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“Why econometrics should always and everywhere be Bayesian”
— C. Sims (2007)

Abstract:
Weak empirical evidence near and at the boundary of the parameter re-

gion is a predominant feature in econometric models. Examples are macroe-
conometric models with weak information on the number of stable rela-
tions, microeconometric models measuring connectivity between variables
with weak instruments, financial econometric models like the random walk
with weak evidence on the efficient market hypothesis and factor models
for investment policies with weak information on the number of unobserved
factors. A Bayesian analysis is presented of the common issue in these mod-
els, which refers to the topic of a reduced rank. Reduced rank is a boundary
issue and its effect on the shape of the posteriors of the equation system pa-
rameters with a reduced rank is explored systematically. These shapes refer
to ridges due to weak identification, fat tails and multimodality. Discussing
several alternative routes to construct regularization priors, we show that
flat posterior surfaces are integrable even though the marginal posterior
tends to infinity if the parameters tend to the values corresponding to local
non-identification. We introduce a lasso type shrinkage prior combined with
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orthogonal normalization which restricts the range of the parameters in a
plausible way. This can be combined with other shrinkage, smoothness and
data based priors using training samples or dummy observations. Using such
classes of priors, it is shown how conditional probabilities of evidence near
and at the boundary can be evaluated effectively. These results allow for
Bayesian inference using mixtures of posteriors under the boundary state
and the near-boundary state. The approach is applied to the estimation of

education-income effect in all states of the US economy. The empirical re-
sults indicate that there exist substantial differences of this effect between
almost all states. This may affect important national and state-wise policies
on required length of education. The use of the proposed approach may,
in general, lead to more accurate forecasting and decision analysis in other
problems in economics, finance and marketing.

1. Introduction

Inference near and at the boundary of the parameter space of a probability model
is occurring frequently in the field of econometrics. We list three economic and
financial topics where (near-)boundary evidence became empirically relevant in
the second halve of the twentieth century and it led to important econometric re-
search. In micro-econometrics the estimation of the effect of length of education
on earned income encountered the (near-)boundary of weak or no endogeneity
and/or weak or no identification. In macro-econometrics investigating which and
how many stable relations exist between macroeconomic time series has been
extensively explored in order to estimate forecast and policy uncertainty. Here
moving to the boundary refers to going from near-nonstationarity to unit roots.
In financial econometrics efficient data reduction using large cross sectional data
on stocks was investigated using a certain number of unobserved factors which
affect, for instance, equity momentum strategies. Weak information on the num-
ber of factors is a near-boundary issue. To motivate our analysis, we provide in
Section 2 several illustrative examples also for more general model structures.
The literature dealing with these issues is substantial and an extensive overview
is outside the scope of this paper. In the frequentist econometric literature the
focus has been largely on testing whether one’s view is at the boundary and on
assessing what is the sensitivity of the test when one is near the boundary. We
restrict ourselves to listing three classic tests: the Anderson-Rubin test for (over-
)identification which is regularly used in the literature on the education-income
analysis (Anderson and Rubin, 1950); the Johansen test used for determining
the number of stable relations in macro-economic time series (Johansen, 1991);
and the Anderson-Rubin test for determining the number of factors (Anderson
and Rubin, 1956)
The major message of the present paper is that many modeling, forecasting
and policy problems in non-experimental empirical econometrics are not about
asymptotically valid parameter estimation and testing near or at a boundary.
Given several different sources of information on features of economic processes,
the relevant issue is to use this information and average over the available evi-
dence on the different states of the economy, near and at the boundary, where
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the evidence on these states is measured using posterior probability weights. The
Bayesian approach is eminently suitable for this. We take the viewpoint that
the scientific evidence should be reported in such a way that the information
specified in the likelihood dominates with respect to other sources of informa-
tion, see Baştürk et al. (2014a) for a historical background. Thus our approach
to specifying prior information is one where relatively weak information is used
compared to that of the likelihood.
In order to back-up the general message, this paper makes four points. The first
is to show that there exists a common structure in the three issues mentioned
and that the effect of the boundary issue on the shape of the posterior densities
of the model parameters can be studied within the context of a standard reduced
rank regression model under different restrictions on the parametric structure
and alternative choices of weak priors. It is well-known that the shape of the
likelihood, and therefore the shape of the posterior with a flat prior, in the
standard multivariate regression model is bell-shaped or elliptical. As a conse-
quence, credibility regions of parameters can be simply determined using second
order moments. However, the posterior density of the matrix of equation system
parameters in a reduced rank model is non-elliptical. We provide in Section 2
several motivating examples. This nonstandard shape refers to several typical
features. We focus on two features that have an effect on the existence of pos-
terior moments: a ridge or, more generally, flat parts in the surface and heavy
tails. A ridge refers to weak or non-identification of parameters and it makes
a marginal posterior density unbounded, while very heavy tails make the use
of first and higher order moments unsuitable for all inference. We will show in
Section 3 that the posterior in a standard or workhorse reduced rank model,
which in our case is a cointegration model, is locally integrable even in the case
of a flat prior with flat parts in the posterior surface and the tails are heavy but
also integrable. Therefore, the search for plausible restrictions on the parame-
ter space has become an important topic of research. Apart from this research
line, we also show that using triangular restrictions on the parameters modify
the workhorse model into an instrumental variable regression model and that a
normal prior on some equation parameters together with a diagonal covariance
matrix on the disturbances modify the workhorse model into a static factor
model. We will show that these typical restrictions help in making a posterior
with a flat prior more regular with existence of first and higher order moments.
We note that, given the structure of our three types of reduced rank mod-
els, multi-modality and skewness (of multiple parameters) are more computa-
tional problems about numerical evaluation of the posterior but not about the
existence. More complex mixture models may give existence problems due to
weak empirical identification of a component of the mixture, see for instance
Frühwirth-Schnatter (2006).
A second purpose of the paper is to discuss alternative ways that appeared in
the literature of specifying prior regularization information. This is helpful for
determining model weights. One way is to use a more technical econometric
approach. That is, construct priors that are based on information or reference
theory concepts connected to the identification issue. However, we shall argue
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that these priors are in many cases not sufficient for making posteriors proper.
We add in Section 4 a new result on the existence of the posterior distribution
of model parameters with a reduced rank where the regularizing prior informa-
tion is based on weak and plausible restrictions on the range of the parameters
of interest. We introduce a lasso type shrinkage prior combined with orthogonal
normalization. We also, briefly, explore several other routes that deal with reg-
ularizing prior information. The focus is then more on prior information that
makes economic models behave more reasonably, see Sims (2008). That is, one
may be more interested in regular behavior of a nonlinear function of the equa-
tion system parameters like the impulse response function of a model after a
shock. Here the implications of prior information for posterior and predictive
analysis are important. Other examples are the effect of prior information on
multipliers of an econometric model, which is prior-predictive analysis and such
an effect on posterior estimates of stability of a model, which refers to posterior-
predictive analysis.
A third purpose of this paper is to show how the evaluation of conditional prob-
abilities on the evidence of different states of an econometric model can be made
operational when the prior information is weak. That is, although the issue of
weak identification is not an impediment for obtaining a proper probability, weak
prior information and a nearly flat posterior do play a major role in the evalua-
tion of posterior and predictive probabilities of evidence near and at a boundary
of non-identification and irrelevant instruments. Given the bounded regions of
integration, the Bartlett/Jeffreys/Lindley paradox, see Jeffreys (1939), Lindley
(1957) and Bartlett (1957) does not show up as a mathematical statistical re-
sult, but it appears as a serious practical problem for model evaluation when
prior probabilities are assumed over regions where there is weak or no data in-
formation. Here the use of a training sample and weak economic information is
recommended. Second, a sensitivity analysis is recommended in order to obtain
more robustness in the results. We explore several routes that are described in
Section 5. Once a model weight is obtained, Bayesian inference can proceed with
model averaging in order to estimate mixtures of models suitable for forecasting
and policy analysis.
As a final contribution, in Section 6 we explore the regional differences between
all states of the US with respect to the effect of length of education on earned
income using an instrumental variables model and a mixture of endogenous and
weakly exogenous states of the model. We obtain strong empirical evidence that
the financial income returns of education vary substantially between almost all
states in the USA. This may affect important state and national policies on the
requires length of education.
We emphasize that there is much more done on the topic of model averaging in
Bayesian econometrics, a recent example in the field of macroeconomics is given
in Strachan and Van Dijk (2013). We refer to the Handbook of Bayesian Econo-
metrics, Geweke et al. (2011), and to the Supplementary Material in the Online
Appendix for more examples in the fields of economics, finance and marketing.
In Section 7 several perspectives for further research are presented.
Remark 1 : Given the length of this paper which is due to a combination of its
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survey character as well as presentation of new results, the material is divided
into a main text and Supplementary Material which is in the Online Appendix.
Remark 2 : The development of efficient computational procedures using simulation-
based methods has been essential and an active area of research in Bayesian
econometrics but it is a topic beyond the scope of this paper. For a historical
analysis of the development of this topic since the early nineteen-seventies we
refer to Baştürk et al. (2014a). Modern hardware and software including parallel
computation allow detailed analysis of many of the issues listed in this paper.
Remark 3 : Bayesian inference of mixture processes is extensively studied in the
statistical literature, see e.g. Frühwirth-Schnatter (2006) and Mengersen et al.
(2011). In this paper we focus on the issues that refer to the evidence near and
at the boundary of econometric models and how to average over these states.

2. Motivating examples

In this section we provide several motivating examples of the boundary and
near-boundary issues and the irregular likelihoods resulting in these examples.
One econometric model, the cointegration model, serves as workhorse model for
reduced rank analysis in this paper. Two other models, the instrumental variable
and the factor model, are special cases of the workhorse model. We illustrate
the boundary and near-boundary issue for the cointegration and instrumental
variable models using simulated and real data. In addition to these motivating
examples, we provide three other empirical applications where the boundary
issue is evident in the Supplementary Material.

Posteriors of an instrumental variables (IV) model: The restricted re-
duced form of an IV model for data yi with one explanatory variable xi and two
instruments (z1i, z2i) can be written as follows:(

yi
xi

)
=

(
β
1

)(
π1 π2

)(z1i

z2i

)
+

(
ui
vi

)
, (2.1)

where β, π1 and π2 are scalar model parameters, and disturbances
(
ui vi

)′
have e.g. an iid normal distribution. This restricted reduced formulation of the
model clearly shows the reduced rank structure within this class of models.
Under flat priors, the posterior distribution of the model parameters for the
above IV model has a ridge at the region implying ‘a move from weak to irrele-
vant instruments’, where π1 = π2 = 0. We illustrate this issue in Figure 1. More
details are given in the Supplementary material, in Hoogerheide et al. (2007b)
and Zellner et al. (2014).

Posteriors of a cointegration model: The second model we consider is
a cointegration model, specifically a Vector Error Correction Model (VECM),
with data y1,t, y2,t:(

∆y1,t

∆y2,t

)
=

(
α1

α2

)(
1 −β

)(y1,t−1

y2,t−1

)
+

(
ε1,t

ε2,t

)
, (2.2)
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Fig 1: 95% HPD credible set for π1, π2, β for simulated data from the IV model

Fig 2: 95% HPD credible set for α1, α2, β for simulated data from the VECM
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where (α1, α2, β) are the model parameters, the disturbances (ε1,t ε2,t)
′ have iid

normal distributions. Similar to the earlier IV model formulation, the reduced
rank issue is evident in the matrix multiplication on the right hand side of this
model.
The boundary issue for the posterior distributions for the cointegration model
under diffuse priors is illustrated in Figure 2. In this case, the ‘boundary’ corre-
sponds to the case where there is no dynamic adjustment in the model towards
an equilibrium, i.e. α1 = α2 = 0.
In the Supplementary material the set-up of the experiments for Figures 1 and
2 is given.

Education-income analysis using the IV model: As a first empirical
motivating example, we present the posterior density of the parameters of an
instrumental variables model for education and income data from individuals
living in the US, which are analyzed in Angrist and Krueger (1991) and Hooger-
heide and Van Dijk (2008) among others. The fundamental issue is that years of
education in these data are instrumented with a dummy variable for individuals
born in quarters 2-4 of a year. Quarter of birth had an effect on the years of
compulsory schooling, due to the compulsory schooling laws. These data repre-
sent a typical ‘weak instrument’ case since the explanatory power of quarter of
birth on education is expected to be present only for individuals whose years
of education were affected by the compulsory schooling requirement. We refer
to the Supplementary Material in Appendix A.1 for an introduction and more
explanations of the instrumental variable model.
Figure 3 illustrates the boundary issue which refers to local non-identification
of the posteriors under flat priors for the income-education data of the state of
New York and the whole US. The two figures of the joint posterior kernels in
the model with the effect of education on income (β) and the effect of quarter
of birth differences on education (Π) show a substantial ‘ridge’ in the poste-
rior. For New York data, this ridge is visible at Π = 0, which dominates the
marginal posterior of Π. On the other hand, for the US data, the shapes are
nearly elliptical, which reflects that in this case the quarter-of-birth instrument
is less weak. The peak around the posterior mode is high compared with the
ridge around π = 0, so that the latter is not visible in the joint posterior density
kernel (even though the marginal posterior of π tends to ∞ for π → 0). We
will show in Section 3 and the Supplementary material A.3.2 that the ridge is
integrable but the bimodality is a serious issue for simple inference using only
a second moment to measure estimation uncertainty. We refer here also to the
Supplementary Material for more empirical examples.
We end this section by summarizing the issue: our motivation for more method-
ological analysis is that non-elliptical shapes appear in much of the non-experimental
empirical econometric analysis. Possible causes of typical shapes need to be stud-
ied.
As an important note we emphasize that is it not easy and probably not a good
strategy to perform a conjugate analysis when the likelihood is not regular.
Since conjugacy would involve some prior irregularity in this context.
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Fig 3: Posterior density kernels for simple instrumental variables models for
the effects of education on income (β) using the difference in mean education
between men born in quarters 2-4 and quarter 1 (π). The model is applied to
Angrist and Krueger (1991) data on income and education.

data of New York (29015 observations) data of USA (329509 observations)

3. Basic model structures, nonstandard likelihood shapes and
posterior existence

3.1. Common structure of three reduced rank regression models and
summary of posterior existence results

In this section we start to investigate the effect of a reduced rank on the like-
lihood shape and existence of a posterior within the context of a cointegration
model. This model serves as our workhorse model since it can be interpreted as
a multivariate regression model where the matrix of equation parameters has
reduced rank, see the middle of Figure 4. Using an improper flat prior and linear
normalization, it is clear from the cointegrated equation system that a value of
α = 0 results in a ridge in the parameter space. We will show that this feature
leads to an unbounded marginal posterior that is however integrable on a finite
region around α = 0. We further show that the posterior of α has heavy tails
but the density is proper. We note that all conditional distributions are proper
with first and higher order moments. We emphasize that the posterior of this
cointegration model has the same features as the posterior of a full system Si-
multaneous Equations Model, an Error in Variables model, and a Static Factor
model with no prior information on the factors.
We investigate in the Supplementary Material A.3.3 the effect of imposing a
lower triangular structure on the equation system parameters. It is interesting
to observe that we can then move from the workhorse model to the so-called
Instrumental Variable (IV) regression model, see the left side of Figure 4. Given
this triangular structure, we show that the posterior with a flat prior, which
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Fig 4: Common structure of three reduced rank econometric models: Gen-
eral structure of reduced rank regression models with linear normaliza-
tion/identification

Ỹ = X̃A+ E, rank(A) is less than full

Ỹ = (Y X), X̃ = Z

A = (0 Π)

(
1 0′

β Ir

)
modeling direct connectivity

empirical analysis:
income-education effect in

US states

Ỹ = ∆Y, X̃ = Y−1

A = (Ir β
′
2)α′

modeling stationary
random walk
combinations

empirical analysis:
forecasting

Ỹ = Y, X̃ = I

A = F (Ir Λ2)

Σ = D

modeling information
reduction

empirical analysis: financial
momentum

leads to a ridge in the posterior surface when the matrix Π = 0, is a proper
density for the case of enough instrumental variables. A large number of instru-
ments makes the tail behavior of the posterior more regular with existence of
first and higher order moments. Thus an improper prior yields in this situation
a much more regular posterior. The case of many instruments and that of weak
endogeneity versus strong endogeneity together with weak and strong identifi-
cation are all analyzed. We note that there exists an analogy with a triangular
cointegraton system, see Martin and Martin (2000).
Thirdly, we explore, also in the Supplementary Material A.3.4, the case where
the covariance matrix of the disturbances is diagonal together with the assump-
tion of a standard normal prior on the matrix β. Now, we can move from the
workhorse model to a static factor model, see the model on the right of Figure 4.
Here the matrix of the unobserved factors F plays the same role as the matrix
β in the cointegration model. Similarly the matrix Λ in the factor model has
the same role as the matrix α in the cointegration model. When one adds the
normal assumption and the one of a diagonal covariance of the disturbances
then the posterior with a flat prior is proper. We emphasize that the effect of
a diagonal covariance matrix within an IV model yields well behaved student t
posterior densities.1

There exist several lines of criticisms on our use of flat priors and linear normal-

1We note that due to the similarity of three model structures, one can prove the equivalence
of the Anderson-Rubin test for overidentification and the Johansen test for cointegration. For
details, see Hoogerheide and Van Dijk (2001).
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ization. It is well-known that the posterior results using a linear normalization
may, in an empirical analysis, be sensitive for the ordering of the variables. In
the case of IV this ordering is natural since one is mainly interested in the effect
that a possibly endogenous explanatory variable may have on the left hand side
endogenous variable (years of education on earned income). But in cointegration
and factor models one is often symmetric between variables or factors. Then or-
thogonal or orthonormal normalization is interesting to explore. We investigate
that in Section 4. Second, a uniform prior on parameters is not invariant to a
transformation. It is very important that one specifies the prior information on
the parameter that reflects the issue of interest. We will also explore this issue
more in Section 4 and in the Supplementary material.

3.2. Likelihood shape and existence of posterior in a workhorse
reduced rank model: the case of cointegration

A cointegration model constitutes a general class of a reduced rank regression
model. Special cases with different restrictions on the parametric structure are
covered in the Supplementary Material for the instrumental variable regression
model and the static factor model.

3.3. Posterior of a standard cointegration model under linear
normalization and a diffuse prior

A Vector AutoRegressive (VAR) model of lag order 1 is usually specified as

yt = Φyt−1 + εt, εt ∼ NID(0,Σ), for t = 1, . . . , T, (3.1)

where yt is k × 1 dimensional vector of observations on economic variables (in
deviation from their mean) at time t; Φ is a k×k matrix of parameters belonging
to the observations on the lagged endogenous variables; the disturbances εt
for t = 1, . . . , T have independent Gaussian distributions with Σ a positive
definite symmetric (PDS) parameter matrix. Observations on y0 are given as
initial values. A basic paper on this VAR model is Sims (1980). For a general
introduction to the class of models we refer also to Johansen (1995).
The VAR model equation (3) can be cast into the Vector Error Correction Model
(VECM) as follows:

∆yt = Π′yt−1 + εt, εt ∼ NID(0,Σ), for t = 1, . . . , T, (3.2)

where Π′ = Φ − Ik. In matrix notation, this error correction model can be
specified as:

∆Y = Y−1Π + E, (3.3)

where ∆Y is a T×k matrix of observations ∆y1 to ∆yT in its rows and similarly,
Y−1 is a T × k matrix of observations containing y0 to yT−1 in its rows. The
T × k random matrix E has a matric-variate distribution, E ∼MN (0, IT ,Σ).
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Stationarity of the process corresponds to Π having full rank. Then all series
converge to a finite long run mean and have a bounded variance in the long run.
When Π has rank 0, a k-dimensional random walk occurs. The long run mean is
equal to the next period mean and long run variance tends to infinity. The more
interesting case is where the process {yt} has a so-called cointegrating rank r,
that is, when Π has rank r < k. In this case one has r cointegrating or otherwise
stated r stable relations between k economic variables and the matrix Π can be
specified as the product of two k × r matrices α and β with full column rank
and Π = βα′.
The resulting model is called a cointegrating VECM, which in matrix notation
takes the following form:

∆Y = Y−1βα
′ + E. (3.4)

The number of parameters in α and β together may be larger than the number
of free parameters in Π under a rank restriction. For the case of k variables and
r ≤ k cointegrating relations, it holds for any (r × r) non-singular matrix R
that:

Π = βα′ = (βR)(αR−1)′,

with rank(β) = rank(βR) and rank(α) = rank(αR−1). That is, the parameters
β and α are non-identified. A straightforward way of identifying the parameters
is by using a linear normalization on β as restriction:

β =

(
Ir
β2

)
, (3.5)

where β2 is a (k−r)×r matrix, see Kleibergen and Van Dijk (1994); Kleibergen
and Paap (2002) among others. We will consider as an alternative in Section 4.2
the case of orthogonal normalization.
Consider a diffuse class of priors defined on the space of (α, β2) and on the
space of positive definite matrices Σ given as p(α, β2,Σ) ∝ |Σ|−h/2, h > 1. We
make use of the prior value h = k + 1, which gives an equivalence between the
marginal posterior of (α, β2) and their, so-called, concentrated likelihood func-
tion. We discuss the effect of a more general choice of h later.
The posterior density (apart from the integrating constant) under the normal-
ization is obtained by multiplying the likelihood and the diffuse prior which
yields:

p (α, β2,Σ | Y ) ∝ |Σ|−(T+k+1)/2 exp

[
−1

2
tr
{

Σ−1 (∆Y − Y−1βα
′)
′
(∆Y − Y−1βα

′)
}]

.

(3.6)
We note that for notational convenience, we make use of only the symbol Y to
denote the data (∆Y, Y−1).
In the previous section it is shown empirically that the shape of such a posterior
(more precisely the marginal one after integrating out Σ) is such that there
exists a ridge in the surface when α = 0. We will show analytically that this
feature leads to an unbounded marginal posterior that is however integrable
and, further, that the tails are heavy but the posterior remains integrable. It
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is noteworthy that all conditionals are proper density function with first and
higher order moments.

Marginal and conditional posterior densities We consider marginal and
conditional posterior density functions of the parameters under a diffuse prior
and discuss existence conditions for the posterior distributions and their first and
higher order moments. A summary of the derivations and results is presented in
Figure 5. For details on the derivation we refer to the online Appendix A.3.2. We
note that our results are quite general and several are, to best of our knowledge,
novel.

Marginal densities of α and β2 after integrating out Σ Application of
the inverse-Wishart integration step yields the joint posterior distribution of
(α, β2) with density:

p (α, β2 | Y ) ∝
∣∣∣(∆Y − Y−1βα

′)
′
(∆Y − Y−1βα

′)
∣∣∣−T/2 . (3.7)

Exact expressions of the conditional densities which are of the matrix-t class
are presented in Appendix A.3.2.

Marginal posterior of β2 and existence of moments From (9), using a
matrix-t density step on α and applying a matrix decomposition and properties
of the projection matrix, as presented in Appendix A.3.1 and A.3.2, one can
obtain the following result:

Proposition Given the standard form of a cointegration model under linear
normalization and using a diffuse class of priors, the marginal posterior of the
cointegration parameters β2 is proportional to a matrix-t density times a poly-
nomial in β2. This density is proper, independent of the cointegrating rank r,
but no first or higher order moments exist.

It is noteworthy that this result is also independent of the difference k − r.
We come back in the case of the IV model, presented in the Online Appendix.
This result extends the analysis and results of Kleibergen and Van Dijk (1994).
We further note that the choice of the prior parameter h does not play a role in
the existence condition for the distribution function.

Marginal posterior of α and existence of moments It is shown in Ap-
pendix A.3.1 and A.3.2 that using a matrix-t density step on β2 and applying a
matrix decomposition and properties of the projection matrix presented in that
appendix, one can obtain the marginal posterior density of α.

Proposition Given the standard form of a cointegration model under linear
normalization and using a diffuse class of priors, the marginal posterior density
of the adjustment parameters α is a rational function in α and this density is
not proportional to a known form of densities.
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Fig 5: Derivation Scheme for Posterior Densities of a Cointegration model with
k variables and r < k cointegrating relations under a diffuse prior.
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↓ ↓
p (β2 | Y ) is proportional to a matrix t
density times a polynomial in β2. It is a

proper density independent of the coin-
tegrating rank r, but no first or higher
order moments exist.

p (α | Y ) is a rational polynomial func-
tion in α and not a member of a known

class of densities. It is integrable despite
having an asymptote at α = 0. The tails

are heavy but integrable.
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Existence of the marginal posterior of α|Y It is shown in Appendix A.3.2
that a sufficient condition for the existence of the posterior of α at α = 0(k×r)
is: ∫ ∣∣α′D−1α

∣∣−(k−r)/2
dα <∞, (3.8)

where D is a matrix which only depends on data.

We next analyze two shape features: the asymptote in the interior when
α = 0(k×r) and the tail behavior when α tends to infinity. We show that the
determinant in (100) is integrable around α = 0 despite the asymptote at α =
0(k×r) and we show that the tails are heavy but integrable.

2-dimensional vector case r = 1, k = 2 For simplicity, consider the inte-
gral on a ball Ak with radius R for the special case, k = 2, r = 1 where for ease
of exposition we assume that the data matrices have been scaled and rotated
such that Y ′−1Y−1 = Ik:∫

Ak

|α′α|−(k−r)/2
dα. =

∫∫
α2

1+α2
2≤R2

(α2
1 + α2

2)−1/2dα1dα2. (3.9)

We perform a polar coordinate transformation of α1, α2 to show that the above
integral is finite but depends on the value of R. Consider the change of variables:

α1 = λ cos θ, α2 = λ sin θ

λ2 = α2
1 + α2

2, θ = tan−1(α2/α1),

where θ ∈ (0, 2π], λ > 0 and the determinant of the Jacobian for this change of
variables is

|J | =
∣∣∣∣cos θ −λ sin θ
sin θ λ cos θ

∣∣∣∣ = λ(cos2 θ + sin2 θ) = λ. (3.10)

With the change of variables, the integral in (11) becomes:∫ 2π

θ=0

∫ R

λ=0

(λ2)−1/2λdλdθ =

∫ 2π

θ=0

∫ R

λ=0

1dλdθ = 2πR, (3.11)

The integral corresponds to the volume under the graph of f(α) = (α′α)−1/2.
The volume over the region {α|α′α ≤ 1} can be computed by integrating the
surfaces of circles with radius f(α) for 1 ≤ f(α) < ∞ and the surfaces α of
circles with radius 1 for 0 ≤ f(α) < 1. Figure 6 illustrates this: for each function
value f(α) = (α′α)−1/2 with f(α) as the horizontal ‘slice’ through the graph is
a circle with radius 1/f(α). For any finite R the integral is bounded from which
we conclude that the asymptote poses no problems. A proof that the asymptote
poses no problem for the general vector and the matrix case is presented in the
online Appendix A.3.2.
If however R tends to ∞ the integral in equation eq:polar2 also goes to ∞ at a
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Fig 6: f(α) = (α′α)−1/2 for α′α ≤ 1, where α = (α1, α2)′.

rate R, so that the sufficient condition is not satisfied then. However, the tails
are integrable and the marginal posterior of α is proper. The easiest way to see
this is as follows. We show in Appendix 3.2 that the marginal posterior of β2 is
proper but it has no first or higher order moments, see equation (A.66). Further,
the conditional posterior of α given β2 is proper for each value of β2, see (A.39)
and (A.58). Therefore, the joint posterior of (α, β2) is proper. We could simu-
late α from its (marginal) posterior by simulating β2 from its marginal posterior
and simulating α given the draw of β2. We emphasize that the line of reasoning
to show that the tails are integrable is a general one. That is, it holds for the
bivariate case, the general vector case and the matrix case.

All this leads to the following proposition:

Proposition Given the standard form of a cointegration model under linear
normalization and using a diffuse class of priors, the marginal posterior density
of α, given in Appendix A.3.2, equation (A.72), is integrable despite the fact
that it has an asymptote at α = 0. The tails are heavy but integrable, so that the
marginal posterior density of α is proper.

This result also holds for the Simultaneous Equations Model when there ex-
ist only a few restrictions on the structure, the Errors-in-Variable model and
the Static Factor Model with no information on the factors.

General conclusion of Section 3 In this section we have shown that, using a
flat prior, Bayesian analysis of a general reduced rank model yields non-elliptical
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shapes of posteriors that can be classified as: flatness and unboundedness due
to weak or non-identification and weak or irrelevant instruments. We further
showed that unbounded posteriors are locally integrable under weak conditions
and posterior tails are heavy but integrable. These results are to the best of
our knowledge new. We will show in the Supplementary Material that by mak-
ing use of extra restrictions such as a lower triangular matrix of β one can
obtain proper posteriors with more desired properties (existence of higher or-
der posterior moments). This is shown in the Supplementary material for the
Instrumental Variable Model. Alternatively, one may use a weakly informative
prior such as a normal prior N(0, cI) with c a large constant on α which makes
the tails of the posterior of α more regular. This can be seen in the class of
factor models, see for instance Geweke (1996).
We note that, given the structure of our three types of models, multi-modality
and skewness (of multiple parameters) are more a computational problem about
numerical evaluation. More complex mixture models may give an existence prob-
lem due to weak empirical identification of a component of the mixture but this
is a topic beyond the scope of this paper. In the next section we investigate
how regularization priors deal with the two issues of flat regions (unbounded
marginals) and heavy tails.

4. Regularization priors

Since the early nineteen-seventies there has been a strong tradition in Bayesian
econometrics of studying the shape and integrability of posteriors of parameters
of models with a reduced rank under flat priors. The first class of models studied
was the Simultaneous Equations Model (SEM) where the issue of endogeneity
of explanatory variables was analyzed. One of the early important papers is
Drèze (1976) where a posterior density is presented of the parameters of a sin-
gle SEM equation, marginalized with respect to all parameters in the remaining
part of the SEM where no restrictions were imposed. For a detailed explanation
of the shape of the likelihood of the full model and of one single equation we
refer to Bauwens and Van Dijk (1990). Next, the so-called Incomplete Simulta-
neous Equations (INSEM) model, see Zellner et al. (1988), was studied from a
Bayesian point of view. This model was shown to be a triangular SEM model
and to be identical to an IV model. Bauwens and Van Dijk (1990) present a
derivation of the marginal posterior of the single equation parameters but do
not discuss in detail under what conditions this is a proper density.
In the present section we present a set of priors that are potentially suitable for
making posterior densities proper. First, in Section 4.1 we follow an economet-
ric methodological or statistical approach to specifying weak prior information
that is intended to make an unbounded posterior more regular by using the
information matrix and an other reference approach. In Section 4.2 we present
a new result on a lasso type shrinkage prior combined with orthogonal normal-
ization that serves this purpose well. Furthermore, in Section 4.3 we specify
prior information that is meant to make economic models behave ‘reasonably’.
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A motivation for the latter property was given by Sims (2008) for the case
of macroeconomic models. This can be applied more generally to all economic
models.
A final point of this section is that in order to obtain robust results for posterior
and predictive analysis with weak prior information, it is recommended to use
a sequence of priors with increasing amounts of information starting from very
weak prior information. Therefore the contents of this section are organized with
listing regularization priors in increasing amount of information.

4.1. Information matrix, subspace and reference priors

Information Matrix and Embedding priors: An alternative to using a
flat prior on the parameters of a cointegration model (as workhorse model for
a reduced rank) is provided by the Information Matrix prior, also known as
Jeffreys prior. It is proportional to the square root of the determinant of the
information matrix and it can be specified as:

p(Σ) ∝ |Σ|−(k+1)/2
(4.1)

p(α, β2|Σ) ∝|I(α, β2|Σ)| 12

=

∣∣∣∣∣
(

∂ vec(Π)

∂(vec(α)′ vec(β2)′)

)′
I(Π|Σ)

(
∂ vec(Π)

∂(vec(α)′ vec(β2)′)

)∣∣∣∣∣
1
2

=

∣∣∣∣∣
(
In ⊗ β α′ ⊗

(
0

−In−r

))′
(Σ−1 ⊗ Y ′−1Y−1)

×
(
In ⊗ β α′ ⊗

(
0

−In−r

))∣∣∣∣ 12
∝|β′Y−1Y−1β|

1
2 (k−r)|αΣ−1α′| 12 (k−r)|Σ|− 1

2 (k+1),

(4.2)

where k is the dimensionality. For a derivation and more details on Jeffreys
prior see, Kleibergen and Van Dijk (1994), Uhlig (1994), Kleibergen and Van
Dijk (1998), Martin and Martin (2000) and Martin (2001). Both I(α, β2|Σ) and
I(Π|Σ) denote the conditional information matrices. The distinctive feature of
this prior is its ability to annihilate probability mass at points where the iden-
tification problem occurs. This result also holds for the instrumental variable
model, see the example in Figure 3 in Section 2. To visualize the effects of ap-
plying the Information Matrix prior to the likelihood of the cointegration model
we present the shape of this prior and the shape of credible sets and the poste-
rior distribution in Figure 7. In the Figures of the prior and posterior density of
(α1, α2) the activity of Information matrix prior is evident around point (0, 0).
It is clear from the equations and from the figure that Jeffreys prior relates to
strength of information on β (long term equilibrium) and α (speed of adjust-
ment). This prior gives no weight to the state where the model is not identified
(where the likelihood exhibits a ridge) and it gives more weight to values of the
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parameters α and β when the likelihood also has some weight. More formally,
the Information Matrix or Jeffreys prior is a polynomial in these parameters and
the prior density kernel tends to infinity when the parameters tend to infinity.
Therefore this class of priors is not suitable as regularization prior in the general
case of a reduced rank model where the problem is with the tail behavior. How-
ever, this class of priors can be used for the case of the Instrumental Variable
regression model where the tail behavior of the likelihood is very regular for a
large number of instrumental variables, see the analysis in the Online Appendix
A.2.3.
We emphasize that there exists an equivalence between the Jeffreys prior and the
prior that stems from the embedding approach, see, for instance, Kleibergen
and Zivot (2003). In the embedding approach one specifies a flat prior on the un-
restricted reduced form and makes use of a transformation of random variables
to the parameter of the structural form. This approach has been used to spec-
ify priors for a simultaneous equations model and a co-integration model, see
Kleibergen and Van Dijk (1998) and Kleibergen and Paap (2002). For the em-
bedding approach the same conclusion holds as for Jeffreys prior approach. We
present an empirical analysis in the Supplementary Material, Appendix A.1.3.
Another interesting analysis is presented for this IV model comparing Bayes
and GMM by Sims (2007). We refer to that paper for details.

Subspace/Reference based priors Villani (1998), see also Villani (2000),
proposed a prior on the subspace spanned by the columns of the matrix with
reduced rank using the concept of a Grassmann manifold. This prior was then
transformed to a prior on the parameters α and β in the linear normalization
case, treated in Section 3, in order to perform Gibbs sampling. Villani (2005)
continued this line of work, now labeled as a reference approach but still based
on the subspace approach. It gave proper posteriors that are invariant to the
ordering of variables.
Strachan and Inder (2004) and Strachan and Van Dijk (2004) applied the sub-
space approach to the case of orthonormal normalization. This led to a prior
of the parameters β defined on a bounded region. These authors developed a
sampling algorithm that allowed to sample from the orthonormal normalization.
We refer to the survey by Koop et al. (2006) for a more detailed analysis of the
subspace/reference approach.

Conclusion Although the technical approaches listed so far are elegant and
‘repair’ some or all anomalies of the likelihood function of a reduced rank re-
gression model, we take a different direction in the present paper. The reason
being that we intend to work with several states of the econometric model, that
is, near the boundary of a reduced rank as well as at the boundary. We want
to specify a convenient class of priors that yield proper posteriors which can be
used to effectively evaluate posterior and/or predictive probabilities at and near
a boundary. Further, we discuss priors that explore implications for posterior
and predictive probabilities that may be used for prediction and decision anal-
ysis, that is, prior- and posterior-predictive and -decision analysis.
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Fig 7: Shape of the Information Matrix or Jeffreys prior, credible sets and
posterior distributions under this prior. Data generated from one unit root
cointegration model (eigenvalues λ = (0.6074, 1.0)) with α = (0.5,−0.0561)′,
β = (−0.6640, 1.0799)′; Π1 = Π + I = (0.6680, 0.5399; 0.0373, 0.9394).



Baştürk, Hoogerheide, Van Dijk/Bayesian Analysis of Boundary and Near-Boundary Evidence20

4.2. Orthogonal normalization and lasso type shrinkage prior

Given a diffuse prior and under linear normalization we have shown that the
marginal posteriors of the parameters of interest of a workhorse reduced rank
regression model are not regular in the sense that they do not belong to a known
class of densities like the matrix-t densities. We took the cointegration model
as an example. We note that in the case of such a model, when the parameter
matrix has everywhere full rank the posterior is regular. That occurs when the
data in the cointegration model are all stationary. Also in the case when the
rank is zero, that is, when all data series are random walks one encounters
regular posteriors. We now explore an approach where weak regularizing prior
information is introduced that makes use of restrictions, in particular, plausible
restrictions on the range of the parameters. For expository purposes we continue
with the cointegration model but emphasize that our results hold also for the
instrumental variable and factor model with sometimes slight modifications.

Identification and orthogonal normalization In general an n× k matrix
of rank r has (n+k)r−r2 free elements, that is (n−r)(k−r) restrictions. In our
case, the k×k matrix Π has rank r and therefore it has 2kr−r2 independent free
elements and (k− r)2 restrictions. The matrices α and β in the parametrization
Π = βα′ with rank(Π) = r together have 2kr elements, which are r2 too many to
identify α and β. The normalization β1 = Ir that we used in the previous sections
exactly accounts for the additional r2 required restrictions. The parametrization
Π = βα′ can be linked to the singular value decomposition Π = USV ′, where the
rectangular k × r matrix U is an element of the Stiefel manifold U ′U = Ir and
the square r× r matrix V is an element of the manifold of orthogonal matrices
V ′V = Ir. S is a diagonal r × r matrix with positive diagonal entries equal to
the singular values of Π. We denote the vector of these diagonal elements as
λ = (λ1, . . . , λr)

′. Note that the manifolds on which U and V are defined have
finite volume. The manifold on which λ is defined is not bounded and we shall
come back to that later.
E.g. Kleibergen and Van Dijk (1998) and Kleibergen and Paap (2002) explicitly
link their parametrization to the singular value decomposition and they combine
it with the linear restriction β1 = Ir. This linear normalization subsequently
implies a mapping from these manifolds to Cartesian coordinates in Euclidean
space, that is α ∈ Rk×r and β2 ∈ R(k−r)×r. This mapping thus transforms from
manifolds with finite volume (except λ) to unbounded spaces.
Another common normalization of β used in the literature is β′β = Ir. A major
motivation for the choice of this orthogonal normalization of the matrix β is
that in this case no preferred ordering of the variables is imposed and the region
of integration for β is bounded. In the case of a VAR these may be reasonable
assumptions in several situations, in particular, when one considers a set of
similar price indices or quantity series.
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We emphasize that this normalization alone is not sufficient to identify both α
and β. This normalization imposes only r(r+ 1)/2 unique restrictions, because
of the symmetry of β′β, so an additional r(r−1)/2 restrictions are required. One
could impose these on β but this should be done with caution in order to avoid
the issue of imposing too much structure through the combination of ordering,
restricting and assigning a flat prior. For a more information on normalization
and identification, we refer to Hamilton et al. (2007).

Lasso type shrinkage prior under orthogonal normalization We pro-
pose an approach that more directly uses the structure of the singular value
decomposition and also makes use of the concept of lasso type shrinkage priors,
see Tibshirani (1996).
As specified above, the singular value decomposition is not uniquely defined. Any
simultaneous permutation of the columns of U , S and V also constitutes a singu-
lar value decomposition. A common way to avoid this ambiguity is by ordering
the singular values that occur on the diagonal of S as λ1 ≥ λ2 ≥ · · · ≥ λr ≥ 0.
We shall use this ordering. Ordering the singular values is also more straight-
forward than devising an ordering of the columns of U and V directly (or the
columns of α and β for that matter).
Because of this ordering each element λi+1 for i = 1, . . . , r − 1 is bounded by
λi. Only λ1 remains unbounded towards +∞. Integrability is thus determined
by the behaviour of λ1.
Having fixed the ordering of the singular values the uniqueness of the singu-
lar value decomposition when all λi’s are different is up to simultaneous sign
changes of corresponding columns of U and V which could be mitigated for
instance by imposing a positive sign for the first non-zero entry in each column
of U . Finally, if a singular value occurs more than once, then the columns of
U and V corresponding to these singular values are not uniquely defined. Any
other orthonormal basis that spans the same space will also do. Although in
this particular case the transformation between the matrix Π and its singular
value decomposition (U, S, V ) is still not invertible everywhere, this is however
an event with zero measure and we observe that the Jacobian of this transfor-
mation equals 0 whenever a repeated singular value occurs because then the
factor λ2

i − λ2
j will be 0 for some i < j.

We analyse the specification in which we combine β′β = Ir with α′α = Ir in the
parametrization Π = βΛα′ with Λ diagonal. This corresponds directly to the sin-
gular value decomposition Π = USV ′ with β = U , α = V and Λ = S = diag(λ).
The restriction α′α = Ir imposes r(r + 1)/2 restrictions which amount to r re-
strictions more than required, but λ subsequently provides these extra r degrees
of freedom.
Λ and α in this parametrization combine into α in the usual parametrization
Π = βα′ as in the previous bullet.
The advantage of this specification is that now both α and β have finite support.
If the issue of non-integrability arises it will be in the parameter λ, and if so it
is also clear they will also have to be repaired in λ.
Regarding the econometric interpretation of the parametrization Π = βΛα′ we
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may think of β′yt as the deviation from the r cointegrating relations β′yt = 0
between the k variables yt, which is similar to the role of β in the more usual
parametrization Π = βα′. The interpretation of λ is that of the rate of ad-
justment of the system towards each of the r cointegrating relations. α in the
parametrization Π = βΛα′ describes the contribution of each of the k variables
yt to the adjustment towards each of these r cointegrating relations. This has
advantages over the more usual parametrization Π = βα′ in which the speed of
adjustment towards the cointegrating relations is amalgamated with the distri-
bution of these adjustments over the variables into one single parameter matrix
(also denoted α).
Each data vector yt defines a vector in k-dimensional space. The geometric in-
terpretation is that β defines r directions in the space of the data. Λ scales in
these directions and α rotates the result to a r dimensional subspace of the data.
To distinguish the parameter matrix α in Π = βΛα′ from the parameter ma-
trix α in the usual parametrization we shall denote the latter by α∗ such that
Π = βα∗′ in the remainder of this section. In order to translate results on α and
Π = βΛα′ back and forth to α∗ and Π = βα∗′ we now briefly describe how they
are related. Both parametrizations are linked by the relation α∗ = αΛ. This
can be seen when we combine β′β = Ir with α∗′α∗ = S in the parametrization
Π = βα∗′ where S is a r × r diagonal matrix with λi, i = 1, . . . , r, as diag-
onal elements. The relation with the singular value decomposition Π = USV ′

is β = U , α∗ = V S = αΛ. This also gives exactly the number of required re-
strictions: all off-diagonal elements of α∗′α∗ are constrained to 0 and because
of the symmetry of α∗′α∗ each off-diagonal element occurs twice which results
in r(r − 1)/2 unique restrictions. In terms of the columns α∗i of α∗: α∗i

′α∗i = λ2
i

for i = 1, . . . , r and α∗i
′α∗j = 0 for i 6= j.

Prior choice and existence of posterior moments In Appendix A.3.2 we
present a derivation where given that diffuse priors are specified for α and β on
their respective Stiefel manifolds and a usual diffuse prior on Σ one can derive
proper posteriors and existence of first and higher order moments.
For convenience we present here the reasoning, which proceeds as follows. Using
the parametrization Π = βΛα′ and the normalizing restrictions α′α = Ir, β

′β =
Ir and λ1 ≥ λ2 ≥ · · · ≥ λr ≥ 0 all parameters except λ1 are defined on
bounded sets (conditionally upon the (finite) value of λ1). A natural choice for
an uninformative prior is the uniform prior over these sets. Only λ1 is defined on
an infinite interval. A natural choice for λ1 that is consistent with the uniform
prior on the simplex for λ2, . . . , λr|λ1 is the exponential distribution. Another
way to look at this, is that although λ ∈ [0,∞) has infinite support, it can also
be transformed to the unit interval on which a uniform prior can be specified. By
doing so, all model parameters (except the covariance matrix Σ) are bounded to
finite areas. Specifically, when either the transformation λ[ = exp(−λ) ∈ (0, 1]
or λ] = 1− exp(−λ) ∈ [0, 1) is used and a standard uniform density is specified
on λ[ or λ] then λ also has a standard exponential distribution. Using a similar
argument the rate parameter θ could be included by specifying a uniform prior
on e.g. exp(−θλ). A note refers to the rate θ of the exponential distribution. By
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choosing θ to a value close to 0, the exponential distribution tends towards a
flat distribution over the positive real numbers.
We can summarize the results from this section as follows.

Proposition Given the standard form of a cointegration model and using a
lasso type shrinkage prior under orthogonal normalization on the parameters of
the matrix with reduced rank, the marginal posteriors of these parameters are
proper with finite first and higher order moments.

We emphasize that the cointegration model serves as an example of a general
reduced rank model but our result holds generally for this class of models. That
is, one may also apply it to the instrumental variable model and the factor model
when in these latter models one does not want to impose specific restrictions
like triangularity and/or diagonality.

4.3. Short survey of other regularization priors

Inequality conditions where data and economic information matters:
As explained in the previous subsection area restrictions play a useful role in
formulating prior information. Baumeister and Hamilton (2015) have carried
this issue further. These authors explore the effect of sign restrictions, com-
ing from broad economic considerations, on vector autoregressive models under
different identification conditions. They also explore the effect of weak prior in-
formation on implied impulse response functions. Apart from restrictions based
on economic relationships and characteristics, there exist data based inequality
conditions that can also be relevant as prior information. A simple example of
this is the restriction that autoregressive parameters in a dynamic model should
not be taken outside the unit interval since explosive time series are highly un-
likely for the long run because the occurrence of a regime change is then very
likely. An analogous point can be made for values of the autoregressive parame-
ters close to zero. From stylized facts of macroeconomic and financial time series
it is well-known that the relevant range of the autoregressive parameters is a
subinterval of the unit interval close to the unit root. For more details of the
locally uniform prior where the data play a role, we refer to the next section
and to Schotman and Van Dijk (1991b).

Dummy observations and training sample priors: One popular way to
make use of weak data-based prior information is to split the data into two
parts: a training set and a ‘hold-out’ set of data. In the first part the weak
prior is transformed to an informative posterior which serves as a prior for the
second part of the data and this leads to model validation and forecasting. For
an illustrative example we refer to the next section and for background to, e.g.
Berger et al. (2004). Another approach is to construct a so-called imaginary
sample by introducing a set of dummy observations. It yields a pragmatic class
of priors, proposed by Sims (2004, 2005). This approach can be combined with
a more informative prior approach, see below.
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Dynamic patterns for parameters: Given the dynamic nature of many
models in economics, it is very natural to allow not only the variables but also
the parameters of such models to move through time. However, simply adding
a subscript of time to an equation system parameter yields an intractable likeli-
hood since a T -dimensional integral is added to the Bayesian inferential problem.
The well-known Normal or Kalman Filter imposes in such a case a structure on
the dynamic parameters and it forms a pattern which yields a tractable likeli-
hood and posterior. The literature on this topic is abundant and we refer only to
two basic textbooks for more background: Pole et al. (1994) and Harvey (1990).
A related approach is the Minnesota prior, see Doan et al. (1992), which may be
characterized as a smoothness priors. This class of priors is meant to improve
forecasting properties by making use of stylized facts of macroeconomic time
series.
One may also explore the predictive implications of a prior. For instance, does
a weak prior on the equation system parameters give plausible prior values of
multipliers, impulse response function and/or periods of oscillations from an
implied business cycle. For an early reference we refer to Van Dijk and Kloek
(1980). The literature on this prior-predictive approach is substantial and a more
detailed analysis is outside the scope of the present paper.
We also mention an approach where the priors are anchored to some long
run plausible values. A basic approach was taken by Schotman and Van Dijk
(1991a,b) for the unit root case. It was extended by Villani (2009) to refer to
long run plausible values and recently again extended to be combined with a
dummy variable prior by Giannone et al. (2015). A similar idea is to connect
the prior to a plausible posterior-predictive analysis, see Gelman et al. (1996)
and Baştürk et al. (2014b).

Economic structural information: We end this brief survey by mentioning
the approach to add economic structural information like so-called DSGE priors
due to Del Negro and Schorfheide (2004), while Strachan and Van Dijk (2013)
combine economic information and technical econometric information.
We conclude that there are many useful approaches to explore the sensitivity
of the posterior and predictive results with respect to a sequence of weak priors
where the amount of prior information is gradually increasing. This will be
illustrated in the next section. Finally, we note that the issue of sensitivity of
weak priors and also prior choice is very much studied in the Bayesian literature,
see for instance Tuyl et al. (2008).

5. Model probabilities under regularization priors and possibly
irregular likelihoods

This section forms a bridge between the more theoretical analysis of the shape
of posterior densities for the reduced rank regression model with possibly ir-
regular likelihoods and the empirical analysis of a micro-econometric problem
on the education-income effect where we make use of mixtures of models. An
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important concern is how to give probabilistic weights to evidence that is near
and at the boundary of the parameter region of reduced rank models using
Bayesian methods. We show that, although the issue of weak identification is
not an impediment for showing posterior existence of distributions, very weak
prior information does play a major role for the evaluation of posterior and
predictive probabilities of evidence near and at a boundary of identification
and relevance of instruments. We illustrate that the Bartlett/Jeffreys/Lindley
paradox is not only a mathematical or statistical result but it shows up as a
problem when flat prior density kernels are assumed over regions where there is
little empirical evidence like near a boundary with weak instruments. This issue
was pointed out by Hoogerheide and Van Dijk (2013). Here a training sample
and weak economic information on area restrictions is recommended together
with a sensitivity analysis in order to obtain more robustness in the results. We
present two examples. One refers to a basic time series model where the likeli-
hood is regular but the prior interval contains many many irrelevant parameter
values. In order to save space, the issue of model evaluation without and with
regularization priors is discussed for this class of models in the Supplementary
material in Online Appendix, section A.4. The second example studies the effect
that an irregular likelihood due to a lack of identification and the presence of
weak instruments has on model probability evaluation within the context of an
IV model. These results are reported in Section 5.1. Armed with these results,
we continue in the next section with an empirical analysis using a mixture of
models with mixing probabilities coming from evidence near and at a boundary.

5.1. IV Model probabilities under alternative identification and
endogeneity structures using training sample priors

In this subsection we apply the predictive likelihood approach, see Gelfand and
Dey (1994) and Eklund and Karlsson (2007), to simulated data from the IV
model. Our purpose is show that, although the posterior densities in an IV
model with diffuse type priors and weak instruments/identification are very
non-regular and require special simulation based procedures to evaluate their
shape, it is relatively easy to evaluate posterior/predictive probabilities near and
at the boundary using reasonable area restrictions and training sample priors.
In the next section a mixture of posteriors under endogeneity and exogeneity
for the IV model is estimated using US data.
In the present subsection we investigate the robustness of the results on esti-
mating predictive probabilities for the case of no endogeneity for different levels
of endogeneity, different levels of empirical identification and different lengths
of training samples, where the total number of observations is 1000 for each
simulated dataset. We will use the basic structural IV model from Section 3,
see also Appendix A.3.3. For simplicity and for computational convenience we
take the case of one endogenous variable and one instrument, where β = 0 and

Σ =

(
1 ρ
ρ 1

)
and the parameter ρ indicates the degree of endogeneity with

ρ = σ12/
√
σ11σ22. We restrict the parameters to a plausible finite region.
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Left panel of Table 1: For the cases of strong and medium instruments/identification
and strong and medium level of endogeneity the posterior probability Pr(ρ =
0 | data) is correctly chosen as zero, given the 50% training sample. That is, let
y? be the training sample and ỹ be the validation sample, then Pr(ρ = 0 | y?, ỹ)
is much smaller than Pr(ρ = 0 | y?), since the data ỹ contain much evidence
about ρ being not equal to zero. For the bottom row, it holds that π = 0 implies
that β,Σ, ρ are not identified. That is, the data contain no information on ρ and
thus the posterior probability Pr(ρ = 0 | data) is equal to the prior probability
Pr(ρ = 0) = 50%.
For the right hand column one would expect that Pr(ρ = 0 | data) = 1. How-
ever, the situation is as follows. Given y? and ỹ, Pr(ρ = 0 | y?) using 50% of data
is already rather precisely located around ρ = 0, with a standard deviation only
about

√
2× larger than for Pr(ρ = 0 | y?, ỹ). This implies Pr(ρ = 0 | y?, ỹ) =√

2Pr(ρ = 0 | y?) which leads to Pr(ρ = 0 | data) =
√

2/(1 +
√

2) ≈ 0.586. 2

Middle panel of Table 1: The results in the upper left corner are as ex-
pected: ≈ 0%. Similarly, the results in the bottom row are: ≈ 50%. The results
in the right column follow from Pr(ρ = 0 | data) ≈

√
1/m/(1 +

√
1/m) =√

1/10/(1 +
√

1/10) ≈ 0.760.

Right panel of Table 1: Again the results in the upper left corner are as
expected: ≈ 0%. Next, the advantage of very small training sample m is shown
at the top of the right column: Pr(ρ = 0 | data) is close to 1, which is the true
value given that ρ = 0. The disadvantage of a very small m is recognized as
a case of Bartlett/Jeffreys/Lindley paradox. That is, the false null hypothesis
ρ = 0 is wrongly favored in the bottom row and in the third column of results.
The reason is that Pr(ρ = 0 | y?) after only 5 of 1000 observations is still very
diffuse. That is, more diffuse than Pr(ρ = 0 | y?, ỹ) after 1000 observations.
The conclusions of Table 1 may be summarized as follows.

In the interior of the parameter region. For the cases of strong and
medium instruments and strong and medium level of endogeneity the posterior
probability Pr(ρ = 0 | data) is correctly chosen as zero for several values of the
length of the training sample.

At the boundaries of the parameter region. For the bottom row, which
refers to the case of no identification/irrelevant instruments, the estimated pos-
terior probability Pr(ρ = 0 | data) is sensitive for the length of the training
sample. A training sample of less than 10 percent should not be selected. For
the right hand columns in all three panels, which refers to the case of no en-
dogeneity, the estimated posterior probability Pr(ρ = 0 | data) is also very
sensitive to the length of the training sample. A small training sample and a
large validation sample are to be recommended in this case.

2Given a training sample fraction equal to m and given a normal distribution with mean
ρ = 0, stdev = const /

√
#data, one has Pr(ρ = 0 | y?, ỹ) =

√
1/m × Pr(ρ = 0 | y?) and

Pr(ρ = 0 | data) =
√

1/m/(1 +
√

1/m) = 1/(1 +
√

1/m).
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Near the boundaries of the parameter region. This refers to the third
column and third row in each of the three panels. Here there also exists a trade-
off between the case of weak instruments/identification and the case of weak
and no endogeneity. In the case of weak instruments/identification one would
prefer a large training sample to get informative priors while for the case of no
endogeneity a small training sample so that most of the data can be used for
validation.
It is clear evidence from the results of the Table that the choice of a ‘prior data’
percentage m is important. The advantage of the predictive likelihood approach
is that m is a scalar. This may be easier to choose than specifying an entire not
‘too non-informative or not too informative’ prior density. The problem of pre-
dictive likelihood remains: How to choose this scalar m? A practical sensitivity
analysis is: simply show results for multiple values of m and find the interval of
m values where results are ‘similar’.

General conclusion of Section 5. The evaluation of predictive model prob-
abilities under weak prior information and near a boundary of the parameter
region gives correct results which are relatively robust under the condition of
choosing the right training sample. A sensitivity analysis is recommended for
the length of the training sample. In extreme cases very near and at the bound-
ary with weak identification one should be very careful with strong conclusions.
More informative priors are then to be recommended.

6. Bayesian mixtures to analyze the effect of length-of-education on
earned income in US states

In this section, we present and apply a predictive likelihood approach for model
comparison or model combination to the Angrist and Krueger (1991) data on
income and education, which are also analyzed in Hoogerheide and Van Dijk
(2008). Angrist and Krueger (1991) data consist of men born in the US during
the periods 1920-1929, 1930-1939 and 1940-1949, where the data for the first
group are collected in 1970, and the data for the last two groups are collected in
1980.3 We use a subset of their data, consisting of men born during the period
1930-1939, including the data on weekly wages, number of completed years of
education and instruments consisting of quarter of birth dummies. The data
include 51 states and 329.509 observations.4 The IV model applied to data from

3For an introduction to a Bayesian analysis of an IV model using real and simulated data,
we refer to the Supplementary Material in the Online Appendix A.1.

4The source of the data is the 1980 Census, 5 percent public sample, also available
from econ-www.mit.edu/faculty/angrist/data1/data/angkru1991. We refer to the online
appendix for a summary of these data.

econ-www.mit.edu/faculty/angrist/data1/data/angkru1991
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each state is5:

ỹi = α1 + x̃iβ +

9∑
t=1

Dt,iδt + ε̃i (6.1)

x̃i = α2 +

4∑
q=2

Dq,iΠq +

9∑
t=1

Dt,iδt + ν̃i (6.2)

where ỹi and x̃i are the natural logarithm of the weekly wage and the number
of completed years of education for the person i in 1979, respectively.
In (16) and (17), Dt,i for t = {1, . . . , 9} are the dummy variables for year of birth
which take the value 1 if individual i was born in year 1929+ t, and 0 otherwise.
Dq,i for q = {2, 3, 4} are the quarter of birth dummy variables which take the
value 1 if individual i was born in quarter q, and 0 otherwise. α1 and α2 are
constants, and ε̃i and ν̃i are disturbances assumed to be normally distributed,
and independent across individuals.
The model in (16) and (17) is similar to the model of Hoogerheide and Van
Dijk (2006). For simplicity, we do not consider interactions of year dummies and
quarter of birth dummies as instruments. Furthermore, the model employed here
does not include state dummies, as each state is analyzed separately. We simplify
the IV model in (16) and (17) correcting for the constant terms and exogenous
year of birth dummies. Using this simplification, the IV model becomes:

yi = xiβ + εi, (6.3)

xi = ZiΠ + νi, (6.4)

where yi, xi are the residuals from regressing the log weekly wage and years of
education on a constant and year of birth dummies, respectively. Zi is the 3× 1
vector of instruments, obtained from regressing quarter of birth dummies on a
constant and the year of birth dummies. εi and νi are the error terms that have
a joint normal distribution, and are independent across individuals.

6.1. Bayesian model mixtures using predictive model probabilities

In order to calculate the predictive model probabilities, we define two models M0

and M1, where M0 is a nested model compared to M1. In the IV model example,
M1 corresponds to the IV model while the nested model M0 corresponds to M1

with a parameter restriction: ρ = 0. The posterior odds ratio K01 for comparing
M0 with model M1 is the product of the Bayes factor and the prior odds ratio:

K01 =
p (Y |M0)

p (Y |M1)
× p (M0)

p (M1)
, (6.5)

5In order to keep the notation simple, we do not define an index for each state, but note
that the described IV model is applied to each US state separately.
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where Y is the observed data, and the prior model probabilities (p (M1) , p (M0)) ∈
(0, 1)× (0, 1) and p (M1) + p (M0) = 1.
It is often difficult to compute K01 since the marginal likelihoods are given
by the following integrals: p (Y |M0) =

∫
θ−ρ

` (ρ = 0, θ−ρ) p0 (θ−ρ) d (θ−ρ) and

p (Y |M1) =
∫
θ−ρ,ρ

` (ρ, θ−ρ) p (ρ, θ−ρ) d (ρ) d (θ−ρ), where θ−ρ are the model

parameters apart from ρ. We therefore calculate model probabilities using the
Savage-Dickey Density Ratio (SDDR). Dickey (1971) shows that the Bayes fac-
tor can be calculated using a single model if the alternative models are nested
and the prior densities satisfy the condition that the prior for θ−ρ in the re-
stricted model M0 equals the conditional prior for θ−ρ given ρ = 0 in the model
M1, i.e. p1 (θ−ρ | ρ = 0) = p0 (θ−ρ)

6. In this case, (20) becomes:

K01 =
p(ρ = 0 | Y,M1)

p(ρ = 0 |M1)
× p (M0)

p (M1)
, (6.6)

where p(ρ | Y ) =
∫
p(ρ, θ−ρ | Y )dθ−ρ and p(ρ) =

∫
p(ρ, θ−ρ)dθ−ρ

7. We per-
form the model averaging scheme using the model probabilities in Section 5.
Specifically, given the posterior odds ratio, it is possible to weight the evidence
of alternative models using Bayesian Model Averaging (BMA). We consider the
effect of model uncertainty on the estimation of the parameter β, as this param-
eter is the main focus in most cases. The information about β is summarized
by the following posterior:

p (β | Y ) = p (β | Y,M0) p (M0 | Y ) + p (β | Y,M1) p (M1 | Y ) . (6.7)

Furthermore, functions of parameters, i.e. g (β) in the IV model are estimated
by:

E[g (β | Y )] = E[g (β | Y,M0)]p (M0 | Y ) + E[g (β | Y,M1)]p (M1 | Y ) . (6.8)

Hence both models under consideration should be estimated, and the inference
on parameters is simply the weighted average of the results in both models. The
weights in averaging the results are the posterior model probabilities.

6.2. Empirical results

The degree of instrument strength (indicated by posterior densities of Π2, Π3

and Π4) differs substantially across states, as reported in Hoogerheide and Van
Dijk (2006). A second source of heterogeneity across states is the degree of
endogeneity (indicated by posterior ρ). For some states, such as Maine, Min-
nesota and Texas, 95% intervals for posterior ρ densities do not include point 0,

6Notice that the condition for SDDR holds if we define the prior for θ−ρ in the restricted
model equal to the conditional prior of θ−ρ given ρ = 0 in the unrestricted model.

7As a generalization, Verdinelli and Wasserman (1995) show that K01 is equal to the
Savage-Dickey density ratio in (21) times a correction factor when the prior condition fails.
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while for the rest of the states 95% posterior intervals of ρ include the value 0.
Besides the finding of heterogeneity across states, we conclude that the use of
instruments may not be necessary for most states. For further details of these
estimation results we refer to the online appendix.
Posterior means for the degree of endogeneity of ρ in the IV model, and the
predictive model probabilities for model M0, corresponding to the model with
ρ = 0 in which the instruments are not used for the estimation of β, are given in
Figure 8. For the predictive model probabilities, the training sample consists of

Fig 8: Degree of endogeneity in the US states and predictive model probabilities
for model M0. M0 denotes the model with ρ = 0 in which no instruments are
used for the estimation of β.

Posterior mean ρ for US states Model probabilities for the model M0

(ρ = 0) for US states

a randomly chosen subset of 10% of the observations, prior model probabilities
in (21) are chosen to be equal. Furthermore, the effect of the training sample
choice is partially eliminated by averaging predictive model probabilities from
20 different random training samples.8

Model probabilities are quite close to 0.5 and do not show a clear preference for
either model, except for a few states such as Texas and Tennessee. For Texas,
model probabilities indicate that the IV model is necessary. For Tennessee on
the other hand, we find strong evidence against the need for the IV model.
We conclude that choosing one of the alternative models according to these
probabilities can be quite inaccurate, and employ model averaging to infer the
state-specific effects of income on education.
We next present how average effects of education on income can be inferred
using the model probabilities. The average estimated effects of education on

8The results with 5% and 25% training sample sizes and a single training sample were
similar, except for some states with very small number of observations, such as South Dakota.
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income for the US states, i.e. the posterior distributions resulting from BMA,
are summarized in Table 2. Model probabilities are achieved by using training
sample with 10% of the observations, averaged over 20 repetitions. The main
advantage of model averaging is the improved efficiency of the estimates. Stan-
dard deviations of posterior β draws are less than half of those achieved by the
IV model only.

Regional patterns in income-education relationship - analysis of US
divisions: We further analyze the income-education relationship in US divi-
sions. We apply the IV model in (18) and (19) to 9 divisions for the Angrist
and Krueger (1991) data according to the Census Bureau designated areas. The
purpose of this analysis is to compare the results in terms of instrument strength
with those of Hoogerheide and Van Dijk (2006), who show that quarter of birth
dummies are strong instruments mainly in southern states. Furthermore, we
document the effect of averaging the data within divisions or regions.
Table 2 reports posterior results of the IV model for US divisions. Similar to
the state-specific results, census regions show heterogeneity both in terms of in-
strument strength and the degree of endogeneity. Posterior results for education
effects on income are quite different across divisions. Especially for the West
North Central division, the posterior standard deviation is quite high, indicat-
ing the relatively weak instruments in this division. Figure 9 presents posterior
mean ρ and model probabilities for M0, the model with ρ = 0 in which no in-
struments are used for the estimation of β. The training sample consists of 25%

Fig 9: Degree of endogeneity in the US divisions and predictive model probabil-
ities for model M0. M0 denotes the model with ρ = 0 in which no instruments
are used for the estimation of β.

Posterior mean ρ for US divisions Model probabilities for the model M0

(ρ = 0) for US divisions
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Table 2
Income-education effects in US states

Average effects of education on income

State Mean Std. Dev. State Mean Std. Dev. State Mean Std. Dev.

AL 0.11 0.03 LA 0.09 0.04 OH 0.08 0.04
AZ 0.11 0.03 ME 0.09 0.03 OK 0.04 0.03
AR 0.07 0.02 MD 0.05 0.03 OR 0.05 0.10
CA 0.05 0.01 MA 0.21 0.09 PA 0.11 0.03
CO 0.07 0.02 MI 0.08 0.03 RI 0.07 0.03
CT 0.06 0.04 MN -0.06 0.08 SC 0.12 0.03
DE 0.02 0.05 MO 0.07 0.03 SD 0.16 0.07
DC 0.10 0.04 MS 0.09 0.04 TN 0.07 0.01
FL 0.13 0.05 MT 0.04 0.04 TX 0.16 0.06
GA 0.12 0.02 NC 0.08 0.02 UT 0.09 0.07
HI 0.08 0.04 NC 0.09 0.04 VT 0.06 0.03
ID 0.05 0.06 NE 0.03 0.09 VA 0.08 0.04
IL 0.05 0.08 NH 0.09 0.04 WA 0.10 0.09
IN 0.04 0.03 NJ 0.09 0.03 WV 0.06 0.03
IA 0.15 0.12 NM 0.05 0.05 WI 0.05 0.03
KS 0.08 0.03 NV 0.03 0.06 WY 0.04 0.06
KY 0.07 0.01 NY 0.08 0.03

Parameter estimates
β Π2 Π3 Π4 ρ

New England Division 0.11 0.09 0.17 0.21 -0.16
(0.05) (0.04) (0.04) (0.04) (0.23)

Middle Atlantic Division 0.07 0.07 0.03 0.03 0.03
(0.07) (0.02) (0.02) (0.03) (0.31)

East North Central Division -0.03 0.07 0.02 0.08 0.36
(0.08) (0.02) (0.02) (0.02) (0.25)

West North Central Division 0.02 -0.06 0.01 0.02 0.15
(0.13) (0.04) (0.04) (0.04) (0.40)

South Atlantic Division 0.11 -0.01 0.14 0.22 -0.18
(0.03) (0.03) (0.03) (0.03) (0.16)

East South Central Division 0.09 0.03 0.27 0.41 -0.13
(0.02) (0.04) (0.04) (0.04) (0.12)

West South Central Division 0.12 -0.04 0.20 0.30 -0.29
(0.02) (0.04) (0.04) (0.03) (0.11)

Mountain Division 0.01 0.20 0.14 0.18 0.21
(0.08) (0.05) (0.06) (0.06) (0.30)

Pacific Division 0.04 0.23 0.21 0.11 0.08
(0.05) (0.04) (0.04) (0.04) (0.23)

Note: The top panel reports means and standard deviations of effect of education on
income, resulting from BMA, for the US states. The bottom panel reports posterior means
for 9 US divisions. All results are based on 30000 draws (3000 burn-in). Estimated posterior
standard errors are reported in parentheses.

of the observations9. Predictive model probability for the nested model without

9We experimented with the model using smaller training samples, and the results are quite
insensitive to the training sample size.
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instruments is far from 0.5 only for two regions: East North Central Division,
and West South Central Division. In East North Central division, the model
without instruments is favored by model probabilities. Notice that the states
within this region are quite heterogeneous in terms of predictive model prob-
abilities reported in Figure 8. The IV model is clearly necessary only for two
states in this region, namely Arkansas (AR) and Texas (TX). Hence ‘average’
income-education relationship within this region is determined mainly by these
two states. This problem is also seen in East North Central division. According
to posterior model probabilities in Figure 8, this region consists of states where
an IV model is clearly preferred, such as Minnesota (MN) and South Dakota
(SD), and also states where the IV model is not necessary, such as Iowa (IA).
Hence the ‘average’ model probability for this region reported in Figure 9 is
misleading.
For the US data on the income-education relationship, we conclude that there
is substantial heterogeneity in the effect of the length of years of education on
earned income. We document that differences between states are characterized
by different instrument strengths, as reported by Hoogerheide and Van Dijk
(2006). Our results also show that the degree of endogeneity is different across
states and regions.
Using this data set we have shown different, and mostly weak power of quarter of
birth in explaining education. This finding, in combination with the not so severe
problem of endogeneity makes it hard to assess whether the IV model should be
preferred over a simpler and more parsimonious linear regression model without
instruments. Hence we conclude that averaging over these alternative models is
a reasonable way to deal with model uncertainty.
General conclusion of section 6 We have shown that the effect of length
of education on earned income differs considerably among almost all US states.
This may have important policy implication of determining the length of re-
quired schooling. This issue should be investigated in more detail.

7. Conclusions and perspectives

We have sketched in this paper an approach using Bayesian mixtures to average
over those states of an econometric model which are known as near a boundary
and at a boundary with the purpose to obtain more precise structural inference,
accurate forecasting and effective policy analysis. In order to do this several
results have been established. There exists a common structure in three well-
known econometric models where the matrix of equation system parameters has
reduced rank. The case of a reduced rank can be interpreted as a boundary in
the parameter space. The econometric models are the cointegration, instrumen-
tal variables and factor model. Using a flat prior, the effect that the reduced
rank has on the shape of the likelihood/posterior has been studied for a general
workhorse model, that is equal to a cointegration model. Marginal posterior
densities of equation parameters are of the student-t type times a polynomial or
rational function. Their shapes may contain ridges due to weak identification,
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be bimodal and have very fat tails. These posteriors can get nicer properties
(such as finite higher order moments) when extra restrictions are imposed like
triangular ones for the instrumental variable model and a diagonal covariance
matrix for the factor model. But their shapes may still be strongly non-elliptical.
In order to obtain meaningful posterior and predictive probabilities of states near
and at the boundary of a reduced rank, weak regularization priors are discussed
and compared. These are dealing with area restrictions, smoothness properties
and training samples. As a novel class we introduce a lasso type shrinkage prior
combined with orthogonal normalization which restricts the range of the pa-
rameters in a plausible way. A sensitivity analysis with respect to a sequence of
weak priors is recommended.
The conditional posterior and predictive probabilities of different states of the
econometric model near and at the boundary can then be used to estimate
Bayesian mixture processes of several relevant economic and econometric is-
sues.
We end this paper with listing some perspectives. The Bayesian approach to
econometrics is now dominant in the field of macroeconomics. This is due to
the pioneering work by Sims and his co-workers on Bayesian analysis of vector
autoregressive models. The basic paper is Sims (1980) and an incomplete list
of a few recent references are Sims and Zha (1998), Primiceri (2005) and Del
Negro and Schorfheide (2011). An extension is to use more complex economic
model structures like Dynamic Stochastic Equilibrium models, see Herbst and
Schorfheide (2015). Complex cointegration models and inferential issues of these
models have been studied extensively as well. Within this literature, we refer to
Strachan (2003) for parameter instability, Jochmann et al. (2013) and Sugita
et al. (2016) for regime-switching models, Jochmann and Koop (2015) for struc-
tural breaks, Koop et al. (2011) for time-varying parameter models and Chan
et al. (2017) for cointegrating rank variations. Also in the fields of finance and
marketing the Bayesian approach is becoming the dominant one. More details
are presented in the Handbook of Bayesian Econometrics, Geweke et al. (2011),
We emphasize another perspective. There exists already much research to extend
the analysis of this paper to models with time varying mixtures and to connec-
tions with expert systems and machine learning. See, among others, Frühwirth-
Schnatter (2006), Chan et al. (2012), Billio et al. (2013), Casarin et al. (2015)
and Baştürk et al. (2016a).
All these extensions require a much more algorithmic approach to evaluating
posterior probabilities of parameters and unknown unobserved states. Simu-
lation based Bayesian Econometrics (SBBE) should be developed even more
than already done so using modern software like parallel algorithms, filtering
methods and modern hardware like clusters of machines of GPU processing.
Developing operational methods useful for Bayesian empirical econometrics will
lead to more insight in structural analysis, more accurate forecasting and more
effective policy analysis with implied probabilistic components.
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Appendices. Supplementary Material (Online Appendix)

A.1. Appendix for Section 2: Introduction to Bayesian analysis of
instrumental variables in order to measure the effect of
length-of-education on earned income in the USA

A.1.1. Introduction

A well-known example of the use of instrumental variables in econometrics is
the measurement of the effect of length-of-education on income, the (monetary)
return on education.10 Measuring this effect is a matter of great importance
for several decision processes. For example, the results of such analysis are rel-
evant for government agencies responsible for compulsory schooling laws, for
school districts considering changes in school entrance policies and also for par-
ents deciding when to enroll their children to school. However, a problem is
that intellectual capabilities, which are usually not observed, not only influence
education but also directly affect income. Therefore, a simple regression of in-
come on the number of years of education may lead to incorrect conclusions.
For example, more intelligent students find school less difficult and may choose
to obtain more schooling to signal their high ability. So, even if extra years of
education have no effect on income, people with higher education will on aver-
age have higher incomes because of their higher abilities. Therefore, one may
expect that an ordinary regression of income on the years of education leads to
an upward bias, i.e. an overestimated effect of education on income. Further, the
(often unobserved) intellectual capabilities, income and education level of the
parents may also cause an upward bias, as the parents’ characteristics may also
influence the education level and have a direct effect on income. For example, it
may be the case that children of more intelligent and higher educated parents
on average learn more at home. Another problem is the measurement error in
reported education. First, usually only the completed (integer) number of years
of education is reported. Second, people may misreport their education spell11.
If the measurement error would be the only problem, one would expect that a
simple regression of income on education would result in a downward bias, i.e.
an underestimated effect of education on income, as the part of the variation in
education that is merely due to measurement error does not lead to variation
in income.
A method for solving these problems is the use of instrumental variables. These
instrumental variables must be correlated with education but uncorrelated with
latent capabilities (and measurement errors). Intuitively, in this way one fo-
cuses on the direct effect of education on income, while other effects on income
are filtered out. However, it is hard to find variables that are correlated with
education but uncorrelated with intellectual capabilities. Angrist and Krueger

10This subsection is based on Hoogerheide (2006).
11Siegel and Hodge (1968) find that the correlation between individuals’ education reported

in two surveys is only 0.933.
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Fig A.1: Measuring the effect of education on income: simple regression of (loga-
rithm of) income on education (left), or using quarter of birth as an instrumental
variable (right).

(1991) use American data and suggest using quarter of birth to form instrumen-
tal variables. These instruments exploit that students born in different quarters
have different average education spells. This results since most school districts
require students to have turned age six by a certain date, a so-called ‘birthday
cut-off’ which is typically near the end of the year, in the year they enter school,
whereas compulsory schooling laws compel students to remain at school until
their sixteenth, seventeenth or eighteenth birthday. This asymmetry between
school-entry requirements and compulsory schooling laws compels students born
in certain months to attend school longer than students born in other months:
students born earlier in the year enter school at an older age and reach the legal
drop-out age after less education. Hence, for students who leave school as soon
as the schooling laws allow for it, those born in the first quarter have on average
attended school for three quarters less than those born in the fourth quarter.
Angrist and Krueger (1991) use three data sets on men born in three decades,
emphasizing results for the data set on 329509 men born in the years 1930-
1939. This data set contains the number of completed years of education and
the logarithm of weekly earnings in 1979. Figure A.1 illustrates the difference
between simply regressing income on education and using quarter of birth to
form an instrumental variable. The left panel shows how the effect of education
on income is estimated by simple regression. The estimate is the steepness of
the regression line, the line which minimizes the sum of squared (vertical) de-
viations of points from this line. For all data of the US this estimate is 0.0709:
each added year of education results on average in a 7.09% increase in income.
However, this method may overestimate or underestimate the effect of educa-
tion on income because of latent intellectual capabilities or measurement errors,
respectively. The right panel illustrates how the effect of schooling on earnings
can be estimated using quarter of birth as an instrument. The average edu-
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cation spell for men born in the first quarter is 12.6881 years, while for men
born in other quarters the average education spell is 12.7969. So, the schooling
laws imply that men born in the first quarter on average have 0.1088 years less
education than men born in the other quarters. Further, for men born in the
first quarter the average logarithm of income is 0.0111 (= 5.9027− 5.8916) less
than for those born in other quarters. In other words, men born in the first
quarter have on average an income that is (approximately) 1.11% lower than
men born in the other quarters. The key assumption is now that quarter of
birth only influences income because of its effect on education, so that we may
interpret the 1.11% difference in average income as a result of the difference in
average education spell of 0.1088 years: each added year of education results on
average in a 10.20% (= 0.0111/0.1088) increase in income. So, at first sight it
seems that if any bias exists in the simple regression, then this is a downward
bias: measurement errors in reported years of education may have caused an
underestimation of the return on education. However, in the above-mentioned
approaches we have only obtained estimates of the effect of education spell on
income, but we have no measure of the uncertainty on these estimates: we have
no lower and upper bounds between which the effect of education on income
lies (with a certain probability). In order to obtain such a probability interval
we must specify a model; this will be done in the sequel of this section.
First note that if the average education spell is exactly the same for those born
in the first quarter and the others, then the approach using quarter of birth as
an instrument does not work. In that case one can not identify the difference in
income per year of education, as this leads to a division by zero. This illustrates
that in instrumental variables models the problem of local non-identification
may occur: if the instrument (quarter of birth) has no effect on the explanatory
variable (education), then one can not identify the effect of the explanatory
variable on the variable that is to be explained (income) using this instrument.
Furthermore, if the average education spell is almost equal for those born in
the first quarter and the others, then there is obviously much uncertainty on
the estimated return on education. For in this case some changes of education
and/or income for a few persons would result in a quite different estimate of the
return on education. This kind of situation in which instruments only explain a
small fraction of the variation in (some of) the explanatory variables, is usually
referred to as the case of weak instruments. In fact, the difference in average
education spell of 0.1088 years is small as compared to the variation in educa-
tion spells across individuals (with education spells varying between 0 and 20
years, having a standard deviation of 3.28 years), so that the uncertainty on the
estimate of the return on education is obviously much larger in the approach
using quarter of birth as an instrument than in the simple regression. In other
words, much information is lost by merely using the averages of education and
income for the two quarter-of-birth groups; in the extreme case where the aver-
age education spell would be exactly the same for both groups, no information
on return on education would be left. So, although the systematic error (of over-
or underestimation) due to latent capabilities or measurement errors is avoided
by using instruments, this approach may result in probability intervals for the
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return on education that are so wide that they are of little practical use.
We consider a simple, illustrative model for the returns to schooling. First de-
fine Dquarter,i as the following 0/1 variable: Dquarter,i = 1 if person i is born in
quarter 2,3 or 4, and Dquarter,i = 0 if person i is born in quarter 1. The model
is as follows:

logwagei = β educationi + εi (A.1)

educationi = πDquarter,i + vi (A.2)

for i = 1, 2, . . . , T , where logwage, education and Dquarter are taken in devia-
tion from their means, so that no constant terms occur in (24) and (25). The
parameter β is the average effect of one extra year of education on income: on
average, one more year of schooling results in an increase of income of 100β %.
The parameter π is the difference in the mean education spell between men born
in quarter 2, 3 or 4 and men born in quarter 1. This is the case of exact identi-
fication in which there are as many instruments (only Dquarter) as explanatory
endogenous variables (only education). The error terms εi and vi are assumed
to be independent across observations and normally distributed:(

εi
vi

)
∼ N(0,Σ), Σ =

(
σ11 σ12

σ12 σ22

)
.

We specify the following non-informative prior density kernel of Drèze (1977):

p(β, π,Σ) ∝ |Σ|−h/2 with h > 0. (A.3)

In the remainder of this Appendix, a derivation is presented of the joint poste-
rior kernel of (π, β) and the marginal posterior kernel of β that follow from the
prior specification in (26). Figure A.2 shows the shapes of the joint posterior
kernel of (π, β) and the marginal posterior kernel of β (for the choice of h = 3)
on bounded domains for three data sets: data of all states of the US, data of
the state of New York, and joint data of the states of Kentucky, Tennessee and
Arkansas.
First it should be noted that in this case of exact identification, both the joint
posterior of (π, β) and the marginal posterior of β under the flat prior (26) are
improper on R2 and R, respectively: the integrals of the joint and marginal pos-
terior density kernel are infinite. Although improper on R2, the joint posterior
of (π, β) can be made proper by restricting β and/or π to a certain area. For
more details on the existence of posteriors of the IV model, we refer to Ap-
pendix A.3.3 and Zellner et al. (2014). It is seen for data of all states of the US
and for data of Kentucky, Tennessee and Arkansas that the joint posterior of
(π, β) has a clear peak away from π = 0. This indicates that a sufficiently large
difference in average education spell exists between men born in the first quar-
ter and the others, so that valuable results on the returns to schooling can be
obtained. In these cases the marginal posterior of β seems to have a bell-shape
(with a peak around β = 0.10). On the other hand, for data of the state of New
York the joint posterior kernel (π, β) displays a ridge around π = 0. In New
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Fig A.2: Contour plot of joint posterior density kernel of (π, β) (left) and
marginal posterior density kernel of β (right) for data of US (top, T = 329509)
the state of New York (middle, T = 29015), the states of Kentucky, Tennessee
and Arkansas (bottom, T = 23062).
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York there is no or little difference in average education spell between the two
quarter-of-birth groups, so that the instrumental variable (IV) approach gives
no or little information on returns to schooling. The parameter π can take val-
ues close to 0, and for these values of π the parameter β can take a wide range
of values; this reflects the local non-identification of β for π = 0. This leads to
a marginal posterior of β with fat tails. Notice that the data set of New York
even has somewhat more observations than the data set of Kentucky, Tennessee
and Arkansas, so that it is not the size of the data set that causes the difference
in the posterior of β. The only reason is the huge difference in strength of the
quarter-of-birth instrument between the states.
We refer to section 6 in the paper and Section A.6 for the applications of the
IV model to the Angrist and Krueger (1991) data for the case of all US states.

A.1.2. Illustrative posterior evidence near at at the boundary for NY State
under a flat and Jeffreys’ prior

We further investigate the evidence on a non-elliptical posterior density that
may occur in the IV regression model.12 We consider the simple, illustrative
model for the measurement of the effect of education on income for two different
data sets of Angrist and Krueger (1991) which were shown in Section 2 of the
paper. We illustrate the effect of instrument strength on the posterior shapes,
as the strength of the instrument differs considerably between the two data
sets. We also will compare the peculiar posterior shape under a flat prior with
the shape based on the Information Matrix or Jeffreys’ prior. This latter one is
a ‘regularization prior’ that in combination with the likelihood function yields
posteriors with more regular properties.
The marginal posterior of β under a flat prior is given by:

p(β|y, x, Z) ∝ [(y − xβ)′(y − xβ)]−(T−1)/2

[(y − xβ)′MZ(y − xβ)]−(T−k−1)/2
(A.4)

with MZ = I−Z(Z ′Z)−1Z ′, see Zellner et al. (2014), and the marginal posterior
of π 13 is given by:

p(π|y, x, Z) ∝ [(x− Zπ)′(x− Zπ)]−(T−1)/2 (π′Z ′MxZπ)−1/2 ×

×
(
π′Z ′M[y x]Zπ

π′Z ′MxZπ

)−(T−1)/2

. (A.5)

These posterior densities have two peculiar properties:

(a) Local non-identification at π = 0: The marginal posterior of π has
an asymptote at π = 0 because of the term (π′Z ′MxZπ)−1/2. In the case

12This subsection is based on Hoogerheide and Van Dijk (2008).
13For comparison with the earlier section we use here the symbol π where later in the

appendix we make use of the capital Π.
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of k = 1 instrument, the posterior is not integrable except on a bounded
domain.

(b) Regular posterior behavior of β when irrelevant instruments are
added: The marginal posterior of β becomes tighter if (possibly irrelevant)
instruments are added. Moments exist up to the order of overidentification
(k − 1); for k = 1, the marginal posterior of β is improper. This result
appeared in an informal way in Maddala (1976), commenting on Drèze
(1976). For a derivation see, Zellner et al. (2014).

The local non-identification of β when π = 0 is most easily seen from the
restricted reduced form corresponding to the structural form (24)-(25):(

yi
xi

)
=

(
β
1

)
π′ zi +

(
v1i

vi

)
(A.6)

with v1i = viβ + εi and (v1i, vi)
′ ∼ N(0,Ω).

The left panel in Figure A.3 illustrates this feature for the data of the state of
New York and the whole US. For the joint posterior kernel of β and π for New
York state data, a substantial ‘ridge’ is visible at π = 0; the marginal posterior
of π is completely dominated by the asymptote at π = 0. On the other hand, for
the US data, the shapes are nearly elliptical, which reflects that in this case the
quarter-of-birth instrument is less weak. The peak around the posterior mode14

is high compared with the ridge around π = 0, so that the latter is not visible
in this graph of the kernel of the joint posterior density.
We now consider the Information Matrix or Jeffreys’ prior. This Jeffreys prior,
the square root of the determinant of the information matrix, is given by:

p(β, π,Σ) ∝ |Σ|−2 (π′Z ′Zπ)1/2 σ
−(k−1)/2
22.1 (A.7)

with σ22.1 = σ22−σ2
12/σ11, for the structural form (24)-(25), or equivalently by:

p(β, π,Ω) ∝ |Ω|−2 (π′Z ′Zπ)1/2 ((β 1)Ω−1(β 1)′)(k−1)/2 (A.8)

for the corresponding restricted reduced form (29); see Appendix A of Hooger-
heide et al. (2007a) for a derivation of this prior.
The factor (π′Z ′Zπ)1/2 is 0 for π = 0, which reflects that in the restricted
reduced form β only occurs in the product πβ, so that for π = 0 the model
contains no information on β. Hence for π = 0 the likelihood is constant over
values of β, so that the first and second order derivatives of the log-likelihood
with respect to β are zero, and the determinant of the information matrix, mi-
nus the expectation of the Hessian of the log-likelihood, is 0 for zero values of
π.
Intuitively speaking, the factor (π′Z ′Zπ)1/2 in the prior ‘cancels’ the asymptote
of the posterior at π = 0.
The ((β 1)Ω−1(β 1)′)(k−1)/2 factor in the prior influences the tail behavior of

14In this simple example, the posterior mode is given by (β, π) = (β̂2SLS , π̂OLS) =
(y′z/x′z, x′z/z′z).
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Fig A.3: Posterior density kernels for IV models for measurement of the effect
of income on education (β) using the difference in mean education between men
born in quarters 2-4 and quarter 1 (π). The figures show the posterior kernel of
(β, π). At the axes, marginal posteriors of β and π are shown.

Posterior density kernel
p(β, π | data) under diffuse
priors

Posterior density ker-
nel p(β, π | data) under
Jeffreys’ prior



Baştürk, Hoogerheide, Van Dijk/Bayesian Analysis of Boundary and Near-Boundary Evidence44

the marginal posterior of β and makes it independent of the number of instru-
ments k such that it has Cauchy type tails.
Note that for k = 1 instrument the Jeffreys prior (30) reduces to

p(β, π,Σ) ∝ |Σ|−2|π|, (A.9)

which is simply the diffuse prior in (26) with h = 4 multiplied with |π|. One
interpretation of the Information Matrix or Jeffreys’ prior is that a priori one
prefers a strong instrument; that is, π is preferred to be large (in absolute sense).
An intuitively appealing explanation is that this Jeffreys prior is just a ‘regular-
ization prior’ that does not immediately reflect prior beliefs, but in combination
with the likelihood function yields posteriors with desirable properties (in the
sense that the aforementioned peculiar properties resulting from the diffuse prior
do not occur).
Note that also for k > 2 the factor (π′Z ′Zπ)1/2 in the prior takes high values (in
absolute sense) for large elements of π, while in this case the ((β 1)Ω−1(β 1)′)(k−1)/2

factor takes high values for (in absolute sense) large values of β. In the likeli-
hood of the (restricted reduced form of) the IV model, it is the occurrence of
the product πβ that causes points (π, β) with π and β both attaining extremely
large values to have small posterior probability.
The right panel of Figure A.3 illustrates the posterior shapes under the Jeffreys
prior for the data of New York state and the US. For the US data, the graphs
look similar to the graphs under the diffuse prior, except for the disappearance
of the asymptote at π = 0 for the marginal posterior of π. For the New York
state data, the differences with the posterior shapes under the diffuse prior are
huge. Under the Jeffreys prior, there is no ridge or asymptote at π = 0, and the
tails of the marginal posterior of β are thinner (and integrable). Also note that,
although the joint posterior kernel of β, π tends to 0 for π → 0, the marginal
posterior of π does not drop in neighborhoods of π = 0: for π → 0 the lower
values of the posterior density kernel p(β, π|y, x, Z) are compensated by the fact
that for π → 0 the posterior p(β, π|y, x, Z) becomes less sensitive with respect
to changes in β, as β only occurs in the likelihood in the product πβ. In other
words, the marginal posterior probability mass of π does not decrease for π → 0,
this posterior probability mass is just spread over a wider range of values for
β. Finally, note that although the Jeffreys prior ‘cures’ some of the peculiar
properties under the diffuse prior, the posterior may still display non-elliptical
shapes such as bimodality. In the main text of this paper we argue that other
regularization priors are more suitable, see Sections 4 and 5 of the main text.

A.2. Appendix for section 2: Other examples about non-elliptical
shapes of posteriors and predictive densities

A.2.1. More background on similarity of mathematical structure and posterior
shapes in IV model and Vector Error Correction Model

We further illustrate the result in Section 2 that the similar mathematical struc-
ture of the instrumental variable model and the vector autoregressive model un-
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Fig A.4: A Highest Posterior Density credible set for the parameters α1, α2,
β̃ in the VECM under a diffuse prior for simulated data from a VECM with
α1 = −0.05, α2 = 0.05, β̃ = 1 (left); the simulated data from the VECM
(middle); an HPD credible set in an IV model in a similar simulation experiment
(right).

der cointegration restrictions leads to similar posterior shapes. Consider again
the restricted reduced form of an IV model with 2 instruments z1i, z2i (i =
1, . . . , N), and a simple vector error correction model (VECM) under a cointe-
gration restriction for 2 variables y1t, y2t (t = 1, . . . , T ):

IV:

(
yi
xi

)
=

reduced rank︷ ︸︸ ︷(
β
1

)
(π1 π2)

(
z1i

z2i

)
+

(
v1i

vi

)

VECM:

(
∆y1t

∆y2t

)
=

︷ ︸︸ ︷(
α1

α2

)
(1 − β̃)

(
y1,t−1

y2,t−1

)
+

(
ε1t

ε2t

)
which have in common that they contain a parameter matrix with reduced
rank. In both models, local non-identification plays a role. In the IV model,
the parameter β is not identified for π1 = π2 = 0, whereas in the VECM the
parameter β̃ is not identified for α1 = α2 = 0.
We show a simulation experiment with α1 = −0.05, α2 = 0.05, β̃ = 1, so that
there is slow adjustment towards the cointegration relation y1 = y2, (ε1t, ε2t) ∼
N(0, I), for a rather small data set (T = 50). The left panel of Figure A.4 shows a
Highest Posterior Density (HPD) credible set for (α1, α2, β) under a diffuse prior
similar to the diffuse prior for the IV model, for −0.5 < αj < 0.5 (j = 1, 2),

−10 < β̃ < 10. The middle panel of Figure A.4 shows the simulated data
from the VECM. The right panel shows approximately the same non-elliptical
posterior shapes for a similar simulation experiment in the IV model.
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Fig A.5: 10-day ahead return and 1% Value-at-Risk forecasts using direct sim-
ulation of returns (black lines) and simulation of only ‘high loss’ price paths

A.2.2. Other empirical examples on non-elliptical shapes

2-regime mixture model for US GNP growth: As a different empirical
example (that does not involve the IV model) of a ‘non-standard posterior’
under flat priors, we consider a 2-regime mixture model for US GNP growth.
On purpose we show here a case where the model is different than the class
of reduce rank models. This is done to indicate that non-elliptical densities
occur in many empirical econometric models. This model was also analyzed
in Hoogerheide (2006) (Ch. 3), where percentage growth in US GNP has two
mean levels:for t = 1 . . . , T , where p ∈ (0, 1), εt ∼ N(0, σ2) and β1 < β2 for
identification.

yt =

{
β1 + εt with probability p,
β2 + εt with probability 1− p. (A.10)

Figure A.7 presents the highest posterior density credible sets for the model
parameters in (33) together with the marginal posterior densities (illustrated
by histograms of draws from these densities) of (β1, β2, σ, p). The effect of the
strongly non-elliptical shape on forecasting and policy advice constitutes an
important topic for future research.

Value-at-Risk forecasts of stock returns: As a third empirical example we
consider a model for forecasting 10-day ahead value-at-risk (VaR) for a ‘given’
distribution for stock returns where the parameters of the distribution are fixed.
In this case, the issue of a boundary or near-boundary refers to rare events, i.e.
‘thick tails’ or extreme scenarios, which lead to non-elliptical predictive distri-
butions.
For this model, simulated return paths using a ‘direct simulation’ are given by
the black lines in Figure A.5. We refer to Hoogerheide and Van Dijk (2010) for
the details of this return model and simulation algorithm. Using these simulated
paths, the 99% VaR is calculated as the 1% quantile of simulated prices after
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Fig A.6: Optimal importance density for Bayesian estimation of 1% quantile
of return distribution in an ARCH(1) model (with variance targeting) with
ARCH(1) parameter α1 and standardized error εt+1, where half the probability
mass of the importance density lies in the ‘high loss region’.

10 days. The disadvantage of this direct simulation is the computing time: es-
timated VaR may be inaccurate since it is based on only 1% of the simulation
paths. An alternative, more efficient, simulation example is given by the red
lines in Figure A.5, where the red lines correspond to ‘high loss scenarios’ which
should constitute 50% of the draws from the importance density for optimal
Bayesian estimation of the 1% .
This example is closely related to the near-boundary issue due to the bimodal-
ity of the optimal importance density for the model parameters (e.g., α1 in an
ARCH(1) model) and simulated future return paths, where we observe a ‘mid-
dle mode’ and a ‘high loss mode’ in Figure A.6.

A.3. Appendix for section 3: Basic model structures, nonstandard
likelihood shapes and posterior existence

We start this appendix by listing some matrix and determinant properties and
by giving definitions of the distributions and corresponding density functions
that are needed to obtain the properties of the likelihood and posterior in the
three basic model structures. We then provide detailed derivations of the poste-
rior distributions of the cointegration model, including the requirements for the
existence of posterior distributions. We refer to Baştürk et al. (2016b) and Kleijn
(2016) for some more background details on the definitions and derivations.
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Fig A.7: Highest posterior density credible set for parameters (β1, β2, σ, p) for
the 2-regime mixture model for US GNP growth.
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A.3.1. Results on matrices and determinants and definitions of matric-variate
distributions

Decomposition of sum of squares in linear regression

(Y −Xβ)′(Y −Xβ) = Y ′MXY + (β − β̂)′X ′X(β − β̂), (A.11)

where β̂ = (X ′X)−1X ′Y and MX = I −X(X ′X)−1X.
Frisch-Waugh:

(Y −X1β1−X2β2)′(Y −X1β1 −X2β2)

=(Y −X2β2)′MX1
(Y −X2β2) + (β1 − β̂1)′X ′1X1(β1 − β̂1)

=Y ′MXY + (β2 − β̂2)′X ′2MX1
X2(β2 − β̂2)

+ (β1 − β̂1)′X ′1X1(β1 − β̂1) (A.12)

where β̂1 = (X ′1X1)−1X ′1Y and β̂2 = (X ′2MX1
X2)−1X ′2MX1

Y .
From Anderson (2003, ch.14):

(A22 −A21A
−1
11 A12)−1 = A−1

22 A21(A11 −A12A
−1
22 A21)−1A12A

−1
22 +A−1

22 (A.13)

Orthogonal complements From Johansen (1988)

β⊥(α′⊥β⊥)−1α′⊥ + α(β′α)−1β′ = I, (A.14)

where β′α has full rank. If we choose α = β = A−1/2α̃ with α⊥ = β⊥ = A1/2α̃⊥
(so that α′α⊥ = α̃′α̃⊥ = 0), where α̃ has full rank, we have:

A1/2α̃⊥(α̃′⊥Aα̃⊥)−1α̃′⊥A
1/2 +A−1/2α̃(α̃′A−1α̃)−1α̃′A−1/2 = I, (A.15)

Pre- and post-multiplying with A−1/2 yields:

α̃⊥(α̃′⊥Aα̃⊥)−1α̃′⊥ +A−1α̃(α̃′A−1α̃)−1α̃′A−1 = A−1. (A.16)

Derivation of a matrix equation Theorem: Consider two matrices A (T×
m1) and B (T ×m2), where m1 ≤ T and m2 ≤ T . Suppose that A has full rank,
so that (A′A)−1 exists. Then we can decompose the determinant |(A B)′(A B)|
as follows:

|(A B)′(A B)| = |A′A||B′MAB| (A.17)

where MA is the T × T projection matrix defined as MA = I −A(A′A)−1A′.
Proof: First, note that

|(A B)′(A B)| =
∣∣∣∣( A′A A′B

B′A B′B

)∣∣∣∣ , (A.18)

and

|A′A|−1 = |(A′A)−1| =
∣∣∣∣( (A′A)−1 0

0′ Im2

)∣∣∣∣ , (A.19)
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where 0 is the m1 ×m2 zero matrix, and Im2 is the m2 ×m2 identity matrix.
From (41) and (42), we have:

|(A B)′(A B)||A′A|−1 =

∣∣∣∣( (A′A)−1 0
0′ Im2

)∣∣∣∣ ∣∣∣∣( A′A A′B
B′A B′B

)∣∣∣∣
=

∣∣∣∣( (A′A)−1 0
0′ Im2

)(
A′A A′B
B′A B′B

)∣∣∣∣
=

∣∣∣∣( Im1
(A′A)−1A′B

B′A B′B

)∣∣∣∣ , (A.20)

where Im1
is the m1 ×m1 identity matrix. Multiplying (43) by

1 =

∣∣∣∣( Im1
0

−B′A Im2

)∣∣∣∣ (A.21)

we have:

|(A B)′(A B)||A′A|−1 =

∣∣∣∣( Im1 0
−B′A Im2

)∣∣∣∣ ∣∣∣∣( Im1 (A′A)−1A′B
B′A B′B

)∣∣∣∣
=

∣∣∣∣( Im1 (A′A)−1A′B
0′ B′B −B′A(A′A)−1A′B

)∣∣∣∣
= |B′B −B′A(A′A)−1A′B|. (A.22)

Finally, multiplying (45) by |A′A| yields:

|(A B)′(A B)| = |A′A||B′B −B′A(A′A)−1A′B||A′A||B′MAB|, (A.23)

where MA = I −A(A′A)−1A′. �
Corollary: If additionally B has full rank, then

|B′MAB| =
|A′MBA||B′B|

|A′A|
, (A.24)

where MB is the T × T projection matrix defined as MB = I −B(B′B)−1B′.
Proof: Note that if B has full rank, we can switch the matrices A and B. So,
in that case we have:

|A′A||B′MAB| = |(A B)′(A B)| = |(B A)′(B A)| = |B′B||A′MBA|. (A.25)

and the result follows immediately. �

Inverted Wishart distribution Let Σ be an n×n random symmetric posi-
tive definite matrix. Σ has an inverted Wishart distribution if its density function
is

p(Σ|Q, ν) = c|Σ|− 1
2 (ν+n+1)|Q|ν/2 exp

[
−1

2
tr(QΣ−1)

]
, for |Σ| > 0 (A.26)
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where Σ is a symmetric positive definite n × n matrix and ν ≥ n − 1 . The
constant c is given by c−1 = 2

1
2νnΓn(ν/2) where

Γn(x) = πn(n−1)/4
n∏
i=1

Γ[x+ (1− i)/2] (A.27)

is the multivariate gamma function.
If Σ has the above inverted Wishart density, Ψ = Σ−1 has a Wishart distribution
with scale Q−1 and degrees of freedom ν. An algorithm to generate random
draws from an inverted Wishart distribution is derived in Zellner, Bauwens,
and Van Dijk (1988, pp.67-71).
Using (49) it follows directly that∫

|Σ|− 1
2 (ν+n+1) exp

[
−1

2
trQΣ−1

]
dΣ ∝ |Q|− 1

2ν , (A.28)

which is often denoted as the inverted Wishart step in integrating out the co-
variance matrix in the posterior distribution.

Matric-variate t distribution The p × q random matrix T has a matric-
variate t (Mt) distribution (see Zellner (1971) and Kleibergen and Van Dijk
(1998)) with parameters P , Q, n if, and only if, its probability density function
is:

pMt(T |P,Q, n) = k
|P |q/2 |Q|(n−p)/2

|Q+ T ′ P T |n/2
= k

|P |−(n−q)/2 |Q|−p/2

|P−1 + T Q−1 T ′|n/2
, (A.29)

where the equality follows from the following equality:

|Q+ T ′PT |
|P | |Q|

= |P−1 + TQ−1T ′| (A.30)

and k is given by:

k =
1

πpq/2

∏q
i=1 Γ[(n− i+ 1)/2]∏q

i=1 Γ[(n− p− i+ 1)/2]
, (A.31)

and we have n > p+ q − 1 and P and Q are positive definite symmetric (PDS)
matrices of size p×p and q× q, respectively. Alternatively, the matric-variate t-
distribution is often parameterized in terms of the degrees of freedom parameter
ν = n− p instead of n.

Marginal and conditional matric-variate t distributions: For a random
matrix T which has a matric-variate t distribution, marginal and conditional
distributions of partitions of T are also matric-variate t distribution.
First note that (52) does not contain a location parameter. A location parameter
M can be introduced using

pMt(T |M,P,Q, n) = pMt(T −M |P,Q, n). (A.32)
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Next, consider the following partitioning of T , location parameter M and the
scale parameters P :

T =

(
T

(p1×q)
1

T
(p2×q)
2

)
, M =

(
M

(p1×q)
1

M
(p2×q)
2

)
, P =

(
P

(p1×p1)
11 P

(p1×p2)
12

P
(p2×p1)
21 P

(p2×p2)
22

)
(A.33)

where p1 + p2 = p and A(a,b) denotes that matrix A has dimensions a× b.
Then the following conditional and marginal densities hold:

p(T1 | T2,M, P,Q) = pMt

(
T1|MT1|T2

, P11, QT1|T2
, n
)
, (A.34)

p(T2 |M,P,Q) = pMt (T2|M2, P22.1, Q, n− p1) , (A.35)

where MT1|T2
= M1−P−1

11 P12(T2−M2), QT1|T2
= Q+(T2−M2)′P22.1(T2−M2)

and P22.1 = P22 − P21P
−1
11 P12. See Zellner (1971), appendix B.5 and Bauwens

et al. (1999), appendix A.2.

A.3.2. Derivations of conditional and marginal densities of α, β2 and Σ of the
cointegration model under linear normalization and non-existence of
the marginal posterior of α

Full conditional posterior densities of α, β2,Σ: As mentioned in the main
text, a basic feature of the joint posterior density function of α, β2,Σ, condi-
tional upon the data, is that it is a proper density even though the marginal
density of α is unbounded around α = 0 and it has heavy tails.
The conditional posterior of Σ given α, β2 is given as an inverse-Wishart
density with T degrees of freedom and a finite scale matrix, (∆Y − Y−1βα

′)
′

(∆Y − Y−1βα
′), which is PDS for all values of α and β2 and T > k − 1. These

conditions are satisfied when the data have full rank. We note that the sample
size requirement is usually not binding for time series in the field of econometrics.
We refer for more details to the definition of the inverse-Wishart distribution
and the inverse-Wishart integration step.
The conditional posterior of α given β2 and Σ is a matrix normal den-
sity with well-defined parameters.
In order to save on notation, we note that one can apply similar steps as
presented below for the conditional matrix t distribution for α given β2 and
marginal with respect to Σ and derive similar location and scale matrices for
the normal as for the matrix t distribution.
The conditional posterior of β2 given α and Σ is a matrix normal den-
sity with well-defined parameters This conditional posterior is obtained in
the same way as listed above. Details are left to interested readers.
Conditional and marginal posterior densities of α, β2 after integrating
out Σ.
The conditional posterior density of α|β2, Y is proportional to the joint posterior
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density p (α, β2 | Y ) 15:

p (α | β2, Y ) ∝
∣∣∣(∆Y − Y−1βα

′)
′
(∆Y − Y−1βα

′)
∣∣∣−T/2 . (A.36)

Completing the squares on α in (59) yields:

p (α | β2, Y ) ∝
∣∣(∆Y ′MY−1β∆Y + (α− α̂)

(
β′Y ′−1Y−1β

)
(α− α̂)

′)∣∣−T/2 ,
(A.37)

where α̂′ =
(
β′Y ′−1Y−1β

)−1
β′Y ′−1∆Y and (60) holds under the conditions that

β has full column rank, which is due to the normalization condition and that
rank(Y−1) ≥ r, hence the r×r matrix

(
β′Y ′−1Y−1β

)
has rank r and is invertible:

rank
(
β′Y ′−1Y−1β

)
= min(rank(Y−1), r) = r. (A.38)

From (60) and using the first definition of a matric-variate t density, see also
Dickey (1967), it follows that the conditional density of α given β2 is a matric-
variate t density:

p (α | β2, Y ) ∝ pMt

(
α|α̂, (∆Y ′MY−1β∆Y )−1, (β′Y ′−1Y−1β)−1, T

)
, (A.39)

where the matrix α̂ contains location parameter, β′Y ′−1Y−1β and ∆Y ′MY−1β∆Y
are matrices that contain scale parameters with T −k degrees of freedom, where
T > k+r−1 is a sample size requirement. For sample sizes that are usually given
in econometrics, the latter condition is fulfilled. The matric-variate t density
property holds under the condition that β′Y ′−1Y−1β and ∆Y ′MY−1β∆Y are
positive definite for all values of β2 which holds under linear normalization, see
also below.

Conditional posterior of (β2|α) The conditional posterior density of β2|α, Y
is proportional to the joint posterior density p (α, β2 | Y ). This conditional is ob-
tained in three steps. First, by completing the squares on Π = βα′. Next, by
completing the squares on β and thirdly by completing the squares on β2 and
using the decomposition of the joint matric-variate t density of β into a con-
ditional matric-variate t density of β2 and a marginal density of β1 evaluated
at β1 = I, see Dickey (1967), Zellner (1971) or Bauwens et al. (1999) for back-
ground on the matric-variate t density.
The first step, completing the squares on βα′, which is the restricted value of
Π, proceeds as follows:

p (α, β2 | Y ) ∝
∣∣∣(∆Y − Y−1βα

′)
′
(∆Y − Y−1βα

′)
∣∣∣−T/2 , (A.40)

=
∣∣∣∆Y ′MY−1

∆Y + (βα′ − Π̂)′Y ′−1Y−1(βα′ − Π̂)
∣∣∣−T/2 ,(A.41)

∝
∣∣∣(Y ′−1Y−1)−1 + (βα′ − Π̂)D−1(βα′ − Π̂)′

∣∣∣−T/2 (A.42)

15This relation holds since p (α | β2, Y ) =
p(α,β2|Y )
p(β2|Y )

∝ p(α, β2 | Y ).
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where Π̂ = (Y ′−1Y−1)−1Y ′−1∆Y and D = ∆Y ′MY−1∆Y , which only depends on
given data. In the last line we made use of the determinant equality.
The second step is completing the squares on β in (65). Here we use:

β̂ = Π̂D−1α
(
α′D−1α

)−1
. (A.43)

Hence (65) can be written as:

p (α, β2 | Y ) ∝
∣∣∣(Y ′−1Y−1)−1 + (β − β̂)α′D−1α(β − β̂)′ (A.44)

+Π̂
(
D−1 −D−1α(α′D−1α)−1α′D−1

)
Π̂′
∣∣∣−T/2 ,

where the term Π̂
(
D−1 −D−1α(α′D−1α)−1α′D−1

)
Π̂′ results from the differ-

ence between (βα′ − Π̂)D−1(βα′ − Π̂)′ from (65) and (β − β̂)α′D−1α(β − β̂)′

from (67).
Equation (67) can be simplified as follows:

p (α, β2 | Y ) ∝
∣∣∣(β − β̂)α′D−1α(β − β̂)′ (A.45)

+
(
Y ′−1Y−1 − Y ′−1∆Y α⊥(α′⊥∆Y ′∆Y α⊥)−1α′⊥∆Y ′Y−1

)−1
∣∣∣−T/2

=
∣∣∣(Y ′−1M∆Y α⊥Y−1

)−1
+ (β − β̂)α′D−1α(β − β̂)′

∣∣∣−T/2 , (A.46)

where r × r values of β are fixed due to the normalization restriction and the
orthogonal complement α⊥ satisfies α′α⊥ = 0 and α′⊥α⊥ = I. Equation (69)
takes the form of a matric-variate t density for the unrestricted parameter matrix
β = (β′1, β

′
2)′, when the linear normalization is not used. Note that the matrices

Y ′−1M∆Y α⊥Y−1 and α′D−1α are required to be positive definite for all values of
the random variable matrix α. If one or more columns of α go to zero, then the
matrix α′D−1α becomes singular. We can ignore that here since this event has
probability measure zero within the space of α. When columns are very close
but not equal to zero, then the matrix is nearly singular. We investigate the
limiting behavior when the columns become arbitrarily close to zero in the next
section. This is a a situation of near-unit roots which is an empirical relevant
issue that received a lot of attention in the literature. We comment on this also
in the conclusions.
We next make use of the decomposition of a matric-variate t density into a
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conditional and marginal one, as mentioned before:

p(α, β | Y ) ∝
∣∣∣(Y ′−1M∆Y α⊥Y−1

)−1
+ (β − β̂)α′D−1α(β − β̂)′

∣∣∣−T/2
=

∣∣∣P−1 + (β − β̂)Q−1(β − β̂)′
∣∣∣−T/2 (A.47)

(52)
=

|P |(T−r)/2|Q|k/2

c(k, r, T )
pMt(β | β̂, P,Q, T ) (A.48)

(57,58)
=

|P |(T−r)/2|Q|k/2

c(k, r, T )
pMt(β2 | β̂2|1, P22, Q2|1, T )

×pMt(β1 | β̂1, P11.2, Q, T − k + r) (A.49)

P = Y ′−1M∆Y α⊥Y−1

Q = (α′D−1α)−1

c(k, r, T ) =
1

πkr/2

∏r
i=1 Γ[(T − i+ 1)/2]∏r

i=1 Γ[(T − k − i+ 1)/2]

P11.2 = P11 − P12P
−1
22 P21

Q2|1 = Q+ (β1 − β̂1)′P11.2(β1 − β̂1)

β̂2|1 = β̂2 − P−1
22 P21(β1 − β̂1)

Since p(β2 | α, Y ) is proportional to p(α, β2 | Y ) and pMt(β2 | β̂2|1, P22, Q2|1, T )
is the only factor that depends on β2 it follows that

p(β2|α, Y ) ∝ pMt(β2 | β̂2|1, P22, Q2|1, T ) (A.50)

∝ |Q2|1|(T−k+r)/2|P22|r/2

×
∣∣∣Q2|1 + (β2 − β̂2|1)′P22(β2 − β̂2|1)

∣∣∣−T/2 (A.51)

Marginal posterior of β2 From (59) and (62) we obtain:

p (β2 | Y ) =

∫
p(α, β2 | Y )dα

∝
∣∣β′Y ′−1Y−1β

∣∣−k/2 ∣∣∆Y ′MY−1β∆Y
∣∣−(T−r)/2

. (A.52)

The second factor in (75) can be written as:

∣∣∆Y ′MY−1β∆Y
∣∣ =

∣∣β′Y ′−1M∆Y Y−1β
∣∣ |∆Y ′∆Y |∣∣β′Y ′−1Y−1β
∣∣ ∝

∣∣β′Y ′−1M∆Y Y−1β
∣∣∣∣β′Y ′−1Y−1β

∣∣ . (A.53)

Inserting (76) in (75), we obtain:

p (β2 | Y ) ∝
∣∣β′Y ′−1M∆Y Y−1β

∣∣−(T−r)/2∣∣β′Y ′−1Y−1β
∣∣−(T−k−r)/2 . (A.54)
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We next analyze the right hand side of (77) as function of β2 using the iden-
tification restrictions: β = (I β′2)′, hence Y−1β = Y−1,1 + Y−1,2β2 and thus the
denominator becomes:

β′Y ′−1Y−1β = (Y−1,1 + Y−1,2β2)
′
(Y−1,1 + Y−1,2β2) . (A.55)

Using similar results for completing the squares on β2 in the denominator of
(77) yields:

β′Y ′−1Y−1β = Y ′−1,1MY−1,2Y−1,1 + (β2 − β̄2)′Y ′−1,2Y−1,2(β2 − β̄2) (A.56)

where
β̄2 = −(Y ′−1,2Y−1,2)−1Y ′−1,2Y−1,1. (A.57)

Analogously, completing the squares on β2 in the numerator of (77) yields

β′Y ′−1M∆Y Y−1β = Y ′−1,1M∆Y Y−1,2
Y−1,1

+(β2 − β̃2)′Y ′−1,2M∆Y Y−1,2(β2 − β̃2), (A.58)

where

β̃2 = −(Y ′−1,2M∆Y Y−1,2)−1Y ′−1,2M∆Y Y−1,1. (A.59)

Using these two decompositions, the marginal posterior density of β2 in (77) is:

p (β2 | Y ) ∝

∣∣∣Y ′−1,1M∆Y Y−1,2
Y−1,1 + (β2 − β̃2)′Y ′−1,2M∆Y Y−1,2(β2 − β̃2)

∣∣∣−T−r2

∣∣Y ′−1,1MY−1,2
Y−1,1 + (β2 − β̄2)′Y ′−1,2Y−1,2(β2 − β̄2)

∣∣−T−k−r2

,

(A.60)
where β̄2 and β̃2 are defined in (80) and (82), respectively.

Proposition Given the standard form of a cointegration model under linear
normalization and using a diffuse class of priors, the marginal posterior of the
cointegration parameters β2 is proportional to a matric-variate t density times
a polynomial in β2:

p (β2 | Y ) ∝pMt(β2|β̃2, Y
′
−1,2M∆Y Y−1,2, Y

′
−1,1M∆Y Y−1,2

Y−1,1, T − r) (A.61)

×
∣∣Y ′−1,1MY−1,2Y−1,1 + (β2 − β̄2)′Y ′−1,2Y−1,2(β2 − β̄2)

∣∣(T−k−r)/2 .
Conditions that guarantee that this is a proper density are discussed next.

Existence of the marginal posterior of β2|Y We first rewrite (77) as
follows

p (β2 | Y ) ∝
∣∣β′Y ′−1Y−1β

∣∣−k/2(∣∣β′Y ′−1M∆Y Y−1β
∣∣∣∣β′Y ′−1Y−1β

∣∣
)−(T−r)/2

, (A.62)
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where the second factor is a matrix generalization of a Rayleigh quotient. Sim-
ilarly to the vector case, also in this matrix case the quotient is bounded from
above and below by functions of the given data which we can show by defining

B = (Y ′−1Y−1)1/2β(β′Y ′−1Y−1β)−1/2 (A.63)

W = (Y ′−1Y−1)−1/2Y ′−1M∆Y Y−1(Y ′−1Y−1)−1/2 (A.64)

and rewriting the quotient as:∣∣β′Y ′−1M∆Y Y−1β
∣∣∣∣β′Y ′−1Y−1β

∣∣ =
∣∣β′Y ′−1Y−1β

∣∣−1/2 ∣∣β′Y ′−1M∆Y Y−1β
∣∣ ∣∣β′Y ′−1Y−1β

∣∣−1/2

=
∣∣∣(β′Y ′−1Y−1β)−1/2β′Y ′−1M∆Y Y−1β(β′Y ′−1Y−1β)−1/2

∣∣∣
= |B′WB| . (A.65)

Since it holds that B′B = Ir we can apply Theorem 11.15 from Magnus and
Neudecker (1995) which states that |B′WB| is bounded having the product of
the r smallest eigenvalues of the matrix W as its lower bound and the product
of the r largest eigenvalues of W as its upper bound.
Therefore, integrability of the function (85) depends on the integrability of the

factor
∣∣β′Y ′−1Y−1β

∣∣−k/2. Using (79) we rewrite the integral as∫ ∣∣β′Y ′−1Y−1β
∣∣−k/2 dβ2 =∫ ∣∣Y ′−1,1MY−1,2Y−1,1 + (β2 − β̄2)′Y ′−1,2Y−1,2(β2 − β̄2)

∣∣−k/2 dβ2. (A.66)

The integrand is proportional to a matric-variate t density with r degrees of
freedom which exists under the condition that k > (k − r) + r − 1 = k − 1.

Proposition Given the standard form of a cointegration model under linear
normalization and using a diffuse class of priors, the marginal posterior distri-
bution of the cointegration parameters β2, with density (89), exists independent
of the cointegrating rank r, but no first or higher order moments exist.

It is noteworthy that this result is also independent of the difference k − r.
We come back to this point below. This result extends the analysis and results
of Kleibergen and Van Dijk (1994). Note that the choice of the prior parameter
h does not play a role in the existence condition for the function (85).

Marginal posterior of β2 for k = 2, r = 1 For the special case k = 2, r = 1,
positive definiteness of the left hand side of (89) is trivial if for convenience the
data matrices are scaled and rotated such that Y ′−1Y−1 = Ik:∫ ∣∣β′Y ′−1Y−1β

∣∣−k/2 dβ2 =

∫ (
1 + β2

2

)−1
dβ2 (A.67)
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The integrand is proportional to a Cauchy density. Hence, the integral is fi-
nite and the marginal posterior of β2 exists but no finite first or higher order
moments.

Marginal posterior of α Using equations (36) and (51), one can derive the
marginal posterior of α as:

p (α | Y ) =

∫
p (α, β | Y ) dβ2

∝|P |(T−r)/2|Q|k/2pMt

(
β1 | β̂1, P11.2, Q, T − k + r)

)
(A.68)

=|P |(T−r)/2|Q|k/2|P11.2|r/2|Q|(T−k+r−r)/2

×
∣∣∣Q+ (β1 − β̂1)′P11.2(β1 − β̂1)

∣∣∣−(T−k+r)/2

(A.69)

β1=Ir
= |P |(T−r)/2|Q|T/2|P11 − P12P

−1
22 P21|r/2

×
∣∣∣Q+ (Ir − β̂1)′(P11 − P12P

−1
22 P21)(Ir − β̂1)

∣∣∣−(T−k+r)/2

(A.70)

=|P |T/2|P22|−r/2|Q|T/2

×
∣∣∣Q+ (Ir − β̂1)′(P11 − P12P

−1
22 P21)(Ir − β̂1)

∣∣∣−(T−k+r)/2

(A.71)

where we have used |P11.2| = |P11 − P12P
−1
22 P21| = |P |/|P22|.

Proposition Given the standard form of a cointegration model under linear
normalization and using a diffuse class of priors, the marginal posterior density
of the adjustment parameters α is a rational function of α, given as:

p (α | Y ) ∝ |P |T/2|P22|−r/2|Q|T/2
∣∣∣Q+ (Ir − β̂1)′P11.2(Ir − β̂1)

∣∣∣−(T−k+r)/2

,

(A.72)
and this density is not proportional to a known form of densities.

Existence of the marginal posterior of α given Y For the existence of
the distribution with density (95), we first show that the first two factors in the
right hand side of (95) are bounded. Consider:

|P22|−r/2 |P |T/2 = |(Y ′−1M∆Y α⊥Y−1){l,k−r}|−r/2|Y ′−1M∆Y α⊥Y−1|T/2

where A{l,b} denotes the b × b lower-right minor of matrix A. From Theorem
11.16 in Magnus and Neudecker (1995) we have that |(Y ′−1M∆Y α⊥Y−1){l,k−r}|
has its lower bound equal to the product of the k − r smallest eigenvalues of
Y ′−1M∆Y α⊥Y−1 and its upper bound is equal to the product of the k− r largest
eigenvalues. Note that the matrix Y ′−1M∆Y α⊥Y−1 is positive definite in the
typical set up of econometrics, e.g. rank(M∆Y α⊥) = T − rank(∆Y α⊥) ≥ T − r
and hence these products of eigenvalues are bounded.
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Using (47) we have

|Y ′−1M∆Y α⊥Y−1| =
|α′⊥∆Y ′MY−1

∆Y α⊥|
|α′⊥∆Y ′∆Y α⊥|

|Y ′−1Y−1| (A.73)

of which the last factor is constant given the data and the first factor is bounded
by products of the r smallest and largest eigenvalues of

(∆Y ′∆Y )−1/2∆Y ′MY−1∆Y (∆Y ′∆Y )−1/2 (A.74)

by similar arguments as in subsection A.3.2.
The density in (95) integrates to a finite value if the product of the last two fac-

tors |Q|T/2
∣∣∣Q+ (Ir − β̂1)′P11.2(Ir − β̂1)

∣∣∣−(T−k+r)/2

has a finite integral. Note

again that Q here is a function of α with Q = (α′D−1α)−1.

Since (Ir − β̂1)′P11.2(Ir − β̂1) is positive semidefinite and therefore

|Q| ≤
∣∣∣Q+ (Ir − β̂1)′P11.2(Ir − β̂1)

∣∣∣ (A.75)

we have that

|Q|T/2
∣∣∣Q+ (Ir − β̂1)′P11.2(Ir − β̂1)

∣∣∣−(T−k+r)/2

≤ |Q|T/2 |Q|−(T−k+r)/2

= |Q|(k−r)/2 (A.76)

So the integral of the product of these factors is bounded by
∫ ∣∣α′D−1α

∣∣−(k−r)/2
dα.

Hence, a sufficient condition for the existence of the posterior of α is:∫ ∣∣α′D−1α
∣∣−(k−r)/2

dα <∞. (A.77)

The integrand has an asymptote at α = 0(k×r). We analyze two shape features
of the posterior density: an asymptote in the interior and tail behavior when α
tends to infinity. We show that the determinant in (100) is integrable around
α = 0 despite the asymptote at α = 0(k×r) and that the tails of the posterior
are integrable. This is analyzed in the main text for the 2-dimensional case.
For completeness we discuss here the marginal posterior density of α|Y for the
general vector and the matrix case.

General vector case r = 1 We consider the case of r = 1 but we relax the
restriction k = 2. First we focus on the parameter space around the origin (where

the asymptote is located). Regard h(α′α) = |α′α|−(k−r)/2
= (α′α)

−(k−1)/2
as

the kernel of a spherical density. Following e.g. theorems 1.5.5 and 2.1.3 from
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Muirhead (1982) this can be transformed to polar coordinates as

α1 = λ cos θ1

α2 = λ sin θ1 cos θ2

α3 = λ sin θ1 sin θ2 cos θ3

... (A.78)

αk−1 = λ sin θ1 sin θ2 . . . sin θk−2 cos θk−1

αk = λ sin θ1 sin θ2 . . . sin θk−2 sin θk−1

with θ ∈ Θ ⊂ Rk−1 with Θ = {θ : θk−1 ∈ (0, 2π], θi ∈ (0, π] for i 6= k − 1} and

λ > 0, such that λ2 = α′α and the Jacobian is given by |J | = λk−1
∏k−2
i=1 sink−1−i θi.

The λ, θ1, . . . , θk−1 are independent. All θi have bounded density functions on a
bounded support and can therefore be integrated out of the joint density result-
ing in a factor 2πk/2/Γ(k/2). Hence the integral h(α′α) over a ball with radius
R around the origin (where the asymptote is located) can be expressed as∫

α′α≤R2

h(α′α)dα =

∫ R

λ=0

∫
θ∈Θ

h(λ2)|J |dθdλ

=

∫ R

λ=0

(λ2)−(k−1)/2λk−1

∫
θ∈Θ

k−2∏
i=1

sink−1−i θidθdλ

=
2πk/2

Γ(k/2)

∫ R

0

1dλ =
2πk/2R

Γ(k/2)
. (A.79)

Note that the existence of this expression does not depend on k and that it is
equal to R times the surface area of a unit sphere in Rk.
So also in the general vector case the asymptote poses no problems and for any
finite R the integral is bounded.
If however R tends to∞ the integral in (102) again goes to∞ at a rate R so that
the sufficient condition is not satisfied then. However, the tails are integrable
and the marginal posterior of α is proper. The easiest way to see this is as fol-
lows. We have shown in equation (89) that the marginal posterior of β2 is proper
but it has no first or higher order moments. Further, the conditional posterior of
α given β2 is proper for each value of β2, see (62) and (81). Therefore, the joint
posterior of (α, β2) is proper. We could simulate α from its (marginal) posterior
by simulating β2 from its marginal posterior and simulating α given the draw of
β2. We emphasize that the line of reasoning to show that the tails are integrable
is a general one. That is, it holds for the bivariate case, the general vector case
and the matrix case.

Matrix case For the analysis of the asymptote in the matrix case we can use
the transformation between α and its singular value decomposition α = USV ′

where U is a k × r semi-orthogonal matrix with U ′U = Ir, V is a orthogonal
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r×r matrix with V ′V = Ir and S is a r×r diagonal matrix with λi, i = 1...r, as
diagonal elements. The λi’s denote the singular values in descending order, that
is λ1 ≥ λ2 ≥ · · · ≥ λr ≥ 0. Rennie (2006) shows using wedge product notation
that the Jacobian of the transformation is proportional to

|J | ∝
∏
i<j≤r

(λ2
i − λ2

j )
∏
i≤r

λk−ri . (A.80)

up to volume elements16 of both the Stiefel manifold Vk,r = {U ∈ Rk×r : U ′U =
Ir} related to U and the orthogonal group Or = Vr,r = {V ∈ Rr×r : V ′V = Ir}
related to V . Note that the singular values of α by definition are equal to the
square roots of the eigenvalues of α′α and hence its determinant occurring in
the integrand is equal to the product of the squared singular values λi, that is
|α′α| =

∏r
i=1 λ

2
i .

Finally, we consider the area of integration ‖α′α‖2 ≤ R around the asymptote
where ‖·‖2 denotes the spectral norm which by definition equals the largest
singular value (which is λ1 in our case), that is λ ∈ ΛR = {λ ∈ Rr : λ : 0 ≤ λr ≤
λr−1 ≤ λ1 ≤ R}. Note that this is a consistent generalization of the restriction
α′α ≤ R2 in terms of the Euclidean dot product in the vector case. Note also
that the Frobenius norm (square root of the sum of the squared elements which
equals the sum of the singular values) would be an equally valid generalization.
The integral can thus be expressed as∫
‖α‖2≤R

|α′α|−(k−r)/2dα =2−r
∫
U ′U=I

∫
V ′V=I

∫
ΛR

r∏
i=1

(λ2
i )
−(k−r)/2|J |dλdV dU

=2−r Vol(Or) Vol(Vk,r)
∫

ΛR

∏
i<j≤r

(λ2
i − λ2

j )dλ

=
2rπr(k+r)/2

Γr(k/2)Γr(r/2)

∫
ΛR

∏
i<j≤r

(λ2
i − λ2

j )dλ (A.81)

using the fact that the volume of the Stiefel manifolds is given by Vol(Vk,r) =
2rπkr/2

Γr(k/2) and Vol(Or) = Vol(Vr,r) = 2rπr
2/2

Γr(r/2) and the factor 2−r arises because

of the uniqueness of the singular value decomposition up to simultaneous sign
changes of corresponding columns of U and V which could be enforced for
instance by imposing a positive sign for the first nonzero entry in each column
of U . In the special case r = 1 the product in the integrand is empty and the
integrand becomes equal to 1, and therefore (104) simplifies further.
The integrand is a polynomial in the λi’s and the area of integration is bounded.
Hence, we conclude the integral over this bounded region is finite despite the
fact that it contains an asymptote at |α′α| = 0.
For the analysis of the tail behaviour of the posterior density of the matrix α

16For ease of exposition we use this slightly less formal notation omitting wedge products
in the intermediate step at the right hand side at the top of (104). See e.g. Muirhead (1982)
or Rennie (2006) for formal wedge product notation.
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we refer to the text presented after the vector case. Also in the matrix case,
the sufficient condition is not satisfied. However, the marginal posterior of α is
proper as explained before. We note that the marginal posterior density of α is
a matrix polynomial and can have all kinds of shapes. To analyze these shapes
is more a computational topic and is outside the scope of this appendix.

A.3.3. Likelihood shape and posterior existence in an instrumental variable
model

In this section we summarize the derivation of the posterior results of an IV
model. The scheme of derivations is given in Figure A.8. A well-known way to
specify the instrumental variable model (also known as the Incomplete Simulta-
neous Equation model, see Zellner et al. (1988) is to write a standard regression
equation where the right hand side variables are possibly endogenous and to add
a second equation where these right hand side, so-called instrumental, variables
are linked to exogenous variables. Specifically, the matrix representation of this
model reads

y = Xβ + u, (A.82)

X = ZΠ + V, (A.83)

where y is a T × 1 dimensional vector of observations on economic variables at
time t; β is a r× 1 vector of parameters belonging to the T observations on the
r possibly endogenous variables arranged in the matrix X ; the disturbances εt
for t = 1, . . . , T have independent Gaussian distributions with Σ as a positive
definite symmetric (PDS) parameter matrix. The observations on X are con-
nected to T observations on k exogenous (or predetermined) variables arranged
in the matrix Z through the matrix Π which is k× r with usually k the number
of instrumental variables greater or equal to the number r of endogenous vari-
ables. This condition plays a central role in the analysis. We assume that the
data matrix (y X Z) has full column rank m+ k + 1.
The marginal posterior density of p(β,Π|Y ) under a flat prior is given in Fig-
ure A.8 in the middle. Highly non-elliptical posterior shapes may result from
the local non-identification of β if Π does not have full column rank, which is
easily seen from the restricted reduced form given in Figure A.8 and from the
motivating examples in Section 2.
The marginal posterior densities of β and Π were derived by Bauwens and Van
Dijk (1990) and Kleibergen and Van Dijk (1998), respectively. In Zellner et al.
(2014) the following result is shown.

Proposition Given the standard form of an instrumental variable model un-
der linear normalization and using a diffuse class of priors, the marginal pos-
terior of the parameters β is proportional to a multivariate t density times a
polynomial in β, while the marginal posterior of the parameters Π is propor-
tional to a matrix t density times a rational function in Π. Both densities are
improper for k ≤ r (exact or under-identification) and proper densities for k > r
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Fig A.8: Derivation scheme for posterior densities of an IV Model with r en-
dogenous variables and k instruments, under a diffuse prior
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Conditional moments exist for all values
of β in its domain.

The conditional posterior of β given Π
does not exist for Π = 0.

↓ ↓
matrix t-density step on Π multivariate t-density step on β

↓ ↓
use matrix decomposition and properties

of the projection matrix:
use matrix decomposition and properties

of the projection matrix:

↓ ↓
p (β | data) is proportional to a mul-
tivariate t-density times a polynomial

in β. It is an improper density for an

exactly identified model (r = k); and
a proper density for an overidentified

model (k > r).

p (Π | data) is proportional to matrix t-
density times a rational function in Π.

It is an improper density for an exactly

identified model (r = k); and a proper
density for an overidentified model (k >

r).



Baştürk, Hoogerheide, Van Dijk/Bayesian Analysis of Boundary and Near-Boundary Evidence64

(over-identification).

We conclude that the use of the triangular structure on the parameters and
the zero restrictions specified in the first box shown in Figure A.8 make that
the posteriors in an instrumental variable regression model are proper densities
given enough instruments.

A.3.4. Likelihood shape and posterior existence in a static factor model

In this section we summarize the derivation of the results. A basic static factor
model can be specified in matrix notation as follows:

Y = FΛ + E, (A.84)

F = 0 + U, (A.85)

where Y is the T×p matrix of observations, F is the T×r matrix of factors, Λ is
the r×p matrix of factor loadings, E is the T×p matrix of disturbances and U is
the T × r matrix of disturbances. In addition, cor(U,E) = 0, E ∼MN(0,Σ, IT )
and U ∼ MN(0, Ip, IT ). In this notation, MN(X,Ω,Φ) denotes the matric-
variate normal distribution with mean M and scale parameters Ω,Φ, and Ik is
the k × k identity matrix.
In Figure A.9 we show this model and summarize the derivation steps to obtain
the marginal posteriors of the parameters. It can be easily seen that this static
factor without the normal prior on F and the restriction on the matrix Σ will
lead to identical results for the shape of the posterior densities and existence of
moments as for the case of the parameters of the cointegration model. Thus, we
state the following well-known result:

Proposition Given the standard form of an static factor model, a normal
prior on the factors F and a diagonal matrix Σ = D of the disturbances, and
given a linear normalization with a diffuse class of priors, the marginal posterior
of the parameters F is proportional to a polynomial in F multiplied by an expo-
nential function in F , while the marginal posterior of the loading parameters Λ2

is proportional to a polynomial function in Λ2. Both densities are proper, since
the exponential tails of the normal density of F dominate the polynomial tails
of t type densities. The restriction of the diagonal covariance matrix Σ leads to
proper posterior density of the matrix of factor loadings Λ2.

We emphasize that a static factor model analysis using linear normalization
is subject to the criticism, already listed Section 3.1, in that estimation results
depend upon the ordering of the factors. Using the Lasso type prior with or-
thogonal normalization, the empirical results are now independent of the factor
ordering. Details are given in Baştürk et al. (2017). The topic of finding a factor
normalization that leads to results that are independent of the factor ordering is
extensively studied nowadays. We refer to only a few papers, such as Kaufmann
and Schumacher (2013) and Chan et al. (2017) and the references cited there.
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Fig A.9: Derivation scheme for posterior densities of a static factor model with
k variables and r << k factors under a diffuse prior.
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F = 0 + V, V ∼MN(0, Ir, IT )

Identification restriction is linear normalization on Λ and diagonal matrix on Σ

Y = ITF (Ir Λ2) + U , Λ2 is r × (k − r), F is T × r

posterior has ridge at F = 0, joint density is proper
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p (F,Λ2,Σ = D | data), data = {Y }
↓ ↓ ↓

complete sum of squares

in Λ2

complete sum of squares

in F

use Inverse-Gamma dist.

↓ ↓ ↓
p(Λ2|F,Σ = D, data) ∝
matrix Normal density

p(F |Λ2,Σ = D, data) ∝
matrix Normal density

p(Σ = D|F,Λ2,data) ∝
inverse-Gamma densities

↓ ↓ ↓
Conditional moments of p (F |Λ2,Σ = D, data), p (Λ2|F,Σ = D, data) and

p (Σ = D|F,Λ2, data) exist for all values of the conditioning parameters
in their domains and for all finite k and r.
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p (F,Λ2,Σ = D | data)
↓

Inverse-Gamma steps on Σ = D

↓
p (F,Λ2 | data) ∝ exp

(
− 1

2
tr(F ′F )ΠKk=1

[
(yk − Fλk)′ (yk − Fλk)

]−T/2)
↓ ↓

complete sum of squares on F in two
steps

complete sum of squares on the
columns of Λ

↓ ↓
p(F | Λ2,data) ∝ matrix t density
times an exponential function in F

p(λk | F,data) ∝ a multivariate t
density

conditional moments exist for all

values of Λ2 in its domain

conditional moments exist for all

values of F in its domain
↓ ↓

no further analytical integration step
on F

product of t-density steps on the
columns of Λ2

↓ ↓
p (Λ2 | data) is not member of a
known class of densities, but it is

proper due to the diagonal matrix

Σ = D

p (F | data) is a polynomial in F
times an exponential function in F

and it is proper due to the normal

prior on F .
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A.4. Appendix for Section 4: Regularization priors

Prior choice and existence of posterior moments In the specification
Π = βΛα′ uniform priors can be specified for α en β on their respective Stiefel
manifolds. For Σ we again specify a diffuse prior and we assume all marginal
prior to be independent, that is

p(β, α, λ,Σ) = p(β)p(α)p(λ)p(Σ) (A.86)

with

p(α) ∝ 1 if α′α = Ir, 0 otherwise (A.87)

p(β) ∝ 1 if β′β = Ir, 0 otherwise (A.88)

p(Σ) = |Σ|−h/2 if Σ is symmetric and positive definite (A.89)

and we use again the specific case of h = k+1. We now discuss the choice of the
prior on the singular values λ in more detail when we explore the integrability
of the posterior in relation to this prior p(λ).
Due to the similarity in the prior and the likelihood, with the distinction (i)
that all elements of β, not only elements of β2, are now random variables, (ii)
that we now have α∗ = αΛ instead of α and (iii) that we now include the prior
p(λ) (which is independent of the priors on the other parameters), we can write

p(α, β, λ) ∝
∣∣∣(∆Y − Y−1βΛα′)

′
(∆Y − Y−1βΛα′)

∣∣∣−T/2 p(λ) (A.90)

=
∣∣∆Y ′MY−1βΛ∆Y + (α− α̂)

(
Λβ′Y ′−1Y−1βΛ

)
(α− α̂)

′∣∣−T/2 p(λ).

When we integrate this posterior with respect to α over the manifold α′α = Ir
we can derive the following bound:∫
α′α=I

p(α, β, λ|Y )dα

=

∫
α′α=I

∣∣∆Y ′MY−1βΛ∆Y + (α− α̂)
(
Λβ′Y ′−1Y−1βΛ

)
(α− α̂)

′∣∣−T/2 p(λ)dα

≤
∫
α′α=I

∣∣∆Y ′MY−1βΛ∆Y
∣∣−T/2 p(λ)dα

=
∣∣∆Y ′MY−1βΛ∆Y

∣∣−T/2 p(λ)

∫
α′α=I

dα

∝

(∣∣Λβ′Y ′−1M∆Y Y−1βΛ
∣∣∣∣Λβ′Y ′−1Y−1βΛ

∣∣
)−T/2

p(λ) Vol(Vk,r)

=

(∣∣β′Y ′−1M∆Y Y−1β
∣∣∣∣β′Y ′−1Y−1β

∣∣
)−T/2

p(λ) Vol(Vk,r), (A.91)

where the second to last step follows from (47) and the last step follows since
both numerator and denominator are of the form |ΛXΛ| for some matrix X
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and can be written as |Λ||X||Λ| such that the factors |Λ| in numerator and
denominator cancel against each other.
The first factor in (114) is bounded by products of eigenvalues similar to the
previous section. The volume Vol(Vk,r) of the Stiefel manifold of k×r orthogonal
matrices α is a finite constant. So integrability of (113) depends on p(λ).
The alternative route via integrating over β proceeds as follows:∫

β′β=I

p(α, β, λ|Y )dβ =

∫
β′β=I

∣∣∣(Y ′−1M∆Y α⊥Y−1

)−1

+(β − β̂Λ−1)Λα′D−1αΛ(β − β̂Λ−1)′
∣∣∣−T/2 p(λ)dβ

≤
∫
β′β=I

∣∣∣(Y ′−1M∆Y α⊥Y−1

)−1
∣∣∣−T/2 p(λ)dβ

=
∣∣∣(Y ′−1M∆Y α⊥Y−1

)−1
∣∣∣−T/2 p(λ)

∫
β′β=I

dβ

∝
(
|α′⊥∆Y ′MY−1

∆Y α⊥|
|α′⊥∆Y ′∆Y α⊥|

)−T/2
p(λ) Vol(Vk,r), (A.92)

where the last step follows again from (47). The first factor, which is a function
of α, is bounded by products of eigenvalues, and again integrability of (115)
depends on p(λ).
As a starting point for the specification of an uninformative prior, suppose that
we specify a diffuse prior on Π on the manifold of k × k matrices with rank r,
that is

p(Π) ∝ 1 if rank(Π) = r , 0 otherwise (A.93)

then using the Jacobian of the transformation Π = βΛ(λ)α′, we obtain that the
implied prior for (α, β, λ) equals

p(α, β, λ) ∝ p(Π(α, β, λ))

∣∣∣∣∂ vec(Π(α, β, λ))

∂ vec(α, β, λ)′

∣∣∣∣ (A.94)

∝
∏
i<j≤r

(λ2
i − λ2

j )
∏
i≤r

λk−ri . (A.95)

This implies independent priors on α, β and λ with α and β uniform similar to
(110) and (111). However, the implied prior on the singular values

p(λ) =
∏
i<j≤r

(λ2
i − λ2

j )
∏
i≤r

λk−ri (A.96)

is not integrable as λi →∞. The factor
∏
i<j≤r(λ

2
i − λ2

j ) in (119) results from
the ordering of the singular values that we assume in the singular value decom-
position and regularizes the posterior by letting the prior go to 0 whenever two
(or more) singular values λi and λj for i 6= j are equal, because in that case the
factor λ2

i − λ2
j will equal 0.

We note that the other factor
∏
i≤r λ

k−r
i in (119) can be shown to correspond
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to the embedding prior of Kleibergen and Paap (2002) on (α∗, β) conditional on
the rank reduction under a flat prior on Π. Their prior is in that case given by

p(β, α∗) ∝ |β′β|(k−r)/2|α∗′α∗|(k−r)/2. (A.97)

We can rewrite their prior adapted for our normalization using α∗ = αΛ, α′α =
Ir and β′β = Ir as

|β′β|(k−r)/2|α∗′α∗|(k−r)/2 = |β′β|(k−r)/2|Λα′αΛ|(k−r)/2 (A.98)

= |Ir|(k−r)/2|ΛIrΛ|(k−r)/2 = |ΛΛ|(k−r)/2

= |Λ|k−r =

r∏
i=1

λk−ri . (A.99)

The connection with the previous section is that this prior regularizes the ver-
tical asymptote at |α∗′α∗| = 0 with α∗ = α diag(λ).
We now try to specify an uninformative or weakly informative prior on λ using
a more direct approach. Initially we disregard the ordering of singular values
and we could then use the following approach. Since λi > 0 specifying a diffuse
prior on log λi would correspond to p(λi) ∝ λ−1

i which is analogous to a diffuse
prior p(σ2) ∝ σ−2 for a variance parameter σ2. In this case the prior for the
vector λ equals p(λ) ∝

∏r
i=1 λ

−1
i . Note that λi equals (α∗i

′α∗i )
1/2 such that both

correspond to the singular values of Π. The implied prior in the specification
Π = βα∗ is thus given by p(α∗) =

∏r
i=1(α∗i

′α∗i )
−1/2 = |α∗′α∗|−1/2.

If we also include the ordering of the singular values λ1 ≥ λ2 ≥ · · · ≥ λr ≥ 0 in
the prior specification we first note that the singular values λi for all i > 1 are
bounded by λi−1. So given λ1 the other λi are jointly restricted to a bounded
(hyper-)triangular region λ1 ≥ λ2 ≥ · · · ≥ λr ≥ 0. Conditional on λ1 we specify
a joint uniform prior on (λ2, . . . , λr) on this support. Only the largest singular
value λ1 has infinite (conditionally upon the other λi) support and requires a
prior of which the tails go to zero fast enough.
We now use the connection to a Dirichlet distribution to find a prior for λ1 that
is consistent with the other λi. In order to do this we transform the λi into the
increments δi as follows:

δi = λi − λi+1, for i = 1, . . . r (A.100)

with inverse transformation λi =
∑r
j=i δj . Its Jacobian is given by

∣∣∣∣ ∂λ∂δ′
∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
1 1 . . . 1
0 1 . . . 1
...

. . .
. . .

...
0 0 . . . 1

∣∣∣∣∣∣∣∣∣ = 1, (A.101)

which means that we can easily transform from λ to δ and vice versa. In partic-
ular a joint uniform distribution on λi also implies a joint uniform distribution
on δi over the simplex on which it is defined, that is δi > 0 and

∑r
i=1 δi = λ1.
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A Dirichlet distribution D(1, . . . , 1) also corresponds to a uniform distribu-
tion on a simplex. This Dirichlet distribution can be constructed from r i.i.d.
random variables from an exponential distribution with any rate θ > 0. Let
p(δi) ∼ exp(−δiθ). Then

δi∑r
i=1 δi

=
δi
λ1
∼ D(1, . . . , 1), (A.102)

as required. We now also can find a prior for λ1 that is fully consistent with the
joint uniform prior on the λi for i > 1 on its support since all λi are derived
from the same i.i.d. joint distribution of the increments δi:

λ1 =

r∑
j=i

δi ∼ Gamma(r, θ) (A.103)

and its density is thus given by

p(λ1) ∝ λr−1
1 exp(−λiθ). (A.104)

The density of the uniform prior p(λ2, . . . λr|λ1) equals the inverse of the volume
of the simplex on which it is defined. The volume equals λr−1

1 /(r−1)! where the
factor 1/(r−1)! results from the Jacobian of the transformation from (unit) box
to (unit) simplex. So the joint prior of λ on its support λ1 ≥ λ2 ≥ · · · ≥ λr ≥ 0
in this approach is thus given by

p(λ) = p(λ2, . . . λr|λ1)p(λ1) ∝ exp(−λiθ). (A.105)

We can summarize the results from this section as follows. Using the parametriza-
tion Π = βΛα′ and the normalizing restrictions α′α = Ir, β

′β = Ir and
λ1 ≥ λ2 ≥ · · · ≥ λr ≥ 0 all parameters except λ1 are defined on bounded
sets. A natural choice for an uninformative prior is the uniform prior over these
sets. Only λ1 is defined on an infinite interval (conditionally upon the other
λi). A natural choice for λ1 that is consistent with the uniform prior on the
simplex for λ2, . . . , λr|λ1 is the exponential distribution. Another way to look
at this, is that although λ ∈ [0,∞) has infinite support, it can also be trans-
formed to the unit interval on which a uniform prior can be specified. By doing
so, all model parameters (except the covariance matrix Σ) are bounded to fi-
nite areas. Specifically, when either the transformation λ[ = exp(−λ) ∈ [0, 1) or
λ] = 1 − exp(−λ) ∈ [0, 1) is used and a standard uniform density is specified
on λ[ or λ] then λ also has a standard exponential distribution. Using a similar
argument the rate parameter θ could be included by specifying a uniform prior
on e.g. exp(−θλ). A final remark concerns the rate θ of the exponential distri-
bution. By choosing θ to a value close to 0, the exponential distribution tends
towards a flat distribution over the positive real numbers.
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A.5. Appendix for Section 5: Model probabilities under
regularization priors and possibly irregular likelihoods

A.5.1. Model probabilities for the AR(1) model with near unit roots

We illustrate in this subsection the issues that one encounters in evaluating
posterior and predictive probabilities for a basic time series model using weak
and regularizing prior information. For expository purposes we make use of a
univariate Auto-Regressive model of order one, AR(1), specified as:

yt = αyt−1 + εt, εt ∼ N(0, σ2). (A.106)

where yt is the observed dependent variable and the ε′ts are independently and
identically distributed. By substituting successively for yt−1, yt−2, . . . in equation
(129), one obtains

yt = εt + αεt−1 + α2εt−2 + α3εt−3 + . . . . (A.107)

Thus E[yt] = 0 and given that the innovations or shocks εt, εt−1, . . . are inde-
pendent, each with the constant σ2, the variance of yt is given by

V (yt) = 1 + α2σ2 + α4σ2 + α6σ2 + . . . (A.108)

One may distinguish several cases with important different dynamic character-
istics, depending on the value of the dynamic adjustment parameter α.
Case I: If the stationarity condition |α| < 1 holds so that the infinite series

converges, then V (yt) = σ2

1−α2 . Thus, in long term forecasting one has bounded
uncertainty with respect to a forecast of yt.
Case II: If α = 1 and y0 = 0, then the system crosses a border where the
stationary state stops. There exists a discontinuity in the dynamic behavior:
the unconditional variance of yt increases linearly (and without bounds) with t:

V (yt) = E
[
y2
t

]
= E

( t∑
i=1

εi

)2
 =

t∑
i=1

t∑
j=1

E [εiεj ] = tσ2, (A.109)

since E[εiεj ] = σ2 if i = j, and 0 if i 6= j. This trending value tends to infinity
when the length of the series becomes large. Thus, in the unit root case one has
a tendency of getting large and unbounded uncertainty with respect to the very
long run and asymptotic forecasts of yt.
Case III: Roots (substantially) greater than unity are easily detected as the
explosive character of the series is clear with fairly small samples. This may lead
to a switching behavior in model structure. Therefore, we do not consider that
case here in our basic analysis. Similarly, we do restrict our attention to series
that are positively correlated.
Another way to motivate the analysis of probability model evaluation for an
AR(1) model is given in the graphical representation of a few AR(1) processes
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Fig A.10: Stationary AR(1) processes vs Unit Root process (black).

Fig A.11: Close-to-unit-root processes versus an exact unit root process (thick
black).

with several choices for the α parameter. Figure A.10 presents the time se-
ries generated with AR(1) with σ = 1 and α equal to: (0.2, 0.4, 0.6, 0.8, 1.0),
respectively. Simply by means of visual inspection17 one is sometimes able to
distinguish stationary time series from a unit root series. The stationary pro-
cesses have all an unconditional mean of zero and finite unconditional variance.

17This is the well-known ‘Rotterdam Eyeball-test for Nonstationarity’ that has been used
by Van Dijk to illustrate the issue to numerous students in the econometrics program at
Erasmus University.
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They are tied to the zero means in the sense that deviations from them cannot
accumulate indefinitely. In contrast, the process with a single root of exactly
unity has an unconditional variance which increases over time. This process will
tend to wander widely and is not expected to cross the origin regularly. In Fig-
ure A.11 time series patterns are presented that are generated with an α equal
to 0.92, 0.94, 0.96, 0.98, 0.99, respectively. The time series are now very similar.
In summary, comparing the probability of a model with a unit root with the
probability of a model that is nearly non-stationary is non-trivial in spite of
well-defined statistical properties of the different structures. Frequentist estima-
tion and testing procedure tend to have poor sampling properties. In Bayesian
econometrics there is also a need for accurate methods and careful specification
of prior information in order to analyze near and at-the-boundary behavior of
autoregressive time processes. This is what we explore next.

Model evaluation and the Bartlett/Jeffreys/Lindley paradox: The
principal Bayesian tool for a probabilistic model evaluation and comparison is
the posterior odds ratio specified as the product of a prior odds ratio and the
so-called Bayes Factor (ratio of marginal likelihoods), given as

Pr(M1|y)

Pr(M2|y)
=
p(y|M1)

p(y|M2)
× Pr(M1)

Pr(M2)
. (A.110)

where the marginal likelihood of model Mi, i = 1, 2 is defined as the density
of the data after marginalizing the joint posterior density with respect to the
model parameters

p(y|Mi) =

∫
p(y|φi,Mi)p(φi|Mi)dφi, (A.111)

where p(y|φi,Mi) is the likelihood in model Mi and p(φi|Mi) is the prior density
of the parameters φi in model Mi. If one assigns the prior odds, Pr(M1) divided
by Pr(M2), to be equal to one meaning that no specification is favored a priori,
then the posterior odds is equal to the Bayes Factor. Assuming a uniform prior
on the bounded interval (c, 1), where 0 < c < 1, one can derive

p(M1 : α = 1|y)

p(M2 : α 6= 1|y)
=

p(1|y)
1

1−c
∫ 1

c
p(α|y)dα

. (A.112)

where p(α|y) is a univariate t density truncated at the value α = 1. For details
on the derivation we refer to Schotman and Van Dijk (1991a). Equation (135)
reveals the sensitivity of Bayes Factor with respect to the prior specification.
As an illustration, consider the case of a posterior density for α when the DGP
has value of α = 0.98. This is shown in Figure A.12. In this case 99% of the
probability mass is located to the right of the value α = 0.957. Values of α to the
left of it have almost no probability weight. However, they influence strongly
the average value of posterior and substantially decrease 1

M

∑M
i=1 p(α

i|y). As
a consequence the posterior odds favors the unit root model while the DGP
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Fig A.12: Posterior density for α in the AR(1) model, when the DGP is defined
by α = 0.98.

is stationary. More specifically, the height of the posterior density at α = 1 is
compared with, loosely speaking, the average value of the posterior over the
interval (c, 1). Clearly, the height is a fixed number (in the sense that it does
not depend on c) while the average height depends very much on the length of
the interval and thus the choice of c. In Figure A.13, it is seen that allowing
the lower bound of the interval c to be far to the left of α = 0.957 and even to
choose the value 0 leads to a much higher value of the posterior odds ratio than
the data tell us. The unit root model is artificially often favored. When c tends
to minus infinity one always favors the unit root model irrespective of the data
information. Clearly, to consider a priori many irrelevant values of parameters
of interest is a bad approach. This is known as the Bartlett/Jeffreys/Lindley
paradox, see Jeffreys (1939), Lindley (1957) and Bartlett (1957). We emphasize
that the paradox is usually listed for the extreme case of an unbounded interval
and an improper flat prior, while Figure A.12 shows that the posterior odds is
already too much favoring the unit root on the bounded interval (c, 1), where c
is situated in a region where there is almost no posterior probability mass.
In summary, we are able to construct examples using improper as well as proper
priors where the Bayesian model evaluation procedure shows artificially large
odds in favor of the model α = 1. Next, for the simple illustrative case of
an AR(1) process, we discuss several regularization priors for sensible model
comparison. The first approach proposes a data driven prior while a second
approach aims at restricting the parameter set to a sensible bounded set via
orthogonal normalization.
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Data driven prior We start with introducing a ‘locally uniform’ prior. A
simple interpretation of this prior is that it is an approximation to a proper
distribution which is nearly flat in the effective range of the likelihood, see
Lindley (1965). This explanation justifies the use of the improper prior that is
combined with the likelihood, defined on the parameter region where the data
provide information.18 The approach also constitutes a basis for application of
the concept of predictive likelihood in the evaluation of model probabilities,
which we cover later.
As an illustrative example consider the case of the unit root α = 1. It was
clear from Figure A.12 that the bounded interval [0, 1] contains many irrelevant
alternatives in case the DGP has a true value of α close to 1, usually when
α ∈ (0.9, 1). A direct solution is limiting the range of α where 99% of posterior
probability mass is situated. The uniform prior is imposed only on this region
and the irrelevant values of α are automatically deleted, what brings a more
realistic balance in the Bayes Factor. In a simple simulation we evaluate the
Bayes Factors in favor of the unit root model for 10 distinct DGPs with α =
0.90+i×0.01, i ∈ 1, . . . , 10 and σ = 1. For each DGP we simulate 100 time series
of length 500. In Figure A.13 we present the average posterior probability (over
100 datasets) of the unit root derived from respective Bayes Factors. The three
lines in the plot correspond, respectively, to the uniform prior on the bounded
interval [0, 1], and data driven priors elicited on the regions corresponding to
99% and 98% posterior probability mass.
Based on this simple simulation exercise we observe that this class of data driven
priors is able to substantially limit the over-acceptance of unit root model for
DGPs with α in the interval (0, 1). Obviously this comes at a cost: for true value
α = 1 the posterior probability Pr(α = 1|data) drops from a value around 0.87
to a value around 0.65.

Normalization Another route to improve model evaluation procedures via
Bayes Factors with weakly informative priors is a more theoretical one using
orthogonal normalization. By means of this normalization the parameter space
is automatically restricted to a bounded set which results in a diffuse prior
being proper and making model comparison possible. We illustrate this within
a general specification of the AR(1) model. Consider

α0yt = α1yt−1 + εt, εt ∼ N(0, σ), (A.113)

where a linear restriction α0 = 1 translates equation (136) into equation (129).
The unbounded parameter space in equation (136) is defined in the two dimen-
sional plane by the line α0 = 1. This domain is for our case bounded to the unit
interval by a restriction α1 ∈ [0, 1], in order to focus solely on positively serially
correlated processes that are either stationary or a unit root process.
Alternatively, consider the orthogonal specification defined by the condition

18A theoretical argument to show that an improper prior distributions can be better ex-
plained as the limits of some data adaptive prior distribution rather than as the limits of some
proper prior distributions is given in Akaike (1980).
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Fig A.13: Posterior probability of unit root Pr(α = 1|data) for DGP’s ranging
from α = 0.91 up to α = 1.00 under a uniform prior on the bounded interval
[0, 1] and data driven priors imposed on region corresponding to respectively 99%
and 98% posterior probability mass. The reported probabilities are calculated
as the average probability from 100 simulated time series of length 500.

α2
0 +α2

1 = 1 which restricts the parameter space to the unit circle with the cen-
ter at the origin. For our consideration of positively autocorrelated series near
or at the unit root, we restrict attention to the northeast quarter of the unit
circle specified by the angle θ ∈ [0, π/2], see Figure A.14.
Assuming a uniform prior on α1, and with a standard marginalization step with
respect to the nuisance parameter σ one obtains under the linear normalization

p(α1|y) ∝
[
(y− α1y−1)′(y− α1y−1)

]− 1
2T (A.114)

and under the orthogonal normalization

p(α1|y) ∝ (1− α2
1)

1
2T

[
(y− α1√

1− α2
1

y−1)′(y− α1√
1− α2

1

y−1)

]− 1
2T

, (A.115)

where y is a T -dimensional vector of observations. Given a flat prior, there
exist three differences in the evaluation of the Bayes Factor for a linear and for
an orthogonal normalization. First, the length of the parameter space in the
linear normalization is defined by α0 = 1 and α1 ∈ [0, 1]. When we project
this interval onto the unit circle its length changes as the parameter space is

defined by α1 ∈ [0,
√

2
2 ], α2

0 + α2
1 = 1. The length of this region is computed as

(arcsin
√

2
2 )/π2 ×

π
2 = π

4 /
π
2 ×

π
2 = π

4 , where π
2 corresponds to the length of a

quarter of the unit circle. Thus, a uniform prior on the unit interval, given as
p(α1) ∝ 1, may be compared with a uniform prior on 1/8 of the unit circle.,
given as p(θ) ∝ 1

π
4

= 4
π and the difference in the length of the parameter space
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Fig A.14: Projection with respect to (α0, α1) = (0, 0).

automatically leads to the difference in Bayes Factors. Second, the likelihood also
contributes to the difference in the evaluation of the Bayes Factor. In case of
orthogonal normalization the likelihood is specified on an angular space and the
Bayes Factor for the unit root under the linear normalization may be compared

with a Bayes Factor for α1 =
√

2
2 under the orthogonal one.

Thirdly, note that mapping a uniform density defined on the unit circle onto
the unit interval leads to a Cauchy type density defined on this interval. Thus,
a uniform prior on the unit circle introduces a tendency towards stationary
models. Conversely, imposing a uniform prior on the unit interval results in a
nontrivial prior on the unit circle, which tends to favor the unit root model. We
derive these results next.

Implied priors Assume a uniform prior on the respective part of the unit
circle. According to our derivations above it is equal to p(θ) ∝ 1

π/4 = 4/π. We

note that tan θ = α1 and consequently arctanα1 = θ. Then the cumulative
probability mass located on the unit circle, bounded by θ0 = 0 and θ, is equal
to 2θ

π . As the projection from the unit circle onto the unit interval (with respect
to the origin of coordinate system) preserves the total probability mass, the
cumulative probability mass on the unit interval up to the point (1, α1) is also
given by 2θ

π . Denote the cumulative distribution function (c.d.f) on the unit
interval by F . Then we have

F (α1(θ)) =
4θ

π

F ′(α1)α′1(θ) =
4

π

f(α1) =
4

π

1

α′1(θ)

f(α1) =
4

π

1

1 + tan2 θ
=

4

π

1

1 + α2
1

.
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Given a uniform density on the unit circle, one obtains an implied probability
density function on the unit interval that is proportional to a Cauchy density.
Alternatively one can derive the prior on the unit circle, when a uniform prior
is imposed on the unit interval. The uniform prior on the unit interval is defined
by p(α1) ∝ 1. Then the c.d.f. on the unit interval is given by P (α1) = α1. Again,
as the projection with respect to (α0, α1) = (0, 0) preserves the total probability
mass, we observe that the cumulative probability mass projected on the unit
circle is given by F (θ) = α1, where F denotes now the c.d.f. on the unit circle.
Then we have

F (θ) = α1

F ′(θ(α1))θ′(α1) = 1

f(θ) =
1

θ′(α1)

f(θ) = (1 + α2
1) = (1 + tan2 θ).

Thus we can define the prior on the unit circle with respect to the angle θ or
α1, again. In both cases the Uniform prior on one parameter space leads to a
nontrivial implied prior on another parameter space. We refer to those priors as
implied priors.
In simple simulation we investigate the implications of an orthogonal normal-
ization for model evaluation. Again we work with DGPs ranging from α1 = 0.91
up to the unit root. For each DGP we simulate 100 processes of length 500. In
Figure A.15 we present the average probability of the unit root model under
both linear and orthogonal normalizations. We consider two different priors: a

Fig A.15: Posterior probability of unit root Pr(α = 1|data) for DGP ranging
from α1 = 0.91 up to α1 = 1.00 under linear and orthogonal normalization.

uniform prior on the unit interval and a uniform prior on the unit circle. We
note that the implied priors did not affect our results in this case.
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Fig A.16: Posterior probability of unit root Pr(α = 1|data) for DGP ranging
from α1 = 0.91 up to α1 = 1.00 under the orthogonal normalization and data
driven prior.

The orthogonal normalization is evidently leading to a lower rate of over-acceptance
of the unit root model. In our simulation, in the region (0.91, 0.97) the model
estimated under linear normalization of parameters results in relatively high
posterior probability of the unit root model, compared to the orthogonal nor-
malization, which leads to a much more reasonable probability of such behavior.
Obviously this again comes at a cost: for the true value α = 1, the posterior
probability Pr(α = 1|data) drops from a value around 0.95 to a value around
0.78.

Locally uniform and orthogonal normalization Given the insights from
the simulation studies, as a final step we combine the data driven prior with the
orthogonal normalization into one framework. We use the simulation experiment
in order to investigate if the data driven prior can lead to further improvement
in the model evaluation under the orthogonal normalization. In Figure A.16 we
present the results. Evidently the combination of parameterization on the unit
circle and a data driven prior substantially improves the results of the model
evaluation procedure.
Clearly, there is a need in Bayesian inference to carefully analyze posterior odds
when the priors are weakly informative. A sensitivity analysis like using data
driven priors defined in a plausible bounded domain is to be recommended.
These results constitute a solid motivation for development of methods for eval-
uation of model probabilities for multivariate time series model.
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Fig A.17: Log of US/UK real exchange rates between Dec 1972 and Jun 1988
(left panel) and posterior of (µ, ρ) with the uniform prior (right panel). See
Schotman and Van Dijk (1991a).

A.5.2. AR(1) model with weakly identified mean and near unit root

We briefly mention this issue and refer for more information to Schotman and
Van Dijk (1991a). The basic AR(1) model around a mean is specified as:

yt − µ = α(yt−1 − µ) + εt, εt ∼ N(0, σ2) (A.116)

which can be rewritten as:

yt − yt−1 = (α− 1)(yt−1 − µ) + εt, εt ∼ N(0, σ2). (A.117)

Clearly when α tends to one, the mean becomes unidentified. This is shown in
Figure A.17. We will not analyze the computation of model probabilities for this
case but move on to the same issue in an IV model presented in the main text.
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A.6. Appendix for Section 6: Bayesian mixtures to analyze the
education effect on earned income in US states

Table A.1
US regions and divisions

Division States Number of ob-
servations

Northeast Region
1. New England Connecticut (CT), Maine (ME), Mas-

sachusetts (MA), New Hampshire (NH),
Rhode Island and Vermont (RI)

20120

2. Middle Atlantic New Jersey (NJ), New York (NY) and Penn-
sylvania (PA)

64364

Midwest Region
3. East North Central Illinois (IL), Indiana (IN), Michigan (MI),

Ohio (OH) and Wisconsin (WI)
67047

4. West North Central Iowa (IA), Kansas (KS), Minnesota (MN),
Missouri (MO), Nebraska (NE), North
Dakota (ND) and South Dakota (SD)

35220

South Region
5. South Atlantic Delaware (DE), District of Columbia (DC),

Florida (FL), Georgia (GA), Maryland
(MD), North Carolina (NC), South Carolina
(SC), Virginia (VA) and West Virginia (WV)

48072

6. East South Central Alabama (AL), Kentucky (KY), Mississippi
(MS) and Tennessee (TN)

31668

7. West South Central Arkansas (AR), Louisiana (LA), Oklahoma
(OK) and Texas (TX)

34651

West Region
8. Mountain Arizona (AZ), Colorado (CO), Idaho (ID),

Montana (MT), Nevada (NV), New Mexico
(NM), Utah (UT) and Wyoming (WY)

11228

9. Pacific Alaska (AK), California (CA), Hawaii (HI),
Oregon (OR) and Washington (WA)

17139

Note: The table reports US states included in the dataset, with the respective regions,
divisions and the number of observations.
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Table A.2
Income-education effects in US states: Posterior results for parameters

β Π2 Π3 Π4 ρ β Π2 Π3 Π4 ρ
AK 0.1 1.54 1.5 -0.3 -0.2 MT 0.02 0.01 0.09 0.39 0.08

(0.12) (0.76) (0.77) (0.87) (0.33) (0.10) (0.13) (0.14) (0.14) (0.34)
AL 0.1 0.03 0.33 0.3 -0.2 NY 0.09 -0.04 0.13 0.24 -0.06

(0.05) (0.08) (0.07) (0.08) (0.21) (0.05) (0.06) (0.06) (0.07) (0.25)
AR 0.1 -0.18 0.1 0.4 -0.3 ND 0.13 -0.48 -0.19 -0.08 -0.25

(0.04) (0.09) (0.08) (0.08) (0.17) (0.09) (0.13) (0.14) (0.15) (0.30)
AZ 0.1 0.65 -0 -0.3 -0 NE 0 -0.13 -0.15 -0.12 0.20

(0.05) (0.21) (0.20) (0.22) (0.27) (0.16) (0.09) (0.10) (0.08) (0.44)
CA 0 0.26 0.22 0.1 0.08 NH 0.1 -0.14 0.1 0.2 -0.08

(0.06) (0.05) (0.05) (0.05) (0.26) (0.10) (0.19) (0.18) (0.2) (0.39)
CO 0.1 0.31 0.44 0.4 -0.1 NJ 0.13 0.06 0.07 0.21 -0.24

(0.06) (0.11) (0.10) (0.11) (0.25) (0.08) (0.06) (0.06) (0.08) (0.31)
CT 0.1 0.3 0.12 0.1 0.1 NM 0.04 0.23 0.11 0.39 0.06

(0.09) (0.09) (0.10) (0.10) (0.37) (0.10) (0.18) (0.19) (0.17) (0.41)
DC -0 -0.44 -0.4 -0.5 0.43 NV 0 -0.03 0.07 0.85 0.17

(0.09) (0.16) (0.17) (0.16) (0.27) (0.11) (0.38) (0.37) (0.35) (0.35)
DE 0.1 0.56 0.69 0.2 -0.2 NV 0.09 0.1 0.05 -0.05 -0.05

(0.08) (0.22) (0.22) (0.23) (0.31) (0.07) (0.04) (0.04) (0.04) (0.30)
FL 0.2 0.32 0.24 0.3 -0.3 OH 0.11 -0.04 0.05 0.05 -0.17

(0.07) (0.10) (0.09) (0.09) (0.26) (0.10) (0.06) (0.05) (0.05) (0.37)
GA 0.2 -0.25 0.05 0 -0.4 OK 0.01 -0.04 0.16 0.23 0.21

(0.05) (0.05) (0.06) (0.06) (0.22) (0.07) (0.08) (0.07) (0.07) (0.28)
HI 0.1 0.09 1.55 0.8 -0.1 OR 0.05 0.12 0.11 0.06 0.01

(0.07) (0.41) (0.39) (0.35) (0.28) (0.15) (0.12) (0.12) (0.12) (0.47)
IA 0 -0.04 -0 0.1 0.11 PA 0.15 0.02 0.01 0.05 -0.33

(0.10) (0.06) (0.06) (0.06) (0.36) (0.07) (0.03) (0.03) (0.03) (0.26)
ID 0.1 0.16 -0 0.1 0.02 RI 0.07 -0.39 0.11 0.12 0.04

(0.13) (0.16) (0.17) (0.14) (0.45) (0.07) (0.15) (0.17) (0.18) (0.3)
IL 0 0.07 -0.1 0.1 0.24 SC 0.17 -0.11 -0.05 0.31 -0.39

(0.08) (0.03) (0.04) (0.04) (0.29) (0.07) (0.09) (0.07) (0.08) (0.25)
IN 0.2 0.04 0.08 0 -0.3 SD 0.17 0.35 0.3 0.56 -0.42

(0.15) (0.05) (0.05) (0.05) (0.44) (0.08) (0.14) (0.13) (0.15) (0.24)
KS 0.1 0.3 0.34 0.2 -0.2 TN 0.06 -0.06 0.19 0.47 0.07

(0.07) (0.07) (0.08) (0.08) (0.26) (0.03) (0.08) (0.07) (0.07) (0.17)
KY 0.1 0.08 0.35 0.6 -0.2 TX 0.16 -0.04 0.23 0.26 -0.43

(0.03) (0.07) (0.07) (0.07) (0.17) (0.06) (0.05) (0.05) (0.07) (0.19)
LA 0.1 0.1 0.26 0.3 -0.2 UT 0.11 -0.02 -0.15 -0.25 -0.20

(0.10) (0.09) (0.09) (0.10) (0.36) (0.13) (0.14) (0.15) (0.16) (0.45)
MA 0.1 0.13 0.17 0.3 -0.2 VA 0.06 0.08 0.3 0.32 0.05

(0.07) (0.06) (0.06) (0.07) (0.32) (0.07) (0.08) (0.09) (0.08) (0.31)
MD 0 0.38 0.43 0.3 0.17 VT 0.09 0.22 0.47 0.33 -0.06

(0.06) (0.10) (0.10) (0.09) (0.24) (0.10) (0.19) (0.22) (0.21) (0.39)
ME 0.3 0.01 0.28 0 -0.6 WA 0.13 0.14 0.12 0 -0.22

(0.13) (0.09) (0.10) (0.11) (0.26) (0.15) (0.09) (0.08) (0.11) (0.47)
MI 0.1 0.15 0.11 0.1 -0.2 WI 0.07 0.21 0.01 0.1 -0.01

(0.07) (0.03) (0.04) (0.04) (0.28) (0.08) (0.06) (0.08) (0.07) (0.28)
MN -0.1 -0.2 -0.2 -0.1 0.55 WV 0.05 -0.04 0.09 0.27 0.04

(0.10) (0.06) (0.06) (0.05) (0.21) (0.06) (0.09) (0.07) (0.07) (0.26)
MO 0.1 -0.08 0.09 0 -0 WY 0.03 0.14 0.38 -0.13 0.09

(0.08) (0.06) (0.05) (0.05) (0.30) (0.11) (0.23) (0.22) (0.25) (0.38)
MS 0.1 0.07 0.22 0.3 -0.2

(0.08) (0.08) (0.09) (0.08) (0.36)

Note: The table reports posterior means for the parameters and posterior standard devi-
ations (in parentheses) for each state. Π2, Π3 and Π4 are the coefficients for the 2nd, 3rd
and 4th quarter of birth dummies, respectively. Posterior results are achieved by 30000
draws (3000 burn-in).
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Fig A.18: Income-education effects in US states: Boxplots for income effects and
degree of endogeneity

Posterior β values Posterior ρ values
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Fig A.19: Income-education effects in US states: Boxplots for the quarter of
birth effects on education

Posterior Π2 values Posterior Π3 values

Posterior Π4 values
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Baştürk, Hoogerheide, Van Dijk/Bayesian Analysis of Boundary and Near-Boundary Evidence85

Bayesian model selection.” The Annals of Statistics, 32(3): 841–869. 23
Billio, M., Casarin, R., Ravazzolo, F., and Van Dijk, H. K. (2013). “Time-

varying combinations of predictive densities using nonlinear filtering.” Journal
of Econometrics, 177(2): 213–232. 34

Casarin, R., Grassi, S., Ravazzolo, F., and Van Dijk, H. K. (2015). “Dynamic
predictive density combinations for large data sets in economics and finance.”
Technical Report 2015-084/III, Tinbergen Institute. 34

Chan, J., Leon-Gonzalez, R., and Strachan, R. W. (2017). “Invariant inference
and efficient computation in the static factor model.” Journal of the American
Statistical Association, (just-accepted). 34, 63

Chan, J. C., Koop, G., Leon-Gonzalez, R., and Strachan, R. W. (2012). “Time
Varying Dimension Models.” Journal of Business & Economic Statistics,
30(3): 358–367. 34

Del Negro, M. and Schorfheide, F. (2004). “Priors from general equilibrium
models for VARs.” International Economic Review , 45(2): 643–673. 23

— (2011). “Bayesian macroeconometrics.” In Geweke, J., Koop, G., and Van
Dijk, H. K. (eds.), The Oxford handbook of Bayesian econometrics, 293–389.
Oxford University Press: Oxford. 34

Dickey, J. (1967). “Matricvariate generalizations of the multivariate t distribu-
tion and the inverted multivariate t distribution.” The Annals of Mathemat-
ical Statistics, 38(2): 511–518. 52

— (1971). “The Weighted Likelihood Ratio, Linear Hypothesis on Normal Lo-
cation Parameters.” The Annals of Mathematical Statistics, 42: 240–223. 29

Doan, T., Litterman, R., and Sims, C. (1992). “Forecasting and Conditional
Projections using Realistic Prior Distributions.” Econometric Reviews, 3:
1–100. 23
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