
Binning, Andrew

Working Paper

Solving Second and Third-Order Approximations to DSGE
Models: A Recursive Sylvester Equation Solution

Working Paper, No. 2013/18

Provided in Cooperation with:
Norges Bank, Oslo

Suggested Citation: Binning, Andrew (2013) : Solving Second and Third-Order Approximations
to DSGE Models: A Recursive Sylvester Equation Solution, Working Paper, No. 2013/18, ISBN
978-82-7553-771-1, Norges Bank, Oslo,
https://hdl.handle.net/11250/2496688

This Version is available at:
https://hdl.handle.net/10419/210041

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

 https://creativecommons.org/licenses/by-nc-nd/4.0/deed.no

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/11250/2496688%0A
https://hdl.handle.net/10419/210041
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.no
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

2013 | 18

Solving second and third-order approximations
to DSGE models: A recursive Sylvester
equation solution

Working Paper
Monetary Policy

Andrew Binning

Working papers fra Norges Bank, fra 1992/1 til 2009/2 kan bestilles over e-post:
servicesenter@norges-bank.no

Fra 1999 og senere er publikasjonene tilgjengelige på www.norges-bank.no

Working papers inneholder forskningsarbeider og utredninger som vanligvis ikke har fått sin endelige form.
Hensikten er blant annet at forfatteren kan motta kommentarer fra kolleger og andre interesserte.
Synspunkter og konklusjoner i arbeidene står for forfatternes regning.

Working papers from Norges Bank, from 1992/1 to 2009/2 can be ordered by e-mail:
servicesenter@norges-bank.no

Working papers from 1999 onwards are available on www.norges-bank.no

Norges Bank’s working papers present research projects and reports (not usually in their final form)
and are intended inter alia to enable the author to benefit from the comments of colleagues and other interested
parties. Views and conclusions expressed in working papers are the responsibility of the authors alone.

ISSN 1502-8143 (online)
ISBN 978-82-7553-771-1 (online)

Solving second and third-order approximations to DSGE models:

a recursive Sylvester equation solution

Andrew Binning1,2

29 July 2013

Monetary Policy Department, Norges Bank, Oslo, Norway

Abstract

In this paper I derive the matrix chain rules for solving a second and a third-order approxima-
tion to a DSGE model that allow the use of a recursive Sylvester equation solution method.
In particular I use the solution algorithms of Kamenik (2005) and Martin & Van Loan (2006)
to solve the generalised Sylvester equations. Because I use matrix algebra instead of tensor
notation to find the system of equations, I am able to provide standalone Matlab routines
that make it feasible to solve a medium scale DSGE model in a competitive time. I also
provide Fortran code and Matlab/Fortran mex files for my method.

Keywords: Solving dynamic models, Second-order approximation, Third-order
approximation, Second-order matrix chain rule, Third-order matrix chain rule, Generalised
Sylvester equations

1. Introduction

Solving higher order approximations of DSGE models can be computationally demand-
ing at best. As the size of the model increases, the number of coefficients that need to be
solved increases at a greater rate, a feature commonly referred to as the curse of dimension-
ality. Using simple matrix algebra to find the unknown coefficients can place quite severe
limitations on the model’s size as memory capacity becomes an issue. The use of generalised
Sylvester equations has been suggested by Gomme & Klein (2011) as a more memory efficient
approach to solving higher order approximations of DSGE models. In particular they use
the K̊agström & Poromaa (1996) representation for the generalised Sylvester equations. Ka-
menik (2005) presents an alternative Sylvester equation representation and solution method

Email address: andrew.binning@norges-bank.no (Andrew Binning)
1Any opinions expressed here do not necessarily reflect the views of the management of the Norges Bank.
2The author would like to thank Martin Andreasen, Gisle Natvik, Martin Seneca and seminar participants
at the Norges Bank for useful comments. All remaining errors are my own.

that exploits the Kronecker product structure of the problem allowing it to be solved recur-
sively. This results in significant performance improvements over existing solution methods
(see Kamenik (2005) for a comparison with other methods of solving generalised Sylvester
equations). Representing the problem as a system of generalised Sylvester equations is key to
developing a fast and efficient solution method. The method for finding the matrices in the
generalised Sylvester equations also plays a significant role in the performance of the solution
method. It is common to use chain rules written in tensor notation to find these matrices
(see Schmitt-Grohe & Uribe (2004), Ruge-Murcia (2010), Andreasen (2011) and Kamenik
(2005)), although this is not the most efficient method. In this paper I derive second and
third-order matrix chain rules that with a small amount of manipulation, can be written
in the generalised Sylvester equation form outlined in Kamenik (2005). These matrix chain
rules are easier to code, easier to write out and understand, and fast to implement when
combined with a recursive Sylvester equation solution algorithm.

Tensor notation has become a popular method for representing the chain rules used in the
solution of higher order approximations of DSGE models. Schmitt-Grohe & Uribe (2004) use
tensor notation to find the matrices in the solution of a second-order approximation. Ruge-
Murcia (2010) and Andreasen (2011) extend this tensor notation representation of the chain
rule to solving third-order approximations. Kamenik (2005) uses tensor notation to write
out the nth order chain rules consistent with the representation of his generalised Sylvester
equations. While popular, there are limitations to using tensor notation, in particular tensor
notation is difficult to understand, difficult to code and is slow to implement when using
Matlab (see Binning, 2013). An alternative approach to using tensor notation uses matrix
chain rules to represent the problem. Gomme & Klein (2011) use the Magnus & Neudecker
(1999) definition of a Hessian to find a second-order approximation. Binning (2013) extends
the approach of Gomme & Klein (2011) to find a matrix chain rule for third-order approxima-
tions. The matrix chain-rules described in these papers can be solved using the generalised
Sylvester equation algorithm of K̊agström & Poromaa (1996) (as demonstrated in Gomme
& Klein, 2011), but they are not consistent with the more efficient solution algorithm of
Kamenik (2005). However, the matrix chain rules in Gomme & Klein (2011) and Binning
(2013) are not unique.

In this paper I derive a second and a third-order matrix chain rule, that with a small
amount of algebra, can be rearranged into the type of generalised Sylvester equations in Ka-
menik (2005). Then I apply the recursive Sylvester equation solution algorithm of Kamenik
(2005) to find the unknown coefficient matrices for the second and third-order approximate
solutions. This avoids the use of tensor notation, resulting in a solution procedure that is
much easier to write and code, and feasible to implement in Matlab, the resulting code can
solve a medium size DSGE model in a competitive time.3 I also show how to use a similar
algorithm by Martin & Van Loan (2006) to solve the system of generalised Sylvester equa-

3The equivalent Matlab code using tensor notation would be significantly slower due to the speed with which
Matlab implements For loops. Dynare++ uses the Kamenik algorithm and tensor notation to solve nth
order approximations but is coded in C++ due to Matlab’s limitations.

2

tions and I compare the performance of both algorithms. In addition to providing Matlab
code for my solution method, I also provide Fortran and Matlab/Fortran mex code.4

The remainder of the paper is set out as follows; section 2 outlines the general problem
and the form the solutions take. In section 3 I present the second and third-order matrix
chain rules and in section 4, I give a brief description of the generalised Sylvester equation
solution algorithms. Sections 5 and 6 present the matrix chain rules for a second and a
third-order approximation of a DSGE model respectively. They also demonstrate the steps
required to get these matrices into the appropriate generalised Sylvester equation form. In
section 7 I demonstrate the performance of the algorithm using some small and medium
sized DSGE models, while section 8 concludes.

2. Preliminaries

Following Schmitt-Grohe & Uribe (2004) a large set of DSGE models can be recast in
the following form

Et (f (xt+1, yt+1, xt, yt)) = 0, (1)

where xt+1 is an nx×1 vector of the date t+ 1 predetermined variables and yt+1 is an ny×1
vector of the date t+ 1 non-predetermined variables, f is a function that maps R2nx+2ny into
Rnx+ny, and Et is the expectations operator conditional on date t information. The total
number of variables (and equations) in the model is n = nx+ ny.

As shown in Schmitt-Grohe & Uribe (2004) a solution to equation (1) takes the form:

xt+1 = h(xt, σ) + σεt+1, (2)

yt = g(xt, σ), (3)

where h(·) is a policy function that maps xt into xt+1, σ is the perturbation parameter, εt+1

is an nx× 1 vector of expectation errors and g(·) is a policy function that maps xt into yt.
Typically the functions h(·) and g(·) are unknown, and in general they are non-linear

and do not have exact analytical forms. Because an exact solution does not exist an ap-
proximate solution must be found. A common approximation strategy involves finding the
Taylor series expansion of the policy functions around the non-stochastic steady state. This
usually involves taking a first-order approximation of the policy functions. The resulting
linear/log-linear solution will be adequate for many problems. However taking a first-order
approximation introduces certainty equivalence into the solution which may be inappropriate

4Dynare/Dynare++ is the main alternative for solving third-order approximations of medium sized DSGE
models. However Dynare/Dynare++ package the routines in such a way that it makes it difficult to
combine them with other Matlab code. For example it would require some knowledge to integrate the
Dynare/Dynare++ solution routines into an external estimation procedure in an efficient way. The rou-
tines I present in this paper are standalone, meaning they do not rely on other toolboxes to run and are
therefore easy to combine with existing Matlab code and/or programs, they have similar performance to
Dynare/Dynare++, and are therefore a natural choice for practitioners developing procedures for estimating
non-linear DSGE models.

3

when studying the effects of risk, or when performing welfare analysis. There may also be
important asymmetries in the model that would be lost if only a first-order approximation
of the model were taken (see Kim & Ruge-Murcia, 2011). Solving a second-order approx-
imation introduces a constant correction for the effects of risk, while taking a third-order
approximation introduces a time varying risk term and an additional intercept correction for
the effect of skewed shocks. The increased computational demands, even with the smallest
of models, combined with only modest improvements in accuracy mean fourth and higher
order approximations are not commonly implemented. As will be explained in more detail
in this section, solving a second-order approximation requires the solution to the first-order
approximation, and solving a third-order approximation requires the solutions to both the
first and second-order approximations.

I follow such a strategy and obtain the second-order approximation of the policy functions
(equations (2) and (3))5

xt+1 = hxxt + 1
2
σ2hσσ + 1

2
hxx (xt ⊗ xt) + σεt+1, (4)

yt = gxxt + 1
2
σ2gσσ + 1

2
gxx (xt ⊗ xt) . (5)

The coefficient matrices for the first order terms gx and hx are given by

hx
nx×nx

=

∂h1

∂x1,t
· · · ∂h1

∂xi,t
· · · ∂h1

∂xnx,t
...

...
...

∂hq

∂x1,t
· · · ∂hq

∂xi,t
· · · ∂hq

∂xnx,t
...

...
...

∂hnx

∂x1,t
· · · ∂hnx

∂xi,t
· · · ∂hnx

∂xnx,t

 , gx
ny×nx

=

∂g1

∂x1,t
· · · ∂g1

∂xi,t
· · · ∂g1

∂xnx,t
...

...
...

∂gr

∂x1,t
· · · ∂gr

∂xi,t
· · · ∂gr

∂xnx,t
...

...
...

∂gny

∂x1,t
· · · ∂gny

∂xi,t
· · · ∂gny

∂xnx,t

,

where hq = hq(xt, σ) is the policy function for the qth predetermined variable for q =
1, · · · , nx and gr = gr(xt, σ) is the policy function for the rth non-predetermined variable
for r = 1, · · · , ny. The matrices gx and hx can be found using the algorithm described in
Klein (2000). The remaining terms in equations (4) and (5): gxx, hxx, gσσ and hσσ, are the
second derivatives of the policy functions and are defined as follows:

hxx
nx×nx2

=
[
hx,x1 · · · hx,xj · · · hx,xnx

]
, gxx

ny×nx2
=
[
gx,x1 · · · gx,xj · · · gx,xnx

]
,

hσσ
nx×1

=

∂2h1

∂σ2

...
∂2hq

∂σ2

...
∂2hnx

∂σ2

 , gσσ
ny×1

=

∂2g1

∂σ2

...
∂2gr

∂σ2

...
∂2gny

∂σ2

 ,

5Schmitt-Grohe & Uribe (2004) show that gσx = hσx = 0.

4

where

hx,xj
nx×nx

=

∂2h1

∂x1,t∂xj,t
· · · ∂2h1

∂xi,t∂xj,t
· · · ∂2h1

∂xnx,t∂xj,t
...

...
...

∂2hq

∂x1,t∂xj,t
· · · ∂2hq

∂xi,t∂xj,t
· · · ∂2hq

∂xnx,t∂xj,t
...

...
...

∂2hnx

∂x1,t∂xj,t
· · · ∂2hnx

∂xi,t∂xj,t
· · · ∂2hnx

∂xnx,t∂xj,t

,

gx,xj
ny×nx

=

∂2g1

∂x1,t∂xj,t
· · · ∂2g1

∂xi,t∂xj,t
· · · ∂2g1

∂xnx,t∂xj,t
...

...
...

∂2gr

∂x1,t∂xj,t
· · · ∂2gr

∂xi,t∂xj,t
· · · ∂2gr

∂xnx,t∂xj,t
...

...
...

∂2gnx

∂x1,t∂xj,t
· · · ∂2gnx

∂xi,t∂xj,t
· · · ∂2gnx

∂xnx,t∂xj,t

.

The matrices gxx and hxx are the coefficient matrices for the quadratic terms, while gσσ and
hσσ are the intercept corrections due to the presence of risk.

Similarly I obtain a third-order approximation to the policy functions (equations (2) and
(3))6

xt+1 = hxxt + 1
2
σ2hσσ + 1

2
hxx (xt ⊗ xt) + 1

6
σ2hσσσ + · · · (6)

· · ·+ 3
6
σ2hσσxxt + 1

6
hxxx (xt ⊗ xt ⊗ xt) + σεt+1,

yt = gxxt + 1
2
σ2gσσ + 1

2
gxx (xt ⊗ xt) + 1

6
σ2gσσσ + 3

6
σ2gσσxxt + 1

6
gxxx (xt ⊗ xt ⊗ xt) . (7)

The same first and second-order terms that appeared in equations (4) and (5) also appear
in the third-order solution, but now there are some additional third-order terms: gxxx, hxxx,
gσσx, hσσx, gσσσ and hσσσ, these are defined as follows:

hxxx
n×nx3

=
[
hx,x,x1 , · · · , hx,x,xk , · · · , hx,x,xnx

]
, gxxx

ny×nx3
=
[
gx,x,x1 , · · · , gx,x,xk , · · · , gnxx,x,xnx

]
,

hσσx
nx×nx

=

∂3h1

∂σ2∂x1,t
· · · ∂3h1

∂σ2∂xi,t
· · · ∂3h1

∂σ2∂xnx,t
...

...
...

∂3hj

∂σ2∂x1,t
· · · ∂3hj

∂σ2∂xi,t
· · · ∂3hj

∂σ2∂xnx,t
...

...
...

∂3hnx

∂σ2∂x1,t
· · · ∂3hnx

∂σ2∂xi,t
· · · ∂3hnx

∂σ2∂xnx,t

, gσσx

ny×nx
=

∂3g1

∂σ2∂x1,t
· · · ∂3g1

∂σ2∂xi,t
· · · ∂3g1

∂σ2∂xnx,t
...

...
...

∂3gj

∂σ2∂x1,t
· · · ∂3gj

∂σ2∂xi,t
· · · ∂3gj

∂σ2∂xnx,t
...

...
...

∂3gnx

∂σ2∂x1,t
· · · ∂3gnx

∂σ2∂xi,t
· · · ∂3gnx

∂σ2∂xnx,t

,

6Andreasen (2011) shows that gxxσ = hxxσ = 0.

5

hσσσ
nx×1

=

∂3h1

∂σ3

...
∂3hj

∂σ3

...
∂3hnx

∂σ3

 , gσσσ
ny×1

=

∂3g1

∂σ3

...
∂3gj

∂σ3

...
∂3gny

∂σ3

 ,
where

hx,x,xk
nx×nx3

=
[
hx,x1,xk · · · hx,xj ,xk · · · hx,xnx,xk

]
, gx,x,xk

ny×nx3
=
[
gx,x1,xk · · · gx,xj ,xk · · · gx,xnx,xk

]
,

and

hx,xj ,xk
nx×nx

=

∂3h1

∂x1,t∂xj,t∂xk,t
· · · ∂3h1

∂xi,t∂xj,t∂xk,t
· · · ∂3h1

∂xnx,t∂xj,t∂xk,t
...

...
...

∂3hq

∂x1,t∂xj,t∂xk,t
· · · ∂3hq

∂xi,t∂xj,t∂xk,t
· · · ∂3hq

∂xnx,t∂xk,t∂xl,t
...

...
...

∂3hnx

∂x1,t∂xj,t∂xk,t
· · · ∂3hnx

∂xi,t∂xj,t∂xk,t
· · · ∂3hnx

∂xnx,t∂xj,t∂xk,t

,

gx,xj ,xk
ny×nx

=

∂3g1

∂x1,t∂xj,t∂xk,t
· · · ∂3g1

∂xi,t∂xj,t∂xk,t
· · · ∂3g1

∂xnx,t∂xj,t∂xk,t
...

...
...

∂3gr

∂x1,t∂xj,t∂xk,t
· · · ∂3gr

∂xi,t∂xj,t∂xk,t
· · · ∂3gr

∂xnx,t∂xj,t∂xk,t
...

...
...

∂3gnx

∂x1,t∂xj,t∂xk,t
· · · ∂3gnx

∂xi,t∂xj,t∂xk,t
· · · ∂3gnx

∂xnx,t∂xj,t∂xk,t

.

The matrices gxxx and hxxx are the coefficient matrices on the cubic terms, while gσσx and
hσσx capture time varying risk. The terms gσσσ and hσσσ are intercept corrections that are
non-zero if the shocks come from a skewed distribution.

Finding the coefficient matrices in a second or a third-order Taylor series approximation
around the non-stochastic steady state is complicated by the fact that the policy functions
are unknown. However the implicit function theorem can be used to find chain rules involving
the unknown derivatives of the policy function. Solutions to lower orders of approximation
are required to solve higher orders of approximation; for example the first-order approxima-
tion is required to solve a second-order approximation, and both the first and second-order
approximations are required to solve a third-order approximation. The steps for finding a
second and a third-order approximation are outlined below:

i) First the policy functions in (2) and (3) are substituted into equation (1) to get

Etf (h(xt, σ) + σεt+1, g(h(xt, σ) + σεt+1, σ), xt, g(xt, σ)) = 0. (8)

ii) To find a first-order approximation, differentiate equation (8) with respect to all the
elements in xt. The resulting chain rule is a quadratic in terms of the unknown co-
efficient matrices gx and hx so a solution must be found using a method like the one

6

described in Klein (2000). This requires the gradient matrix to the function f , which
can be easily found.

iii) To find the second-order approximation, differentiate equation (8) twice with respect
to all combinations of the elements in xt. This results in a second-order chain rule.
The gradient matrix and the Hessian of the function f can easily be found, and the
solution to the first order approximation was found in step ii), so all that remains are
the unknown coefficients gxx and hxx. These can be found as the solution to a system
of linear equations. Similar steps can be used to find gσσ and hσσ.

iv) To find the third-order approximation to the policy functions, differentiate equation
(8) three times with respect to all combinations of the elements in xt. The resulting
chain rule is linear in the unknown coefficients gxxx and hxxx. The gradient matrix, the
Hessian and the matrix of third derivatives for the function f are easily found, and the
gradient matrix and the Hessian of the policy functions were found in steps ii) and iii).
The third-order terms can be found as the solution to a system of linear equations. A
similar set of steps can be taken to find gσσx, hσσx, gσσσ and hσσσ.

Typically the chain rules are represented using tensor notation (see Schmitt-Grohe & Uribe
(2004), Ruge-Murcia (2010) and Andreasen (2011) for examples). As discussed by Binning
(2013) there are drawbacks to using tensor notation, in particular tensor notation is difficult
to write down, difficult to code up and slow to implement when using Matlab. The method
for solving the system of linear equations also plays a key role in the efficiency of the solution
algorithm. Rearranging the chain rules into a system of generalised Sylvester equations is
more efficient than using standard matrix algebra. In particular Kamenik (2005) presents a
representation of the generalised Sylvester equations with a convenient Kronecker product
structure and an extremely efficient solution algorithm that exploits this structure. However
Kamenik (2005) uses tensor notation to find the matrices for his algorithm and tensor nota-
tion is not well suited to Matlab. In the next section I present second and third-order matrix
chain rules that are consistent with Kamenik’s generalised Sylvester equation representation.
The matrix chain rules are easier to write down and easier to code than tensor notation, and
faster to implement in Matlab.

3. A second and a third-order matrix chain rule

As discussed in the introduction, if a problem has a natural Sylvester equation structure,
exploiting this structure when solving the system of equations can result in significant per-
formance improvements, both in speed and memory usage. Two particular algorithms that
are extremely efficient at solving generalised Sylvester equations are Kamenik (2005) and
Martin & Van Loan (2006), especially when the problem has a certain Kronecker product
structure. Kamenik (2005) uses higher order chain rules written in tensor notation to solve
higher order approximations of DSGE models, but he is missing a theory of matrix chain
rules consistent with his Sylvester equation structure. Existing matrix chain rules by Magnus
& Neudecker (1999) (see Gomme & Klein, 2011) and Binning (2013) are not consistent with

7

the Kamenik form of the problem, nor are they unique. In this section I present a second and
third-order matrix chain rule that with a small amount of matrix algebra can be rewritten
into the form of generalised Sylvester equations that are consistent with both the Kamenik,
and Martin and Van Loan algorithms.

I begin with the second-order chain rule. Let x be a vector of variables so that

x = [x1, · · · , xi, · · · , xn]′ ,

for i = 1, · · · , n. Let f be an m-ary function of g, which in turn is an n-ary function of x so
that

y = f(g(x)), (9)

y = f(g1(x), · · · ,ga(x), · · · ,gm(x)),

for a = 1, · · · ,m. By Faà di Bruno’s formula (see Johnson, 2002) the second derivative of y
with respect to xi and xj is given by

∂2y

∂xi∂xj
=

m∑
a=1

m∑
b=1

∂2f

∂ga∂gb

(
∂ga

∂xi

)(
∂gb

∂xj

)
+

m∑
a=1

∂f

∂ga

(
∂2ga

∂xi∂xj

)
. (10)

This can be rewritten more compactly as

yi,j =
m∑
a=1

m∑
b=1

fa,bg
a
i g

b
j +

m∑
a=1

fag
a
i,j, (11)

where yi,j = ∂2y
∂xi∂xj

, fa,b = ∂2f
∂ga∂gb

, gai = ∂ga

∂xi
, gbj = ∂gb

∂xj
, fa = ∂f

∂ga
and gai,j = ∂2ga

∂xi∂xj
. The

derivative of equation (9) with respect to all possible combinations of xi and xj can be
written in matrix form (this is a Hessian matrix of sorts). This matrix form is a matrix
representation of the second-order chain rule. To write equation (11) in matrix form for all
possible combinations of xi and xj, I define a matrix Y with all possible second derivatives
of y such that

Y
1×n2

=
[
Ỹ1
1×n
, · · · , Ỹj

1×n

, · · · , Ỹn
1×n

]
,

where
Ỹj = [y1,j, · · · ,yi,j, · · · ,yn,j] ,

and the element in the 1st row and the i+ n(j − 1)th column of Y is given by

ỹ1,i+n(j−1) = yi,j.

Indexing the rows and columns in terms of the derivatives will be useful when it comes to
proving the matrix chain rule. In the second-order matrix chain rule of Magnus & Neudecker
(1999), the matrix Y is n × n. In order for the matrix chain rule to be consistent with
Kamenik’s algorithm I require Y to be 1×n2. The gradient vector for the function f is given
by D

D
1×m

= [f1, · · · , fa, · · · , fm] ,

8

where the element in the 1st row and the ath column of D is given by

d1,a = fa.

I form a matrix H of the second derivatives of the f function

H
1×m2

=
[
H̃1
1×m

, · · · , H̃a
1×m

, · · · , H̃m
1×m

]
,

where
H̃a = [fa,1, · · · , fa,b, · · · , fa,m],

and the element in the 1st row and the b+m(a− 1)th column of H is given by

h1,b+m(a−1) = fa,b.

Because H is a matrix of second derivatives, it can be thought of as a type of Hessian matrix.
Conventional Hessians are square matrices, while this is the transpose of a vectorised Hessian.
The gradient matrix for the g function is denoted by M

M
m×n

=

g1

1 · · · g1
i · · · g1

n
...

...
...

ga1 · · · gai · · · gan
...

...
...

gm1 · · · gmi · · · gmn

 ,

where
ma,i = gai ,

with ma,i the element in the ath row and the ith column of M. Finally I define the matrix
N, the Hessian of the function g

N
m×n2

=

g1

1,1 · · · g1
1,i · · · g1

j,1 · · · g1
j,i · · · g1

j,n · · · g1
n,1 · · · g1

n,i · · · g1
n,n

...
...

...
...

...
...

...
...

ga1,1 · · · ga1,i · · · gaj,1 · · · gaj,i · · · gaj,n · · · gan,1 · · · gan,i · · · gan,n
...

...
...

...
...

...
...

...
gm1,1 · · · gm1,i · · · gmj,1 · · · gmj,i · · · gmj,n · · · gmn,1 · · · gmn,i · · · gmn,n

 ,

where the element in the ath row and the i+ n(j − 1)th column of N is given by

na,i+n(j−1) = gaj,i.

Combining these matrices, I can now write down my representation for the second-order
matrix chain rule

9

Theorem 1. For Y,H,M,D and N defined previously and y = f(g(x)),

Y = H(M⊗M) +DN

is a valid representation of a second-order matrix chain rule.

Proof See Appendix B. �

I follow a similar pattern when defining a third-order matrix chain rule consistent with
a recursive generalised Sylvester equation solution. Using Faà di Bruno’s formula, the third
derivative of equation (9) with respect to xi, xj and xk is given by

∂3y

∂xi∂xj∂xk
=

m∑
a=1

m∑
b=1

m∑
c=1

∂f

∂ga∂gb∂gc

(
∂ga

∂xi

)(
∂gb

∂xj

)(
∂gc

∂xk

)
+ · · ·

· · ·+
m∑
a=1

m∑
b=1

∂2f

∂ga∂gb

(
∂ga

∂xi

)(
∂gb

∂xj∂xk

)
+ · · ·

· · ·+
m∑
a=1

m∑
b=1

∂2f

∂ga∂gb

(
∂ga

∂xj

)(
∂gb

∂xi∂xk

)
+ · · ·

· · ·+
m∑
a=1

m∑
b=1

∂2f

∂ga∂gb

(
∂ga

∂xk

)(
∂gb

∂xi∂xj

)
+ · · ·

· · ·+
m∑
a=1

∂f

∂ga

(
∂3ga

∂xi∂xj∂xk

)
.

Again the derivative of equation (9) with respect to all combinations of xi, xj and xk can
be written in matrix form. This will be a third-order matrix chain rule. Before presenting
the third-order matrix chain rule consistent with a recursive generalised Sylvester equation
form, I define some additional matrices required for the chain rule. I begin by defining Z,
the matrix of third derivatives of y

Z
1×n3

=

[
Ẑ1
1×n2

, · · · , Ẑk
1×n2

, · · · , Ẑn
1×n2

]
,

where

Ẑk =

[
Z̃1,k
1×n

, · · · , Z̃j,k
1×n

, · · · , Z̃n,k
1×n

]
, and Z̃j,k = [y1,j,k, · · · ,yi,j,k, · · · ,yn,j,k] ,

and the element in the 1st row and the i+ n(j − 1) + n2(k − 1)th column of Z is given by

z1,i+n(j−1)+n2(k−1) = yi,j,k.

10

This differs from the representation in Binning (2013). In that paper the matrix Z is n2×n,
in this paper Z is 1×n3 which is consistent with Kamenik’s representation. I let T represent
the matrix of third derivatives of the function f:

T
1×m3

=

[
T̂1

1×m2

, · · · , T̂c
1×m2

, · · · T̂m
1×m2

]
,

where

T̂c =

[
T̃1,c
m×1

, · · · , T̃b,c
m×1

, · · · , T̃m,c
m×1

]
, and T̃b,c = [f1,b,c, · · · , fa,b,c, · · · , fm,b,c] .

The element in the 1st row and the a+m(b− 1) +m2(c− 1)th column of T is given by

t1,a+m(b−1)+m2(c−1) = fa,b,c.

I let N∗ be a variation on the Hessian N so that

N∗
m.n×n3

=

[
I
n×n
⊗N, · · · , I

n×n
⊗N, · · · , I

n×n
⊗N

]
.

and the element in the k + n(a− 1)th row and the k + n(i− 1) + n2(j − 1)th column of N∗

is given by
n∗k+n(a−1),k+n(i−1)+n2(j−1) = gaj,i.

The matrix K, is the matrix of third derivatives of the g function

K
m×n3

=

[
K̂1
m×n2

, · · · , K̂k
m×n2

, · · · , K̂n
m×n2

]
,

where

K̂k =
[
K̃1,k
m×n

· · · K̃j,k
m×n

· · · K̃n,k
m×n

]
, and K̃j,k =

g1

1,j,k · · · g1
i,j,k · · · g1

n,j,k
...

...
...

ga1,j,k · · · gai,j,k · · · gan,j,k
...

...
...

gm1,j,k · · · gmi,j,k · · · gmn,j,k

 .

The element in the ath row and the i+ n(j − 1) + n2(k − 1)th column of K is given by

ka,i+n(j−1)+n2(k−1) = gai,j,k.

Using these matrices, I specify my third-order matrix chain rule as follows

Theorem 2. For Z,T ,M,H,N,N∗,D and K defined previously and y = f(g(x)),

Z = T(M⊗M⊗M) +H(M⊗N) +H(N⊗M) +H

(
M⊗ I

m×m

)
N∗ +DK

is a valid representation of the third-order matrix chain rule.

11

Proof See Appendix C. �

Theorems 1 and 2 are consistent with a recursive Sylvester equation solution, as will be
discussed in the next section.

4. A recursive Sylvester equation solution

In the previous section I outlined a new representation for the second and third-order
matrix chain rules. These chain rules are consistent with a recursive Sylvester equation
solution method. Two such algorithms are Kamenik (2005) and Martin & Van Loan (2006).
I give a brief description of each algorithm in this section.

4.1. Kamenik’s algorithm

The recursive Sylvester equation solution described in Kamenik (2005) works on gener-
alised Sylvester equations of the form

AX +BX
(
⊗kC

)
= Dk, (12)

where A and B are known n×n matrices, C is a known m×m matrix, Dk is a known n×mk

matrix and X is an n×mk matrix of unknowns. ⊗k is the kth order Kronecker product of
the matrix C. As described in Kamenik (2005), the algorithm consists of three steps. The
first step is preconditioning, a suitable linear transformation of the model must be found.
This is done by premultiplying equation (12) by A−1 which gives

X + A−1BX
(
⊗kC

)
= A−1Dk. (13)

Following Kamenik (2005) I find the real Schur decompositions K = U(A−1B)U ′ and F =
V CV ′ which allows equation (13) to be written as

Y +KY (⊗kF) = D̄k, (14)

Y = UX(⊗kV ′), (15)

D̄k = UA−1Dk(⊗kV ′). (16)

The second step is the recursive solution of equation (14). I vectorise equation (14) to obtain(
I + (⊗kF ′ ⊗K)

)
vec(Y) = vec(D̄k). (17)

Equation (17) can be solved directly by calculating the Kronecker products and using ele-
mentary matrix algebra, but this is inefficient. Instead the Kamenik algorithm can be used
to break this into smaller blocks to be solved individually, the results can be used to elimi-
nate columns by updating the system through back substitution. I adopt the more compact
notation of Kamenik by using the following definitions

F[k] = ⊗kF ′ ⊗K, where F[0] = K.

12

The algorithm exploits the Kronecker product structure by solving the level k problem with
the solutions to the same problem at level k − 1. The matrices F and K will be quasi-
triangular, and if the first eigenvalue of F is real (I denote this r = F11) and y is the first
part of Y chosen to be the same size as F[k−1], then y will be the solution to

(I + r · F[k−1])y = d. (18)

If the first eigenvalue of F is complex, then the first two parts of Y and D̄k are chosen. The
first two parts of Y will be a solution to(

I +

(
α β1

−β2 α

)
⊗ F[k−1]

)(
y1

y2

)
=

(
d1

d2

)
, (19)

where α, β1 and β2 make up the first complex eigenvalue block.
The solution to equation (18) or (19) is then used to eliminate all non-zero elements

below the first block (this is because F ′ is lower quasi-triangular). In the real case this is
done as follows

dj ←− dj − F1j · (F[k−1])y for all j = 2, · · · ,m,

and in the complex case

dj ←− dj − F1j · (F[k−1])y1 − F2j · (F[k−1])y2 for all j = 2, · · · ,m.

Once the elements have been eliminated and D̄k has been updated, equation (18) or (19)
can be used to find the next block of Y . If k = 0 the solution of equation (18) is straight
forward, however the solution of equation (18) could depend on the solution of equation (19)
which is more complicated. I refer the reader to Kamenik (2005) for a full description of how
equations (18) and (19) are solved. To recover the results, the solution to equation (14) is
multiplied by X = U ′Y (⊗kV).

4.2. Martin and Van Loan’s algorithm

Martin & Van Loan (2006) take a similar approach to Kamenik (2005) to solve problems
like equation (12). To get equation (12) into the correct form, it can be rewritten as

X + PX(⊗kC) = Z,

where P = A−1B and Z = A−1Dk. Using the vec operator, I obtain((
⊗kS ⊗ P

)
− λI

)
x = z,

where S = C ′, x = vec(X), z = vec(Z) and λ = −1. Martin & Van Loan (2006) refer to
this as a shifted Kronecker product system.
Taking the real Schur decomposition of S and P gives((

⊗kR⊗W
)
− λI

)
y = q, (20)

13

where R = Q−1SQ, W = U−1PU , y = (⊗kQ ⊗ U)x and q = (⊗kQ ⊗ U)z. The matrices
R and W are upper quasi-triangular and the matrices Q and U are unitary matrices. This
system is then solved using a similar approach to Kamenik (2005), that is the solutions to
the problem at level k − 1 are used to solve the problem at level k. However, the Martin
and Van Loan algorithm differs in the treatment of the complex eigenvalues (if any) in the
upper quasi-triangular matrices. Kamenik (2005) uses real algebra to solve these blocks (see
equation (19)) while Martin & Van Loan (2006) use the complex Schur decomposition to
solve these blocks.

5. Second-order approximation

This section describes how to apply the second-order matrix chain rule from Theorem 1
to find a second-order approximation of a DSGE model, conditional on the solution to the
first-order having been found. In particular I describe the steps required to get the matrix
chain rule into the form of a system of generalised Sylvester equations that can be solved
using a recursive generalised Sylvester equation solution algorithm.

5.1. Finding gxx and hxx

First I define the matrices required for the second-order matrix chain rule in Theorem 1,
then I find the generalised Sylvester equation representation of the problem for the unknown
coefficient matrices; gxx and hxx.

5.1.1. Matrix definitions

I begin by allowing xt to represent the nx× 1 vector of predetermined date t variables:

xt
nx×1

= [x1,t, · · · , xi,t, · · · , xnx,t]′ . (21)

Likewise, the date t vector of non-predetermined variables, yt is given by

yt
ny×1

= [y1,t, · · · , yi,t, · · · , yny,t]′ . (22)

Using definitions (21) and (22) I define the gradient vector of equation (1) to be

D
n×2n

=
[

∂f
∂x′t+1

, ∂f
∂y′t+1

, ∂f
∂x′t
, ∂f

∂y′t

]
. (23)

It follows from equation (23) that the Hessian of equation (1) can be written as

H
n×4n2

=
[

∂D
∂x′t+1

, ∂D
∂y′t+1

, ∂D
∂x′t
, ∂D

∂y′t

]
.

Note that this definition of the Hessian differs from standard definition of the Hessian and
the definition used in Gomme & Klein (2011). However it is consistent with the Kamenik
form of the problem.

14

The gradient matrix for the policy functions has the following form

Mx
2n×nx

=

hx
gxhx
I

nx×nx

gx

 .
This is the same as the gradient matrix used in Gomme & Klein (2011) and Binning (2013).

5.1.2. Solution

Applying the second-order matrix chain rule (from Theorem 1) to equation (8) results in
the following system of equations

H(Mx ⊗Mx) +D

hxx

gxhxx + gxx (hx ⊗ hx)
0

nx×nx2

gxx

 = 0
n×nx2

. (24)

Note that Theorem 1 is applied to equation (8) directly and to yt+1 = g(h(xt, σ) + σεt+1, σ)
because it is also a composition function. To get equation (24) into the form of a generalised
Sylvester equation I partition the matrix D so that

H(Mx ⊗Mx) +

[
d1
n×nx

, d2
n×ny

, d3
n×nx

, d4
n×ny

]
hxx

gxhxx + gxx (hx ⊗ hx)
0

nx×nx2

gxx

 = 0
n×nx2

. (25)

From equation (25) I obtain the system of equations

H(Mx ⊗Mx) + [d1 + d2gx, d4]

[
hxx
gxx

]
+

[
0

n×nx
, d2

] [
hxx
gxx

]
(hx ⊗ hx) = 0

n×nx2
. (26)

Equation (26) takes the form of a generalised Sylvester equation

AX +BX (C ⊗ C) = D2, (27)

where

A = [d1 + d2gx, d4] ,

B =

[
0

n×nx
, d2

]
,

C = hx,

X =

[
hxx
gxx

]
,

D2 = −H(Mx ⊗Mx).

15

Pre-multiplying equation (12) by A−1 gives

X + A−1BX(C ⊗ C) = A−1D2. (28)

Equation (28) can be solved by using one of the recursive Sylvester equation algorithms
described in this paper.

5.2. Finding gσσ and hσσ

In this subsection, I define some additional matrices required for the solution before
outlining the second-order matrix chain rule which can be solved to find the unknown coef-
ficients; gσσ and hσσ.

5.2.1. Matrix definitions

I allow Nσ to denote the first derivative of the policy functions with respect to the
perturbation parameter σ

Nσ
2n×nx

=

 I
nx×nx

gx
0

n×nx

 .
This matrix is the same as the one defined in Gomme & Klein (2011) and Binning (2013).

I also define the variance-covariance matrix for the one step ahead prediction errors for
the predetermined variables as

Σ
nx×nx

=

 σ2
1 · · · σ1,nx
...

...
σnx,1 · · · σ2

nx

 ,
where σ2

i = Et

[
u2
i,t

]
, σi,j = Et [ui,tuj,t] and ui,t is the prediction error for the ith predetermined

variable.

5.2.2. Solution

Using the second-order matrix chain rule (from Theorem 1) I write the second derivative
of equation (8) with respect to σ as follows

trm(H(Nσ ⊗NσΣ)) +D

hσσ

gxhσσ + gσσ + trm

(
gxx

(
I

nx×nx
⊗ Σ

))
0

nx×1

gσσ

 = 0
n×1
,

where trm is the matrix trace, which for a given matrix G is defined as follows

trm

(
G
p×k2

)
=

k∑
i=1

G(:, i+ (i− 1)k).

16

This differs from the definition in Gomme & Klein (2011) and Binning (2013). The matrix
trace appears in this problem as the consequence of taking the expectation of a matrix of
random variables. See Appendix A for a further explanation.

To solve for the unknown coefficients gσσ and hσσ I partition the matrix D in equation
(5.2.2) as follows

trm(H(Nσ⊗NσΣ))+[d1, d2, d3, d4]

hσσ

gxhσσ + gσσ + trm

(
gxx

(
I

nx×nx
⊗ Σ

))
0

nx×1

gσσ

 = 0
n×1
. (29)

Equation (29) can be rearranged to obtain

trm(H(Nσ ⊗NσΣ)) + d2trm

(
gxx

(
I

nx×nx
⊗ Σ

))
+ [d1 + d2gx, d2 + d4]

[
hσσ
gσσ

]
= 0

n×1
. (30)

Equation (30) is then easily written as

AX = B, (31)

where

A = [d1 + d2gx, d2 + d4] ,

X =

[
hσσ
gσσ

]
,

B = −trm(H(Nσ ⊗NσΣ))− d2trm

(
gxx

(
I

nx×nx
⊗ Σ

))
,

which can be solved using standard matrix algebra.

6. Third-order approximation

As mentioned previously, gx and hx are known, and gxx, hxx, gσσ and hσσ can be found
using the algorithms described in the previous sections. The rest of this section outlines
the application of the third-order matrix chain rule from Theorem 2 to find gxxx, hxxx, gσσx,
hσσx, gσσσ and hσσσ. The additional steps required to get the chain-rules in the form of a
generalised Sylvester equation consistent with a recursive solution algorithm are also covered.
Note that if the third moment of the shocks is equal to zero, then gσσσ and hσσσ will also be
equal to zero.

6.1. Finding gxxx and hxxx

In this section I define some matrices required for the solution, then I describe the third-
order matrix chain rule which can be written as a system of generalised Sylvester equations
and solved to find the matrices, gxxx and hxxx.

17

6.1.1. Matrix definitions

The matrix of third derivatives for the function f in equation (1) is given by

T
n×8n3

=
[

∂H
∂x′t+1

, ∂H
∂y′t+1

, ∂H
∂x′t
, ∂H

∂y′t

]
.

The Hessian of the policy functions is given by

Mxx
2n×nx2

=

hxx

gxx (hx ⊗ hx) + gxhxx
0

nx×nx2

gxx

 .
This can be partitioned according to the second derivative of each predetermined variable
so that

Mxx =

[
M1

xx
2n×nx

, · · · , M i
xx

2n×nx
, · · · ,Mnx

xx
2n×nx

]
. (32)

Using the partitions from equation (32), I define an alternative Hessian matrix for the policy
functions

M †
xx

2n.nx×nx3
=

[
I

nx×nx
⊗M1

xx, · · · , I
nx×nx

⊗M i
xx, · · · , I

nx×nx
⊗Mnx

xx

]
.

I also partition the second derivative of the policy function h(·) in a similar fashion to
equation (32)

hxx =

[
h1
xx

nx×nx
, · · · , hixx

nx×nx
, · · · , hnxxx

nx×nx

]
. (33)

Using the partitions from equation (33), I define an alternative Hessian for the policy function
h(·)

h†xx
nx2×nx3

=

[
I

nx×nx
⊗ h1

xx, · · · , I
nx×nx

⊗ h2
xx, · · · , I

nx×nx
⊗ hnxxx

]
.

6.1.2. Solution

Using the third-order matrix chain rule (from Theorem 2), I write the system of equations
I need to solve to find gxxx and hxxx as

T (Mx ⊗Mx ⊗Mx) +H(Mxx ⊗Mx) + · · ·

· · ·+H(Mx ⊗Mxx) +H

(
Mx ⊗ I

2n×2n

)
M †

xx + · · ·

· · ·+D

hxxx
gxhxxx + gxx(hxx ⊗ hx) + gxx(hx ⊗ hxx) + · · ·

· · ·+ gxx

(
hx ⊗ I

nx×nx

)
h†xx + gxxx (hx ⊗ hx ⊗ hx)

0
nx×nx3

gxxx

= 0

n×nx3
. (34)

18

Note that Theorem 2 is applied to equation (8) directly and to yt+1 = g(h(xt, σ) + σεt+1, σ)
because it is also a composition function. To get equation (34) in the form of a generalised
Sylvester equation I partition the matrix D, as follows

T (Mx ⊗Mx ⊗Mx) +H(Mxx ⊗Mx) + · · ·

· · ·+H(Mx ⊗Mxx) +H

(
Mx ⊗ I

2n×2n

)
M †

xx + · · ·

· · ·+ [d1, d2, d3, d4]

hxxx
gxhxxx + gxx(hxx ⊗ hx) + gxx(hx ⊗ hxx) + · · ·

· · ·+ gxx

(
hx ⊗ I

nx×nx

)
h†xx + gxxx (hx ⊗ hx ⊗ hx)

0
nx×nx3

gxxx

= 0

n×nx3
. (35)

I can rewrite equation (35) as

T (Mx ⊗Mx ⊗Mx) +H(Mxx ⊗Mx) +H(Mx ⊗Mxx) +H

(
Mx ⊗ I

2n×2n

)
M †

xx + · · ·

· · ·+ d2

[
gxx(hx ⊗ hxx) + gxx(hxx ⊗ hx) + gxx

(
hx ⊗ I

nx×nx

)
h†xx

]
+ · · ·

· · ·+ [d1 + d2gx, d4]

[
hxxx
gxxx

]
+

[
0

n×nx
, d2

] [
hxxx
gxxx

]
(hx ⊗ hx ⊗ hx) = 0

n×nx3
, (36)

Equation (36) can then be written as the generalised Sylvester equation

AX +BX (C ⊗ C ⊗ C) = D3, (37)

where

A = [d1 + d2gx, d4] ,

B =

[
0

n×nx
, d2

]
,

C = hx,

X =

[
hxxx
gxxx

]
,

D3 = −T (Mx ⊗Mx ⊗Mx)−H(Mxx ⊗Mx)−H(Mx ⊗Mxx)− · · ·

· · · −H
(
Mx ⊗ I

2n×2n

)
M †

xx − d2

[
gxx(hx ⊗ hxx) + gxx(hxx ⊗ hx) + gxx

(
hx ⊗ I

nx×nx

)
h†xx

]
.

Premultiplying equation (37) by A−1 gives

X + A−1BX(C ⊗ C ⊗ C) = A−1D3. (38)

Just as was done with the second-order approximation (section 5), equation (38) can be
solved using either the algorithm of Kamenik (2005) or the algorithm of Martin & Van Loan
(2006).

19

6.2. Finding gσσx and hσσx

Next I find the time varying risk terms gσσx and hσσx, but first I define some additional
matrices required to write out the problem.

6.2.1. Matrix definitions

I begin by defining the third derivative of the policy functions with respect to xt and σ

Nσx
2n×nx2

=

0

nx×nx2

gxx

(
hx ⊗ I

nx×nx

)
0

n×nx2

 ,
I also define the Hessian of equation (8) with respect to σ as

Pσσ
2n×1

=

hσσ

gxhσσ + trm

(
gxx

(
I

nx×nx
⊗ Σ

))
+ gσσ

0
nx×1

gσσ

 .
6.2.2. Solution

Using the third-order matrix chain rule (from Theorem 2) I can differentiate equation
(8) with respect to σ (twice) and with respect to all elements in xt to obtain

trm(T (Mx ⊗Nσ ⊗NσΣ)) + 2× trm(H(Nσx ⊗NσΣ)) +H (Mx ⊗ Pσσ) + · · ·

· · ·+D

hσσx

gxhσσx+trm

(
gxxx

(
hx ⊗ I

nx2×nx2

)(
I

nx2×nx2
⊗ Σ

))
+ · · ·

· · ·+ gxx(hx ⊗ hσσ) + gσσxhx
0

nx×nx

gσσx

= 0

n×nx
. (39)

To get equation (39) in the form of a generalised Sylvester equation I partition the the matrix
D so that

trm(T (Mx ⊗Nσ ⊗NσΣ)) + 2× trm(H(Nσx ⊗NσΣ)) +H (Mx ⊗ Pσσ) + · · ·

· · ·+ [d1, d2, d3, d4]

hσσx

gxhσσx+trm

(
gxxx

(
hx ⊗ I

nx2×nx2

)(
I

nx2×nx2
⊗ Σ

))
+ · · ·

· · ·+ gxx(hx ⊗ hσσ) + gσσxhx
0

n×nx

gσσx

= 0

n×nx
.

(40)

20

I rearrange equation (40) to obtain

trm(T (Mx ⊗Nσ ⊗NσΣ)) + 2× trm(H(Nσx ⊗NσΣ)) +H (Mx ⊗ Pσσ) + · · ·

· · ·+ d2

[
trm

(
gxxx

(
hx ⊗ I

nx2×nx2

)(
I

nx2×nx2
⊗ Σ

))
+ gxx(hx ⊗ hσσ)

]
+ · · ·

· · ·+ [d1 + d2gx, d4]

[
hσσx
gσσx

]
+

[
0

n×nx
, d2

] [
hσσx
gσσx

]
hx = 0

n×nx
. (41)

Equation (41) can be rewritten as the generalised Sylvester equation

AX +BXC = D1, (42)

where

A = [d1 + d2gx, d4] ,

B =

[
0

n×nx
, d2

]
,

C = hx,

D1 = −trm(T (Mx ⊗Nσ ⊗NσΣ))− 2× trm(H(Nσx ⊗NσΣ))− · · ·

· · · −H (Mx ⊗ Pσσ)− d2

[
trm

(
gxxx

(
hx ⊗ I

nx2×nx2

)(
I

nx2×nx2
⊗ Σ

))
+ gxx(hx ⊗ hσσ)

]
.

Premultiplying equation (42) by A−1 gives

X + A−1BXC = A−1D1. (43)

As in the previous section, equation (43) can be solved using the recursive solution method
of Kamenik (2005), or Martin & Van Loan (2006).

6.3. Finding gσσσ and hσσσ

In this section I solve for gσσσ and hσσσ. If the shocks are symmetrically distributed then
gσσσ and hσσσ will be equal to zero.

6.3.1. Matrix definitions

I define some additional matrices in this subsection. The Hessian of the policy functions
(with respect to σ) can be written as

Nσσ
2n×nx

=

0

nx×nx2

gxx
0

n×nx2

 .

21

I also define the matrix Γ to be the skewness-coskewness matrix

Γ
nx×nx2

=

 γ1 γ1,1,2 · · · γ1,nx,nx
...

...
γnx,1,1 · · · · · · γnx

 .
The skewness matrix contains the third moments of the prediction errors, where γi =
Et
[
u3
i,t

]
, γi,j,k = Et [ui,tuj,tuk,t], and ui,t is the prediction error for the ith predetermined

variable. This follows from the definition of the variance-covariance matrix: Σ = Et [ut ⊗ u′t],
so that Γ = Et [ut ⊗ u′t ⊗ u′t], where ut is a vector of prediction errors. If all the shocks are
symmetrically distributed, this matrix will have zeros for all of its entries.

6.3.2. Solution

Using the third-order matrix chain rule defined (from Theorem 2), I can write the third
derivative of equation (8) with respect to σ as

trm(T (Nσ ⊗Nσ ⊗NσΓ)) + 3× trm (H (Nσσ ⊗NσΓ)) + · · ·

· · ·+D

hσσσ

gxhσσσ + gσσσ + trm

(
gxxx

(
I

nx2×nx2
⊗ Γ

))
0

nx×1

gσσσ

 = 0
n×1
. (44)

To find the unknown coefficient matrices gσσσ and hσσσ I partition the matrix D so that

trm(T (Nσ ⊗Nσ ⊗NσΓ)) + 3× trm (H (Nσσ ⊗NσΓ)) + · · ·

· · ·+ [d1, d2, d3, d4]

hσσσ

gxhσσσ + gσσσ + trm

(
gxxx

(
I

nx2×nx2
⊗ Γ

))
0

nx×1

gσσσ

 = 0
n×1
. (45)

I rewrite equation (45) as

trm(T (Nσ ⊗Nσ ⊗NσΓ)) + 3× trm (H (Nσσ ⊗NσΓ)) + · · ·

· · ·+ d2trm

(
gxxx

(
I

nx2×nx2
⊗ Γ

))
+ [d1 + d2gx, d2 + d4]

[
hσσσ
gσσσ

]
= 0

n×1
. (46)

Equation (46) can be rewritten as
AX = B, (47)

22

where

A = [d1 + d2gx, d2 + d4] ,

X =

[
hσσσ
gσσσ

]
,

B = −trm(T (Nσ ⊗Nσ ⊗NσΓ)) + · · ·

· · ·+ 3× trm (H (Nσσ ⊗NσΓ))− d2trm

(
gxxx

(
I

nx2×nx2
⊗ Γ

))
.

Equation (47) can easily be solved using standard matrix algebra.

7. Performance

I demonstrate the performance of my solution method using 4 models of various sizes in
this section. I record the times taken to solve each model (in seconds) for a second-order
solution (finding the gxx, hxx, gσσ and hσσ terms) and a third-order solution (finding the
gxxx, hxxx, gσσx, hσσx , gσσσ and hσσσ terms). I also compare the performance between the
Kamenik solution algorithm and the Martin and Van Loan solution method for solving the
Sylvester equations, and how the algorithms perform on a 32 bit computer (2 cores), a 64 bit
computer (8 cores) and using the Matlab/Fortran mex functions on the 64 bit computer (8
cores).7 I have only written Fortran code for the Kamenik algorithm, so there are no times
recorded in the Matlab/Fortran mex column for the Martin and Van Loan algorithm.

The first model is a very simple RBC model with external habit formation. The model
has 4 predetermined variables and 2 non-predetermined variables (6 equations in total). The
equations are presented in Appendix D.1.

Table 1: Computation Times: RBC Model with habit

32 bit Matlab 64 bit Matlab
64 bit

Matlab/Fortran Mex

Second-order∗ 0.002215 0.003068 1.644566×10−4

Second-order∗∗ 0.003661 0.003590 NA

Third-order∗ 0.009165 0.007501 0.001987

Third-order∗∗ 0.016965 0.015241 NA

1 Model size: n = 6, nx = 4, ny = 2.
2 ∗ = Kamenik algorithm, ∗∗ = Martin and Van Loan algorithm.

7The 32bit desktop pc has an Intel Core 2Duo 3.0GHz processor with 4096MB RAM. The 64bit computer
has an Intel Xeon 3.5GHz processor with 8 cores and 32756MB RAM.

23

The second model I test is a simple New Keynesian DSGE model with habit formation,
Rotemberg pricing with indexation and persistence in the Taylor rule. The model has 11
predetermined variables and 5 non-predetermined variables (16 equations in total). See
Appendix D.2 for a description of the model equations.

Table 2: Computation Times: NK Model

32 bit Matlab 64 bit Matlab
64 bit

Matlab/Fortran Mex

Second-order∗ 0.014846 0.012749 0.002766

Second-order∗∗ 0.039877 0.029043 NA

Third-order∗ 0.209835 0.194977 0.043463

Third-order∗∗ 0.525145 0.421423 NA

1 Model size: n = 16, nx = 11, ny = 5.
2 ∗ = Kamenik algorithm, ∗∗ = Martin and Van Loan algorithm.

The third model is a Gali and Monacelli type open economy model (see Gali & Monacelli,
2008), with habit formation, Calvo pricing with indexation and persistence in the Taylor
rule. The model has 21 predetermined variables and 11 non-predetermined variables (32
equations in total). The model equations are presented in Appendix D.3.

Table 3: Computation Times: Open Economy NK Model

32 bit Matlab 64 bit Matlab
64 bit

Matlab/Fortran Mex

Second-order∗ 0.079749 0.062015 0.017121

Second-order∗∗ 0.219507 0.180435 NA

Third-order∗ 3.832276 2.326913 1.002582

Third-order∗∗ 7.015808 5.138845 NA

1 Model size: n = 32, nx = 21, ny = 11.
2 ∗ = Kamenik algorithm, ∗∗ = Martin and Van Loan algorithm.

The fourth model is a two country open economy model with Epstein Zin preferences, Rotem-
berg pricing with indexation and persistence in the Taylor rule. The model has 20 predeter-
mined variables and 33 non-predetermined variables (53 equations in total). See Appendix
D.4 for a description of the model equations.

24

Table 4: Computation Times: Open Economy NK EZ Model

32 bit Matlab 64 bit Matlab
64 bit

Matlab/Fortran Mex

Second-order∗ 0.127550 0.099659 0.043101

Second-order∗∗ 0.327706 0.245445 NA

Third-order∗ 8.665429 5.026511 3.089053

Third-order∗∗ 12.715805 8.773993 NA

1 Model size: n = 53, nx = 20, ny = 33.
2 ∗ = Kamenik algorithm, ∗∗ = Martin and Van Loan algorithm.

From all four examples, the Matlab/Fortran mex code is always faster than the pure Matlab
code, as would be expected. The Matlab/Fortran mex version of the code using the Kamenik
algorithm is between 1.6 and 18 times faster than the same code written in Matlab on the
same platform. The Kamenik algorithm is always faster than the Martin and Van Loan
algorithm. This is probably because it is faster to solve the complex eigenvalues from the
real Schur decomposition using real algebra than it is using complex algebra.

Using the Matlab/Fortran mex code, it takes slightly more than 3 seconds to find a sec-
ond and a third-order approximation of a model with 53 equations in total. This time is
comparable to Dynare/Dynare++.8 Using the Matlab version of the code on the 64 bit com-
puter it takes approximately 5.13 seconds to find a second and a third-order approximation
of the same model, and less than 9 seconds to find the same second and third-order solutions
on a 32 bit desk top pc. Trying to find a third-order approximation of the same model using
Matlab code from Andreasen (2011) or from Binning (2013) on the 32 bit desk top pc would
be impossible as it would require too much memory.

The solution times for the third-order approximation include the solution of the gσσσ and
hσσσ terms, if these were not required because the shocks were symmetrically distributed,
the third-order solution would take less time to solve.

8. Conclusion

In this paper, I have presented a new method for solving second and third-order approx-
imations of DSGE models. In particular I have presented the matrix chain rules and algebra
that are consistent with using a recursive Sylvester equation solution. I have also shown
that this solution method can solve small and medium size DSGE models in a competitive

8Based on times from the Dynare++ website for models of comparable size.

25

time, using only Matlab code. My Matlab/Fortran mex code provides a quick solution and
is comparable in speed to Dynare/Dynare++. The routines that accompany this paper are
standalone, so they do not require any additional toolboxes to run and they can easily be
combined with other Matlab code, something that should make them attractive to prac-
titioners who require a lot of flexibility, for example those developing estimation routines
for non-linear DSGE models. Existing routines in Dynare/Dynare++ are fast, but are not
so flexible in there implementation, making them more difficult to combine with external
routines in an efficient way.

Appendix A. Matrix trace and expectations

In this appendix I explain how to derive the definition of the matrix trace I use in this
paper. Let ε be an m× 1 random vector, X be an n×m matrix and A be an n× n matrix
then the expectation of the matrix product ε′X ′AXε is given by

E [ε′X ′AXε] = [E(ε)′E(X)′]A [E(x)E(ε)] + tr(X ′AXΣ) (A.1)

where Σ = E [εε′], (see Rice, 2007, chapter 14).
If I assume that E [ε] = 0, then I have

E [ε′X ′AXε] = tr(X ′AXΣ) (A.2)

Using tr(BC) = vec(B′)′vec(C) I can rewrite equation (A.2) as

E [ε′X ′AXε] = tr(IΣX ′AX) (A.3)

= vec(I ′)′vec(ΣX ′AX)

= vec(I)′(X ′ ⊗ ΣX ′)vec(A)

Taking the transpose gives

E [ε′X ′A′Xε] = vec(A)′(X ⊗XΣ)vec(I)

= A∗(X ⊗XΣ)vec(I)

= Gvec(I)

=
n∑
i=1

G(:, i+ n(i− 1))

where A∗ = vec(A)′, and G = A∗(X ⊗XΣ).

Appendix B. Second-order matrix chain rule proof

Proof From Theorem 1 the proposed second-order matrix chain rule takes the form

Y = H(M⊗M) +DN. (B.1)

26

To prove this a second-order matrix chain rule I need to show that Faà di Bruno’s formula
holds for each element in Y. Equation (B.1) can be rewritten as

Y = S1 + S2,

where S1 = H(M⊗M) and S2 = DN. Showing that Faà di Bruno’s formula holds for each
element in Y means showing that

y1,i+n(j−1) = s1
1,i+n(j−1) + s2

1,i+n(j−1),

=
m∑
a=1

m∑
b=1

fa,bg
a
i g

b
j +

m∑
a=1

fag
a
i,j,

where

s1
1,i+n(j−1) =

m∑
a=1

m∑
b=1

fa,bg
a
i g

b
j,

s2
1,i+n(j−1) =

m∑
a=1

fag
a
i,j,

y1,i+n(j−1) = yi,j.

This can be done in 2 steps, first I need to show that s1
1,i+n(j−1) =

m∑
a=1

m∑
b=1

fa,bg
a
i g

b
j and then

I need to show that s2
1,i+n(j−1) =

m∑
a=1

fag
a
i,j.

Step 1

I need to show that s1
1,i+n(j−1) =

m∑
a=1

m∑
b=1

fa,bg
a
i g

b
j. I begin by defining Θ1

Θ1
m2×n2

= M⊗M =

P1

1 · · · P1
i · · · P1

n
...

...
...

Pa1 · · · Pai · · · Pan
...

...
...

Pm1 · · · Pmi · · · Pmn

 ,

where

Pai
m×n

=

gai g

1
1 · · · gai g

1
j · · · gai g

1
n

...
...

...
gai g

b
1 · · · gai g

b
j · · · gai g

b
n

...
...

...
gai g

m
1 · · · gai g

m
j · · · gai g

m
n

 .

27

The element in the b+m(a− 1)th row and the i+n(j− 1)th column of Θ1 is given by

θ1
b+m(a−1),i+n(j−1) = gai g

b
j.

The elements in H are indexed such that h1,b+m(a−1) = fa,b. Premultiplying Θ1 by H

S1 = H(M⊗M) =

m∑
a=1

m∑
b=1

fa,bg
a
1g
b
1

...
m∑
a=1

m∑
b=1

fa,bg
a
i g
b
1

...
m∑
a=1

m∑
b=1

fa,bg
a
ng

b
1

...
m∑
a=1

m∑
b=1

fa,bg
a
1g
b
j

...
m∑
a=1

m∑
b=1

fa,bg
a
i g
b
j

...
m∑
a=1

m∑
b=1

fa,bg
a
ng

b
j

...
m∑
a=1

m∑
b=1

fa,bg
a
1g
b
n

...
m∑
a=1

m∑
b=1

fa,bg
a
i g
b
n

...
m∑
a=1

m∑
b=1

fa,bg
a
ng

b
n

′

where

s1
1,i+n(j−1) =

m∑
a=1

m∑
b=1

fa,bg
a
i g

b
j,

as required.

Step 2

I need to show that s2
1,i+n(j−1) =

m∑
a=1

fag
a
i,j where S2 = DN. As defined in section 3 the

28

elements in D and N are indexed as follows: d1,a = fa and na,i+n(j−1) = gaj,i. So that

S2 = DN =

m∑
a=1

fag
a
1,1

...
m∑
a=1

fag
a
i,1

...
m∑
a=1

fag
a
n,1

...
m∑
a=1

fag
a
1,j

...
m∑
a=1

fag
a
i,j

...
m∑
a=1

fag
a
n,j

...
m∑
a=1

fag
a
1,n

...
m∑
a=1

fag
a
i,n

...
m∑
a=1

fag
a
n,n

′

,

with

s2
1,i+n(j−1) =

m∑
a=1

fag
a
i,j,

as required.

Appendix C. Third-order matrix chain rule proof

Proof From Theorem 2, the proposed third-order chain rule is given by

Z = T(M⊗M⊗M) +H(M⊗N) +H(N⊗M) +H

(
M⊗ I

m×m

)
N∗ +DK,

29

this can be rewritten as
Z = S1 + S2 + S3 + S4 + S5,

where

S1 = T(M⊗M⊗M),

S2 = H(M⊗N),

S3 = H(N⊗M),

S4 = H

(
M⊗ I

m×m

)
N∗,

S5 = DK.

The proof for the Theorem 2 proceeds in the same fashion as the proof for Theorem 1,
namely I need to show that Faà di Bruno’s formula holds for each element in Z or more
specifically the following 5 equations hold

s1
1,i+n(j−1)+n2(k−1) =

m∑
a=1

m∑
b=1

m∑
c=1

fa,b,cg
a
i g

b
jg

c
k,

s2
1,i+n(j−1)+n2(k−1) =

m∑
a=1

m∑
b=1

fa,bg
a
kg

b
i,j,

s3
1,i+n(j−1)+n2(k−1) =

m∑
a=1

m∑
b=1

fa,bg
b
k,jg

a
i ,

s4
1,i+n(j−1)+n2(k−1) =

m∑
a=1

m∑
b=1

fa,bg
a
jg

b
i,k,

s5
1,i+n(j−1)+n2(k−1) =

m∑
a=1

fag
a
i,j,k.

I do this in 5 steps.

Step 1

In this step I need to show that s1
1,i+n(j−1)+n2(k−1) =

m∑
a=1

m∑
b=1

m∑
c=1

fa,b,cg
a
i g

b
jg

c
k. I begin by

defining Θ2 such that

Θ2

m3×n3
= M⊗M⊗M =

Q1

1 · · · Q1
k · · · Q1

n
...

...
...

Qc
1 · · · Qc

k · · · Qc
n

...
...

...
Qm

1 · · · Qm
k · · · Qm

n

30

where

Qc
k

m2×n2
= (M⊗M)gck =

Q1,c

1,k · · · Q1,c
j,k · · · Q1,c

n,k
...

...
...

Qb,c
1,k · · · Qb,c

j,k · · · Qb,c
n,k

...
...

...
Qm,c

1,k · · · Qm,c
j,k · · · Qm,c

n,k

and

Qb,c
j,k

m×n

= Mgbjg
c
k =

g1

1g
b
jg

c
k · · · g1

ig
b
jg

c
k · · · g1

ng
b
jg

c
k

...
...

...
ga1g

b
jg

c
k · · · gai g

b
jg

c
k · · · gang

b
jg

c
k

...
...

...
gm1 g

b
jg

c
k · · · gmi g

b
jg

c
k · · · gmn g

b
jg

c
k

so that the element in the a+m(b−1)+m2(c−1)th row and the i+n(j−1)+n2(k−1)th
column is given by

θ2
a+m(b−1)+m2(c−1),i+n(j−1)+n2(k−1) = gai g

b
jg

c
k.

From section 3, the element in the 1st row and the a+m(b− 1) +m2(c− 1)th column
of T is

t1,a+m(b−1)+m2(c−1) = fa,b,c.

31

Combining these terms gives

S1 = TΘ2 = T(M⊗M⊗M)
1×n3

=

m∑
a=1

m∑
b=1

m∑
c=1

fa,b,cg
a
1g
b
1g
c
1

m∑
a=1

m∑
b=1

m∑
c=1

fa,b,cg
a
2g
b
1g
c
1

...
m∑
a=1

m∑
b=1

m∑
c=1

fa,b,cg
a
ng

b
1g
c
1

m∑
a=1

m∑
b=1

m∑
c=1

fa,b,cg
a
1g
b
2g
c
1

...
m∑
a=1

m∑
b=1

m∑
c=1

fa,b,cg
a
ng

b
ng

c
1

m∑
a=1

m∑
b=1

m∑
c=1

fa,b,cg
a
1g
b
1g
c
2

...
m∑
a=1

m∑
b=1

m∑
c=1

fa,b,cg
a
i g
b
jg
c
k

...
m∑
a=1

m∑
b=1

m∑
c=1

fa,b,cg
a
ng

b
ng

c
n

′

,

where it can be easily verified that

s1
1,i+n(j−1)+n2(k−1) =

m∑
a=1

m∑
b=1

m∑
c=1

fa,b,cg
a
i g

b
jg

c
k.

Step 2

In this step I need to show that s2
1,i+n(j−1)+n2(k−1) =

m∑
a=1

m∑
b=1

fa,bg
a
kg

b
i,j. I begin by defining

Θ3 so that

Θ3

m2×n3
= M⊗N =

R1

1 · · · R1
k · · · R1

n
...

...
...

Ra1 · · · Rak · · · Ran
...

...
...

Rm1 · · · Rmk · · · Rmn

 ,
where

Rak
m×n2

= gakN.

32

The element in the b+m(a− 1)th row and the i+ n(j − 1) + n2(k − 1) column of Θ3

is given by
θ3
b+m(a−1),i+n(j−1)+n2(k−1) = gakg

b
i,j.

From section 3, the elements in H are referenced so that: h1,b+m(a−1) = fb,a. So that

S2 = HΘ3 = H(M⊗N) =

m∑
a=1

m∑
b=1

fa,bg
a
1g
b
1,1

m∑
a=1

m∑
b=1

fa,bg
a
1g
b
2,1

...
m∑
a=1

m∑
b=1

fa,bg
a
1g
b
n,1

m∑
a=1

m∑
b=1

fa,bg
a
1g
b
1,2

...
m∑
a=1

m∑
b=1

fa,bg
a
1g
b
1,n

...
m∑
a=1

m∑
b=1

fa,bg
a
1g
b
n,n

m∑
a=1

m∑
b=1

fa,bg
a
2g
b
1,1

...
m∑
a=1

m∑
b=1

fa,bg
a
kg

b
i,j

...
m∑
a=1

m∑
b=1

fa,bg
a
ng

b
n,n

′

,

where

s2
1,i+n(j−1)+n2(k−1) =

m∑
a=1

m∑
b=1

fa,bg
a
kg

b
i,j,

as required.

Step 3

In this step I need to show that s3
1,i+n(j−1)+n2(k−1) =

m∑
a=1

m∑
b=1

fa,bg
b
k,jg

a
i . I begin by defining

33

Θ4 so that

Θ4

m2×n3
= N⊗M =

U1

1,1 · · · U1
k,j · · · U1

n,n
...

...
...

Ub
1,1 · · · Ub

k,j · · · Ub
n,n

...
...

...
Um

1,1 · · · Um
k,j · · · Um

n,n

 ,
where

Ub
k,j = gbk,jM.

The element in the a + m(b − 1)th row and the i + n(j − 1) + n2(k − 1)th column is
given by

θ4
a+m(b−1),i+n(j−1)+n2(k−1) = gbk,jg

a
i .

From section 3, the elements in H are referenced so that: h1,b+m(a−1) = fb,a. From the
definition of S3

S3 = HΘ4 = H(N⊗M) =

m∑
a=1

m∑
b=1

fa,bg
b
1,1g

a
1

m∑
a=1

m∑
b=1

fa,bg
b
1,1g

a
2

...
m∑
a=1

m∑
b=1

fa,bg
b
1,1g

a
n

m∑
a=1

m∑
b=1

fa,bg
b
1,2g

a
1

...
m∑
a=1

m∑
b=1

fa,bg
b
1,ng

a
n

m∑
a=1

m∑
b=1

fa,bg
b
2,1g

a
1

...
m∑
a=1

m∑
b=1

fa,bg
b
k,jg

a
i

...
m∑
a=1

m∑
b=1

fa,bg
b
n,ng

a
n

′

,

where

s3
1,i+n(j−1)+n2(k−1) =

m∑
a=1

m∑
b=1

fa,bg
b
k,jg

a
i ,

as required.

34

Step 4

In this step I need to show that s4
1,i+n(j−1)+n2(k−1) =

m∑
a=1

m∑
b=1

fa,bg
a
jg

b
i,k. I begin by defining

Θ5 so that

Θ5 =

(
M⊗ I

m×m

)
N∗ =

[
M⊗ Ñ1 · · · M⊗ Ñk · · · M⊗ Ñn

]
,

where

M⊗ Ñk =

g1
1g

1
1,k g1

1g
1
2,k · · · g1

1g
1
n,k g1

2g
1
1,k · · · g1

jg
1
i,k · · · g1

ng
1
n,k

g1
1g

2
1,k g1

1g
2
2,k · · · g1

1g
2
n,k g1

2g
2
1,k · · · g1

jg
2
i,k · · · g1

ng
2
n,k

...
...

...
...

...
...

g1
1g

b
1,k g1

1g
b
2,k · · · g1

1g
b
n,k g1

2g
b
1,k · · · g1

jg
b
i,k · · · g1

ng
b
n,k

...
...

...
...

...
...

g1
1g

m
1,k g1

1g
m
2,k · · · g1

1g
m
n,k g1

2g
m
1,k · · · g1

jg
m
i,k · · · g1

ng
m
n,k

g2
1g

1
1,k g2

1g
1
2,k · · · g2

1g
1
n,k g2

2g
1
1,k · · · g2

jg
1
i,k · · · g2

ng
1
n,k

...
...

...
...

...
...

g2
1g

1
1,k g2

1g
1
2,k · · · g2

1g
1
n,k g2

2g
1
1,k · · · g2

jg
1
i,k · · · g2

ng
1
n,k

...
...

...
...

...
...

ga1g
b
1,k ga1g

b
2,k · · · ga1g

b
n,k ga2g

b
1,k · · · gajg

b
i,k · · · gang

b
n,k

...
...

...
...

...
...

gm1 g
m
1,k gm1 g

m
2,k · · · gm1 g

m
n,k gm2 g

m
1,k · · · gmj g

m
i,k · · · gmn g

m
n,k

.

The element in the b + m(a − 1)th row and the i + n(j − 1) + n2(k − 1)th column is
given by

θ5
b+m(a−1),i+n(j−1)+n2(k−1).

35

From the definition of S4

S4 = H

(
M⊗ I

m×m

)
N∗ =

m∑
a=1

m∑
b=1

fa,bg
a
1g
b
1,1

m∑
a=1

m∑
b=1

fa,bg
a
1g
b
2,1

...
m∑
a=1

m∑
b=1

fa,bg
a
1g
b
n,1

m∑
a=1

m∑
b=1

fa,bg
a
2g
b
1,1

...
m∑
a=1

m∑
b=1

fa,bg
a
2g
b
n,1

...
m∑
a=1

m∑
b=1

fa,bg
a
jg
b
i,k

...
m∑
a=1

m∑
b=1

fa,bg
a
ng

b
n,n

′

,

where

s4
1,i+n(j−1)+n2(k−1) =

m∑
a=1

m∑
b=1

fa,bg
a
jg

b
i,k,

as required.

Step 5

Finally, I need to show that s5
1,i+n(j−1)+n2(k−1) =

m∑
a=1

fag
a
i,j,k. From section 3 the elements

in K and D are referenced as follows

ka,i+n(j−1)+n2(k−1) = gai,j,k,

d1,a = fa.

36

From the definition of S5

S5 = DK =

m∑
a=1

fag
a
1,1,1

m∑
a=1

fag
a
2,1,1

...
m∑
a=1

fag
a
n,1,1

m∑
a=1

fag
a
1,2,1

...
m∑
a=1

fag
a
n,n,1

m∑
a=1

fag
a
1,1,2

...
m∑
a=1

fag
a
i,j,k

...
m∑
a=1

fag
a
n,n,n

′

.

It follows from the indexation in K and D that

s5
1,i+n(j−1)+n2(k−1) =

m∑
a=1

fag
a
i,j,k,

which is required for the proof.

Appendix D. Example models

Appendix D.1. An RBC model with external habit formation

This section presents the equations for the simple RBC model with external habit for-
mation in Section 7. The variable and parameter descriptions are given in tables D.5 and
D.6 respectively.

(ct − χct−1)−γ − Et

{
β(1 + αat+1k

α−1
t − δ)(ct+1 − χct)−σ

}
= 0, (D.1)

kt + ct − atkαt−1 − (1− δ)kt−1 = 0, (D.2)

at − aρt−1a
1−ρ
ss exp(εt) = 0. (D.3)

37

Table D.5: Variables

Symbol Description
ct Consumption
kt Capital
at Technology
εt Technology shock

Table D.6: Parameters

Symbol Description
γ Intertemporal elasticity of substitution
χ Habit persistence parameter
β Discount factor
α Capital’s share of income
δ Depreciation rate
ρ Persistence parameter on technology

Appendix D.2. New Keynesian DSGE

This is the second model used in Section 7. It is a simple New Keynesian DSGE model
alá Gaĺı (2009) with external habit formation, Rotemberg price adjustment costs, price
indexation and persistence in the Taylor rule. Variable and parameter descriptions are given
in tables D.7 and D.8 respectively. The equations of the model are given by

(θ − 1)Yt − λθφ
(

1

Act

)
(Ct − χCt−1)σ

(
Yt
At

)φ(ν+1)

+ ψπtYt (πt − (ξπt−1 + (1− ξ) π̄)µt)

− βEt

{ (
Ct+1−χCt
Ct−χCt−1

)−σ (
Act
Āc

)ρc−1

exp(εct+1)× · · ·
· · · × ψπt+1Yt+1

(
πt+1 − (ξπt + (1− ξ)π̄)µ

ρµ
t µ̄

1−ρµ exp(εµt+1)
)
}

= 0, (D.4)

Yt − Ct − ψYt (πt − (ξπt−1 + (1− ξ)πt−1)µt)
2 = 0, (D.5)

βEt

{(
Ct+1 − χCt
Ct − χCt−1

)−σ (
1

πt+1

)(
Act
Āc

)ρc−1

exp(εct+1)

}
− 1

Rt

= 0, (D.6)

Rt −Rρr
t−1

(
R̄

(
Yt
Ȳ

)κy (πt
π̄

)κπ)1−ρr
exp(εrt) = 0, (D.7)

At − Aρat−1Ā
1−ρa exp(εat) = 0, (D.8)

38

Act −
(
Act−1

)ρc (
Āc
)1−ρc

exp(εct) = 0, (D.9)

µt − µρµt−1µ̄
1−ρµ exp(εµt) = 0. (D.10)

Table D.7: Variables

Symbol Description
Yt Output
Ct Consumption
πt Inflation
Rt Interest Rate
At Technology
Act Consumption Shock Process
µt Indexation Shock Process
εat Technology Shock
εct Consumption Preference Shock
εµt Indexation Shock

Table D.8: Parameters

Symbol Description
θ Elasticity of substitution between differentiated inputs
λ Weight on disutility of labour
φ Labour’s share of income
χ Habit parameter
σ Inverse of the intertemporal EOS
ν Frisch elasticity of labour supply
ψ Weight on price adjustment costs
ξ Degree of price indexation
κy Weight on output in the Taylor rule
κπ Weight on inflation in the Taylor rule
ρr Persistence in Taylor rule
ρa Persistence term on Technology
ρc Persistence term on Consumption shock
ρµ Persistence term on Indexation shock

Appendix D.3. Small Open Economy Model

The third model used in Section 7 is a small open economy model similar to Gali &
Monacelli (2008). Firms in both countries are subject to a Calvo pricing friction, those that

39

are unable to update prices optimally update prices according to an indexation rule. House-
holds in both countries are subject to external habit formation and there is a persistence
term in the interest rate rule. The variable descriptions for the home and foreign countries
are presented in tables D.13 and D.14 respectively. The parameter definitions are presented
in tables D.15 and D.16.

exp(εct) (Ct − χCt−1)σ − exp(εc∗t)ϑ
(
Y ∗t − χ∗Y ∗t−1

)σ∗
StP̃H,t = 0, (D.11)

Yt − (1− µ)
(
P̃H,t

)−ν
Ct − µ∗Sνt Y ∗t = 0, (D.12)

K1,t − exp(−εct)

(
1

P̃H,t

)
λ (Ct − χCt−1)σ

(
Yt
At

) η+1
1−α

∆η
t−

Et

{
θ
(
πρπH,tπ̄

1−ρπ
H

) −εt
1−α π

εt+1−α
1−α

H,t+1 K1,t+1 exp(−εct)β
(
Ct − χCt−1

Ct+1 − χCt

)σ (
1

πt+1

)}
= 0, (D.13)

K2,t − Yt−

Et

{
θ
(
π̄1−ρπ
H πρπH,t

)1−εt
πεtH,t+1K2,t+1 exp(−εct)β

(
Ct − χCt−1

Ct+1 − χCt

)σ (
1

πt+1

)}
= 0, (D.14)

P̃H,t −
[
(1− µ) + µS1−ν

t

] −1
1−ν = 0, (D.15)

πH,t − π̄1−ρπ
H πρπH,t−1

 θ

1− (1− θ)
(

εt
(1−α)(εt−1)

)(
K1,t

K2,t

) (1−εt)(1−α)
1−α+εtα

1

1−εt

= 0, (D.16)

∆t − (1− θ)

1− θ

(
π̄1−ρπ
H πρπH,t−1

πH,t

)1−εt

1− θ

−εt

(1−εt)(1−α)

− θπ
εt

1−α
H,t

(
π̄1−ρπ
H πρπH,t−1

) −εt
1−α ∆t = 0, (D.17)

Rt − Et

{
R∗t

(
St+1

St

)(
πH,t+1

π∗t+1

)}
= 0, (D.18)

Rt −
((

π̄

β

)(
Yt
Ȳ

)κy (πt
π̄

)κπ)1−ρr
Rρr
t−1 exp(εrt) = 0, (D.19)

πH,t
πt
− P̃H,t

P̃H,t−1

= 0, (D.20)

βEt

{
exp(−εc∗t)

(
R∗t

Π∗t+1

)(
Y ∗t+1 − χ∗Y ∗t
Y ∗t − χ∗Y ∗t−1

)−σ∗}
− 1 = 0, (D.21)

40

K∗1,t − exp(−εc∗t)λ∗
(
Y ∗t − χ∗Y ∗t−1

)σ∗ (Y ∗t
A∗t

) η∗+1
1−α∗

(∆∗t)
η∗ −

Et

{
θ∗
(
(π∗t)

ρ∗π(π̄∗)1−ρ∗π
) ε∗t

1−α∗ (π∗t+1)
ε∗t+1−α∗

1−α∗ K∗1,t+1 exp(−εc∗t)β

(
C∗t − χ∗C∗t−1

C∗t+1 − χ∗C∗t

)σ∗ (
1

π∗t+1

)}
= 0,

(D.22)

K∗2,t−Y ∗t −Et

{
θ∗
(
(π̄∗)1−ρ∗π(π∗t)

ρ∗π
)1−ε∗t (π∗t+1)ε

∗
tK∗2,t+1 exp(−εc∗t)β

(
C∗t − χ∗C∗t−1

C∗t+1 − χ∗C∗t

)σ∗ (
1

π∗t+1

)}
= 0,

(D.23)

π∗t − (π̄∗)1−ρ∗π(π∗t−1)ρ
∗
π

 θ∗

1− (1− θ∗)
(

ε∗t
(1−α∗)(ε∗t−1)

)(
K∗1,t
K∗2,t

) (1−ε∗t)(1−α
∗)

1−α∗+ε∗t α
∗

1

1−ε∗t

= 0, (D.24)

∆∗t−(1− θ∗)

1− θ∗
(

(π̄∗)1−ρπ (π∗t−1)ρπ

π∗t

)1−ε∗t

1− θ∗

−ε∗t

(1−ε∗t)(1−α
∗)

−θ∗(π∗t)
ε∗t

1−α∗
(
(π̄∗)1−ρ∗π(π∗t−1)ρ

∗
π
) −ε∗t

1−α∗ ∆∗t = 0,

(D.25)

R∗t −

((
π̄∗

β

)(
Y ∗t
Ȳ ∗

)κ∗y (π∗t
π̄∗

)κ∗π)1−ρ∗r

(R∗t−1)ρ
∗
r exp(εr∗t) = 0, (D.26)

At − Aρt−1Ā
1−ρ exp(εat) = 0, (D.27)

A∗t − (A∗)ρ
∗

t−1(Ā∗)1−ρ∗ exp(εa∗t) = 0, (D.28)

εt − ερεt−1ε̄
1−ρε exp(εεt) = 0, (D.29)

ε∗t − (ε∗t−1)ρ
∗
ε (ε̄∗)1−ρ∗ε exp(εε∗t) = 0. (D.30)

41

Table D.9: Domestic Variables

Symbol Description
Yt Output
Ct Consumption
πt Inflation
πH,t Tradable inflation

P̃H,t Relative price of domestically produced goods
St Terms of trade
Rt Interest rate
K1,t Discounted sum of marginal cost
K2,t Discounted sum of demand
At Technology
εt Elasticity of substitution between domestically

produced tradable goods
εat Technology shock
εct Consumption preference shock
εεt Markup shock

Table D.10: Foreign Variables

Symbol Description
Y ∗t Output
π∗t Inflation
R∗t Interest rate
K∗1,t Discounted sum of marginal cost
K∗2,t Discounted sum of demand
A∗t Technology
ε∗t Elasticity of substitution between foreign

produced goods
εa∗t Technology shock
εc∗t Consumption preference shock
εε∗t Markup shock

42

Table D.11: Domestic Parameters

Symbol Description
λ Weight on disutility of labour

1− α Labour’s share of income
χ Domestic habit parameter
σ Domestic inverse of the intertemporal EOS
η Frisch elasticity of labour supply
ν Elasticity of substitution between domestic and foreign goods

1− µ Home bias
θ Probability of adjusting prices optimally
ϑ Scale parameter
ρπ Degree of price indexation
κy Weight on output in the Taylor rule
κπ Weight on inflation in the Taylor rule
ρa Persistence term on Technology
ρc Persistence term on Consumption shock
ρr Persistence in Taylor rule

Table D.12: Domestic Parameters

Symbol Description
λ∗ Weight on disutility of labour

1− α∗ Labour’s share of income
χ∗ Domestic habit parameter
σ∗ Domestic inverse of the intertemporal EOS
θ Probability of adjusting prices optimally
ρ∗π Degree of price indexation
κ∗y Weight on output in the Taylor rule
κ∗π Weight on inflation in the Taylor rule
ρ∗a Persistence term on Technology
ρ∗c Persistence term on Consumption shock
ρ∗r Persistence in Taylor rule

Appendix D.4. Small Open Economy Model: Epstein Zin Preferences

The final model is a small open economy model with Epstein Zin preferences, Rotemberg
price adjustment costs, habit formation, price indexation and persistence in the interest rule.
There are also some additional equations included to measure the term premia in both the

43

home and the foreign country.

V ∗t −
[
exp(εc∗t)

((
C∗t − χ∗C∗t−1

)ν∗
(1−N∗t)1−ν∗

)1−ρ∗
+ β

(
Et

{
(V ∗t+1)1−γ∗}) 1−ρ∗

1−γ∗

] 1
1−ρ∗

= 0,

(D.31)

exp(−εc∗t)β

(
(V ∗t+1)1−γ

∗

EtV ∗t+1

)ρ∗−γ∗
1−γ∗

(
(C∗t+1−χ∗C∗t)ν

∗
(1−N∗t+1)1−ν

∗

(C∗t −χ∗C∗t−1)ν∗ (1−N∗t)1−ν∗

)1−γ∗ (
C∗t −χ∗C∗t−1

C∗t+1−χC∗t

)(
1

π∗t+1

)
− 1

R∗t
= 0,

(D.32)

− Ω∗t +
(

1−ν∗
ν∗

) (C∗t −χC∗t−1

1−N∗t

)(
1
A∗t

) 1
1−α∗

(C∗t)
α∗

1−α∗
(

θ∗

θ∗−1

) (
1

1−α∗
)
−

−
(

φ∗

θ∗−1

)
π∗tC

∗
t (π∗t − π̃∗t) + exp(−εc∗t)

(
φ∗

θ∗−1

)
β

(
(V ∗t+1)1−γ

∗

EtV ∗t+1

)ρ∗−γ∗
1−γ∗

× · · ·

· · · ×
(

(C∗t+1−χ∗C∗t)ν
∗

(1−N∗t+1)1−ν
∗

(C∗t −χ∗C∗t−1)ν
∗ (1−N∗t)1−ν∗

)1−γ∗ (
C∗t −χ∗C∗t−1

C∗t+1−χC∗t

)
π∗t+1C

∗
t+1

(
π∗t+1 − π̃∗t

)
= 0, (D.33)

C∗t − A∗t (N∗t)1−α∗ = 0, (D.34)

R∗t − exp(εr∗t)

((
π̄∗

β

)(
C∗t
C̄∗

)κ∗y (π∗t
π̄∗

)κ∗π)1−ρ∗r
(R∗t−1)ρ

∗
r = 0, (D.35)

π̃∗t − (π∗t−1)ξ
∗
(π̄∗)1−ξ∗ = 0, (D.36)

PNB∗
t − 1− δc∗PNB∗t+1

Rt
= 0, (D.37)

PB∗
t − 1− exp(−εc∗t)δc∗PB∗

t+1β

(
(V ∗t+1)1−γ

∗

EtVt+1

)ρ∗−γ∗
1−γ∗

(
(C∗t+1−χ∗C∗t)ν

∗
(1−N∗t+1)1−ν

∗

(C∗t −χ∗C∗t−1)ν
∗ (1−N∗t)1−ν∗

)1−γ∗

× · · ·

· · · ×
(
C∗t −χ∗C∗t−1

C∗t+1−χC∗t

)(
1

π∗t+1

)
= 0, (D.38)

Y T∗
t −

δc∗PB∗t
PB∗−1

= 0, (D.39)

Y TN∗
t − δc∗PBN∗t

PBN∗−1
= 0, (D.40)

T ∗t −
Y T∗t
Y TN∗t

= 0, (D.41)

Vt −
[
exp(εct)

(
(Ct − χCt−1)ν (1−Nt)

1−ν)1−ρ
+ β

(
Et

{
(Vt+1)1−γ}) 1−ρ

1−γ
] 1

1−ρ
= 0, (D.42)

Rt − Et

{
R∗t

(
St+1

St

)(
πH,t+1

π∗t+1

)}
= 0, (D.43)

πH,t
πt
− P̃H,t

P̃H,t−1

= 0, (D.44)

44

P̃H,t −
[
(1− µ) + µS1−ν

t

] −1
1−ν = 0, (D.45)

Yt − (1− µ)
(
P̃H,t

)−ν
Ct − µ∗Sνt C∗t = 0, (D.46)

(Ct − χCt−1)− exp(εc∗t − εct)
(

(Ct−χCt−1)ν(1−Nt)1−ν
(C∗t −χ∗C∗t−1)ν∗(1−N∗t)1−ν∗

)1−γ (C∗−χ∗C∗t−1

G

)
P̃H,tSt = 0, (D.47)

Yt − AtN1−α
t = 0, (D.48)

− Ωt +
(

1−ν
ν

) (
Ct−χCt−1

1−Nt

)(
1
At

) 1
1−α (θ

θ−1

) (
1

1−α

)
−
(

φ
θ−1

)
πH,tYt (πH,t − π̃t) +

exp(−εct)
(

φ
θ−1

)
β
(

V 1−γ
t+1

EtVt+1

)ρ−γ
1−γ

(
(Ct+1−χCt)ν(1−Nt+1)1−ν

(Ct−χCt−1)ν(1−Nt)1−ν

)1−γ (
Ct−χCt−1

Ct+1−χCt

)
πt+1Ct+1 (πt+1 − π̃t) = 0,

(D.49)

π̃t − (πt−1)ξ(π̄)1−ξ = 0, (D.50)

Rt − exp(εrt)
((

π̄
β

) (
Yt
Ȳ

)κy (πt
π̄

)κπ)1−ρr
Rρr
t−1 = 0, (D.51)

PNB
t − 1− δcPNBt+1

Rt
= 0, (D.52)

PB
t − 1− exp(−εct)δcPB

t+1β
(

V 1−γ
t+1

EtVt+1

)ρ−γ
1−γ

(
(Ct+1−χ∗Ct)ν(1−Nt+1)1−ν

(Ct−χCt−1)ν(1−Nt)1−ν

)1−γ
× · · ·

· · · ×
(
Ct−χCt−1

Ct+1−χCt

)(
1

πt+1

)
= 0, (D.53)

Y T
t −

δcPBt
PB−1

= 0, (D.54)

Y TN
t − δcPBNt

PBN−1
= 0, (D.55)

Tt − Y Tt
Y TNt

= 0, (D.56)

At − Aρt−1Ā
1−ρ exp(εat) = 0, (D.57)

A∗t − (A∗)ρ
∗

t−1(Ā∗)1−ρ∗ exp(εa∗t) = 0, (D.58)

Ωt − Ωρω
t−1Ω̄1−ρω exp(εωt) = 0, (D.59)

Ω∗t − (Ω∗t−1)ρ
∗
ω(Ω̄∗)1−ρ∗ω exp(εω∗t) = 0. (D.60)

45

Table D.13: Domestic Variables

Symbol Description
Vt Welfare
Yt Output
Ct Consumption
Nt Hours worked
πt Inflation
πH,t Tradable inflation
π̃H,t Tradable inflation index

P̃H,t Relative price of domestically produced goods
St Terms of trade
Rt Interest rate
PNB
t Price of a safe bond
PB
t Price of a risky bond

Y TN
t Yield on a safe bond
Y T
t Yield on a risky bond
Tt Risk premia
At Technology
Ωt Cost push shock process
εat Technology shock
εct Consumption preference shock
εωt Cost-push shock

Table D.14: Foreign Variables

Symbol Description
V ∗t Welfare
Y ∗t Output
Ct Consumption
N∗ Hours worked
π∗t Inflation
π̃t Inflation index
R∗t Interest rate
PNB∗
t Price of a safe bond
PB∗
t Price of a risky bond

Y TN∗
t Yield on a safe bond
Y T∗
t Yield on a risky bond
T ∗t Risk premia
A∗t Technology
Ω∗t Cost push shock process
εa∗t Technology shock
εc∗t Consumption preference shock
εω∗t Cost push shock46

Table D.15: Domestic Parameters

Symbol Description
λ Weight on disutility of labour

1− α Labour’s share of income
χ Domestic habit parameter
σ Domestic inverse of the intertemporal EOS
η Frisch elasticity of labour supply
ν Elasticity of substitution between domestic and foreign goods

1− µ Home bias
θ Probability of adjusting prices optimally
ϑ Scale parameter
ρπ Degree of price indexation
κy Weight on output in the Taylor rule
κπ Weight on inflation in the Taylor rule
ρa Persistence term on Technology
ρc Persistence term on Consumption shock
ρr Persistence in Taylor rule

Table D.16: Domestic Parameters

Symbol Description
λ∗ Weight on disutility of labour

1− α∗ Labour’s share of income
χ∗ Domestic habit parameter
σ∗ Domestic inverse of the intertemporal EOS
θ Probability of adjusting prices optimally
ρ∗π Degree of price indexation
κ∗y Weight on output in the Taylor rule
κ∗π Weight on inflation in the Taylor rule
ρ∗a Persistence term on Technology
ρ∗c Persistence term on Consumption shock
ρ∗r Persistence in Taylor rule

References

Andreasen, M. M. (2011). On the effects of rare disasters and uncertainty shocks for risk
premia in non-linear DSGE models. Review of Economic Dynamics. URL http://dx.

doi.org/10.1016/j.red.2011.08.001.

47

http://dx.doi.org/10.1016/j.red.2011.08.001
http://dx.doi.org/10.1016/j.red.2011.08.001

Binning, A. J. (2013). Third-order approximation of dynamic models without the use of
tensors. Norges Bank Working Paper 2013/13. URL http://www.norges-bank.no/no/

om/publisert/publikasjoner/working-papers/2013/13/.

Gaĺı, J. (2009). Monetary Policy, Inflation, and the Business Cycle: An Introduction to the
New Keynesian Framework. Princeton University Press. URL http://books.google.no/

books?id=idVZotm_ZroC.

Gali, J. & Monacelli, T. (2008). Optimal monetary and fiscal policy in a currency union.
Journal of International Economics, 76 (1), 116–132. URL http://ideas.repec.org/a/

eee/inecon/v76y2008i1p116-132.html.

Gomme, P. & Klein, P. (2011). Second-order approximation of dynamic models without
the use of tensors. Journal of Economic Dynamics and Control, 35 (4), 604–615. URL
http://ideas.repec.org/a/eee/dyncon/v35y2011i4p604-615.html.

Johnson, W. P. (2002). The curious history of Faá di Brunos formula. Amer. Math. Monthly,
109, 217–234.

K̊agström, B. & Poromaa, P. (1996). Lapack-style algorithms and software for solving the
generalized sylvester equation and estimating the separation between regular matrix pairs.
ACM Trans. Math. Softw., 22 (1), 78–103. URL http://doi.acm.org/10.1145/225545.

225552.

Kamenik, O. (2005). Solving sdge models: A new algorithm for the sylvester equation.
Working Papers 2005/10, Czech National Bank, Research Department. URL http://

ideas.repec.org/p/cnb/wpaper/2005-10.html.

Kim, J. & Ruge-Murcia, F. J. (2011). Monetary policy when wages are downwardly rigid:
Friedman meets tobin. Journal of Economic Dynamics and Control, 35 (12), 2064–2077.
URL http://ideas.repec.org/a/eee/dyncon/v35y2011i12p2064-2077.html.

Klein, P. (2000). Using the generalized schur form to solve a multivariate linear rational
expectations model. Journal of Economic Dynamics and Control, 24 (10), 1405–1423. URL
http://ideas.repec.org/a/eee/dyncon/v24y2000i10p1405-1423.html.

Magnus, J. & Neudecker, H. (1999). Matrix differential calculus with applications in statistics
and econometrics. Wiley series in probability and statistics, John Wiley. URL http://

books.google.com.au/books?id=0CXXdKKiIpQC.

Martin, C. D. M. & Van Loan, C. F. (2006). Shifted kronecker product systems. SIAM J.
Matrix Analysis Applications, 29 (1), 184–198.

Rice, J. (2007). Mathematical Statistics and Data Analysis. No. p. 3 in Advanced se-
ries, Brooks/Cole CENGAGE Learning. URL http://books.google.co.uk/books?id=

EKA-yeX2GVgC.

48

http://www.norges-bank.no/no/om/publisert/publikasjoner/working-papers/2013/13/
http://www.norges-bank.no/no/om/publisert/publikasjoner/working-papers/2013/13/
http://books.google.no/books?id=idVZotm_ZroC
http://books.google.no/books?id=idVZotm_ZroC
http://ideas.repec.org/a/eee/inecon/v76y2008i1p116-132.html
http://ideas.repec.org/a/eee/inecon/v76y2008i1p116-132.html
http://ideas.repec.org/a/eee/dyncon/v35y2011i4p604-615.html
http://doi.acm.org/10.1145/225545.225552
http://doi.acm.org/10.1145/225545.225552
http://ideas.repec.org/p/cnb/wpaper/2005-10.html
http://ideas.repec.org/p/cnb/wpaper/2005-10.html
http://ideas.repec.org/a/eee/dyncon/v35y2011i12p2064-2077.html
http://ideas.repec.org/a/eee/dyncon/v24y2000i10p1405-1423.html
http://books.google.com.au/books?id=0CXXdKKiIpQC
http://books.google.com.au/books?id=0CXXdKKiIpQC
http://books.google.co.uk/books?id=EKA-yeX2GVgC
http://books.google.co.uk/books?id=EKA-yeX2GVgC

Ruge-Murcia, F. J. (2010). Estimating nonlinear dsge models by the simulated method
of moments. Working Paper Series 49 10, Rimini Centre for Economic Analysis. URL
http://ideas.repec.org/p/rim/rimwps/49_10.html.

Schmitt-Grohe, S. & Uribe, M. (2004). Solving dynamic general equilibrium models us-
ing a second-order approximation to the policy function. Journal of Economic Dy-
namics and Control, 28 (4), 755–775. URL http://ideas.repec.org/a/eee/dyncon/

v28y2004i4p755-775.html.

49

http://ideas.repec.org/p/rim/rimwps/49_10.html
http://ideas.repec.org/a/eee/dyncon/v28y2004i4p755-775.html
http://ideas.repec.org/a/eee/dyncon/v28y2004i4p755-775.html

	Norges_Bank_Working_Paper_2013_18.pdf
	Introduction
	Preliminaries
	A second and a third-order matrix chain rule
	A recursive Sylvester equation solution
	Kamenik's algorithm
	Martin and Van Loan's algorithm

	Second-order approximation
	Finding gxx and hxx
	Matrix definitions
	Solution

	Finding g and h
	Matrix definitions
	Solution

	Third-order approximation
	Finding gxxx and hxxx
	Matrix definitions
	Solution

	Finding gx and hx
	Matrix definitions
	Solution

	Finding g and h
	Matrix definitions
	Solution

	Performance
	Conclusion
	Matrix trace and expectations
	Second-order matrix chain rule proof
	Third-order matrix chain rule proof
	Example models
	An RBC model with external habit formation
	New Keynesian DSGE
	Small Open Economy Model
	Small Open Economy Model: Epstein Zin Preferences

