturities to obtain a 30-day constant maturity CFER, while in

CLS methods, (3) and (4), we choose the traded maturity closest to 30 days. The row for N reports the

total number of month-stock CFER observations, the row for IQR reports the interquartile range (75th

minus 25th percentile values), and the last row, % of CFER < 0, reports the proportion of observations

with negatively estimated CFER. The estimation period spans January 1996 to April 2016 (244 months).

The unit of statistics (except skewness, kurtosis, and % of CFER < 0) is % per 30-day. Entries in Panel

B report the pairwise Pearson correlation coefficients between the four estimated CFER measures.

Panel A: Summary statistics of the estimated CFER
(1) AVE-CM (2) ATM-CM (3) AVE-CLS (4) ATM-CLS

N 333,234 333,234 347,073 347,073
mean -0.09 -0.09 -0.10 -0.10
standard deviation 0.88 0.89 1.09 1.10
skewness -1.95 -1.88 -1.59 -1.53
kurtosis 69.32 68.92 69.97 69.20
minimum -27.67 -27.67 -35.60 -35.60
5th percentile -1.24 -1.25 -1.54 -1.55
Median -0.04 -0.04 -0.04 -0.04
95th percentile 0.89 0.89 1.14 1.15
maximum 24.96 24.96 32.72 32.72
IQR 0.47 0.46 0.60 0.60
% of CFER< 0 55.3% 55.1% 54.9% 54.6%

Panel B: Correlation between different measures of CFER
(1) AVE-CM (2) ATM-CM (3) AVE-CLS (4) ATM-CLS

(1) AVE-CM 1
(2) ATM-CM 0.986 1
(3) AVE-CLS 0.989 0.974 1
(4) ATM-CLS 0.973 0.989 0.984 1
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Table 2. AVE-CM CFER-sorted decile portfolios: Cross-sectional predictability

Entries in Panel A report the average CFER, average post-ranking return and results for the risk-adjusted returns (α) of the AVE-CM CFER-sorted

value-weighted decile portfolios and the spread portfolio, with respect to the CAPM and Carhart (1997) four-factor model. On the last trading day of

each month t, stocks are sorted in ascending order based on AVE-CM CFER and then value-weighted decile portfolios are formed. We then calculate the

return of these portfolios and the spread portfolio in the succeeding month-(t + 1). Entries in Panel B report the average CFER, average post-ranking

return and alphas of the AVE-CM CFER-sorted equally-weighted decile portfolios and the spread portfolio. The estimation period spans January 1996 to

April 2016 (244 months) for both Panels. t-statistics are adjusted for heteroscedasticity and autocorrelation and reported in parentheses. The unit of the

average returns and alphas (average CFER) is % per month (30-day). N is the average number of stocks in each decile portfolio.

AVE-CM CFER-sorted decile portfolios Spread
1 (Lowest) 2 3 4 5 6 7 8 9 10 (Highest) 10-1

Panel A: Value-weighted portfolios
Ave. CFER -1.31 -0.53 -0.31 -0.18 -0.09 -0.01 0.07 0.18 0.36 0.93 2.24
Ave. return -0.18 0.23 0.54 0.49 0.79 0.89 0.99 0.92 1.15 1.46 1.64

(-0.36) (0.60) (1.58) (1.64) (2.57) (2.82) (3.20) (2.73) (3.19) (3.38) (5.77)
αCAPM -1.15 -0.58 -0.23 -0.25 0.04 0.13 0.24 0.13 0.33 0.55 1.70

(-5.69) (-3.41) (-1.96) (-2.47) (0.42) (1.29) (2.30) (1.16) (2.30) (2.77) (5.91)
αFFC -1.11 -0.62 -0.26 -0.23 0.00 0.12 0.24 0.18 0.44 0.75 1.86

(-6.52) (-3.74) (-2.28) (-2.28) (0.02) (1.16) (2.38) (1.50) (2.54) (3.52) (6.56)
N 134.9 135.0 134.9 135.1 134.7 135.3 134.9 135.0 134.9 135.0 —

Panel B: Equally-weighted portfolios
Ave. CFER -1.58 -0.55 -0.32 -0.19 -0.09 -0.01 0.07 0.18 0.37 1.14 2.73
Ave. return -0.35 0.49 0.65 0.76 0.86 0.97 0.93 1.02 1.08 1.38 1.73

(-0.65) (1.09) (1.54) (1.94) (2.24) (2.62) (2.42) (2.58) (2.49) (2.76) (9.10)
αCAPM -1.41 -0.46 -0.24 -0.12 0.00 0.11 0.07 0.12 0.14 0.35 1.76

(-5.62) (-2.63) (-1.59) (-0.86) (0.01) (0.97) (0.63) (1.00) (0.77) (1.53) (9.60)
αFFC -1.31 -0.45 -0.27 -0.10 -0.04 0.07 0.04 0.13 0.17 0.50 1.81

(-9.61) (-3.79) (-2.55) (-0.99) (-0.47) (0.79) (0.40) (1.48) (1.41) (2.61) (9.42)
N 134.9 135.0 134.9 135.1 134.7 135.3 134.9 135.0 134.9 135.0 —
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Table 3. CFER-adjusted excess returns: Alphas of CFER-sorted portfolios

Entries in Panel A report the intercepts αCAPM and αFFC of the regressions of CFER-adjusted excess returns Rt,t+1 − R0
t,t+1 − CFERt,t+1 on a set of

risk factor(s) of the CAPM and Carhart (1997) four-factor model, respectively (i.e., equation (20)). On the last trading day of each month t, stocks are

sorted in ascending order based on AVE-CM CFER and then value-weighted decile portfolios are formed. We then calculate the average CFER as well as

the return in the succeeding month-(t+ 1) of these portfolios and the spread portfolio to calculate the CFER-adjusted excess return. Entries in Panel B

report αCAPM and αFFC , where we eliminate CFER observations below 1st percentile and above 99th percentile point. Entries in Panel C report αCAPM

and αFFC , where we form quintile portfolios instead of the decile portfolios. The estimation period spans January 1996 to April 2016 (244 months) for all

Panels. t-statistics are adjusted for heteroscedasticity and autocorrelation and reported in the parentheses. The unit of all variables is % per month.

AVE-CM CFER-sorted value-weighted decile portfolios Spread
1 (Lowest) 2 3 4 5 6 7 8 9 10 (Highest) 10-1

Panel A: Decile sort with all available CFER
αCAPM 0.17 -0.05 0.08 -0.07 0.14 0.15 0.17 -0.04 -0.02 -0.37 -0.55

(0.94) (-0.29) (0.70) (-0.66) (1.41) (1.42) (1.65) (-0.38) (-0.14) (-1.95) (-2.31)
αFFC 0.22 -0.08 0.05 -0.05 0.10 0.13 0.17 0.00 0.09 -0.16 -0.39

(1.44) (-0.50) (0.45) (-0.48) (1.01) (1.31) (1.68) (0.04) (0.49) (-0.79) (-1.57)
Panel B: Decile sort where CFER below 1st or above 99th percentile are eliminated

αCAPM 0.02 0.00 0.11 -0.02 0.11 0.12 0.13 0.06 -0.02 -0.33 -0.36
(0.13) (0.02) (1.03) (-0.16) (1.18) (1.12) (1.26) (0.52) (-0.14) (-1.78) (-1.57)

αFFC 0.03 -0.02 0.09 0.00 0.08 0.09 0.13 0.08 0.09 -0.16 -0.19
(0.18) (-0.12) (0.91) (0.05) (0.80) (0.94) (1.32) (0.79) (0.52) (-0.84) (-0.88)

Panel C: Quintile sort with all available CFER
AVE-CM CFER-sorted value-weighted quintile portfolios Spread

1 (Lowest) 2 3 4 5 (Highest) 5-1
αCAPM 0.00 0.01 0.14 0.08 -0.17 -0.17

(-0.02) (0.15) (1.70) (1.00) (-1.29) (-0.85)
αFFC -0.01 0.01 0.11 0.09 -0.02 -0.01

(-0.08) (0.17) (1.46) (1.14) (-0.14) (-0.06)
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Table 4. Characteristics of AVE-CM CFER-sorted value-weighted decile portfolios

Entries report the average value of various characteristics of decile portfolios as well as the difference between the highest CFER decile portfolio and the

lowest CFER decile portfolio. On the last trading day of each month t, stocks are sorted in ascending order based on AVE-CM CFER and then value-

weighted decile portfolios are formed. We then calculate the value-weighted average value of characteristics. BAS is the relative bid-ask spread, Amihud

is Amihud’s (2002) illiquidity measure (multiplied by 1,000 for the sake of readability), SIZE is the natural log of the market equity, St is the stock price

level, IVOL is the idiosyncratic volatility, beta is the regression coefficient of stock returns on the market portfolio return, RSI is the relative short-interest,

ESF is the estimated shorting fee, B/M is the book-to-market ratio, and N is the number of average stocks in each portfolio. See Appendix B for the

detailed description of each variable. The data period spans January 1996 to April 2016 (244 months). t-statistics are adjusted for heteroscedasticity and

autocorrelation and reported in the parentheses.

AVE-CM CFER-sorted value-weighted decile portfolios Spread
1 (Lowest) 2 3 4 5 6 7 8 9 10 (Highest) 10-1

CFER -1.31 -0.53 -0.31 -0.18 -0.09 -0.01 0.07 0.18 0.36 0.93 2.24
(-15.88) (-12.34) (-10.92) (-9.52) (-7.03) (-1.25) (7.26) (13.59) (15.08) (16.17) (15.38)

BAS 0.48 0.39 0.35 0.34 0.33 0.31 0.31 0.34 0.37 0.44 -0.04
(2.67) (2.51) (2.14) (2.31) (2.15) (2.18) (2.25) (2.34) (2.28) (2.69) (-2.89)

Amihud 5.60 1.84 0.97 0.55 0.37 0.31 0.36 0.55 1.17 3.82 -1.78
(6.96) (6.13) (5.09) (5.74) (6.26) (5.94) (7.93) (7.50) (7.70) (6.23) (-4.76)

SIZE 15.34 16.30 16.81 17.14 17.43 17.47 17.46 17.20 16.66 15.76 0.42
(221.77) (192.45) (320.21) (386.63) (372.29) (292.14) (282.72) (255.42) (268.91) (189.59) (3.96)

St 36.72 49.00 58.69 62.37 68.08 69.36 70.39 60.62 52.92 39.08 2.35
(23.40) (23.50) (18.87) (20.09) (22.06) (22.03) (16.44) (18.72) (18.38) (15.68) (1.33)

IVOL 39.53 31.74 28.24 26.37 24.93 24.69 24.89 26.22 29.07 35.21 -4.32
(18.06) (13.67) (10.23) (10.25) (9.40) (9.46) (9.82) (10.76) (13.13) (12.95) (-7.30)

Beta 1.20 1.12 1.05 1.02 1.01 1.01 1.03 1.04 1.07 1.16 -0.04
(53.61) (79.84) (132.19) (86.01) (69.39) (59.49) (72.21) (102.76) (102.44) (55.50) (-2.04)

RSI 6.19 3.97 2.99 2.52 2.22 2.09 2.19 2.47 3.14 4.28 -1.90
(19.54) (30.61) (46.87) (39.76) (35.74) (22.78) (19.30) (21.57) (32.74) (29.84) (-8.41)

ESF 0.57 0.43 0.35 0.30 0.27 0.25 0.26 0.29 0.36 0.47 -0.11
(13.46) (8.30) (8.82) (8.37) (6.80) (8.83) (9.00) (8.96) (9.20) (9.08) (-6.52)

B/M 0.53 0.47 0.44 0.43 0.41 0.40 0.40 0.42 0.44 0.48 -0.05
(13.32) (19.51) (22.86) (19.74) (13.87) (13.75) (13.49) (13.55) (16.70) (16.02) (-4.30)

N 134.93 135.02 134.89 135.06 134.69 135.25 134.94 135.00 134.91 135.05 —
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Table 5. Performance of CFER-sorted portfolios: Bivariate dependent sorts
controlling for relative bid-ask spread or SIZE

Entries in Panel A report the result of the bivariate dependent sort, where we first sort stocks based

on the relative bid-ask spread (BAS), and then within each group of the BAS level, we further sort

stocks into quintile portfolios by the AVE-CM CFER criterion. Rows correspond to the level of the first

sorting variable, BAS, and the first to the fifth columns correspond to the level of the second sorting

variable,AVE-CM CFER. Sixth to the last columns report the average returns, Fama and French (2015)

five-factor alpha, and the average CFER, respectively, of the spread portfolio (the highest CFER portfolio

minus the lowest CFER portfolio). Entries in Panel B report the result, where we use SIZE (the log

of market equity) as the first sorting variable instead of BAS. The estimation period spans January

1996 to April 2016 (244 months). t-statistics are adjusted for heteroscedasticity and autocorrelation

(HAC-adjusted t-stat). The unit of the average returns and alphas (average CFER) is % per month (per

30-days).

Ave. returns of Ave. αFFC Ave.
AVE-CM CFER-sorted portfolios return CFER

1 (lowest) 2 3 4 5 (highest) Spread portfolio (5-1)
Panel A: Relative bid-ask spread-sorted dependent bivariate sort

BAS 1 0.11 0.63 0.65 0.76 0.84 0.74 0.86 0.75
(narrowest) (0.25) (1.65) (1.54) (1.75) (2.19) (3.47) (3.29) (13.71)
BAS 2 0.31 0.48 0.81 0.70 1.09 0.78 0.69 1.05

(0.72) (1.24) (2.37) (1.78) (2.59) (3.31) (2.96) (10.63)
BAS 3 0.41 0.59 0.98 0.93 1.30 0.89 0.93 1.34

(1.01) (1.52) (2.56) (2.26) (3.03) (3.26) (3.22) (12.30)
BAS 4 0.14 0.70 0.68 0.85 1.48 1.33 1.48 1.70

(0.30) (1.56) (1.69) (2.06) (3.22) (4.60) (4.62) (14.90)
BAS 5 -0.42 0.28 0.85 0.78 1.53 1.95 1.94 2.64
(widest) (-0.72) (0.57) (1.79) (1.64) (3.29) (5.54) (5.90) (14.59)

Panel B: Size-sorted dependent bivariate sort
SIZE 1 -0.62 0.48 0.72 0.96 1.22 1.84 1.79 3.18
(smallest) (-1.00) (0.85) (1.31) (1.63) (2.06) (6.54) (6.39) (16.56)
SIZE 2 0.16 0.86 0.85 0.94 1.28 1.12 1.12 1.95

(0.30) (1.70) (1.84) (2.02) (2.53) (4.94) (4.94) (14.13)
SIZE 3 0.30 0.78 0.86 0.96 1.26 0.96 1.04 1.46

(0.66) (1.83) (2.06) (2.33) (3.07) (4.82) (4.86) (15.77)
SIZE 4 0.70 0.76 0.99 1.20 1.21 0.51 0.57 1.01

(1.72) (1.98) (2.77) (3.35) (3.27) (3.01) (3.14) (12.43)
SIZE 5 0.33 0.69 0.78 0.88 0.94 0.61 0.67 0.65
(largest) (1.03) (2.52) (2.48) (2.96) (2.89) (3.50) (3.65) (12.64)
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Table 6. CFER and firms’ and stocks’ characteristics: Fama-MacBeth regres-
sions

Entries in Panel A report the results from Fama and MacBeth (1973) regressions of AVE-CM CFER on

SIZE (log of market equity), relative bid-ask spread (BAS), idiosyncratic volatility (IVOL), Amihud’s

(2002) illiquidity measure, and relative short interest (RSI), where we use positive CFER subsamples.

Entries in Panel B report the results, where we use negative CFER subsamples. Even though the

intercept is included in the regressions, we do not report them due to space limitations. The time-

series averages of the estimated coefficients of the cross-sectional regressions are reported. t-statistics

are adjusted for heteroscedasticity and autocorrelation and reported in the parentheses. The time-series

averages of adjusted R2 and the number of observations N employed in the cross-sectional regressions

are reported in the last two rows of each Panel. The data period spans January 1996 to April 2016 (244

months).

(1) (2) (3) (4) (5) (6)
Panel A: Positive CFER subsample

SIZE -0.11 -0.06
(-14.46) (-14.92)

BAS 1.22 0.55
(4.52) (6.24)

IVOL 0.78 0.19
(15.13) (3.65)

Amihud 17.94 1.38
(6.98) (0.67)

RSI 0.85 -0.44
(9.96) (-5.04)

adj. R2 14.3% 10.2% 9.0% 10.3% 0.7% 16.7%
N 579.6 554.5 565.2 565.7 495.6 451.0

Panel B: Negative CFER subsample
SIZE 0.15 0.05

(15.49) (9.72)
BAS -1.57 -0.92

(-4.08) (-4.48)
IVOL -1.10 -0.32

(-12.79) (-7.11)
Amihud -20.68 -6.13

(-6.97) (-4.26)
RSI -1.57 -0.31

(-14.17) (-4.63)
adj. R2 14.8% 12.6% 12.5% 10.5% 2.8% 19.0%
N 718.5 672.7 694.9 695.2 595.0 528.5
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Table 7. Robustness tests: (i) Comparison of methods to estimate CFER, (ii)
Removing extreme CFER values

Entries in Panel A report the average return and Carhart (1997) four-factor model alpha of the spread

portfolio of CFER-sorted value-weighted decile portfolios, where each column uses one of four estimation

methods of CFER. The first row denotes the method of choosing strikes (AVE: taking average across

available strikes, ATM: choosing the strike closest to the forward price) and the second row denotes

the method of choosing maturities (CM: interpolating traded maturities to construct 30-day constant

maturity CFER, CLS: choosing the traded maturity closest to 30 days). Entries in Panel B report the

average return and Carhart (1997) four-factor model alpha of the spread portfolio of AVE-CM CFER-

sorted value-weighted portfolios. The first column shows the result, where we truncate AVE-CM CFER

values at a 1% level, that is, we remove CFER samples below 1st percentile point or above 99th percentile

point. The second column reports the result of the modified spread, where we long the second highest

CFER portfolio (portfolio 9) and short the second lowest CFER portfolio (portfolio 2). The third column

reports the quintile portfolio sort results, and the last column reports the modified spread of the quintile

portfolios, where we long the second highest CFER portfolio (portfolio 4) and short the second lowest

CFER portfolio (portfolio 2). The estimation period spans January 1996 to April 2016 (244 months).

t-statistics are adjusted for heteroscedasticity and autocorrelation (HAC-adjusted t-stat). The unit of

the mean returns and alphas are % per month.

Panel A: Comparison between four estimation methods of CFER
Strike AVE ATM
Maturity CM CLS CM CLS

Value-weighted decile spread portfolio
Average return 1.64 1.56 1.49 1.38

(5.77) (5.44) (5.33) (4.89)
αFFC 1.86 1.77 1.60 1.51

(6.56) (6.20) (5.55) (5.33)
Equally-weighted decile spread portfolio

Average return 1.73 1.56 1.67 1.54
(9.10) (8.92) (9.15) (8.95)

αFFC 1.81 1.65 1.75 1.62
(9.42) (9.18) (9.12) (9.21)

Panel B: Mitigating effect of extreme CFER samples
Truncated decile sort (VW) Quintile sort (VW)
Spread (10-1) Spread (9-2) Spread (5-1) Spread (4-2)

Average return 1.43 0.92 1.11 0.43
(6.08) (4.19) (5.59) (3.37)

αFFC 1.65 0.93 1.29 0.43
(7.05) (3.77) (5.65) (3.27)
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Table 8. Bivariate dependent sort on CFER: Controlling for previous month
return

Entries report the result of the bivariate dependent sort, where we first sort stocks based on the previous

month return, Rt−1,t, and then within each group of the bid-ask spread level, we further sort stocks into

quintile portfolios by the AVE-CM CFER criterion. Rows correspond to the level of the first sorting

variable, the previous month return Rt−1,t, and the first to the fifth columns correspond to the level

of the second sorting variable, AVE-CM CFER. The sixth to last columns report the average return,

αFFC , and the average CFER of the CFER-sorted spread portfolios, respectively. All returns are value-

weighted returns. The estimation period spans January 1996 to April 2016 (244 months). t-statistics are

adjusted for heteroscedasticity and autocorrelation (HAC-adjusted t-stat). The unit of the mean returns

and alphas are % per month.

Ave. returns of Ave. αFFC Ave.
AVE-CM CFER-sorted portfolios return CFER

1 (lowest) 2 3 4 5 (highest) Spread portfolio (5-1)
Rt,−1,t 1 -0.51 0.34 1.15 0.44 1.28 1.79 2.02 1.72
(lowest) (-0.78) (0.65) (2.45) (0.86) (1.99) (4.87) (5.02) (13.33)
Rt,−1,t 2 0.50 0.76 1.04 1.04 1.30 0.80 0.90 1.24

(1.10) (2.23) (2.79) (2.98) (3.51) (2.83) (2.83) (13.69)
Rt,−1,t 3 0.31 0.35 0.78 1.16 1.44 1.14 1.22 1.12

(0.82) (1.06) (2.44) (3.71) (3.96) (4.39) (4.40) (14.42)
Rt,−1,t 4 0.58 0.51 0.81 0.76 0.97 0.39 0.52 1.11

(1.53) (1.68) (2.59) (2.33) (2.75) (1.44) (1.83) (15.30)
Rt,−1,t 5 0.00 0.41 0.58 0.93 0.85 0.85 0.96 1.52
(highest) (-0.00) (0.93) (1.51) (2.21) (2.04) (2.88) (3.15) (18.81)
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Table 9. Robustness tests: Non-synchronicity, Low stock price level, and NYSE breakpoint

Entries in Panel A report the average return and Carhart (1997) four-factor model alpha of the spread portfolio of AVE-CM CFER-sorted value-weighted

decile portfolios, where the returns are calculated as the open-to-close return. The open-to-close return is the return from the open price on the first

trading date after the portfolio formation in month-t to the close price of the end of month-t+ 1. Entries in Panel B report the average return and αFFC

of the AVE-CM CFER-sorted value-weighted decile portfolios, where we discard stocks whose price level is below $10. Entries in Panel C report the the

average return and αFFC of the AVE-CM CFER-sorted value-weighted decile portfolios, where we calculate decile portfolios’ breakpoints based on NYSE

stocks only. The estimation period spans January 1996 to April 2016 (244 months). t-statistics are adjusted for heteroscedasticity and autocorrelation

(HAC-adjusted t-stat). The unit of the mean returns and alphas are % per month.

AVE-CM CFER-sorted value-weighted decile portfolios Spread
1 (Lowest) 2 3 4 5 6 7 8 9 10 (Highest) 10-1

Panel A: Open-to-close return (non-synchronicity)
Ave. return -0.21 0.22 0.52 0.48 0.77 0.87 0.97 0.90 1.13 1.39 1.60

(-0.43) (0.57) (1.52) (1.59) (2.51) (2.77) (3.16) (2.66) (3.12) (3.21) (5.58)
αFFC -1.14 -0.63 -0.28 -0.25 -0.01 0.10 0.23 0.16 0.42 0.69 1.83

(-6.73) (-3.80) (-2.42) (-2.41) (-0.14) (0.99) (2.27) (1.30) (2.40) (3.20) (6.40)
Panel B: Eliminating stocks whose price is below $10

Ave. return -0.09 0.28 0.49 0.52 0.79 0.91 0.89 0.98 1.05 1.26 1.35
(-0.18) (0.79) (1.49) (1.75) (2.62) (2.82) (2.99) (2.95) (3.00) (3.23) (5.79)

αFFC -1.03 -0.51 -0.29 -0.20 0.01 0.10 0.17 0.23 0.35 0.55 1.57
(-5.07) (-3.27) (-2.92) (-2.03) (0.07) (0.99) (1.68) (2.15) (2.18) (3.15) (5.96)

N 122.0 122.2 122.1 122.2 121.8 122.3 122.1 122.2 122.1 122.1 —
Panel C: NYSE breakpoints

Ave. return -0.02 0.48 0.51 0.60 0.80 0.90 0.88 1.11 0.93 1.33 1.35
(-0.04) (1.38) (1.51) (2.01) (2.58) (2.79) (2.96) (3.48) (2.66) (3.26) (5.33)

αFFC -0.95 -0.34 -0.27 -0.13 0.00 0.10 0.16 0.36 0.18 0.63 1.58
(-4.92) (-2.56) (-2.28) (-1.19) (-0.04) (0.99) (1.45) (3.26) (1.45) (3.25) (5.85)

N 182.0 136.6 124.0 118.7 115.3 115.3 117.3 122.1 134.0 181.1 —
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Table 10. Robustness test: Sub-sample analysis

Entries in Panels A and B report the average return and Carhart (1997) four-factor model alpha of the spread portfolio of AVE-CM CFER-sorted value-

weighted decile portfolios over January 1996 to December 2006 and January 2007 to April 2016, respectively. t-statistics adjusted for heteroscedasticity

and autocorrelation and reported in the parentheses. The unit of all variables is % per month.

AVE-CM CFER-sorted value-weighted decile portfolios Spread
1 (Lowest) 2 3 4 5 6 7 8 9 10 (Highest) 10-1

Panel A: Sub-sample, January 1996–December 2006
Average return -0.19 0.30 0.57 0.49 0.89 0.99 1.13 0.82 1.42 1.76 1.95

(-0.31) (0.60) (1.33) (1.19) (2.25) (2.41) (2.77) (1.90) (2.79) (3.04) (5.02)
αFFC -1.20 -0.71 -0.36 -0.33 -0.02 0.16 0.33 -0.02 0.74 1.20 2.41

(-5.48) (-2.96) (-1.87) (-2.18) (-0.12) (1.07) (1.99) (-0.12) (2.54) (3.84) (6.38)
Panel B: Sub-sample, January 2007–April 2016

Average return -0.17 0.15 0.51 0.50 0.66 0.77 0.81 1.03 0.84 1.10 1.27
(-0.21) (0.24) (0.94) (1.07) (1.38) (1.57) (1.72) (1.97) (1.59) (1.69) (3.24)

αFFC -0.87 -0.49 -0.16 -0.10 -0.01 0.09 0.14 0.34 0.18 0.35 1.22
(-3.36) (-2.03) (-0.99) (-0.78) (-0.05) (0.97) (1.16) (2.44) (1.07) (1.56) (3.12)
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Table 11. Predictive power of CFER: Fama-MacBeth regressions

Entries report the results from Fama and MacBeth (1973) regressions of stock returns on AVE-CM
CFER, market beta, SIZE (log of market equity), log of book-to-market (B/M), Momentum (Rt−12,t−1),
previous month return Rt−1,t, idiosyncratic volatility (IVOL), profitability (operational profit to book
equity), investment (asset growth rate), Amihud’s (2002) illiquidity measure, relative bid-ask spread
(BAS) and turnover rate. See Appendix B for detailed definition of these variables. The time-series
averages of the estimated coefficients of the cross-sectional regressions are reported. t-statistics are
adjusted for heteroscedasticity and autocorrelation and reported in the parentheses. The time-series
averages of adjusted R2 and the observation number N of cross-sectional regressions are reported in
the last two rows. Columns (1), (2), (3) report the results using all samples from January 1996 to
April 2016. Columns (4) and (5) report the results using only NYSE/Amex and NASDAQ stocks,
respectively. Columns(6) and (7) report the results using only the observations with non-negative and
negative AVE-CM CFER, respectively. Columns (8) and (9) report the results using only the observation
over 1996-2006 and 2007-2016, respectively.

All sample NYSE/ CFER CFER 1996– 2007–
Amex NASDAQ ≥ 0 < 0 2006 2016

(1) (2) (3) (4) (5) (6) (7) (8) (9)
CFER 0.62 0.39 0.40 0.53 0.31 0.46 0.46 0.41 0.38

(7.78) (5.60) (5.60) (4.12) (3.23) (2.78) (4.01) (4.14) (3.70)
Beta -0.03 -0.02 -0.02 -0.06 0.19 -0.01 0.19 -0.26

(-0.12) (-0.07) (-0.08) (-0.20) (0.63) (-0.03) (0.48) (-0.64)
SIZE -0.11 -0.12 -0.14 0.01 -0.06 -0.11 -0.12 -0.12

(-1.92) (-1.95) (-2.22) (0.12) (-0.88) (-1.78) (-1.23) (-1.71)
log(BM) 0.11 0.11 0.11 0.15 0.14 0.08 0.32 -0.13

(1.12) (1.14) (1.28) (1.36) (1.24) (0.85) (2.29) (-1.19)
Rt−12,t−1 -0.02 -0.01 0.09 -0.11 -0.05 -0.04 0.24 -0.31

(-0.05) (-0.03) (0.22) (-0.38) (-0.14) (-0.10) (0.77) (-0.47)
Rt−1,t -1.12 -1.26 -0.53 -1.78 -1.55 -0.88 -2.50 0.21

(-1.58) (-1.81) (-0.64) (-2.47) (-1.91) (-1.18) (-2.91) (0.20)
IVOL -0.01 0.00 -0.02 0.01 0.00 0.00 0.00 -0.01

(-1.47) (-0.51) (-2.07) (0.87) (-0.27) (-0.75) (0.16) (-1.10)
Profitability 0.27 0.28 0.22 0.27 0.37 0.42 0.53 0.00

(2.07) (1.92) (1.73) (0.88) (2.00) (2.35) (2.12) (-0.00)
Investment -0.33 -0.33 -0.46 -0.25 -0.39 -0.28 -0.34 -0.32

(-3.76) (-3.64) (-2.98) (-2.48) (-2.64) (-2.60) (-3.24) (-2.01)
Amihud -14.62 -2.51 0.92 -34.98 -17.24 -2.77 -28.59

(-2.43) (-0.09) (0.12) (-2.06) (-1.08) (-0.45) (-2.68)
BAS 0.44 0.47 -0.66 0.52 0.70 0.10 0.84

(0.62) (0.53) (-0.66) (0.44) (0.71) (0.16) (0.62)
Turnover -0.12 0.18 -0.26 -0.36 -0.08 -0.11 -0.14

(-0.72) (0.86) (-0.94) (-1.82) (-0.48) (-0.37) (-1.27)
Intercept 0.88 2.84 2.92 3.32 1.09 2.17 2.72 3.05 2.76

(2.17) (3.03) (2.83) (3.00) (0.52) (1.85) (2.56) (1.84) (2.29)
Ave. adj. R2 0.2% 9.0% 9.2% 10.7% 7.6% 10.1% 9.9% 10.4% 7.8%
Ave. N 1322.7 1008.5 940.2 548.9 401.7 430.3 513.7 775.7 1134.0
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Table 12. Predictive power of CFER, IVS, and DOTS

Entries report the average return and five risk-adjusted returns with respect to the CAPM, Fama and

French (1993) three-factor model, Carhart (1997) four-factor model, Fama and French (2015) five-factor

model, and Stambaugh and Yuan (2017) mispricing-factor model of the spread portfolio of AVE-CM

CFER-sorted value-weighted decile portfolios, IVS-sorted value-weighted decile portfolios, and DOTS-

sorted value-weighted decile portfolios. The analysis spans January 1996 to April 2016 (244 months).

t-statistics are adjusted for heteroscedasticity and autocorrelation and reported in parentheses. The unit

of all variables is % per month.

Average return αCAPM αFF3 αFFC αFF5 αSY

CFER-sorted 1.64 1.70 1.78 1.86 1.58 1.70
(5.77) (5.91) (6.36) (6.56) (5.63) (5.21)

IVS-sorted 1.17 1.23 1.30 1.38 1.14 1.25
(4.90) (4.76) (4.94) (5.24) (4.64) (4.25)

DOTS-sorted 1.45 1.42 1.46 1.47 1.31 1.28
(5.61) (4.93) (4.99) (4.98) (4.70) (4.19)
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Table A.1. Portfolio sort results based on the fully-estimated CFER: the
embedded leverage model and the margin constraints model

Entries report the average return and the five risk-adjusted returns (α’s) with respect to the CAPM,

Fama and French (1993) three-factor model, Carhart (1997) four-factor model, Fama and French (2015)

five-factor model, and Stambaugh and Yuan (2017) mispricing-factor model, of the spread portfolio of

the CFER-sorted value-weighted decile portfolios. The first two rows reports the results based on the

baseline AVE-CM CFER, which ignores Ut for the sake of expediting the comparison. Panel A shows

the results based on the fully-estimated CFER, where Ut is estimated based on the embedded leverage

model. Panel B shows the results based on the fully-estimated CFER, where Ut is estimated based on the

margin constraints model. For the margin constraints model, we consider nine alternative fully-estimated

AVE-CM CFER. Each one of the nine alternative CFER is characterized by the assumption on R0
t,+1λ

mc
t

and the assumption on the reference point of the option expensiveness s, which determines the value

of Et(K). The analysis spans January 1996 to April 2016 (244 months). t-statistics are adjusted for

heteroscedasticity and autocorrelation and reported in the parentheses. Figures in the square brackets

show the t-statistics of the difference between the baseline result and each one of the fully-estimated

CFER-sorted results. The unit of all variables is % per 30 days.

Ave. Ret αCAPM αFF3 αFFC αFF5 αSY

Panel A: Embedded leverage model

Baseline result 1.64 1.70 1.78 1.86 1.58 1.70
(5.77) (5.91) (6.36) (6.56) (5.63) (5.21)

Fully-estimated 1.54 1.61 1.66 1.75 1.41 1.56
(6.22) (6.37) (6.30) (6.71) (5.98) (5.63)
[-0.60] [-0.53] [-0.74] [-0.66] [-0.95] [-0.76]

Panel B: Margin constraints model

R0
t,t+1ψ = s = 0.00 1.58 1.64 1.75 1.83 1.49 1.63

10% per year (5.28) (5.30) (5.95) (6.16) (5.45) (4.84)
[-0.56] [-0.50] [-0.27] [-0.23] [-0.72] [-0.42]

s = 0.01 1.61 1.66 1.77 1.85 1.50 1.65
(5.42) (5.36) (5.99) (6.25) (5.56) (4.94)
[-0.25] [-0.31] [-0.11] [-0.08] [-0.55] [-0.26]

s = 0.02 1.73 1.79 1.89 1.97 1.65 1.78
(5.58) (5.49) (6.03) (6.35) (5.66) (5.07)
[0.82] [0.73] [0.84] [0.68] [0.45] [0.42]

R0
t,t+1ψ = s = 0.00 1.57 1.63 1.71 1.76 1.49 1.56

5% per year (5.46) (5.55) (6.14) (6.09) (5.54) (5.12)
[-0.94] [-0.99] [-0.91] [-1.03] [-0.98] [-1.12]

s = 0.01 1.63 1.69 1.79 1.85 1.53 1.65
(5.52) (5.42) (5.97) (6.28) (5.46) (4.95)
[-0.10] [-0.12] [0.07] [-0.04] [-0.44] [-0.30]

s = 0.02 1.69 1.76 1.86 1.93 1.62 1.76
(5.54) (5.61) (6.15) (6.43) (5.63) (5.20)
[0.55] [0.59] [0.72] [0.49] [0.27] [0.34]

R0
t,t+1ψ = s = 0.00 1.60 1.66 1.74 1.78 1.49 1.56

Time-varying (5.50) (5.65) (6.20) (6.18) (5.42) (5.09)
[-0.64] [-0.69] [-0.70] [-0.86] [-1.06] [-1.14]

s = 0.01 1.60 1.66 1.74 1.78 1.50 1.57
(5.54) (5.70) (6.24) (6.19) (5.46) (5.15)
[-0.58] [-0.63] [-0.65] [-0.87] [-0.96] [-1.09]

s = 0.02 1.64 1.71 1.79 1.82 1.55 1.62
(5.59) (5.74) (6.24) (6.16) (5.55) (5.20)
[0.10] [0.10] [0.10] [-0.42] [-0.39] [-0.64]
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