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Abstract

We introduce a Combined Density Nowcasting (CDN) approach to Dynamic Factor Models

(DFM) that in a coherent way accounts for time-varying uncertainty of several model and

data features in order to provide more accurate and complete density nowcasts. The combi-

nation weights are latent random variables that depend on past nowcasting performance and

other learning mechanisms. The combined density scheme is incorporated in a Bayesian Se-

quential Monte Carlo method which re-balances the set of nowcasted densities in each period

using updated information on the time-varying weights. Experiments with simulated data

show that CDN works particularly well in a situation of early data releases with relatively

large data uncertainty and model incompleteness. Empirical results, based on US real-time

data of 120 leading indicators, indicate that CDN gives more accurate density nowcasts of

US GDP growth than a model selection strategy and other combination strategies through-

out the quarter with relatively large gains for the two first months of the quarter. CDN also

provides informative signals on model incompleteness during recent recessions. Focusing on

the tails, CDN delivers probabilities of negative growth, that provide good signals for calling

recessions and ending economic slumps in real time.
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1 Introduction

Economic forecast and decision making in real time have, in recent years, been made under a

high degree of uncertainty. One prominent feature of this uncertainty is that many key statistics

are released with a long delay, are subsequently revised and are available at different frequencies.

Therefore, professional economists in business and government, whose job is to track swings in

the economy and to make forecasts that inform decision-makers in real time, prefer to examine

a large number of potential relevant time series.

In this context, factor models provide a convenient and efficient tool to exploit information

in a large panel of time series in a systematic way by allowing for information reduction in a

parsimonious manner while retaining forecasting power, see e.g., Stock and Watson (2002a,b,

2006), Forni et al. (2005) and Boivin and Ng (2005). A recent study by Giannone et al.

(2008) shows that these models are particularly suitable for nowcasting. The basic principle

of nowcasting is the exploitation of information that is published early and possibly at higher

frequencies than the target variable of interest in order to obtain an “early estimate” before the

official number becomes available, see Evans (2005) and Banbura et al. (2011). A key challenge

is dealing with the differences in data release dates that cause the available information set to

differ over points in time within the quarter. This is what Wallis (1986) coined the “ragged

edge” of data. Giannone et al. (2008) evaluate point nowcasts from a dynamic factor model and

highlight the importance of using non-synchronous data release, showing that the root mean

square forecasting error decreases monotonically with each release.

Recent academic literature on factor models and nowcasting focused on developing single

models that increase forecast accuracy in terms of point nowcasts, see, among others, Banbura

and Modugno (2014) and Banbura and Rünstler (2011). As there is considerable uncertainty

regarding several features of the model specification, for example, choice of variables to include

in the large data set, choice of number of factors, choice of lag length, etc., Clark and McCracken

(2009, 2010) suggest to follow the idea of Bates and Granger (1969) and combining forecasts from

a wide range of models with different features in order to reduce these problems.1 Surprisingly

however, few studies in the nowcasting literature focus on combining nowcasts from different

models, Kuzin et al. (2013) and Aastveit et al. (2014) being notable exceptions. Furthermore,

1The idea of combining forecasts from different models has been widely used for economic forecasting. Tim-
mermann (2006) provides an extensive survey of different combination methods.
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research interest in forecast combination has more recently focused on the construction of com-

binations of predictive densities, see e.g. Hall and Mitchell (2007) and Jore et al. (2010). An

extension to density forecasting is to allow for time-varying model weights with learning and

model set incompleteness, see Billio et al. (2013). Using a combination scheme that allows for

model set incompleteness seems particularly suitable for nowcasting, as economic decision mak-

ers produce their nowcasts based on both incomplete data information (ragged edge problem)

and uncertainty about the true data generating process.

In this paper, we introduce a Combined Density Nowcasting (CDN) approach to Dynamic

Factor Models (DFM) that accounts for time-varying uncertainty of several model and data

features in order to provide more accurate and complete density nowcasts. The latent weights

of the combination scheme depend on past nowcasting performance and other learning mech-

anisms. The combined density scheme is incorporated in a Bayesian Sequential Monte Carlo

method, which re-balances the set of nowcasted densities in each period using updated infor-

mation on the time-varying weights.2 In this way, we are able to weight data uncertainty,

parameter uncertainty, model uncertainty, including model incompleteness, and uncertainty in

the combination of weights in a coherent way. We address the aforementioned sources of un-

certainty using a large unbalanced real-time macroeconomic data set for the United States that

consists of 120 monthly leading indicators and combines predictive density nowcasts from four

different DFMs that vary in terms of the number of factors included.

In statistical terms, CDN results in a convolution of several probability density functions

consisting of the density of the nowcasts of individual models, the density of the latent weights

of the combination scheme, and the density of the combination scheme. The integral of this

product of densities with respect to the nowcasts of the individual models and the latent weights

is what we are interested in. It does not have a closed form solution and, therefore, has to be

evaluated numerically. The algorithm that we use is an extension of the nonlinear filtering

methods of Billio et al. (2013) for the case of dynamic factor models with model incompleteness

and data uncertainty. The application of the proposed Sequential Monte Carlo filtering method

leads to a good approximation, but the procedure is computationally intensive when the number

of models to combine increases substantially. By making use of recent advances in computing

2Note the analogy with dynamic portfolio management of a set of assets where a periodic rebalancing of the
assets occurs depending on the dynamic pattern of the weights that incorporate past performance of the assets.
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power and parallel programming technique, it is feasible to apply non-linear time-varying weights

to four factor models at different points in time during the quarter. In doing so, we apply the

MATLAB package DeCo (Density Combination), developed by Casarin et al. (2014), which

provides an efficient implementation of the algorithm in Billio et al. (2013) based on CPU and

GPU parallel computing.

We first implement simulation experiments in order to understand the role of incompleteness

for nowcasting . We distinguish between data incompleteness (ragged edge problem) and model

set incompleteness (the true model is not a part of the forecasters’ model space) and compare

point and density nowcasting performance from CDN with the performance of a Bayesian Model

Averaging (BMA) approach and the ex post best individual model. The results illustrate that all

three approaches provide accurate point and density nowcasts when there is no incompleteness.

However, when data incompleteness and/or model set incompleteness is present, the point and

density nowcasting performance from CDN is superior to both BMA and the ex post best

individual model, providing considerably more accurate nowcasts, in particular at early data

releases with relatively large data uncertainty and model incompleteness.

Next, we show the usefulness of CDN when it is applied to four different DFMs for nowcasting

GDP growth using U.S. real-time data that consist of 120 monthly leading indicators. We divide

data into different blocks, according to their release date within the quarter, and update the

density nowcasts at three different points in time during each month of the quarter for the

evaluation period 1990Q2-2010Q3. Our experiment refers to a professional economist who is

interested in dealing with both data and model uncertainty. We find that CDN outperforms

BMA, a selection strategy and even the ex-post best individual model in terms of density

nowcasting performance for all blocks. Also empirically, we find relatively large gains in terms

of improved density nowcasts for the first blocks of the quarter compared to the final blocks of

the quarter.

By studying the standard deviation of the combination residuals, we show that this is

higher for the earlier blocks in the quarter than for the later blocks in the quarter, indicating

that incompleteness plays a larger role in the early part of the quarter. Thus, there are clear

gains in terms of improved nowcasting performance from using CDN when incompleteness is

present. We emphasize that the standard deviations of the combination residuals fluctuate over
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time and seem to increase during economic downturns, providing informative signals on model

incompleteness.

Finally, we document that CDN also performs well with respect to focusing on the tails

and delivers probabilities of negative growth that provide timely warning signals for calling a

recession and ending economic slumps. These are in line with forecasts from the Survey of

Professional Forecasters.

The structure of the paper is as follows. Section 2 introduces CDN. Section 3 describes

the data. Section 4 contains results using simulated data and Section 5 provides results of the

application of the proposed method to nowcasting US growth. Section 6 concludes.

2 Combined Density Nowcasting to Dynamic Factor Models

There is considerable empirical evidence that Dynamic Factor Models (DFMs) provide accurate

short-term forecasts, see e.g., Giannone et al. (2008) and Banbura and Modugno (2014). These

models are particularly useful in a data rich environment, where common latent factors and

shocks are assumed to drive the co-movements between aggregate and disaggregate variables and

the real-time data flow is inherently high dimensional with data released at different frequencies.

We build on this literature and propose a general model structure which can deal with both

uncertainty related to data due to different sample frequencies and data releases, and uncertainty

regarding model specification, such as selecting the number of factors and the information set.

We start by describing how individual factor models cope with data uncertainty. Next, we

specify the convolution of the three probability density functions that involve a novel combi-

nation scheme that deals with model uncertainty including model incompleteness and we end

with a brief description of the algorithms used to evaluate the convolution of densities.

2.1 Individual Factor Model

Assume we have a monthly (m) unbalanced dataset Xtm , where the unbalancedness is due to

data being released at different points in time (ragged edge). Let Xtm = (x1,tm , . . . , xN,tm)′ be

a vector of observable and stationary monthly variables which have been standardized to have

a mean equal to zero and variance equal to one. A dynamic factor model is then given by the
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following observation equation:

Xtm = χtm + εtm = ΛFtm + εtm (1)

where Λ is a (n× r) matrix of factor loadings, Fm =

(
f1tm , . . . , frtm

)′
is the static

common factors and εtm =

(
ε1tm , . . . , εntm

)′
is an idiosyncratic component with zero

expectation and Ψtm = E
[
εtmε

′
tm

]
as covariance matrix.

The dynamics of the common factors follows a VAR process:

Ftm = AFtm−1 +Butm (2)

where um ∼ WN (0, Is), B is a (r × s) matrix of full rank s, A is a (r × r) matrix where

all roots of det(Ir − Az) lie outside the unit circle. The idiosyncratic and VAR residuals are

assumed to be independent:

εtm
utm

 ∼ i.i.d.N(
0

0

 ,
R 0

0 Q

) (3)

with R set to be diagonal.3

Lastly, predictions of quarterly GDP growth, ytq , are obtained by using a bridge equation

where nowcasts of quarterly GDP growth (ytq) are expressed as a linear function of the expected

common factors:

ytq = α+ β′Ftq + ςtq (4)

The monthly factors Ftm given k = 1, ...,K initial conditions, are first forecasted over the re-

mainder of the quarter using equation (2) to produce the quarterly aggregate density p(Ftq+h|k)

for h periods ahead, where in our case h = 1, 2. Following standard practice in factor model

analysis, see e.g. Marcellino et al. (2006) or Giannone et al. (2008), we apply an iterative ap-

proach to produce h−step ahead nowcasts. That is, the nowcast at h−step ahead is an iterated

multi-period ahead time series nowcast made using a one-period ahead model. To obtain quar-

3The estimates are robust to violations of this assumption, see e.g. Banbura et al. (2012)
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terly aggregates of the monthly factors, (Ftq = F
(3)
tm ), we use the same approach as Giannone

et al. (2008) and Aastveit et al. (2014). Prior to estimating equation (1) and (2), we transform

each monthly variable to correspond to a quarterly quantity when observed at the end of the

quarter. Quarterly differences are therefore calculated as xtq = x
(3)
tm = (1−L3

m)(1+Lm+L2
m)Ztm ,

where Lm is the monthly lag operator and Ztm is the raw data. Likewise quarterly growth rates

are calculated as xtq = x
(3)
tm = (1− L3

m)(1 + Lm + L2
m)logZtm .

In order to estimate equations (1), (2) and (4) one can make use of Bayesian approaches

based on Monte Carlo or frequentist estimation principles. In our case we take a pragmatic

approach and make use of standard frequentist approaches based on bootstrapping in order

to estimate equations (1), (2) and (4), and then compute p(F̃tq+h|k) and p(ỹtq+h|F̃tq+h, k) and

generate predicted values ỹtq+h, conditional upon generated predicted values F̃tq+h. Here we

apply the bootstrapping approach developed in Aastveit et al. (2014) and refer to that paper

and to Subsection 2.3 for more details. Thus, motivated by Fernandez et al. (2001) and Sala-

I-Martin et al. (2004), our approach is one of Bayesian averaging of frequentist estimates,

extending their Bayesian averaging approach to account for time-varying weights and model set

incompleteness.4

For notational convenience, we shall henceforth use the brief symbol t instead of the longer

tq. We also use the notation terms nowcasting and short-term forecasting interchangeably.

2.2 A convolution of combination, weights and individual model predictive

densities for multi-period ahead nowcasting

While the dynamic factor model can cope with unbalanced data and provide nowcasts of quar-

terly GDP growth using monthly information, there is considerable uncertainty regarding model

specification, such as selecting the number of factors k with k = 1, . . . ,K and other components

of the information set Ik. We note that this information set refers to the model specification

features and past data history. In this paper we end up with K = 4 different DFM specifica-

tions. Selection criteria and various testing procedure have been proposed in order to address

such problems, see e.g. Bai and Ng (2006).

Instead, we propose to follow the approach by Strachan and Dijk (2013) to rely on Bayesian

4We leave the development of an efficient Bayesian estimation procedure for the DFM that we use to further
research.
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combination of several model features. We extend their approach of using fixed model weights

to the situation where we combine a set of predictive densities of model and data features using

time-varying latent weights while allowing for model incompleteness, meaning that the true

model is not necessarily included in the model set. Given that we obtain a combined predictive

density of quarterly growth, we can report tail probabilities of such features as high, low and

even negative growth.

The combined density is a convolution of the density of the combination scheme, the density

of the latent weights and the predictive densities of the the different models. Since there are

K specifications of different models, we propose to compute the combined nowcast density of

GDP growth p(yt+h|IK) as:

p(yt+h|IK) =
∫
Ỹt+h

∫
Wt+h

p(yt+h|ỹt+h, wt+h, IK)p(wt+h|wt)p(ỹt+h|IK)dwt+hdỹt+h (5)

where ỹt+h is an element of Ỹt+h ∈ Y ⊂ RK , wt+h is an element of Wt+h, the K−dimensional

simplex. The density p(yt+h|ỹt+h, wt+h, IK) specifies the combination scheme and p(wt+h|wt) is

the density of the (K × 1) latent weights wt+h. The density p(ỹt+h|IK) is the joint predictive

density for the variable ỹt+h following equation (4) with K different initial conditions. In the

previous section, we described how to estimate the set of predictive densities p(ỹt+h|F̃t+h, k)

and p(F̃t+h|k) with k = 1, ...K that lead to p(ỹt+h|IK). We note that the combined density

p(yt+h|IK) is computed in a recursive way depending on past data. The combination weights

wt+h and the combination scheme are computed using a direct approach, see Marcellino et al.

(2006). Most combination methods rely on the direct approach, see e.g. BMA, and although an

iterated updating approach to evaluate the weights is computationally feasible and theoretically

attractive under correct model specification, we aim to compare our strategy to standard com-

bination schemes. Thus, the predictive density p(yt+h|IK) in (5) combines iterative forecasting

for individual densities that together form p(ỹt+h|IK) and direct forecasting for the combination

weights with process p(wt+h|wt) and the combination scheme p(yt+h|ỹt+h, wt+h, IK).

Given that we make use of a direct approach to nowcasting the weights, p(wt+h|wt) is not

h-order Markovian but it can be interpreted as a degenerate h-order Markov process. Take

the case of two periods nowcasting, that we use in practice, and define the transition function

p(wt+2, wt+1|wt+1, wt) as equal to p(wt+2|wt)δwt+1(wt+1). That is, we have a “partially degen-
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erate” random variable, and the Dirac delta, δwt+1(wt+1), takes account of the fact that wt+1

is given in this step. For convenience, we write explicitly the joint h = 1, 2-step ahead nowcast

density:

p(yt+2, yt+1|IK) =
∫
(Ỹt+2,Ỹt+1)

∫
(Wt+2,Wt+1)

p(yt+2|ỹt+2, wt+2, IK)p(wt+2|wt)p(ỹt+2|IK)

p(yt+1|ỹt+1, wt+1, IK)p(wt+1|wt)p(ỹt+1|IK)dwt+2dỹt+2dwt+1dỹt+1

(6)

where p(yt+2|ỹt+2, wt+2, IK) and p(wt+2|wt) are computed using direct forecasting and p(ỹt+2|IK)

is computed using iterative forecasting.

We make use of a Gaussian density for the combination scheme, which allows for model

incompleteness via the following specification:

p(yt+h|ỹt+h, wt+h, IK) ∝ exp{− 1

2σ2

(
yt+h − ỹ

′
t+hwt+h

)2
} (7)

where we repeat that wt+h is a vector containing the K values for the combination weights and

ỹt+h contains the K predicted values from a distribution with density p(ỹt+h|IK).

In our modeling strategy, combination disturbances are estimated and their distribution

follows a Gaussian process with mean zero and standard deviation σ, providing a probabilistic

measure of the incompleteness of the model set. In other words, the model that is specified in

equation (7) can be written as:

yt+h = ỹ
′
t+hwt+h + ζt+h (8)

with ζt+h ∼ N (0, σ2).

Secondly, the combination weights wt+h have a probabilistic distribution in the standard

simplex. We model them as logistic transforms, given as

wk,t+h =
exp{zk,t+h}∑K
k=1 exp{zk,t+h}

, k = 1, ...,K (9)

where the (K × 1) vector of latent weights zt+h = (z1,t+h, ..., zK,t+h)′ has a distribution with

density given as

p(zt+h|zt, ỹt−τ :t) ∝ exp{−1

2
(∆zt+h −∆et+h)′ Λ−1 (∆zt+h −∆et+h)} (10)
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with ∆zt+h = zt+h − zt+h−1 and ∆et+h = et+h − et+h−1. The vector et+h = (e1,t+h, ..., eK,t+h)′

is specified as a learning function based on past predictive performance given as

ek,t+h = (1− λ)

t∑
i=τ

λi−1ek,i, k = 1, ..,K

with λ as discount factor and (t−τ +1) as the length of the interval for the learning parameter.

In the empirical application, we set λ = 0.95 and τ = 1. Thus, zt+h is a latent process

evolving over time with dynamics following an h-order Markov specification depending on past

performances which describes the contribution of each model in the combination. The logistic

transformation restricts weights to be in the unit interval.

Following the discussion in Gneiting (2011), we note that different scoring rules may be

applied depending on the user preference. That is, a user interested in point forecasting may

focus on mean square prediction errors; a user with a more general loss function may focus on

scores that are based on density forecasting, such as the log score, see Section 2.4. A user just

interested to standard Bayesian updating and no learning based on past performance scores can

set ∆et+h = 0 and weights will be driven by a process equal to the previous values plus a news

component normally distributed with zero mean and Λ covariance matrix.

If the three densities in equation (5) all belonged to the normal family with no dynamics, the

integral in (5) could be solved analytically or by simple numerical methods like direct Monte

Carlo simulation. In the case of a dynamic model structure with a normal distribution and

also normal dynamics for the weights, one can make use of standard normal filtering methods.

In our case, however, there exists a perfect analogy between the set up of the equations in

our CDN approach and the model specification in the nonlinear State Space literature. We

interpret CDN in terms of a nonlinear state space formulation and apply a Sequential Monte

Carlo filtering method. That is, equation (7) is analogous to the measurement or observable

equation; equations (9) and (10) are nonlinear transition equations and equations (1), (2) and

(4) can be interpreted as being equivalent to the parameter equations in the nonlinear State

Space. These latter equations can, alternatively, be specified as being part of a more general

State Space model where the nonlinear filtering methods are also used to approximate the

densities. Thus, equation (5) accounts for several sources of uncertainty, including different

sample frequencies, different data releases, different information sets and model specifications.
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The convolution has such useful properties like commutative, associative and distributive

laws that enable us to be flexible in the order of integration and other properties under usual

regularity conditions. As mentioned, we use sequential Monte Carlo integration to solve part

of the integral in (5) by using the regularized version of the Liu and West (2001) filtering

procedure for the weights and combination scheme and we make, further, use of draws from the

K individual predictive densities.

Our methodology is very general and allows the evaluation of predictive densities provided

by various methods (parametric Bayesian and Frequentist models as well as nonparametric

methods), given the condition that all three densities are proper. We repeat that in the empir-

ical applications in Section 5, we construct predictive densities using frequentist bootstrapping

methods and combine these predictive densities using Bayesian inference. The algorithm is

explained in detail in the next section.

We summarize our approach as follows. We account for various sources of uncertainty,

such as data uncertainty, parameter uncertainty, and model uncertainty. Using a nonlinear

filtering method, our approach estimates latent time-varying weights based on past predictive

density performance for each of these components. In the resulting predictive density, the

aforementioned sources of uncertainty are integrated out (or averaged over) while allowing for

model incompleteness. We label this a Combined Density Nowcasting (CDN) approach applied

to Dynamic Factor Models.

2.3 Algorithm and parallelization

The two stage-method of our CDN approach is given as:

Stage 1: Estimate K DFM models, generate draws for F̃k,t+h, k = 1, ...,K and condi-

tional on F̃k,t+h generate the K vector of draws ỹt+h.

Stage 2: Combine the predictions from the K models, accounting for uncertainty on

the number of factors (K) and information set (IK), using the convolution mechanism.

We elaborate briefly on each stage.

On stage 1: The following bootstrap procedure is used to construct simulated nowcasts. Let

Â0 = [Â1, . . . , Âp], B̂0, û0,txm , ξ̂0,txm , Λ̂0, α̂0, β̂0, and ê0,tm+hm denote the initial point estimates.
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Then, for d = 1, ..., 2000:

1. Simulate monthly F̃txm =
∑p

i=1 ÂiF̃txm−i + B̂0u
∗
txm

, where u∗txm is re-sampled from û0,txm .

2. Simulate X̃txm = Λ̂0F̃txm + ξ∗txm , where ξ∗txm is re-sampled from ξ̂0,txm .

3. Based on X̃txm , re-estimate the model to get a new set of parameter and factor estimates.

Use these to generate factor nowcasts according to equation (2), where shock uncertainty

is included by re-sampling from û0,txm .

Next, estimate equation (4) based on the monthly factor estimated in the previous step and

converted to quarterly as described in the previous section, and construct nowcasts for ỹtq+h

where shock uncertainty is included by re-sampling from ê0,tm+hm .

On stage 2: Apply an extension of the parallelized version of the sequential Monte Carlo

algorithm of Billio et al. (2013) and Casarin et al. (2014) to the case of Dynamic Factor Models.

For a technical description of this algorithm, we refer the reader to Casarin et al. (2014).

Here, we provide some details on the prior. The combination weights are [0,1]-valued processes

and one can interpret them a sequence of prior probabilities over the set of models. In our

framework, the prior probability on the set of models is random, as opposite to the standard

model selection or BMA frameworks, where the model prior is fixed. The likelihood, given

by the combination scheme, allows us to compute the posterior distribution on the model set.

In this sense the proposed combination scheme shares some similarities with the dilution and

hierarchical model set prior distributions for BMA, proposed in George (2010) and Ley and

Steel (2009) respectively. The learning strategy also plays a crucial role and we propose to use

scores depending on the loss function of interest. In the next section we describe our scores

for nowcast evaluation and for each metric we apply the corresponding score in the learning

mechanism in (10). For all the cases, we also consider standard Bayesian updating.

We repeat steps 1-3 recursively for every block in each quarter vintage. The exercise is very

time consuming and requires parallelization to be implemented. We parallelize the code in two

directions. First, step 1 and step 2 are parallelized across models, vintages and blocks. Then,

step 3 is parallelized across draws using the MATLAB toolbox DeCo described in Casarin et al.

(2014).5

5If the user was in the last vintage and block, parallelization across models in steps 1 and 2 and parallelization
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2.4 Nowcast evaluation

The aim of this paper is to provide an efficient methodology which deals with various sources of

uncertainty in order to improve nowcast accuracy. As most other papers focusing on nowcasting

do, we first provide some results on point nowcasts. However, as these nowcasts are only optimal

for a small and restricted group of loss functions, our main focus is on density nowcasting. When

evaluating the predictive nowcasts, we evaluate both the full distribution as well as their tails.

To shed light on the predictive ability of our methodology, we consider several evaluation

statistics for point and density nowcasts previously proposed in the literature. Given the k =

1, ...,K different models to nowcast GDP. We compare point forecasts in terms of Root Mean

Square Prediction Errors (RMSPE)

RMSPEk =

√√√√ 1

t∗

t∑
t=t

e2k,t+h

where t∗ = t− t+ h, t and t denote the beginning and end of the evaluation period, and ek,t+h

is the h-step ahead square prediction error of model k.

The complete predictive densities are evaluated using the Kullback Leibler Information Cri-

terion (KLIC) based measure, utilizing the expected difference in the Logarithmic Scores of

the candidate nowcast densities; see, for example, Mitchell and Hall (2005), Hall and Mitchell

(2007), Amisano and Giacomini (2007) and Kascha and Ravazzolo (2010). The KLIC chooses

the model that on average gives the higher probability to events that actually occurred. Specif-

ically, the KLIC distance between the true density p(yt+h|Ik) of a random variable yt+h and

some candidate density p(ỹk,t+h|Ik) obtained from model k is defined as

KLICk,t+h =

∫
p(yt+h|Ik) ln

p(yt+h|Ik)
p(ỹk,t+h|Ik)

dyt+h,

= Et[ln p(yt+h|Ik)− ln p(ỹk,t+h|Ik))]. (11)

where Et(·) = E(·|Ik) is the conditional expectation given information set Ik at time t. An

estimate can be obtained from the average of the sample information, yt+1, . . . , yt+1, that is

across predictive draws in step 3 are required to derive predictive densities for future values.
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part of the information set Ik, on p(yt+h|Ik) and p(ỹk,t+h|Ik):

KLICk =
1

t∗

t∑
t=t

[ln p(yt+h|Ik)− ln p(ỹk,t+h|Ik)]. (12)

Although we do not pursue the approach of finding the true density, we can still rank the

different densities, p(ỹk,t+h|Ik), k = 1, . . . ,K by different criteria. For the comparison of two

competing models, it is sufficient to consider the Logarithmic Score (LS), which corresponds to

the latter term in the above sum,

LSk = − 1

t∗

t∑
t=t

ln p(ỹk,t+h|Ik), (13)

for all k and to choose the model for which it is minimal, or, as we report in our tables, its

opposite is maximal.

3 Data

We consider in total 120 monthly leading indicators to nowcast quarterly GDP growth in the

United States. Our real-time dataset is similar to the one used in Aastveit et al. (2014).6 As

in that paper, we use the last available data vintage as real-time observations for consumer

prices and survey data if the real-time data vintage is not available. For other series, such

as disaggregated measures of industrial production, real-time vintage data exist only for parts

of the evaluation period. For these variables, we use the first available real-time vintage and

truncate these series backwards recursively. Finally, for financial data, we construct monthly

averages of daily observations.

Following Banbura and Rünstler (2011) we divide the data into “soft data” and “hard data”.

The first set includes 38 surveys and financial indicators and reflects market expectations,

as opposed to the latter set that includes 82 measures of GDP components (e.g. industrial

production), the labor market and prices. Although soft data are often more timely (i.e. released

early in the quarter), while real activity data are published with a significant delay, the latter

category is considered to contain a more precise signal for GDP forecasting.

6The main source is the ALFRED (ArchivaL Federal Reserve Economic Data) database maintained by the
Federal Reserve Bank of St. Louis. In addition some series are also collected from the Federal Reserve Bank of
Philadelphia’s Real-Time Data Set for Macroeconomists, see Croushore and Stark (2001).
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The full nowcast evaluation period runs from 1990Q2 to 2010Q3. We use monthly real-time

data with quarterly vintages from 1990Q3 to 2010Q4, i.e., we do not take account of data

revisions in the monthly variables within a quarter. The quarterly vintages reflect information

available just before the first release of the GDP estimate. The starting point of the estimation

period is 1982M1. We study nowcasts at 9 different points in time during a quarter. They

correspond to the beginning, middle and end of each month in the quarter. Since GDP measures

are released approximately 20-25 days after the end of the quarter, our exercise also includes

2 backcasts, calculated at the beginning and the middle of the first month after the quarter of

interest. See Table 1 for information on the final 11 blocks. When nowcasting GDP growth, the

choice of a benchmark for the “actual” measure of GDP is not obvious (see Stark and Croushore

(2002) for a discussion of alternative benchmarks). We follow Romer and Romer (2000) in using

the second available estimate of GDP as the actual measure.

Table 1. Block information
Block Time Horizon

Nowcasting

1 Start of first month of quarter 2 steps ahead
2 10th of first month of quarter (after inflation release) 2 steps ahead
3 Around 20-25th of first month of quarter (after GDP release) 1 step ahead
4 Start of second month of quarter 1 step ahead
5 10th of second month of quarter (after inflation release) 1 step ahead
6 Around 20-25th of second month of quarter 1 step ahead
7 Start of third month of quarter 1 step ahead
8 10th of third month of quarter (after inflation release) 1 step ahead
9 Around 20-25th of third month of quarter 1 step ahead

Backcasting

10 Start of fourth month of quarter 1 step ahead
11 10th of fourth month of quarter (after inflation release) 1 step ahead

The table shows time in the quarter and nowcast horizon for the 11 blocks.

4 Simulation Experiments with Data and Model Incomplete-

ness

In this section we implement several simulation exercises to understand the roles of data in-

completeness and model incompleteness in nowcasting. In practice, economic decision makers

produce their nowcasts based on incomplete data information (ragged edge problem) and un-
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certainty about the true data generating process (DGP). In the simulation exercises below, we

therefore distinguish between different degrees of incompleteness. Weak incompleteness is the

case where the nowcaster produces nowcasts based on missing observations of data (i.e. the

ragged edge problem). The DGP is in this case assumed to be a part of the nowcasters’ model

space. Strong incompleteness refers to the case where the DGP is not a part of the nowcasters’

model space.

We run four simulation exercises, where in each exercise we produce recursive density now-

casts for 60 quarters. For the first three simulation exercises, we simulate nowcasted values

assuming that the DGP (DGP1) follows a dynamic factor model, described in Section 2.1, with

2 factors extracted at the end of the sample (corresponding to the information set at Block

11). In the final simulation exercise, we assume that the DGP (DGP2) follows a VAR(4) in

GDP growth, the unemployment rate, core PCE inflation, and the federal funds rate. Note that

DGP2 is estimated from a balanced panel at the end of the sample. In each simulation exercise,

we compare the performance of our CDN approach, both in terms of point nowcasts (MSPE)

and density nowcasts (LS), with a Bayesian Model Averaging (BMA) approach as well as the

best ex-post individual model.

In the first simulation exercise, (Sim1), we estimate (and combine) 4 individual DFMs

with 1-4 factors extracted from a panel corresponding to the information at Block 11. Thus,

in this exercise the DGP is a part of the model space and there is therefore no model set

incompleteness and no data incompleteness. We introduce weak incompleteness in the second

simulation exercise (Sim2). We estimate (and combine) the same individual DFMs with 1-4

factors. The only difference from Sim1 is that the models are now estimated with incomplete

data information. More precisely, the models are estimated using data that corresponds to

the information that is available when nowcasting at the middle of the quarter (i.e., Block 5).

Hence, there is data incompleteness, but no model incompleteness.

The last two simulation exercises focus on cases of strong incompleteness (cases where both

data incompleteness and model incompleteness is present). In the third simulation exercise,

(Sim3), we estimate (and combine) 4 individual DFMs. However, we assume that for some

reason, the factors are only estimated based on the “hard data” variables in our data set

(i.e. we assume that no survey data are available to the forecaster). Thus, there is model
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incompleteness, since the “true” model (which is a DFM with 2 factors extracted from the full

data set) is within the model space, but all the models are misspecified in terms of using the

wrong data set (i.e. using just a subset of all the “true” data series in order to extract the

factors). In addition, we also assume that there is data incompleteness as in Sim2. In the final

simulation exercise (Sim4), we also assume a different DGP. In this case, we assume that DGP

follows a VAR(4) (DGP2) in GDP growth, the unemployment rate, inflation and the interest

rate, while we again estimate and combine individual DFMs with 1-4 factors extracted from all

the available data series (i.e. our estimated models are similar to the ones in the Sim2 exercise).

Table 2. Simulation results

BMA Best model CDN

Sim1: No incompleteness
LS -0.251 0.224 0.074

MSPE 0.028 0.025 0.024
Sim2: Weak incompleteness

LS -3.882 -3.875 -0.459
MSPE 0.198 0.161 0.147

Sim3: Strong incompleteness
LS -4.359 -4.328 -0.457

MSPE 0.241 0.240 0.169
Sim4: Strong incompleteness

LS -0.567 -0.555 -0.325
MSPE 0.205 0.186 0.112

The table reports results from the 4 simulation exercises, showing the average log score (LS) and mean square

prediction error (MSPE) for three different prediction methods: standard Bayesian model averaging based on

predictive likelihood (BMA), the ex-post best performing model and CDN applied to dynamic factor models.

Bold numbers indicate the most accurate model for different statistics.

Table 2 reports results from the simulation exercises. When there is no model incomplete-

ness, the best individual model, CDN and BMA perform very similarly in terms of point now-

casts. There are some differences in terms of density nowcasting performance, where the CDN

approach clearly outperforms the BMA approach. As expected, the best individual model out-

performs both BMA and CDN in terms of density nowcasting. Still, the results indicate that the

CDN approach works well in the case where there is no data and model incompleteness. When

introducing data and model incompleteness, there are clear gains from using our CDN approach

relative to the other strategies. Starting with the case of weak incompleteness (i.e., Sim 2 where

only data incompleteness is present), our CDN approach substantially improves upon the BMA
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approach, both in terms of point and density nowcast performance. Interestingly, the CDN ap-

proach also outperforms the ex-post best individual model. This result is rather striking, as the

only source of incompleteness is missing data observations (ragged edge problem). Thus, this

indicates that using a combination scheme that allows for model incompleteness is important

in the case where data observations are missing. The relative improvements, compared to the

other strategies, are even more evident in the cases of strong incompleteness (Sim3 and Sim4).

Comparing the nowcasting performance from our CDN approach with the BMA approach and

ex-post best individual model, indicates that there is scope for substantial improvements in

performance by using a combination scheme that allows for model incompleteness when both

data and model set incompleteness are present.7

5 Empirical Application

In this section, we analyze the performance of our CDN approach for nowcasting US real GDP

growth. The main goal of the exercise is to examine the nowcasting performance of our CDN

approach and to study the role of model incompleteness for nowcasting.

5.1 Point and density nowcasts of GDP growth

We produce density nowcasts/backcasts for GDP growth at 11 different points in time, described

in Section 3, using four different DFMs. The models differ in terms of the numbers of factors

included.8 Our exercise refers to a researcher who constructs nowcasts in real time accounting for

various forms of uncertainty, including uncertainty related to model specification. We consider

three different model specification strategies:

1. SEL: A selection strategy where we recursively pick the model with the highest realized

cumulative log score at each point in time throughout the evaluation period.

2. BMA: Bayesian model averaging based on predictive likelihood.

7Note that since DGP1 and DGP2 are rather different, it may be misleading to compare the absolute perfor-
mance for each model from the two different simulation exercises (Sim3 and Sim4).

8We obtained very similar results when using 12 different DFMs: four models extracting factors from the hard
data; four models using the soft data; and four models using all the data. For each group, we then considered
one to four factors, resulting in four different DFM specifications for each data group. In general, the models
using factors extracted from all the data series were superior to the models extracting factors from either hard or
soft data. For brevity, and in order to save computational time, we therefore only report results when combining
four different DFMs.
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3. CDN: Combined Density Nowcasting, applied to the four DFMs

Table 3 reports results for the three different model specification strategies at the 11 different

points in time (blocks) during the quarter. In addition, we also report results for the best

performing ex-post individual model (labeled Ex-Post). The first column, shows the LS and

MSPE for BMA, while all other columns report measures relative to the BMA performance.

The table reveals three interesting results.

First, with the exception of the results for Block 1 and Block 2, the point nowcasting

accuracy from the different models is very similar.

Second, CDN provides more accurate density nowcasts than BMA and SEL for all of the

blocks. It also provides more accurate density nowcasts for all blocks than the ex-post best

individual model, with the only exceptions being the results for Block 8 and Block 10, where Ex

Post performs slightly better than the CDN. Overall, this indicates that there are clear gains

in terms of improved nowcastng performance from CDN when we take into account the whole

density shape of the nowcasts.

Third, the relative gains in terms of improved density nowcasts are larger for the first blocks

of the quarter than for the last blocks of the quarter. This supports the findings from the

simulation exercises in Section 4, which showed that the gains from CDN are larger when

uncertainty is high, and thus the incompleteness is strong. The data incompleteness (denoted

as weak incompleteness) is larger in the early part of the quarter than in the latter part of the

quarter. In addition, when data uncertainty is high, it is also more likely that it becomes harder

to detect the “true” DGP than when the data uncertainty is low. That is, it is also more likely

that model incompleteness is present when data uncertainty is high.

5.2 Signals of model incompleteness

To illustrate the role of more substantial incompleteness, Figure 1 shows the standard deviations

of the combination residuals for the incomplete model sets, see equation 8, over time for Block

1, Block 5 and Block 11. The figure reveals two interesting observations.

First, for most of the time observations, the standard deviation of the combination residuals

is higher for Block 1 than Block 5 and Block 11, and higher for Block 5 than Block 11. This

observation therefore confirms that incompleteness is higher in the early part of the quarter
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Table 3. Point and density nowcasting

BMA SEL Ex Post CDN
Block 1

LS -1.441 1.124 0.926 0.590
MSPE 0.583 0.988 0.524 0.542

Block 2
LS -1.101 1.117 0.954 0.715

MSPE 0.317 1.032 0.959 0.924
Block 3

LS -0.980 0.987 0.977 0.814
MSPE 0.289 0.989 0.983 1.025

Block 4
LS -0.892 0.997 0.978 0.862

MSPE 0.275 0.991 0.977 1.007
Block 5

LS -0.768 0.991 0.961 0.897
MSPE 0.241 0.990 0.969 1.002

Block 6
LS -0.788 0.993 0.964 0.882

MSPE 0.247 0.989 0.969 0.984
Block 7

LS -0.743 0.990 0.953 0.911
MSPE 0.242 0.991 0.958 0.969

Block 8
LS -0.619 1.000 0.968 0.995

MSPE 0.203 0.995 0.972 1.024
Block 9

LS -0.655 0.998 0.965 0.949
MSPE 0.218 1.002 0.979 0.973

Block 10
LS -0.594 1.023 0.951 0.998

MSPE 0.189 1.011 0.980 1.031
Block 11

LS -0.610 0.995 0.952 0.931
MSPE 0.187 0.991 0.974 0.989

The table shows average log score (LS) and mean square prediction error (MSPE) for four different prediction

methods: standard Bayesian model averaging based on predictive likelihood (BMA), selecting the model with

highest recursive score at each point in time (SEL), the ex-post best performing model and our combined density

nowcasting (CDN) approach applied to dynamic factor models for different blocks. The results in the second,

third and fourth columns show LS and MSPE relative to the BMA measure. Bold numbers indicate the most

accurate model for different statistics. See Table 1 for information on different blocks.
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Figure 1. Standard deviation of the combination residuals
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Standard deviation of the combination residuals for incomplete model sets from equation 8, for Block 1, Block 5

and Block 11.

than in the later part of the quarter.

Second, the standard deviations of the combination residuals fluctuate over time. Interest-

ingly, the standard deviation of the combination residual is high in 2001 and in the latter part

of 2008 and the early part of 2009. This coincides with the US economy being in a recession.

The high standard deviation is evident for Block 1 and Block 5 for the 2001 recession, and even

more pronounced for the Great Recession, increasing the standard deviation for the combination

residual for all blocks. In Section 5.3 we will study the performance of CDN during economic

downturns in more detail.

Figure 2 shows the weights associated with the four dynamic factor models for Block 1, Block

5 and Block 11. We notice the large uncertainty on the weights, with substantial variation over

time. There is a clear indication that DFMs with either one or two factors obtain higher weights

than DFMs with three and four factors. Moreover, the weights also change between the blocks.

Finally, the red dotted line in each subfigure shows the corresponding weights obtained by the

BMA approach. Comparing the CDN weights with the BMA weights, we see two interesting

differences. First, the medians of the CDN weights and BMA weights differ substantially, with
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much larger movements over time from the BMA weights. Second, BMA selects much more

extreme weights, attaching almost all the weights to one single model, consistent with findings in

Amisano and Geweke (2013). The main difference between CDN and BMA is that our weighting

scheme allows for model incompleteness (the BMA weights based on predictive likelihood will

also take into account past predictive performance scores).

Finally, Figure 3 shows a full set of recursive real-time out-of-sample density nowcasts for US

GDP growth for the period 1990Q2-2010Q3 at three different blocks (Block 1, 5 and 11). The

three panels illustrate how the precision of the predictive densities improves, i.e., being more

narrow and centered around the actual GDP values as more information becomes available.

5.3 CDN nowcasting of negative growth in the business cycle

In a previous subsection, we have shown that CDN provides accurate nowcasts when focusing

on the entire distribution of GDP growth. The distribution of CDN can also be used to com-

pute probabilities to be in specific phases of the business cycle. There is a large literature on

estimation and timely detection of turning points and economic downturns, see e.g., Harding

and Pagan (2002), Chauvet and Piger (2008), Hamilton (2011) and Stock and Watson (2014).

The individual economists in the Survey of Professional Forecasters (SPF) also report forecasts

of the probability of a decline in the level of real GDP in the current quarter and the following

four quarters. Motivated by this, we use CDN to study the probability of negative growth in

the current quarter (i.e., GDP growth nowcasts below 0).

Figure 4 compares the recursive probabilities of negative growth in the current quarter from

CDN with the mean responses for the probability of negative growth in the current quarter

provided by the SPF. To ensure that the information set used to construct the CDN nowcasts

are as similar as possible to the information available when the SPF forecasts where made,

we report CDN nowcasts for Block 5. Block 5 corresponds to the information set a few days

prior to the release of the SPF forecasts. By comparing CDN and SPF forecasts with actual

GDP growth (shown by the bars), we find that both CDN and SPF forecasts deliver timely and

accurate forecasts of negative growth.

To provide insights about which method is more accurate, we compute concordance statistics

(CS), which count the proportion of time during which the predicted and the actual GDP series
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Figure 2. Time-varying weights
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The figures plot the 90% credibility intervals of the model posterior weights and their medians (blue dotted lines)

for Block 1, 5, and 11. The first row of each sub-figure shows weights for DFM models with one and two factors.

The second row of each sub-figure shows weights for DFM models with three and four factors. The red dotted

line shows the weights attached to each model using BMA.
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Figure 3. Recursive Nowcasts
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The figures plot recursive nowcasts for Block 1, 5 and 11. The shaded areas show the 90% credibility intervals of

the predictive densities and their medians (blue dotted lines). The red dotted line shows actual GDP, measured

as the second release. 24



Figure 4. Probabilities of negative growth
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Probabilities over time of negative quarterly growth given by the CDN approach and SPF. The red and black

lines plot the probabilities scaled by two (therefore covering the interval [0,2]); the bars plot the realization.

are in the same state. For convenience, we assume here two states, a state of negative growth

and a state of positive growth. We say that a model predicts negative growth for the current

quarter if the probability of negative growth is 50% or larger. Comparing the CS for CDN with

SPF, we find that both perform equally well with CS = 0.963.

Finally, Figure 5 shows the recursive probabilities of negative growth in the current quarter

during the period 2007Q1-2009Q4 from the CDN approach for Block 1, Block 5 and Block 11.

The figure reveals three interesting observations.

First, the probability of obtaining negative growth in the current quarter is very low for

all of the blocks during the first quarters of 2007, but starts to increase from 2007Q4. The

probability of negative growth for the current quarter continues to increase for each of the

quarters throughout 2008. Interestingly, within each quarter the probability of negative growth

increases as more information becomes available (i.e. the probability of negative growth is

higher for Block 11 than Block 5 and Block 1, and higher for Block 5 than Block 1).
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Figure 5. Probabilities of negative growth during the Great Recession period
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Probabilities of negative quarterly growth during the Great Recession period provided by the CDN approach at

different blocks during the quarter. The black dotted line, and the red and black solid lines plot the probabilities

scaled by two (therefore covering the interval [0,2]) from the CDN approach at Block 1, Block 5 and Block 11,

respectively. The blue and red bars plot the realizations measured as the second available estimate of GDP and

the last available estimate of GDP (November 2014 vintage), respectively, as the actual measure.
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Second, the probability of negative growth in the current quarter starts to fall from May

2009 (Block 5 in 2009Q2). In mid-August 2009 (Block 5 in 2009Q3) the probability of negative

growth in the current quarter is for the first time below 0.5 and this probability continues to

fall when more information is available throughout the quarter (see Block 11 for 2009Q3). This

is consistent with 2009Q3 being the first quarter where the actual measure of GDP growth is

positive. This shows that the CDN not only delivers timely and accurate forecasts for economic

downturns, but also provides timely and accurate forecasts of when the economic slump ended.

Third, by comparing the blue and the red bars, which show the realizations of GDP growth

measured as the second available estimate of GDP and the last available estimate of GDP

(November 2014 vintage), respectively, the figure illustrates that the GDP growth numbers

have been revised downwards for all of the quarters in 2008 and 2009, with 2009Q2 as a notable

exception. For several of these quarters the downward revisions have been large, exceeding

changes of 0.5 percentage point in the quarterly growth rate. This reminds us of how difficult

it is to call recessions (or negative growth rates) in real time.

6 Conclusion

In this paper, we introduced a Combined Density Nowcasting (CDN) approach to Dynamic

Factor Models that accounts for the time-varying uncertainty of several model and data features

in order to provide more accurate and complete density nowcasts. The combination weights

depend on past nowcasting performance and other learning mechanisms that are incorporated

in a Bayesian Sequential Monte Carlo method which re-balances the set of nowcasted densities

in every period using the updated information on the time varying weights. In this way, we

are able to weight data uncertainty, parameter uncertainty, model uncertainty, including model

incompleteness, and uncertainty in the combination of weights in a coherent way.

We first implemented simulation experiments in order to understand the role of incomplete-

ness for nowcasting, distinguishing between data incompleteness (ragged edge problem) and

model set incompleteness (the true model is not a part of the forecasters’ model space). By

comparing point and density nowcasting performance from CDN with the performance of a

Bayesian Model Averaging (BMA) approach and the ex post best individual model, we find

that CDN provides superior nowcasts, particularly at early data releases with relatively large
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data uncertainty and model incompleteness.

We then show the usefulness of CDN when it is applied to four different DFMs for nowcasting

GDP growth using US real-time data. The experiment refers to a professional economist who

is interested in dealing with various forms of uncertainty in real time. We therefore divide data

into different blocks according to their release date within the quarter, and update the density

nowcasts at three different points in time during each month of the quarter for the evaluation

period 1990Q2-2010Q3.

We find that CDN outperforms BMA, a selection strategy and even the ex-post best indi-

vidual model in terms of density nowcasting performance for all blocks. The relative gains in

terms of improved density nowcasts are also in the empirical analysis larger for the first blocks

than for the last blocks of a quarter.

By studying the standard deviation of the combination residuals, we show that this is higher

for the earlier blocks in the quarter than for the later blocks in the quarter, confirming that

incompleteness plays a larger role in the early part of the quarter. Thus, there are clear gains

in terms of improved nowcasting performance from using CDN when incompleteness is present.

Finally, the standard deviations of the combination residuals fluctuate over time and increase

during economic downturns. We document that CDN also performs well with respect to focusing

on the tails and delivers probabilities of stagnation, measured as the probability of negative

growth, that are timely and in line with forecasts from the Survey of Professional Forecasters.
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