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Measuring the origins of macroeconomic uncertainty

Haroon Mumtaz∗

August 15, 2018

Abstract

This paper extends the procedure developed by Jurado et al. (2015) to allow the estimation of mea-

sures of uncertainty that can be attributed to specific structural shocks. This enables researchers to

investigate the ‘origin’of a change in overall macroeconomic uncertainty. To demonstrate the proposed

method we consider two applications. First, we estimate UK macroeconomic uncertainty due to external

shocks and show that this component has become increasingly important over time for overall uncertainty.

Second, we estimate US macroeconomic uncertainty conditioned on monetary policy shocks with the re-

sults suggesting that while policy uncertainty was important during early 1980s, recent contributions are

estimated to be modest.

Key words: FAVAR, Stochastic volatility, Proxy VAR, Uncertainty measurement.

JEL codes: C2,C11, E3

1 Introduction

One of the key aims of the growing literature on uncertainty has been to provide a general method of

measuring this variable at the macroeconomic level. Measurement of uncertainty is of paramount importance

for policy makers in order to ensure an effective policy reaction. For researchers, a reliable measure of

uncertainty can aid in the investigation of the effects of uncertainty shocks.

For these reasons, a number of papers have proposed methods to construct indices of uncertainty. A

prominent contribution in this literature is by Jurado et al. (2015) who devise a procedure to estimate a
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1



measure of macroeconomic uncertainty. They define this object as a weighted average of the forecast error

variance (FEV) of large number of macroeconomic and financial data series where the FEV is obtained

using factor augmented VARs (FAVARs) that allow for time-varying residual volatility. Jurado et al. (2015)

argue that their method is distinct from other proposals as it explicitly removes the forecastable component

from each series and constructs a macro measure by averaging the FEV across a large cross-section of data

covering various sectors.1

In this paper we propose an extension of Jurado et al. (2015) procedure which allows the estimation of

macroeconomic uncertainty that is due to an identified structural shock. In other words, by considering

the contribution of shocks of interest to the FEV of each series rather than the total FEV, we isolate a

measure of uncertainty originating from this shock. A comparison of this measure with the estimate of total

macroeconomic uncertainty can then provide an indication of the importance of uncertainty associated with

the shock of interest.

The shock-specific measures of macroeconomic uncertainty delivered by our procedure can be useful for

the purposes of policy as they provide an indication of the source of uncertainty. For example, in the case of

a small open economy like the United Kingdom, the proposed method can be used to estimate uncertainty

associated with external shocks. Similarly, a measure of uncertainty associated with financial shocks may

be useful in the case of an economy with a large financial sector. By identifying shocks to policy, the role of

policy uncertainty can be investigated.

This procedure is related to papers such as Mumtaz and Zanetti (2013), JO (2014), Mumtaz and Surico

(n.d.) that estimate the dynamic impact of innovations to the stochastic volatility of an identified shock.

However, these papers employ small scale VARs, while the use of larger data sets in our procedure allows

the interpretation of the estimated measure at a macroeconomic level. Similarly, while Berger et al. (2014),

Mumtaz and Theodoridis (2017) and Mumtaz and Musso (2018) decompose uncertainty into components

that are common across countries or regions, our analysis focuses on the origins of uncertainty in terms of

structural shocks.

We show two applications of the proposed method in the empirical analysis below. First we estimate a

1Scotti (2016) also proposes an index built using forecast errors. However, the focus of the index on real activity measures.
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measure of UK macroeconomic uncertainty that is associated with external or foreign shocks. As a proportion

of total UK macroeconomic uncertainty, ‘foreign shock’uncertainty has become increasingly important over

time reaching its peak during the financial crisis of 2007. Second, we use the US data set employed by

Jurado et al. (2015) and estimate uncertainty due to monetary policy. The estimates suggest that monetary

policy uncertainty was extremely important during the early 1980s. However, over the remaining sample,

uncertainty due to this shock has only played a modest role.

The paper is organised as follows: Section 2 describes the proposed method for estimating uncertainty.

Two empirical examples are shown in section 3 while section 4 concludes.

2 Empirical method

2.1 The Jurado et al. (2015) method to measure uncertainty

Before describing the extension proposed in this paper, it is instructive to consider the procedure in Ju-

rado et al. (2015). Jurado et al. (2015) consider a panel of M economic and financial time series yt =

{y1,t, y2,t, .., yM,t}. The uncertainty associated with ith series at horizon k is defined as the conditional

volatility of its unforecastable component:

Ui,t (k) =

√
E
[
(yi,t+k − E (yi,t+k|It))2 |It

]
(1)

where It denotes information available to agents at time t. The measure of macroeconomic uncertainty is

then constructed by taking a (weighted) average of Ui,t (k) across the M series. To construct the forecast

E (yi,t+h|It), Jurado et al. (2015) use a factor augmented forecasting regression with stochastic volatility:

yi,t = ci +

P∑
p=1

ρi,pyi,t−p +

Q∑
q=1

bi,qZt−q + σi,tei,t, ei,t˜N(0, 1) (2)

where Zt denotes a set of regressors that includes common factors Ft and any additional relevant predictors

zt. The common factors are estimated as principal components (PC) from a large panel of data Xt = [yt, xt]

where xt is an additional set of series that is thought to provide useful information in constructing the
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forecast. Jurado et al. (2015) assume that each column of Zt = {Z1,t, Z2,t, .., ZK,t} follows an AR process

with stochastic volatility:

Zt = C +

H∑
l=1

dlZt−l + htvt, vt˜N(0, 1) (3)

where C = [C1, .., CK ]′, dl = diag ([d1,l, .., dK,l]) and ht = diag ([h1,t, .., hK,t]) . Note that the log of the

volatilities ln (σi,t)
2 and ln (hj,t)

2 are described by AR(1) processes:

ln (σi,t)
2

= αi + δi ln (σi,t−1)
2

+ τ iεi,t (4)

ln (hj,t)
2

= α̃j + δ̃j ln (hj,t−1)
2

+ τ̃ jεj,t (5)

for j = 1, 2, ..,K. In order to construct the FEV, Jurado et al. (2015) write equations 2 and 3 as a FAVAR

model with stochastic volatility:

 yi,t

Zt

 =

 ci

C

+

 ρ(L) b (L)

0 d (L)


 yi,t

Zt

+

 σi,tei,t

htvt

 (6)

where ρ(L), b (L) are lag polynomials of order P,Q, d (L) denotes the matrix diag ([d1(L), .., dK(L)]) with

dj(L) representing a lag polynomal of order H. Note that, the error terms in equation 6 are heteroscedastic

but contemporaneously uncorrelated. Let Yi,t denote
(
yi,t Zt yi,t−1 Zt−1 . . yi,t−P̃+1 Zt−P̃+1

)′
with P̃ = max(P,Q,H). Then, in companion form, this FAVAR can be represented as:

Yi,t = ΦiYi,t−1 + Vi,t (7)

where Φ is a function of the lag polynomialsρ(L), b (L) and d (L) and E
(
Vi,tV

′
i,t

)
= Qi,t = diag

([
σ2i,t, h

2
t , 01×((K+1)×(P̃−1))

])
.

The k-period ahead forecast from the FAVAR is thus given by:

Et (Yi,t+k) = Φki Yi,t (8)
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The FEV is defined as Ωi (k) = Et
[
(Yi,t+k − Et (Yi,t+k)) (Yi,t+k − Et (Yi,t+k))

′] and evolves as the recursion:
Ωi (1) = Qi,t+1 (9)

Ωi (k) = ΦiΩi (k − 1) Φ′i +Qi,t+k

Equation 9 requires an estimate of Qi,t over the forecast horizon. Given that the stochastic volatilities

ln (σi,t)
2 and ln (hj,t)

2 follow an AR(1) process, analytical expressions for E (σi,t+k)
2 and E (hj,t+k)

2 can be

easily derived making recursion 9 operational.2 The uncertainty measure for the ith series at horizon k is

the square root of the diagonal element in Ωi (k) corresponding to yi,t. As noted above, the macroeconomic

uncertainty measure is constructed as a weighted average of the series specific uncertainty estimates.

2.2 The proposed method to measure uncertainty conditional on a shock

We modify this procedure to allow the estimation of the FEV in equation 9 conditional on an identified

shock. To that end, we start from a FAVAR with stochastic volatility:

 yi,t

Zt

 =

 ci

C

+

 ρ̃(L) b̃ (L)

d̃ (L) d̄ (L)


 yi,t

Zt

+A−1

 σi,t 0

0 ht


 ei,t

vt

 (10)

where ρ̃(L), b̃ (L) , d̃ (L) and d̄ (L) denote lag polynomials of order P , A is a lower triangular matrix and

Et =

 ei,t

vt

 ˜N(0, I). Denoting the residuals of the FAVAR by Ut, it is easy to see that cov (Ut) = Σt =

A−1

 σi,t 0

0 ht

A−1′. This formulation for the error covariance Σt is used in most studies that employ

VARs with time-varying volatility (see for e.g. Cogley and Sargent (2005) for a prominent example). As we

explain below, we estimate the system in equation 10 using a Gibbs sampling algorithm.

From our perspective, the key feature of the specification is the ability to decompose Σt as Σt = A0,tA
′
0t.

The voluminous literature on structural VARs (SVARs) has led to numerous methods that can be used to

calculate the contemporaneous impact matrix A0,t in a manner that imparts an economic interpretation on

2For example, E
(
σi,t+k

)2
= exp

(
αi
∑k−1
s=0 (δi)

s +
τ2i
2

∑k−1
s=0 (δi)

2s + (δi)
k ln (σi,t)

2

)
. See Jurado et al. (2015) pp 1187.
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the orthogonal shocks Υt = A−10,tUt. For example, if the first column of A0,t satisfies the restriction that the

associated responses of output and inflation are negative and of the short-term interest rate are positive,

then one can interpret the first shock in Υt as a monetary policy shock. Similarly, as we show below, A0,t

can be calculated via external proxies for shocks of interest.

Denote the companion form of the FAVAR as:

Yi,t = ΦiYi,t−1 + Ṽi,t

E
(
Ṽi,tṼ

′
i,t

)
= Q̃it = blkdiag

[
Σt, 0(N×(P−1))×(N×(P−1))

]

where N = K + 1 denotes the number of endogenous variables. Note that, as before, E (σi,t+k)
2 and

E (hj,t+k)
2 can be calculated by exploiting the assumption that the volatilties follow AR(1) processes thus

allowing the calculation of Σt (and Q̃it) over the forecast horizon. The total FEV is then given by the

recursion:

Ωi (1) = Q̃i,t+1 (11)

Ωi (k) = ΦiΩi (k − 1) Φ′i + Q̃i,t+k

The estimated uncertainty associated with series i is the square root of its FEV:

Ui,t (k) =
√
e1Ωi (k)e′1 (12)

where e1 is a selection vector that extracts the FEV of yi,t. The measure of total macroeconomic uncertainty

can be calculated as a weighted average of Ui,t (k):

Ut(k) =

M∑
i=1

$iUi,t (k) (13)

where $i denote weights.
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Now suppose that interest centers on the uncertainty associated with the jth shock, i.e. the shock

identified by the jth column of A0,t (denoted by A
(j)
0,t). The FEV conditional on this shock can be calculated

using the recursion:

Ω
(j)
i (1) = Q̃

(j)
i,t+1 (14)

Ω
(j)
i (k) = ΦiΩ

(j)
i (k − 1) Φ′i + Q̃

(j)
i,t+k

where Q̃(j)i,t = blkdiag
[
A
(j)
0,tA

(j)′
0,t , 0((K+1)×(P−1))×((K+1)×(P−1))

]
and A0,t at a particular horizon is calculated

using the estimate of Σt at that horizon. In other words, this estimate of the FEV differs from the total

FEV in equations 9 and 11 only in that it uses the column of the A0,t matrix associated with the shock of

interest. The measure of uncertainty conditioned on the jth shock at horizon k is given by

U
(j)
i,t (k) =

√
e1Ω

(j)
i (k)e′1 (15)

In other words, U (j)i,t (k) measures the variance of the forecast error of series i driven by the jth shock. The

measure of macroeconomic uncertainty conditioned on shock j is then calculated as:

U
(j)
t (k) =

M∑
i=1

$iU
(j)
i,t (k) (16)

U
(j)
t (k) can be interpreted as a measure of uncertainty in the economy arising from shock j. A comparison

of U (j)t (k) and Ut(k) over time provides information on periods when uncertainty arising from a specific set

of shocks was of primary importance.

2.2.1 Estimation of the FAVAR with stochastic volatility

As our proposed method relies on a structural model, we depart from the estimation methodology of Jurado

et al. (2015) where the forecasting regression 2 and the predictor regression 3 are estimated seperately, with

the estimated residuals used to estimate the stochastic volatilities in an additional step. Instead, we follow

the literature on VARs with stochastic volatility and use a well known Gibbs algorithm to approximate
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the posterior distribution of the parameters of the model in equation 10. The algorithm is set out in

detail in the technical appendix and borrows heavily from the seminal contribution of Cogley and Sargent

(2005).3However, there are two features worth highlighting. First, we use a principal component estimator

to calculate the factors Ft before including them in the FAVAR. While, in principal, it is possible to treat

Ft as additional latent states this increases the computational burden substantially. The main reason for

this is that the FAVAR is estimated M times for each yi,t in the panel where M is typically large. Using a

PC estimate of Ft reduces computational time rendering the procedure practical for the applied researcher.

In addition, studies such as Bernanke et al. (2005) find that a two step approach whereby the factors are

estimated via PC performs well in a structural setting. Second, as the number of endogenous variables in

the FAVAR can be large, we use the computationally effi cient method developed in Clark et al. (2016) to

sample from the conditional posterior distribution of the VAR coeffi cients.

3 Empirical Results

In this section, we apply the proposed method to estimate uncertainty measures for the UK and the US. In

the former case, we estimate an uncertainty measure that is associated with foreign shocks. In the latter

case we consider macroeconomic uncertainty due to monetary policy shocks.

3.1 Foreign shocks and UK macroeconomic uncertainty

We first consider the role of foreign shocks in driving macroeconomic uncertainty in the UK. This question

is of crucial importance for a small open economy like the UK, especially in the light of the financial crisis

in 2007/2008.

To estimate uncertainty, we use the following FAVAR model

Yt = c+

P∑
p=1

BpYt−p +A−1Htet (17)

3The model in equation 10 is simpler than the VAR considered in Cogley and Sargent (2005) as it allows for stochastic
volatility but keeps the VAR coeffi cients fixed over time. Jurado et al. (2015) argue that the inclusion of factors in the model
alleviates the possible impact of structural breaks.

8



where Yt =


FFt

yi,t

FUKt

. F
F
t denote the NF ‘foreign’factors, i.e. principal components extracted from a data

set comprising macroeconomic and financial data from a set of OECD countries excluding the UK (described

below). Each series included for the UK is denoted by yi,t while FUKt is a set of NUK ‘UK factors’, i.e.

principal components extracted from the set of UK data series. As described above, the matrix A is lower

triangular while Ht is a diagonal matrix with stochastic volatilities on the main diagonal:

Ht =


HF
t 0 0

0 σi,t 0

0 0 HUK
t

 (18)

where HF
t =

[
hF1,t, .., h

F
NF ,t

]
are the time-varying standard deviations corresponding to the equations for FFt ,

σi,t is the standard deviation of the residuals to the equations to yi,t while HUK
t =

[
hUK1,t , .., h

UK
NF ,t

]
is the

standard deviations of the residuals to FUKt . The stochastic volatilities follow AR(1) processes:

ln
(
hFj,t
)2

= αj + δj ln
(
hFj,t−1

)2
+ τ jvj,t (19)

ln (σi,t)
2

= α̃i + δ̃i ln (σi,t−1)
2

+ τ̃ iṽi,t (20)

ln
(
hUKs,t

)2
= ᾱs + δ̄s ln

(
hUKs,t−1

)2
+ τ̄sv̄i,t (21)

for j = 1, .., NF , i = 1, .., N , s = 1, .., NUK and with vj,t, ṽi,t, v̄i,t˜N(0, 1).

3.1.1 Data

Our data set for this analysis comprises 22 OECD countries and is obtained from Mumtaz and Musso (2018).

The list of countries includes Germany, France, Italy, Spain, the Netherlands, Belgium, Austria, Finland,

Greece, Ireland, Portugal, Sweden, Denmark, Switzerland, Norway, US, Canada, Japan, South Korea and

the UK. As described in Mumtaz and Musso (2018), 20 series are included for each country comprising real

activity, inflation, labour market variables, asset prices, interest rates and money supply and series related
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to the trade position. The data is quarterly and runs from 1960Q1 to 2015Q4 with the first five years of data

used as a training sample to initialise the Gibbs sampling algorithm. Before estimation, all non-stationary

series are log-differenced.

3.1.2 Model specification and identification of foreign shocks

The foreign factors FFt are estimated via a PC estimator using the series for all countries except the UK.

Based on the Bai and Ng (2002) criteria, we set NF = 6. The UK factors are estimated using the N = 20

UK series yi,t with the Bai and Ng (2002) criteria suggesting that the number of factors NUK = 4. The lag

length in the FAVAR is set to 4.

In order to calculate the contemporaneous impact matrix A0,t we use a simple recursive scheme. Given

that UK is a small open economy, we order FFt before yi,t and FUKt , thus assuming that UK shocks have

no contemporaneous impact on common economic conditions in the rest of the OECD. We label the first 6

shocks as foreign shocks and interpret the FEV based on these shocks as a measure of uncertainty orginating

from abroad.

The FAVAR in equation 17 is estimated for each yi,t with i = 1, 2, .., 20 to obtain the total FEV Ui,t (k)

and the FEV conditional on the first 6 structural shocks, (i.e. the foreign disturbances) UFi,t (k). The measures

of macroeconomic uncertainty and macroeconomic uncertainty due to the foreign shocks are calculated as

cross-section averages of these variances. As shown in the technical appendix, similar results are obtained

using the first PC as the aggregate measure.
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Figure 1: Macroeconomic uncertainty in the UK due to foreign shocks. ‘ME WAR’denotes the Arab Israeli conflict while the sterling crisis of 1985
is denoted by ‘£ crisis’. The shaded areas denote recessions dates for the UK as indicated by the OECD.
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Figure 2: Macroeconomic uncertainty in the UK. ‘ME WAR’denotes the Arab Israeli conflict while the sterling crisis of 1985 is denoted by ‘£ crisis’.
The shaded areas denote recessions dates for the UK as indicated by the OECD.
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Figure 3: Contribution of foreign uncertainty. ‘ME WAR’denotes the Arab Israeli conflict while the sterling crisis of 1985 is denoted by ‘£ crisis’.
The shaded areas denote recessions dates for the UK as indicated by the OECD.
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3.1.3 Results

Figure 1 displays the estimated macroeconomic uncertainty, 4 quarters ahead, conditioned on the foriegn

shocks. Foreign uncertainty was high during the Arab Israeli conflict and then during the oil shocks at the

end of the 1970s. During the 1980s, this measure rose after the Sterling crisis in 1985 and remained elevated

up to 1988. There was an increase in foreign uncertainty during the ERM crisis in 1992 with the measure

rising again towards the end of this decade as the Asian financial crisis hit. The measure reached its peak

during the financial crisis of 2007 and 2008 indicating the importance of foreign shocks at this time.

Figure 2 shows the estimated measure of UK macroeconomic uncertainty. The profile of the uncertainty

measure is very similar to that reported in Theophilopoulou (2018). Unlike the measure conditioned only on

foreign shocks, total uncertainty was substantially higher during the 1970s and then displayed a downward

trend over the next two decades. As shown in Figure 3, this implies that the contribution of foreign uncer-

tainty to the total increased from an average of about 30% during the 1970s to an average of 40% to 45% in

the subsequent period. Events such as the second oil shock of the 1970s, the Sterling and the Asian crisis

and the September 11th terrorist attacks were associated with sharp rises in this contribution. However,

Figure 3 clearly shows that the largest increase in the contribution occurred during the financial crisis of

2007/2008.

3.2 Monetary Policy uncertainty in the US

In our second application, we consider the role of macroeconomic uncertainty in the US associated with

monetary policy shocks. The FAVAR model used to estimate uncertainty for each US series yi,t is given by:

Yt = c+

P∑
j=1

bjYt−j + et (22)

mt = cm + vt (23)

where Yt =


Rt

yi,t

Ft

. Rt is the policy interest rate while Ft denotes the factors extracted via PC from

the large US data set described below. Following Mertens and Ravn (2013) and Stock and Watson (2012)

14



our identification strategy uses an external instrument mt. The instrument for the monetary policy shock

satisfies the conditions:

cov (mt, ε1,t) = α (24)

cov (mt, ε·,t) = 0 (25)

In other words, the instrument is assumed to be correlated with the monetary policy shock ε1,t and uncor-

related with all remaining shocks ε·,t. As in Drautzburg (2016), the instrument is described by equation 23.

The error terms Ut =

 et

vt

 have the covariance matrix Ωt:

Ωt = A−1HtA
−1′ (26)

where A is a lower triangular matrix and Ht is a diagonal matrix:

Ht =

 h2t 0

0 σ2m

 (27)

The vector h2t contain the stochastic volatilities of the orthogonalised error terms of the FAVAR in

equation 22.

3.2.1 Identification of the monetary policy shock

The first column of the contemporaneous impact matrix, i.e. corresponding to the monetary policy shock

can be calculated by considering the following partition of Ωt:

Ωt =

 Ωee Ω′ev

Ωev Ωvv

 (28)

where Ωev = E

(mt − cm)︸ ︷︷ ︸
vt

et

 = cov (mtet).
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The contemporaneous impact matrix A0,t can be expressed as:

et = A
(1)
0,tε1,t +A

(·)
0,tε·,t (29)

where A(1)0,t =



A11,t

A21,t

.

AJ1,t


is the first column while A(·)0,tε·,t denotes the product of each of the remaining J

columns with the remaining J shocks, i.e. A0,t(·)ε·,t = A
(2)
0,tε2,t + A

(3)
0,tε3,t.. + A

(J)
0,t εJ,t. Given equation 29,

the covariance cov (mtet) can be written as:

E ((mt − cm) et) = E
[
vt

(
A
(1)
0,tε1,t +A

(·)
0,tε·,t

)]
(30)

Using the assumptions in equation 24 and 25 this equals:

cov (mtet) = A
(1)
0,tα

Therefore each element of the vector A(1)0,t =



A11,t

A21,t

.

AJ1,t


can be expressed as a function of the covariance of

mt with the residuals et and α: 

A11,t

A21,t

.

AJ1,t


=



cov(mt,e1,t)
α

cov(mt,e2,t)
α

.

cov(mt,eJ,t)
α


(31)

As α is unknown, this cannot be estimated directly. However, it is possible to estimate the relative impulse
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vector
A
(1)
0,t

A11,t
directly. In other words, the relative impulse vector

A
(1)
0,t

A11,t
is:


A21,t

A11,t

.

AJ1,t

A11,t

 =


cov(mt,e2,t)
cov(mt,e1,t)

.

cov(mt,eJ,t)
cov(mt,e1,t)

 (32)

As cov(mt, et) can be obtained at each point in time using the posterior estimate of Ωt, equation 32 provides

extra moment conditions to estimate the contemporaneous impact matrix at each point in time. In fact,

Mertens and Ravn (2013) show that a solution for A(1)0,t can be obtained by using the conditions in equation

32 along with the covariance restrictions A0,tA′0,t = cov (et).

With an estimate of A(1)0,t in hand, the FEV of yi,t conditioned on the monetary policy shock is obtained

by using the recursion in equation 14.

We follow Gertler and Karadi (2015) and use the 1 year government bond yield as the policy instrument

Rt. Our instrument for the monetary policy shock is the benchmark instrument in Gertler and Karadi

(2015), i.e. the change in the 3 month ahead Fed Funds futures. Gertler and Karadi (2015) provide evidence

supporting the strength of this instrument. Note that this instrument is only available after 1992 m1.

However, following Drautzburg (2016), the missing data for mt are treated as parameters and a step is

added in the Gibbs sampler to sample from its conditional posterior. The technical appendix describes the

estimation algorithm in detail.

3.2.2 Data and model specification

We use the monthly data set of Jurado et al. (2015) which spans the period 1960m1 to 2011m12 with the

first 60 observations used as a training sample to initialise the Gibbs sampling algorithm. As discussed in

Jurado et al. (2015), the data set consists of 132 macro series (yt = {y1,t, .., y132,t}) used to calculate the

uncertainty measures. These series include data on real activity, inflation, interest rates and asset prices.

However, to estimate the factors Ft Jurado et al. (2015) combine yt with an additional 146 financial time

series. The series are transformed to induce stationarity.

Based on the Bai and Ng (2002) criteria, we set the number of factors to 10. The lag length of the FAVAR
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in 22 is set to 12. The system in equations 22 and 23 is estimated for y1,t, .., y132,t and the posterior mean

estimate of the parameters and volatilties is used to estimate uncertainty measures U (j)i,t (k) and Ui,t (k) for

each series . The average across these 132 series specific uncertainty measures is used as the estimate of

uncertainty due to monetary policy and total macroeconomic uncertainty, respectively.
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Figure 4: Macroeconomic uncertainty 12 months ahead in the US due to monetary policy shocks. The shaded areas denote NBER recessions dates.
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Figure 5: Macroeconomic uncertainty 12 months ahead in the US. The shaded areas denote NBER recessions dates.
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Figure 6: Contribution of monetary policy uncertainty to macroeconomic uncertainty 12 months ahead in the US. The shaded areas denote NBER
recessions dates.
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3.2.3 Results

Figure 4 plots the estimate of US macroeconomic uncertainty 12 months ahead that originates from the

identified monetary policy shocks. During the mid-1970s, this measure of uncertainty peaked in the aftermath

of first oil price shock. The period of monetary targeting by the Fed during the chairmanship of the Paul

Volcker coincided with the largest increase in monetary uncertainty. Smaller increases in this measure can

be seen during the stock market crash of 1987 and after the September 11th terrorist attacks. Uncertainty

rose during the financial crisis before recording a decline after the introduction of quantitative easing.

Note that the estimated measure of macroeconomic uncertainty (shown in Figure 5) has a correlation of

0.95 with the original uncertainty index of Jurado et al. (2015). This is reassuring given that the specification

of our FAVAR and the estimation sample is different from the forecasting regressions in Jurado et al. (2015).

In Figure 6 we show the contribution of uncertainty due to monetary policy shocks to the total measure. On

average across the sample, the contribution is estimated at a modest 25 percent. However, during the 1970s,

the contribution exceeds this average a number of times, most noticeably during the Volcker experiment. It

is interesting to note that during the recent financial crisis, the contribution of monetary policy increased,

albeit by a modest amount.

4 Conclusions

This paper extends the methodology of Jurado et al. (2015) to allow the estimation of uncertainty that can

be traced back to an identified shock. The procedure may be useful if the objective of the researcher is to

investigate the factors behind a change in aggregate uncertainty measures. For example, information on the

origins of uncertainty may help in the formulation of appropriate policy measures.

To demonstrate this method we estimate UK macroeconomic uncertainty due to external shocks and US

macroeconomic uncertainty associated with monetary policy shocks. In future work, it may be interesting

to consider the role played by uncertainty in financial markets in bringing about changes in uncertainty at

the macroeconomic level.
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Abstract

Technical Appendix
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1 Gibbs Sampling algorithm

We define the algorithm for the general model with an equation for an instrument with missing data. Without

the instrument, the algorithm simplifies with steps 3 and 7 redundant.

The model is defined as:

Yt = c+

P∑
p=1

bpYt−p + et (1)

mt = cm + vt (2)

cov

 et

vt

 = Ωt (3)

Ωt = A−1HtA
−1′ (4)

Ht =

 h2t 0

0 σ2m

 (5)

ln
(
h2t
)

= a+ d ln
(
h2t−1

)
+ gεt (6)

∗Queen Mary College. Email: h.mumtaz@qmul.ac.uk
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Note that some of the data for the instrument mt may be missing. The missing data is denoted by m−t.

Note that the stochastic volatilties are in the vector ht = [h1,t, .., hJ−1,t] where equation 2 is indexed by J .

1.1 Priors

1. The priors for the VAR coeffi cients B = vec ([c, b1, .., bP ]) are set equation by equation. For the jth

equation the priors are normal P (Bj) ˜N(Bj,0,Σj,0) and set in the spirit of the Minnesota procedure

with coeffi cients on the lagged dependent variables shrunk towards an AR(1) model. The tightness of

the prior is set to a level that is standard for Bayesian VARs estimated for US data.

2. The prior for the intercept cm is assumed to be uninformative. The prior is normal: P (cm)˜N(c0, V0)

where c0 = 0 and V0 = 1000.

3. The prior for the non-zero, non-one elements of A is normal: P (αj) ˜N(αj,0,Wj,0) where αj denotes

the non-zero, non-one elements in the jth row of A. αj,0 is set equal to a vector of zeros and Wj,0 is a

diagonal matrix with diagonal elements equal to 1000.

4. The prior for σ2m is inverse Gamma: IG
(
σ20, t0

)
where σ20 = 0.01 and t0 = 1.

5. The prior for g2 is inverse Gamma: IG
(
g20 , t0

)
where g20 = 0.01 and t0 = 1.

6. The prior for δ = [a, d] is normal: N (δ0, Vδ) where δ0 =

 0

0.9

 , Vδ =

 1 0

0 0.1

 .

7. The prior for the initial condition for the volatility lnh0 is normal N(µ0, s0).µ0 is set equal to the

diagonal of variance covariance matrix obtained via OLS estimation of a VAR using a training sample

of T0 observations.

8. The initial conditions for the missing data m−t are assumed to be normal N (m0, vm) where m0 is a

vector of zeros and vm is an identity matrix.

1.2 Conditional Posteriors

The Gibbs sampling algorithm samples from the following conditional posterior distributions:

2



1. H
(
B̄|Ξ

)
where B̄ = [B, cm] and Ξ denotes all the remaining parameters. We use the algorithm of

Clark et al. (2016) to sample from the conditional posterior of the coeffi cients of each equation of the

system in 1 and 2. Given the lower triangular nature of A, the model can be written equation by

equation as:

Y1,t = c1 +

P∑
p=1

b1,pYt−p + h1,tE1,t

Y2,t − h1,tE1,tα′2 = c2 +

P∑
p=1

b2,pYt−p + h2,tE2,t

·

·

YJ−1,t − h1:J−2,tE1:J−2,tα′J−1 = cJ−1 +

P∑
p=1

bJ−1,pYt−p + hJ−1,tEJ−1,t

mt − h1:J−1,tE1:J−1,tα′J = cm + σmEJ,t

where Yj,t denotes the dependent variable of the jth equation of the VAR in equation 1. The orthogonal

residuals are denoted by Ej,t. h1:j,t and E1:j,t refer to the stochastic volatilities and orthogonal residuals

in equations 1 to j. Note that when dealing with each equation, the terms on the left hand side involving

hj,t and Ej,t are observed and therefore the dependent variable can be constructed. The residuals of

each equation are uncorrelated with the remaining residuals but are heteroscedastic. Denoting the

constructed dependent variable for the jth equation as yt and the regressors as xt, the conditional

posterior is normal N(M,V ) where:

V =
(

Σ−1j,0 + x∗
′

t x
∗
t

)−1
(7)

M = V
(

Σ−1j,0Bj,0 + x∗
′

t y
∗
t

)
(8)

with y∗t = yt
hj,t

and x∗t = xt
hj,t

for the equations of the VAR 1 and y∗t = yt
σm

and x∗t = xt
σm

for the final

equation 2.

2. H (A|Ξ). Given a draw for the VAR coeffi cients and stochastic volatilties, the system can be written

3



in terms of the residuals

AUt = H
1/2
t Et

where Ut =

 et

vt

 and Et˜N(0, I). Because A is lower triangular, the first equation in this system

is an identity. The jth equation is defined as:

Uj,t = −U1:j−1,tαj′ + hj,tEj,t

This is a linear regression with heteroscedasticity. As in step 1, the conditional posterior is normal

with mean and variance as in equations 8 and 7.

3. H
(
σ2m|Ξ

)
. The conditional posterior is inverse Gamma: IG

(
Ẽ′J,tẼJ,t + σ0, T + t0

)
where ẼJ,t is the

orthogonalised residual of equation 2 and T is the sample size.

4. H
(
g2j |Ξ

)
. Given the stochastic volatilities and the coeffi cients of jth transition equation δj , the condi-

tional posterior of g2j is inverse Gamma: IG
(
ε′tεt + g20 , t0 + T

)
.

5. H (δj |Ξ). Given the stochastic volatilties and g2j , the transition equations 6 are linear regressions. The

conditional posterior is normal N(m, v):

v =

(
V −1δ +

1

g2j
h′j,t−1hj,t−1

)−1
(9)

m = v

(
V −1δ δ0 +

1

g2j
h′j,t−1hj,t

)
(10)

6. H (ht|Ξ). Following Cogley and Sargent (2005), the stochastic volatilities are sampled using the

Metropolis Hastings algorithm in Jacquier et al. (1994). Given a draw for the VAR coeffi cients

and A the orthogonal residuals are defined as AUt = Ẽt and V AR
(
Ẽt

)
= Ht where the first

J − 1 diagonal elements are the stochastic volatilities hj,t. Jacquier et al. (1994) note that con-

ditional on other VAR parameters, the distribution hj,t, is given by f
(
hj,t|hj,t−1, hj,t+1, Ẽj,t

)
=

f
(
Ẽj,t|hj,t

)
× f (hj,t|hj,t−1) × f (hj,t+1|hj,t) = h−0.5j,t exp

(
−Ẽ2

j,t

2hj,t

)
× h−1j,t exp

(
−(lnhj,t−µ)2

2σh

)
where µ

and σh denote the mean and the variance of the log-normal density h
−1
j,t exp

(
−(lnhj,t−µ)2

2σh

)
. Jacquier
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et al. (1994) suggest using h−1j,t exp
(
−(lnhj,t−µ)2

2σh

)
as the candidate generating density with the accep-

tance probability defined as the ratio of the conditional likelihood h−0.5j,t exp

(
−Ẽ2

j,t

2hj,t

)
at the old and

the new draw. This algorithm is applied at each period in the sample.

7. H (m−t|Ξ). We treat the missing data for the instrument as an unobserved state and write the problem

in state-space form. For periods when mt is unobserved, the observation equation is given by

(
Yt m−t

)
=

 IJ−1,NS

01,NS

βt + Vt

where βt =



Yt

m̂t

Yt−1

m̂t−1

·

·

Yt−P+1

m̂t−P+1



, m̂t is the estimate of mt, I denotes an identity matrix, 0 denotes a matrix

of zeros and NS denotes the rows of the state vector, i.e. the number of states. The error term

Vt is zero for the equations corresponding to the observed data Yt. In contrast, the element of Vt

corresponding to m−t is assumed to have a very large variance. When data on mt is observed, the

observation equation changes to: (
Yt m−t

)
= (IJ,NS)βt

The transition equation is:

βt = µ+ Fβt−1 + Lt, var (Lt) = Qt

where µ, F denote the constants and coeffi cients of the system 1 and 2 in companion form. Similarly, Qt

denotes the error covariance Ωt in companion form. With the model in state space form, the Carter and

Kohn (1994) algorithm is then used to draw βt. The distribution of the state vector is Gaussian: βT |Ξ ∼

5



Figure 1: Uncertainty due to external shocks.

N
(
βT\T , PT\T

)
and βt|βt+1,Ξ ∼ N

(
βt|t+1,βt+1 , Pt|t+1,βt+1

)
. As shown by Carter and Kohn (1994)

the simulation proceeds as follows. First we use the Kalman filter to draw βT |T and PT |T and then

proceed backwards in time using βt|t+1,βt+1 = βt|t+Pt|tF
′ (FPt|tF ′ +Qt+1

)−1 (
βt+1 − µ− Fβt|t

)
and

Pt|t+1,βt+1 = Pt|t−Pt|t−1F ′
(
FPt|tF

′ +Q
)−1

FPt|t.

2 Additional Results

Figure 1 uses the first PC to construct UK macroeconomic uncertainty due to external shocks.
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