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Joint Prediction Bands for Macroeconomic Risk ManagementI
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April 28, 2016

Abstract

In this paper we address the issue of assessing and communicating the joint probabilities
implied by density forecasts from multivariate time series models. We focus our attention in
three areas. First, we investigate a new method of producing fan charts that better commu-
nicates the uncertainty present in forecasts from multivariate time series models. Second,
we suggest a new measure for assessing the plausibility of non-central point forecasts. And
third, we describe how to use the density forecasts from a multivariate time series model to
assess the probability of a set of future events occurring. An additional novelty of this paper
is our use of a regime-switching DSGE model with an occasionally binding zero lower bound
constraint, estimated on US data, to produce the density forecasts. The tools we offer will
allow practitioners to better assess and communicate joint forecast probabilities, a criticism
that has been leveled at central bank communications.

JEL-Classification: C6, C11, C53, E1, E5, E37

Keywords: Monetary Policy, Fan charts, DSGE, Zero Lower Bound, Regime-switching,
Bayesian Estimation.

1. Introduction

Inflation targeting central banks increasingly use fan charts to communicate the uncer-
tainty associated with their forecasts for key macroeconomic variables, especially inflation
and the output gap (see Franta et al., 2014, for an overview). Fan charts are typically con-
structed from sequences of prediction intervals calculated using marginal forecast densities.
As a result the fan charts quantify the uncertainty in a forecast for a given variable at a
specific point in time. They do not communicate how likely a given set of trajectories for
different variables will be in different time periods, that is they do not communicate the joint
probabilities implied by forecasts produced using multivariate time series models. Moreover,

IThis Working Paper should not be reported as representing the views of Norges Bank. The views expressed
are those of the authors and do not necessarily reflect those of Norges Bank. We have received valuable
comments from seminar participants at Norges Bank. Corresponding author: andrew.binning@norges-
bank.no.



these fan charts do not convey the probabilistic trade-offs policy makers are faced with, as
Leeper (2003) points out in his assessment of central bank communications.1 This is es-
pecially relevant for central banks that pursue multiple policy objectives, such as flexible
inflation targeting central banks and the US Federal Reserve with its dual policy mandate.

In this paper we investigate tools for improving the quantification and communication
of the joint forecast probabilities exhibited by density forecasts produced using multivariate
time series models. More specifically we concentrate our efforts in three areas. First, we
investigate a new method of producing fan charts that better communicates the forecast
uncertainty present in density forecasts produced using multivariate time series models.
Second, we propose a new measure for assessing the plausibility of non-central point forecasts.
And third, we show how to use the density forecasts to assess the probability of a set of future
events occurring. We briefly discuss each of these areas in turn.

Several methods have been proposed for constructing fan charts using the joint proba-
bilities from a set of density forecasts. Jordà & Marcellino (2010) provide one such method-
ology although they assume the density forecasts are asymptotically normal. Wolf & Wun-
derli (2012) show that if the density forecasts are not asymptotically normal then Jordà &
Marcellino’s (2010) method may understate the forecast uncertainty. Kolsrud (2015) de-
parts from the assumption of asymptotic normality by employing non-parametric distance
measures to construct fan charts that communicate the joint predictive probabilities in a
frequentist setting. We adopt Kolsrud’s (2015) methodology and extend it to a Bayesian
setting.

One particular feature of fan charts produced using this approach is that they are rela-
tively wide (see Kolsrud, 2015). As we discuss later in this paper, because we use a Bayesian
approach, this can be addressed through soft conditioning as in Maih (2010), or through
entropic tilting as in Robertson et al. (2005). We present an example where we show how
entropic tilting can be used to narrow the density forecasts.

In addition to producing fan charts, many central banks communicate forecast uncer-
tainty through point forecast scenarios. Leeper (2003) has also called for the assessment
of the plausibility of these point forecasts. Doan et al. (1986) have proposed a plausibility
index based on the size of the shocks used to construct non-central point forecasts. Leeper
& Zha (2003) create a univariate modesty index based on the distance between alternative
point forecasts and the mean or central forecast. They assume asymptotic normality of
the predictive densities when determining if certain policy interventions are modest or not.
Adolfson et al. (2005) extend this idea to a multivariate context also assuming normality.
However, Wolf & Wunderli’s (2012) criticism of asymptotic normality also applies here, that
is, a multivariate modesty or plausibility index based on normality could understate uncer-
tainty and hence the plausibility of some point forecasts. To circumvent this problem we
use the non-parametric distances from Kolsrud’s (2015) fan chart methodology to create a
new measure for assessing the plausibility of point forecasts. Like Adolfson et al. (2005) our

1Leeper (2003) has called for better communication of joint predictive probabilities in his assessment of the
monetary policy reports of the central banks of Sweden, New Zealand and the United Kingdom.
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measure is multivariate, but has the additional advantage that it is non-parametric and free
from distributional assumptions.

The methodology we follow allows us to assess the probability of sets of future events
occurring. If the set of events is non-central or bounded, assessing these probabilities using
fan charts is not always possible. However we can always assess these probabilities using the
draws from the density forecasts used to construct the fan charts. Applying methods outlined
by Garratt et al. (2002) we show how to answer questions like: “what is the probability that
GDP growth is between 0 and 1% for the first year of the forecast horizon?”, “what is the
probability of a recession (two consecutive quarters of negative growth) over the forecast
horizon?”, or “what is the probability that interest rates are at zero and inflation negative
for at least one year, over the forecast horizon?”.

An additional novelty of our paper is the use of a regime-switching DSGE model with an
occasionally binding zero lower bound constraint to produce the density forecasts. We use
the simple New Keynesian model of Binning & Maih (2016), estimated on US data between
1985Q1 and 2015Q2, which allows us to handle the zero lower bound period and produce
forecasts for the US. Moreover this model produces density forecasts that are not in general
asymptotically normal, a property we use to justify our non-parametric approach to assessing
and communicating forecast uncertainty.

The remainder of this paper is organized as follows. The next section defines multivariate
and time-simultaneous fan charts and related concepts based on Kolsrud (2015) and the fan
chart methodology. The model, and solution and estimation methods are briefly described
in Section 3.1. Section 3.2 discusses the multivariate and time-simultaneous fan charts and
compares them with typical prediction interval-based fan charts. In Section 4 we discuss
techniques to rank the plausibility of different paths. These techniques may be useful for
assessing the likelihood of particular paths of different variables. Section 5 discusses how to
calculate the probability of a set of events occurring and Section 6 concludes. The Matlab
codes used to produce the fan charts under the different methodologies are made available
as part of the RISE toolbox.2

2. Concepts, Definitions and Methodology

In this section, we first define uncertainty measures relevant for single and multiple
variables as in Kolsrud (2015). Then we describe how to produce fan charts using the
conventional method, based on the marginal predictive densities, and using the multivariate
and time simultaneous (MVTS) prediction bands of Kolsrud (2015).

These definitions are useful for describing the construction of fan charts from density
forecasts under the different methodologies. In essence, the methods aim to ascribe un-
certainty to a single entity, but each defines the entity differently. When constructing fan
charts using the marginal predictive densities, as is commonly done, the single entity is a
period-specific forecast of a single variable. When constructing fan charts using the MVTS

2https://github.com/jmaih/RISE toolbox
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prediction bands, the forecasts of all variables of interest over the entire forecast horizon are
treated as the single entity. Graphically, instead of assigning different levels of uncertainty
to a period-specific “dot”, one assigns uncertainty measures to a multidimensional entity
spanning the entire forecast horizon when using the MVTS prediction bands. This is also
referred to as a “hyperrectangular box”. We compare and contrast the different methods of
constructing fan charts in Section 3.2.

2.1. Definitions and concepts

Following Kolsrud (2015) we define relevant forecast uncertainty concepts as follows:

Definition 1. Prediction Interval: PIt = [lt, ht] is a Prediction Interval with a coverage
probability 1−a for a single random variable y at time t:

Pr(yt ∈ PIt) = Pr(lt ≤ yt ≤ ht) = 1− a, (1)

where lt and ht are the lower and upper bounds of the interval respectively, and 0 ≤ a < 1.
This prediction interval is expected to include the actual value of y at time t with probability
1− a.

Definition 2. Prediction Band: PB = [l, h] = ([lt, ht])
T
t=1 is a time-simultaneous Predic-

tion Band with coverage probability 1− α:

Pr(y ∈ PB) = Pr(l ≤ y ≤ h) = Pr

(
T
∩
t=1

(lt ≤ yt ≤ ht)

)
= 1− α, (2)

where y = (y1, y2, ...yT ) is a forecast path of the variable y over T periods, a so called
univariate path; l = (l1,l2, ...lT ) and h = (h1,h2, ...hT ) are the lower and upper bound paths
of y, respectively, while 0 ≤ α < 1. According to (2), the prediction band PB is likely
to include the actual path of y in all T periods (simultaneously) with probability 1− α.
The width of individual intervals [lt , ht] and corresponding coverage probabilities defining a
prediction band can differ across time periods.

Definition 3. Uniform Prediction Band: Such a band has constant coverage probability
across time periods while the width of corresponding intervals can vary:

Pr(lt ≤ yt ≤ ht) = 1− a for t = 1, 2, ...T. (3)

In the case of non-uniform prediction bands, each prediction interval constituting a prediction
band has its period-specific coverage probability: Pr(lt ≤ yt ≤ ht) = 1− at.

A prediction band can be seen as a sequence of prediction intervals. However, while at
denotes the probability of a point value outside its interval at time t, α is the probability
that a path breaks out of the band at any single period or in several periods. Thus, 1 − a
is the pointwise coverage probability while 1 − α is the simultaneous coverage probability.
As α ≥ a, the simultaneous coverage probability cannot exceed the pointwise coverage
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probability: 1 − α ≤ 1 − a. In the case of non-uniform prediction bands, the simultaneous
coverage probability has to be smaller than the smallest pointwise coverage probability, which
implies α ≥ maxt at.

In a multivariate setting, one would be interested in several variables and their co-
dynamics. Let yt = (y1, ...yG)

′
t be a vector of G variables at time t and Y be a G × T

matrix where T denotes the total time periods:

Y =


y1

y2

.

.
yG

 =


y1,1 . . y1,T
y2,1 . . y2,T
. . . .
. . . .

yG,1 . . yG,T


Definition 4. Multivariate Prediction Box: MBP = [L, H] = ([lg,hg])

G
g=1 is a multivariate

time simultaneous prediction (hyperrectangular) box with coverage probability 0 < 1 −
A ≤ 1 for a random multivariate trajectory Y = (yg,t):

Pr(Y ∈ MPB) = Pr(L ≤ Y ≤ H) = Pr

(
G
∩
g=1

(lg ≤ yg ≤ hg)

)
= Pr

(
G
∩
g=1

T
∩
t=1

(lg,t ≤ yg,t ≤ hg,t)

)
= 1− A,

where L =(lg,t) and H = (hg,t) are G× T matrices containing the lower and upper paths of
the G random variables over T periods. The probability of any of the G variables breaking
out of the corresponding prediction band, defined over T periods, in one or more periods is
denoted by A. The difference between a and A is that the former denotes the probability of
a single “dot” being outside its prediction interval, while the latter denotes the probability of
a single time-extensive multidimensional entity being out of its prediction space. It therefore
takes only one single scalar value yg,t to be outside its prediction space for the multivariate
trajectory not to be completely inside the box.

A multivariate prediction box is useful when a decision maker cares about attaining
targets and satisfactory predictions of several variables. In such cases, an unsatisfactory
misprediction, over one or several periods, of even a single variable, from a set of variables,
could be considered a failure. One example of when there are arguably two equally important
objectives is the Fed’s pursuit of a dual objective: price stability and maximum employment.

Kolsrud (2015) utilizes the following Chebyshev concepts in defining and deriving central
and non-central forecasts over multiple periods. The presumption is a sample of N forecasted
paths for a variable y, contained in a matrix yN of dimension T ×N , where T is the forecast
horizon.

Chebyshev’s interval and distance may be defined as follow:

Definition 5. Chebyshev Interval: CI(γ; yN) = CI(1; y〈M〉) = [l, h] where the lower bound
is l = minm y〈M〉 and the upper bound is h = maxm y〈M〉. The interval has, by construction,
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an in-sample coverage of 0 < γ = M/N ≤ 1, with 1 ≤ M ≤ N , for a randomly selected

yn, from the sample yN . y〈M〉 =
{
y〈m〉

}M
m=1

denotes the subsample of paths containing the
M most central paths, where y〈m〉 denotes the value in the sample with the mth smallest
distance z, while M/N is the ratio between the M most central paths and the total number
of (simulated) paths, N .

Definition 6. Chebyshev distance: cn = c(yn; ȳ, s) = maxt zn,t, where zn,t = |yn,t − ȳt|/st is
the standardized distance, yn is the nth simulated path of variable y, the period-specific mean
of the N-paths of variable y is defined as ȳ = N−1

∑N
n=1 yn while the standard deviation is

defined as st =
[
(N − 1)−1

∑N
n=1 (yn,t − ȳt)2

]1/2
.

Definition 7. Multivariate Chebyshev distance cn = c(yn; ȳ, s) = maxg,t zn,g,t, where
zn,g,t = |yn,g,t − ȳg,t|/sg,t; the path of a variable y over T periods is yn = (yn,1, . . . , yn,T ); a

period-specific mean of variable y is ȳt = N−1
∑N

n=1 yn,t where N is the total number of paths;
while the corresponding vector of period-specific means of variable y over the forecast horizon
T is ȳ = (ȳ1, . . . , ȳT ) . The period-specific mean and standard deviation of a variable yg are

defined as ȳg,t = N−1
∑N

n=1 yn,g,t and sg,t =
[
(N − 1)−1

∑N
n=1 (yn,g,t − ȳg,t)2

]1/2
, respectively.

2.2. Methodology

We consider density forecasts produced using a multivariate time series model estimated
with Bayesian methods.3 The density forecasts are constructed by simulating the model
multiple times, taking into account both shock and parameter uncertainty. Each simulation
begins from initial conditions, estimated using historical data and a Kalman filtering proce-
dure, and involves randomly drawing a vector of parameters from the posterior parameter
distribution and a sequence of shocks from the estimated historical distribution.

For a given set of density forecasts, fan charts are typically constructed using a sequence
of prediction intervals (see Cogley et al., 2005). These are calculated by slicing the multi-
variate forecast density into a sequence of marginal distributions. The resulting sequence
of prediction intervals is reconstituted into a matrix of time series data, where the cross-
sectional elements represent the percentiles. This new time series is plotted to create the fan
charts. This method of illustrating the uncertainty in a forecast fails to take into account the
time and covariation that underlie forecasts generated by multivariate time series models.

The MVTS prediction bands method developed by Kolsrud (2015) aims to describe graph-
ically the joint probabilities that underlie a multivariate density forecast. The method calcu-
lates the probability of each draw used to construct the density forecast and then constructs
the fan charts by tracing out the envelope of all draws that fit within a given quantile. The
enveloped draws form a (quantile-specific) multivariate prediction box. More precisely, the
G× T matrices of forecasts (G variables over T periods) are concatenated into row vectors,

3Kolsrud (2015) demonstrates his algorithm in a frequentist environment and generates forecast uncertainty
through a bootstrapping procedure.
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normalized by their standard deviations (calculated from the N draws) and then the point-
wise distances for each draw relative to the mean forecast (calculated from the N draws) are
summed together. This creates a distance measure, known as the multivariate Chebyshev
distance, for each draw. The N draws are then ranked based on their distance. The draws
with a smaller distance are deemed to be more likely than those with a larger distance. The
percentile bands used to construct the fan chart, also known as the multivariate prediction
box, are then obtained from the ranking of the draws and by tracing out the envelope of all
draws that fit within the percentile band in question.

We make the observation that the MVTS prediction bands can be interpreted as a graphi-
cal representation of a non-parametric multivariate modesty or plausibility index in the spirit
of Leeper & Zha (2003) and Adolfson et al. (2005). In essence, the MVTS bands are just the
envelope of the draws that fall within a certain level of modesty or plausibility as measured by
the multivariate Chebyshev distance. We make use of this observation to propose a method
for evaluating the plausibility of individual point forecasts. We illustrate this method in
Section 4.

3. Model, Forecasts and Fan Charts

We demonstrate the empirical difference between typical interval-based fan charts with
time-simultaneous fan charts using the simple New Keynesian DSGE model from Binning &
Maih (2016). We use the version of the model where a combination of factors can shift to
generate the ZLB steady state. This regime-switching model is chosen because it can handle
contemporary US data including the ZLB period, although the procedures developed in this
paper are compatible with any time series model.

We generate density forecasts that incorporate both parameter and shock uncertainty.
The associated fan charts are produced using MVTS prediction bands. An advantage of this
procedure is that density forecasts from the model are not required to be (asymptotically)
normal, as in Jordà & Marcellino’s (2010). Such a requirement is likely to be violated
when a regime-switching model, which can imply multimodal density forecasts, is employed.
For comparison, fan charts based on prediction intervals are constructed as in Cogley et al.
(2005). Before explaining the computational aspects of the fan charts’ production, we briefly
describe the model, which is explained in detail in Binning & Maih (2016).

3.1. Model

The model consists of a representative household that receives utility from consumption
and disutility from working. Households supply labor services to firms and receive labor
income in return. They receive dividends from the firms they own and trade bonds that
have net zero supply. There is a continuum of firms, normalized to unit mass, that produce
intermediate goods using labor services and a common neutral technology. Firms are subject
to a quadratic adjustment cost when changing prices (see Rotemberg, 1982, for example).
The intermediate goods are aggregated into final goods by a perfectly competitive aggregator
firm. The model is closed by the monetary authority, which sets the policy rate according
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to a Taylor-type rule when interest rates are not at the ZLB. The full set of model equations
is given in Appendix A.

The model is solved using a first-order perturbation method for regime-switching models
(see Maih, 2015) and estimated using Bayesian methods (see Alstadheim et al., 2013) on US
data between 1985Q1 and 2015Q2. The observable variables include the log change in per
capita GDP, GDP deflator inflation and the Fed funds rate. A full description of the data
can be found in Appendix B. The estimation details and results can be found in Appendix
C.

3.2. MVTS Prediction Bands vs Interval Prediction Bands

In this section we produce fan charts using MVTS prediction bands as outlined in Kol-
srud (2015) and compare their properties against fan charts produced using a sequence of
prediction intervals. We have data up to 2015Q2 while forecasts are made for the five year
period: 2015Q3–2020Q2. Our density forecasts consist of 200,000 draws. We simultaneously
draw parameter vectors from the posterior parameter distributions and random sequences
of shocks from the estimated historical shock distributions.

Before investigating the properties of the MVTS prediction bands, we highlight some of
the properties of the density forecasts from our model. Because we use a regime-switching
model to produce the forecasts, multimodal density forecasts are generated. That is, our
density forecast for interest rates exhibits two modes, the first centered around the effective
lower bound and the second centered around the interest rate that would be set under a
Taylor-type rule. Figure 1 displays the multimodal interest rate density forecasts.

We produce two sets of fan charts from our forecast densities. For both sets of fan charts
we calculate bands at the 10%, 30%, 50% and the 68% levels. The first set of fan charts
produced using the MVTS prediction bands are plotted in the left column of Figure 2. The
second set of fan charts produced using the sequence of prediction intervals are plotted in the
right column of Figure 2. The shadow rate refers to the Taylor-rule interest rate under the
ZLB regime. Both sets of figures are plotted on axes with the same scale to make comparisons
of their coverages easier. To make further comparisons of the fan charts’ coverage and to
ease their interpretation, we take a single draw from the 200,000 draws used to construct
the density forecasts, and plot it on top of the fan charts in Figure 2.

Comparing the left and right columns of Figure 2 we note that the fan charts are substan-
tially wider when produced using the MVTS prediction bands. This is as expected as they
embed the cumulative and multivariate uncertainty present in forecasts from multivariate
time series models, as pointed out by Kolsrud (2015).

MVTS prediction bands of the same color contain draws of the same level of uncertainty
over time and across variables. That is, draws used to construct a band of a particular color
will always fall within those bands across time and through multivariate space. The left
column of Figure 2 makes this apparent: the single draw (red line) always falls within the
darkest band (10% level) at each point in time and for each variable.

However, the same can not be said for the coverage of the fan charts produced using the
conventional method. In the right column of Figure 2 the same draw crosses all the bands
and in some periods falls outside the 68% interval. If we were to assess the probability of

8



Figure 1: Multi-Modal Forecasts
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Figure 2: Multivariate and Time-Simultaneous Prediction Bands vs. Prediction Interval
Bands
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this particular forecast using the fan charts constructed with the conventional method, we
might reach the conclusion that this is an implausible forecast. However, if we assess the
probability of this forecast occurring using the MVTS prediction bands, we would correctly
conclude that this forecast is quite plausible.

It is well known that density forecasts produced using DSGE models are usually wider
than is considered reasonable due to model misspecification (see Gerard & Nimark (2008),
Wolters (2013) and Diebold et al. (2015)). Moreover, practitioners may have extraneous
information making them less uncertain about the forecasts, compared with the model. To
remedy the wider-than-desired density forecasts, practitioners could adjust the forecasts
using soft conditioning (see Maih, 2010) or entropic tilting (see Robertson et al., 2005).

In this paper we opt for entropic tilting and demonstrate how it can be used to narrow
the density forecasts and fan charts. Entropic tilting involves reweighting the densities so
that they match a chosen set of moment conditions. We briefly describe the procedure below.

Let f represent the (sample) distribution of N forecast draws so that

f = {yn}Nn=1

where yn = yn,t, . . . , yn,T is the nth draw. Note that we drop the g subscripts. We wish to
impose the following moment conditions on our density forecasts

E {g (y)} = ḡ.

y contains the N forecast draws, E is the expectations operator, g(•) is a set of moment
generating functions and ḡ is a set of moments that characterize the target distribution. We
can impose the moment conditions by minimizing the Kullback-Leibler distance subject to
our moment conditions

min
f̃∈F

KLIC
(
f̃ , f

)
subject to Ef̃ {g (y)} − ḡ.

The Kullback-Leibler distance between the target distribution f̃ and our forecast distribution
f is defined as follows

KLIC
(
f̃ , f

)
=

N∑
n=1

π̃n log (Nπ̃n)

= log (N) +
N∑
n=1

π̃n log (π̃n)

where π̃n is the new set of weights, that sum to 1, and π = 1/N is the old set of weights.
The expectation for the reweighted forecast distribution is given by

Ef̃ {g (y)} =
N∑
n=1

π̃ng (yn) .
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The new set of weights are determined by the following set of equations

π∗n =
exp (γ∗′g (yn))∑N
n=1 exp (γ∗′g (yn))

γ∗ = arg min γ
N∑
n=1

exp (γ′ (g (yn)− ḡ))

For illustration, we adjust the forecast densities so that the variance of interest rates and
inflation are 1/4 of those implied by the model simulations. The fan charts for the MVTS
prediction bands reweighted using entropic tilting are plotted in the right column of Figure 3
while the unadjusted MVTS prediction bands are plotted in the left column for comparison.4

4Entropic tilting is one of the techniques that may be used to align forecast densities from MVTS prediction
bands with model users’ beliefs about forecast uncertainty. This may be a more appropriate approach than
using fan charts constructed with the conventional approach, using prediction intervals, merely for the sake
of obtaining narrower fan charts.
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Figure 3: MVTS Prediction Bands Before and After Entropic Tilting
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4. Assessing Point Forecast Probabilities using a Multivariate Non-parametric
Modesty Index

The MVTS prediction bands provide a useful tool for graphically assessing the plausibility
of a set of point forecasts. However, it may be difficult to assess the plausibility of competing
point forecasts if they fall within the same colored bands. Moreover, a finer gradation between
the bands may be required for assessing a given point forecast’s plausibility. In this section
we demonstrate how the Chebyshev distances used to construct the fan charts can also be
applied to evaluate the plausibility of non-central point forecasts i.e. alternative scenarios.
This can be used to evaluate the plausibility of a given point forecast relative to a set of
density forecasts, or to rank multiple point forecasts (alternative scenarios) in terms of their
plausibility.

Many central banks publish non-central point forecasts also known as alternative scenar-
ios to discuss economic and policy implications of non-central risks; see e.g. Norges Bank
(2012, p.19). These can be thought of as conditional forecasts. However, the plausibility of
such forecasts is seldom assessed, as pointed out by Leeper (2003) in his assessment of the
monetary policy reports of the central banks of Sweden, New Zealand and the UK.5

Several methods have been proposed for evaluating the plausibility of conditional fore-
casts. Doan et al. (1986) propose using the size of the shocks used to construct the conditional
forecast relative to the estimated historical shock standard deviations to evaluate the fore-
cast plausibility. Their measure assumes that the shocks are normally distributed and that
the central forecast has not been judgementally adjusted.

Leeper & Zha (2003) construct a modesty index to evaluate policy interventions. Their
index is constructed using the distance between the conditional forecast and the mean fore-
cast normalized by the forecast standard deviations. A policy intervention is deemed modest
if the index is less than two, which implies the conditional forecast is within two standard
deviations of the forecast distribution.

Adolfson et al. (2005) extend the modesty statistic to multivariate distributions. Jordà
& Marcellino (2010) develop a similar measure for assessing the quality of point forecasts.
The multivariate modesty index is based on the forecast distribution of the model variables,
so it allows for judgementally adjusted density forecasts. However it assumes the forecast
densities are normally distributed, an assumption that is easily violated.6

We propose using the Chebyshev distances as a metric for evaluating the plausibility of
conditional forecasts. This is based on our earlier observation that the MVTS prediction
bands can be interpreted as a graphical representation of a multivariate non-parametric
modesty index in the spirit of Leeper & Zha (2003) and Adolfson et al. (2005). The same
distances used to construct the fan charts can also be used to evaluate the plausibility

5This criticism may also apply to stress-tests usually conducted by policy institutions to examine the vul-
nerability of e.g. the financial system to some relatively extreme realisations of economic variables. It may
be of interest to assess the plausibility of such tail-risks.

6The presence of non-linearities and binding constraints are among some of the reasons a forecast distribution
may not be asymptotically normal.
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of alternative scenarios. In the case of a single alternative forecast, we can construct its
Chebyshev distance and rank it against the draws used to construct the density forecasts.
Its position in the ranking determines its plausibility. Likewise in the case of evaluating
competing alternative forecasts, we can calculate the Chebyshev distances for each of these
forecasts and rank them, or we can determine their ranking against the draws used to
construct the density forecasts.

Our measure has two properties in common with the multivariate modesty index of
Adolfson et al. (2005). First, our measure is multivariate so it takes into account the entire
predictive density implied by the model. And second, it is based on the forecast variable
densities, so it allows for judgementally adjusted forecast distributions. Our Chebyshev
distance measure has, however, the additional advantage of being non-parametric, making it
free from distributional assumptions, especially the assumption of normality. Hence, there is
a lower risk of understating the plausibility of particular point forecasts than when measures
of plausibility based on a multivariate normal density are employed. This consideration could
be important in cases like ours where the model does not in general produce asymptotically
normal density forecasts.

In the following we calculate Chebyshev distances to evaluate the relative plausibility of
competing alternative forecasts using the model and the density forecasts from the previous
sections. We plot two competing alternative forecasts on top of the MVTS prediction bands
we derived in the previous section, see Figure 4. In the red scenario, we hold interest rates
at 4% for 8 quarters beginning in 2015Q3. In the orange scenario, we hold interest rates at
6% for 8 quarters. Both scenarios are produced using a conditional forecasting algorithm
(see Maih, 2010) with all shocks unanticipated. We assume the monetary policy regime is
characterized by a Taylor-type rule.

It is not immediately obvious from a visual inspection of Figure 4 which scenario is
more plausible. For the majority of the simulations, the forecasts fall within the dark blue
band. Calculating the Chebyshev distances for these forecasts we obtain a distance of 3.0564
for the red scenario, which falls in the 54th percentile of the draws used to construct the
density forecasts. For the orange scenario we obtain a distance of 4.1655, which falls in the
87th percentile of the draws used to construct the density forecasts. Based on the Chebyshev
distances, we would conclude that the red scenario is more plausible than the orange scenario.
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Figure 4: Alternative Forecasts
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5. Scenario Set Probabilities

This section describes a more general method for constructing the joint probability of a set
of events occurring. The method has been proposed by Garratt et al. (2002) in a frequentist
setting. The set of events whose probability one would like to assess could be about the
values of one or several variables at a single or several points in time. The set of events
is usually characterized by an upper bound on the values of one or more variables, a lower
bound or both. For example, one may want to infer the probability of inflation remaining
within a +1/-1 band of the inflation target for a given time period over the forecast horizon.
Another example could be that one wishes to infer the probability of inflation being above
target in combination with negative GDP growth over the forecast horizon.

Density forecasts from a multivariate time series model are useful in answering such
questions. Accordingly, the probability of a set of events occurring can be calculated by
counting the number of draws that are a member of the event set as a fraction of the total
number of draws.

More precisely, let B denote a set of events that can occur and N the total number of
draws. The probability of B occurring can be derived as:

p (Y ∈ B) =

∑N
n=1 1B (Yn)

N
,

where Yn are the forecast paths produced from the nth shock and parameter draw combina-
tion and

1B (Yn) =

{
1 if Yn ∈ B
0 if Yn /∈ B

We demonstrate how to calculate these probabilities through two examples. Using the
density forecasts from Section 3.2, we can calculate the probability of the sets of events
occurring. In the first example, we derive the probability of interest rates remaining below
1% and GDP growth between 0 and 2% over the period 2016Q2 and 2017Q1. We find
that this event occurs in 1,809 draws out of 200,000, implying the probability of this event
occurring to be 0.009. In the second example, the question is to assess the probability of
interest rates above 1% over the period 2016Q2-2018Q1. This event occurs in 60,581 draws
out of 200,000, suggesting the probability to be 0.303.

6. Conclusion

In this paper we present methods for assessing and communicating forecast uncertainty
that take into account the joint probabilities implied by multivariate time series models. We
focus our attention in three areas. First, we describe a method of constructing fan charts that
more accurately describes the uncertainty implied by forecasts produced using multivariate
time series models. Second, we create a new measure for assessing the plausibility of non-
central point forecasts. And third, we describe how the information in density forecasts can
be used to assess the probability of a set of future events occurring.
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More specifically we take the multivariate and time simultaneous prediction bands of
Kolsrud (2015) and extend the framework to density forecasts constructed using Bayesian
methods, that is we produce density forecasts that take into account both shock and param-
eter uncertainty. We show how the Chebyshev distances used to construct the MVTS bands
can also be used to assess the plausibility of individual non-central point forecasts. We then
show how the draws used to construct the density forecast can also be used to assess the
probability of a set of future events occurring. Our paper is also novel in that we produce
all of our forecasts using a regime-switching DSGE model with an occasionally binding zero
lower bound constraint, which makes the model suitable to use with contemporary US data.

Moreover, our paper provides a guide for practitioners to answer some of Leeper’s (2003)
criticisms of inflation reports and the communication of joint probabilities. This is especially
useful for central banks facing multiple policy objectives. The codes used to produce the
analysis in this paper are available in Matlab as part of the RISE toolbox.7

Appendix A. Model

log (At) = ρA log (At−1) + σAε
A
t , (A.1)

Mt,t+1 =
1

Rt

, (A.2)

Rt = max
(
RE
t , R

∗
t

)
, (A.3)

ARt = ρARA
R
t−1 + σrε

R
t . (A.4)

RE
t = K + σEε

E
t , (A.5)

λ̃t = At

(
C̃t − χC̃t−1/µt

)−σ
, (A.6)

W̃t = κNη
t /λ̃t, (A.7)

Mt,t+1 = Et

{
βdt+1

λ̃t+1

λ̃tΠt+1µt+1

}
, (A.8)

Ỹt = Nt, (A.9)

(
ε

ε− 1

)
W̃t − exp (σπε

π
t )−

(
φ

ε− 1

)
Πt

[
Πt − Π̃t

]
+ . . .

. . .+ Et

{(
φ

ε− 1

)
Mt,t+1Π

2
t+1

Ỹt+1

Ỹt
µt+1

[
Πt+1 − Π̃t+1

]}
, (A.10)

7https://github.com/jmaih/RISE toolbox
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R∗t = R∗ρrt−1

(
R̄∗
(

Πt

Π̄

)κπ ( Ỹt

Ỹt−1

)κy)1−ρr

exp
(
ARt
)
, (A.11)

Ỹt = C̃t +
φ

2
Ỹt

[
Πt − Π̃t

]2
, (A.12)

∆ log (Yt) = log
(
Ỹt

)
− log

(
Ỹt−1

)
+ log (µt) , (A.13)

where µt = exp(gZ + σZε
Z
t ) and Π̃t = Πξ

t−1Π̄
1−χ. The complete set of variables in the model

is defined as follows

x̃t =
[
C̃t, Nt, Rt, Πt, W̃t, λ̃t, Mt,t+1, Ỹt, R

∗
t , R

E
t , ∆ log (Yt) , A

R
t , At

]′
,

Table A.1: Variable Description

Variable Description

C̃t Detrended consumption
Nt Hours worked
Rt Interest rate
Πt Inflation rate

W̃t Real detrended wage

λ̃t Marginal utility of consumption
Mt,t+1 Stochastic discount factor

Ỹt Effective output
R∗t Shadow/Taylor rule interest rate
RE
t Effective lower bound interest rate

∆ log (Yt) Log change in per capita GDP
ARt Autoregressive monetary policy shock term
At Autoregressive consumption preferences shock
εAt Consumption preference shock
εRt Monetary policy shock
εEt Effective lower bound shock
επt Stochastic subsidy shock
εZt Productivity shock

Appendix B. Data

All data is taken from the St. Louis Federal Reserve’s FRED database. We report the
FRED pneumonics in brackets. The data is quarterly and spans 1985Q1 to 2015Q2. We
used the log change in per capita US GDP, constructed using Real Gross Domestic Product
(GDP1) and the Civilian Noninstitutional Population (CNP16OV), the percentage change
in the US GDP deflator (GDPDEF), and the quarterly average of the monthly fed funds
rate (FEDFUNDS). The data are not detrended.
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Appendix C. Estimation

We calibrate the following parameters, β = 0.9985, gZ(L,N) = 0.0029, 0.0046, Π̄(L,N) =
1.0046, 1.0055, σE = 0.0001, ε = 6, where β, gZ and Π̄ are chosen based on estimates from
Binning & Maih (2016). We run MCMC with 220,000 draws, burning the first 20,000 draws,
to leave us with 200,000 draws. The estimation results are presented in Table C.2.

Table C.2: Parameter Estimates

Parameter Distribution Prior Mean Prior Std Post Mode 95% Posterior Probability Range
χ beta 0.5000 0.1500 0.0772 [ 0.0173 0.2754]
σ normal 2.0000 0.3000 2.2443 [1.8861 2.8357]
η normal 2.0000 0.5000 2.7295 [1.9870 3.5228]
φ normal 10.0000 2.0000 18.4246 [15.7244 22.0535]
κπ normal 1.5000 0.2500 2.8030 [ 2.2932 3.0520]
κy normal 0.1200 0.0500 0.1576 [0.0430 0.2623]
ξ beta 0.5000 0.1500 0.3778 [0.1241 0.5391]
ρr beta 0.5000 0.1500 0.4637 [0.2373 0.5255]
ρAR beta 0.5000 0.1500 0.5175 [0.3166 0.5464]
ρA beta 0.5000 0.1500 0.7115 [0.4408 0.7567]
σR inverse gamma 0.1000 2.0000 0.0039 [0.0038 0.0049]
σA inverse gamma 0.1000 2.0000 0.0085 [0.0050 0.0117]
σZ inverse gamma 0.1000 2.0000 0.0069 [0.0062 0.0089]
σπ inverse gamma 0.1000 2.0000 0.0055 [0.0043 0.0077]
pN,L beta 0.0500 0.0200 0.0809 [0.0469 0.1788]
pL,N beta 0.0500 0.0200 0.2697 [0.1940 0.2697]
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