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Abstract

DSGE models may be misspecified in many dimensions, which can affect their fore-
casting performance. To correct for these misspecifications we can apply conditional
information from other models or judgment. Conditional information is not accurate,
and can be provided as a probability distribution over different outcomes. These prob-
ability distributions are often provided by a set of marginal distributions. To be able
to condition on this information in a structural model we must construct the multi-
variate distribution of the conditional information, i.e. we need to draw multivariate
paths from this distribution. One way to do this is to draw from the marginal distri-
butions given a correlation structure between the different marginal distributions. In
this paper we use the theoretical correlation structure of the model and a copula to
solve this problem. The copula approach makes it possible to take into account more
flexible assumption on the conditional information, such as skewness and/or fat tails in
the marginal density functions. This method may not only improve density forecasts
from the DSGE model, but can also be used to interpret the conditional information
in terms of structural shocks/innovations.
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1 Introduction

Dynamic stochastic general equilibrium (DSGE) models have been found useful to produce
forecasts, see for example Adolfson et al. (2006), but models such as direct forecast models,
ARIMAs, factor models, VARs, B-VARs, FA-VARs and others are found at some horizons
and variables to have superior forecasting properties.1 As all models are likely to be mis-
specified along different dimensions it may improve forecast performance if we use a larger
information set than accessible to the model itself, i.e. the larger information set can be
used to produce point forecasts or density forecasts of the variables of the DSGE model, be
it from a pool of different models2, judgment or a combination of the two. Then these point
or density forecasts can be incorporated into the DSGE model using conditional forecast-
ing procedures. The DSGE model can then be used to decompose the distribution of the
conditional information into distributions of structural shocks/innovations identified by the
DSGE model.

In this paper we suggest a method to incorporate inaccuracy in the conditional infor-
mation represented by a general form of a multivariate distribution using a copula with a
known correlation matrix, taken from the model, and a set of marginal distributions. The
set of marginal distributions can exhibit skewness, fat tails and/or be truncated. The condi-
tional information can be made conditional on history or not. This makes the copula based
approach more flexible then other alternative approaches suggested by the literature. The
resulting multivariate distribution will then be the marginal distribution of the multidimen-
sional path of a set of variables over all horizons of the forecasts.

Incorporation of conditional information into structural models has been investigated
before. Doan et al. (1984) use post-sample information and exploit the covariance structure
of a VAR to produce conditional forecasts. Waggoner and Zha (1999) use a Bayesian re-
jection sampling method to compute exact finite-sample density forecasts from VARs, also
taking into account parameter uncertainty. Banbura et al. (2014) instead use a Kalman fil-
ter(smoother) approach, which they argue improve considerably the speed of the algorithm
compared to Waggoner and Zha (1999). Andersson et al. (2008) also extend Waggoner and
Zha (1999) to take inaccurate conditional information into account and its effect on the
density forecast of the unrestricted variables. They find that these densities are too narrow,
if only conditioning on the central tendency.

Maih (2010) shows a way to incorporate conditional information from other models into
a DSGE model.3 What he refers to as soft conditioning, makes it possible to take into
account inaccuracy in the conditional information. A strict assumption with his approach is
that this inaccuracy must be represented by a truncated multivariate normal distribution.

1The class of competing models may also be a weighted density forecast from a pool of models, where
the weights can be calculated based on out-of-sample forecasting performance, as in Aastveit et al. (2011).

2The pool of models may include the DSGE model itself.
3Models can also refer to judgment.
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Furthermore, his approach does not give the possibility to add judgment on the unconditional
marginal distributions of the information to condition on.4 This is a limitation, as we may
want to change the variance or skewness of the unconditional distribution of the conditional
information without having knowledge about how this will effect the conditional distribution.
When doing this we need to secure that the sampling of the paths from the multivariate
distribution is conditional on past history.

The approach in this paper is also related to the approach put forward by Smith and
Vahey (2016). They use a Gaussian copula model to take into account cross-sectional and
serial dependence in time series. The copula model is set up using a correlation matrix that
is parameterized using a latent stationary Markov vector autoregression (MVAR) model
and marginal distributions that are estimated using a kernel density estimator or a skew t
distribution. They document that their model compares well, in terms of out-of-sample real
time forecast, with Bayesian vector autoregression models that assume symmetric marginal
distribution of the data. In this paper we uses the correlation matrix from a DSGE model
to parameterized the copula instead of the correlation matrix from a latent MVAR model,
but in contrast to Smith and Vahey (2016), we are not able to take into account possible
non-normality in data during estimation of the DSGE model.

Yet another related approach is given by Robertson et al. (2005). They show, using a
relative entropy method, that they can impose moments restriction taken from theory on the
conditional information. By using the relative entropy as a distance measure they minimizes
the distance between the distribution of the conditional information and the final forecast
that impose the moments restrictions. We, on the other hand, sample from the distribution
of the conditional information that are in line with the correlation matrix of the DSGE
model.

In section 2 we go through the general theory of copulas, and how they can be used to
draw from any type of multivariate distribution with a known correlation matrix. Section
3 will outline how conditional information can be incorporated into a DSGE model for
forecasting purposes. Section 4 will give some application, while we will conclude in section
5.

2 Copula Theory

A copula can be used to decompose a multivariate distribution into two parts: the marginal
distributions of each variable which describes the randomness in each variable and a copula
which describes the dependence between the random variables. A copula is defined as a

4Let us present an example to make it clear what we mean about the unconditional distribution. For
an AR process we have yt = λyt−1 + ut, where ut ∼ N(0, σ) is the disturbance to the process. Then the
distribution of yt conditional on information up to time t − 1 is given by N(0, σ). This is what we refer to
as the conditional distribution of y, whereas the unconditional variance of yt is given by N(0,

√
1

1−λ2σ).
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multivariate distribution where each marginal distribution is uniform. There are many such
copulas, but in this paper we will only focus on the Gaussian copula. The cumulative
distribution function (CDF) of this copula is given by

CΣ = ΦΣ

(
Φ−1(u1), ...,Φ−1(uN)

)
, (1)

where ΦΣ is the multivariate normal CDF with correlation matrix Σ of size N ×N and Φ is
the univariate standard normal CDF. This means that

un ∼ U(0, 1) for n ∈ [1, N ], (2)

where U(0, 1) is the uniform distribution on the interval [0, 1]. Let the marginal distributions
of the N variables be given by

xn ∼ Fn for n ∈ [1, N ], (3)

where Fn can be any marginal CDF. By Sklar’s theorem we can then represent the full
multivariate CDF as

GΣ = ΦΣ

(
Φ−1(F1(x1)), ...,Φ−1(FN(xN))

)
. (4)

The corresponding multivariate probability density function (PDF) is given by

gΣ = cΣ · f1(x1) · . . . · fN(xN), (5)

where the PDF of the copula is given by

cΣ =
1√
|Σ|

exp

−1

2

 Φ−1(F1(x1))
...

Φ−1(FN(xN))


′ (

Σ−1 − I
) Φ−1(F1(x1))

...
Φ−1(FN(xN))


 , (6)

and where fn(xn) for n ∈ [1, N ] are the marginal PDFs.
We may also be interested in the conditional multivariate CDF or PDF. Given the Gaus-

sian copula and the assumed marginal distributions the conditional CDF is given by

GΣ,ΣX |xi, ..., xj ∈ X =
ΦΣ (Φ−1(F1(x1)), ...,Φ−1(FN(xN)))

ΦΣX (Φ−1(Fi(xi)), ..., Fj(xj))))
, (7)

where X is the set of the variables with a known value to condition on, and ΣX is the
correlation matrix of the variables in X. And the conditional PDF is given by

gΣ,ΣX |xi, ..., xj ∈ X =
cΣ

cΣX

∏
xv /∈X

fv(xv), (8)
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where

cΣX =
1√
|ΣX |

exp

−1

2

Φ−1(Fi(xi))
...

Φ−1(Fj(xj))


′ (

Σ−1
X − I

)Φ−1(Fi(xi))
...

Φ−1(Fj(xj))


 (9)

is the PDF of the conditional copula.
If on the other hand we have the conditional marginal distributions Fm(xm)|xi, ..., xj ∈ X,

or in short hand notation Ψm(xm), and an adjusted correlation matrix ΣX , where X is the
set of variables not conditioned on. Then the conditional multivariate CDF is given by

GΣX |xi, ..., xj ∈ X = ΦΣX

(
Φ−1(Ψ1(x1)), ...,Φ−1(ΨM(xM))

)
, (10)

where xm ∈ X for all m ∈ [1,M ]. The corresponding PDF is

gΣX |xi, ..., xj ∈ X = cΣX |xi, ..., xj ∈ X · ψ1(x1) · . . . · ψM(xM) (11)

cΣX |xi, ..., xj ∈ X =
1√
|ΣX |

exp

(
−1

2
i′
(

Σ−1
X − I

)
i
)

(12)

i =

 Φ−1(Ψ1(x1))
...

Φ−1(ΨM(xM))

 , (13)

where cΣX |xi, ..., xj ∈ X is the PDF of the conditional copula in this case and ψm(xm) is the
PDF of Ψm(xm).

2.1 Example

Let y ∼ N(2, 2), x ∼ GAMMA(2, 2) and the linear correlation between y and x be given by

Σ =

[
1 0.7

0.7 1

]
. (14)

Then we can construct a multivariate distribution in y and x by using a copula. By using
the algorithm presented in appendix A we can draw random numbers from this distribution.
In figure 1 you can see that the draws of y is coming from the N(2, 2) distribution, and that
the draws of x is coming from the GAMMA(2, 2) distribution. The PDF and CDF of the
multivariate distribution are plotted in figures 2 and 3.
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Figure 1: Drawing from a multivariate distribution using a Gaussian copula with correlation
matrix Σ and marginal distributions y ∼ N(2, 2) and x ∼ GAMMA(2, 2).
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3 Forecasting with DSGE models

As in Maih (2011) we assume that the DSGE model can be written in its log linearized form

Et [Θ−1yt−1 + Θ0yt + Θ+1yt+1 + Ψεt|It] = 0, (15)

where It is the information set of the agents at time t, yt is a m × 1 vector of endogenous
variables, εt is a mε × 1 vector of exogenous innovations to the shock processes, which are
assumed to be ∼ IID, Θ−1, Θ0 and Θ+1 are m ×m matrices, Ψ is an m ×mε matrix. If
this problem has a solution it can be written in a state space representation

yt = Ayt−1 +
J∑
j=0

Bjεt+j, (16)

where A is a m × m matrix and Bj is a m × mε matrix. This solution assumes that
It = {εt+j, yt−s|s ∈ [1 : ∞], j ∈ [0 : J ] }, i.e. we may assume that the agents of the model
react to anticipated future innovations, where J is the number of anticipated steps. The
derivation of the matrices Bj can be found in Maih(2011) appendix (A).
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Figure 2: PDF of a multivariate distribution that is constructed by a Gaussian copula with
correlation matrix Σ and marginal distributions y ∼ N(2, 2) and x ∼ GAMMA(2, 2).
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Figure 3: CDF of a multivariate distribution that is constructed by a Gaussian copula with
correlation matrix Σ and marginal distributions y ∼ N(2, 2) and x ∼ GAMMA(2, 2).
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A k step ahead forecast at time T can then be found from

yT+k = AkyT +
J∑
j=0

k∑
s=1

Ak−sBjεT+j+s−1

= AkyT +
J+k−1∑
t=0

Υk,tεT+t.

(17)

Stacking all the forecast up to period T + k and taking into account that conditional infor-
mation may also be put on innovations, we get



yT+1

...
yT+k

εT+1

...
εT+J

εT+J+1

...
εT+J+k−1


︸ ︷︷ ︸

Y

=



A
...
Ak

0
...
0

0
...
0


yT

︸ ︷︷ ︸
Y

+



Υ1,1 · · · Υ1,J 0 · · · 0

Υ2,1 · · · Υ2,J Υ2,J+1
. . . 0

...
...

...
... · · · ...

Υk,1 · · · Υk,J Υk,J+1 · · · Υk,J+k−1

I 0 · · · · · · · · · 0

0 I 0 · · · · · · ...
... 0

. . . · · · · · · ...
...

...
... . . . · · · ...

...
...

...
... . . . ...

0 · · · · · · · · · · · · I


︸ ︷︷ ︸

Υ



εT+1

...
εT+J

εT+J+1

...
εT+J+k−1


︸ ︷︷ ︸

ε

, (18)

where Y and Y has size mk+(J+k−1)mε×1, Υ has size mk+(J+k−1)mε×(J+k−1)mε

and ε has size (J + k − 1)mε × 1. If εt ∼ N(0, I) as in Maih(2011) equation 26 implies that

Y ∼ N(Y ,ΥΥ′). (19)

3.1 Hard conditioning

Later we need a way to identify the innovations that should match the conditional informa-
tion we put on the model. Let D be a selection matrix of size q × mk + (J + k − 1)mε,
then

Yc −DY = DΥε̂

= Rε̂,
(20)
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where Yc is the q observations of Y that is being conditioned on, i.e. it has size q × 1. To
be able to solve this problem the matrix R must have full rank, or else it means that there
are too few innovations to match the conditional information. We can find the identified
innovations to match the conditional information as

ε̂ = R−1(Yc −DY ). (21)

Maih(2011) shows in proposition 1 that this estimator has the smallest variance among
all linear estimators. The intuition behind equation 21 is that the difference between the
conditional information, Yc, and the unconditional forecast for the restricted variables and
periods, DY , is mapped into the innovations with the smallest possible variance.

3.2 Soft conditioning using a copula

3.2.1 Conditional marginal distributions

Maih(2011) assumes that

Yc ∼ TN |IT (µ,ΩIT , [L,H]), (22)

where TN |IT is the truncated multivariate normal distribution with mode µ, lower bound
L and upper bound H, and ΩIT = RR′ is the (auto)covariance matrix and has size q × q.
Both are assumed to be conditional on IT .

In this paper we assume that

Yc ∼ GΣIT |IT , (23)

where ΣIT = RR′ ⊕ σIT is the (auto)correlation matrix and has size q × q.5 σIT is the
normalization factor given by

σIT =
√
diag(RR′)

√
diag(RR′)

T
. (24)

With each observation i of Yc, call it Y i
c , being distributed as

Y i
c ∼ Fi|IT . (25)

For any marginal distribution Fi|IT the steps of the algorithm are as follows

1. Make a draw from the distribution GΣIT |IT as explained in appendix A.

2. Identify the innovations to match the draw from step 1, using hard conditioning.

3. Replicate step 1 and 2 Q number of times.
5⊕ is the element wise division operator.
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4. After step 3 the distributions of the innovations to match the conditional information
are identified, and forecasts can be made based on the Q number of simulated points
from these distributions.

3.2.2 Unconditional marginal distributions

On the other hand, if the marginal distributions to condition on are not conditioned on the
information set IT , then we need to find the (auto)correlation matrix not conditioned on IT .
Let us abbreviate it as Σ. It can be found by using the theoretical counterpart from the
model or it can be calculated empirically using historical data

Λ =



Λ0 Λ1 · · · · · · · · · Λk+j−1

Λ1
. . . · · · · · · · · · ...

...
... Λ0 Λ1 · · · Λk−1

...
... Λ1 Λ0 · · · Λk−2

...
...

...
... . . . ...

Λk+j−1 · · · Λk−1 Λk−2 · · · Λ0


, (26)

where j is the number of periods back in time to condition on, Λi for i ∈ [0, k+ j − 1] is the
autocorrelation matrix between the variables to condition on at lag i6, and Σ = DΛD′. The
theoretical formula of the contemporaneous covariance matrix (0ג) from the model can be
found by solving the Lyapunov equation

0ג = A0גA
′ +BB′. (27)

Given 0ג we get

Λ0 = 0ג ⊕ λ0, (28)

where

λ0 =
√
diag(Λ0)

√
diag(Λ0)

′
. (29)

Λi for i ∈ [1, k + j − 1] can be found by

Λi = AiΛ0. (30)

Let us define YH as all the historical given observation we want to condition on and ΣYH be
the j × j symmetric upper part of Σ. By this we can find the final conditional multivariate
distribution

6Λ0 is then the contemporaneous correlation matrix.
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Yc ∼ GΣ,ΣYH
|yh ∈ YH . (31)

With each observation i of Yc, call it Y i
c being distributed as

Y i
c ∼ Fi. (32)

The algorithm from the last section is also valid in this case, except that the distribution
GΣIT |IT is substituted by GΣ,ΣYH

|yh ∈ YH .

4 Application

4.1 Lubik and Schorfheide (2007)

In this paper we focus on a slightly modified version of the small open economy DSGE model
developed by Lubik and Schorfheide (2007). It is a model of aggregate output (yt), domestic
inflation (πt), first difference of the nominal exchange rate (∆et), nominal interest rate (rt),
output abroad (y∗t ) and inflation abroad (π∗t ). The main equation of the model are:

The demand equation:

yt = Etyt+1 − γ(rt − Etπt+1)− ρzzt − αγzqt+1 + θ∆y∗t+1. (33)

The Phillips curve:

πt = βEtπt+1 + αβzqt+1 − αz
q
t +

κ

γ
(yt − yt) + zπt . (34)

Purchasing power parity:

πt = ∆et + (1− α)zqt + π∗t . (35)

Monetary policy:
rt = αrrt−1 + (1− αr)(φ1πt + φ2yt) + zrt . (36)

Definitions:
∆y∗t = y∗t − y∗t−1 (37)

yt = −θy∗t . (38)

Expectations:
Etyt+1 = yt+1 (39)

11



Etπt+1 = ψπt+1 + (1− ψ)πt−1. (40)

The variables π∗t and y∗t are seen as exogenous from the view of the domestic economy.
We model these variables as AR(1) processes:

π∗t = ρπ∗π∗t−1 + σπ∗επ
∗

t (41)

y∗t = ρy∗y
∗
t−1 + σy∗ε

y∗

t . (42)

There are also 4 domestic shocks in the model, productivity shock (zt), price markup
shock (zπt ), terms of trade shock (zqt ) and monetary policy shock (zrt ). All shocks follows
AR(1) processes:

zt = ρzzt−1 + σzε
z
t (43)

zπt = ρzπz
π
t−1 + σzπε

zπ

t (44)

zqt = ρzqz
q
t−1 + σzqε

zq

t (45)

zrt = ρzrz
r
t−1 + σzrε

zr

t . (46)

Where ρx is the autocorrelation coefficient, εxt ∼ N(0, 1), and σx is the the standard deviation
of the innovations of the AR(1) processes.

The parameters of the models are as follows, 1− ψ is the degree of how backward look-
ing the agents of the model are when forming inflation expectations, τ is the intertemporal
substitution elasticity, 1 > α > 0 is the import share, κ > 0 is a function of underlying
structural parameters, such as labor supply and demand elasticities and parameters captur-
ing the degree of price stickiness. αr, φ1 and φ2 are monetary policy parameters of the Taylor
type rule, and rss is the steady-state level of the real interest rate. The other parameters are
function of the others:

β = e
−rss
400 (47)

γ = τ + α(2− α)(1− τ) (48)

θ =
α(2− α)(1− τ)

τ
. (49)
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See Lubik and Schorfheide (2007) for more details.

4.1.1 Data and estimation

The model is estimated using Norwegian and trade weighted data on 6 variables (the ob-
servables). The observables are listed in table 1, where also the transformation of each series
is documented.

Table 1: Data description and transformation.

Variable Description Transformation
GDP (yt) GDP, Norway. Data from

Statistics Norway.
Taken log and HP-filtered with
lambda 3000.

GDP abroad (y∗t ) Trade weighted GDP. Data from
Thomson Reuter, Statistics
Norway and Norges Bank.

Taken log and HP-filtered with
lambda 3000.

Inflation (πt) Core CPI index. Data from
Statistics Norway.

Taken the log-approximated
growth rate of the and
subtracted the mean.

Inflation abroad (π∗t ) Import weighted core CPI index
for 25 of Norway’s trading
partners. Data from Statistics
Norway, Thomson Reuter and
Norges Bank.

Taken the log-approximated
growth rate of the and
subtracted the mean.

Key policy rate (rt) Data from Norges Bank. Filtered by a linear trend.
Money market interest rate
abroad (r∗t )

Import weighted money market
interests for 7 of Norway’s
trading partners. Data from
Statistics Norway, Thomson
Reuter and Norges Bank.

Filtered by a linear trend.

Exchange rate (et) Import weighted nominal
exchange rate. Data from
Thomson Reuter and Norges
Bank.

Taken the log-approximated
growth rate and subtracted the
mean.

First some parameters of the model are calibrated. α = 0.3 to fit the import share
observed in the data, while rss = 1.5 consistent with the observed productivity in Norway.
The rest of the parameters of the model are estimated using Bayesian techniques as in Smets
and Wouters (2007). See the table 2 for the selected priors and estimation results.
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Table 2: Parameter estimation.

Name Prior Prior mean Prior std. Post. mode Post. std.
αr BETA 0.7 0.15 0.7677 0.0327
κ NORMAL 0.5 0.1 1.2238 0.2069
φ1 NORMAL 1.5 0.25 2.1048 0.1814
φ2 BETA 0.3 0.15 0.0854 0.0431
ψ BETA 0.3 0.15 0.1629 0.1824
τ BETA 0.5 0.2 0.8973 0.0725
σz INVGAMMA 0.01 INF 0.0036 0.0007
σzπ INVGAMMA 0.01 INF 0.0152 0.0022
σzq INVGAMMA 0.02 INF 0.0308 0.0023
σzr INVGAMMA 0.003 INF 0.0014 0.0001
σπ∗ INVGAMMA 0.005 INF 0.0034 0.0002
σy∗ INVGAMMA 0.01 INF 0.0050 0.0004
ρz BETA 0.5 0.2 0.8063 0.0472
ρzπ BETA 0.5 0.2 0.8541 0.0799
ρzq BETA 0.5 0.2 0.1402 0.0704
ρzr BETA 0.5 0.2 0.3944 0.0747
ρπ∗ BETA 0.5 0.2 0.2294 0.0884
ρy∗ BETA 0.5 0.2 0.8885 0.0372

4.2 Benchmark

To keep the exercises as simple as possible we discard parameter uncertainty in this paper.7

As a benchmark we will in this section present density forecasts of some key variables.
We create these by simulating the vector of innovations to the shock processes from the
distribution εt+h ∼ N(0, I), see figures 4 and 5 for the resulting forecasts.8

To show that the algorithm given in section 3.2.1 works we will condition on the density
forecast of the observables from the benchmark forecast, and show that the identified den-
sities of innovations in this exercise replicate the distribution of εt+h. From figures 6 and 7
we see that we are able to do just that.

Seen from figures 4 and 5, it may be argued that the density forecasts are to wide for
some variables, e.g. inflation, as the 90 percentile is much wider than the historical variation
in the series.9

4.3 Condition on forecasts from other models

In this section we illustrate how we can use the algorithm to interpret the forecasts from
a pool of vector autoregression (VAR) models in terms of structural shocks/innovations in

7To account for parameter uncertainty you can introduce an additional loop over the algorithm presented
in this paper using the posterior draws.

84000 draws are used for all simulations.
9This is the same as saying that the model generates too much volatility compared to the historical

variation in the data.
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the DSGE model. We proceed in the following steps. In section 4.3.1 we describe a way
to produce combined forecasts of many VAR models using a forecast performance criterion.
Next we present the results in section 4.3.2.

4.3.1 Pooled VAR forecast

For each observable of our DSGE model, we create a pool of VAR models to select from.
The pool of VAR models are created by adding 0-6 other variables from the set of the other
observables plus the Money market interest rate abroad (r∗t ) (without replications). The
reason to pick only 6 is to keep the problem parsimoniously. We also replicate all these
models for 1-3 lags. That makes 192 models for each observable. We then evaluate the
out-of-sample recursive forecast performance of each model using mean log scores. The 20
(= M) best performing models at forecasting horizon 1 are selected for each observable using
the following score

scoreh,v,T,m = exp

(∑T
s=t log(ϕh,v,s,m(Ys+h,v))

T − t+ 1

)
, (50)

where we have defined t to be the start period of the evaluation, T the end period of the
evaluation, the density forecast at time s at horizon h for model m for observable v by
ϕh,v,s,m and the actual data at time s for variable v as Ys,v.10 ϕh,v,s,m is a distribution, while
Ys,v has size 1 x 1. v ∈ [1, O], where O is the number of observables. We then combine the
forecasts using a linear opinion pool

ϕCFh,v,s =
M∑
m=1

wh,v,s,mϕh,v,s,m. (51)

wh,v,s,m is the weight on each model in the combined density, and is calculated as

wh,v,s,m =
scoreh,v,s,m∑M
m=1 scoreh,v,s,m

. (52)

We are now finished with producing the density forecast we want to decompose using the
DSGE model.

4.3.2 Results

As noted in section 4.2 some of the density forecasts from the DSGE model seem to be too
wide compared with the historical distributions of the variables. In figure 8 you can see the
corresponding density forecasts of the pool of VAR models. Figure 9 display the identified
distribution of each innovation to match the conditional information. As seen from the figure
there are especially some innovations that have much lower variance; monetary policy (εzrt ),

10m ∈ [1,M ]
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price markup (εzπt ) and inflation abroad (εzπ∗t ). While on the other hand the terms of trade
(εzqt ) and productivity (εzt ) innovations has been identified to have higher variance. When it
comes to interpreting the difference in the mean of the identified distributions, we see that
the those are quite small. This is an indication that the point forecasts from the pool of
VARs are not too different to those stemming from the DSGE model.

It is still unclear how much of the change in the distribution of the density forecasts of the
observables that can be attributed to each innovation. Forecast error variance decomposition
can be used to illustrate this, but as the identified distribution of the innovation may not be
symmetric, it is necessary to use another approach. In figures 10 and 11 we decompose the
Xth percentile of the density forecasts of the key policy rate for the benchmark and the pool
of VARs respectively. The decomposition is constructed by calculating the Xth percentile
of the variable of interest based on simulations from one innovation at the time. Then the
sum of the contributions are scaled to sum to the Xth percentile of density forecasts of the
variable of interest. In our example, X = 90.

The difference in the decomposition of the pool of VARs and DSGE forecasts can be found
in figure 12. From the figure we get a clear picture of which innovations that contributes to
the reduced variance of the density forecasts, and it corresponds well to earlier discussion of
how the identified distributions of the innovation changed.

Care should be taken when interpreting the results using the Lubik Schorfheide (2007).
The reason is that it is important for the identification of the distribution of the structural
innovation that the model can replicate the correlation in the data it wants to describe. Table
4 show that this is not the case. This fact is not only important when interpreting conditional
information, but should be the prime objective for any exercise that uses a DSGE model.
The focus of this paper is not to build the best DSGE model for the Norwegian economy,
but to illustrate the algorithm in the simplest framework possible.

5 Conclusion

In this paper we have presented an algorithm that can be used to incorporate conditional
information in terms of distributions into a structural model. Few restrictions on the con-
ditional information are assumed, as the approach handle conditional information with fat
tailed, skewed or truncated marginal distributions.

We have tested the algorithm by setting up a pool of different VARs and conditioned
on the the combined density forecasts from these models in a DSGE model. Doing this
we have shown that we can decompose these forecasts into probability distributions of the
innovations of the DSGE model, and give the forecasts a structural interpretation in terms
of shocks. This can be useful for assessment of risk in policy analysis, as it is important to
identify the important risk factors when forming policy decisions.

A caveat, however, is that the analysis in this paper assumes that agents of the model
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do not take uncertainty into account when forming their decisions. This important question
is beyond the reach of this paper as that require a departure from the linearization of the
DSGE model.
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A Drawing random numbers from a multivariate distri-
bution using a Copula

To make draws from the multivariate distribution GΣ in N variables the following algorithm
may be used:

1. Draw Q number of observations from the multivariate normal distribution ΦΣ. Abbre-
viate the draws from this distribution for variable n ∈ [1, N ] as yn, which then has size
Q× 1.

2. For each variable n ∈ [1, N ] map the observation found in step 1 to the interval [0, 1]

using un = Φ(yn), where Φ is the standard normal CDF.

3. Map to the final draws from the marginal distribution of variable n ∈ [1, N ] by xn =

F−1
n (un), where Fn is the CDF of the marginal distribution of variable n.

If you want to draw from the multivariate distribution GΣX |xi, ..., xj ∈ X instead of GΣ you
must substitute ΦΣ with ΦΣX and Fn with Fn(xn)|xi, ..., xj ∈ X in the above algorithm.

To make draws from the conditional multivariate distribution GΣ,Σ22 |xk ∈ X2, where the
hard conditional information is given by a, the following algorithm may be used:

1. Partition the variables into the sets X1 and X2. Where X2 is the set of variables to
condition on with dimension I, and X1 is the set of variable not to condition on with

dimension N − I. If we re-order them according to x =

[
x1

x2

]
, i.e. with all xk ∈ X2

stacked in a vector x2 and with all xi ∈ X1 stacked in a vector x1, we can partition

the correlation matrix as Σ =

[
Σ11 Σ21

Σ12 Σ22

]
. Σ11 has size N − I × N − I, Σ21 has size

I ×N − I, Σ12 has size N − I × I and Σ22 has size I × I.

2. Map the conditional information a to the normal distribution by µk = Φ−1(Fk(ak)) for
all ak ∈ a, and stack the µks in a vector µ with the same order as in a.

3. Adjust the mean and the correlation matrix of the variables not conditioned on. µ =

Σ12Σ−1
22 µ and Σ = Σ11 − Σ12Σ−1

22 Σ21.

4. Draw Q number of observations from the multivariate normal distribution Φ(µ,Σ).
Abbreviate the draws from this distribution for variable n ∈ [1, N − I] as yn, which
then has size Q× 1.

5. For each variable n ∈ [1, N − I] map the observation found in step 3 to the interval
[0, 1] using un = Φ(yn), where Φ is the standard normal CDF.

6. Map to the final draws from the marginal distribution of variable n ∈ [1, N − I] by
xn = F−1

n (un), where Fn is the CDF of the marginal distribution of variable n.
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B Tables

Table 3: Second order moments generated by the modified Lubik
and Schorfheide (2007) model versus empirical

∆et rt πt π∗t yt y∗t
Standard errors 2.58 0.89 1.44 0.58 1.58 1.15
Standard errors (empirical) 2.33 0.37 0.24 0.35 1.53 1.26

See table 1 for the definitions of ∆et, rt, πt, π∗t , yt and y∗t . The
empirical second order moments of the data used to estimate the
model is given in the lines where (empirical) is provided.

Table 4: Correlations generated by the modified Lubik and
Schorfheide (2007) model versus empirical

∆et rt πt π∗t yt y∗t
∆et 1.00 0.65 0.78 -0.22 -0.28 0.04
∆et (empirical) 1.00 -0.03 0.06 -0.41 0.06 0.03
rt 0.65 1.00 0.75 0.00 -0.68 0.01
rt(empirical) -0.03 1.00 0.38 0.09 0.31 0.37
πt 0.78 0.75 1.00 0.00 -0.39 0.08
πt (empirical) 0.06 0.38 1.00 -0.06 0.40 0.18
π∗t -0.22 0.00 0.00 1.00 0.00 0.00
π∗t (empirical) -0.41 0.09 -0.06 1.00 0.14 0.34
yt -0.28 -0.68 -0.39 0.00 1.00 -0.33
yt (empirical) 0.06 0.31 0.40 0.14 1.00 0.67
y∗t 0.04 0.01 0.08 0.00 -0.33 1.00
y∗t (empirical) 0.03 0.37 0.18 0.34 0.67 1.00

See table 1 for the definitions of ∆et, rt, πt, π∗t , yt and y∗t .
The empirical correlations of estimation sample is given in
the lines where (empirical) is provided.

20



C Graphs

Figure 4: Density forecasts produced by the modified Lubik and Schorfheide (2007) model.
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Density forecasts are produced by simulating 4000 draws from the vector of innovations at
each forecasting step. See table 1 for the definitions of π∗t , y∗t , ∆et, πt, rt and yt. y∗t and yt
are both measured as percentage deviation from steady-state, while the rest are measured
as percentage points deviation from steady-state.
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Figure 5: Density forecasts produced by the modified Lubik and Schorfheide (2007) model.
Innovations (multiplied by 100).
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Density forecasts are produced by simulating 4000 draws from the vector of innovations at
each forecasting step. See section 4.1 for the definitions of επ∗

t , εy
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t , εzπt , εzqt , εzrt and εzt .
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Figure 6: Density forecasts produced by conditioning on the forecasts from the modified
Lubik and Schorfheide (2007) model.
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Density forecasts is produced by simulating 4000 draws from the multivariate distribution of
the density forecasts of the endogenous variables over the full forecasting horizon produced by
the modified Lubik and Schorfheide (2007) model using the algorithm given in section 3.2.1.
The multivariate distribution is constructed by a Gaussian copula that is parameterized
using the correlation structure of the modified Lubik and Schorfheide (2007) model and the
marginal distributions of the density forecasts shown in figure 4. The theoretically calculated
marginal distributions from the model are used. See table 1 for the definitions of π∗t , y∗t ,
∆et, πt, rt and yt. y∗t and yt are both measured as percentage deviation from steady-state,
while the rest are measured as percentage points deviation from steady-state.
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Figure 7: Identified distributions of the innovation when conditioning on the forecasts from
the modified Lubik and Schorfheide (2007) model (multiplied by 100).
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Density forecasts is produced by simulating 4000 draws from the multivariate distribution of
the density forecasts of the endogenous variables over the full forecasting horizon produced by
the modified Lubik and Schorfheide (2007) model using the algorithm given in section 3.2.1.
The multivariate distribution is constructed by a Gaussian copula that is parameterized
using the correlation structure of the modified Lubik and Schorfheide (2007) model and the
marginal distributions of the density forecasts shown in figure 4. The theoretically calculated
marginal distributions from the model are used. See section 4.1 for the definitions of επ∗

t ,
εy

∗

t , εzπt , εzqt , εzrt and εzt .
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Figure 8: Density forecasts produced by conditioning on the forecasts from the pool of
VAR models.
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Density forecasts are produced by simulating 4000 draws from the multivariate distribution of
the density forecasts of the endogenous variables over the full forecasting horizon produced
by the pool of VAR models using the algorithm given in section 3.2.1. The multivariate
distribution is constructed by a Gaussian copula that is parameterized using the correlation
structure of the modified Lubik and Schorfheide (2007) model and the marginal distributions
of the density forecasts of the pool of VAR models. A Gaussian kernel density estimator is
used to estimate these marginal distributions. See table 1 for the definitions of π∗t , y∗t , ∆et,
πt, rt and yt. y∗t and yt are both measured as percentage deviation from steady-state, while
the rest are measured as percentage points deviation from steady-state.
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Figure 9: Identified distributions of the innovation when conditioning on the forecasts from
the pool of VAR models (multiplied by 100).

1994Q1 1998Q1 2002Q1 2006Q1 2010Q1 2014Q1 2018Q1
−300

−200

−100

0

100

200

−300

−200

−100

0

100

200

Inflation abroad (ε
t

π*
)

1994Q1 1998Q1 2002Q1 2006Q1 2010Q1 2014Q1 2018Q1

−200

0

200

−200

0

200

GDP abroad (ε
t

y*
)

1994Q1 1998Q1 2002Q1 2006Q1 2010Q1 2014Q1 2018Q1
−400

−200

0

200

400

−400

−200

0

200

400

Price markup (ε
t

z
π)

1994Q1 1998Q1 2002Q1 2006Q1 2010Q1 2014Q1 2018Q1

−500

0

500

−500

0

500

Terms of trade (ε
t

z
q)

1994Q1 1998Q1 2002Q1 2006Q1 2010Q1 2014Q1 2018Q1
−200

−100

0

100

200

−200

−100

0

100

200

Monetary policy (ε
t

z
r)

1994Q1 1998Q1 2002Q1 2006Q1 2010Q1 2014Q1 2018Q1

−500

0

500

−500

0

500

Productivity (ε
t

z
)

Mean

Density forecasts are produced by simulating 4000 draws from the multivariate distribution of
the density forecasts of the endogenous variables over the full forecasting horizon produced
by the pool of VAR models using the algorithm given in section 3.2.1. The multivariate
distribution is constructed by a Gaussian copula that is parameterized using the correlation
structure of the modified Lubik and Schorfheide (2007) model and the marginal distributions
of the density forecasts of the pool of VAR models. A Gaussian kernel density estimator is
used to estimate these marginal distributions. See section 4.1 for the definitions of επ∗

t , εy
∗

t ,
εz
π

t , εzqt , εzrt and εzt .
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Figure 10: Decomposition of the density forecasts as percentage deviations from the mean
forecast. Modified Lubik and Schorfheide (2007) model.
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The 90th percentile is used. See table 1 for the definition of yt.

Figure 11: Decomposition of the density forecasts as percentage deviations from the mean
forecast. Pool of VAR models.
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The 90th percentile is used. See table 1 for the definition of yt.
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Figure 12: Percentage points difference in the decomposition of the density forecasts from
the modified Lubik and Schorfheide (2007) model and the pool of VAR models of the GDP
gap (yt).
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Difference between the decomposition in figure 10 and figure 11. The innovations given in
the left hand side figure indicates that those innovations leads to a wider density forecast
of the GDP gap, at a given horizon, in the modified Lubik and Schorfheide (2007) model
versus the pool of VAR models. The opposite is the case in the right hand side figure. See
table 1 for the definition of yt.
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