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Abstract

We use a simple quantitative asset pricing model to “reverse-engineer” the
sequences of stochastic shocks to housing demand and lending standards that
are needed to exactly replicate the boom-bust patterns in U.S. household real
estate value and mortgage debt over the period 1995 to 2012. Conditional on
the observed paths for U.S. disposable income growth and the mortgage interest
rate, we consider four different specifications of the model that vary according to
the way that household expectations are formed (rational versus moving average
forecast rules) and the maturity of the mortgage contract (one-period versus
long-term). We find that the model with moving average forecast rules and
long-term mortgage debt does best in plausibly matching the patterns observed
in the data. Counterfactual simulations show that shifting lending standards
(as measured by a loan-to-equity limit) were an important driver of the episode
while movements in the mortgage interest rate were not. All models deliver rapid
consumption growth during the boom, negative consumption growth during the
Great Recession, and sluggish consumption growth during the recovery when
households are deleveraging.
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1 Introduction

Starting in the mid-1990s, the U.S. economy experienced correlated booms and busts

in household real estate value, household mortgage debt, and personal consump-

tion expenditures (all measured relative to personal disposable income), as shown

in Figure 1. The ratio of housing value to income peaked in 2005.Q4. The ratio of

mortgage debt to income peaked 8 quarters later in 2007.Q4– coinciding with the

start of the Great Recession. Throughout this period, the ratio of imputed housing

rent to disposable income declined steadily.1 Given that rents are a measure of the

“dividend”or service flow from housing, the quiet behavior of rents during the boom

lends support to non-fundamental explanations of the episode. Our aim is to develop

a transparent quantitative model that can account for the patterns observed in Fig-

ure 1. In so doing, we assess the plausibility of the driving forces that are needed to

make the model fit the data.

A wide variety of empirical evidence links the U.S. housing boom to relaxed

lending standards.2 The report of the U.S. Financial Crisis Inquiry Commission

(2011) emphasizes the effects of a self-reinforcing feedback loop in which an influx of

new homebuyers with access to easy mortgage credit helped fuel an excessive run-up

in house prices. The run-up, in turn, encouraged lenders to ease credit further on

the assumption that house prices would continue to rise. As house prices rose, the

lending industry marketed a range of exotic mortgage products, e.g., loans requiring

no down payment or documentation of income, monthly payments for interest-only

or less, and adjustable rate mortgages with low introductory ‘teaser’rates that reset

higher over time. Within the United States, house prices rose faster in areas where

subprime and exotic mortgages were more prevalent (Mian and Sufi2009, Pavlov and

Wachter 2011, Berkovec, Chang, and McManus 2012). In a given area, past house

price appreciation had a significant positive influence on subsequent loan approval

rates in the same area (Dell’Ariccia, Igan, and Laeven 2012, Goetzmann, Peng, and

Yen 2012).

In the aftermath of the 2001 recession, the Federal Reserve reduced the federal

funds rate to just 1% and held it there for over 12 months during 2003 and 2004. While

some studies find evidence that low interest rates were an important contributor to the

run-up in house prices (Taylor 2007, McDonald and Stokes 2011) others argue that

1Data on household real estate value and household mortgage debt are from the Federal Reserve’s
Flow of Funds Accounts. Data on personal disposable income and personal consumption expenditures
are from the Federal Reserve Bank of St. Louis’FRED data base. Data on imputed rents from owner-
occupied housing are from www.lincolninst.edu, as documented in Davis, Lehnert, and Martin (2008).

2See, for example, Demyanyk and Van Hemert (2011), Duca, Muellbauer, and Murphy (2010,
2011), and Dokko, et al. (2011).
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low interest rates were not a major factor (Dokko, et al. 2011, Glaeser, Gottlieb,

and Gyourko 2013). Aside from the possible effect on house prices, there is clear

evidence that low mortgage interest rates during this period set off a refinancing

boom, allowing consumers to tap the equity in their homes to pay for all kinds of

goods and services. According to data compiled by Greenspan and Kennedy (2008),

free cash generated by home equity extraction contributed an average of $136 billion

per year in personal consumption expenditures from 2001 to 2006– more than triple

the average yearly contribution of $44 billion from 1996 to 2000 (p. 131). Kermani

(2012) finds that U.S. counties that experienced the largest increases in house prices

from 2000 to 2006 also tended to experience the largest increases in auto sales over the

same period. The same counties tended to suffer the largest declines in auto sales from

2006 to 2009 when house prices were falling.3 Similarly, Mian and Sufi(2014) identify

a significant effect on auto spending that operates through home equity borrowing

during the period 2002 to 2006. Laibson and Mollerstrom (2010) argue that the U.S.

consumption boom from 1996 to 2006 was driven mainly by bubbly movements in

house prices, not lower real interest rates.

In this paper, we use four different versions of a simple quantitative asset pricing

model to “reverse-engineer” the sequences of stochastic shocks that are needed to

match the boom-bust patterns observed in Figure 1. The four model specifications

differ according to the way that household expectations are formed (rational versus

moving average forecast rules) or the maturity of the mortgage contract (one-period

versus long-term). Conditional on the observed paths for U.S. disposable income

growth and the mortgage interest rate, we back-out sequences for: (1) a shock to

housing preferences, and (2) a shock to lending standards (as measured by a loan-

to-equity limit) so as to exactly replicate the boom-bust patterns in household real

estate value and mortgage debt over the period 1995.Q1 to 2012.Q4, as plotted in

the top panels of Figure 1. We also examine the model predictions for the evolution

of other variables, such as the rent-income ratio, the consumption-income ratio, and

consumption growth during three phases of the episode, i.e., the boom, the Great

Recession, and the recovery.

Under rational expectations, we show that the model requires large and persistent

housing preference shocks to account for the boom-bust cycle in U.S. housing value

from 1995 to 2012. According to the model, an increase in housing preference will

increase the housing service flow, as measured by the imputed rent from owner-

occupied housing. Consequently, the rational expectations model predicts a similar

boom-bust cycle in the ratio of housing rent to income. But this did not happen in

3A similar pattern can be found in cross-country data on house prices and consumption. See
Glick and Lansing (2010) and International Monetary Fund (2012).
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the data.

As an alternative to rational expectations, we consider a setup where households

employ simple moving average forecast rules, i.e., adaptive expectations. This type of

forecast rule is consistent with a wide variety of survey evidence that directly measures

agents’expectations (Coibion and Gorodnichencko 2012, Williams 2013). We show

that the moving average model can match the boom-bust cycle in U.S. housing value

with much smaller movements in the housing preference shock. Indeed, the standard

deviation of the shock innovation in the moving average model is only one-tenth as

large as the value needed in the rational expectations model. This is because the

household’s forecast rule embeds a unit root which serves to magnify asset price

volatility in response to shocks.4 Consequently, the moving average model does a

much better job of matching the quiet behavior of the U.S. rent-income ratio plotted

in the lower left panel of Figure 1. More generally, the moving average model captures

the idea that much of the run-up in U.S. house prices and credit during the boom

years appears to be linked to an influx of unsophisticated homebuyers. Given their

inexperience, these buyers would be more likely to employ simple backward-looking

forecast rules for future house prices, income, lending standards, etc. One can also

make the case that many U.S. lenders behaved similarly by approving subprime and

exotic mortgage loans that could only be repaid if housing values continued to trend

upward.5

Mortgage debt in the model is governed by a standard collateral constraint that

depends on the market value of the housing stock. With one-period mortgage con-

tracts, the entire stock of outstanding debt is refinanced each period, causing the

stock of debt to move in tandem with housing value. All else equal, the one-period

debt model would therefore predict a rapid deleveraging from 2006 onwards when

U.S. housing values were falling rapidly. In the data, however, the deleveraging pro-

ceeded gradually, as debt declined at a much slower pace than housing value, as

shown in Figure 1. To avoid the counterfactual prediction of a rapid deleveraging,

the one-period debt model requires a post-2007 relaxation of lending standards (a

larger loan-to-equity limit) to simultaneously match the patterns of housing value

and mortgage debt in the data. This prediction conflicts with evidence from the

Federal Reserve’s Senior Loan Offi cer Opinion Survey on Bank Lending Practices

4This mechanism for magnifying the volatility of house prices is also employed by Gelain, Lansing,
and Mendicino (2013) and Gelain and Lansing (2014).

5According to the report of the U.S. Financial Crisis Inquiry Commission (2011), p. 70, new
subprime mortgage originations went from $100 billion in the year 2000 to around $650 billion at the
peak in 2006. In that year, subprime mortgages represented 23.5% of all new mortgages originated.
On p. 165, the report states “Overall, by 2006, no-doc or low-doc loans made up 27% of all mortgages
originated.”
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(SLOOS) which shows that banks started to tighten lending standards before the

onset of the Great Recession and often continued to tighten standards even after the

recession ended.

Following Kydland, Rupert, and Šustek (2012), we model long-term mortgage

debt by approximating the amortization schedule of a conventional 30-year mortgage

loan. Such a loan has the feature that the borrower’s early payments consist mainly of

interest while later payments consist mainly of principal. With long-term mortgages,

the borrowing constraint applies only to new loans, not to the entire stock of out-

standing mortgage debt. In any given period, the household’s new loan cannot exceed

a fraction of accumulated home equity. When the borrowing constraint is binding,

a sustained period of progressively relaxed lending standards leads to an increase in

the flow of new loans which, in turn, contributes to a buildup in household leverage.

A rapid decline in housing value leads to a rapid decline in the flow of new loans, but

the stock of outstanding mortgage debt declines slowly, as in the data. Using impulse

response functions, we show that models with long-term mortgage debt exhibit the

feature that housing value peaks earlier than the mortgage debt, consistent with the

data plotted in Figure 1. Now when we undertake the reverse-engineering exercise,

we identify a relaxation of lending standards during the boom years of 2001 to 2005

followed by a period of progressively tightening lending standards, consistent with

the SLOOS data. The reverse-engineered shifts in lending standards produce the

necessary flow of new loans to allow the model to match the path of the debt-income

ratio in the data.

Given the reverse-engineered paths for the stochastic shocks, all models deliver

identical paths for the consumption-income ratio and consumption growth. Accord-

ing to the simple household budget constraint, the consumption-income ratio is driven

by movements in the debt-income ratio and the mortgage interest rate which, by con-

struction, are the same across models for the reverse-engineering exercise. We show

that a smoothed version of the model consumption-income ratio roughly resembles

the hump-shaped pattern observed in the U.S. data from 1995 to 2012. Consequently,

all models deliver rapid consumption growth during the boom phase from 1995.Q1

to 2007.Q4, negative consumption growth during the Great Recession from 2007.Q4

to 2009.Q2, and sluggish consumption growth during the recovery from 2009.Q2 to

2012.Q4 when households are deleveraging.

A virtue of our reverse-engineering approach is that we can construct counter-

factual scenarios by shutting off a particular shock sequence and then examining the

evolution of model variables versus those in the U.S. data. For example, shutting off

the reverse-engineered housing preference shock in the rational expectations model

serves to completely eliminate the boom-bust cycle in housing value. In contrast,
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the moving average model continues to generate a boom-bust cycle, albeit smaller

in magnitude, due to the asset price response to the other identified shocks. This

result illustrates the ability of the moving average model to generate an income- and

credit-fueled boom in housing value.

When we shut off the reverse-engineered lending standard shock, the models with

long-term mortgage debt exhibit no significant run-up in debt, regardless of the expec-

tation regime. This result indicates that shifting lending standards were an important

driver of the boom-bust episode. Put another way, the amplitude of the boom-bust

episode could have been mitigated if mortgage regulators had been more vigilant in

enforcing prudent lending standards.

When we shut off the income growth shock, there is little noticeable effect in the

rational expectations models. In contrast, the moving average models now exhibit

a delayed boom-bust episode relative to the data. This is due to the absence of

the persistently positive income growth shocks that occurred during the late 1990s.

According to the moving average models, movements in income growth did play a

role in the magnitude and timing of the episode.

When we shut off the mortgage interest rate shock, all of the models continue to

exhibit significant boom-bust cycles in both housing value and debt. This is because

the magnitude of the mortgage interest rate drop in the data is simply too small to

have much impact on the trajectories of housing value and debt. All of the models

imply that movements in the U.S. mortgage interest rate were not a major driver of

the episode.

Overall, we find that the moving average model with long-term mortgage debt

does best in plausibly matching the patterns in Figure 1. This version lends support

to the view that the U.S. housing boom was a classic credit-fueled bubble involving

over-optimistic projections about future housing values, relaxed lending standards,

and ineffective mortgage regulation.

1.1 Related Literature

A common feature of all bubbles is the emergence of seemingly-plausible fundamental

arguments that seek to justify the dramatic rise in asset prices. During the boom

years of the U.S. housing market, many economists and policymakers argued that a

housing bubble did not exist and that numerous fundamental factors were driving

the run-ups in housing values and mortgage debt.6 Commenting on the rapid growth

in subprime mortgage lending, Fed Chairman Alan Greenspan (2005) offered the

view that the lending industry had been dramatically transformed by advances in

6See, for example, McCarthy and Peach (2004) and Himmelberg, Mayer, and Sinai (2005).

5



information technology: “Where once more-marginal applicants would simply have

been denied credit, lenders are now able to quite effi ciently judge the risk posed by

individual applicants and to price that risk appropriately.”In a July 1, 2005 interview

on the CNBC network, Ben Bernanke, then Chairman of the President’s Council

of Economic Advisers, asserted that fundamental factors such as strong growth in

jobs and incomes, low mortgage rates, demographics, and restricted supply were

supporting U.S. house prices. In the same interview, Bernanke stated his view that

a substantial nationwide decline in house prices was “a pretty unlikely possibility.”

Numerous recent studies have employed quantitative theoretical models to try to

replicate various aspects of the boom-bust cycle in the U.S. housing market. Most

of these studies preempt bubble explanations by assuming that all agents are fully

rational. For example, taking the observed paths of U.S. house prices, aggregate

income, and interest rates as given, Chen, Michaux, and Roussanov (2013) show

that a model with rational expectations and long-term (interest-only) mortgages can

approximate the observed patterns in U.S. household debt and consumption. Their

quantitative exercise is similar in spirit to ours with the important exception that

they do not attempt to explain movements in U.S. house prices.

Standard dynamic stochastic general-equilibrium (DSGE) models with fully-rational

expectations have diffi culty producing large swings in housing values that resemble

the patterns observed in the U.S. and other countries. Indeed, it is common for

such models to employ extremely large and persistent exogenous shocks to rational

agents’preferences for housing in an effort to bridge the gap between the model and

the data.7 We obtain a similar result here when we impose rational expectations.

But, as noted above, large housing preference shocks are not a plausible explanation

for the boom-bust episode because these shocks generate extremely large movements

in the imputed housing rent, which are counterfactual. We show that households’use

of moving average forecast rules serves to shrink substantially the required magnitude

of the housing preference shocks that are needed to match the data.

Justiniano, Primiceri, and Tambalotti (2015b) develop a stylized model that dis-

tinguishes between a credit supply constraint and the more conventional borrowing

constraint. They argue that the U.S. housing boom is best explained as a relaxation

of the credit supply constraint, as this reduces mortgage interest rates and thereby

can generate a sizeable increase in the steady-state house price. In their quantita-

tive exercises, they compare sequences of steady states, where each movement in the

credit supply limit “is unanticipated by the agents”(p. 25). Hence, their proposed

explanation can be interpreted as departing from rational expectations, as done here.

7See for example, Iacoviello and Neri (2010) and Justiniano, Primiceri, and Tambalotti (2015a),
among others.
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In contrast to their approach, our simulations account for the model’s out-of-steady-

state transition dynamics. We find that the observed decline in the U.S. real mortgage

interest was not a major contributor to the run-up in U.S. housing value– consistent

with the empirical findings of Dokko, et al. (2011) and Glaeser, Gottlieb, and Gy-

ourko (2013). In this regard, it’s worth noting that U.S. real mortgage interest rates

continued to decline for several years after 2007 while housing values also continued

to fall. Our model ascribes a key role to relaxed borrowing constraints, consistent

with the empirical evidence on the rapid growth of subprime mortgage lending during

the boom years.

Boz and Mendoza (2014) show that a model with Bayesian learning about a regime

shifting loan-to-value limit can produce a pronounced run-up in credit and land prices

followed by a sharp and sudden drop. The one-period debt contract in their model

causes credit and the land price to move in tandem on the downside– a feature that

is not consistent with the gradual deleveraging observed in the data. Nevertheless,

the Bayesian updating mechanism in their model shares some of the flavor of the

moving average forecast rules in our model. Using a model that abstracts from shifts

in lending standards, Adam, Kuang, and Marcet (2012) show that the introduction

of constant-gain learning can help account for recent cross-country patterns in house

prices and current account dynamics. Constant-gain learning algorithms are similar

in many respects to moving average forecast rules; both formulations assume that

agents apply exponentially-declining weights to past data when constructing forecasts

of future variables.

In a review of the literature on housing bubbles, Glaeser and Nathanson (2014)

conclude: “It seems silly now to believe that housing price changes are orderly and

driven entirely by obvious changes in fundamentals operating through a standard

model”(p. 40). Moving average forecast rules depart from the “standard model”of

rational expectations but nevertheless are consistent with a wide variety of survey

evidence. In a study of data from the Michigan Survey of Consumers, Piazzesi and

Schneider (2009) report that “starting in 2004, more and more households became op-

timistic after having watched house prices increase for several years”(p. 407). Along

these lines, Burnside, Eichenbaum, and Rebelo (2015) develop a model where agents’

optimistic beliefs about future house prices can spread like an infectious disease. In

a review of the time series evidence on housing investor expectations from 2002 to

2008, Case, Shiller, and Thompson (2012) find that “1-year expectations [of future

house prices changes] are fairly well described as attenuated versions of lagged actual

1-year price changes”(p. 282). Similarly, Greenwood and Shleifer (2014) show that

measures of investor expectations about future stock returns are strongly correlated

with past stock returns. Jurgilas and Lansing (2013) show that the balance of house-
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holds in Norway and Sweden expecting a house price increase over the next year is

strongly correlated with nominal house price growth over the preceding year. Ling,

Ooi, and Te (2015) find that past real house price changes help to predict future real

house price changes even after taking into account measures of buyer, builder, and

lender sentiment plus every conceivable fundamental variable that the theory says

should matter. Their results can be interpreted as evidence that U.S. housing market

participants employ some type of backward-looking, extrapolative, or moving-average

forecast rule.

Garriga, Manuelli, and Peralta-Alva (2014) develop a model of house price swings

that shares some common features with ours, i.e., long-term mortgage debt and shocks

to the mortgage interest rate and lending standards. Under perfect foresight, their

model cannot explain the U.S. house price boom-bust episode. In contrast, a version

with “shocks to expectations” does a much better job of fitting the data. Gete

(2014) shows that introducing the Case-Shiller-Thompson survey expectations into a

standard DSGE model can help account for movements in U.S. house prices over the

period 1994 to 2012.

2 Model

Housing services are priced using a version of the frictionless pure exchange model

of Lucas (1978). The representative household’s problem is to choose sequences of ct
and ht to maximize

Ê0

∞∑
t=0

βtct h
θt
t , (1)

subject to the following equations

θt = θ exp (ut) (2)

ut = ρuut−1 + εu,t εu,t ∼ N
(
0, σ2u

)
, (3)

ct + ptht + (rt + δt) bt = yt + ptht−1 + `t, (4)

bt+1 = (1− δt) bt + `t, (5)

xt ≡ log (yt /yt−1) = x+ ρx (xt−1 − x) + εx,t εx,t ∼ N
(
0, σ2x

)
, (6)

Rt ≡ 1 + rt = R exp (τ t) , (7)

τ t = ρττ t−1 + ετ ,t ετ ,t ∼ N
(
0, σ2τ

)
, (8)

where ct is real household consumption expenditures, ht is the housing service flow,

yt is real disposable income, β is the subjective time discount factor, and θt ≥ 0

measures the strength of the agent’s housing preference which is subject to a per-

sistent exogenous shock ut. The symbol Êt represents the household’s subjective
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expectation, conditional on information available at time t, as explained more fully

below. Under rational expectations, Êt corresponds to the mathematical expectation

operator Et evaluated using the objective distribution of shocks, which are assumed

known to the rational household. The symbol pt is the price of housing services in

consumption units. The law of motion for the stock of household debt is given by

equation (5), where `t is new borrowing during the period, and δt ∈ (0, 1] is the amor-

tization rate, i.e., the fraction of outstanding mortgage debt that is repaid during the

period. Real disposable income growth xt follows an exogenous AR(1) process given

by equation (6). The gross quarterly real mortgage interest rate Rt ≡ 1+rt is subject

to a persistent exogenous shock τ t.

Following Kydland, Rupert, and Šustek (2012), we model the mortgage amorti-

zation rate using the following law of motion

δt+1 =

(
1− `t

bt+1

)
δαt +

`t
bt+1

(1− α)κ , (9)

where α ∈ [0, 1) and κ ≥ 0 are parameters and the ratio `t/bt+1 measures the size

of the new loan relative to the end-of-period stock of mortgage debt. When α = 0,

we have δt+1 = 1 for all t from (9) and `t = bt+1 from (4), such that we recover

a one-period mortgage contract where all outstanding debt is repaid each period.

When α > 0, the above law of motion captures the realistic feature that the amorti-

zation rate is low during the early years of a mortgage (i.e., when `t/bt+1 ' 1) such

that mortgage payments consist mainly of interest. The amortization rate rises in

later years as more principal is repaid. Kydland, Rupert, and Šustek (2012) show

that appropriate settings for the parameters α and κ can approximately match the

amortization schedule of a 30-year conventional mortgage.

We assume that households face the following constraint on the amount of new

borrowing each period

`t ≤ mt

[
Êt pt+1ht − bt+1

]
, (10)

mt = m exp (vt) , (11)

vt = ρvvt−1 + εv,t εv,t ∼ N
(
0, σ2v

)
, (12)

wheremt is a lending standard variable that is subject to a persistent exogenous shock

vt. Equation (10) says that the size of the new loan `t cannot exceed a fraction mt

of expected home equity, i.e., next period’s expected housing value Êt pt+1ht minus

next period’s mortgage debt bt+1. We interpret an increase in mt to represent a

relaxation of lending standards while a decrease in mt is a tightening of standards.8

8Along these lines, Duca Muellbauer, and Murphy (2011) find that movements in the LTV ratio
of U.S. first-time homebuyers help to explain movements in the ratio of U.S. house prices to rents,
particulary in the years after 2000.
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For simplicity, we assume that the lender’s subjective forecast Êt pt+1ht coincides

with the household’s subjective forecast.

The representative household’s optimization problem be formulated as

max
ct, ht, bt+1, δt+1

Ê0

∞∑
t=0

βt£t, (13)

where the current-period Lagrangian £t is given by

£t = cth
θt
t + λt [yt + pt (ht−1 − ht) + bt+1 −Rtbt − ct]

+ µt

[
mt

1 +mt
Et pt+1ht +

(1− δt)
1 +mt

bt − bt+1

]
+ ηt {δt+1bt+1 − bt (1− δt) [δαt − (1− α)κ] − (1− α)κ bt+1} , (14)

where λt, µt, and ηt are the Lagrange multipliers on the budget constraint (4), the

borrowing constraint (10), and the law of motion for the endogenous amortization

rate (9), respectively. In each constraint, we have used equation (5) to eliminate the

new loan amount `t.

The household’s first-order conditions with respect to ct, ht, bt+1, and δt+1 are

given by

λt = hθtt , (15)

λtpt = θtcth
θt−1
t + µt

mt

1 +mt
Êt pt+1 + βÊtλt+1pt+1, (16)

µt = λt − βÊtλt+1Rt+1 + β (1− δt+1) Êt
µt+1

1 +mt+1

+ ηt [δt+1 − (1− α)κ] − β (1− δt+1)
[
δαt+1 − (1− α)κ

]︸ ︷︷ ︸
≡ f(δt+1)

Êt ηt+1 (17)

ηt = β
[
αδα−1t+1 (1− δt+1)− δαt+1 + (1− α)κ

]︸ ︷︷ ︸
≡ g(δt+1)

Êt ηt+1 + βÊt
µt+1

1 +mt+1
, (18)

where we make use of the fact that δt+1 is known at time t because bt+1 is known

at time t. In equation (18), we have simplified things by dividing both sides by bt+1.

After dividing both sides of equation (16) by λt, we can see that the “dividend”

or imputed rent from owner-occupied housing consists of two parts: (1) a utility

flow that is influenced by the stochastic preference variable θt, and (2) the marginal

collateral value of the house in the case when the borrowing constraint is binding,

10



i.e., when µt > 0.9

Equation (17) shows that when mortgage debt extends beyond one period (δt+1 <

1), the household takes into account the expected lending standard variable mt+1

when deciding how much to borrow in the current period. This is an element of

shock propagation that is unique to an environment with long-term mortgage debt.

With one-period debt (δt+1 = 1, α = 0), equation (17) simplifies to µt = λt −
βÊtλt+1Rt+1.

10

Assuming that housing exists in unit net supply, we have ht = 1 such that λt = 1

for all t. Imposing λt = 1 in the above equations and dividing both sides of the

applicable equilibrium conditions by current period income yt to obtain expressions

in stationary variables yields:

pt
yt

= θt
ct
yt

+

[
µt

mt

1 +mt
+ β

]
Êt

pt+1
yt

, (19)

µt = 1 − β ÊtRt+1 + β (1− δt+1) Êt
µt+1

1 +mt+1

+ ηt [δt+1 − (1− α)κ] − β f (δt+1) Êt ηt+1, (20)

ηt = β g (δt+1) Êt ηt+1 + β Êt
µt+1

1 +mt+1
, (21)

ct
yt

= 1 +
bt+1
yt
− Rt

bt
yt−1

exp (−xt) , (22)

bt+1
yt

=
mt

1 +mt
Êt

pt+1
yt+1

exp (xt+1) +
(1− δt)
1 +mt

bt
yt−1

exp (−xt) , (23)

δt+1 =
bt/yt−1
bt+1/yt

exp (−xt) (1− δt) [δαt − (1− α)κ] + (1− α)κ , (24)

where the last three equations are the normalized versions of the budget constraint,

the borrowing constraint, and the law of motion for the amortization rate.

2.1 Rational Expectations

Details regarding the rational expectations solution are contained in the appendix.

We transform the equilibrium conditions (19) through (24) so that the household’s

9We confirm that the borrowing constraint is binding at the ergodic mean values of the state
variables. As is common in the literature, we solve the model assuming that the borrowing constraint
is always binding in a neighborhood around the ergodic mean.
10Given that λt = 1 for all t in equilibrium, the rational expectations model with one-period debt

will exhibit a binding borrowing constraint at the ergodic mean if βR exp
(
σ2τ/2

)
< 1. This condition

is satisfied in our calibration of the model parameters, as described in Section 3.
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decision variables correspond to the three endogenous objects that the household must

forecast, namely: (1) the normalized housing value pn,t ≡ pt/yt−1, (2) a composite

variable wt ≡ µt/ (1 +mt) that depends on the borrowing constraint shadow price µt
and the lending standard variable mt, and (3) the amortization rate shadow price ηt.

There are six state variables: (1) the normalized stock of mortgage debt bn,t ≡ bt/yt−1,
(2) the mortgage amortization rate δt, (3) the housing preference shock ut, (4) the

lending standard shock vt, (5) the income growth rate xt, and (6) the mortgage

interest rate shock τ t. The state variables bn,t and δt are endogenous while the other

four state variables are exogenous, as governed by the AR(1) laws of motion (3),

(12), (6), and (8). To solve for the household decision rules, we employ a log-linear

approximation of the transformed equilibrium conditions. The approximation point

is the ergodic mean rather than the deterministic steady state.11

2.2 Moving Average Forecast Rules

The rational expectations solution is based on strong assumptions about the rep-

resentative household’s information set. Specifically, the rational solution assumes

that households know the stochastic processes for all exogenous shocks. The survey

evidence described in Section 1.1 shows that there is strong empirical support for

extrapolative or moving average type forecast rules. For example, U.S. inflation ex-

pectations derived from the Survey of Professional Forecasters (SPF) systematically

underpredict inflation in the sample period prior to 1979 when inflation was rising

and systematically overpredict it thereafter when inflation was falling. The survey

pattern is well-captured by a moving-average of past inflation rates.12 More gener-

ally, a moving average forecast rule can be viewed as boundedly-rational because it

economizes on the costs of collecting and processing information.

Motivated by the empirical evidence, we postulate that the household’s forecast

for a given variable is an exponentially-weighted moving average of past observed

values of that same variable. Constructing such a forecast requires only a minimal

amount of computational and informational resources. From equations (19) through

(24), we see that the household must construct four separate forecasts: (1) Êt pn,t+1
where pn,t+1 ≡ pt+1/yt, (2) Êtwt+1, where wt+1 ≡ µt+1/ (1 +mt+1) , (3) Êt ηt+1, and

(4) ÊtRt+1. The moving average forecast rule for Êt pn,t+1 is given by

Êt pn,t+1 = Êt−1 pn,t + λ
[
pn,t − Êt−1 pn,t

]
,

= λ
[
pn,t + (1− λ) pn,t−1 + (1− λ)2 pn,t−2 + ...

]
(25)

11Lansing (2010) demonstrates the accuracy of this solution method in a standard asset pricing
model.
12This result is demonstrated by Lansing (2009) and Gelain, Lansing, and Mendicino (2013).
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where the parameter λ ∈ [0, 1] governs the weight assigned to the most recent

observation– analogous to the gain parameter in the adaptive learning literature.

When λ = 1, households employ a simple random walk forecast such that Êt pn,t+1 =

pn,t. In this case, households view all movements in pn,t as permanent. In contrast,

when λ = 0, households view all movements in pn,t as temporary. The forecast rules

for Êtwt+1, Êt ηt+1, and ÊtRt+1 are constructed in the same way. For simplicity, we

assume that the household employs the same value of λ for all forecasts.

Substituting the moving average forecast rules into the transformed first-order

conditions yields a set of nonlinear laws of motion for the three decision variables

pn,t, wt, and ηt. Details are contained in the appendix.

3 Parameter Values

Table 1: Model Parameter Values

Parameter
One-period
Mortgage

Long-term
Mortgage Description/Target

α 0 0.9959 Approximate 30-year mortgage schedule.
κ 0 1.0487 Approximate 30-year mortgage schedule.
β 0.9828 0.9828 House price/quarterly rent ' 80.
θ 0.0625 0.0657 Housing value/quarterly income ' 6.3.
m 0.5836 0.0121 Mortgage debt/quarterly income ' 2.3.
x 0.00473 0.00473 Quarterly income growth rate = 0.473%.
R 1.01 1.01 Gross quarterly real mortgage rate.
λ 0.9 0.9 Forecasts for pn,t+1 and Rt+1 in U.S. data.

Table 2: Parameters for Stochastic Shocks

Parameter RE Model MA Model
1995.Q1 - 2012.Q4

Target
ρu 0.95 0.95 AR(1) housing value/income.
σu 0.351 0.037 Std. dev. housing value/income.
ρv 0.95 0.95 AR(1) mortgage debt/income.
σv 0.118 0.112 Std. dev. mortgage debt/income.
ρx −0.23 −0.23 AR(1) income growth rate.
σx 0.0082 0.0082 Std. dev. income growth rate.
ρτ 0.95 0.95 AR(1) mortgage interest rate.
στ 0.00078 0.00078 Std. dev. mortgage interest rate.

Notes: RE = rational expectations. MA = moving average forecast rules.

Tables 1 and 2 show the values of the model parameters that we employ in the

simulations. The parameters in Table 1 are the same for both expectation regimes

but in some cases differ across mortgage specifications. From Figure 1, we see that
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the ratios from U.S. data are all close to their long-run means in the mid-1990s.

Anticipating the reverse-engineering exercise, we choose the values of β, θ, and m

simultaneously so that the ergodic-means of three model-implied ratios are close to

their U.S. data counterparts at 1995.Q1. The three ratios are: (1) house price-rent,

(2) housing value-income, and (3) mortgage debt-income. By construction, we also

match the debt-to-value ratio at 1995.Q1. Data on U.S. house prices and imputed

rents from owner-occupied housing are from the Lincoln Land Institute.13 Data on

U.S. residential real estate values and household mortgage debt are from the Federal

Reserve Flow of Funds. Data on personal disposable income and population are from

the Federal Reserve Bank of St. Louis’FRED database.

Following Kydland, Rupert, and Šustek (2012), the values of α and κ are cho-

sen so that the amortization schedule for the model’s long-term mortgage roughly

approximates the amortization schedule of a conventional 30-year mortgage. With

long-term mortgage debt, we require a lending standard parameter of m = 0.0124 to

match the ratios in the data whereas the one-period debt model requires m = 0.5951.

In the models with long-term mortgage debt, the loan-to-value ratio differs from the

debt-to-value ratio whereas these two ratios coincide in the models with one-period

debt.

Starting from the normalized collateral constraint (23), it is straightforward to

show that the steady state debt-to-value ratio is given by

b

p
=

m

[1 +m− (1− δ̃) exp(−x)]
. (26)

where δ̃ is the mean amortization rate. Our calibration procedure yields δ̃ = 0.0162

with long-term mortgage debt versus δ̃ = 1 with one-period debt. Equation (26)

shows changes in the value of δ̃ must be accompanied by changes in the value of m

so that the model continues to match the target debt-to-value ratio implied by the

data.

The parameter λ in the moving average model governs the forecast weight assigned

to the most recent data observation. We use the same value of λ for each of the

four conditional forecasts that appear in the households’s first order conditions (19)

through (24). Of the four variables that the agent must forecast, two are observable

in U.S. data, namely pn,t+1 and Rt+1. The variable pn,t+1 ≡ pt+1/yt is constructed

using data on the housing value-income ratio ptht/yt, as plotted in the top left panel

of Figure 1. The variable Rt+1 is the gross quarterly real mortgage interest rate which

we construct from the data for the period 1971.Q2 to 2012.Q4.14

13See www.lincolninst.edu. For prices, we use the data series that includes the Case-Shiller-Weiss
measure from the year 2000 onwards, as documented in Davis, Lehnert, and Martin (2008).
14We start with data on the nominal 30-year conventional mortgage interest rate from the Federal
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To get a sense of a reasonable value for λ, Figure 2 plots the root mean squared

percentage forecast error (RMSPFE) for one-quarter ahead forecasts of pn,t+1 and

Rt+1 in the data using a moving average forecast rule of the form (25). For pn,t+1,

forecast performance is best (lowest RMSPFE) when λ ' 1.4 for the boom-bust

period and λ ' 1 for the pre-boom period. For Rt+1, forecast performance is best

when λ ' 1 during both periods. Recall that λ = 1 corresponds to a random walk

forecast. When λ > 1, a positive forecast error in the prior period leads to an upward

adjustment in the forecasted growth of the variable in the next period.15 In the

model, values of λ that approach or exceed unity give rise to explosive dynamics. For

the simulations, we employ λ = 0.9 which yields stable dynamics. Figure 2 shows

that λ = 0.9 does not sacrifice much in forecast performance relative to higher values

of λ. Hence, our calibration implies that households employ a “near-optimal”value

of λ for the simulations that exactly replicate the U.S. data.

Table 2 shows the parameter values that govern the persistence and volatility of

the four stochastic shocks. The parameter values for the housing preference shock ut
and the lending standard shock vt depend on the expectation regime. We calibrate

these shocks so that the rational expectations (RE) model and the moving average

(MA) model can both match the standard deviations of the U.S. real estate value

and mortgage debt ratios over the period 1995.Q1 to 2012.Q4. Analytical moment

formulas derived from the log-linear solutions of both models are used in the calibra-

tion procedure. The calibration is done for the case of long-term mortgage debt, but

we use the same set of shock parameters in the case of one-period debt. From Table

2, we see that the RE model requires a highly volatile housing preference shock with

σu = 0.351 versus σu = 0.037 in the MA model. For the lending standard shock, the

RE model requires σv = 0.118 versus σv = 0.112 in the MA model.

The stochastic process for income growth xt is estimated using data on the quar-

terly growth rate of U.S. real per capita disposable income. The parameter values

for the mortgage interest rate shock τ t are estimated using data on the 30-year con-

ventional mortgage interest rate after conversion to a quarterly real rate as described

above. The sample period for estimating the shock parameters is 1995.Q1 to 2012.Q4.

Reserve Bank of St. Louis’ FRED database. We then convert the annualized nominal mortgage
interest rate into a quarterly real rate using 4-quarter-ahead expected inflation (converted to a
quarterly expected inflation rate) from the Survey of Professional Forecasters.
15To see this, equation (25) can be rearranged as follows: Êt (pn,t+1 − pn,t) =

(λ− 1)
[
pn,t − Êt−1 pn,t

]
.
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4 Quantitative Results

4.1 Simulations with Model-Specific Shocks

Figure 3 (RE model) and Figure 4 (MA model) show simulation results using the

parameter values in Tables 1 and 2. The four panels in each figure are the model-

generated versions of the corresponding U.S. data ratios plotted earlier in Figure

1.

Our calibration procedure ensures that the RE model and the MA model both

exhibit realistic volatilities for the housing value-income ratio ptht/yt and the mort-

gage debt-income ratio bt/yt. Consequently, the top panels of Figure 3 look similar

to the top panels of Figure 4. A crucial distinction between the two models can be

seen by comparing the bottom left panels of Figures 3 and 4. The RE model predicts

a substantially more volatile rent-income ratio than the MA model. This is because

the RE model’s housing preference shock has σu = 0.351 which is nearly ten times

larger than the corresponding value σu = 0.037 in the MA model. The volatility of

the housing preference shock directly influences the volatility of the rent-income ratio

which is given by
Rentt
yt

= θt
ct
yt

+ µt
mt

1 +mt
Êt

pt+1
yt

, (27)

where θt = θ exp (ut) is the stochastic housing preference variable. The first term on

the right side of (27) is the housing service flow while the second term is the marginal

collateral value of the house. In the simulations, the volatility of the rent-income

ratio is determined mainly by movements in the housing service flow.

With long-term mortgage debt, the coeffi cient of variation for the rent-income

ratio in the RE model is 0.66 versus 0.11 in the MA model. For comparison, the

coeffi cient of variation for the rent-income ratio in U.S. data is 0.10 over the period

1960.Q1 to 2012.Q4. For the more-recent period of 1995.Q1 to 2012.Q4, the coeffi cient

of variation is even lower at 0.02. The extremely low volatility of the rent-income ratio

in the data argues against fundamental demand shocks as a key driver of the boom-

bust episode. A virtue of the MA model is its ability to generate realistic volatility

in the housing value-income ratio without the need for large housing demand shocks.

The right-side panels in Figures 3 and 4 show that the long-term mortgage specifi-

cation delivers smoother behavior in the debt-income ratio bt/yt and the consumption-

income ratio ct/yt relative to the one-period mortgage version of the same model.

With long-term mortgage debt, shocks can have a large impact on the size of the

new loan but the impact on the stock of outstanding debt is much smaller. This is

because the new loan represents only a small fraction of the end-of-period stock of

debt. In contrast, the new loan and the end-of-period stock of debt are equal with
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one-period mortgage debt, causing the debt-income ratio to be more responsive to

shocks.16

The normalized version of the household’s budget constraint (22) shows that

movements in the consumption-income ratio are linked to movements in the debt-

income ratio. The smoother behavior of the debt-income ratio in the models with

long-term mortgage debt translates into smoother behavior for the consumption-

income ratio.

4.2 Impulse Response Functions with Common Shocks

Figures 5 and 6 illustrate how a common stochastic shock propagates differently in

the four different model specifications. Figure 5 plots the model responses to a one

standard deviation innovation of the housing preference shock ut. Figure 6 plots

the model responses to a one standard deviation innovation of the lending standard

shock vt. The vertical axes measure the percentage deviation of the variable from

the no-shock value. All model specifications now employ σu = 0.037 (Figure 5) or

σv = 0.112 (Figure 6). These are the original calibrated values from the MA model,

as shown in Table 2.

Both figures show that, regardless of the mortgage specification, the MA model

exhibits substantially more volatility in housing value than the RE model. In other

words, the MA model exhibits excess volatility in the asset price in response to

fundamental shocks. This result is not surprising given that the moving average

forecast rule (25) embeds a unit root assumption. This is most obvious when λ = 1

but is also true when 0 < λ < 1 because the weights on lagged variables sum to

unity. Due to the self-referential nature of the equilibrium conditions, the households’

subjective forecast influences the dynamics of the object that is being forecasted.17

Given that all shocks are governed by AR(1) laws of motion, a hump-shaped

impulse response is indicative of an endogenous propagation mechanism in the model.

The MA model with long-term mortgage debt is the only specification to exhibit a

hump-shaped response in both housing value and mortgage debt. The effects of the

shocks are temporary but highly persistent– lasting in excess of 100 quarters (25

years). The RE model with long-term mortgage debt can produce a hump-shaped

response in debt but not housing value. Notice that the RE model with one-period

16 In the context of a monetary DSGE model, Gelain, Lansing, and Natvik (2015) show that a
tightening of monetary policy reduces the debt-income ratio with one-period mortgage debt but
increases the debt-income ratio with long-term mortgage debt.
17A simple example with λ = 1 illustrates the point. Suppose that pt = dt+β Êt pt+1, where dt fol-

lows an AR(1) process with persistence γ. Under rational expecations, we have V ar (pt) /V ar (dt) =

1/ (1− γβ)2 . When Êt pt+1 = pt, we have V ar (pt) /V ar (dt) = 1/ (1− β)2 which implies excess
volatility in the model asset price whenever |γ| < 1.
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mortgage debt does not produce a hump-shaped response in either housing value or

debt. Hence, the dynamics of model variables in this version are driven entirely by

the exogenous AR(1) shocks.

Another notable feature of the impulse response functions is the timing of the

peaks in housing value versus mortgage debt. With one-period debt, both peaks

occur at the same time. With long-term mortgage debt, the peak in housing value

occurs well before the peak in debt. This is qualitatively similar to the pattern

observed in Figure 1 for the U.S. data.

4.3 Reverse-Engineering the Shocks to Match the Data

We now undertake the main part of our quantitative analysis: reverse-engineering

the sequences of stochastic shocks that are needed to exactly replicate the boom-

bust patterns in U.S. household real estate value and mortgage debt over the period

1995.Q1 to 2012.Q4. All of the model’s state variables are set equal to their ergodic

means at 1995.Q1. For each version of the model, we use the log-linearized versions

of the decision rules and laws of motion in first-difference form to back out sequences

for the change in the housing preference shock ∆ut and the change in the lending

standard shock ∆vt to match the change in the U.S. housing value-income ratio and

the change in the U.S. mortgage debt-income ratio. For each period of the exercise,

we have a linear system of two equations and unknowns, namely, ∆ut and ∆vt. Given

the sequences for ∆ut and ∆vt, we construct sequences for ut and vt using the initial

conditions ut = vt = 0 at 1995.Q1. We use the first-difference forms of the log-linear

decision rules and laws of motion to eliminate constant terms in the model which, for

some variables, may not coincide with the corresponding U.S. values in 1995.Q1.18

As inputs to the reverse-engineering exercise, we use U.S. data for the period

1995.Q1 to 2012.Q4 to identify sequences for the change in disposable income growth

∆xt and the change in the mortgage interest rate shock ∆τ t. The data we use to

identify ∆xt and ∆τ t are plotted in Figure 7, where the trends are computed using

the Hodrick-Prescott filter with a smoothing parameter of 1600. We use the trends

to identify ∆xt and ∆τ t in order to screen out high frequency movements in the

data that would show up as noise in the reverse-engineered shocks, thus obscuring

their economic interpretation. Given the identified sequences for ∆xt and ∆τ t, we

construct sequences for the state variables xt − x and τ t using the initial conditions
xt = x = 0.00473 and τ t = 0 at 1995.Q1. The time patterns of these state variables

18For example, the ergodic mean value of ct/yt in the model does not coincide with the U.S.
consumption-income ratio in 1995.Q1. Nevertheless, given a model-implied sequence for ∆ (ct/yt) ,
we can construct a comparable model-implied sequence for ct/yt using the 1995.Q1 value in the data
as the intital condition.
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mimic the trends in Figure 7.

Figure 8 plots the results of the reverse-engineering exercise. The left panels

show the reverse-engineered shocks in the RE models while the right panels show the

corresponding shocks in the MA models.

Analogous to the model simulations, the RE model requires large movements in

the reverse-engineered housing preference shock to match the data. The time pattern

of the housing preference shock mimics the path of the U.S. housing value-income

ratio in Figure 1. This is true for both mortgage specifications. Hence, the RE

model “explains” the boom-bust cycle in U.S. housing value as a wholly exogenous

phenomenon. In contrast, the top right panel of Figure 8 shows that the MA model

requires much smaller movements in the housing preference shock to match the same

data. Again this is true for both mortgage specifications.

Table 3 compares the properties of the reverse-engineered shocks across the four

different model specifications. With long-term mortgage debt, the mean of the hous-

ing preference shock is 0.97 in the RE model versus 0.04 in the MA model. The

standard deviation of the housing preference shock is 1.04 in the RE model versus

0.25 in the MA model.

The bottom panels of Figure 8 show that the reverse-engineered lending standard

shock is highly dependent on the mortgage specification, but is not sensitive to the

expectation regime. With one-period mortgage debt, both the RE and MA models

imply a near-zero lending standard shock during the boom years prior to 2007. This is

because the one-period debt specification requires the stock of debt to move in tandem

with housing value. Since housing value is driven upwards by the other shocks, a

lending standard shock is not needed to explain the run-up in mortgage debt. Things

are different, however, during the bust years. To avoid the counterfactual prediction

of a rapid deleveraging as U.S. housing values fell rapidly, the one-period debt models

require a post-2007 relaxation of lending standards (i.e., a persistently positive value

for the lending standard shock vt) to simultaneously match the patterns of housing

value and mortgage debt in the data.

With long-term mortgage debt, the new loan size moves in tandem with housing

value but the stock of mortgage debt adjusts more slowly than housing value. In

order to match the run-up in U.S. mortgage debt during the boom years, the long-

term debt versions of the RE and MA models both require a substantial relaxation

of lending standards during the boom years from 2001 to 2005. This pattern is

consistent with the empirical evidence cited in the introduction. Period-by-period

fluctuations in stock of mortgage debt in the data translate into the need for much

larger fluctuations in the flow of new loans in the models, thus accounting for the

volatility of the reverse-engineered lending standard shocks. The magnitude of the
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lending standard shock vt starts declining well before the peak in mortgage debt that

occurs at 2007.Q4. A declining value of vt implies a tightening of lending standards.

After 2007.Q4, both models require a persistently negative value for the lending

standard shock which is indicative of even further tightening of lending standards

during the Great Recession and beyond.

Figure 9 plots two indicators of lending standard tightness from the Federal Re-

serve’s Senior Loan Offi cer Opinion Survey on Bank Lending Practices (SLOOS).

The indicators are the net percentage of U.S. domestic banks that are tightening

lending standards for either residential mortgage loans or credit card loans.19 Both

series show that banks started to tighten lending standards before the onset of the

Great Recession in 2007.Q4. Moreover, a substantial percentage of banks continued

to tighten standards even after the recession ended in 2009.Q2. Overall, the SLOOS

data confirms the plausibility of the reverse-engineered lending standard shocks in

the models with long-term mortgage debt.

Table 3: Properties of Reverse-Engineered Shocks

One-period Mortgage Long-term Mortgage

Shock
1995.Q1-2012.Q4

Statistic RE Model MA Model RE Model MA Model
Housing
Preference

Mean
Std. dev.

0.92
1.13

0.02
0.31

0.97
1.04

0.04
0.25

Lending
Standard

Mean
Std. dev.

0.18
0.27

0.16
0.27

0.24
0.58

0.23
0.57

Notes: RE = rational expectations. MA = moving average forecast rules.

Figures 10 and 11 plot the model-implied paths for two other variables of interest,

namely, the housing rent-income ratio given by equation (27) and the consumption-

income ratio given by equation (22). For the rent-income ratio, we first construct

a log-linearized law of motion for the change in the ratio in terms of the change in

the model state variables. We then substitute in the identified sequences for ∆xt and

∆τ t and the reverse-engineered sequences for∆ut and∆vt. As before, the endogenous

state variables evolve according to their log-linearized laws of motion in first-difference

form. For the consumption-income ratio, we simply use the exact nonlinear law of

motion (22) in first-difference form.

Figure 10 shows that both versions of the RE model predict a counterfactual

boom-bust cycle in the rent-income ratio that is driven by the large movements in

19The data are available from www.federalreserve.gov/boarddocs/SnLoanSurvey/. Prior to
2007.Q2, the survey data do not distinguish between prime and subprime mortgages. From 2007.Q2
onwards, we plot the survey responses for prime mortgages.
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the reverse-engineered housing preference shock. In contrast, the predicted paths for

the rent-income ratio in the MA model are much closer to the data. The endogenous

bubble-like dynamics in housing value generated by the moving average forecast rules

allows the MA model to be much less reliant on exogenous housing preference shocks

to match the data. This helps to avoid the prediction of large movements in housing

rents which are not present in the data.

In Figure 11, all model versions deliver identical paths for the consumption-income

ratio. The normalized household budget constraint (22) shows that movements in the

consumption-income ratio are linked mechanically to movements in the debt-income

ratio and the mortgage interest rate which, by construction, are the same across

models for this exercise. A smoothed version of the model-implied path (constructed

using the Hodrick-Prescott filter) exhibits a hump-shaped pattern that roughly re-

sembles the hump-shaped pattern in the data from 1995 to 2012. Hence, abstracting

from high-frequency fluctuations, all models predict a boom-bust cycle in consump-

tion that is positively correlated with the boom-bust cycles in housing value and

mortgage debt.

Table 4: Per Capita Consumption Growth Rates
Time Period U.S. Data All Models

Boom: 1995.Q1 to 2007.Q4 3.58 2.32
Bust: 2007.Q4 to 2009.Q2 −1.83 −4.27
Recovery: 2009.Q2 to 2012.Q4 2.03 0.74

Note: Annualized compound growth rate over the period in %.

Table 4 compares annualized compound growth rates of per capita consumption

from U.S. data to the predicted growth rates from the models for three phases of

the simulation, i.e., the boom from 1995.Q1 to 2007.Q4, the bust coinciding with

the Great Recession from 2007.Q4 to 2009.Q2, and the recovery starting in 2009.Q2

and going until the end of our data sample in 2012.Q4. Since the paths for ct/yt
and income growth are the same across models, so too is consumption growth. In

both the data and the models, consumption growth is fastest during the boom phase

when income growth shocks were persistently positive and debt was rising faster

than income. The bust delivers negative consumption growth in all models. Finally,

the recovery is very sluggish, with model-implied consumption growth rates that

are less than 1% . As in the data, the sluggish recovery coincides with a period

of household deleveraging. Relative to the U.S. data, the consumption bust in the

model is more severe and the consumption recovery is much weaker. But of course

the model is missing the numerous automatic stabilizers and policy responses that

helped to support U.S. consumer spending as these events transpired.

Recall that the shocks are not designed to match the path of ct/yt in the U.S.
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data. Nevertheless, conditional on matching the observed time paths of U.S. housing

value and mortgage debt, all of the models can account for the broad patterns of U.S.

consumption growth during the boom, bust, and recovery phases. It is important to

recognize, however, that each model tells a different story regarding the shocks that

presumably caused these events. We think the story told by the MA model with

long-term mortgage debt is the most plausible.

5 Counterfactual Scenarios

Our final quantitative exercise examines four counterfactual scenarios that are plotted

in Figures 12 through 15. In each case, we turn off one of the four shock sequences

that was constructed in the reverse-engineering exercise. Turning off one shock at a

time allows us to see which shocks are the most important drivers of the boom-bust

episode, as interpreted through the lens of the model.

Counterfactual scenario 1 (Figure 12) shuts off the housing preference shock such

that ut = 0 for all t. The RE models now exhibit no significant run-up in hous-

ing value. This result confirms the importance of the housing preference shock in

“explaining” the run-up under rational expectations. In contrast, the MA models

still exhibit a sizeable run-up in housing value, particularly in the version with long

term mortgage debt which continues to be hit by positive income growth shocks and

loosening lending standards. The run-up in housing value now starts earlier than in

the data, however. This pattern is driven by the series of persistently positive income

growth shocks during the late 1990s (Figure 7). From the top right panel of Figure

8, we see that the housing preference shocks in the MA models are slightly nega-

tive from 1995 to 2000– the period of “irrational exuberance”in the NASDAQ stock

market index. One interpretation of these results is that the positive income growth

shocks of the late 1990s helped fuel a run-up in stock prices rather than house prices.

Since there is only one asset price in our model, the only way to delay the rise in

housing values until after 2000 is to postulate the existence of small negative shocks

to housing demand during the late 1990s– a period when investors were paying more

attention to the stock market than the housing market.

Counterfactual scenario 2 (Figure 13) shuts off the lending standard shock such

that vt = 0 for all t. The models with one-period mortgage debt now imply a rapid

deleveraging that coincides with the rapid decline in housing value. Recall that

the models with one-period debt require an implausible sequence of looser lending

standard shocks after 2007 to match the gradual deleveraging in the data. Once this

shock sequence is turned off, the stock of debt moves down in tandem with housing

value. In contrast, the models with long-term mortgage debt exhibit much smaller
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run-ups in mortgage debt when the lending standard shock is turned off. According

to these models, shifting lending standards were an important driver of the boom-

bust episode. The MA model with long-term mortgage debt is the only one to show

smaller boom-bust cycles in both housing value and mortgage debt when the lending

standard shock is turned off.

Counterfactual scenario 2 can be interpreted as a macroprudential policy ex-

periment; it shows what would have happened if mortgage regulators had enforced

prudent lending standards during the boom years. According to our preferred model

(MA with long-term mortgage debt), such action by regulators would have helped to

restrain the boom on the upside such that the subsequent bust and the associated

economic damage would have been less severe.

Counterfactual scenario 3 (Figure 14) shuts off the income growth shock such

that xt = x for all t. There is little noticeable effect in the RE models showing

that the remaining shocks are doing all the work of fitting the data. In contrast,

the MA models now exhibit a brief and mild decline in housing value until the year

2000. Again, this pattern can be traced to the slightly negative housing preference

shocks during the early part of the simulation. These are needed when all four shocks

are present, as explained above in counterfactual scenario 1. Otherwise, the positive

income growth shocks of the late 1990s would push up housing value too soon relative

to the data (since there is no other asset price in the model). According to the MA

models, movements in income growth did play a role in the magnitude and timing of

the episode. Notice that the MA model with one-period debt now exhibits a much

larger boom-bust cycle in debt. The (implausible) post-2007 loosening of lending

standards in this version of the model accounts for the larger debt movements when

we turn off the post-2007 negative income growth shocks. The MA model with long-

term mortgage debt exhibits smaller boom-bust cycle in debt when the income growth

shock is turned off.

Counterfactual scenario 4 (Figure 15) shuts off the mortgage interest rate shock

such that τ t = 0 for all t. All model versions continue to exhibit significant boom-

bust cycles in both housing value and debt. This is because the magnitude of the

U.S. mortgage interest rate drop is simply too small to have much impact. Figure

7 shows that the trend value of the quarterly real mortgage interest rate declined

by only 30 basis points from 1995.Q1 until 2005.Q4. After 2005.Q4, the interest

rate continued to decline by about 45 basis points. These interest rate moves are

not suffi cient to appreciably alter the trajectories of housing value and debt in the

presence of the other three shocks. According to the models, the decline in the U.S.

mortgage interest rate was not a major driver of the boom-bust episode.20

20 In experiments with the models, we find that doubling the magnitude of the total mortgage
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Our results regarding the mortgage interest rate conflict with the findings of

Taylor (2007) and McDonald and Stokes (2011) who argue that the Fed’s decision

to keep interest rates artificially low during the boom years helped fuel the housing

bubble.21 But other studies find that low interest rates were not a major contributor

to the U.S. housing boom. Dokko, et al. (2011) present evidence that movements in

U.S. house prices were much larger than can explained by the historical relationship

between house prices and interest rates. An empirical study by Glaeser, Gottlieb, and

Gyourko (2013) finds that lower real interest rates can explain only about 20% of the

rise in U.S. house prices from 1996 to 2006. One way to reconcile these various findings

is to postulate that the low interest rate environment at the time fostered excessive

risk-taking behavior by lenders.22 This explanation is consistent with widespread use

of imprudent lending practices during the boom years of the U.S. housing market.

6 Conclusion

Episodes of explosive, bubble-like growth in house prices have occurred in many

OECD countries over the past four decades (Engsted, Hviid, and Pedersen 2014).

A recent cross-country empirical study by Jordà, Schularick, and Taylor (2014b)

concludes that “Mortgage booms are an important source of financial instability in

the post-WWII era” (p. 40). Our simple quantitative asset pricing model helps to

shed light on the underlying causes of the recent boom-bust cycle in the U.S. housing

market. A clear understanding of these causes is important because it can help in

the design of policy actions to avoid future crises.

The offi cial report of the U.S. Financial Crisis Inquiry Commission (2011) states:

“We conclude this financial crisis was avoidable. . . Despite the expressed view of many

on Wall Street and in Washington that the crisis could not have been foreseen or

avoided, there were warning signs. The tragedy was that they were ignored or dis-

counted”(p. xvii). The report lists such red flags as “an explosion in risky subprime

lending and securitization, an unsustainable rise in housing prices, widespread reports

of egregious and predatory lending practices, (and) dramatic increases in household

mortgage debt.”

Our preferred model of the boom-bust cycle includes the following elements: (1)

households who employ simple moving-average forecast rules that give rise to excess

interest rate drop to about 150 basis points is necessary to obtain a significant effect on the trajectories
of housing value and mortgage debt.
21 In a long-run historical study of many countries, Jordà, Schularick, and Taylor (2014b) find that

loose monetary conditions typically contribute to booms in house prices and real estate lending.
22Adrian and Shin (2010) and Jiménez, et al. (2014) present evidence that low interest rate

environments contribute to increased risk-taking by lenders.
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volatility in asset prices, (2) long-term mortgage contracts that cause the stock of

outstanding household debt to adjust more slowly than the flow of new loans, and (3)

relaxed lending standards during the run-up that created the conditions for a credit-

fueled housing bubble. Our results further suggest that policy actions by regulators

to control the flow of mortgage credit by enforcing prudent lending standards can

limit a housing boom on the upside, such that the subsequent bust and the resulting

economic fallout may be less severe.
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A Appendix: EquilibriumConditions in Stationary Vari-
ables

Starting from the equilibrium conditions (19) through (24), we define the following

stationary variables: pn,t ≡ pt/yt−1, wt ≡ µt/ (1 +mt) , bn,t ≡ bt/yt−1, and cn,t ≡
ct/yt. After substituting in these definitions, the transformed equilibrium conditions

are

pn,t = θ exp (ut + xt) cn,t + [m exp (vt)wt + β] exp (xt) Êt pn,t+1, (A.1)

wt = [1 +m exp (vt)]
−1
{

1− βR Êt exp(τ t+1) + β (1− δt+1) Êtwt+1

+ ηt [δt+1 − (1− α)κ]− β f (δt+1) Êt ηt+1

}
(A.2)

ηt = β g (δt+1) Êt ηt+1 + β Êtwt+1 (A.3)

cn,t = 1 + bn,t+1 − R exp (τ t − xt) bn,t, (A.4)

bn,t+1 = [1 +m exp (vt)]
−1
[
m exp (vt) Êt pn,t+1 + (1− δt) exp (−xt) bn,t

]
,(A.5)

δt+1 =
bn,t
bn,t+1

exp (−xt) (1− δt) [δαt − (1− α)κ] + (1− α)κ , (A.6)

where f (δt+1) ≡ (1− δt+1)
[
δαt+1 − (1− α)κ

]
, g (δt+1) ≡ αδα−1t+1 (1− δt+1) − δαt+1 +

(1− α)κ , and we have substituted in θt = θ exp (ut) , Rt = R exp (τ t), and mt =

m exp (vt) for all t. The decision variables are pn,t, wt, and ηt. The six state variables

are bn,t, δt, ut, vt, xt, and τ t.

B Appendix: Solution with Rational Expectations

An approximate solution to the transformed first-order conditions (A.1) through

(A.6) under rational expectations takes the form of the following (log-linear) decision
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rules

pn,t
p̃n

'
[
bn,t

b̃n

]s1 [δt
δ̃

]s2
exp [s3ut + s4vt + s5 (xt − x) + s6τ t] , (B.1)

wt
w̃

'
[
bn,t

b̃n

]h1 [δt
δ̃

]h2
exp [h3ut + h4vt + h5 (xt − x) + h6τ t] , (B.2)

ηt
η̃

'
[
bn,t

b̃n

]f1 [δt
δ̃

]f2
exp [f3ut + f4vt + f5 (xt − x) + f6τ t] , (B.3)

where si, hi, and fi for i = 1 through 6 are solution coeffi cients. The ergodic

mean approximation points are p̃n ≡ exp [E log (pn,t)] , w̃ ≡ exp [E log (wt)] , η̃ ≡
exp [E log (ηt)] , b̃n ≡ exp [E log (bn,t)] , and δ̃ ≡ exp [E log (δt)] .

We first use (A.4) through (A.6) to eliminate cn,t, bn,t+1 and δt+1 from (A.1)

through (A.3). We take logarithms of (A.1) through (A.6) and apply a first-order

Taylor series approximation to each equation. The Taylor-series coeffi cients are func-

tions of the ergodic-mean approximation points p̃n, w̃, η̃, b̃n, and δ̃. The conjectured

forms for the solution (B.1) through (B.3) are iterated ahead one period. From these,

we eliminate bn,t+1 and δt+1 using the log-linearized versions of (A.5) and (A.6) and

then eliminate ut+1, vt+1, xt+1, and τ t+1 using the AR(1) laws of motion (3), (12),

(6), and (8), respectively. After collecting terms, we analytically compute the condi-

tional rational forecasts Et pn,t+1, Etwt+1, Et ηt+1, and Et exp (τ t+1) . In each case,

the forecast computation introduces a new constant term that depends on the inno-

vation variances σ2u, σ
2
v, σ

2
x, or σ

2
τ . We substitute the conditional rational forecasts

into the log-linearized versions of (A.1) through (A.3). After collecting terms, these

equations are now in the form of the conjectured solution (B.1) through (B.3). The

mapping from the actual solution to the conjectured solution yields a system of 18

equations in the 18 unknown solution coeffi cients si, hi, and fi for i = 1 through 6.

Finally, we evaluate the original nonlinear equilibrium conditions (A.1), (A.2),

(A.3), (A.5) and (A.6) at the ergodic-mean approximation points to obtain expres-

sions for the constant terms in the corresponding Taylor-series approximations of the

same equations. These relationships are substituted into the mapping from the actual

solution to the conjectured solution. This mapping (which includes the new constant

terms from computation of the rational forecasts) yields 5 equations that pin down

the 5 approximation points p̃n, w̃, η̃, b̃n, and δ̃.
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C Appendix: Solution with Moving Average Forecast
Rules

We first use (A.4) through (A.6) to eliminate cn,t, bn,t+1 and δt+1 from (A.1) through

(A.3). The moving average forecast rules take the form Êt qt+1 = λqt+(1− λ) Êt−1 qt,

where qt+1 ∈
{
pn,t+1, wt+1, ηt+1, Rt+1

}
are the four variables to be forecasted.

Substituting the forecast rules into (A.1) through (A.3) and then solving for pn,t, wt,

and ηt yields a set of nonlinear laws of motion for the three decision variables. The

lagged forecasts now appear in these laws of motion as state variables. For example,

the law of motion for pn,t is given by

pn,t =
θt exp (xt)

{
1−

[
1−δt
1+mt

−Rt
]

exp (−xt) bn,t
}

1− λ
[
mtwt + θtmt

1+mt
+ β

]
exp (xt)

+
(1− λ)

[
mtwt + θtmt

1+mt
+ β

]
exp (xt)

1− λ
[
mtwt + θtmt

1+mt
+ β

]
exp (xt)

Êt−1 pn,t (C.1)

which depends in a nonlinear way on wt. Straightforward but tedious algebra yields

explicit (albeit complicated) expressions for pn,t, wt, and ηt in terms of the following

ten state variables: bn,t, δt, ut, vt, xt, τ t, Êt−1 pn,t, Êt−1wt, Êt−1 ηt, and Êt−1Rt.

For use in the reverse-engineering exercise, we also compute log-linear approxi-

mations of the decision rules and laws of motion in the moving average model. For

example, the log-linear decision rule for pn,t takes the form

pn,t
pn

'
[
bn,t

bn

]a1 [δt
δ

]a2
exp [a3ut + a4vt + a5 (xt − x) + a6τ t]

+

[
Êt−1 pn,t

pn

]a7 [
Êt−1wt
w

]a8 [
Êt−1 ηt
η

]a9 [
Êt−1Rt
R

]a10
,

where ai for i = 1 through 10 are Taylor series coeffi cients. The approximation points

are the deterministic steady-state values bn, δ, pn, w, η, and R. Unlike the rational

expectations solution, computation of the conditional forecasts in the moving average

model does not introduce any new constant terms involving σ2u, σ
2
v, σ

2
x, or σ

2
τ . Hence,

is not necessary to shift the approximation points away from the deterministic steady-

state values in the moving average model.
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Figure 1: Starting in the mid-1990s, the U.S. economy experienced correlated booms and busts in
household real estate value, mortgage debt, and personal consumption expenditures, all measured

relative to personal disposable income. In contrast, the housing rent-income ratio declined steadily

over the same period. The housing value-income ratio peaked in 2005.Q4. The mortgage debt-income

ratio peaked 8 quarters later in 2007.Q4– coinciding with the start of the Great Recession.
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Figure 2: The figure plots the root mean squared percentage forecast error (RMSPFE) for one-
quarter ahead forecasts of each variable using a moving average forecast rule of the form (25). For

the simulations, we employ λ = 0.9 which yields stable dynamics and does not sacrifice much in
forecast performance relative to higher values of λ.
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Figure 3: Model simulations with rational expectations. A volatile housing preference shock is

needed to match the standard deviation of the housing value-income ratio in the data, This results

in a highly volatile time series for the housing rent-income ratio, which is counterfactual. Movements

in debt and consumption are much smoother with long-term mortgage debt.
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Figure 4: Model simulations with moving average forecast rules. Only a small housing preference
shock is needed to match the standard deviation of the housing value-income ratio in the data.

The rent-income ratio exhibits low volatility, consistent with the data. Movements in debt and

consumption are much smoother with long-term mortgage debt.
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Figure 5: When all models are subjected to the same housing preference shock, the moving average
model exhibits substantially more volatility in housing value. All else equal, the models with long-

term mortgage debt exhibit more persistent debt dynamics than the models with one-period debt.

With long-term mortgage debt, housing value peaks before debt, as in the data.
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Figure 6: When all models are subjected to the same lending standard shock, the moving average
model exhibits substantially more volatility in housing value. All else equal, the models with long-

term mortgage debt exhibit more persistent debt dynamics than the models with one-period debt.

With long-term mortgage debt, housing value peaks before debt, as in the data.
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Figure 7: Inputs to the reverse-engineering exercise. Smoothed versions of the U.S. quarterly

growth rate of per capita real disposable income and the U.S. quarterly real mortgage interest rate

are used to identify the sequences for xt − x and τ t that appear in the household decision rules as
state variables.
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Figure 8: The left panels show the reverse-engineered shocks in the RE model. The right panels
show the reverse-engineered shocks in the MA model. The MA model with long-term mortgage debt

can match the boom-bust patterns in the data with smaller housing preference shocks and plausible

lending standard shocks.
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Figure 9: Two indicators of lending standard tightness from the Federal Reserve’s Senior Loan

Offi cer Opinion Survey (SLOOS). Both series show that banks started to tighten lending standards

before the onset of the Great Recession in 2007.Q4. Moreover, a substantial percentage of banks

continued to tighten standards even after the recession ended in 2009.Q2.
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Figure 10: The large reverse-engineered housing preference shocks in the RE models generate

a counterfactural boom-bust cycle in the rent-income ratio. The much smaller reverse-engineered

housing preference shocks in the MA models generate less movement in the rent-income ratio, which

is closer to the pattern observed in the data.

42



Figure 11: By construction of the reverse-engineered shocks, all models imply identical hump-
shaped paths for the consumption-income ratio. A smoothed version of the model-implied path

roughly resembles the hump-shaped pattern observed in the data.
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Figure 12: Counterfactual scenario 1: No housing preference shock. The RE models now exhibit
no significant run-up in housing value. The MA models still exhibits a sizeable run-up in housing

value, particularly in the version with long-term mortgage debt which continues to be hit by positive

income growth shocks and loosening lending standards during the run-up. This result illustrates the

ability of our preferred model to generate an income- and credit-fueled boom in housing value.
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Figure 13: Counterfactual scenario 2: No lending standard shock. Models with one-period mort-
gage debt now imply a rapid deleveraging that coincides with the rapid decline in housing value.

Models with long-term mortgage debt now exhibit much smaller run-ups in debt, suggesting that

shifting lending standards were an important driver of the episode. The MA model with long-term

mortgage debt is the only one to show smaller boom-bust cycles in both housing value and debt

when the lending standard shock is turned off.
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Figure 14: Counterfactual scenario 3: No income growth shock. There is little noticable effect in
the RE models. In contrast, turning off the positive income growth shocks of the late 1990s causes

the MA models to exhibit a somewhat delayed boom-bust cycle in housing value relative to the data.

This result implies that movements in income growth did contribute to the magnitude and timing of

episode. The MA model with one-period mortgage debt exhibits a larger boom-bust cycle in debt in

response to the implausible post-2007 lending standard shocks implied by this version of the model.

46



Figure 15: Counterfactual scenario 4: No mortgage interest rate shock. All models continue to
exhibit significant boom-bust cycles in both housing value and debt, suggesting that the decline in

the U.S. mortgage interest rate was not a major driver of the episode.
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