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R&D heterogeneity and its implications for growth∗

Sigurd Mølster Galaasen†and Alfonso Irarrazabal‡

Abstract

This paper quantifies the determinants of heterogeneity in R&D investment
and its implications for growth. Using a panel of Norwegian manufacturing
firms we document a negative correlation between R&D intensity and firm size,
driven mainly by small firms with high R&D intensity. We estimate a Schum-
peterian growth model with heterogeneous firms, that differ with respect to in-
novation efficiency. The estimated model fits the shape of the R&D investment
distribution as well as the negative correlation between R&D intensity and firm
size. A larger selection effect contribution to aggregate growth is found when
we include R&D moments in the estimation. Finally, we study the link between
firm heterogeneity and R&D subsidies, and show that the growth effects of sub-
sidies depend crucially on how the policy influences the equilibrium distribu-
tion of firms.
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1 Introduction

Surveys report substantial and persistent firm heterogeneity in R&D intensity.1 In
fact, most firms report zero R&D, some firms report moderate R&D investment, and
a few firms report large investment in R&D relative to size. What is the source of
this heterogeneity? How important is it to allow innovative firms to grow at the
expense of less innovative firms? And finally, in an environment characterized by
firm heterogeneity, how does R&D policy (e.g. innovation subsidies) affect economy
growth?

In this paper we address these questions by estimating an equilibrium model of
firm-level innovation and growth. We adopt the creative-destruction framework of
Klette and Kortum (2004) extended by Lentz and Mortensen (2008). In this model
firms grow through product innovation that results from innovation made by in-
cumbent and new firms. In the model the two key forces that generate heterogene-
ity in R&D intensity (R&D expenditures relative to value-added) at the firm level
are demand shocks and firm type heterogeneity. A firm invests in R&D that may
lead to an innovation. Demand shocks are generated by letting consumer expendi-
ture shares vary across products, implying that the firm’s revenue associated with a
new product is uncertain. Firm-type heterogeneity arises because incumbent firms
differ with respect to the quality improvement associated with an innovation, i.e.
some firms produce higher quality innovations than others. This heterogeneity is
exogenous and realized upon entry. Absent demand shocks and type heterogeneity
every firm would have the same R&D intensity.2 Firm-type heterogeneity generates
variations in R&D intensity since high types (those producing high-quality improve-
ments) have higher expected returns to R&D and thus invest more than low types,
both in terms of R&D levels and relative to firm size. Thus, high type firms have
higher R&D intensity and grow faster than low type firms.

The model provides a rich, yet tractable, framework that links firm-level dynam-
ics to micro-level data. Using observations on size, productivity and R&D expendi-
tures from a panel of Norwegian manufacturing firms, we estimate the model and
quantify the relative importance of different sources of R&D heterogeneity. Thus, we
contribute to the recent literature that estimates variants of the Klette-Kortum model

1R&D intensity (RI) is a measure of R&D expenditures relative to size. Firm size is measured in
terms of value-added.

2The R&D production function has the property that a firm’s optimal R&D investment is propor-
tional to its size (measured as number of products). Absent demand shocks, value-added is propor-
tional to the firm’s product size.
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using micro data on R&D.3

The model’s fit maps well to both R&D and non-R&D moments. In particular,
the estimated model fits the observed distribution of R&D expenditures and inten-
sity (mean, dispersion and skewness) as well as the negative correlation between
R&D intensity and size. In our dataset, which is obtained from a survey of all firms
above 50 workers and a sample of firms between 10 and 50 workers, this correlation
is driven by small firms. In contrast, most previous studies have used large firms (for
survey limitations) and found a zero correlation in their sample (Cohen and Klepper
1996; Klette and Grilliches 2000; and others). In our framework, the negative cor-
relation results from firms becoming larger not only due to innovation activity, but
also due to persistent random shocks to the demand for their products. In the esti-
mated model, the group of small firms tends to be dominated by those experiencing
negative demand shocks. We also find that this shock is key for generating sub-
stantial cross-sectional dispersion in R&D intensity, while firm-type heterogeneity is
important for cross-sectional variation in R&D expenditures.

Firm-type differences imply that reallocating workers from less to more produc-
tive firms generates aggregate productivity gains. In the model, creative destruction
induces such gains by generating a reallocation of product shares across types. More
productive firms innovate more intensely and crowd out less productive firms in
steady state. Using data from Danish firms, Lentz and Mortensen (2008) find that
this selection effect accounts for around 53 percent of aggregate growth. We use
Norwegian manufacturing firms and infer the importance of selection for growth in
our sample. Crucially, we have R&D information, which we use to discipline the
model along the R&D dimension. To make our estimation comparable to Lentz and
Mortensen (2008), we first exclude observations on R&D, and find that the selection
effect accounts for 44.5 percent of aggregate growth. This magnitude is similar to
the 49 percent they find for the manufacturing sector. However, we miss some key
empirical R&D patterns: Research intensity is too negatively correlated with firm
size and those firms engaging in R&D are too many, too small, homogeneous, and
invest too little in R&D relative to the data. When re-estimating the model by adding
R&D moments the new parameters imply a larger role for reallocation, which then
accounts for 72 percent of aggregate growth.

We subject our model to several tests of robustness. It produces firm-level re-
sponses to R&D subsidies that are in line with micro evidence from a natural exper-

3Recently, several papers have used R&D information to estimate structural models similar to ours;
for example, see Akcigit and Kerr (2010) and Acemoglu et al. (2013)
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iment (Bøler et al. (2015) ). In the short run, firms increase their R&D spending by
roughly 40 percent in response to a 20 percent R&D subsidy. Using a 2002 Norwe-
gian policy reform, aimed at firms with less than 4 million NOK in R&D spending,
Bøler et al. (2015) estimates a reform-induced increase in R&D spending by 35 to
72 percent during 2003-2005. Moreover, the model also explains several cross sec-
tional and dynamic moments for R&D, firm size and productivity when we restrict
the sample to large firms. Finally, the model reproduces features of firm’s life cycle
over a longer horizon than we consider in the estimation.

Finally, we use the estimated model to quantitatively explore the growth effects of
R&D subsidies. Since our estimation finds a strong reallocation channel, we expect
substantial variation in aggregate growth effects, depending on how a subsidy pol-
icy is implemented. By studying stylized reforms, we show how failing to target the
best innovators may lead to subsidies creating small, or indeed adverse, growth ef-
fects. In general, a subsidy’s effect on growth depends crucially on how it influences
the equilibrium distribution of firms and R&D spending. For example, a subsidy
that targets small firms (in terms of R&D expenditures) results in a 0.7 percentage
point reduction in the aggregate productivity growth rate relative to the decentral-
ized equilibrium of 1.47 percent. Compared to only subsidizing incumbent firms,
a subsidy to all firms (potential entrants and incumbents) reduces the growth rate
from 1.83 to 1.53 percent. The reason for these adverse effects is that subsidies to
small firms weaken the selection effect, and a larger share of less innovative firms is
thus sustained in equilibrium.4

Our paper is related to several different literatures. First, it relates to the litera-
ture on R&D heterogeneity. Several papers have attempted to account for within-
industry differences in firm R&D intensity. Cohen and Klepper (1992) proposed a
simple mechanism to explain the dispersion in R&D intensity observed in the data.
The authors developed a probabilistic model where firms partially control the out-
come of their R&D effort. Cohen and Klepper (1992) also propose a mechanism
that relates R&D spending to firm size. More recent papers have used a structural
approach to understand the link between firm dynamics and R&D heterogeneity,
for example; see Akcigit and Kerr (2010) and Acemoglu et al. (2013). Akcigit and
Kerr (2010) develop a model in which firms undertake heterogeneous research activ-
ities; exploration (capture new products) and exploitation (improve exciting product

4Acemoglu et al. (2013) find that an optimal R&D policy involves subsidizing both entrants and
high incumbent firms. The key mechanism that drives the difference in policy implications is that in
Acemoglu et al. (2013) firm-type heterogeneity is transitory.
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lines). Aw et al. (2011) estimate a structural model of producer decisions to invest in
R&D and export. Their partial equilibrium model limits the analysis to within-plant
productivity gains.

Second, our paper relates to the literature on reallocation (Petrin and Levinsohn,
2012, Foster et al., 2001, Bartelsman et al., 2013 and others). Finally, our paper con-
tributes to the literature on R&D policy (Aghion et al. 2013; Acemoglu et al. 2013;
Atkeson and Burstein 2014; Lentz and Mortensen 2016).

The paper proceeds as follows. Section 2 describes the data. Section 3 goes
through the model. In particular, section 3.2 focuses on the link between Lentz and
Mortensen (2008) and Klette and Kortum (2004), and section 3.4 explores the model
implication for R&D patterns. In section 4 we go through the empirical implemen-
tation and estimation results, and section 5 contains the policy experiments. Section
6 concludes.

2 R&D Facts

In this section we describe the data, and discuss some stylized facts about R&D het-
erogeneity for the Norwegian manufacturing sector, and characterize the relation-
ship between R&D intensity, firm size and productivity.

2.1 Data

The data consists of a panel of Norwegian manufacturing firms for the period 1997
to 2001, and gathered from two sources. First, we use balance sheet data from Statis-
tics Norway’s Capital database,5 which is an annual unbalanced panel of all non-oil
manufacturing joint-stock firms. The panel provides information about each firm’s
value-added, wage bill and number of workers. Second, we use the biennial R&D
survey from Statistics Norway,6 which provides information about firm-level R&D
investment. The survey records R&D information for all firms with more than 50
workers. It also contains information for all firms with less than 50 employees, that
have reported intramural R&D activity in the previous survey of more than NOK 1
million or extramural R&D of more than NOK 3 million. Finally, for the remaining
firms with 10-49 employees, a random sample was selected with a sampling rate of
roughly 35 percent. We follow Lentz and Mortensen (2008) and exclude entry firms

5For Capital database data documentation, see Raknerud et al. (2004)
6See Statistics Norway (2004)
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from the sample. Consequently, we follow the 1997 cross-section of firms over the
1997-2001 period . Before we trim the data we compute the aggregate wage rate in
1997 as the ratio of the aggregate wage bill to aggregate employment, wt = ∑j Wj,t

/∑j N∗j,t, where Wj,t and N∗j,t are total wage bill and employment (number of workers)
for firm j in year t. For subsequent years, we compute the wage rate using firms that
were incumbents in 1997. We also follow Lentz and Mortensen (2008) and construct
the quality-adjusted employment (Nj,t) for firm j using Nj,t = Wj,t/wt, which we use
as our measure of firms’ employment when constructing empirical moments.

We trim both tails of the employment distribution. At the bottom we eliminate
firms with less than three workers. Many of these very small firms are single em-
ployee companies. At the top we exclude all firms above the highest 1 percent of the
size distribution. We also exclude all firms with R&D intensity (R&D expenditures
over value-added) above one in at least one year. Table 9 (appendix A) shows some
descriptive statistics for our sample. We have 5290 firms, with around 7 percent of
those firms reporting positive R&D activity. The mean R&D intensity of these firms
is 8 percent. We also report summary statistics for firms with 10-50 workers and over
50 workers.

2.2 Stylized Facts

Now we present some stylized facts about R&D, firm size and productivity.
Distributions. Figure 1 panel (a) shows the R&D intensity distribution for all

firms with positive R&D expenditure in 1997. The R&D distribution is positively
skewed with a long right tail. This means that most of the R&D intensity is concen-
trated at low intensities but that there are a few firms with a large proportion of R&D
expenditures relative to its size. The average R&D intensity for all sampled firms is
around 8 percent and around 6 percent for firms with more than 200 workers.7

Figure 1 panel (b) depicts the employment distribution of performers (firms with
positive R&D) and non-performers (firms reporting zero R&D) for 1997, for firms
with more than 50 workers.8 The size distribution for performers has more mass

7Doraszelski and Jaumandreu (2013) report values between 1 to 2.7 percent for Spanish manufactur-
ing firms for a sample of firms with more than 200 workers. Acemoglu et al. (2013), using the Survey
of Industrial Research and Development, report values of 9.9 for small firms and 4.2 for large firms. In
their sample 32 percent of the firms have more than 500 employees.

8Using other datasets, it has been found that a considerable fraction of firms report zero innovation.
For example, for manufacturing firms with more than 10 workers, Harrison et al. (2008) reports a
fraction of non innovators ranging from 0.47 to 0.6 for four European countries. In our sample, the
fraction of firms with zero R&D for firms over 50 workers is 0.65. When we include firms above three
workers, this fraction rises to 0.92, which is one of the moments we target in the estimation. Notice that
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to the right and performers on average are 1.22 times larger than non-performers in
terms of employment.

Figure 1: The Distributions of R&D intensity and Size for Performers and Non-
Performers.
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Notes: The data is from 1997. The R&D intensity histogram is computed by including all sampled firms. The size
distributions considers all firms with more than 50 workers and depicts kernel densities.

Correlations. We also document negative correlations between R&D intensity
with firm size and productivity. In Figure 2 panel a, we plot a kernel regression
between R&D intensity and value-added for 1997. The unconditional correlation is
-0.18. It is interesting that most of the correlation is driven by firms with low R&D
intensity. In fact, the correlation between R&D intensity and firm size is -0.02 for
firms with 50 or more workers. Our model will be able to explain this negative
correlation because firms can become large not only due to innovation activity, but
also due to a random shock to demand for their products. Since market demand for
a product is unrelated to R&D expenditures it creates a negative correlation between

we do not target the fraction of firms above 50 workers reporting zero R&D, but the estimated model
gives a fraction of 0.71.
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firm size and R&D intensity. In panel b we plot a kernel regression between R&D
intensity and productivity measured as value-added per worker. The unconditional
correlation is -0.18

Figure 2: R&D Intensity, Value-Added and Worker Productivity.
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Notes: Panel (a): Kernel regression and scatter plot of R&D intensity on value-added (panel a) and value-added per
worker (panel b), in 1997.

3 The Model

This section lays out our model. We will first review the basics of the Klette-Kortum
model, and then incorporate the innovations introduced by Lentz and Mortensen
(2008).9 The model is an endogenous growth model based on expanding product
quality, and extends the work of Grossman and Helpman (1991) and Aghion and

9Readers already familiar with the these models may skip this section. Note that we assume unit
price elasticity for all products. In contrast, Lentz and Mortensen (2008) allow for the product price to
affect product revenue. However, when they estimate their model they impose unit demand elasticities
for all product varieties.
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Howitt (1992) by incorporating research conducted by incumbent firms. This ap-
proach implies that firm size and R&D distributions are endogenous. There is a fixed
measure of differentiated goods and innovation improves product quality. Firms
compete in a quality-ladder setting and invest in R&D to capture market shares.

3.1 The Klette-Kortum Model (2004)

Time is continuous. A representative household maximizes utility U =
∫ ∞

0 e−ρtln(Ct)dt,
and has Cobb-Douglas preferences over a unit continuum of differentiated goods,

ln(Ct) =
∫ 1

0 ln[yt(j)At(j)]dj, (1)

where yt(j) and At(j) measures the quantity and quality, respectively, of good j. To-
tal labor supply (l) is exogenous, homogeneous, and can be used for two activities:
production of goods and research. Total expenditures, Et = PtCt are normalized
to Z for all periods (t). Given an interest rate rt and the household’s Euler equa-
tion

.
E/E = rt − ρ, this normalization implies that rt = ρ. Furthermore, it means

that the consumption price Pt deflates at the rate of consumption growth. Since all
goods have an equal log-preference weight, consumers spend Z on each good. The
production technology is linear-in-labor and equal across all goods y(j), with factor
productivity normalized to 1. The unit (and marginal) cost of production is thus w,
the cost per unit of labor.

The Innovating Firm. Firms are units that manufacture multiple products. Firms
enter the industry with one product and they have to invest in R&D to add more
products to their portfolio. The outcome of this research effort is stochastic. All
firms innovate at the quality frontier and innovations occur randomly with a Pois-
son arrival rate I, chosen by the firm. Upon a successful innovation effort, the firm
improves the quality of a random good j by a factor q > 1. This factor is firm-specific
and applies to all its innovations, but varies across firms. The time t quality of good
j is given by

At(j) = ∏
Jt(j)
i=0 qi(j), (2)

that is, the product of all past innovations is Jt(j), where qi(j) and qJt(j)(j) are the
quality improvement of the ith and last innovation, respectively, and q0(j) is the ini-
tial quality. Consider a firm making a successful time t innovation in good j. The
innovation creates a blueprint which is a multiplicative improvement q over the cur-
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rent producer’s blueprint At(j) . The firm’s product quality is then given by At(j)q.
Hence, the innovating firm combines the past quality blueprints embedded in At(j)
(common knowledge) with its new blueprint to create a product with superior qual-
ity. The innovating firm receives a patent for this blueprint that lasts until a new
innovation occurs. Since the innovator is the only firm that can produce the frontier
quality goods (all other firms can produce at quality At(j)), under Bertrand pricing
it becomes the sole supplier of that good. The price p(j) is a markup q over marginal
cost w, i.e. the price that makes the buyer indifferent between the highest quality ver-
sion and the second highest quality version, priced at marginal cost. The innovator
receives a flow of profits associated with the new product, given by

Π(j) = p(j)y(j)− wy(j) = p(j)y(j)
[

1− 1
q

]
(3)

= Zπ(q),

where π(q) = 1− 1
q is the profit share generated by the quality improvement q. The

demand for production workers lw(j) (and quantity y(j)) associated with product j
is then

lw(j) =
Z

qw
. (4)

Notice that the model features no social depreciation of knowledge. This assump-
tion is apparent from the definition of At(j) in equation (2), where we see that qual-
ity stays constant if no innovation occurs. However, there is private depreciation
of knowledge, in the sense that the firm’s return to innovation only lasts until its
product is overtaken by a competitor.

Innovation Choice. The firm’s state is the number of products k it currently pro-
duces. It invests in R&D to maximize the present value of future profits. R&D in-
vestment generates new products at a frequency γk. Moreover, any good the firm
produces is overtaken by another firm at Poisson rate δ, and firms with k products
will see any of these products overtaken at rate δk. The destruction intensity δ is the
outcome of aggregate innovation, and thus is an equilibrium object.

Investment in R&D requires labor and knowledge capital, measured as the firm’s
number of products k. The total cost of R&D is wc(γ)k, where the function c(γ) is
assumed to be strictly increasing and convex.
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The firm’s optimal R&D investment solves the Bellman equation,

rV(k) = max
γ>0
{π(q)Zk− wkc(γ) + γk [V(k + 1)−V(k)]− δk [V(k)−V(k− 1)]} ,

(5)
where the first two terms represent profit flow from the firm’s current portfolio of
goods and R&D expenditures, while the last two terms represent the value of gain-
ing and losing a product, respectively. Since the R&D technology features constant
returns to scale in labor and the number of products, the value and policy functions
become proportional to the state variable,

V(k) = vk

I(k) = γk. (6)

A firm’s demand for researchers is thus proportional to the total number of products,

lR(k) = kc(γ). (7)

The innovation intensity γ and value per product v solves

wc′(γ) = v (8)

v =
Zπ(q)− wc(γ)

r + δ− γ
. (9)

Given the firm’s innovation choice γ and the aggregate destruction rate δ, the firm’s
product size k follows a Poisson birth-death process. The time until a firm with k
products at time t gains or loses a product is exponentially distributed with a mean
of 1/(k(γ + δ)). When the transition occurs, the firm moves to state k − 1 with a
probability of δ/(γ + δ) and to state k + 1 with a probability of γ/(γ + δ). When
the firm loses all of its products, it permanently exits the market, i.e. k = 0 is an ab-
sorbing state. As a consequence of the proportionality of the policy function, we can
alternatively interpret a size-k firm as being a collection of k firms with one product.

3.2 Incorporating Lentz and Mortensen (2008)

Lentz and Mortensen (2008) estimate the Klette-Kortum model on Danish firm-level
data. To account for firm heterogeneity, they extend the model along four dimen-
sions.

11



A. Type Heterogeneity In the setup in section 3.1 productivity, measured as value-
added per worker, is independent of firm size k:

PR =
kZ

klw + lR(k)

=
Z

Z(wq)−1 + c(γ)
. (10)

Klette and Kortum (2004) create productivity dispersion across firms through firm
specific innovation steps q (and thus profit shares π(q)). However, Klette and Ko-
rtum modify the R&D cost function c(γ) in such a way that the cost and benefit
of large innovation steps are proportional, leaving the optimal creation rate γ con-
stant across firm types. With homogeneous creation rates, firm size is unrelated to
productivity.

Using Danish data, Lentz and Mortensen document a positive correlation be-
tween productivity and firm output size (value-added), and zero correlation be-
tween productivity and firm input size (workers). To account for these relation-
ships, they introduce heterogeneity in q as in Klette and Kortum (2004), but al-
low this factor to generate heterogeneous innovation intensities. In particular, us-
ing the same R&D cost function c(γ), profitable firms (high q) create larger quality
improvements than less profitable firms. Given the firm’s problem, it follows that
π(qτ) > π(qτ′) ⇔ γτ > γτ′ . Type τ firms have on average more products (and
thus higher value-added) than type τ′ firms, and from equation (4) the demand for
production workers associated with a product is negatively related to the size of the
innovation step. Consequently, firm-specific innovation’s steps can accommodate a
positive correlation between labor productivity and value-added, and a zero corre-
lation between labor productivity and employment.

B. Supply Side Shocks Value-added per worker is perfectly persistent in the model’s
basic setup. To address this, Lentz and Mortensen (2008) relax the assumption that
the firm-specific innovation step q is constant across innovations. When innovation
does occur, the type-specific quality jump qτ is drawn from a Weibull distribution.
The quality jumps of a more innovative firm type dominates by (first order stochas-
tic) those of less innovative firms. The more innovative firm-type is thus more prof-
itable in expectation: E [π(qτ)] > [π(qτ′)]⇔ γτ > γτ′ .
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C. Demand Side ”Shocks” In the basic Klette-Kortum model, firm growth is inde-
pendent of firm size (Gibrat’s law). In the Danish data, large firms tend to grow more
slowly. To account for this discrepancy, Lentz and Mortensen (2008) add a random
product market size by allowing the preference weight to vary across goods, with αj

as the weight on good j :

ln(Ct) =
∫ 1

0 αj ln[yt(j)At(j)]dj.

Since
∫ 1

0 αjdj = 1, the expenditure share on good j is zj = αjZ. Furthermore, R&D
is undirected. Upon a successful innovation, the firm cannot choose which good the
quality improvement applies to; each good on the unit interval is an equally likely
candidate. Thus, from the innovator’s viewpoint, product revenue is uncertain until
the particular product variety is realized. This randomness creates a mean reversion
in value-added, which potentially can help explain the violation of Gibrat’s law.

D. Capital Cost Finally, Lentz and Mortensen (2008) add capital to the goods pro-
duction function, using Leontief technology in labor and capital. Total factor pro-
ductivity is normalized to 1, and marginal cost is given by w + κ where w is the cost
per unit of labor and κ is the capital cost per unit of output. The capital cost does
not impact a firm’s profitability, and is thus irrelevant for innovation choice. How-
ever, it directly impacts labor’s share of value-added, and thus pins down the level
of value-added per worker.

E. Firm Problem Adding these features does not substantially alter the firm’s prob-
lem. We need to add the vectors of product demand realizations zk = (z1, ..zk) and
innovation steps qk = (q1, ..qk) to the definition of current profit flow in the Bellman
equation. However, looking forward, firms expect to realize mean revenue Z and
mean profit share E[π(qτ)] on future innovations. The optimal R&D investment is
still proportional to the firm’s product size Iτ = γτk and the type-specific innovation
intensity γτ solves for

wc′(γτ) = vτ

vτ =
ZE[π(qτ)]− wc(γτ)

r + δ− γτ
, (11)

where vτ now denotes the specific firm-type expected value of one product.
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3.3 Entry and Equilibrium

A. Entry Rate There is a constant mass µ of potential entrants choosing an inno-
vation intensity γ0, that permits each firm to enter the market with one product.
Aggregate innovation rate by entrants is then η = γ0µ. Potential entrants face the
same R&D cost function as an incumbent with one product, i.e. wc(γ0). On entry,
firms learn their own type, drawn from the discrete distribution of potential firm
types, where φτ denotes the fraction of type τ firms on entry. The expected value of
entering with one product is thus given by E [vτ] = ∑τφτvτ. The free entry condition
requires that

wc′(γ0) = wc′
(

η

µ

)
= ∑τφτvτ. (12)

B. Stationary Equilibrium In a stationary equilibrium, with creation rate γτ and
destruction rate δ both constant, the product birth-death process at the individual
firm level give rise to a logarithmic distribution (with parameter γτ

δ ) in k across firms
of a particular type τ. Because firms of different types τ choose different creation
rates γτ, the R&D distribution differs across types.

Firms choose their innovation intensity γτ taking as given the aggregate product
destruction rate. In equilibrium, aggregate innovation must be consistent with the
innovation undertaken by incumbents and entrants:

δ = η + ∑n
τ=1Kτγτ. (13)

Kτ is the steady-state mass of goods produced by type τ firms, given by

Kτ =
ηφτ

δ− γτ
. (14)

Since there is a total mass 1 of goods, we must have that ∑n
τ=1Kτ = 1. Through the

process of creative destruction, the equilibrium distribution of firms, denoted φ∗τ ,
differs from the entry distribution φτ. The total steady-state mass of type τ firms is
given by

Mτ =
ηφτ

γτ
ln
(

δ

δ− γτ

)
, (15)

and the equilibrium fraction is then

φ∗τ =
Mτ

∑n
τ=1Mτ

. (16)
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The stationary equilibrium consists of a constant wage w, an aggregate destruction
rate δ, entry rate η, firm type-specific creation rates {γτ}n

τ=1 and distribution of prod-
ucts across types {Kτ}n

τ=1, such that η satisfies the free entry condition in equation
(12), the creation rate γτ solves the firm’s optimization problem, aggregate destruc-
tion δ and product distribution Kτ satisfy equations (13) and (14), and the wage rate
clears the labor market.10

C. Aggregate Growth Rate In keeping with Klette and Kortum (2005) and Ace-
moglu et.al. (2013), we assume that at time 0 the economy is in steady state, and we
normalize the initial quality index such that A0(j) = q0(j) ∀ j. With this normaliza-
tion, we implicitly normalize the previous quality version of each good, q−1(j) = 1,
and assume that all goods are available in an improved q0(j) quality version at time
0. Consumption evolves according to

ln(Ct) =
∫ 1

0 αj ln At(j)dj +
∫ 1

0 αj ln yt(j)dj

=
∫ 1

0 αj

[
Jt(j)

∑
i=0

ln qi(j)

]
dj +

∫ 1
0 αj ln

[
αjZ

w + κ

1
qJt(j)

]
dj

=
∫ 1

0 αj

[
Jt(j)

∑
i=0

ln qi(j)

]
dj−

∫ 1
0 αj ln [qJt(j)] dj +

∫ 1
0 αj ln

[
αjZ

w + κ

]
dj.

Along the stationary growth path new innovations arrive at the constant rate δ. We
can then apply the law of large numbers to a weighted average (with weights α(j))
to get11

ln(Ct) = (δt + 1)E[ln(q)]− E[ln(q)] +
∫ 1

0 αj ln
[

αjZ
w + κ

]
dj

= δtE[ln(q)] +
∫ 1

0 αj ln
[

αjZ
w + κ

]
dj,

where δt is the expected number of innovations per product Jt(j) over time length t,
and the average log quality jump given by

E[ln(q)] = ∑n
τ=1

φτη + Kτγτ

δ
E[ln(qτ)],

10This equilibrium corresponds to the equilibrium definition in Lentz and Mortensen (2008) p. 1332.
We refer to Lentz and Mortensen (2008, appendix C) for the equilibrium solution algorithm.

11Note that since the firm cannot direct an innovation to a particular product, Jt(j) and qi(j) are i.i.d.
across the unit continuum of products, and consequently not correlated with the weights αj. To apply
the law of large numbers to a weighted average, we use the Lindeberg Central Limit Theorem.
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where φτη+Kτγτ

δ is the fraction of new innovations attributed to firms type τ and
E ln(qτ) is the type-conditional average log quality jump. Consequently, aggregate
consumption grows at a rate where

g = δE[ln(q)].

Growth thus arises due to the arrival of new innovations at rate δ with average qual-
ity contribution of E[ln(q)].

3.4 Model Implications for R&D Moments

In this section, we explain the different channels through which the model produces
heterogeneity in R&D. Understanding these channels will prove useful when we
interpret the estimation results in section 4.

The evolution of an individual firm’s product size k is completely determined
by the innovation choice γτ and the destruction rate δ. In steady state, the type-
conditional distribution of the number of products is logarithmic, with parameter
γτ/δ. Given this equilibrium parameter and drawing firm types from the discrete
distribution φ∗τ and demand and innovation step sizes from their corresponding dis-
tributions, we can produce observations of value-added (Yi,t), wage bill (Wi,t), R&D
expenditures (RDi,t), employment (Ni,t), labor productivity (PRi), R&D intensity
(RIi) across firms i at time t as follows:

Yi,t =
ki,t

∑
j=1

zi,j

Wi,t = w

(
1

w + κ

ki,t

∑
j=1

zi,j

qi,j
+ ki,tc(γτi)

)
(17)

RDi,t = wki,tc(γτi)

Ni,t = Wi,t/w

PRi,t = Yi,t/Ni,t.

The value-added (Yi,t) created by a firm with ki,t products is the sum of its product
revenues, and the wage bill (Wi,t) is the wage per worker times total labor demand
(the sum of workers devoted to production and R&D). Given a product demand zi,j

and the firm’s pricing rule, the demand for production workers associated with the
product is zi,j

pi,j
=

zi,j
(w+κ)qi,j

. The optimal R&D investment requires ki,tc(γτ) workers.
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Labor productivity is measured as value-added per worker, and research intensity
is defined as R&D spending (RDi,t) over value-added, such that RIi,t = RDi,t/Yi,t.

A. Dispersion in R&D The model generates cross-sectional heterogeneity in re-
search intensity mainly through two channels, i) firm type-heterogeneity in inno-
vation choices γτi and ii) demand shocks. If we shut down demand shocks, RIi,t

becomes
RIi,t =

wki,tc(γτi)

∑
ki,t
j=1 zi,j

=
wki,tc(γτi)

ki,tZ
=

w
Z

c(γτi). (18)

Due to the proportionality of R&D investment and the state variable k, heterogeneity
induced by the product birth-death process will not explain the cross-sectional R&D
intensity distribution. Without demand shocks, ki,t drops out of the expression. With
demand shocks, the k-distribution does affect the dispersion of R&D intensity across
firms. But since R&D spending still scales with size, it will be of second order im-
portance.

Demand shocks are irrelevant for explaining the heterogeneity in the level of
R&D spending. The dispersion is entirely determined by the product birth-death
process and heterogeneity across firms in innovation choice γτ .

B. Correlation between Research Intensity and Firm Size This correlation, which
is negative in the data, is given by

corr(RI, VA) = cor

 ki,t

∑
j=1

zi,j,
wki,tc(γτi)

∑
ki,t
j=1 zi,j

 (19)

and is driven by two opposing forces. First, consider the pure Klette-Kortum (2004)
model in which RIi,t = wc(γ)/Z is independent of firm size, given by Yi,t = ki,tZ.
Firm type-heterogeneity introduced by Lentz and Mortensen (2008) produces a pos-
itive relationship. More profitable firm-types choose a higher innovation intensity
γ since they expect a higher profit from a successful innovation than less profitable
firms (low type-firm). On average, more profitable firms have more products and
invest more in R&D relative to size. On the other hand, demand shocks work in the
opposite direction. Firms with a series successful products tend to be large. Since
demand shocks are unrelated to the firm’s R&D choice, these firms tend to have low
R&D intensity.
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C. Correlation between Research Intensity and Productivity Among firms with
RI > 0, R&D intensity and labor productivity is negatively correlated in the data.
Firms with high R&D expenditures relative to size thus tend to have low productiv-
ity.

corr(RI, PR) = corr

wki,tc(γτi)

∑
ki,t
j=1 zi,j

,
∑

ki,t
j=1 zi,j

1
w+κ ∑

ki,t
j=1

zi,j
qi,j

+ ki,tc(γτi)

 . (20)

The model generates this pattern through demand shocks. Consider a model with-
out demand shocks. As noted in section 3.2A, firm type-heterogeneity can accommo-
date a positive correlation between productivity and value-added. If large firms also
tend to have high R&D intensity, this translates into a positive correlation between
productivity and R&D intensity. Demand shocks will, as with corr(RI, Y), work in
the opposite direction. Firms with high R&D intensity tend to have experienced bad
demand draws, and a bad demand draw reduces value-added per worker. The rea-
son for this is the presence of R&D workers in the denominator of (equation 10).
This implies that in response to demand shocks total employment moves less than
proportionally to value-added. Finally, supply-side shocks (stochastic q) only create
variation in productivity, hence pushing the correlation toward zero.

D. Remarks on Measurement Error In the estimation we allow for log-normal
measurement error in the firm’s value-added, wage bill, and R&D expenditures.
Since employment is computed by dividing the wage bill with w, measurement er-
ror in W spills over to N. Measurement error in Y contributes both to variability
in R&D intensity and a negative correlation between R&D intensity and firm’s size
and productivity. Measurement error in R&D creates additional R&D intensity dis-
persion, but pushes correlations towards zero. Wage bill measurement error drives
corr(RI, PR) to zero, but does not affect the dispersion in R&D intensity.

4 Empirical Implementation

We now estimate the model using a panel of Norwegian firms with data starting
in 1997. We follow Lentz and Mortensen (2008) and use indirect inference methods
to estimate the structural parameters on cross-sectional and dynamic moments in
1997 and 2001. We first describe the estimation procedure, then we show that the
model estimated on Norwegian data (but without using the R&D moments) gives
reallocation effects of the same order of magnitude to those of Lentz and Mortensen.
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However, the estimated model has implications for R&D that are quite different from
the observed R&D. Finally, we re-estimate the model (using the R&D moments) and
find that resource reallocation across firms is more important for aggregate growth
than what Lentz and Mortensen’s study indicates.

4.1 Model Estimator

We parametrize the cost function as c(γ) = c0γ1+c1 . Product revenues are drawn
from a Weibull distribution with mean Z, an origin at oz and a shape parameter βz.
Quality improvements are drawn from a Weibull distribution with a shape parame-
ter βq (common across firm-types), an origin at 1 and a type-specific scale parameter
ε

q
τ. We consider three types of firms in the estimation, and assume a that type 1 firm

does not innovate (i.e. ε
q
1 = 0).12 Finally, we allow for log-additive measurement

error (ξY
i,t, ξW

i,t , ξRD
i,t ) in value-added, wage bill, and R&D expenditures, distributed

log-normally, ln(ξx
i,t) ∼ N(− σ2

x
2 , σ2

x), x ∈ {Y, W, RD}.
In total, the model has 17 fundamental parameters. Two R&D cost function pa-

rameters (c1, c2), capital cost in goods production (κ), interest rate r, three demand
parameters (Z, βz, oz), three innovation jump parameters (βq, ε

q
2, ε

q
3), the probability

of being of a type 2 and 3 type firm at entry (φ2, φ3) and three measurement error
variances (σ2

y , σ2
w, σ2

rd). Given the exogenous labor supply l and the mass of potential
entrants µ, the wage rate w and entry rate η are both equilibrium objects. However,
in keeping with Lentz and Mortensen (2008), we estimate w and η, and let l and µ

adjust such that the labor market clears and the free entry condition holds.
The wage rate, w = 296.5, is estimated directly from the data and the interest

rate is set to r = 0.05. The remaining 15 parameters are estimated by indirect infer-
ence. Given the parameters Λ =

{
η, c1, c2, κ, Z, βz, oz, βq, ε

q
2, ε

q
3, φ2, φ3, σ2

y , σ2
w, σ2

rd

}
, we

simulate a firm-year (i, t) panel of value-added (Ỹi,t), wage bill (W̃i,t) , employment
(Ñi,t), productivity (P̃Ri,t) and R&D expenditures ( ˜RDi,t) as follows: Solve for the
optimal firm-type R&D choice γτ and aggregate δ creation rates. Calculate the ag-
gregate growth rate g and equilibrium distribution of firm types φ∗τ . Then simulate a
five-year firm panel. First, draw the firm type from the distribution φ∗τ and its initial
state vector of products k, revenues z and quality jumps q. Using the creation and
destruction rates γτ and δ, simulate the birth-death process of number of the prod-

12Lentz and Mortensen (2008) also assume three firm types, but estimate ε
q
1 for a firm of type 1.

Their estimation produces ε
q
1 = 0. Moreover, this non innovating incumbent firm type accounts for 86

percent of all entry firms and 77 percent of equilibrium firms (manufacturing industry estimation p.
1366).
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ucts. This exercise produces a panel of firm-year observations using the expressions
in (17) and adding measurement error

ln(Ỹi,t) = ln(Yi,t) + ξY
i,t

ln(W̃i,t) = ln(Wi,t) + ξW
i,t (21)

ln( ˜RDi,t) = ln(RDi,t) + ξRD
i,t .

The simulated panel consists of all 5,290 incumbent firms in 1997, which we fol-
low until 2001 assuming steady state. Due to firm exits, and the fact that we exclude
firm entry (both in the model simulation and in the data), the 2001 cross-section
does not reflect a steady state. The cross sectional shift from 1997 to 2001 conse-
quently reflects the selected group of surviving firms. In addition, when computing
the simulated R&D moments we sample firms as in Statistic Norway’s R&D survey.

A firm’s product cycle follows a continuous time birth-death process. To facilitate
simulation, we follow Lentz and Mortensen and discretize the time space. A year
is divided into 26 sub periods. In any given two week sub period, a firm with k
products faces a probability of 1− e−

kδ
26 of losing a product and a probability of 1−

e−
kγ
26 of gaining a product.
We compute moments on the simulated panel, repeat the simulation 1,000 times

and store the average simulated moments. In total we have 37 non-R&D moments
(the same number of moments as Lentz and Mortensen, 2008) and 21 R&D moments.
Tables 10 and 11 (appendix A) list the full set of empirical moments. Along the R&D
dimension, we estimate the model on the distribution of R&D effort (intensity and
level), correlations between R&D intensity and firm size and productivity, and the
fraction of firms engaging in R&D (firms with positive R&D) and their size relative
to non performers (firms with zero R&D). Both in the data and in the model we treat
missing R&D observations, i.e. non sampled firms, as zeros.

Let Ω and Ω̂(Λ) denote the vectors of empirical and simulated moments, respec-
tively. The parameter estimates are the solution to the minimization problem,

min
Λ

[
Ω− Ω̂(Λ)

]′
A
[
Ω− Ω̂(Λ)

]
, (22)

where the weighting matrix A is the inverse of the diagonal covariance matrix of
the empirical moments. The squared difference between simulated and empirical
moments are consequently weighted by dividing by the variance of the empirical
moment. These variances are obtained by bootstrapping the original firm sample
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5000 times. Precisely estimated empirical moments are thus given more weight in
the minimization. Standard errors for the parameters are estimated by bootstrap.13

4.2 Benchmark Estimation

Now we replicate the Lentz and Mortensen (2008) estimation on Norwegian data.
Specifically, we drop R&D moments from the vector of moments (Ω, Ω̂). This pro-
vides a useful benchmark to Lentz and Mortensen (2008). They run estimations on
both the entire Danish private sector and on particular industries. Since we use data
on Norwegian manufacturing firms, the natural comparison is their corresponding
estimation on Danish manufacturing firms (pp. 1366-1367). We report amounts in
units of 1,000 NOK.

A. Non-R&D moments Table (1) shows estimated parameters, equilibrium values
and a selection of targeted moments from our benchmark estimation. Table 12 in the
appendix reports the full set of targeted moments.14

Overall, the model fits the data very well. The estimated model captures the
mean, dispersion and median for productivity in 1997, as well as the cross sectional
shift to 2001. Compared to the Danish manufacturing data, the correlation between
the firm’s value-added, size, and growth is essentially zero (−0.073 in Denmark,
−0.006 in Norway) and the model is able to capture this relationship. In addition,
the model matches both the persistence and mean reversion in productivity. As in
the Danish data, productivity is positively correlated with output size (Y) and un-
correlated with input size (N), a feature the model fits quite well.

B. Reallocation and Growth Aggregate growth, estimated to 1.6 percent annu-
ally, arises because of the arrival of better quality products, produced with the same
amount of labor. The contribution to growth varies across firm types according to

13We draw 500 bootstrap data samples from the original dataset. For each sample we estimate
the model on the bootstrap sample. Both the data moments and simulated moments are re-centered
around the corresponding moments from the full estimation.

14The estimation produces a large fraction of non-innovating incumbent firms, consistent with the
results in Lentz and Mortensen. In contrast, however, the two R&D-performing incumbent firm types
are quite different in terms of innovation intensities (γ2, γ3) in our estimation, whereas they are almost
identical in Lentz and Mortensen (cf. table VII p 1366). But since the most innovative firm type only
produces 0.4% of all goods in our estimation, the implication for reallocation is the same, i.e. the
important margin is the resource reallocation of resources from non innovating firms to innovating
firms.

21



Table 1: Benchmark Estimation

c0/Z c1 η Z βz oz βq σ2
Y

103.5 4.931 0.069 8891 0.428 3392 0.426 0.0296

σ2
W κ g l µ δ

g2
g

0.000 142.9 0.0161 19.0 0.97 0.124 0.445

φτ φ∗τ Kτ γτ ετ πτ

τ1 0.7500 0.615 0.413 0 0 0
τ2 0.2499 0.384 0.578 0.0944 0.135 0.154
τ3 0.0002 0.0005 0.004 0.1216 1.311 0.409

Selected moments (1997)
model data model data

E(PR) 471.6 477.8 Corr(PR, N) 0.000 −0.030
std(PR) 173.8 173.8 Corr(PR, Y) 0.117 0.124
E(Y) 13090 12872 Corr(Y, ∆Y

Y ) −0.026 −0.006
Std(Y) 23485 23183 Corr(PR, ∆PR) −0.363 −0.342

Notes: The benchmark estimation only targets non-R&D moments in the data. The minimum of objective function is
167.701.

their innovation step, qτ, and their innovation rate, γτ. Moreover, high γ types in-
novate faster and capture market shares at the expense of low γ types. The main
goal in Lentz and Mortensen (2008) is to quantify the role that this reallocation from
less to more innovative firms plays in the growth process. They accomplish this by
decomposing the contribution to annual growth into three parts:

g = ∑
τ

γτE[ln(qτ)]φτ︸ ︷︷ ︸
g1: within types

+ ∑
τ

γτE[ln(qτ)](Kτ − φτ)︸ ︷︷ ︸
g2: between types

+ η∑
τ

E[ln(qτ)]φτ︸ ︷︷ ︸ .

g3: entry/exit

(23)

The first term (g1) measures the growth contribution made by continuing firms un-
der the counterfactual that firm types are not allowed to increase their market share
Kτ relative to their entry share φτ. The third term (g3) measures the net effect of entry
and exit. The key measure of reallocation emphasized in Lentz and Mortensen (2008)
is captured by the second term (g2). Consider a cohort of entry firms. Each firm
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enters with one product. Consequently, the distribution φτ of firm types on entry
equals the distribution of products across firm types on entry. Over time, however,
more innovative firm types grow faster than less innovative types, thereby gaining
an increasing proportion of the cohort’s market share. As a result of this selection,
the steady-state distribution of products Kτ across types differs from the entry dis-
tribution φτ. This selection measures growth induced by the reallocation of market
shares across types. Suppose we start out in an equilibrium with g∗ = g∗1 + g∗2 + g∗3 .
Now, if we counterfactually give all incumbent firms the same innovation rate γ =

g∗1/(∑
τ

E[ln(qτ)]φτ), then there is no selection (i.e. Kτ = φτ) and growth would

decrease by g∗2 . From table (1) we see that imitators (type 1 firms) accounts for 75
percent of entrants’ products, but only 41 percent of products in equilibrium. Hence,
imitators lose roughly half of their market share to innovators due to selection.

Lentz and Mortensen’s (2008) estimation for Danish manufacturing firms15 im-
plies that this selection accounts for 49 percent of aggregate growth. The process
of entry and exit accounts for 25 percent, while the within-type contribution is 26
percent. In other words, if more innovative firms were not allowed to grow at the
expense of less innovative firms, aggregate growth would be 49 percent lower. Our
benchmark estimation we get similar results. Selection accounts for 44.5 percent,
entry/exit 23.5 percent and within-type 32 percent.

C. R&D Moments Table 2 shows the model’s fit along the R&D dimension. The
model produces some degree of dispersion in R&D cost and R&D intensity, and pro-
duces the correct correlation signs. Firm’s size and productivity are negatively corre-
lated with research intensity across firms, and R&D intensity displays considerable
persistence over time, corr(RI, RI+2) = 0.81.

The model generates a negative correlation between R&D intensity and size that
is much larger compared to the data. The positive contribution from firm-type het-
erogeneity is not enough to compensate for the negative impact of demand shocks
on the correlation. Moreover, the model needs a substantial amount of demand vari-
ation in order to fit the firm-size distribution. Simulating the model without demand
shocks shows that the median and dispersion of value-added increases by 72 percent
and decreases by 42 percent, respectively. The degree of firm-type heterogeneity,
which is primarily tied down by the gap between corr(Pr, Y) and corr(Pr, N), is not
sufficient to generate the size dispersion observed in the data.

15p 1367. When they estimate the model on all private sector firms, selection accounts for 53 percent
of growth
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Table 2: Benchmark Estimation: Non targeted R&D Moments 1997

Moments Data Model Moments Data Model

E(RI) 0.084 0.038 corr(RI, Y) −0.170 −0.509

std(RI) 0.116 0.024 corr(RI, PR) −0.188 −0.150

Med(RI) 0.044 0.036 1 #FirmsRI=0
#Firms 0.924 0.808

E(RD) 2907 698 2corr(RI, RI+2) 0.688 0.810

std(RD) 5619 1081 3 E(Y)RI>0
E(Y)RI=0

4.44 3.53

Med(RD) 1163 455 4 E(N)RI>0
E(N)RI=0

4.44 3.21

Notes: The benchmark estimation only targets non-R&D moments in the data. 1Fraction of firms with a zero R&D
observation. 2Correlation of R&D intensity between 1997 and 1999. 3Average value-added for firms with positive R&D
observations, relative to firms with zero R&D. 4Average employment for firms with positive R&D observations, relative
to firms with zero R&D.

The mean and dispersion of R&D effort (level and intensity) is too low compared
to the data, and the same is true for the coefficient of variation. The aggregate R&D
intensity is also too low. Among firms with positive R&D, aggregate R&D intensity
in 1997 (total R&D expenditures to total value-added in 1997) is 65 percent smaller
than in the data. Overall, the model produces too many firms with positive R&D,
which on average are too small (in value-added terms), too homogeneous (in terms
of dispersion in R&D) and invest too little in R&D compared to the data. These
results indicate that if we add R&D moments to the estimation, resource reallocation
between types becomes more important.

4.3 Estimation with R&D Moments

Now we turn to the estimation with R&D, to which we add the 21 R&D moments to
the list of moments to match. Table (3) reports the estimated parameters.

Let us first consider how some key parameters adjust when adding R&D mo-
ments to the estimation. Recall from table (1) that the average R&D (both in terms
of level and intensity) in the benchmark estimation is counterfactually low. More-
over, performers (types 2 and 3) are on average too small (in terms of value-added)
relative to non performers. In order to increase firm R&D expenditure (measured as
spending on R&D), the estimation procedure increases the cost of R&D. From table
(3) we observe an increase in the cost parameters c0 and c1. To avoid reducing the in-
centive to innovate, we expect the gains from R&D (the expected jump in quality) to
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increase. Indeed, comparing tables (1) and (3) we see that the scale parameters ετ go
up.16 With higher average quality improvements, the average productivity would
increase, as seen in equation 17. The reduction of firms engaging in R&D (1− φ∗1)

compensates for this.
The annual growth rate is estimated to be 1.47 percent annually. We find that

87.8 percent of firms do not innovate (φ∗1 ), and that these firms produce 69.5 percent
of all goods (K1). The expected life for these firms is nine years and they employ
on average 22.8 workers. The main bulk of innovation comes from type 2 firms.
This type accounts for 28.7 percent of goods produced in equilibrium and have an
expected profit share of 23.3 percent. Type 2 firms are expected to survive for 20 years
and have on average 52.3 production workers and 4.4 researchers. Type 3 firms are
few but very innovative, producing only 1.7 percent of all products. They employ
265 production workers and 80 researchers on average and have a life expectancy of
41 years.

The model’s fit along the non-R&D moments is still good. However, there are
some trade offs. In particular, from table (3) we see that the estimation with R&D
moments generates a somewhat smaller average productivity and larger dispersion
in value-added and productivity relative to the benchmark estimation. In the process
of matching R&D moments, the innovating firms not only become larger and more
productive, but also more heterogeneous. In fact, relative to the benchmark estima-
tion, both the standard deviation (conditional on performing R&D) of value-added
and productivity increase by a factor of 1.9. The reduced share of firms performing
R&D compensates for this, but not enough to avoid an increase in the unconditional
standard deviation. The estimation penalizes a further reduction in the share of per-
formers as this would make average productivity fall further below the correspond-
ing data moment.17

A. R&D Heterogeneity Table 4 compares the fit of the model with R&D moments
from the data in 1997.18 The model fits both the dispersion and skewness of the R&D
intensity distribution. Figure 3 depicts the data distribution with our estimation us-
ing R&D moments and the results from a counterfactual experiment in which we

16The coefficient of variation for q has gone up from 0.81 to 1.89 when adding R&D moments and
the mean has roughly doubled from 1.38 to 2.15

17As a robustness check, we have estimated the model without using the fraction of non-performers
as target and have obtained similar results. In particular, the model still generate a substantial fraction
of firms not performing R&D in equilibrium (φ∗1 =0.85) .

18In appendix A, table 14 we present the model’s fit to 2001 R&D moments
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Table 3: Parameters: Estimation with R&D Moments

c0/Z c1 η Z βz oz βq σ2
Y

498.3
(126)

5.366
(0.1)

0.0814
(0.02)

10296
(268.7)

0.614
(0.02)

1499
(258.9)

0.369
(0.017)

0.0298
(0.003)

σ2
W σ2

RD κ g l µ δ
g2
g

0.003
(0.002)

0.360
(0.07)

153.9
(1.96)

0.0147
(0.0008)

21.7
(0.56)

1.47
(0.04)

0.1103
(0.002)

0.718
(0.015)

φτ φ∗τ Kτ γτ ετ πτ

τ1 0.942
(0.003)

0.878
(0.005)

0.696
(0.01)

0 0 0

τ2 0.058
(0.003)

0.121
(0.005)

0.287
(0.01)

0.0938
(0.003)

0.274
(0.03)

0.233
(0.01)

τ3 0.0002
(4·10−5)

0.001
(0.0001)

0.017
(0.002)

0.1091
(0.002)

1.827
(0.58)

0.442
(0.03)

Selected moments (1997)
model data model data

E(PR) 468.6 477.8 Corr(PR, N) 0.023 -0.03
std(PR) 183.9 173.2 Corr(PR, Y) 0.14 0.124
E(Y) 12988 12872 Corr(Y, ∆Y

Y ) -0.02 -0.006
Std(Y) 25775 23183 Corr(PR, ∆PR) -0.365 -0.342

Notes: Estimation with R&D targets both non-R&D and R&D moments. Standard errors in parentheses. The minimum
of objective function is 331.518

shut down demand shocks. Even though the estimation only targets the mean, me-
dian, and standard deviation, the model captures the shape and location of the entire
distribution. In particular, it is able to match the right tail of the distribution fairly
well. Figure 3 displays the R&D intensity distribution when we shut down demand
shocks. Notice that the fit misses the right tail of the distribution. The model without
demand shocks generates too few firms with high R&D intensity. Intuitively, firms
that draw bad demand shocks will have high R&D intensity.

To further evaluate the relative importance of shocks, we shut down each of the
shocks and recompute the moments. Table 5 depicts R&D moments under different
scenarios. Consider what happens when measurement errors and demand shocks
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Figure 3: R&D Intensity, Value-added and Worker Productivity.
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Notes: The figure shows kernel densities on actual data (1997) and on simulated data, with and without demands
shocks

are shut down, as shown in Table 5 column (2). All within-type R&D heterogeneity
is eliminated and the type-specific R&D intensity becomes wc(γτ)/Z. We end up
with two R&D intensity observations with a dispersion of std(RI) = 0.008. Con-
sequently, most of the dispersion is due to demand shocks and measurement error.
Since R&D is proportional to the state variable k, demand shocks are important to
generate heterogeneity in R&D intensity. Simulation without demand (column 3)
reduces the dispersion from 0.121 to 0.036.

In contrast, demand shocks play no role in explaining the shape of the distribu-
tion of the R&D spending level. The results in table 4 show that the estimation misses
the average R&D expenditures by 29 percent ( 2,907 in the data, 2,072 in the model)
but matches both the median and dispersion quite well. Dispersion is explained by
three factors: Firm-type heterogeneity in innovation intensity (γτ), within-type dis-
persion in product size (k ), and R&D measurement error (σ2

rd). Overall, the main
contribution comes from firm-type heterogeneity and the product birth-death pro-
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Table 4: Estimation including R&D Moments: Model Fit in 1997

Moments Data Estimation

(benchmark)

Estimation

(w/ R&D)

Moments Data Estimation

(benchmark)

Estimation

(w/ R&D)

E(RI) 0.084 0.038 0.089 cor(RI, Y) −0.170 −0.509 −0.267

std(RI) 0.116 0.024 0.121 cor(RI, PR) −0.188 −0.150 −0.148

Med(RI) 0.044 0.036 0.049 1 #FirmsRI=0
#Firms 0.924 0.808 0.920

E(RD) 2907 698 2072 2cor(RI, RI+2) 0.688 0.810 0.440

std(RD) 5619 1081 5494 3 E(Y)RI>0
E(Y)RI=0

4.44 3.53 4.40

Med(RD) 1163 455 1131 4 E(N)RI>0
E(N)RI=0

4.44 3.21 3.68

Notes: 1Fraction of firms with a zero R&D observation. 2Correlation R&D intensity between 1997 and 1999. 3Average
value-added for firms with positive R&D observations, relative to firms with zero R&D. 4Average employment for firms
with positive R&D observations, relative to firms with zero R&D.

cess, while measurement error plays a minor role. Table 5 column (4) shows the
simulation results when R&D measurement error is eliminated. In this case, the
standard deviation of R&D spending falls by 14 percent, from 5, 494 to 4, 717. Firm-
type heterogeneity, on the other hand, is important. Computing the standard devi-
ation only on type 2 firms gives a dispersion in RD of only 2, 234. The reason why
type heterogeneity is important for dispersion in RD and not for RI, is that R&D
spending is proportional to the number of products. Type 3 firms invest 2.6 times
as much in R&D per product than firm type 2 and has on average seven times more
products. However, since RD scales with the number of products, RI is on average
only 2.6 times higher. In contrast, the distribution of product size (k) is of first-order
importance for the distribution of R&D spending, RD =wc(γτ)k. Even though type
3 firms accounts for only 0.1 percent of firms in equilibrium, the associated type 3
logarithmic product-size distribution has a large dispersion (more than 142 times the
variance of type 2), which contributes disproportionally to the overall dispersion in
R&D spending.
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Table 5: Effect of Shocks on Simulated Moments in 1997.

Moments All Shocks No Shocks No Demand
Shock

No Mea-
surement

Error

No q Shocks

(1) (2) (3) (4) (5)
E(RI) 0.089 0.043 0.049 0.075 0.089
std(RI) 0.121 0.008 0.036 0.067 0.121
Med(RI) 0.049 0.042 0.039 0.052 0.049
E(RD) 2072 2159 2129 2035 2065
std(RD) 5494 4900 5535 4718 5449
Med(RD) 1131 1313 1170 1306 1127
corr(RI, Y) −0.267 0.284 −0.023 −0.357 −0.270
corr(RI, PR) −0.148 0.30 −0.040 −0.181 −0.421
#FirmsRI=0

#Firms 0.920 0.929 0.923 0.922 0.920
corr(RI, RI+2) 0.440 1 0.074 0.842 0.434
E(Y)RI>0
E(Y)RI=0

4.40 4.39 4.19 4.51 4.42
E(N)RI>0
E(N)RI=0

3.68 3.66 3.51 3.77 3.64

Notes: This table shows the simulated R&D moments when we counterfactually shut down shocks. Column (1) displays
the results from the estimation. Column (3) shut down demand shocks. Column (4) shuts down measurement error.
Column (5) shut down stochastic quality improvement. Column (2) combines (3)-(5), i.e. no demand shocks, no q-shocks
and no measurement error

B. Non Performers From the results presented in table 4 we observe that the model
assigns a value 0.92 to the fraction of firms with zero R&D. Note that this fraction is
higher than the true fraction of non performers, due to the sampling of R&D obser-
vations for firms with less than 50 workers. Note that we do not target the fraction
of non performers for firms above 50 workers, but the model gives a fraction of 0.71,
in line with what we observe in the data (0.65). Firms reporting positive R&D are on
average 4.40 times larger than firms with zero R&D. However, in terms of employ-
ment, the model under predicts the relative firm size by 17 percent. Consequently,
the model predicts too high of a value-added per worker for R&D performers rela-
tive to non performers.

In the data, the average value-added per quality-adjusted worker is the same for
the two groups, whereas in the model, performers have 25 percent higher worker
productivity. Consider the case where we eliminate measurement error, demand
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and supply shocks. Then, worker productivity is given by

PR =
Z

Z(w + κ)−1q−1
τi + c(γτi)

.

Note that for non-performers, q = 1 and γ = 0. Innovating firms (q > 1) need fewer
production workers per product than firms that do not innovate. This contributes
to higher productivity PR for innovating firms. On the other hand, the presence of
research workers in the denominator, c(γτi), works in the opposite direction. The
estimated parameters imply that the former effect dominates.19

C. Productivity, Firm’s Size and R&D Intensity Table 4 shows that the estimated
model produces a correlation between research intensity and productivity of−0.148.
As explained in section 3.4C, this negative relationship can be generated by a combi-
nation of demand shocks and value-added measurement error.20 In addition, firm-
type heterogeneity in general can drive the correlation in either direction. To isolate
the effect of type heterogeneity, recall that the correlation between R&D intensity
and productivity can be written as follows:

corr

(
wc(γτ)

Z
,

Z
Z(w + κ)−1q−1

τi + c(γτi)

)
,

where all sources of heterogeneity (demand, supply and measurement error), except
firm types, are shut down. The correlation is now completely determined by firm
type differences in quality jumps, qτ, and innovation intensity, γτ. In this case, we
see from table (5) column 2 that corr(RI, PR) is positive at 0.3, which implies that
type 3 firms end up with higher R&D intensity and higher productivity than type
2 firms. The labor-saving feature of larger quality jumps (q3 > q2) dominates the
higher demand for research workers (c(γ3) > c(γ2)). Consequently, demand shocks
and measurement error in value-added produce the negative relationship in the esti-

19There are several factors that might explain why the data shows identical worker productivity
across the two groups. First, if we assume that the fraction of the firm’s employees involved in R&D
are the same in the data as in the model (8 percent), then firms that report positive R&D have about 9
percent higher value-added per production worker than firms with zero R&D. In addition, because of
the sampling of R&D observations in the data, some firms are observed with zero R&D even if they do
innovate. Finally, the equality of worker productivity between the two groups in the data is a result
of the quality-adjusted measure of employment. If we instead use non quality adjusted employment,
firms that report positive R&D have 11.2 percent higher value-added per worker than non performing
firms.

20Notice that R&D measurement errors and q shocks will reduce this correlation to zero.
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mated model. Simulations performed without demand variations give a correlation
of −0.04 (table 5, column 3).

Regarding the relationship between R&D intensity and firm size, there is also
a tension between firm-type heterogeneity (causing positive correlation) and de-
mand and value-added measurement error (causing a negative correlation). With
firm types as the only source of heterogeneity, the correlation between size and R&D
intensity is 0.28. However, demand shocks and value-added measurement error
drives the correlation down to −0.26, most of which is due to demand shocks. Shut-
ting down this variation gives a correlation of −0.02.

Figure 4: R&D Intensity, Value-Added and Worker Productivity.
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Notes: Kernel regressions of R&D intensity on value-added per worker (panel a) and value-added (panel b). Both
panels compares using actual data (1997), with 95 percent confidence bounds, with simulated data from the estimated
model.

Figure (4) shows how both firm size and worker productivity interact with differ-
ent levels of R&D intensity. For the relationship between R&D intensity and produc-
tivity, shown in panel (a), the model matches the slope but under predicts the level
because we overestimate the average productivity among R&D performers, as ex-
plained in section 4.3B. Regarding the relationship between R&D intensity and firm
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size, shown in panel (b), the model succeeds in explaining this relationship over the
range between the median and mean of the R&D intensity distribution. But firms in
the lower end of the R&D intensity distribution are larger in the model than in the
data. In the model, firms with large demand draws tend to be large in size and have
low R&D intensity relative to firms with small demand draws.

For the benchmark estimation we found that the correlation between R&D inten-
sity and firm size was overly negative compared with the data (see table (1)). When
R&D moments are added to the estimation, correlation in the model becomes less
negative without resorting to smaller demand shocks.21 This is because firms have
more products on average relative to the benchmark (42 percent), which means that
the impact of demand shocks falls. In addition, firm-type heterogeneity contributes
more positively to this correlation in the R&D estimation than in the benchmark es-
timation.22 Consequently, when adding R&D moments we get more heterogeneous
innovators. Demand shocks are key to allowing for more firm-type heterogeneity
and at the same time not violating the negative correlation between R&D intensity
and firm size.

D. Persistence corr(RI, RI+2) At 0.44, the R&D intensity persistence in the model
is too low compared to the data (0.69), due to measurement error in R&D. The ab-
sence of shocks (shutting down demand, supply and measurement error) would im-
ply perfect persistence (i.e. constant R&D intensity over time). Simulation without
demand shocks drives the persistence down to 0.075, while simulating without mea-
surement error gives a persistence of 0.842. To get a correlation of 0.44 we thus need
product demand shocks. These shocks stay with the firm until it loses the product
and thereby create persistence in value-added which carries over to research inten-
sity.

E. Selection Effect Recall that in the benchmark estimation, the fraction of R&D
performing firms is 0.19. This is over twice the fraction that we observe in the data.
However, the R&D estimation correctly predicts the fraction of firms that under-
takes R&D.23 Consequently, when we also match R&D moments we end up with

21The standard deviation of demand shocks is 15500 and 15000 in the benchmark and R&D estima-
tion respectively.

22To make this comparison we shut down all shocks, leaving firm types as the only source of hetero-
geneity in R&D intensity. The correlation is then 0.28 and 0.14 in the R&D estimation and benchmark,
respectively.

23The true fraction firms performing R&D differs from the number observed, due to the sampling
of R&D observations. The equilibrium fraction of R&D performing firms is 0.38 in the benchmark
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fewer performers, as shown in table 6. These relatively few firms are also bigger
and more research intensive than in the benchmark estimation. Relative to non per-
formers these firms have on average 4.40 (3.53) times higher value-added and 3.68
(3.21) more workers in the R&D estimation (benchmark estimation). The aggregate
research intensity is now 4.6 percent compared to 2.2 percent in the benchmark.24

Overall, we end up with innovating firms being fewer, bigger, and more research
intensive. As a result, the growth contribution of selection of firm types increases
from 44.5 percent to 71.8 percent.25

Table 6: Model Fit II: Estimation with R&D Moments.

Data Estimation
(w/R&D)

Estimation
(Benchmark)

Firms with RI > 0 8% 8% 19%
E(YRD>0)/E(YRD=0) 4.44 4.40 3.53
E(RDRD>0)/E(YRD>0) 6.4% 4.6% 2.2%

Notes: Estimation w/R&D targets both non-R&D and R&D moments. Minimum of objective function: 331.518

4.4 External Validity

We have shown that including R&D moments improves the model’s ability to match
cross-section moments. Now we perform a series of robustness checks, to assess
how the model performs for moments we did not match.

A. R&D Response to Tax-Credit We start by comparing the model response to a
R&D subsidy with the outcome of a 2002 R&D reform in Norway, analyzed in Bøler
et al. (2015). This study exploits the introduction of a tax-credit that enabled firms to
deduct 20 percent of R&D expenditures (up to a threshold of NOK 4 million) from
their tax bill. Effectively, this policy reduced the marginal cost of R&D by 20 percent

estimation and 0.12 in the R&D estimation.
24Aggregate research intensity is measured as the ratio of average R&D spending to average value-

added among firms engaging in R&D . It is not an explicit target in the estimation. However, it is
implicitly targeted since we target relative value-added between performers and non-performers, av-
erage value-added and average R&D expenditures.

25This result is robust to leaving out the fraction of non-performing firms as a targeted moment in
the estimation. In this case the selection effect is 70.6 percent
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for firms with less than 4 million in R&D expenditures. Bøler et al. (2015) conclude
that the reform incentivized firms that prior to the credit had positive R&D, but
less than NOK 4 million, to increase R&D expenditures between 35 and 72 percent
(depending on the identification strategy) during the 2003-2005 period.26

We use our estimated model to evaluate the impact of a similar, but simplified,
reform. In the model economy, we implement a 20 percent subsidy to incumbent
firms’ R&D investment, but impose no upper threshold. The optimal innovation
choice is still proportional to number of products, I = γτk, and we can analyze the
effect on innovation intensities γτ using the solution to the firm problem in (11):

wc′(γτ) = vτ

vτ =
ZEπ(qτ)− wc(γτ)

r + δ− γτ
.

We view at the effect of this policy reform from two perspectives. First we look at the
firm’s response to a subsidy (s) equal to 20 percent of R&D expenditures, ignoring
equilibrium effects, i.e. we hold the wage rate w and aggregate destruction δ rate
constant. Firms now face a net (of subsidy) R&D cost of (1− s)wc(γ). Type 2 and 3
firms respond by increasing their innovation intensity by 5.3 and 5.9 percent, respec-
tively. Consequently, gross R&D expenditures per product increase by 39 percent
(type 2) and 44 percent (type 3).

We interpret this increase in R&D as a short-run effect. With a higher innovation
intensity, firms will gain more products over time and thus invest more in R&D. If
we still assume a constant wage rate and a constant aggregate destruction rate, type
2 firms on average will have 27 percent more products and thus a total increase in
gross R&D expenditures of 76 percent.27 However, in equilibrium, when individual
firms innovate more intensely, the aggregate destruction rate δ goes up. In the new
stationary state, type 2 and 3 firms increase their innovation intensity by 4.1 and
4.2 percent respectively, and the aggregate destruction rate increases by 3.5 percent.
On average, firms employ 30 percent more researchers.28 Equilibrium effects con-

26Bøler et al. (2015) report an increase in R&D expenditures between 0.30 and 0.54 log points. We
use the transformation Xt/Xt−1 = exp(logpoint)− 1 to arrive at the percentage change.

27Keeping the destruction rate δ constant implies that type 3 firms choose γ3 > δ and the expected
number of products is +∞. In equilibrium, however, the aggregate destruction rate adjusts such that
γ3 < δ. Notice that the number of researchers also grows by 76 percent as the wage rate is constant.

28The reason we report the stationary state effect of R&D subsidy on R&D workers is that the subsidy
increases the economy’s growth rate. Hence, in the new stationary equilibrium, the real wage and thus
the research wage bill grows at a higher rate than in the initial equilibrium. Hence, it is not possible to
compare the level of R&D expenditures across the two equilibria.
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sequently dampen the initial increase in R&D, since innovation intensities and firm
product size are decreasing in δ.

B. Large Firms Recall that in our estimation we use R&D moments from all firms.
Therefore, we use the model’s ability to account for moments of the large firms in
our sample as an external validity test. In table (7) we display how the model’s re-
sults compare with the data for firms with more than 50 workers. Indeed, the model
matches quite well the level, dispersion, and skewness of the R&D intensity and
R&D expenditures. It also generates a lower correlation between R&D and firm size,
while at the same time it maintains a high negative correlation between R&D in-
tensity and productivity. This result indicates that the negative correlation between
R&D intensity and firm size is driven by small firms. The intuition behind this result,
is that larger firms tend to have more products than smaller firms, and hence the im-
pact of a product-specific demand shocks is lower. Moreover, the model matches the
relative size (in terms of employment and value-added) of performers. Finally, the
model underestimates the persistence of R&D intensity for large firms.

Table 7: The Model’s Fit for Large Firms (non-targeted)

Moments Data Model Moments Data Model

E(RI) 0.06 0.04 corr(RI, Y) -0.02 -0.05
std(RI) 0.09 0.04 corr(RI, PR) -0.13 -0.15
Med(RI) 0.03 0.03 1 #FirmsRI=0

#Firms 0.66 0.71
E(RD) 2906 2071 2corr(RI, RI+2) 0.68 0.34
std(RD) 5618 5494 3 E(Y)RI>0

E(Y)RI=0
1.36 1.79

Med(RD) 1163 1131 4 E(N)RI>0
E(N)RI=0

1.34 1.50

Notes: We use parameters from the estimation with R&D moments; however moments for firms with more than 50
workers were not used in the estimation. 1Fraction of firms with a zero R&D observation. 2Correlation of R&D intensity
between 1997 and 1999. 3Average value-added for firms with positive R&D observations, relative to firms with zero
R&D. 4Average employment for firms with positive R&D observations, relative to firms with zero R&D

C. The Firm Life Cycle Luttmer (2011) finds that firm-type heterogeneity is needed
to match the size distribution and the relatively young age of large firms. We check
the size history of those firms that reach the top 1 percent in the size distribution.
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Again, this a feature that we have not included in our estimation.29

In figure (5) panel (a), we plot the relative size of firms that end up among the
largest one percent of firms. Both in the data and in the model, we construct a 10-
year sample and select the firms that are in the top 1 percent at the end of the sample.
We exclude entrants and exitors in both the data and simulation. Then, we compare
how the average value-added of these firms has grown relative to the average firm
size in the economy over sample period. In the simulation we compute this ratio for
both the benchmark and the R&D estimation.

Figure 5: Relative size of survivors (top 1%) and entrants.
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Notes: Panel (a): graphs show the average value-added of continuing firms, conditional on being in the top 1 percent
of the size distribution in period 10, relative to average value-added of incumbents over time. For the data, period 1
corresponds to 1996, and period 10 to 2005. Panel (b): Average value-added of a simulated cohort of entrants (period 1)
relative to average value-added of incumbents over time (t+1 normalized to one).

We find that in the R&D estimation, both the initial size and the growth history of
large firms are in line with the data. In contrast, for the benchmark estimation firms

29Recall that in our estimation we only match relative size after four years.
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grow faster during the transition to the top 1 percent. We also see from tables (12)
and (13) that the implied growth of average value-added from 1997-2001 is higher in
the benchmark estimation compared to the R&D estimation. To shed some light on
why firms grow faster when using the benchmark estimation we study the relative
growth of a cohort of entrants. Figure (5) panel (b) shows that entry firms grow faster
compared to the R&D estimation. The reason is that in the benchmark estimation, an
entry cohort consists of a larger fraction of fast growing innovating firms. Recall that
the entry share of type 1 firms (non performers) is 0.75 and 0.94 in the benchmark
and R&D estimation, respectively, so the presence of more innovating entry-level
firms in the benchmark estimation yields the higher growth rate.

5 Policy: R&D Subsidy

As in most endogenous growth models, the decentralized equilibrium growth rate
in the Klette-Kortum (2004) model need not equal the welfare-maximizing growth
rate. Hence, there is a potential role for policy interventions, as there are several
sources of inefficiencies that can lead to too little growth in equilibrium.30 First,
all firms innovate at the technology frontier (the quality frontier is common knowl-
edge). Consequently, the social return to a successful innovation lasts forever. In
contrast, the private return to a firm only lasts until the product, and its associated
profit, is lost (business stealing effect). This private depreciation of R&D investment
contributes to insufficient innovation. Firm-type heterogeneity introduced in Lentz
and Mortensen (2008) creates an additional source of inefficiency, caused by misal-
locations of R&D spending across firms and consequently too little resource reallo-
cation. Through the process of equilibrium selection, the steady-state distribution
of products Kτ across firm types differs from the entry distribution φτ. In general,
the bigger share of goods Kτ produced by firms generating high quality innovations,
the larger is growth. However, the amount of reallocation generated in equilibrium
tends to be too low due to the business stealing effect.

Real world subsidies, however, often fail to target the most effective innovators.
By studying stylized reforms, we illustrate that failing to target the best innovators
may lead to subsidies creating small, or indeed adverse, growth effects. A subsidy’s
effectiveness depends crucially on how it influences the reallocation channel. In
general policies that increase R&D and shift the composition of products to firms
producing high quality innovations will stimulate growth.

30For example, see Acemoglu et al. (2013), Li (2001), and Atkeson and Burstein (2014).
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Table 8: The Effect of R&D Subsidies on Aggregate Growth.

Reform: g K1 K2 K3

Estimation with R&D Moments 1.47 69.6 28.7 1.7

Subsidy on:
(I) Incumbents and Entrants 1.53 69.5 28.6 1.8
(II) Incumbents 1.82 67.0 28.5 4.4
(III) Entrants and type 2 firms 1.40 69.9 29.8 0.30
(IV) Type 3 firms 2.45 66.2 21.5 12.3

Notes: Numbers reported as percentages. All reforms are performed using parameter values from the estimation with
R&D moments

We run four policy experiments, as in section 4.4A, where we subsidize R&D
expenditures and evaluate the impact on the growth rate along balanced growth
path. In each experiment, we set the total subsidy to 0.7 percent of the aggregate
labor income of production workers (which is a proxy for GDP), financed by a non
distortionary tax on consumers. The results are shown in table (8).

In experiment (I) all firms receive a R&D subsidy, while in (II) only incumbent
firms are subsidized. The growth rate increases from its initial level of 1.47 percent
to 1.53 when we subsidize all firms and to 1.82 percent when we only subsidize
incumbents. Clearly, the growth effect is much larger when the policy reform only
targets incumbent firms. The key to understanding this result is the change in the
composition of products across firm types. In the second experiment, the share of
products produced by the type 3 firms is 4.4 percent, compared to 1.8 percent in the
first experiment. Table (8) shows that type 3 firms grow at the expense of type 1 firms
(the imitators). Innovation by type 2 firms has an adverse effect on the incentive to
innovate for high types (through the impact on aggregate destruction). In particular,
high entry innovation reduces the incentive for incumbent firms to innovate, and
thus helps sustain a large fraction of firm type 1 in equilibrium, which is bad for
growth.31

31Lentz and Mortensen (2016) extends Lentz and Mortensen (2008) by solving for the planners bal-
anced growth path allocation. Compared to the equilibrium outcome, the optimal allocation implies a
twice as high growth rate.
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Overall, going from reform (I) to (II) raises the growth rate by 19.0 percent. In
comparison, when using parameters from the benchmark estimation, going from re-
form (I) to (II) raises the growth rate with only 6.6 percent. This difference is the
result of the stronger selection effect we get, once we account for R&D in the estima-
tion. A stronger selection effect means that implementing bad policies have larger
consequences.

Consider the effect of implementing stylized size-dependent subsidies (size being
measured in terms of R&D spending). Reform (III) provides a subsidy to incumbent
type 2 firms and potential entrants, while reform (IV) targets only type 3 firms.32

Reform (III) induces a reallocation of products from type 3 to type 2 firms. This
effect is so strong that aggregate growth falls, due to the combination of two effects.
First, when entrants and type 2 firms receive R&D subsidies, these firms raise their
innovation intensity and gain products at the expense of type 3 firms (reallocating
products away from the high quality innovator). In addition, the induced increase
in the aggregate innovation rate adversely impacts the incentive for type 3 firms to
innovate (through the creative destruction channel). This causes innovation intensity
to fall, which induces further reallocation of products away from the high quality
innovator. Reform (IV) on the other hand, creates a massive reallocation of products
to type 3 firms, and hence the growth rate increases substantially.33

Acemoglu et al. (2013) finds that an optimal R&D policy involves subsidizing
both entrants and incumbent firms that are high quality innovators. In that model
there is also firm-type heterogeneity with respect to innovation ability (high and low
types), realized upon entry. As in our model, subsidizing the high type encourages
firms of this type at the expense of the low types that. However, our model shows
that subsidizing entry-level firms has a different outcome. The reason for this is that,
in Acemoglu et al. (2013)’s model all incumbent firms innovate. Moreover, the high
type faces a fixed probability of becoming a low type over time. Consequently, the
inflow of new firms (both high and low) helps to sustain a high type in equilibrium
and an entry subsidy raises the equilibrium share of firms producing high quality
innovations. Our empirical approach also differs from Acemoglu et al. (2013) as
we estimate the model using observations from all firms, of which many report zero

32It is not a true size-dependent reform, because it targets firm types rather than firms based on size,
but it highlights some important negative reallocation effects that arise in the model from subsidizing
small firms. The reason is that small firms in the model are predominantly type 2 firms.

33It is important to emphasize that a type-dependent reform exaggerates the negative reallocation
effects relative to a true size-dependent reform, since highly innovative firms will be below the size cut
off ( particularly young firms) and some less innovative firms will be above the cut off (especially after
the reform is implemented).
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R&D, whereas they focus on firms with positive R&D.
Since we only consider balanced growth path effects the growth effects in our

experiments should be interpreted with caution. First, since type 3 firms constitute
only a very small fraction of entry firms ( 0.02 percent), the transition to a new bal-
anced growth path might be slow. More broadly, Atkeson and Burstein (2014) show,
through numerical examples, that R&D subsidies in Klette-Kortum type endogenous
growth models tend to have small effects in the short-to medium-term. It should be
noted, however, that they consider a framework in which there is no misallocation
of research activity across firms (there is no type heterogeneity). In our model, a
subsidy generates more research effort in the aggregate, but it also influences the
allocation of R&D (and products) across firms.

6 Conclusion

In this paper we estimate a general equilibrium model of firm-level innovation using
observations on firm size, productivity, and R&D expenditures from a panel of Nor-
wegian manufacturing firms. In particular, we estimate an extended version of the
Klette-Kortum model, further developed in Lentz and Mortensen (2008), to quantify
the relative importance of different sources of R&D heterogeneity and the link to
resource reallocation and growth.

We find that reallocation has a larger effect on aggregate growth when the model
is used to explain (in addition to other moment) firm’s dispersion in R&D intensity
and the negative correlation between R&D intensity and firm size observed in the
data. We first replicate the study by Lentz and Mortensen (2008) using a sample
of Norwegian manufacturing firms. To make our estimation comparable to Lentz
and Mortensen, we first exclude observations on R&D, and find that the reallocation
effect accounts for 44.5 percent of aggregate growth. This magnitude is similar to
the 49 percent they find for the Danish manufacturing sector. However, our estima-
tion misses some key empirical R&D patterns: firms doing R&D are too many, too
small, and invest too little in R&D relative to data. When, we re-estimate the model
by adding R&D moments, we find that the model has a good fit to both R&D and
non R&D moments. The estimated model fits the empirical distribution of R&D ef-
fort (mean, dispersion and skewness) as well as the negative correlation between re-
search intensity and firm size. More importantly, the new parameters imply a larger
role for reallocation, which explains 72 percent of aggregate growth. Quantitatively,
product demand shocks, measurement error, and firm differences in the ability to
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conduct R&D are all key factors to account for the observed heterogeneity in R&D
effort.

We find that demand shocks and innovative differences are important for explain-
ing the shape of the R&D distribution and the correlation between R&D intensity
and firm size. Interestingly, when we shut down demand shocks we miss the fit on
the right tail of the distribution. The model without demand shocks generates too
few firms with high R&D intensity. Intuitively, firms that experience bad demand
shocks will have high R&D intensity.

We also conducted several external validity tests. Our model is consistent with
the firm-level response to R&D subsidies that are in line with micro evidence from a
natural experiment (as in Bøler et al. (2015) ). In the short run, firms increase their
R&D spending by roughly 40 percent in response to a 20 percent R&D subsidy. Fur-
thermore, the model is able to explain several cross sectional and dynamic moments
for R&D, size, and productivity for large firms. The model also is able to explain
features of the life cycle of firms over longer horizon.

Finally, we use the estimated model to quantitatively explore how R&D subsidies
affect aggregate growth. We find that subsidies are successful in increasing growth,
but that the effect depends crucially on how these influence the reallocation channel.

The model abstracts from openness and trade, which could potentially affect our
results. For example, the diffusion of ideas across borders could reduce the impor-
tance of domestic R&D, while foreign competition and access to foreign markets
could change the firms’ incentives to innovate and the link between R&D subsi-
dies, resource reallocation, and growth. Eaton and Kortum (2001) and Atkeson and
Burstein (2010) consider innovation and growth in open economies, but abstract
from product innovation by incumbent firms. An interesting extension would be
to consider the Klette-Kortum/Lentz-Mortensen model in an open economy setting
to understand the link between international competition, firm dynamics, and inno-
vation.
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A Appendix

Table 9: Descriptive Statistics ( 1997).

Statistics All Firms 10-50 Workers > 50 Workers

Number of firms 5290 2087 684
Average value-added 12872 10475 57436
Average Employment 27.5 21.9 124.1
Average Productivity 482.2 479.2 467.8
Average R&D expenditure 247 75.6 1470
% R&D>0 7.6 6.9 35.1
Average RI (performers) 0.08 0.09 0.068

Notes: Value-added and R&D expenditures are reported in units of 1000,- NOK. The above 50 and 10-50 worker cat-
egories are based on quality-adjusted workers). Employment is number of quality-adjusted workers, Productivity is
expressed units of 1000,- NOK per quality-adjusted worker. R&D intensity (RI) is the ratio of R&D expenditure divided
by value-added.
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Table 10: Non-R&D Data Moments (Standard Errors in Parentheses)

Moments 1997 2001 Moments 1997 2000

E(Y) 12872

(317.8)

14998

(479.1)

Cor(PR, PR+1) 0.735

(0.017)

0.697

(0.034)

std(Y) 23183

(796.0)

28161

(1797.3)

Cor(PR, ∆PR) −0.342

(0.043)

−0.371

(0.048)

Med(Y) 4985

(105.0)

6254

(140.4)

Cor(PR, ∆Y
Y ) −0.126

(0.016)

E(W) 8144

(196.0)

10828

(321.8)

Cor(PR, ∆N
N ) 0.037

(0.017)

std(W) 14394

(472.6)

18991

(1060.3)

E( ∆Y
Y ) −0.007

(0.009)

Med(W) 3157

(67.8)

4655

(114.2)

std( ∆Y
Y ) 0.612

(0.040)

E(PR) 477.8

(2.4)

503.6

(2.8)

Cor(Y, ∆Y
Y ) −0.006

(0.009)

std(PR) 173.8

(7.4)

168.0

(7.8)

within 0.330

(0.074)

Med(PR) 444.1

(1.68)

473.5

(2.02)

between 0.311

(0.071)

Cor(Y, W) 0.950

(0.004)

0.949

(0.007)

cross 0.133

(0.059)

Cor(PR, N) −0.030

(0.010)

−0.016

(0.015)

exit 0.226

Cor(PR, Y) 0.124

(0.014)

0.142

(0.019)

survivors 5290 3564

(33.8)

Notes: Average growth rate E(∆Y/Y) includes exiting firms. They contribute with a -1 observation. The within, be-
tween, cross and exit moments are the components of a standard empirical labor productivity growth decomposition,
over the period 1997-2001. See Lentz and Mortensen (2008, p. 1335)
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Table 11: R&D Data Moments (Standard Errors in Parentheses)

Moments 1997 2001 Moments 1997 2001

E(RI) 0.084

(0.006)

0.090

(0.006)

Cor(RI, Y) −0.170

(0.038)

−0.103

(0.045)

std(RI) 0.117

(0.010)

0.117

(0.012)

Cor(RI, PR) −0.188

(0.041)

−0.063

(0.059)

Med(RI) 0.044

(0.004)

0.050

(0.003)

1 #FirmsRI=0
#Firms 0.924

(0.004)

0.897

(0.005)

E(RD) 2906

(280.7)

3463

(416.3)

2Cor(RI, RI+2) 0.688

(0.076)

std(RD) 5619

(880.7)

8019

(1751)

3 E(Y)RI>0
E(Y)RI=0

4.44

(0.243)

Med(RD) 1163

(102.4)

1250

(110.7)

4 E(N)RI>0
E(N)RI=0

4.44

(0.233)

Notes: 1Fraction of firms with a zero R&D observation. 2Correlation R&D intensity between 1997 and 1999. 3Average
value-added of firms with positive R&D observation, relative to firms with zero R&D. 4Average employment of firms
with positive R&D observation, relative to firms with zero R&D.
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Table 12: Model Fit Non-R&D Moments: Benchmark Estimation.

Moments 1997 2001 Moments 1997 2000

E(Y) 12872

13090

14998

15932

Cor(PR, PR+1) 0.735

0.706

0.697

0.699

std(Y) 23183

23485

28161

27823

Cor(PR, ∆PR) −0.342

−0.363

−0.371

−0.364

Med(Y) 4985

5187

6254

6209

Cor(PR, ∆Y
Y ) −0.126

−0.093

E(W) 8144

8230

10828

9904

Cor(PR, ∆N
N ) 0.037

0.060

std(W) 14394

14071

18991

16492

E( ∆Y
Y ) −0.007

−0.017

Med(W) 3157

3351

4655

4016

std( ∆Y
Y ) 0.612

0.735

E(PR) 477.8

471.6

503.6

507.1

Cor(Y, ∆Y
Y ) −0.006

−0.026

std(PR) 173.8

173.8

168.0

186.5

within 0.330

0.717

Med(PR) 444.1

442.9

473.5

475.4

between 0.311

0.113

Cor(Y, W) 0.950

0.964

0.949

0.963

cross 0.133

0.059

Cor(PR, N) −0.030

0.000

−0.016

0.006

exit 0.226

0.110

Cor(PR, Y) 0.124

0.117

0.142

0.126

survivors 5290

5290

3564

3581

Note: Data top row, model bottom. Benchmark estimation targets only non-R&D moments.

Minimum of objective function: 167.701
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Table 13: Model Fit Non-R&D Moments: Estimation with R&D.

Moments 1997 2001 Moments 1997 2000

E(Y) 12872

12988

14998

15145

Cor(PR, PR+1) 0.735

0.704

0.697

0.704

std(Y) 23183

25775

28161

31218

Cor(PR, ∆PR) −0.342

−0.365

−0.371

−0.354

Med(Y) 4985

5285

6254

5920

Cor(PR, ∆Y
Y ) −0.126

−0.116

E(W) 8144

8096

10828

9292

Cor(PR, ∆N
N ) 0.037

0.061

std(W) 14394

14373

18991

17069

E( ∆Y
Y ) −0.007

−0.0393

Med(W) 3157

3472

4655

3869

std( ∆Y
Y ) 0.612

0.621

E(PR) 477.8

468.6

503.6

500.8

Cor(Y, ∆Y
Y ) −0.006

−0.02

std(PR) 173.8

183.9

168.0

201.2

within 0.330

0.650

Med(PR) 444.1

447.1

473.5

475.4

between 0.311

0.172

Cor(Y, W) 0.950

0.962

0.949

0.962

cross 0.133

0.025

Cor(PR, N) −0.030

0.023

−0.016

0.034

exit 0.226

0.153

Cor(PR, Y) 0.124

0.140

0.142

0.154

survivors 5290

5290

3564

3530

Note: Data top row, model bottom. Estimation w/R&D targets both non-R&D and R&D moments.

Minimum of objective function: 331.518
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Table 14: Model Fit: R&D Moments (2001)

Moments Estimation

(w/ R&D)

Data Estimation

(Benchmark)

Moments Estimation

(w/ R&D)

Data Estimation

(benchmark)

E(RI) 0.087 0.090 0.037 cor(RI, Y) −0.270 −0.103 −0.506

std(RI) 0.115 0.117 0.023 cor(RI, PR) −0.153 −0.063 −0.162

Med(RI) 0.049 0.050 0.034 #FirmsRI=0
#Firms 0.893 0.897 0.765

E(RD) 2359 3463 837

std(RD) 5888 8018 1242

Med(RD) 1300 1250 517
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