
Casarin, Roberto; Grassi, Stefano; Ravazzolo, Francesco; van Dijk, Herman K.

Working Paper

Parallel Sequential Monte Carlo for Efficient Density
Combination: The DeCo MATLAB Toolbox

Working Paper, No. 11/2014

Provided in Cooperation with:
Norges Bank, Oslo

Suggested Citation: Casarin, Roberto; Grassi, Stefano; Ravazzolo, Francesco; van Dijk, Herman K.
(2014) : Parallel Sequential Monte Carlo for Efficient Density Combination: The DeCo MATLAB
Toolbox, Working Paper, No. 11/2014, ISBN 978-82-7553-818-3, Norges Bank, Oslo,
https://hdl.handle.net/11250/2495973

This Version is available at:
https://hdl.handle.net/10419/210060

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

 https://creativecommons.org/licenses/by-nc-nd/4.0/deed.no

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/11250/2495973%0A
https://hdl.handle.net/10419/210060
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.no
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Parallel sequential Monte Carlo for
efficient density combination: The
DeCo MATLAB toolbox

Norges BaNk
research

11 | 2014

AuThors:
roBerTo CAsArin

sTefAno GrAssi

frAnCesCo
rAvAzzoLo

herMAn K. vAn DijK

WorkiNg PaPer

Norges BaNk

Working PaPer
xx | 2014

rapportNavN

2

Working papers fra Norges Bank, fra 1992/1 til 2009/2 kan bestilles over e-post:

servicesenter@norges-bank.no

fra 1999 og senere er publikasjonene tilgjengelige på www.norges-bank.no

Working papers inneholder forskningsarbeider og utredninger som vanligvis ikke har fått
sin endelige form. hensikten er blant annet at forfatteren kan motta kommentarer fra
kolleger og andre interesserte. synspunkter og konklusjoner i arbeidene står for
forfatternes regning.

Working papers from Norges Bank, from 1992/1 to 2009/2 can be ordered by e-mail:

servicesenter@norges-bank.no

Working papers from 1999 onwards are available on www.norges-bank.no

norges Bank’s working papers present research projects and reports (not usually in their
final form) and are intended inter alia to enable the author to benefit from the comments of
colleagues and other interested parties. views and conclusions expressed in working
papers are the responsibility of the authors alone.

ISSN 1502-8143 (online)
ISBN 978-82-7553-818-3 (online)

JSS
c Parallel Sequential Monte Carlo for Efficient Density

Combination: The DeCo MATLAB Toolbox∗

Roberto Casarin
University Ca’ Foscari of Venice

and GRETA

Stefano Grassi
School of Economics

University of Kent and CREATES

Francesco Ravazzolo
Norges Bank

and BI Norwegian Business School

Herman K. van Dijk
Erasmus University Rotterdam

VU University Amsterdam

and Tinbergen Institute

Abstract

This paper presents the MATLAB package DeCo (density combination) which is based on the

paper by Billio, Casarin, Ravazzolo, and van Dijk (2013) where a constructive Bayesian approach

is presented for combining predictive densities originating from different models or other sources

of information. The combination weights are time-varying and may depend on past predictive

forecasting performances and other learning mechanisms. The core algorithm is the function

DeCo which applies banks of parallel Sequential Monte Carlo algorithms to filter the time-varying

combination weights. The DeCo procedure has been implemented both for standard CPU com-

puting and for graphical process unit (GPU) parallel computing. For the GPU implementation we

use the MATLAB parallel computing toolbox and show how to use general purpose GPU comput-

ing almost effortlessly. This GPU implementation provides a speed up of the execution time of

up to seventy times on a standard CPU MATLAB implementation on a multicore CPU. We show

the use of the package and the computational gain of the GPU version through some simulation

experiments and empirical applications.

Keywords: Density forecast combination, sequential Monte Carlo, parallel computing, GPU, MAT-
LAB.

1. Introduction

Combining forecasts from different statistical models or other sources of information is a crucial

issue in many different fields of science. Several papers have been proposed to handle this issues with

Bates and Granger (1969) as one of the first attempts in this field. Initially the focus was on defining

∗This working paper should not be reported as representing the views of Norges Bank. The views expressed are those

of the authors and do not necessarily reflect those of Norges Bank. For their useful comments, we thank Daniel Armyr and

Sylvia Frühwirth-Schnatter and seminar and conference participants at the European Seminar on Bayesian Econometrics

2013, Norges Bank, the 7th Rimini Bayesian Econometrics Workshop and the 2013 Vienna IHS Time-Series Workshop.

Roberto Casarin’s research is supported by the Italian Ministry of Education, University and Research (MIUR) PRIN 2010-

11 grant, and by funding from the European Union, Seventh Framework Programme FP7/2007-2013 under grant agreement

SYRTO-SSH-2012-320270.

2 DeCo: A MATLAB Toolbox for Density Combination

and estimating combination weights for point forecasting. For instance, Granger and Ramanathan

(1984) propose to combine forecasts with unrestricted least squares regression coefficients as weights.

Terui and van Dijk (2002) generalize least squares weights by specifying the weights in the dynamic

forecast combination as a state space model with time-varying weights that are assumed to follow a

random walk process. Recently, research interest has shifted to the construction of combinations of

predictive densities (and not point forecasts) as well as allowing for model set incompleteness (the true

model may not be included in the set of models for prediction) and learning. Further, different model
evaluation criteria are used. Hall and Mitchell (2007) and Geweke and Amisano (2010) propose using

combination schemes based on the Kullback-Leibler score; Gneiting and Raftery (2007) recommend

strictly proper scoring rules, such as the Cumulative Rank Probability Score, in particular, if the focus

is on some particular area, such as extreme tails, of the distribution. Billio et al. (2013) (hereby

BCRVD (2013)) provide a general Bayesian distributional state space representation of predictive

densities and specify combination schemes that allow for an incomplete set of models and different

learning mechanisms and scoring rules.

The design of algorithms for a numerically efficient combination remains a challenging issue (e.g., see

Gneiting and Raftery 2007). BCRVD (2013) propose a combination algorithm based on Sequential

Monte Carlo filtering. The proposed algorithm makes use of a random grid from the set of predictive

densities and runs a particle filter at each point of the grid. The procedure is computationally intensive

when the number of models to combine increases. A contribution of this paper is to present a MAT-
LAB (see The MathWorks, Inc. (2011)) package DeCo (Density Combination) for the combination of

predictive densities and a simple Graphical User Interface (GUI) for the use of this package.

This paper provides, through the DeCo package, an efficient implementation of BCRVD (2013) al-

gorithm based on CPU and GPU parallel computing. We make use of recent increases in computing

power and recent advances in parallel programming techniques. The focus of the microprocessor in-

dustry, mainly driven by Intel and AMD, has shifted from maximizing the performance of a single core

to integrating multiple cores in one chip, see Sutter (2005) and Sutter (2011). Contemporaneously,

the needs of the video game industry, requiring increasing computational performance, boosted the

development of the Graphics Processing Unit (GPU), which enabled massively parallel computation.

In the present paper, we follow the recent trend of using GPUs for general, non-graphics, applications

(prominently featuring those in scientific computing), the so-called general-purpose computing on

graphics processing unit (GPGPU). The GPGPU has been applied successfully in different fields such

as astrophysics, biology, engineering, and finance, where quantitative analysts started using this tech-

nology well ahead of academic economists, see Morozov and Mathur (2011) for a literature review.

To date, the adoption of GPU computing technology in economics and econometrics has been rela-

tively slow compared with other fields. There are a few papers that deal with this interesting topic,

see Suchard, Holmes, and West (2010), Morozov and Mathur (2011), Aldrich, Fernández-Villaverde,

Gallant, and Rubio Ramırez (2011), Geweke and Durham (2012), Dziubinski and Grassi (2013) and

Creel, Mandal, and Zubair (2012). This is odd given the fact that parallel computing in economics

has a long history. An early attempt to use parallel computation for Monte Carlo simulation is Chong

and Hendry (1986), while Swann (2002) develops parallel implementation of maximum likelihood

estimation. Creel and Goffe (2008) discuss a number of economic and econometric problems where

parallel computing can be applied. The low diffusion of this technology in economics and economet-

rics, according to Creel (2005), is mainly due to two issues, which are the high cost of the hardware,

e.g. cluster, and the steep learning curve of dedicated programming languages as CUDA (Compute

Unified Device Architecture, see Nvidia Corporation (2010)), OpenCL (Khronos OpenCL Working

Group (2009)), Thrust (Hoberock and Bell (2011)) and C++ AMP (C++ Accelerated Massive Par-

3

Advantages Disadvantages

CUDA Free Vendor Lock-in

OpenCL Free Difficult to program

Heterogeneous

Thrust Free Vendor Lock-in

Easy to program

C++ AMP Open Standard Currently only Windows implementations exist

Heterogeneous

Free (Express Edition)

Easy to program

Table 1: Comparison of different currently available GPGPU approaches.

allelism, see Gregory and Miller (2012)). Table 1 compares different currently available GPGPU

approaches. The recent increase in attention to parallel computing is motivated by the fact that the

hardware costs issue has been solved by the introduction of modern GPUs with relatively low cost.

Nevertheless, the second issue remains open. For example, Lee, Christopher, Giles, Doucet, and

Holmes (2010) report that a programmer proficient in C (Press, Teukolsky, Vetterling, and Flannery

(1992)) or C++ (Stroustrup (2000)), a programming skill that can take some time to be acquired,

should be able to code effectively in CUDA within a few weeks.

We aim to contribute to this stream of literature by showing that GPU computing can be carried out

almost without any extra effort using the parallel toolbox of MATLAB (available in version 2012b and

following releases, see The MathWorks, Inc. (2011)) and a suitable approach to MATLAB coding of

the algorithms. The MATLAB environment allows easy use of GPU programming without learning

CUDA. We emphasize that this paper is not intended to compare CPU and GPU computing. In fact, we

propose the combination algorithm for both standard parallel CPU and for parallel GPU computation.

Our simulation and empirical experiments show that the DeCo GPU version is faster 3 to 10 times

than the parallel multi-core CPU version, similar to recommendations in Brodtkorb, Hagen, and Saetra

(2013), and up to 70 times faster than the standard sequential CPU version.

The structure of the paper is as follows. Section 2 introduces the principles of density forecast combi-

nations with time-varying weights and parallel sequential Monte Carlo algorithms. Section 3 presents

a parallel sequential Monte Carlo algorithm for density combinations. It also provides background

material on GPU computing in MATLAB. Section 4 carry out a comparison, using a Monte Carlo,

between CPU and GPU calculation. Section 5 reports the results for the macroeconomic empirical

application. Section 6 concludes. Appendix A describes the structure of the algorithm and Appendix

B shows the package GUI.

2. Time-varying combinations of predictive densities

2.1. A combination scheme

BCRVD (2013) introduces a general density combination scheme, which allows for time-varying

weights; model set incompleteness (meaning the true model might not be in the model set); combina-

tion weight uncertainty and learning. The authors give a general distributional representation of the

combination, provide an effective algorithm for the sequential estimation of the weights and discuss

some alternative specifications of the combination and of weight dynamics. In the package, and the

4 DeCo: A MATLAB Toolbox for Density Combination

paper, we apply for convenience the Gaussian combination scheme with logistic weights applied by

BCRVD (2013).

Let us denote with v1:t = (v1, . . . ,vt) a collection of vectors vs with s = 1, . . . , t. Let yt ∈ Y ⊂ R
L

be the L-vector of observable variables at time t and ỹt = (ỹ′
1,t, . . . , ỹ

′
K,t)

′ ∈ YK , with element

ỹk,t = (ỹ1k,t, . . . , ỹ
L
k,t)

′ ∈ Y ⊂ R
L the typical one-step-ahead predictor for yt for the k-th model, k =

1, . . . ,K, in the pool, with predictive density p(ỹk,t|y1:t−1). The combination scheme is specified as:

p(yt|Wt, ỹt) ∝ |Σ|− 1
2 exp

{
−1

2
(yt −Wtỹt)

′Σ−1 (yt −Wtỹt)

}
(1)

t = 1, . . . , T , where Wt = (w1
t , . . . ,w

L
t)

′ is a weight matrix, with wl
t = (wl

1,t, . . . , w
l
KL,t)

′ as the

l-th row vector containing the combination weights for the KL elements of ỹt and for the prediction

of yl,t. In this paper we assume diagonal covariance matrix, i.e. Σ = diag{σ2
1, . . . , σ

2
L}.

The dynamics of the combination weights wl
h,t is

wl
h,t =

exp{xlh,t}∑KL
j=1 exp{xlj,t}

, withh = 1, . . . ,KL (2)

where

p(xt|xt−1) ∝ |Λ|− 1
2 exp

{
−1

2
(xt − xt−1)

′ Λ−1 (xt − xt−1)

}
(3)

with xt = vec(Xt) ∈ X ⊂ R
KL2

where Xt = (x1
t , . . . ,x

L
t)

′. In this paper we assume the covariance

matrix of the state noise is diagonal, i.e. Λ = diag{λ1, . . . , λKL2}. A learning mechanism can also

be added to the weight dynamics, resulting in:

p(xt|xt−1,yt−τ :t−1, ỹt−τ :t−1) ∝ |Λ|− 1
2 exp

{
−1

2
(xt − μt)

′ Λ−1 (xt − μt)

}
(4)

where μt = xt−1 −Δet, Δet = (et − et−1) and elements of et

elK(l−1)+k,t = (1− λ)
τ∑

i=1

λi−1f
(
ylt−i, ỹ

l
k,t−i

)
,

k = 1, . . . ,K, l = 1, . . . , L, with λ ∈ [0, 1] a discount factor and τ the number of previous ob-

servations used in the learning. We assume the function f() defines a learning strategy. Note that

the DeCo package relies on a general algorithm which can account for different scoring rules, such

as the Kullback-Leibler score (Hall and Mitchell (2007) and Geweke and Amisano (2010)) and the

Cumulative Rank Probability Score (Gneiting and Raftery (2007)).1

The proposed state space representation of the combination scheme composed by the observation

equation in (1) and the latent equations (2), (3) or (4) provides a forecast density for the observable

variables, conditional on the predictors and on the combination weights. Moreover, the representation

is quite general, allowing for nonlinear and non-Gaussian combination models. We use sequential

Monte Carlo algorithms, also known as particle filters, to estimate sequentially over time the optimal

combination weights and the predictive density.

1The user interested in different scoring rules should change the command lines with the learning in the file PF-

CoreGPU.m for the GPU version and PFCore.m for the CPU version.

5

The steps of the density combination algorithm are sketched in the rest of this section. Let θ ∈ Θ ⊂
R
nθ be the parameter vector of the combination model, with θ = (log σ2

1, . . . , log σ
2
L, log λ1, . . . , log λKL2).

Define the augmented state vector zt = (xt,θt) ∈ Z and the augmented state space Z = X × Θ,

where θt = θ, ∀t. The distributional state space form of the forecast model is

yt ∼ p(yt|zt, ỹt) (measurement density) (5)

zt ∼ p(zt|zt−1,y1:t−1, ỹ1:t−1) (transition density) (6)

z0 ∼ p(z0) (initial density) (7)

The state predictive and filtering densities conditional on the predictive variables ỹ1:t are

p(zt+1|y1:t, ỹ1:t) =

∫
Z
p(zt+1|zt,y1:t, ỹ1:t)p(zt|y1:t, ỹ1:t)dzt (8)

p(zt+1|y1:t+1, ỹ1:t+1) =
p(yt+1|zt+1, ỹt+1)p(zt+1|y1:t, ỹ1:t)

p(yt+1|y1:t, ỹ1:t)
(9)

respectively, which represent the optimal nonlinear filter (see Doucet, Freitas, and Gordon (2001)).

The marginal predictive density of the observable variables is then

p(yt+1|y1:t) =

∫
Y
p(yt+1|y1:t, ỹt+1)p(ỹt+1|y1:t)dỹt+1 (10)

where

p(ỹt+1|y1:t) =

K∏
k=1

p(ỹk,t+1|y1:t) (11)

is the joint density of the predictors and p(yt+1|y1:t, ỹt+1) is defined as∫
Z×YKt

p(yt+1|zt+1, ỹt+1)p(zt+1|y1:t, ỹ1:t)p(ỹ1:t|y1:t−1)dzt+1dỹ1:t (12)

and represents the conditional predictive density of the observable given the past values of the observ-

able and of the predictors.

2.2. A combination algorithm

The analytical solution of the optimal filter for non-linear state space models is generally not known.

An approximate solution is needed. We apply a numerical approximation method, which converges

to the optimal filter in Hilbert metric, in the total variation norm and in a weaker distance suitable

for random probability distributions (e.g., see Legland and Oudjane (2004)). More specifically, we

consider a sequential Monte Carlo (SMC) approach to filtering. See Doucet et al. (2001) for an

introduction to SMC and Creal (2009) for a recent survey on SMC in economics. We propose using

banks of SMC filters, where each filter is conditioned on a sequence of realizations of the predictor

vector ỹt, see BCRVD(2013). The resulting algorithm for the sequential combination of densities is

defined through the following steps, see Section A for a graphical representation.

Step 0 (initialization, eq. (7))

Initialize independent particle sets Ξj
0 = {zi,j0 , ωi,j

0 }Ni=1, j = 1, . . . ,M . Each particle set Ξj
0 contains

N i.i.d. random variables zi,j0 with random weights ωi,j
0 .2 Initialize a random grid over the set of

2The parameter θi,j
0 in zi,j0 can be fixed or estimated. When estimated, the parameter must be initialized by drawing

from the prior. The prior requires the specification of the mean and the standard deviation of the random noise of the log

normal random walk process that θ is assumed to follow. DeCo toolbox includes all these options, see Section B .

6 DeCo: A MATLAB Toolbox for Density Combination

predictors, by generating i.i.d. samples ỹj
1, j = 1, . . . ,M , from p(ỹ1|y0). We use the sample of

observations y0 to initialize the individual predictors.

Step 1 (predictor generation, eq. (11))

At the iteration t+1 of the combination algorithm, we approximate the predictive density p(ỹt+1|y1:t)
with the discrete probability

pM (ỹt+1|y1:t) =
M∑
j=1

δ
ỹj
t+1

(ỹt+1)

where ỹj
t+1, j = 1, . . . ,M , are i.i.d. samples from the predictive densities and δx(y) denotes the

Dirac mass centered at x. This approximation is also motivated by the forecasting practice (see Jore,

Mitchell, and Vahey (2010)). The predictions usually come, from different models or sources, in the

form of discrete densities. In some cases, this is the result of a collection of point forecasts from many

subjects, such as surveys forecasts. In other cases the discrete predictive is a result of a Monte Carlo

approximation of the predictive density (e.g., importance sampling or Markov chain Monte Carlo

approximation of the model predictive density).

Step 2 (filtering and prediction)

We assume an independent sequence of particle sets Ξj
t = {zi,j1:t, ωi,j

t }Ni=1, j = 1, . . . ,M , is available

at time t+ 1 and that each particle set provides the approximation

pN,j(zt|y1:t, ỹ
j
1:t) =

N∑
i=1

ωi,j
t δ

zi,jt
(zt) (13)

of the filtering density, p(zt|y1:t, ỹ
j
1:t), conditional on the j-th predictor realization, ỹj

1:t. Then M
independent SMC algorithms are used to find a new sequence of M particle sets, which include the

information available from the new observation and the new predictors. Each SMC algorithm iterates,

for j = 1, . . . ,M , the following steps.

Step 2.a (state prediction, eq. (8))

The basic SMC algorithm uses the particle set to approximate the predictive density with an empirical

density. We use a regularized version of the SMC procedure (e.g., see Liu and West (2001), Musso,

Oudjane, and Legland (2001) and Casarin and Marin (2009)). More specifically, the predictive density

of combination weights and parameters, zt+1, conditional on ỹj
1:t and y1:t is approximated as follows

pN,j(zt+1|y1:t, ỹ
j
1:t) =

N∑
i=1

p(xt+1|xt,θt+1,y1:t, ỹ
j
1:t)ω

i,j
t δ

xi,j
t
(xt)Kh(θt+1 − θi,j

t) (14)

where Kh(y) = h−nθK(y/h) is the regularization kernel, K being a positive function defined on R
nθ

and h a positive smoothing factor (bandwidth).

Step 2.b (state filtering, eq. (9))

We update the state predictive density by using the information coming from ỹj
t+1 and yt+1, that is

pN,j(zt+1|y1:t+1, ỹ
j
1:t+1) =

N∑
i=1

γi,jt+1δzi,jt+1
(zt+1) (15)

7

where γi,jt+1 ∝ ωi,j
t p(yt+1|zi,jt+1, ỹ

j
t+1) is a set of normalized weights and zi,jt+1 = (xi,j

t+1,θ
i,j
t+1) with

θi,j
t+1 ∼ Kh(θt+1 − θi,j

t) and xi,j
t+1 ∼ p(xt+1|xt,θ

i,j
t+1,y1:t, ỹ

j
1:t), i = 1, . . . , N .

Step 2.c (observation prediction, eq. (12))

The hidden state predictive density can be used to approximate the observable predictive density as

follows

pN,j(yt+1|y1:t, ỹ
j
1:t+1) =

N∑
i=1

γi,jt+1δyi,j
t+1

(yt+1) (16)

where yi,j
t+1 has been simulated from the combination model p(yt+1|zi,jt+1, ỹ

j
t+1) independently for

i = 1, . . . , N .

Step 2.d (observation predictive distribution, (12))

The resampling (multinomial resampling) of the particles introduces extra Monte Carlo variations, see

Liu and Chen (1998). This can be reduced by doing resampling only when the effective sample size

(ESS) is below a given threshold. The ESS is defined as

ESS
j
t =

N

1 +N
N∑
i=1

(
γi,jt+1 −N−1

N∑
i=1

γi,jt+1

)2/(
N∑
i=1

γi,jt+1

)2 .

and measures the overall efficiency of an importance sampling algorithm. At the t + 1-th iteration if

ESS
j
t+1 < κ, simulate Ξj

t+1 = {zki,jt+1, ω
i,j
t+1}Ni=1 from {zi,jt+1, γ

i,j
t+1}Ni=1 (e.g., multinomial resampling)

and set ωi,j
t+1 = 1/N . We denote with ki the index of the i-th re-sampled particle in the original set

Ξj
t+1. If ESS

j
t+1 ≥ κ set Ξj

t+1 = {zi,jt+1, ω
i,j
t+1}Ni=1.

Step 3 (observation marginal predictive, eq. (10))

At the last step, obtain the following empirical predictive density

pM,N (yt+1|y1:t) =
1

MN

M∑
j=1

N∑
i=1

ωi,j
t δ

yi,j
t+1

(yt+1) (17)

The precision of our numerical approximation method depends on the choice of M and N . As regards

the precision of the combination weight estimates, it can be increased by setting a larger N . The

approximation of the forecasting densities can be increased choosing a larger M . Notice that the

choice of M does not affect the convergence of the particle filter algorithms, which depends only on

the choice of N . The assumptions required for convergence of the SMC algorithms are discussed in

e.g. Del Moral and Guionnet (2001) and Le Gland and Oudjane (2004) for regularized particle filters.

Central limit theorems for particle filters can be found in Chan and Lai (2013) and Chopin (2004).

3. Parallel SMC for density combination: DeCo

MATLAB is a popular software in the economics and econometrics community (e.g., see LeSage

(1998)), which has recently introduced support to GPU computing in its parallel computing toolbox.

8 DeCo: A MATLAB Toolbox for Density Combination

This allows the use of raw CUDA code within a MATLAB program as well as already built-in functions

that are directly executed on the GPU. Using the built-in functions we show that GPGPU can be almost

effortless where the only knowledge required is a decent MATLAB programming skills. With a little

effort we provide GPU implementation of the methodology recently proposed by BCRVD (2013).

This implementation provides a speed up of the execution time of up to a hundred times on a multicore

CPU with a standard MATLAB code.

3.1. GPU computing in MATLAB

There is little difference between the CPU and GPU MATLAB code: Listings 1 and 2 report the same

program which generates and inverts a matrix on CPU and GPU respectively.

1 iRows = 1000 ; iColumns = 1000 ;% Number o f rows and columns

2 C_on_CPU = randn (iRows , iColumns) ;% G e n e r a t e Random number on t h e CPU

3 InvC_on_CPU = i n v (C_on_CPU) ;% I n v e r t t h e m a t r i x

Listing 1: MATLAB CPU code that generates and inverts a matrix.

1 iRows = 1000 ; iColumns = 1000 ;% Number o f rows and columns

2 C_on_GPU = gpuArray . r andn (iRows , iColumns) ; % G e n e r a t e Random number on t h e

GPU

3 InvC_on_GPU = i n v (C_on_GPU) ;% I n v e r t t h e m a t r i x

4 InvC_on_CPU = g a t h e r (InvC_on_GPU) ;% T r a n s f e r t h e d a t a from t h e GPU t o CPU

Listing 2: MATLAB GPU code that generate and invert a matrix.

The GPU code, Listing 2, uses the command gpuArray.randn to generate a matrix of normal

random numbers. The build-in function gpuArray.randn is handled by the NVIDIA plug-in that

generates the random number with an underlying raw CUDA code. Once the variable C_on_GPU is

created, standard functions such as inv recognize that the variable is on GPU memory and execute

the corresponding GPU function, e.g., inv is executed directly on the GPU. This is completely trans-

parent to the user. If further calculations are needed on the CPU, then the command gather transfers

the data from GPU to the CPU, see line 3 of Listing 2. A lot of supported functions already exist and

this number is continuously increasing with the new MATLAB releases.

3.2. Parallel sequential Monte Carlo

The structure of the GPU program, which is similar to the CPU one, is reported in Appendix A .

In a graphical context the majority of the computations are executed in a single precision floating

point, so GPUs were initially optimized to perform these types of computations. Lately, GPUs have

been extended to double precision calculation, see Section 4. Since a GPU performs a relatively

small set of operations on a specific set of data points (each vertex on the screen), GPU makers (e.g.

NVIDIA and ATI) focus mainly on creating hardware that specializes in these tasks instead of a wide

array of operations such as the CPU. Therefore, the set of problems in which the GPU can be used

is restricted, but GPU performs the specialized tasks more efficiently than the CPU. For example,

matrix multiplication and, in general, matrix linear algebra are highly parallelizable problems and

these operations are very suitable for GPGPU computing because they can be easily divided into the

large number of cores available on the GPU, see Gregory and Miller (2012) for an introduction.

At first sight our problem does not seem to be easily parallelizable. But a closer look shows that the

only sequential part of the algorithm is the time iteration, indeed the results of time t+1 are dependent

9

on the results of time t. Our key idea is to rewrite in matrix form that part of the algorithm that

iterates over particles and predictive draws in order to exploit the GPGPU computational efficiency.

Following the notation in Section 2, we let M be the number of draws from the predictive densities,

K the number of predictive models, L the number of variables to predict, T the time horizon, and

N the number of particles. Consider L = 1 for the sake of simplicity, then the code carries out a

matrix of dimension (MN ×K). The dimension could be large, e.g., in our simulation and empirical

experiments it is (5, 000 · 1, 000× 3) and (1, 000 · 1, 000× 12) respectively. All the operations, such

as addition and multiplication, become just matrix operations that the GPU is explicitly designed for.

As an example of such a coding strategy, we describe the parallel version of the initialization step of

the SMC algorithm (see first step of the diagram in Appendix A and subsection (Step 0) in Section

2). We apply a linear regression and then generate a set of normal random numbers to set the initial

values of the states. Using a multivariate approach to the regression problem, we can perform it in just

one single, big matrix multiplication and inversion for all draws. An example of initialization, similar

to the one used in the package, is given in Listing 3.3

1 %% I n i t i a l i z z a t i o n o f t h e m a t r i x %%

2 mX = [] ; mY = [] ;

3 f o r j =1 :M

4 %% B u i l d t h e block−d i a g o n a l m a t r i x ove r t h e draws %%

5 mX = b l k d i a g (mX, mXAll (: , : , j)) ;

6 %% Repat t h e vY m a t r i x f o r m u l t i v a r i a t e r e g r e s s i o n %%

7 mY = b l k d i a g (mY, vY) ;

8 end

9 %% Load d a t a on t h e GPU memory %%

10 mXGPU = gpuArray (mX) ;

11 mYGPU = gpuArray (mY) ;

12 %% I n i t i a l i z e p a r t i c l e s on t h e GPU %%

13 mOmega = (mXGPU\mYGPU) ; %% M u l t i v a r i a t e r e g r e s s i o n %%

14 mMatrix = kron (gpuArray . ones (M, 1) , gpuArray . eye (K)) ;

15 mOmega = mOmega ' * mMatrix ;

16 mOmega = kron (gpuArray . ones (N, 1) , mOmega) + 5 * gpuArray . r andn (N * M, K) ;

Listing 3: Block Regression on the GPU.

Listing 3 shows that the predictive densities and the observable variables are stacked in block-diagonal

matrices (lines 1-8) of dimensions (TM ×MK) and (TM ×M) by using the command blkdiag,

and then transferred to the GPU by the gpuArray command (lines 10-11). Line 13 carries out the

multivariate regression, the function gpuArray.randn is then used to generate normal random

numbers on the GPU and thus to initialize the value of the particles (lines 14-17).

This strategy is carried out all over the program and also applied to the simulation of the set of parti-

cles. For example, listing 4 reports a sample of the code for the SMC prediction step (see subsection

(Step 2.a) in Section 2) for the latent states.

1 mOmega = mOmega ' + kron (gpuArray . ones (1 , M * N) , s q r t (Sigma)) . * gpuArray .

r andn (K, M * N) ;

Listing 4: Draws for the latent states.

The Kronecker product (function kron) creates a suitable matrix of standard deviations. We notice

that the matrix implementation of the filter requires availability of physical memory on the graphics

3In the package, we use the following labelling: Setting.iDimOmega for K, Setting.iDraws for M and Setting.cN for

N .

10 DeCo: A MATLAB Toolbox for Density Combination

card. If there is not enough memory to run all the draws in parallel, then it is possible to split the M
draws in k = M

m blocks of size m and to run the combination algorithm sequentially over the blocks

and in parallel within the blocks.4

The only step of the algorithm which uses the CPU is resampling (see diagram in Appendix A and

subsection (Step 2.d) in Section 2). The generated particles are copied to the CPU memory and, after

the necessary calculations, they are passed back to the GPU. Some comments are in order. We use the

resampling on CPU because is not easily parallelizable. Although propagation and weighing steps are

easy to parallelize (we work on different particles separately), the resampling step requires collective

operations across particle weights and those operations are not easily to parallelize. Parallelizing the

resampling step with a new and more efficient algorithm is an active field of research, see among

others Murray, Lee, and Jacob (2014) and the reference therein, but this is beyond the scope of this

paper. Moreover, this copying back and forth introduces a relatively high computational cost in small

problems, but becomes much less important as the number of particles and series increases.

4. Differences between CPU and GPU

GPUs can execute calculations in single and double precision as defined by the IEEE 754 standard,

IEEE (2008). Single precision numbers are half the size of double precision and they are more lim-

ited in the range of values represented. If an application requires a high degree of precision, double

precision numbers are the only possibility. We work with double precision numbers because our ap-

plications focus on density forecasting and precise estimates of statistical quantities, such as extreme

events that are in the tails of the predictive distribution, may be very important for economic and

financial decisions.

The GPU cards are very fast in single precision calculation, but lose power in double precision. There-

fore, some parameters should be set carefully to have a fair comparison between CPU and GPU. First,

both programs have to be implemented in double precision. Second, the CPU program has to be

parallel in order to use all available CPU cores. Third, the choice of the hardware is crucial, see

Aldrich (2013) for a discussion. In all our experiments, we use a recent CPU processor, Intel Core

i7-3820QM, launched in 2012Q2. This CPU has four physical cores that doubled thanks to Hyper-

Threading Technology. Not all users of DeCo might have access to such up-to-date hardware given its

costs. So we also run the CPU code using a less expensive machine, the Intel Xeon X3430, launched

in 2009Q3. To run the CPU code in parallel, MATLAB requires the Parallel Computing Toolbox. We

also investigate performance when this option is switched off and the CPU code is run sequentially.

The GPU used in this study is a NVIDIA Quadro K2000M. The card is available at a low cost, but it

also has low performance because it is designed for a mobile machine (as indicated by the suffix M). A

user with a desktop computer might have access to a more powerful video card, such as, e.g., NVIDIA

Tesla. We refer to MATLAB for GPU comparisons and, in particular, to the function “GPUBench”

freely available at this address http://www.mathworks.co.uk/matlabcentral/fileexchange/
34080-gpubench.

Finally we emphasize that the results of the CPU and GPU versions of our combination scheme are

not necessarily identical. The parallelization is implemented differently in the two versions to fully

exploit the GPU advantage in working with a large matrix, selected in the toolbox by the number of

4We run the blocks sequentially because MATLAB does not yet have a parallel for loop command for running in parallel

the k = M
m

blocks of GPU computations. The DeCo parallel CPU version sets m = 1 and parallelizes over the k = M
blocks.

11

blocks of draws. The CPU is parallelized for each simulation. To investigate the numerical differences

between CPU and GPU, we provide a numerical integration experiment based on standard Monte

Carlo integration where we can compare numerical solutions when the random generator is fixed and

when it is not. We also repeat some of the simulation exercises in BCRVD (2013).

4.1. Monte Carlo integration

We consider six simple integration problems and compare their analytical solutions to their crude

Monte Carlo (see Robert and Casella 2004) numerical solutions. Let us consider the two integrals of

the function f over the unit interval

μ(f) =

∫ 1

0
f(x)dx, σ2(f) =

∫ 1

0
(f(x)− μ(f))2dx.

The Monte Carlo approximations of the integrals are

μ̂N (f) =
1

N

N∑
i=1

f(Xi), σ̂2
N (f) =

1

N

N∑
i=1

(f(Xi)− μ̂N (f))2

where X1, . . . , XN is a sequence of N i.i.d. samples from a standard uniform distribution.

The numerical integration problems considered in the experiments correspond to the following choices

of the integrand function:

1. f(x) = x;

2. f(x) = x2;

3. f(x) = cos(πx).

We repeat G = 1000 times each Monte Carlo integration experiment with sample sizes N = 1500.

The Figures show the CPU and GPU cumulative distribution functions (cdfs) of the mean square errors

when the random generator number is fixed equal for the two methods and when it is not. The two cdfs

are basically identical when the random generator is fixed, with a difference at the 17th decimal. The

differences are larger when the seed is not fixed, but still very small. Moreover, positive and negative

values are equally distributed indicating that there is no evidence of higher precision of one of the two

methods. We also test the statistical relevance of the differences between CPU and GPU and run a

two-sample Kolmogorov-Smirnov test on the cdf of the CPU and GPU squared errors. The results

of the tests show that the null hypothesis that CPU and GPU squared errors come from the same

distribution cannot be rejected. Thus, we conclude that CPU and GPU also give equivalent results

from a statistical point of view even when the random generator number is not set at the same value

in the CPU and GPU algorithm. This leads us to move to the simulation exercises in BCRVD(2013).

4.2. Simulation exercises

Following BCRVD (2013) we compare the cases of unbiased and biased predictors and of complete

and incomplete model sets using the DeCo code. We assume the true model is M1 : y1,t = 0.1 +

0.6y1,t−1 + ε1,t with ε1,t
i.i.d.∼ N (0, σ2), t = 1, . . . , T , y1,0 = 0.25, σ = 0.05 and consider four

12 DeCo: A MATLAB Toolbox for Density Combination

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

x 10−3

0

0.5

1
GPU
CPU

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

x 10−3

0

0.5

1
GPU
CPU

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
0

0.5

1
GPU
CPU

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

x 10−3

0

0.5

1
GPU
CPU

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10−3

0

0.5

1
GPU
CPU

0 0.002 0.004 0.006 0.008 0.01 0.012
0

0.5

1
GPU
CPU

Figure 1: CDFs of the CPU and GPU mean square errors in the MC estimators of μN (f), N =
1500, when setting the same random generator number (left column) and when not (right
column), for different choices of f (first rows: f(x) = x; second row: f(x) = x2; third

row:f(x) = cos(πx)), using G = 1000 replications.

experiments. We apply the DeCo package and use the GUI described in Appendix B to provide the

inputs to the combination procedure. We follow BCRVD (2013) and assume that θ are given.5

Complete model set experiments

We assume the true model belongs to the set of models in the combination. In the first experiments the

model set also includes two biased predictors: M2 : y2,t = 0.3 + 0.2y2,t−2 + ε2,t and M3 : y3,t =

0.5 + 0.1y3,t−1 + ε3t, with εit
i.i.d.∼ N (0, σ2), t = 1, . . . , T , i = 2, 3. In the second experiment the

complete model set also includes two unbiased predictors: M2 : y2,t = 0.125 + 0.5y2,t−2 + ε2,t and

M3 : y3,t = 0.2 + 0.2y3,t−1 + ε3,t, with εi,t
i.i.d.∼ N (0, σ2), t = 1, . . . , T , i = 2, 3.

Incomplete model set experiments

We assume the true model is not in the model set. In the third experiment the model set includes two

biased predictors: M2 : y2,t = 0.3 + 0.2y2,t−2 + ε2,t and M3 : y3,t = 0.5 + 0.1y3,t−1 + ε3,t,

with εi,t
i.i.d.∼ N (0, σ2), t = 1, . . . , T , i = 2, 3. In the fourth experiment the model set includes

unbiased predictors: M2 : y2,t = 0.125 + 0.5y2,t−2 + ε2,t, M3 : y3,t = 0.2 + 0.2y3,t−1 + ε3,t, with

εi,t
i.i.d.∼ N (0, σ2), t = 1, . . . , T , i = 2, 3.

We develop the comparison experiments with both 1000 and 5000 particles. Table 2 reports the time

comparison (in seconds) to produce forecast combinations for different experiments and different im-

plementations. Parallel implementation on GPU NVIDIA Quadro K2000M is the most efficient, in

5We use the exact same values for the various parameters as in BCRVD (2013) which are not necessarily the same as

the default values in the toolbox. See BCRVD (2013) and replication files for further details.

13

0 0.2 0.4 0.6 0.8 1 1.2

x 10−4

0

0.5

1

0 1 2

x 10−4

0

0.5

1

0 0.5 1 1.5 2 2.5 3

x 10−3

0

0.5

1

GPU
CPU

GPU
CPU

GPU
CPU

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

x 10−4

0

0.5

1

0 1 2

x 10−4

0

0.5

1

0 0.5 1 1.5 2 2.5 3

x 10−3

0

0.5

1

GPU
CPU

GPU
CPU

GPU
CPU

Figure 2: CDFs of the CPU and GPU mean square errors in the MC estimators of σ̂2
N (f) when setting

the same random generator number (left column) and when not (right column), for different

choices of f (different rows), using G = 1000 replications.

terms of computing time, for all experiments. Time differences between the CPU and GPU executions

are very large (see Table 2, panel (a)), and result in a saving of up to several hours when using 5000

particles (see Table 2, panel (b)). More specifically, the computational gain of the GPU implemen-

tation over parallel CPU implementation varies from 3 to 4 times for the Intel Core i7 and from 5

to 7 times for the Intel Xeon X3430. The overperformance of the parallel GPU implementation on

sequential CPU implementation varies from 15 to 20 times when considering an Intel Xeon X3430

machine as a benchmark.

Figure 3 compares the weights for experiments 1 and 2. The weights follow a very similar pattern, but

there are some minor discrepancies between them for some observations. Differences are larger for

the median value than for the smaller and larger quantiles. The differences are, however, smaller and

almost vanish when one focuses on the predictive densities in Figure 4, which is the most important

output of the density combination algorithm. We interpret the results as evidence of no economic and

statistic significance of the differences between CPU and GPU draws.

The results are similar when focusing on the incomplete model set in Figures 5-6. The evidence does

not change when we use 5000 particles.

Learning mechanism experiments

BCRVD (2013) document that a learning mechanism in the weights is crucial to identify the true

model (in the case of complete model set) or the best model (in the case of incomplete model set)

when the predictions are unbiased, see also left panels in Figures 3-5. We repeat the two unbiased

predictor experiments and introduce learning in the combination weights as discussed in Section 2.

We set the learning parameters λ = 0.95 and τ = 9. Tables 3 reports the time comparison (in

seconds) when using 1000 and 5000 particles filtered model probability weights. The computation

time for DeCo increases when learning mechanisms are applied, in particular for the CPU. The GPU

14 DeCo: A MATLAB Toolbox for Density Combination

Biased Predictors Unbiased predictors

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1
GPU
CPU

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1
GPU
CPU

0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06
GPU
CPU

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1
GPU
CPU

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1
GPU
CPU

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1
GPU
CPU

Figure 3: GPU and CPU 1000 particles filtered model probability weights for the complete model set.

Median and 95% credibility region for model weights 1,2 and 3 (different rows).

Biased Predictors Unbiased predictors

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
GPU
CPU

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
GPU
CPU

Figure 4: GPU and CPU 1000 particles filtered density forecasts for the complete model set. Mean

and 95% credibility region of the combined predictive density.

15

Biased Predictors Unbiased predictors

0 10 20 30 40 50 60 70 80 90 100
0.995

0.996

0.997

0.998

0.999

1

1.001
GPU
CPU

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5
x 10−3

GPU
CPU

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1
GPU
CPU

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1
GPU
CPU

Figure 5: GPU and CPU 1000 particles filtered model probability weights for the incomplete model

set. Median and 95% credibility region for model weights 1,2 and 3 (different rows).

Biased Predictors Unbiased predictors

0 10 20 30 40 50 60 70 80 90 100

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65
GPU
CPU

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
GPU
CPU

Figure 6: GPU and CPU 1000 particles filtered density forecasts for the incomplete model set. Mean

and 95% credibility region of the combined predictive densities.

16 DeCo: A MATLAB Toolbox for Density Combination

(a) 1000 Particles
p-GPU p-CPU-i7 p-CPU-Xeon CPU-Xeon

Complete Model Set

Biased Predictors 699 2780 5119 11749

(3.97) (7.32) (16.80)

Unbiased Predictors 660 2047 5113 11767

(3.10) (7.75) (17.83)

Incomplete Model Set

Biased Predictors 671 2801 5112 11635

(4.17) (7.62) (17.34)

Unbiased Predictors 687 2035 5098 11636

(2.96) (7.42) (16.94)

(b) 5000 particles
p-GPU p-CPU-i7 p-CPU-Xeon CPU-Xeon

Complete Model Set

Biased Predictors 4815 15154 26833 64223

(3.15) (5.57) (13.34)

Unbiased Predictors 5302 15154 26680 63602

(2.86) (5.03) (12.00)

Incomplete Model Set

Biased Predictors 4339 13338 26778 64322

(3.07) (6.17) (14.82)

Unbiased Predictors 4581 13203 26762 63602

(2.88) (5.84) (13.88)

Table 2: Density combination computing time in seconds. Rows: different simulation experiments.

Columns: parallel GPU (p-GPU) and parallel CPU (p-CPU-i7) implementations on GPU

NVIDIA Quadro K2000M with CPU Intel Core i7-3820QM, 3.7GHz; parallel CPU (p-

CPU-Xeon) and sequential CPU (CPU-Xeon) implementations on Intel Xeon X3430 4core,

2.40GHz. In parentheses: efficiency gain in terms of CPU/GPU times ratio.

is 10% to 50% slower than without learning, but CPU is 2.5 to almost 4 times slower than previously.

The GPU/CPU ratio, therefore, increases in favor of GPU with GPU computation 5 to 70 times faster

depending on the alternative CPU machine considered. The DeCo codes with learning have some if
commands related to the minimum numbers of observations necessary to initiate the learning, which

increases computational time substantially. The parallelization in GPU is more efficient because it is

carried out on blocks of draws and these if commands play a minor role. We expect that the gain

might increase to several hundreds of times when using parallelization on GPU clusters.

5. Empirical application

As a further check of the performance of the DeCo code, we compare the CPU and GPU versions

in the macroeconomic application developed in BCRVD (2013). We consider K = 6 time series

models to predict US GDP growth and PCE inflation: a univariate autoregressive model of order

17

p-GPU p-CPU-i7 p-CPU-Xeon CPU-Xeon

(a) 1000 Particles
Complete Model Set 755 7036 14779 52647

(9.32) (19.57) (69.73)

Incomplete Model Set 719 6992 14741 52575

(9.72) (20.49) (73.08)

(b) 5000 particles
Complete Model Set 7403 35472 73402 274220

(4.79) (9.92) (37.04)

Incomplete Model Set 7260 35292 73256 274301

(4.86) (10.09) (37.78)

Table 3: Density combination computing time in seconds. Rows: different simulation experiments

with unbiased predictors and a learning mechanism in the weights. Columns: parallel GPU

(p-GPU) and parallel CPU (p-CPU-i7) implementations on GPU NVIDIA Quadro K2000M

with CPU Intel Core i7-3820QM, 3.7GHz; parallel CPU (p-CPU-Xeon) and sequential CPU

(CPU-Xeon) implementations on Intel Xeon X3430 4core, 2.40GHz. In parentheses: effi-

ciency gain in terms of CPU/GPU times ratio.

one (AR); a bivariate vector autoregressive model for GDP and PCE of order one (VAR); a two-state

Markov-switching autoregressive model of order one (ARMS); a two-state Markov-switching vector

autoregressive model of order one for GDP and inflation (VARMS); a time-varying autoregressive

model with stochastic volatility (TVPARSV); and a time-varying vector autoregressive model with

stochastic volatility (TVPVARSV). Therefore, the model set includes constant parameter univari-

ate and multivariate specification; univariate and multivariate models with discrete breaks (Markov-

Switching specifications); and univariate and multivariate models with continuous breaks. These are

typical models applied in macroeconomic forecasting; see, for example, Clark and Ravazzolo (2012),

Korobilis (2013) and D’Agostino, Gambetti, and Giannone (2013).

We evaluate the two combination methods by applying the following evaluation metrics: Root Mean

Square Prediction Errors (RMSPE), Kullback Leibler Information Criterion (KLIC) based measure,

the expected difference in the Logarithmic Scores (LS) and the Continuous Rank Probability Score

(CRPS). Accuracy statistics and related tests (see BCRVD (2013)) are used to compare the forecast

accuracy.

Table 4 reports results for the multivariate combination approach. For the sake of brevity, we just

present results using parallel GPU and the best parallel CPU Intel Core i7-3820QM machine. We

also do not consider a learning mechanism in the weights. GPU is substantially faster, almost 5.5

times faster than CPU, reducing the computational time by more than 5000 seconds. GPU therefore

performs relatively better in this experiment than in the previous simulation experiments (without

learning mechanisms). The explanation relies on the larger set of models and the multivariate appli-

cation. The number of simulations has increased substantially and CPU starts to hit physical limits,

slowing down the computation and extending time. GPU has no binding limits and just double the

time of simulation experiments with a univariate series and the same number of draws and particles.6

This suggests that GPU might be an efficient methodology to investigate when averaging large sets of

6Unreported results show that GPU is more than 36 times faster than sequential CPU implementation on Intel Xeon

X3430 4core.

18 DeCo: A MATLAB Toolbox for Density Combination

GDP Inflation

GPU CPU GPU CPU

Time 1249 6923 - -

RMSPE 0.634 0.637 0.255 0.256

CW 0.000 0.000 0.000 0.000

LS -1.126 -1.130 0.251 0.257

p-value 0.006 0.005 0.021 0.022

CRPS 0.312 0.313 0.112 0.112

p-value 0.000 0.000 0.000 0.000

Table 4: Computing time and forecast accuracy for the macro-economic application for the GPU (col-

umn GPU) and CPU (column CPU) implementations. Rows: Time: time to run the exper-

iment in seconds; RMSPE: Root Mean Square Prediction Error; CW: p-value of the Clark

and West (2007) test; LS: average Logarithmic Score over the evaluation period; CRPS: cu-

mulative rank probability score; LS p-value and CRPS p-value: Harvey et al. (1997) type of

test for LS and CRPS differentials respectively.

models.

Accuracy results for CPU and GPU combinations are very similar and just differ after the third dec-

imal, confirming previous intuitions that the two methods are not necessarily numerically identical,

but provide identical economic and statistical conclusions.7 The combination approach is statistically

superior to the AR benchmark for all the three accuracy measures we implement.

6. Conclusion

This paper introduces the MATLAB package DeCo (Density Combination) based on parallel Sequen-

tial Monte Carlo simulations to combine density forecasts with time-varying weights and different

choices of scoring rule.

The package is easy to use for a standard MATLAB user and to facilitate promulgation we have

implemented a GUI, which just requires a few input parameters. The package takes full advantage

of recent computer hardware progresses and uses banks of parallel SMC algorithms for the density

combination using both multi-core CPU and GPU implementation.

The DeCo GPU version is up to 70 times faster than the CPU version and even more for larger

sets of models. More specifically, our simulation and empirical experiments were conducted using

a commercial notebook with CPU Intel Core i7-3820QM and GPU NVIDIA Quadro K2000M, and

MATLAB 2013b version, and show that the DeCo GPU version is faster than the parallel CPU version,

up to 10 times when the weights include a learning mechanism and up to 5.5 times without it, when

using an i7 CPU machine and the Parallel Computing Toolbox. These findings are similar to results

in Brodtkorb et al. (2013) when using a raw CUDA environment. In the comparison between GPU

and non-parallel CPU implementations, the differences between GPU and CPU time increase up to

almost 70 times when using a standard CPU processor, such as quad-core Xeon. Our results can be

further improved with the use of more powerful graphics cards, such as GTX cards. All comparisons

have been implemented using double precision for both the CPU and GPU versions. However, if

7Numbers for the CPU combination differ marginally (and often just in the third decimal) from those in Table 4 in

BCRVD (2013) due to the use of a different MATLAB version, different generator numbers and parallel tooling functions.

19

an application allows for a lower degree of precision, then single precision calculation can be used

and massive gains (up to 500) can be attained, as documented in Lee et al. (2010) and Geweke and

Durham (2012).

We also document that the CPU and GPU versions do not necessarily provide the exact same nu-

merical solutions to our problems, but differences are not economically and statistically significant.

Therefore, users of DeCo might choose between the CPU and GPU versions depending on the avail-

able and preferred clusters.

Finally, we expect that our research and the DeCo GPU implementation would benefit enormously

from improvement in the MATLAB parallel computing toolbox, such as the possible incorporation of

a parallel “for” loop command for GPU; by the inclusion in the package of different particle filters,

such as post- and pre-regularized particle filters and of different density combination schemes; and by

applications to large sets of predictive densities as in Casarin, Grassi, Ravazzolo, and van Dijk (2014).

Acknowledgement

For their useful comments, we thank Daniel Armyr and Sylvia Frühwirth-Schnatter and seminar

and conference participants at the European Seminar on Bayesian Econometrics 2013, Norges Bank,

the 7th Rimini Bayesian Econometrics Workshop and the 2013 Vienna IHS Time-Series Workshop.

Roberto Casarin’s research is supported by the Italian Ministry of Education, University and Research

(MIUR) PRIN 2010-11 grant, and by funding from the European Union, Seventh Framework Pro-

gramme FP7/2007-2013 under grant agreement SYRTO-SSH-2012-320270. The views expressed in

this paper are our own and do not necessarily reflect those of Norges Bank.

References

Aldrich EM (2013). “Massively Parallel Computing in Economics.” Technical report, University of

California, Santa Cruz.

Aldrich EM, Fernández-Villaverde J, Gallant AR, Rubio Ramırez JF (2011). “Tapping the Supercom-

puter Under Your Desk: Solving Dynamic Equilibrium Models with Graphics Processors.” Journal
of Economic Dynamics and Control, 35, 386–393.

Bates JM, Granger CWJ (1969). “Combination of Forecasts.” Operational Research Quarterly, 20,

451–468.

Billio M, Casarin R, Ravazzolo F, van Dijk HK (2013). “Time-varying Combinations of Predictive

Densities Using Nonlinear Filtering.” Journal of Econometrics, 177, 213–232.

Brodtkorb AR, Hagen TR, Saetra LS (2013). “Graphics Processing Unit (GPU) Programming Strate-

gies and Trends in GPU Computing.” Journal of Parallel and Distributed Computing, 73, 4–13.

Casarin R, Grassi S, Ravazzolo F, van Dijk HK (2014). “Dynamic Predictive Density Combinations

for Large Datasets.” Unpublished manuscript, Norges Bank.

Casarin R, Marin JM (2009). “Online Data Processing: Comparison of Bayesian Regularized Particle

Filters.” Electronic Journal of Statistics, 3, 239 – 258.

20 DeCo: A MATLAB Toolbox for Density Combination

Chan H, Lai T (2013). “A general theory of particle filters in hidden Markov models and some

applications.” The Annals of Statistics, 41, 2877–2904.

Chong Y, Hendry DF (1986). “Econometric Evaluation of Linear Macroeconomic Models.” The
Review of Economic Studies, 53, 671 – 690.

Chopin N (2004). “Central limit theorem for sequential Monte Carlo methods and its application to

Bayesian inference.” The Annals of Statistics, 32(6), 2385–2411.

Clark T, Ravazzolo F (2012). “The Macroeconomic Forecasting Performance of Autoregressive Mod-

els with Alternative Specifications of Time-Varying Volatility.” Technical report, FRB of Cleveland

Working Paper 12-18.

Clark T, West K (2007). “Approximately Normal Tests for Equal Predictive Accuracy in Nested

Models.” Journal of Econometrics, 138, 291 – 311.

Creal D (2009). “A Survey of Sequential Monte Carlo Methods for Economics and Finance.” Econo-
metric Reviews, 31(3), 245 – 296.

Creel M (2005). “User-Friendly Parallel Computations with Econometric Examples.” Computational
Economics, 26, 107 – 128.

Creel M, Goffe WL (2008). “Multi-core CPUs, Clusters, and Grid Computing: A Tutorial.” Compu-
tational Economics, 32, 353 – 382.

Creel M, Mandal S, Zubair M (2012). “Econometrics in GPU.” Technical Report 669, Barcelona GSE

Working Paper.

D’Agostino A, Gambetti L, Giannone D (2013). “Macroeconomic Forecasting and Structural

Change.” Journal of Applied Econometrics, 28, 82 – 101.

Del Moral P, Guionnet A (2001). “On the stability of interacting processes with applications to

filtering and genetic algorithms.” Ann. Inst. H. Poincaré Probab. Statist., 37, 155–194.

Doucet A, Freitas JG, Gordon J (2001). Sequential Monte Carlo Methods in Practice. Springer-

Verlag, New York.

Dziubinski MP, Grassi S (2013). “Heterogeneous Computing in Economics: A Simplified Approach.”

Computational Economics, pp. 1245 – 1266.

Geweke J, Amisano G (2010). “Optimal Prediction Pools.” Journal of Econometrics, 164(2), 130 –

141.

Geweke J, Durham G (2012). “Massively Parallel Sequential Monte Carlo for Bayesian Inference.”

Working papers, National Bureau of Economic Research, Inc.

Gneiting T, Raftery AE (2007). “Strictly Proper Scoring Rules, Prediction, and Estimation.” Journal
of the American Statistical Association, 102, 359 – 378.

Granger CWJ, Ramanathan R (1984). “Improved Methods of Combining Forecasts.” Journal of
Forecasting, 3, 197 – 204.

21

Gregory K, Miller A (2012). Accelerated Massive Parallelism with Microsoft Visual C++. Microsoft

Press, USA.

Hall SG, Mitchell J (2007). “Combining Density Forecasts.” International Journal of Forecasting,

23, 1 – 13.

Harvey D, Leybourne S, Newbold P (1997). “Testing the Equality of Prediction Mean Squared Er-

rors.” International Journal of Forecasting, 13, 281 – 291.

Hoberock J, Bell N (2011). Thrust: A parallel template library, Version 1.4.0.

IEEE (2008). IEEE 754 - 2008. IEEE 754 - 2008 Standard for Floating-Point Arithmetic. IEEE.

Jore AS, Mitchell J, Vahey SP (2010). “Combining Forecast Densities from VARs with Uncertain

Instabilities.” Journal of Applied Econometrics, 25(4), 621 – 634.

Khronos OpenCL Working Group (2009). The OpenCL Specification Version 1.0. Khronos Group.

URL http://www.khronos.org/opencl.

Korobilis D (2013). “VAR Forecasting Using Bayesian Variable Selection.” Journal of Applied
Econometrics, 28, 204 – 230.

Le Gland F, Oudjane N (2004). “Stability and uniform approximation of nonlinear filters using the

Hilbert metric and application to particle filters.” The Annals of Applied Probability, 14(1), 144–

187.

Lee A, Christopher Y, Giles MB, Doucet A, Holmes CC (2010). “On the Utility of Graphic Cards to

Perform Massively Parallel Simulation with Advanced Monte Carlo Methods.” Journal of Compu-
tational and Graphical Statistics, 19, 769 – 789.

Legland F, Oudjane N (2004). “Stability and Uniform Approximation of Nonlinear Filters using the

Hilbert Metric and Application to Particle Filters.” The Annals of Applied Probability, 14, 144 –

187.

LeSage JP (1998). “ECONOMETRICS: MATLAB Toolbox of Econometrics Functions.” Statistical

Software Components, Boston College Department of Economics.

Liu J, Chen R (1998). “Sequential Monte Carlo Methods for Dynamical System.” Journal of the
American Statistical Association, 93, 1032 – 1044.

Liu JS, West M (2001). “Combined Parameter and State Estimation in Simulation Based Filtering.” In

A Doucet, N de Freitas, N Gordon (eds.), Sequential Monte Carlo Methods in Practice. Springer-

Verlag.

Morozov S, Mathur S (2011). “Massively Parallel Computation Using Graphics Processors with

Application to Optimal Experimentation in Dynamic Control.” Computational Economics, pp. 1 –

32.

Murray LM, Lee A, Jacob PE (2014). “Parallel resampling in the particle filter.” Working paper.

Musso C, Oudjane N, Legland F (2001). “Improving Regularised Particle Filters.” In A Doucet,

N de Freitas, N Gordon (eds.), Sequential Monte Carlo Methods in Practice. Springer-Verlag.

22 DeCo: A MATLAB Toolbox for Density Combination

Nvidia Corporation (2010). Nvidia CUDA Programming Guide, Version 3.2. URL http://www.
nvidia.com/CUDA.

Press WH, Teukolsky ST, Vetterling WT, Flannery BP (1992). Numerical Recipes in C: the Art of
Scientific Computing. 2nd edition. Cambridge University Press, Cambridge, England.

Robert CP, Casella G (2004). Monte Carlo Statistical Methods. 2nd edition. Springer-Verlag, Berlin.

Stroustrup B (2000). The C++ Programming Language. 3rd edition. Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA.

Suchard M, Holmes C, West M (2010). “Some of the What?, Why?, How?, Who? and Where? of

Graphics Processing Unit Computing for Bayesian Analysis.” Bulletin of the International Society
for Bayesian Analysis, 17, 12 – 16.

Sutter H (2005). “The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software.”

Dr. Dobb’s Journal. URL http://www.gotw.ca/publications/concurrencyddj.
htm.

Sutter H (2011). “Welcome to the Jungle.” URL http://herbsutter.com/
welcome-to-the-jungle/.

Swann CA (2002). “Maximum Likelihood Estimation Using Parallel Computing: An Introduction to

MPI.” Computational Economics, 19, 145 – 178.

Terui N, van Dijk HK (2002). “Combined Forecasts from Linear and Nonlinear Time Series Models.”

International Journal of Forecasting, 18, 421 – 438.

The MathWorks, Inc (2011). MATLAB – The Language of Technical Computing, Version R2011b. The

MathWorks, Inc., Natick, Massachusetts. URL http://www.mathworks.com/products/
matlab/.

23

A . Flow-chart of GPU DeCo package

Transfer the data and initialize

the particle set on GPU (Step 0)
At time t = t0

Propagate particle values and update parti-

cle weights on GPU (Steps 1 and 2.a-2.c)

If ESSt < κ (Step 2.d)

Transfer the data back

to the CPU (Step 2.d)

Resampling particles

on the CPU (Step 2.d)

Transfer the data back

to the GPU (Step 2.d)

Update the particle set on GPU (Step 2.d)

t = t+ 1

If t < T

Yes

Transfer data back and finalize calculations

No

Yes

No

Figure 7: Flow chart of the parallel SMC filter given in Section 2.

24 DeCo: A MATLAB Toolbox for Density Combination

B . The GUI

Figure 8: The GUI of the DeCo package, case of GPU available.

Figure 8 shows the GUI of the DeCo package, which contains all the necessary inputs for our program.

The ListBox loads and displays the available dataset in the directory Dataset. The figure shows, as

example, the dataset Total_long.mat. The directory Dataset also contains other two dataset

of different dimensions. The three databases differ in sample size, number of predictive series and

number of series to be predicted.

The Panel “Options” contains the command for saving and plotting the results. The results are saved

in the directory OutputCPU or OutputGPU depending on the type of calculation chosen.

The Panel “Settings” contains the selection of the number of particles, the number of blocks of

draws (see Section 3.2) and the resampling threshold κ. All three options have default values that are

also reported. The number of block of draws is only relevant for the GPU version.

The Panel “Setting Learning Parameter” allows the user to perform the calculation with or without

learning in the weights, see Section 4.2. When the option Learning is chosen, the edit box allows the

learning parameter to be set, the default values are λ = 0.95 and τ = 9.

The Panel “Set the main diagonal of Lambda and Sigma” reports an editable table that allows the

values for Sigma and Lambda to be set (default values are loaded). The check box “Estimate Sigma

and Lambda” allows the estimation of the Sigma and Lambda matrix. Once the option is selected, the

editable table reports the mean values of the priors and the user has also to select the variance of the

shocks (smoothing factor) for those matrice. A default value of 0.01 is set.

25

Finally the bottom “CPU” starts the corresponding CPU program and the bottom “GPU” executes the

program on the GPU. In the case of no GPU card available, the corresponding bottom and the edit box

“blocks of draws” are not visible, see Figure 9 with as example the dataset Total_medium.mat.

Some considerations are in order. First, the CPU is already implemented in parallel form, the user has

to start a parallel session in MATLAB by typing the command matlabpool open in the MATLAB main

window. Please refer to MATLAB online help and to the ToolboxDescription. Second, the dataset

accepted by the program is mat format and has the following structure. It includes two variables,

the first one is defined as vY and it contains a (T × L) matrix of the the variables {yt}Tt=1 to be

predicted, where T is the number of 1-step ahead forecasts and L the size of observable variables to

forecast. The second one is a 4−D matrix defined mX with the following dimensions (T,M,L,KL)
, where M is the size of i.i.d. samples from the predictive densities, and KL the number of 1-step

ahead predictive densities. Finally, the user might apply different learning mechanisms based on other

scoring functions that the one applied and discussed in Section 2. In order to do this, the user should

change the functions “PFCoreCPU.m” and “PFCoreGPU.m”.

Figure 9: The GUI of the DeCo package, case of no GPU available.

