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Abstract

The development of models for variables sampled at different frequencies has

attracted substantial interest in the recent econometric literature. In this paper

we provide an overview of the most common techniques, including bridge equa-

tions, MIxed DAta Sampling (MIDAS) models, mixed frequency VARs, and mixed

frequency factor models. We also consider alternative techniques for handling the

ragged edge of the data, due to asynchronous publication. Finally, we survey the

main empirical applications based on alternative mixed frequency models.

J.E.L. Classification: E37, C53

Keywords: mixed-frequency data, mixed-frequency VAR, MIDAS, nowcasting,

forecasting

∗We would like to thank Tommaso Di Fonzo, Eric Ghysels, Helmut Lutkepohl for useful comments
on a previous version. The views expressed herein are solely those of the authors and do not necessarily
reflect the views of the Norges Bank. The usual disclaimers apply.



1 Introduction

In recent times, econometric models that take into account the information in unbalanced

datasets have attracted substantial attention. Policy-makers, in particular, need to assess

in real-time the current state of the economy and its expected developments, when only

incomplete information is available.

In real-time, the unbalancedness of datasets arises mainly due to two features: the

different sampling frequency with which the indicators are available and the so-called

"ragged-edge" problem, namely, publication delays cause missing values for some of the

variables at the end of the sample, see Wallis (1986). As an example, one of the key

indicators of macroeconomic activity, the Gross Domestic Product (GDP), is released

quarterly and with a considerable publication lag, while a range of leading and coincident

indicators is available more timely and at a monthly or even higher frequency.

In this paper we review the methods proposed so far in the literature to deal with

mixed-frequency data and missing values due to publication lags, see Banbura, Giannone,

Reichlin (2011) and Banbura, Giannone, Modugno, Reichlin (2012) for complementary

overviews with a stronger focus on Kalman filter based factor modeling techniques.

The simplest approach is to aggregate the data to obtain a balanced dataset at the

same frequency and to work with a "frozen" final vintage dataset, which eliminates the

ragged edge problem. However, in the literature there are also a few methods to avoid

pre-filtering associated with temporally aggregated or interpolated data, and to exploit

the information contained in the large number of series available in real-time at different

frequencies. In what follows, we depict the main features of the bridge models, often

employed in central banks and other policy making institutions, especially for nowcasting

and short-term forecasting, see e.g. Baffi gi, Golinelli and Parigi (2004), Diron (2008) and

Bencivelli, Marcellino and Moretti (2012). We then move to one of the main strands of the

literature, mixed-data sampling (MIDAS) models, parsimonious specifications based on

distributed lag polynomials, which flexibly deal with data sampled at different frequencies

and provide a direct forecast of the low-frequency variable (see e.g. Ghysels et al. (2004),

Clements and Galvao (2008)). Finally, we consider the state-space approaches, presenting

mixed-frequency VAR (MF-VAR) and factor models. Both are system approaches that

jointly describe the dynamics of the variable to be explained and of the indicators, where

the use of the Kalman filter provides not only predictions of the future observations but

also estimates of the current latent state (see Mariano and Murasawa (2003, 2010)). A

natural extension in the literature is the combination of the factors with the MIDAS

models, and it is based on the use of factors as explanatory variables to exploit the

information in large mixed-frequency datasets. The resulting model is labelled Factor-

MIDAS by Marcellino and Schumacher (2010).

For each of the alternative approaches to mixed frequency modelling listed above, we

first describe their key theoretical features, and then summarize empirical applications.

The paper is organized as follows. In Section 2, we survey the different approaches
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to model mixed frequency variables. In Section 3, we discuss the additional estimation

issues arising with a ragged-edge structure of the dataset. In Section 4 we compare the

main features of the different approaches. In Section 5 we present a summary of the most

significant empirical applications in this literature. Finally, in Section 6 we summarize

and conclude.

2 Models for mixed-frequency data

Typical regression models relate variables sampled at the same frequency. To ensure the

same frequency, researchers working with time series data either aggregate the higher-

frequency observations to the lowest available frequency or interpolate the lower-frequency

data to the highest available frequency, see Section 2.1. The most common solution in

empirical applications is the former, temporal aggregation. The higher-frequency data are

aggregated to the lowest-frequency by averaging or by taking a representative value (for

example, the last month of a quarter). In pre-filtering the data so that left- and right-

hand variables are available at the same frequency, a lot of potentially useful information

might be destroyed, and mis-specification inserted in the model. Hence, direct modelling

of mixed frequency data can be useful1.

One of the early approaches to deal with mixed-frequency data focuses on forecasting

and relies on bridge equations, see e.g. Baffi gi, Golinelli, Parigi (2004), i.e. equations that

link the low-frequency variables and time-aggregated indicators. Forecasts of the high-

frequency indicators are provided by specific high-frequency time series models, then the

forecast values are aggregated and plugged into the bridge equations to obtain the forecast

of the low-frequency variable. Details are provided in Section 2.2.

In Section 2.3 we propose a more detailed overview of one of the most recent and

competitive univariate approaches, the mixed-data sampling method originally proposed

by Ghysels, Santa-Clara and Valkanov (2004). Mixed-data sampling (MIDAS) models

handle series sampled at different frequencies, where distributed lag polynomials are used

to ensure parsimonious specifications. Whereas early MIDAS studies focused on financial

applications, see e.g. Ghysels, Santa-Clara and Valkanov (2006), recently this method

has been employed to forecast macroeconomic time series, where typically quarterly GDP

growth is forecasted by monthly macroeconomic and financial indicators, see e.g. Clements

and Galvao (2008, 2009).

Another common approach in the literature is the state-space representation of the

model, where to handle data with different frequencies, the low-frequency variable is

1Wolhrabe (2009) presents another review of mixed-frequency models However, his review focuses
more on the earliest attempts to tackle the mixed-frequency issues. In particular he reviews in detail
the aggregation and interpolation of data, and the bridge and linkage models. In this paper, instead,
we focus on the most recent developments of the literature, and especially we go through the MIDAS
approach and its recent extensions, the MF-VAR in a classical and Bayesian framework, and different
factor models which take into account the mixed-frequency and ragged-edge nature of the dataset.
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considered as a high-frequency one with missing observations. The Kalman filter and

smoother is then applied to estimate the missing observations and to generate forecasts.

Moreover, the dynamics of the low and high-frequency series are jointly analyzed. One of

the most compelling approaches at the moment is the one proposed by Zadrozny (1988)

for directly estimating a VARMA model with series sampled at different frequencies. In

the same fashion, Mariano and Murasawa (2010) set what they call mixed-frequency

VAR (MF-VAR from now on), i.e. they introduce a VAR model for partially latent

time series and cast it in state-space form, see Section 2.4 for more details. Among

the state-space approaches we can also list mixed-frequency factor models employed, for

example, to extract an unobserved state of the economy and create a new coincident

indicator or forecast and nowcast GDP, see e.g. Mariano and Murasawa (2003, 2010) in

Section 2.5.1 for small scale applications and Giannone, Reichlin and Small (2008) and

Banbura and Rünstler (2011) for large scale models in Section 2.5.2 and 2.5.3. A similar

approach is also followed by Frale et al. (2010, 2011): differently from the other studies,

dynamic factor models are applied to a set of small datasets where variables are grouped

according to economic theory and institutional considerations, rather than to the entire

information set. The separate small factor models are then linked together within a state-

space framework. Finally, in Section 2.5.4 we review the literature that proposes to merge

the two recent strands in the mixed sampling econometrics: factor models and MIDAS

approach. Marcellino and Schumacher (2010) introduce Factor-MIDAS, an approach for

now- and forecasting low-frequency variables exploiting information in large sets of higher-

frequency indicators.

2.1 Aggregation and interpolation

In most of the empirical applications, the common solution in the presence of a mixed

sample frequency is to pre-filter the data so that the left- and right-hand side variables

are sampled at the same frequency. In the process, a lot of potentially useful information

can be destroyed and mis-specification included in the model.

The standard aggregation methods depend on the stock/flow nature of the variables

and, typically, it is the average of the high-frequency variables over one low-frequency

period for stocks, and the sum for flows.

Taking the latest available value of the higher frequency variable is another option

for both stock and flow variables. The underlying assumption is that the information of

the previous high-frequency periods is reflected in the latest value, representative of the

whole low-frequency period.

The second option to match frequencies is the interpolation of the low frequency

variables, which is rarely used. There are several different interpolating methods, see

e.g. Lanning (1986), Marcellino (1998) and Angelini et al. (2006). A common approach

is a two-step procedure: first missing data are interpolated, then model parameters are

estimated using the new augmented series, possibly taking into account the measurement
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error induced by disaggregation. Both steps can be conveniently and jointly run in a

Kalman filter set-up, starting with a state-space representation of the model, see e.g.

Harvey (1989) and Sections 2.4 and 2.5 below.

2.2 Bridge equations

One of the early econometric approaches in the presence of mixed-frequency data relies

on the use of bridge equations, see e.g. Baffi gi, Golinelli, Parigi (2004) and Diron (2008).

Bridge equations are linear regressions that link ("bridge") high frequency variables, such

as industrial production or retail sales, to low frequency ones, e.g. the quarterly real

GDP growth, providing some estimates of current and short-term developments in ad-

vance of the release. The "Bridge model" technique allows computing early estimates of

the low-frequency variables by using high frequency indicators. They are not standard

macroeconometric models, since the inclusion of specific indicators is not based on causal

relations, but on the statistical fact that they contain timely updated information. In

principle, bridge models require that the whole set of regressors should be known over

the projection period, allowing for an estimate only of the current period. In practice,

anyway, this is not the case, even though the forecasting horizon of the bridge models is

quite short, one or two quarters ahead at most.

Taking forecasting GDP as an example, since the monthly indicators are usually only

partially available over the projection period, the predictions of quarterly GDP growth

are obtained in two steps. First, monthly indicators are forecasted over the remainder

of the quarter, usually on the basis of univariate time series models (in some cases VAR

have been implemented in order to obtain better forecasts of the monthly indicators), and

then aggregated to obtain their quarterly correspondent values. Second, the aggregated

values are used as regressors in the bridge equation which allows to obtain forecasts of

GDP growth.

Therefore, the bridge model to be estimated is:

ytq = α +

j∑
i=1

βi (L)xitq + utq (1)

where βi (L) is a lag polynomial of length k, and xitq are the selected monthly indicators

aggregated at quarterly frequency.

The selection of the monthly indicators included in the bridge model is usually based

on a general-to-specific methodology and relies on different in-sample or out-of-sample cri-

teria, like information criteria or RMSE performance. Bencivelli, Marcellino and Moretti

(2012) propose an alternative procedure based on Bayesian Model Averaging (BMA) that

performs quite well empirically.

In order to forecast the missing observations of the monthly indicators which are then

aggregated to obtain a quarterly value of xitq , it is common practice to use autoregressive
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models, where the lag length is based on information criteria.

2.3 Mixed-Data Sampling

Distributed lag (DL) models have been typically employed in the literature to describe

the distribution over time of the lagged effects of a change in the explanatory variable. In

general, a stylized distributed lag model is given by

ytq = α +B (L)xtq + εtq (2)

where B (L) is some finite or infinite lag polynomial operator.

This kind of models underlies the construction of the bridge equations, once all the

high frequency values are aggregated to the corresponding low-frequency values.

In order to take into account mixed-frequency data, Ghysels et al. (2004) introduce

the Mixed-Data Sampling (MIDAS) approach, which is closely related to the distributed

lag model, but in this case the dependent variable ytq , sampled at a lower-frequency, is

regressed on a distributed lag of xtm, which is sampled at a higher-frequency.

In what follows, we first present the basic features of the model as presented by

Ghysels et al. (2004), the corresponding unrestricted version as in Foroni, Marcellino and

Schumacher (2012), and then the extensions that have been introduced in the literature.

In terms of notation, tq = 1, ...Tq indexes the basic time unit (e.g. quarters), and m is

the number of times the higher sampling frequency appears in the same basic time unit.

For example, for quarterly GDP growth and monthly indicators as explanatory variables,

m = 3. w is the number of monthly values of the indicators that are earlier available

than the lower-frequency variable to be estimated. The lower-frequency variable can be

expressed at the high frequency by setting ytm = ytq ,∀tm = mtq, where tm is the time

index at the high frequency.

2.3.1 The basic MIDAS model

MIDAS regressions are essentially tightly parameterized, reduced form regressions that

involve processes sampled at different frequencies. The response to the higher-frequency

explanatory variable is modelled using highly parsimonious distributed lag polynomials,

to prevent the proliferation of parameters that might otherwise result, as well as the issues

related to lag-order selection.

The basic MIDAS model for a single explanatory variable, and hq-step-ahead forecast-

ing, with hq = hm/m, is given by:

ytq+mhq = ytm+hm = β0 + β1b (Lm; θ)x
(m)
tm+w + εtm+hm (3)

where b
(
L1/m; θ

)
=

K∑
k=0

c (k; θ)Lkm, and L
x
mx

(m)
tm = x

(m)
tm−x. x

(m)
tm+w is skip-sampled from the
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high frequency indicator xtm .

The parameterization of the lagged coeffi cients of c (k; θ) in a parsimonious way is one

of the key MIDAS features. One of the most used parameterizations is the one known as

“Exponential Almon Lag”, since it is closely related to the smooth polynomial Almon lag

functions that are used to reduce multicollinearity in the Distributed Lag literature. It is

often expressed as

c (k; θ) =
exp

(
θ1k + ...+ θQk

Q
)

K∑
k=1

exp (θ1k + ...+ θQkQ)

(4)

This function is known to be quite flexible and can take various shapes with only a few

parameters. These include decreasing, increasing or hump-shaped patterns. Ghysels,

Santa-Clara and Valkanov (2005) use the functional form with two parameters, which

allows a great flexibility and determines how many lags are included in the regression.

Notice that the standard practice in bridge equations of calculating a quarterly series

from the monthly indicators corresponds to imposing restrictions on this parameterization

function. To be concrete, in the case of the quarterly-monthly example, taking the last

month in the quarter to produce a quarterly series amounts to setting c (2; θ) = c (3; θ) =

c (5; θ) = c (6; θ) = ... = c (11; θ) = c (12; θ) = 0.

Another possible parameterization, also with only two parameters, is the so-called

“Beta Lag”, because it is based on the Beta function:

c (k; θ1, θ2) =
f
(
k
K
, θ1; θ2

)
K∑
k=1

f
(
k
K
, θ1; θ2

) (5)

where c (x, a, b) = xa−1(1−x)b−1Γ(a+b)
Γ(a)Γ(b)

and Γ (a) =
∫∞

0
e−xxa−1dx.

Ghysels, Rubia and Valkanov (2009) propose also three other different parameter-

izations of the lag coeffi cients: a linear scheme, with c (k; θ) = 1
K
, where there are

no parameters to estimate in the lagged weight function; an hyperbolic scheme, with

c (k; θ) =
g( k

K
,θ)

K∑
k=1

g( k
K
,θ)
, g (k, θ) = Γ(k+θ)

Γ(k+1)Γ(θ)
where the gamma function has only one parame-

ter to estimate, but it’s not as flexible as the Beta specification; a geometric scheme, with

c (k; θ) = θk
∞∑
k=1

θk
, |θ| ≤ 1 and c (k; θ) are normalized so that they sum up to one.

The parameterizations described above are all quite flexible. For different values of

the parameters, they can take various shapes: weights attached to the different lags can

decline slowly or fast, or even have a hump shape. Therefore, estimating the parameters

from the data automatically determines the shape of the weights and, accordingly, the

number of lags to be included in the regression.

The MIDASmodel can be estimated using nonlinear least squares (NLS) in a regression

of yt onto x
(m)
t−h. Ghysels, Santa-Clara and Valkanov (2004) show that MIDAS regressions

6



always lead to more effi cient estimation than the typical approach of aggregating all series

to the least frequent sampling. Moreover, they also show that discretization biases are

the same for MIDAS and distributed lag models and vanish when regressors are sampled

more frequently.

The forecast is given by

ŷT ym+hm|Txm = β̂0 + β̂1b
(
Lm; θ̂

)
x

(m)
Txm
. (6)

Note that MIDAS is h−dependent, and thus needs to be re-estimated for each forecast
horizon.

2.3.2 The AR-MIDAS model

Since autoregressive models often provide competitive forecasts to those obtained with

models that include explanatory variables, the introduction of an autoregressive term in

the MIDAS model is a desirable extension, although not straightforward. Ghysels, Santa-

Clara and Valkanov (2004) show that the introduction of lagged dependent variables

creates effi ciency losses. Moreover, it would result in the creation of seasonal patterns in

the explanatory variables.

Consider adding a lower-frequency lag of ytm, ytm−3, to the basic model with m = 3

(x is monthly and y is quarterly):

ytm = β0 + λytm−3 + β1b (Lm; θ)x
(3)
tm+w−3 + εtm . (7)

As highlighted in Clements and Galvao (2009), this strategy is in general not appro-

priate. The reason becomes clear when we write the model as:

ytm = β0 (1− λ)−1 + β1

(
1− λL3

m

)−1
B (Lm; θ)x

(3)
tm+w−3 +

(
1− λL3

m

)−1
εtm . (8)

The polynomial on x(3)
t−1 is a product of a polynomial in L

1/3 and a polynomial in L. This

product generates a seasonal response of y to x(3), irrespective of whether x(3) displays a

seasonal pattern.

To avoid this inconvenience, the authors suggest the introduction of the AR dynamics

as a common factor:

ytm = β0 + λytm−3 + β1b (Lm; θ)
(
1− λL3

m

)
x

(3)
tm+w−3 + εtm (9)

so that the response of y to x(3) remains non-seasonal.

The analogous multi-step model is written as:

ytm = β0 + λytm−hm + β1b (Lm; θ)
(
1− λLhmm

)
x

(3)
t+w−hm + εtm . (10)

To estimate the MIDAS-AR model, the common procedure is to estimate the standard
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MIDAS (the basic model), take the residuals ε̂tm and estimate an initial value for λ, say

λ0, where λ̂0 =
(∑

ε̂2
tm+w−hm

)−1∑
ε̂tm ε̂tm+w−hm . Then construct y

∗
tm = ytm − λ̂0ytm−hm

and x∗(3)
tm+w−hm = x

(3)
tm+w−hm − λ̂0x

(3)
tm−(hm−w)−hm. The estimator θ̂1 is obtained by applying

nonlinear least squares to:

y∗tm = β0 + β1b (Lm; θ)x
∗(3)
tm+w−hm + εtm . (11)

A new value of λ, λ̂1, is obtained from the residuals of this regression. Then a new

step is run, using λ̂1 and θ̂1 as the initial values. In this way, the procedure gets the

estimates and λ̂ and θ̂ that minimize the sum of squared residuals.

2.3.3 The Unrestricted MIDAS model

Foroni, Marcellino and Schumacher (2012) study the performance of a variant of MIDAS

which does not resort to functional distributed lag polynomials. In the paper, the authors

discuss how unrestricted MIDAS (U-MIDAS) regressions can be derived in a general

linear dynamic framework, and under which conditions the parameters of the underlying

high-frequency model can be identified2.

The U-MIDAS model based on a linear lag polynomial such as

c(Lm)ω(L)ytm = δ1(L)x1tm−1 + ...+ δN(L)xNtm−1 + εtm , (12)

t = 1, 2, 3, ...

where c(Lm) = (1− c1L
m − ...− ccLmc), δj(L) = (δj,0 + δj,1L+ ...+ δj,vL

v), j = 1, ..., N .

Note that if we assume that the lag orders c and v are large enough to make the

error term εtm uncorrelated, then, all the parameters in the U-MIDAS model (12) can be

estimated by simple OLS (while the aggregation scheme ω(L) is supposed known). From

a practical point of view, the lag order v could differ across variables, and vi and c could

be selected by an information criterion such as BIC.

A simple approach to forecasting is to use a form of direct estimation and construct

the forecast as

ỹTxm+m|Txm = c̃(Lk)yTxm + δ̃1(L)x1Txm + ...+ δ̃N(L)xNTxm , (13)

where the polynomials c̃(Z) = c̃1L
m+ ...+ c̃cL

mc and δ̃i(L) are obtained by projecting ytm
on information datedmtm−m or earlier, for t = 1, 2, ..., T xm. In general, the direct approach

of (13) can also be extended to construct hm-step ahead forecasts given information in

T xm:

yTxm+hm|Txm = c(Lk)yTxm + δ1(L)x1Txm + ...+ δN(L)xNTxm , (14)

2Koenig, Dolmas, and Piger (2003) already proposed U-MIDAS in the context of real-time estimation.
However, they did not systematically study the role of the functional form of the lag polynomial.
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where the polynomials c(Z) and δi(L) are obtained by projecting ytm on information dated

mt− hm or earlier, for t = 1, 2, ..., T xm.

In the case of U-MIDAS, the autoregressive term can be included easily without any

common factor restriction as in Clements and Galvao (2009).

Finally, Carriero, Clark and Marcellino (2012) use Bayesian techniques to estimate

specifications similar to U-MIDAS models with several regressors and stochastic volatility,

which can easily produce not only point but also interval and density forecasts. We refer

to their paper for the technical details.

2.3.4 Extensions of the MIDAS model

Different extensions of the MIDAS models have been analyzed in the literature, to intro-

duce the use of mixed-frequency data in specific applications or studies, in which there

is a need to capture particular features. For example, some studies incorporate regime

changes in the parameters or asymmetric reactions to negative or positive values of the

explanatory variables.

In what follows, we provide a brief overview of the extensions of the MIDAS models

discussed so far in the literature.

Multiple explanatory variables
To allow for the inclusion of several additional explanatory variables into the MIDAS

framework, it is necessary to extend the basic model above as follows:

ytm = β0 + β1b (Lm; θ1)x
(m)
1,tm+w−hm + β2b (Lm; θ2)x

(m)
2,tm+w−hm + εtm . (15)

In this case, we consider x1 and x2 as two different explanatory variables. The values of

the theta parameters are assumed to take on independent values and are thus represented

by two independent vectors for the parameters, which may have different lag lengths.

Obviously, the above specification may be extended to allow for the inclusion of more

than two explanatory variables (or more than two lags), and for the presence of an autore-

gressive structure. The most general MIDAS linear regression model can then be written

as

ytm = β0 +

K∑
i=1

L∑
j=1

bij (Lmi
; θ)x

(mi)
tm+w−hm + εtm . (16)

Within the more general framework, it is also possible to include explanatory variables

at different frequencies, since each indicator is modelled with its own polynomial parame-

terization. As an example, quarterly GDP growth can be explained not only by monthly

indicators but also by weekly financial variables, with the explanatory variables, therefore,

sampled at two different frequencies.

Nonlinear MIDAS models
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Ghysels, Sinko and Valkanov (2007) further generalize (16) to:

ytm = β0 + f

(
K∑
i=1

L∑
j=1

bij (Lmi
; θ) g

(
x

(mi)
tm+w−hm

))
+ εtm , (17)

where the functions f and g can be either fully known or parameter dependent. This model

is inspired by the EGARCH model, and can be useful especially in volatility applications

and risk-return trade-off studies.

Asymmetric MIDAS models
Ghysels, Santa-Clara and Valkanov (2005) introduce the asymmetric MIDAS model

given by:

ytm = β0 + β1

(
φb
(
Lm; θ−

)
1−tm−hmx

(m)
tm+w−hm + (2− φ) b

(
Lm; θ+

)
1+
tm−hmx

(m)
tm+w−hm

)
+ εtm
(18)

where 1+
tm−hm denotes the indicator function for x

(m)
tm+w−hm ≥ 0 and 1−tm−hm for x

(m)
tm+w−hm <

0, and φ ∈ (0, 2) in order to ensure that the total weights sum up to one. This formulation

allows for a different impact of negative and positive values of the regressor x. The value

of φ controls the different weight put on positive and negative impacts. Allowing for an

asymmetric impact of the indicator is important in financial applications, especially in

examining the asymmetric reaction of volatility in positive and negative return shocks.

Smooth Transition MIDAS models
Galvao (2007) proposes a new regression model which combines a smooth transition

regression with a mixed data sampling approach:

ytm = β
(m)
0,hm

+ β
(m)
1,hm

x
(m)
tm+w−hm

[
1−Gtm+w−hm

(
x

(m)
tm+w−hm ; γ, c

)]
+

+β
(m)
2,hm

x
(m)
tm+w−hm

[
Gtm+w−hm

(
x

(m)
tm+w−hm ; γ, c

)]
+ εtm (19)

where

Gtm+w−hm

(
x

(m)
tm ; γ, c

)
=

1

1 + exp
(
−γ/σ̂x

(
x

(m)
tm+w−hm ; γ, c

)) (20)

The transition function is a logistic function that depends on the weighted sum of the

explanatory variable in the current quarter.

The time-varying structure allows for changes in the predictive power of the indica-

tors. This can be particularly relevant when one wants to use asset returns for forecasting

macroeconomic variables, since changes in the predictive power of asset returns on eco-

nomic activity may be related to business cycle regimes.

Markov-Switching MIDAS models
Guerin and Marcellino (2011) incorporate regime changes in the parameters of the MI-

DAS models. The basic version of the Markov-Switching MIDAS (MS-MIDAS) regression
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model they propose is:

ytm = β0 (Stm) + β1 (Stm)B (Lm; θ)x
(m)
tm+w−hm + εtm (Stm) (21)

where εtm |Stm ∼ NID (0, σ2 (Stm)) . The regime generating process is an ergodic Markov-

chain with a finite number of states Stm .

These models allow also mixed-sample estimation of the probabilities of being in a

given regime, which are relevant, for example, when one wants to predict business cycle

regimes.

MIDAS with step functions
Forsberg and Ghysels (2007) introduce a MIDAS regression with step functions, where

the distributed lag pattern is approximated by a number of discrete steps. To define this

MIDAS regression, we consider the regressors X (tm, Ki) =
Ki∑
j=1

x
(m)
tm−j, which are partial

sums of the high frequency variables. Then the MIDAS regression with M steps is:

ytm = β0 +
M∑
βi

i=1

X (tm, Ki) + εtm . (22)

This special case of MIDAS models can be reconnected to the U-MIDAS case we have

analyzed in Section 2.3.3, in which the steps are the single individual observations.

Multivariate MIDAS models
Regression (16) can be generalized to multivariate specifications:

Ytm = B0 +
K∑
i=1

L∑
j=1

Bij (Lmi
; θ)X

(mi)
tm+w−hm + εtm , (23)

where Y , ε and X are n−dimensional vector processes B0 is an n−dimensional vector
and Bij are n × n matrices of polynomials. The main issue is how to handle parameter
proliferation in a multivariate context. One approach is to consider all the off-diagonal

elements controlled by one polynomial, while the diagonal elements by a second one. Of

course, the restrictions may not be valid, and will be chosen depending on the application.

Considering multivariate MIDAS regressions allows to address Granger causality is-

sues, avoiding temporal aggregation errors that can disguise or create spurious causality.

2.4 Mixed-frequency VAR

While so far, we have seen models which take into account mixed-frequency data in a

univariate approach, we now focus on multivariate methods which jointly specify the

dynamics of the indicators and of the variable to be explained. To exploit the information

available in series released at different frequencies and jointly analyze them, there is
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a growing literature which looks at mixed-frequency VARs, which aim to characterize

the co-movements in the series and summarize the information contained in the mixed-

frequency data.

Nowadays, in the literature, there are both classical and Bayesian approaches to esti-

mate MF-VAR models. In what follows, we describe the main features of these two classes

of estimation, following two of the most representative studies in the literature, Mariano

and Murasawa (2010) for the classical approach and Schorfheide and Song (2011) for the

Bayesian approach.

Classical framework
One of the most compelling approaches in the literature to deal with mixed-frequency

time series at the moment is the one proposed by Zadrozny (1988) for directly estimating

a VARMA model sampled at different frequencies, see also Harvey (1989). The approach

treats all the series as generated at the highest frequency, but some of them are not

observed. Those variables that are observed only at the low frequency are therefore

considered as periodically missing.

Following the notation of Mariano and Murasawa (2010), we consider the state-space

representation of a VAR model in a classical framework, treating quarterly series as

monthly series with missing observations and taking GDP growth as an example. The dis-

aggregation of the quarterly GDP growth, ytm, observed every tm = 3, 6, 9, ..., Tm, into the

month-on-month GDP growth, y∗tm, never observed, is based on the following aggregation

equation:

ytm =
1

3

(
y∗tm + y∗tm−1 + y∗tm−2

)
+

1

3

(
y∗tm−1 + y∗tm−2 + y∗tm−3

)
+

+
1

3

(
y∗tm−2 + y∗tm−3 + y∗tm−4

)
=

1

3
y∗tm +

2

3
y∗tm−1 + y∗tm−2 +

2

3
y∗tm−3 +

1

3
y∗tm−4. (24)

This aggregation equation comes from the assumption that the quarterly GDP se-

ries (in log levels), Ytm, is the geometric mean of the latent monthly random sequence

Y ∗tm , Y
∗
tm−1, Y

∗
tm−2. Taking the three-period differences and defining ytm = ∆3Ytm and

y∗tm = ∆Y ∗tm , we obtain eq. (24).

Let for all tm the latent month-on-month GDP growth y∗tm and the corresponding

monthly indicator xtm follow a bivariate VAR(p) process

φ (Lm)

(
y∗tm − µ∗y
xtm − µx

)
= utm, (25)

where utm ∼ N (0,Σ).
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The VAR(p) process in eq. (25) together with the aggregation equation (24) is then

cast in a state-space representation.

Assuming p ≤ 43 and defining

stm =

 ztm
...

ztm−4

 , ztm =

(
y∗tm − µ∗y
xtm − µx

)
,

a state-space representation of the MF-VAR is

stm = Fstm−1 +Gvtm (26)(
ytm − µy
xtm − µx

)
= Hstm (27)

with µy = 3µ∗y that holds, and vtm ∼ N (0, I2) The matrices are defined as:

F =

[
F1

F2

]
; F1 =

[
φ1 ... φp 02×2(5−p)

]
; F2 =

[
I8 08×2

]
, (28)

G =

[
Σ1/2

08×2

]
; H =

[
H0 ... H4

]
(29)

where H contains the lag polynomial

H (Lm) =

[
1/3 0

0 1

]
+

[
2/3 0

0 0

]
Lm +

[
1 0

0 0

]
L2
m +

[
2/3 0

0 0

]
L3
m +

[
1/3 0

0 0

]
L4
m

(30)

The state-space model consisting of equations (26) and (27) can be estimated with

maximum-likelihood techniques or the expectation-maximization algorithm, where we

have to take into account missing values due to publication lags and the low-frequency

nature of the GDP. We illustrate the estimation and forecasting issues later on, in Section

3.1, where we review the problems related to ragged-edge data.

Bayesian framework
The estimation of MF-VAR model with Bayesian techniques has been recently consid-

ered as an alternative framework in the literature. One of the earliest studies on this is

the paper by Chiu et al. (2011). In this paper, the authors develop a Gibbs sampling ap-

proach to estimate a VAR with mixed and irregularly sampled data. The algorithm they

develop is a Gibbs sampler which iterates over the draws from the missing data and from

3For the sake of conciseness, we do not report the state-space representation for p > 4. Details for
this case can be found in Mariano and Murasawa (2010).
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the unknown parameters in the model. Under the assumption of a normally distributed

error term, the algorithm allows for draws from Gaussian conditional distributions for es-

timating the missing data, and for draws from Gaussian and inverse Wishart conditional

posterior distributions for the parameters in the model.

As an example for the Bayesian estimation of a MF-VAR, we present the algorithm

developed by Schorfheide and Song (2011). The authors represent the MF-VAR as a

state-space model, and use MCMC methods to conduct Bayesian inference for model

parameters and unobserved monthly variables.

The state equation of the model is represented by the VAR(p) model written in the

companion form:

ztm = F1 (Φ) ztm−1 + Fc (Φ) + vtm , vtm ∼ iidN (0,Ω (Σ)) . (31)

To write the measurement equation, the authors need to write the aggregation equa-

tion, which is in this case different from the one considered by Mariano and Murasawa

(2010). In this case, the quarterly variable is seen as the three-month average of the

monthly process, which in the previous notation is:

ytm =
1

3

(
y∗tm + y∗tm−1 + y∗tm−2

)
= Λmzztm . (32)

However, since ytm is observed only every third month, there is a need of a selection matrix

that equals the identity matrix if tm corresponds to the last month of the quarter and is

empty otherwise. Therefore, the measurement equation can be written as(
ytm
xtm

)
= MtmΛzztm , (33)

where Mtm is the selection matrix. A Minnesota prior that shrinks the VAR coeffi cients

toward univariate random walk representations is introduced to cope with the issue of

dimensionality.

2.5 Mixed-frequency factor models

Closely related to the MF-VAR for their state-space representation, factor models have

also been employed in the literature to handle data with different frequencies. These

models have been utilized to extract an unobserved state of the economy and create a

new coincident indicator, but also to exploit more information and obtain more precise

forecasts. In what follows, we discuss the Mariano and Murasawa (2003) small scale

mixed-frequency factor model, developed to extend the Stock—Watson coincident index

for the US economy by combining quarterly real GDP and monthly coincident business

cycle indicators. Interesting applications of a similar approach can be found in Frale et

al. (2010, 2011). Then, we present an example of large scale mixed-frequency factor
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model, as proposed by Giannone, Reichlin and Small (2008), whose aim is to bridge the

information in a large monthly dataset with the forecast of a quarterly variable. As an

extension to it, we present the mixed-frequency state-space framework as developed by

Banbura and Rünstler (2011). Finally, based on Marcellino and Schumacher (2010), we

analyze the approach that merges factor models and the MIDAS framework presented

above.

2.5.1 Mixed-frequency small scale factor models

Factor models have a long tradition in econometrics and they are also appealing from an

economic point of view. In fact, they decompose each time series under analysis into a

common component, driven by few factors that represent the key economic driving forces,

and an idiosyncratic component.

Mariano and Murasawa (2003) set up a static one-factor model for a small set of

observable monthly and quarterly series, and derive its state-space representation.

Following their notation, consider a one-factor model for y∗t , such that for all tm,

y∗tm = µ∗ + Λftm + utm (34)

Φf (L) ftm = vtm (35)

Φu (L)utm = wtm (36)(
vtm
wtm

)
∼ N

(
0,

[
Σvv 0

0 Σww

])
(37)

where Φf (.) is a pth-order polynomial on R and Φu (.) is a qth-order polynomial on RN×N .
In order to have identification, we assume Λ := [I,Λ′2]′ and Φu (.) and Σww diagonal.

State-space representation
Assuming p,q ≤ 4, for all tm, and defining

st =



ftm
...

ftm−4

utm
...

utm−4


,

the state-space representation of the factor model is

stm+1 = Fstm +Gvtm (38)

ytm = µ+Hstm (39)
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with vtm ∼ N (0, I3) , where

F =

[
F1 F2

F3 F4

]
; F1 =

[
Φf,1...Φf,p 01×(5−p)

I4 04×1

]
; F2 = 05×10; (40)

F3 = 010×5; F4 =

[
Φu,1...Φu,q 01×(5−q)

I8 08×2

]

G =


Σ

1/2
vv 01×2

04×1 04×2

02×1 Σ
1/2
ww

08×1 08×2

 ; H =
[
H0Λ ... H4Λ H0 ... H4

]
(41)

where H(Lm) is defined as in equation (30).

In the estimation, Mariano and Murasawa (2003) cannot use the standard EM algo-

rithm, since the measurement equation has unknown parameters. The procedure they

followed is similar to the one described in Section 3.1.

The dynamic factor model as extended by Mariano and Murasawa (2003) is also used

in Frale et al. (2011) to handle mixed frequency data, in order to obtain estimates of

the monthly Euro area GDP components from the output and expenditure sides, to be

later aggregated into a single indicator, called EUROMIND. Broadly speaking, GDP is

disaggregated by supply sectors and demand components. For each of these sectors and

components, timely and economically sensible observable monthly indicators are then

selected and represented with a dynamic factor model, as described above. The single

models are then linked together based on the composition of GDP.

2.5.2 Bridging with factors

We now discuss a large mixed frequency factor model as proposed by Giannone, Reichlin

and Small (2008), which exploits a large number of series that are released at different

times and with different lags. The methodology the authors propose relies on the two-step

estimator by Doz et al. (2011). This framework combines principal components with the

Kalman filter. First, the parameters of the model are estimated by OLS regression on the

estimated factors, where the latter are obtained through principal components calculated

on a balanced version of the dataset. Then, the Kalman smoother is used to update the

estimate of the signal variable on the basis of the entire unbalanced panel.

The model

16



The dynamic factor model of Doz et a. (2011) is given by

xtm = Λftm + ξtm ξtm ∼ N (0,Σξ) (42)

ftm =

p∑
i=1

Aiftm−i +Bηtm ηtm ∼ N (0, Iq) (43)

Equation (42) relates the N monthly series xtm to a r× 1 vector of latent factors ftm ,

through a matrix of factor loadings Λ, plus an idiosyncratic component ξtm , assumed to

be a multivariate white noise with diagonal covariance matrix Σξ. Equation (43) describes

the law of motion of the latent factors, which are driven by a q−dimensional standardized
white noise ηtm, where B is a r × q matrix ( r ≤ q). Hence, ζtm ∼ N (0, BB′) .

To deal with missing observations at the end of the sample, the authors use a two-

step estimator. In the first step, the parameters of the model are estimated consistently

through principal components on a balanced panel, created by truncating the data set at

the date of the least timely release. In the second step, the Kalman smoother is applied to

update the estimates of the factor and the forecast on the basis of the entire unbalanced

data set (see Section 3.2.3 for more details on the estimation method).

The model is then complemented by a forecast equation for mean-adjusted quarterly

GDP. The forecast is defined as the projection of the quarterly GDP growth on the

quarterly aggregated estimated common factors:

ŷtq = α + βf̂tq , (44)

where f̂tq is the quarterly aggregated correspondent of f̂tm .

If we look at eq. (44), we see that this is exactly what we analyzed in Section (2.2) for

the bridge equations. The framework can be interpreted as a large bridge model which

uses a large number of variables and bridges monthly data releases with the forecast of

the quarterly variable.

2.5.3 Factor models in a mixed-frequency state-space representation

Banbura and Rünstler (2011) extend the model of Giannone et al. (2008), by integrating

a forecast equation for quarterly GDP. More specifically, they introduce the forecast of

monthly GDP growth ytm as a latent variable, related to the common factors by the static

equation

ytm = β′ftm + εtm , εtm ∼ N
(
0, σ2

ε

)
. (45)

The quarterly GDP growth, ytm, is assumed to be the quarterly average of the monthly

series:

ytm =
1

3

(
y∗tm + y∗tm−1 + y∗tm−2

)
. (46)

The innovations εtm , ηtm , ξtm are assumed to be mutually independent at all leads and

lags.
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Equations (42) to (46) can be cast in state-space form. ytm is constructed in such a

way that it contains the quarterly GDP growth in the third month of each quarter, while

the other observations are treated as missing.

State-space representation
The state-space representation, when p = 1, is:

[
xtm
ytm

]
=

[
Λ 0 0

0 0 1

] ftm
y∗tm
yCtm

+

[
ξtm
εtm

]
(47)

 Ir 0 0

−β′ 1 0

0 −1/3 1


 ftm+1

y∗tm+1

yCtm+1

 =

 A1 0 0

0 0 0

0 0 Ξtm+1


 ftm
y∗tm
yCtm

+

 Bηtm+1

0

0

 (48)

The aggregation rule (46) is implemented in a recursive way, by introducing a latent

cumulator variable yCtm = Ξtmy
C
tm−1 + 1

3
y∗tm , where Ξtm = 0 for tm corresponding to the first

month of the quarter and Ξtm = 1 otherwise. The estimation of the model parameters

follows Giannone, Reichlin and Small (2008).

2.5.4 Factor-MIDAS

It is possible to augment the MIDAS regressions with the factors extracted from a large

dataset to obtain a richer family of models that exploit a large high-frequency dataset to

predict a low-frequency variable.

While the basic MIDAS framework consists of a regression of a low-frequency variable

on a set of high-frequency indicators, the Factor-MIDAS approach exploits estimated

factors rather than single or small groups of economic indicators as regressors.

Marcellino and Schumacher (2010) propose alternative MIDAS regressions. In the

standard MIDAS case, they follow Clements and Galvao (2008), while as a modifi-

cation they evaluate a more general regression approach, labeled unrestricted Factor-

MIDAS, where the dynamic relationship between the low-frequency variables and the

high-frequency indicators is unrestricted, in contrast to the distributed lag functions as

proposed by Ghysels et al. (2007). As a third alternative, they consider a regression

scheme proposed by Altissimo et al. (2010), which considers only correlation at certain

frequencies between variables sampled at high- and low- frequencies. This approach is

called smoothed MIDAS, since the regression essentially eliminates high-frequency corre-

lations.

The information set consists of a large set of stationary monthly indicators, Xtm . The

last observation is at time Tm + w,w > 0, allowing for at most w > 0 monthly values of

the indicators that are earlier available than the lower-frequency variable to be estimated.

Xtm is modeled using a factor representation, where r factors Ftm are estimated in order to
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summarize the information in Xtm. The estimated factors, F̂tm , are used in the projection

for the quarterly-frequency variable.

We now describe in details the three alternative Factor-MIDAS approaches proposed

by Marcellino and Schumacher (2010), assuming again that the target variable is GDP.

These approaches are tools for direct multi-step now- and forecasting, thus each model is

for a specific forecast horizon.

The Basic Factor-MIDAS approach
In the basic Factor-MIDAS approach the explanatory variables used as regressors are

estimated factors. Assume for simplicity r = 1, so that there is only one factor f̂tm. The

Factor-MIDAS model for forecast horizon hq quarters with hq = hm/3 is

ytq+hq = ytm+hm = β0 + β1b (Lm; θ) f̂
(3)
tm+w + εtm+hm , (49)

where b (Lm; θ) =
K∑
k=0

c (k; θ)Lkm and c (k; θ) =
exp(θ1k+θ2k2)
K∑
k=0

exp(θ1k+θ2k2)

.

f̂
(3)
tm is skip-sampled from the monthly factor f̂tm. Every third observation starting

from the final one is included in the regressor f̂ (3)
tm , i.e. f̂

(3)
tm+w = f̂tm+w,∀tm + w =

..., Tm + w − 6, Tm + w − 3, Tm + w. Note that we take into account the fact that a

monthly indicator is typically available also within the quarter for which no GDP figure is

available. As described above in the MIDAS models, the exponential lag function provides

a parsimonious way to consider monthly lags of the factors.

The model can be estimated using nonlinear least squares in a regression of ytm onto

the factors f̂ (3)
tm+w−h. The forecast is given by

yTm+hm|Tm+w = β̂0 + β̂1b
(
Lm; θ̂

)
f̂

(3)
Tm+w. (50)

The projection is based on the final values of estimated factors.

MIDAS regression can be generalized to more than one factor and extended with the

addition of autoregressive dynamics. Details on factor estimation are provided in Section

3.2.

Smoothed MIDAS
A different way to formulate a mixed-frequency projection is proposed by Altissimo

et al. (2010). The projection can be written as:

yTm+hm|Tm+w = µ̂+GF̂Tm+w (51)

G = Σ̃yF (hm − w)× Σ̂−1
F , (52)

where µ̂ is the sample mean of GDP, G is the projection coeffi cient matrix, Σ̂F is the

estimated sample covariance of the factors, and Σ̃yF (k) is a particular cross-covariance

with k monthly lags between GDP and the factors. Σ̃yF (k) is not an estimate of the sample
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cross-covariance between factors and GDP, but a cross-covariance between smoothed GDP

and factors. The smoothing aspect is introduced in Σ̃yF (k) as follows. The estimated

covariance between F̂tm−k and ytm is:

Σ̂yF (k) =
1

T ∗ − 1

Tm∑
tm=M+1

ytmF̂
(3)′
tm−k, (53)

where T ∗ is the number of observations available to compute the cross-covariances. Note

the use of skip-sampled factors, since GDP is available only quarterly. Given Σ̂yF (k), the

estimated cross-spectral matrix is

ŜyF (ωj) =
M∑

k=−M

(
1− |k|

M + 1

)
Σ̂yF (k) e−iωjk, (54)

at frequencies ωj = 2πj
2H

for i = −H, ..., H using a Bartlett lead-lag window. The low-

frequency relationship between F̂tm−k and ytm is obtained by filtering out cross fluctuations

at frequency higher than a certain threshold π/q, using the frequency-response function

α (ωj) ,defined as α (ωj) = 1,∀ |ωj| < π/q and zero otherwise. The autocovariance matrix

Σ̃yF (k) reflecting low-frequency co-movements between F̂tm−k and ytm is obtained by

inverse Fourier transform:

Σ̃yF (k) =
1

2H + 1

H∑
j=−H

α (ωj) ŜyF (ωj) e
iωjk. (55)

Note that Σ̂yF (k) is a consistent estimator of the true cross-covariance, if the sample size

is suffi ciently large.

Unrestricted MIDAS
An alternative to the two previous models is the unrestricted lag order specification,

as described in the above Section 2.3.3:

yTm+hm = β0 +D (Lm) F̂
(3)
tm+w + εtm+hm , (56)

where D (Lm) =
K∑
k=0

DkL
k
m is an unrestricted lag polynomial of order K.

D (Lm) and β0 are estimated by OLS. To specify the lag order in the empirical appli-

cation, Marcellino and Schumacher consider a fixed scheme with k = 0 and an automatic

lag length selection using the BIC.
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3 Ragged-edge data

After having analyzed the various techniques to deal with mixed-frequency data, in this

section we review the estimation methods that can handle ragged-edge data, that is

datasets which are not balanced, due to the presence of missing values at the end of the

sample for some indicators.

First, we discuss the issues of estimation and forecasting MF-VAR in the presence

of missing observations due to publication lags and to the low-frequency nature of one

variable. We follow Mariano and Murasawa (2010) in the discussion of estimation of the

state-space form and forecasting with the use of Kalman filter and/or smoother.

Going further, we analyze issues related to factor estimation in the presence of ragged-

edge data. Marcellino and Schumacher (2010) review three different methods to tackle

it. First, the method proposed by Altissimo et al. (2010), who realign each time series

in the sample in order to obtain a balanced dataset, and then estimate the factors with

dynamic PCA. As an alternative, to consider missing values in the data for estimating

factors Stock and Watson (2002) propose an EM algorithm together with the standard

principal component analysis (DPCA). As a third method, Doz et al. (2011) propose a

factor estimation approach based on a complete parametric representation of the large

factor model in state-space form.

3.1 Estimating the MF-VAR with missing observations

As already anticipated in Section 2, Kalman filtering techniques can handle ragged-edge

data and missing values due to publication lags and the low-frequency nature of a time

series.

Estimation
The state-space representation of the mixed-frequency VAR model is described by

equations (26) and (27), reported also here:

stm = Fstm−1 +Gvtm(
ytm − µy
xtm − µx

)
= Hstm .

It can be estimated by maximum-likelihood even in the presence of missing observations

due to publication lags and the low-frequency nature of GDP. However, as Mariano and

Murasawa (2010) mention in their paper, when the number of parameters is large, the

ML method can fail to converge.

In these cases, it is useful to implement the EM algorithm modified to allow for missing

observations. Mariano and Murasawa (2010) consider the missing values as realizations
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of some iid standard normal random variables, i.e.

y+
tm =

{
ytm
ζtm

if ytm is observable

otherwise
(57)

where ζtm is a draw from a standard normal distribution independent of the model para-

meters.

The measurement equation is modified accordingly in the first two months of each

quarter, where the upper row of H is set to zero and a standard normal error term

is added, so that the Kalman filter skips the random numbers. Since the realizations

of the random numbers do not matter in practice, the authors suggest to replace the

missing values with zeros. Then, the EM algorithm is employed to obtain estimates of

the parameters.

Estimation of latent monthly real GDP
Mariano and Murasawa (2010) use the Kalman smoother instead of the Kalman filter,

because it uses more information and also simplifies the formulation of the state-space

model. Although GDP growth for a particular month is not available, the smoother

considers the monthly indicators available for the same quarter, so that nowcasting is

also possible. For the months in which no observations are available also for the monthly

indicators, the Kalman smoother acts exactly as the Kalman filter.

3.2 Estimating the factors with ragged-edge data

Factor forecasting with large, single-frequency data is often carried out using a two-step

procedure. First, the factors are estimated and, second, a dynamic model for the variable

to be predicted is augmented with the estimated factors. The same procedure can be used

also in case of mixed-frequency data. As an alternative, factor estimation and forecasting

can be conducted in a single step, in the contest of a parametric model.

The literature provides various ways to estimate the factors, in case of balanced

datasets. However, in the following subsections we describe the methods that can handle

ragged-edge data, that is datasets which are not balanced due to the presence of missing

values at the end of the sample for some indicators.

3.2.1 Vertical realignment of data and DPCA

Altissimo et al. (2010) provide a convenient way to solve the ragged-edge problem. They

propose to realign each time series in the sample in order to obtain a balanced dataset.

Assume that variable i is realized with ki months of publication lags. Thus, given a

dataset in period Tm + w, the final observation of time series i is for period Tm + w − ki.
Altissimo et al. (2010) propose to realign the series in this way:

x̃i,Tm+w = xi,Tm+w−ki , (58)
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for tm = k1 + 1, ..., Tm + w. Once applied to each time series, the result is a balanced

dataset X̃tm, for tm = max {k1}Ni=1 + 1, ..., Tm + w.

Given this balanced dataset, Altissimo et al. (2010) propose dynamic PCA to estimate

the factors. The two-step estimation procedure introduced by Forni et al. (2005) directly

applies, since the dataset is balanced.

One of the main advantages of this method is the simplicity. A drawback is that

the availability of data determines cross-correlations between variables. Moreover, data

releases are not the same over time, so that dynamic correlations within the data change

and, as a consequence, factors change over time. The same happens if factors are reesti-

mated at a higher frequency than the one of the factor model, for example in the case of

a monthly factor model reestimated several times within a month, in correspondence of

new releases of the data.

3.2.2 EM algorithm and PCA

As an alternative, to consider missing values in the data for estimating factors, Stock and

Watson (2002) propose an EM algorithm combined with the standard PCA. Call Xi the

column i of the dataset Xtm: not all observations are available, due to publication lags.

The vector Xobs
i contains the observations available for variable i, a subset of Xi. More

precisely, the relation between observed and not fully observed variables is

Xobs
i = AiXi, (59)

where Ai is the matrix that tackles missing values. Ai is equal to the identity matrix, in

case there are no missing values in the series. When an observation is missing at the end

of the sample, the corresponding final row of the identity matrix is removed.

The EM algorithm consists in the following steps:

1. Provide an initial guess X̂(0)
i ,∀i. These guesses together with the fully available

series provide a balanced dataset X̂(0). With a balanced dataset, standard PCA

gives initial monthly factors F̂ (0) and loadings Λ̂(0).

2. E-step: an updated estimate of the missing observations for variable i is provided by

the expectation of Xi conditional on Xobs
i , factors F̂ (j−1) and loadings Λ̂(j−1) from

the previous iteration

X̂
(j)
i = F̂ (j−1)Λ̂

(j−1)
i + A′i (A

′
iAi)

−1
(
Xobs
i − AiF̂ (j−1)Λ̂

(j−1)
i

)
. (60)

We can recognize two components in the update: the common component from

the previous iteration F̂ (j−1)Λ̂
(j−1)
i , and a low-frequency idiosyncratic component

Xobs
i − AiF̂ (j−1)Λ̂

(j−1)
i , distributed by the projection coeffi cient A′i (A

′
iAi)

−1 on the

high-frequency periods, see Breitung and Schumacher (2008).
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3. M-step: repeat the E-step for each variable i, in order to obtain a balanced dataset.

Reestimate all the factors F̂ (j) and loadings Λ̂(j) by PCA. Go back to step 2 until

convergence.

After convergence, the EM algorithm provides both the monthly factor estimates F̂tm
and the estimates of the missing values of the time series, see also Angelini et al. (2006).

3.2.3 Large parametric factor model in state-space form

Doz et al. (2011) propose a factor estimation approach based on a complete representation

of the large-factor model in state-space form. The full state-space model has the form

Xtm = ΛFtm + ξtm (61)

Ψ (Lm)Ftm = Bηtm . (62)

Equation (61) is the static factor representation of Xtm . Equation (62) specifies a VAR

structure of the factors, with lag polynomial Ψ (Lm) =
p∑
i=1

ΨiL
i
m. ηtm is a q−dimensional

vector that contains the orthogonal dynamic shocks that drive the r factors. The factors

Ftm represent the states, while ξtm is the stationary idiosyncratic component which admits

a Wold representation. The shocks driving the factors and the idiosyncratic components

are assumed to be independent. If the Xtm is of a small dimension, the model can be

estimated by iterative maximum likelihood. If the dimension is large, iterative ML is

infeasible, so Doz et al. (2011) propose a quasi-ML to estimate the factors. For a given

number of factors, r, and dynamic shocks, q, the estimation follows the steps illustrated

below:

1. Estimate F̂tm using PCA as an initial estimate. The estimation is based on the

balanced part of the data, obtained by removing the values at the end of the sample

that create the unbalancedness.

2. Estimate the loadings Λ̂ by regressing Xtm on the factors estimated in the previous

step, F̂tm. Estimate also the covariance of the idiosyncratic components ξ̂tm, denoted

as Σ̂ξ.

3. Estimate a VAR(p) on the factors F̂tm , obtaining Ψ̂ (Lm) , and the residual covariance

of ς̂ tm = Ψ̂ (Lm) F̂tm , denoted as Σ̂ς .

4. To obtain an estimate of B, given the number of dynamic shocks q, apply an eigen-

value decomposition of Σ̂ς .Call M the (r × q)−dimensional matrix of the eigenvec-
tors corresponding to the q largest eigenvalues, and call P the (q × q)−dimensional
matrix with the largest eigenvalues on the main diagonal and zero otherwise. The

estimate of B is B̂ = M×P−1/2. All the parameters and coeffi cients in the system of
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equations (61) and (62) are then fully specified. The model is cast into state-space

form.

5. The Kalman filter or smoother yields new estimates of the monthly factors. The

dataset used now is the unbalanced one, where Tm is the last observation available

in the whole set of monthly series. The Kalman filter also provides estimates and

forecasts for the missing values conditional on the model structure and properties

of the shocks.

Note that the coeffi cients in the system have to be estimated from a balanced sub-

sample of data, as in step 1 there is the need of a fully balanced dataset for PCA initial-

ization. Nevertheless, in step 5 the factor estimation based on the Kalman filter applies to

the unbalanced dataset. The solution is to estimate the coeffi cients outside the state-space

model and avoid to estimate a large number of coeffi cients by iterative ML.

4 A comparison of the different methods

So far, we have seen that several methods have been proposed in the literature to deal

with mixed-frequency data, possibly with a ragged edge structure. In general, there is an

agreement on the fact that exploiting data at different frequencies matters for nowcasting

and short term forecasting. We now try to summarize the advantages and disadvantages

of the different methods, comparing their most important features.

Bridge equations are still one of the most used techniques, especially in short run

forecasting, because they are pretty easy to estimate and interpret, and allow computing

early estimates of the low-frequency variable. The drawback is that they are purely

statistical models, where the regressors are included only because they contain timely

updated information. Therefore, if the model that exploits the high-frequency information

is misspecified, the error transmits to the bridge equation and to the forecasts that are

obtained recursively.

A more sophisticated way to deal with data sampled at different frequencies is the

state-space approach. Casting the model in state-space form has the advantage of jointly

specifying the dynamics of the indicators and of the variable to be explained without

imposing any a-priori restriction. Moreover, since the low-frequency series is seen as

a high-frequency series with missing values, the use of the Kalman filter permits the

estimation of these missing data. As shown in Bai, Ghysels andWright (2011), the Kalman

filter results to be the optimal filter in population, when ignoring parameter estimation

errors and assuming that the model is correctly specified. Therefore, under these ideal

circumstances, the state-space approach cannot be beaten by any other method. On the

other side, there are also some drawbacks from the use of this approach: first of all, in most

of the cases it is computationally complex, and the complexity increases with the number

of variables involved, so that most of the time only small-scale models can be estimated.
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Moreover, the state space approach requires the correct specification of the model in high

frequency, which is even more complex than usual given the missing observations in the

dependent variable.

An alternative way to deal with mixed-frequency data is the MIDAS approach. Even

though in population, when the process is correctly specified, MIDAS is coarse than

the optimal Kalman filter, it can be more robust in the presence of mis-specification.

Moreover, the lag polynomials are based on a very small number of parameters, allowing

the MIDAS models to be parsimonious, even though it is still not clear which is the best

polynomial specification. Contrary to what stated for the state-space models, MIDAS

models can be easily estimated by NLS. However, it is only possible to obtain a high

frequency update of the expected low frequency realization, not an estimate of the missing

values in the low frequency variable.

Both the state-space and the MIDAS approaches can be combined with a factor spec-

ification, in order to use the information in a large dataset, possibly with a ragged edge.

Whether factor methods provide more precise estimates and forecasts than VARs or single

equation methods is a matter for empirical investigation, since there is a trade-offbetween

model complexity and extended information set.

5 An overview of empirical studies

In this section we review the empirical literature on forecasting with mixed-frequency and

ragged-edge data, providing some examples of all the models and estimation methods

outlined in the previous sections.

5.1 Bridge equations

Bridge equations have been one of the first methods employed in nowcasting the current

state of the economy, making use of the monthly information available. Studies of this

kind have been conducted for the nowcasts of different economies. A common finding of

these studies is that the exploitation of intra-period information reduces the forecasting

error in the majority of the cases. The applications concern both "supply-side" and

"demand-side" models.

Looking at US data, Trehahn and Ingenito (1996) construct a model that predicts

current quarter real GDP based on knowledge of nonfarm payrolls, industrial production

and real retail sales, which have the advantage of being released at a monthly frequency

by the middle of the following month. In order to produce a model that predicts real

GDP, the authors rely on auxiliary models that generate forecasts of the indicator vari-

ables themselves. Their evidence shows that consumption data provide key information

about current output, and that retail sales release allows to have a good forecast of con-

temporaneous consumption.
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Stark (2000) presents evidence on the usefulness of conditioning quarterly model fore-

casts on monthly current-quarter data, in the case of the US economy. Starting by gener-

ating a one-step-ahead forecast from a quarterly Bayesian vector error correction model,

the author then specifies a monthly statistical model for variables that are thought to carry

information about each of the variables in the quarterly model and uses it to generate se-

quences of current-quarter quarterly-average forecasts from the monthly indicators. Once

he has these quarterly-average monthly indicator forecasts, he forms updated estimates of

the quarterly model’s current-quarter forecast. The findings show that exploiting monthly

information produces economically and statistically significant improvements, particularly

large especially during periods of recession.

A study by Barhoumi et al. (2011) presents a model to predict French gross domestic

product (GDP) quarterly growth rate. The authors employ the bridge equations to fore-

cast each component of the GDP, and select the monthly explanatory variables among

a large set of hard and soft data. They find that changing the set of equations over the

quarter is superior to keeping the same equations over time. These models turn out to

beat the benchmark in terms of forecasting performance.

Studies involving bridge equations can be found for many other countries. In particu-

lar, bridge models have been employed also for nowcasting Euro Area GDP growth. As an

example, we consider Baffi gi et al. (2004). In this paper, bridge models are estimated for

aggregate GDP and components, both area-wide and for the main countries of the Euro

Area. Their short-term performance is then assessed with respect to benchmark univari-

ate and multivariate standard models, and a small structural model. The results shown

in the paper are clear-cut: bridge models performance is always better than benchmark

models, provided that at least some indicators are available over the forecasting horizon.

As far as the type of aggregation is concerned, the supply-side approach (modelling ag-

gregate GDP) performs better than the demand-side approach (aggregation of forecasts

by national account components). The supply-side models highlight the role of industrial

production and manufacturing surveys as the best monthly indicators. Looking at the

demand-side models, from the different equations estimated in this paper, private con-

sumption results well tracked by retail sales index, while the consumer confidence index

plays a minor role; in the case of investment a major role seems to be played by survey

variables.

Diron (2008) makes use of bridge equations with Euro Area data to provide an assess-

ment of forecast errors, which takes into account data-revisions. Using four years of data

vintages, the paper provides estimates of forecast errors for Euro Area real GDP growth

in genuine real-time conditions and assesses the impact of data revisions on short-term

forecasts of real GDP growth. Given the size of revision to indicators of activity, the

assessment of reliability of short-term forecasts based on revised series could potentially

give a misleading picture. Nevertheless, averaging across all bridge equations, forecasts of

individual quarters tend to be similar whether they are based on preliminary or revised
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data. More specifically, the RMSEs based on real-time and pseudo real-time exercises

are quite similar and both smaller compared with AR forecasts of GDP, considered as

the benchmark. The difference in forecast accuracy is significant according to Diebold

and Mariano tests, highlighting that short-term forecasts based on bridge equations are

informative. Moreover, the paper investigates the contributions of the various sources to

the overall forecasting errors. Revisions to the monthly variables and to GDP growth

account only for a small share of the overall forecast error, while the main sources are

from extrapolation of the monthly indicators. The relative contributions of extrapolation

and of revision of monthly indicators vary depending on whether the equations include

hard data, in which case both sources are significant, or survey and financial variables, in

which case these two sources tend to have a smaller weight.

In the context of nowcasting, it has become more common to exploit the information

coming from a large set of variables. Therefore, recent studies combine the bridge models

with factors, in what in is called "bridging with factors". This new kind of model is

related to the one described in Section 2.5.2 by Giannone et al. (2008). In Section 5.4.2,

we will review these studies and compare the performance of this new kind of bridge with

factors to the standard bridge models and other benchmarks.

5.2 MIDAS models

In the first applications, MIDAS models have been applied to financial data, investigating

the relation between the conditional mean and the conditional variance of the stock market

returns or future volatility, see Ghysels et al. (2005) as an example. Clements and Galvao

(2008) are the first to apply MIDAS regressions to macroeconomic data. In the next

paragraphs we will overview applications based on financial and/or macroeconomic data.

Ghysels, Santa-Clara and Valkanov (2005) study the intertemporal relation between

the conditional mean and the conditional variance of the aggregate market return. In

support of Merton’s ICAPM, the authors find a positive significant and robust relation

between risk and return. They also find that the MIDAS estimator is a better forecaster of

the stock market variance than two other benchmark models: rolling window and GARCH

estimators. The authors also focus on the asymmetric reaction of volatility to positive

and negative shocks. They find that positive shocks have a bigger impact overall on the

conditional mean of returns, are slower to be incorporated in the conditional variance, and

are much more persistent, while negative shocks have a large initial, but temporary, effect

on the variance of returns. Ghysels, Santa-Clara and Valkanov (2006) consider various

MIDAS regressions to predict volatility in a parsimonious way with data at different

frequency. They find that daily realized power is the best predictor of future increments

in quadratic variation. Surprisingly, the direct use of high-frequency (5 minutes) data

does not improve volatility prediction.

Ghysels, Rubia and Valkanov (2009) compare three different approaches of producing

multi-period-ahead forecasts of volatility: iterated, direct and MIDAS. The comparison
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is conducted out-of-sample using returns data of the US stock market portfolio and a

cross section of size, book-to-market and industry portfolios, in terms of the average

forecasting accuracy, using the MSFE. The direct approach provides the worst forecasts.

Iterated forecasts are suitable for shorter horizons, while MIDAS forecasts perform well

at long horizons.

Clements and Galvao (2008) introduce the use of MIDAS regressions in forecasting

macroeconomic data. They also look at whether a mixed-data sampling approach includ-

ing an autoregressive term can improve forecasts of US real output growth. They conduct

a real-time forecasting exercise that exploits monthly vintages of the indicators and the

quarterly vintages of the output growth, consistent with the timing of the releases of the

different data vintages. The authors find that the use of within-quarter information on

monthly indicators can result in a marked reduction in RMSE compared with the more

traditional quarterly-frequency AR or AR distributed-lag models. Moreover, Clements

and Galvao (2009) evaluate the predictive power of leading indicators for output growth

up to one year, using MIDAS approach to combine multiple leading indicators in a parsi-

monious way. The results confirm that MIDAS is a useful instrument to improve forecasts.

Moreover, they show that the use of real-time vintage data improves forecast performance

and that the predictive power of the indicators is stronger when the aim is to forecast fi-

nal data rather than first-released data, although first releases can generally be forecasted

more accurately.

Foroni, Marcellino and Schumacher (2012) compare the performance of the MIDAS

with functional distributed lags estimated with NLS to the one of the U-MIDAS, the un-

restricted version analyzed in Section 2.3.3. In Monte Carlo experiments, they show that

U-MIDAS generally performs better than MIDAS when mixing quarterly and monthly

data. On the other hand, with larger differences in sampling frequencies, distributed

lag-functions outperform unrestricted polynomials. In an empirical application on out-of-

sample nowcasting GDP in the Euro area and the US using monthly predictors, they find

a good performance of U-MIDAS for a number of indicators, albeit the results depend on

the evaluation sample.

In the recently increasing literature, which is exploiting the availability of a huge

number of financial time series on a daily basis to forecast macroeconomic time series,

the empirical evidence in support of the use of high-frequency financial series is rather

mixed. On the one side, it is useful to use this great amount of timely information, but

on the other side there is a question on how to weight the daily observations and to filter

these data, to get rid of the possible noise. Results from recent studies suggest that daily

variables seem to have useful information for forecasting inflation and economic activity.

Among these studies, Ghysels and Wright (2009) propose methods for using asset

price data to construct daily forecasts of upcoming survey releases, employing MIDAS

regression models and a more structural approach based on the Kalman filter to estimate

what forecasters would predict if they were asked to make a forecast each day, treating
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their forecasts as missing data to be interpolated. Their aim is to obtain high-frequency

measures of forecasters’expectations. The authors consider two surveys in their empirical

work: the Survey of Professional Forecasters and the Consensus Forecasts, and use the

daily asset prices to predict the upcoming releases of either of the two surveys. In an

in- and out-of-sample forecasting exercise, both approaches (MIDAS and Kalman filter)

perform better than the simple random walk benchmark forecasts.

Andreou, Ghysels and Kourtellos (2010) assess whether daily financial data can im-

prove macroeconomic forecasting, employing MIDAS regression models. They forecast

US quarterly inflation rate and economic growth using a dataset including daily, monthly

and quarterly indicators. An important advantage of the MIDAS model is that it can

provide new forecasts as daily data become available. The authors find that on average

daily financial predictors improve the forecasts of quarterly inflation and GDP relative to

the AR benchmark model.

Monteforte and Moretti (2010) present a mixed frequency model for daily forecasts of

Euro area inflation in real-time. The model they use allows to combine a monthly core

inflation estimated from a dynamic factor model with daily financial market variables,

which provide timely information on the recent shocks. They compare the results of this

mixed-frequency model with standard univariate and multivariate models with monthly

data, and also with the forecasts implied by financial market expectations extracted from

future contracts. In both cases, the mixed frequency approach shows a superior predictive

power.

5.3 Mixed-frequency VAR models

As we have seen in Section 2.4, studies on MF-VAR models have been conducted both in a

classical and in a Bayesian context. We now outline the main empirical studies conducted

in both frameworks.

Mittnik and Zadrozny (2005) evaluate a Kalman-filtering-based maximum- likelihood

estimation method for forecasting German real GDP at monthly intervals. They estimate

a VAR(2) model of quarterly GDP and up to three monthly indicator variables (industrial

production, current and expected business conditions). They find that in general monthly

models produce better short-term GDP forecasts, while quarterly models produce better

long-term GDP forecasts.

Mariano and Murasawa (2010) apply the MF-VAR method to construct a new co-

incident indicator, i.e. an estimate of monthly real GDP. What they find is that the

coincident index based on the VAR model is close to the one obtain by a factor model,

and they both track well quarterly real GDP, although they are quite volatile.

Kuzin, Marcellino and Schumacher (2011) compare the MF-VAR, as presented in

Mariano and Murasawa (2010), with the MIDAS approach to model specification in the

presence of monthly and quarterly series. MIDAS leads to parsimonious models, while

MF-VAR does not restrict the dynamics but suffers from the curse of dimensionality.
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The authors argue that it is diffi cult to rank the different approaches a priori, so they

compare their performance empirically, considering an AR process as a benchmark. The

two approaches tend to be more complementary than substitutes, since the MF-VAR

performs better for longer horizons, whereas MIDAS for shorter horizons. Looking at the

relative MSE of the different models with respect to the benchmark, the mixed-frequency

models perform relatively well, especially when forecast combinations are adopted.

Similar evidence is found by Foroni and Marcellino (2012) in their paper which focuses

on different methods proposed in the literature to deal with mixed-frequency and ragged-

edge datasets. The authors discuss the performance of the different methods on now- and

forecasting the quarterly growth rate of the Euro Area GDP and its components, using

a very large set of monthly indicators. They also find that MF-VAR outperforms the

MIDAS approach only at longer horizons.

Ghysels (2011) introduces a different MF-VAR representation, in which he constructs

the MF-VAR process as stacked skip-sampled processes. In this paper, the author char-

acterizes explicitly the mis-specification of a traditional low frequency VAR and the con-

sequent misspecification in the impulse response functions. Moreover, since the MF-VAR

specified in this way can also characterize the timing of information releases, he shows how

Choleski factorizations are a more natural tool for impulse response analysis because the

elements in the vector represent a sequence of time events. As another contribution, he

studies a Bayesian approach which accommodates the potentially large set of parameters

to be estimated.

One of the earliest studies on Bayesian estimation of MF-VAR is the paper by Chiu

et al. (2011). In this paper, the authors develop a Gibbs sampling approach to estimate

a VAR with mixed and irregularly sampled data. The focus of the paper is on the

parameter estimation. In an exercise with simulated data, the authors show that taking

into account mixed-frequency data allows to obtain smaller root mean squared errors for

all the parameter estimates regardless of the sample size and of the correlation between the

variables of the system. These results find confirmation also in the two empirical examples,

conducted with data respectively at monthly and quarterly and weekly and monthly

frequency, for which the authors compare the posterior distributions of the parameters

and the impulse response functions.

Another study by Viefers (2011) reconsiders the estimation of a MF-VAR as in Mariano

and Murasawa (2010). First, the author makes use of the Bayesian MCMC algorithm to

simulate and estimate the model, and second he extends the MF-VAR to allow for regime

switching. In his model, the inference is based on the joint posterior density of all the

unknowns. The findings of the simulation study suggest that inference on the latent series

and the regime processes is fairly precise, although there is a more pronounced imprecision

in the estimation of the VAR parameters. In the empirical exercise, the author considers

monthly and quarterly data for the US economy. The results on the regime probabilities

show a relative high ability to identify the same recession dates provided by the NBER,
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although the probabilities tend to be more erratic and much worse in the most recent

years.

Schorfheide and Song (2011) conduct a forecasting exercise on US data exploiting MF-

VAR models. The goal of their paper is to study the extent to which the incorporation

of monthly information improves the forecasts compared to models based on quarterly

aggregated data. The analysis is conducted for 11 US variables, of which 3 observed at

quarterly level, in a real-time context. The authors find that the monthly series provide

important information in the short run, with significant RMSE reductions obtained with

the mixed-frequency model. Moreover, the more intra-quarter information is available,

the increasing the improvements.

5.4 Factor models

5.4.1 Applications of small-scale factor models

Small-scale factor models have been frequently employed in the literature to construct a

coincident indicator, which is able to track the development of the economy in real-time.

In what follows, we describe the main studies which employ small-scale factor models

which extract an index and provide, in some of the cases presented, short-term forecasts

of the real GDP growth.

As described also in Section 2.5.1, Mariano and Murasawa (2003) propose a new

coincident index of business cycles that relies on both monthly and quarterly indicators.

Stock and Watson (1989) construct a coincident index by applying maximum likelihood

(ML) factor analysis to the four monthly coincident indicators. Mariano and Murasawa

extend the Stock—Watson coincident index by including quarterly real GDP and compare

the turning point detection performance of the two indexes. What they find is that the

behavior of the common component is quite different from monthly real GDP, and more

generally that the behavior of the common factor depends on the choice of the component

indicators and therefore the monthly real GDP and the common factor component can

have different turning points.

A different application of the Mariano and Murasawa model can be found in Frale et

al. (2011). This paper proposes a new monthly indicator of the euro area economic condi-

tions, EUROMIND, based on tracking real GDP on a monthly basis. The construction of

this new monthly indicator of GDP is carried out indirectly through the temporal disag-

gregation of the value added by supply sectors from the output side and at the same time

through the temporal disaggregation of the main components of the demand from the

expenditure side. The two estimates are combined with optimal weights reflecting their

precision. Therefore, the indicator is based on information at both monthly and quar-

terly level, modelled with a dynamic factor specification cast in state-space form, where

computational effi ciency is achieved by implementing univariate filtering and smoothing

procedures, which also allows to handle the ragged-edge problem and other data irregu-
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larities in a unified framework. The authors find satisfactory results in the application of

the model to the sectorial data, while the results are less convincing on the expenditure

side. In a second paper, Frale et al. (2010) introduce a modification in the model which

consists of the introduction of a second common factor, capturing the contribution of the

survey variables as coincident indicators. What they find is that the second factor loads

significantly on the survey variables for the industry sector and for exports. Moreover,

they also attempt to isolate the news content of each block of series by using a real-

time database: the analysis of the revisions in the data indicates that the contribution of

surveys is not negligible.

Camacho and Perez-Quiros (2010) construct a different coincident indicator of the

Euro area economy, the so-called Euro-STING indicator, which evolves accordingly to

the Euro area dynamics and it is also based on an extension of the dynamic factor model

described in Mariano and Murasawa (2003). The authors accommodate the GDP releases

(flash, first and second estimate) in a statistical model to examine the impact of prelim-

inary announcements and data revisions in the accuracy of real time forecasting. They

assume that monthly growth rates of quarterly series and monthly growth rates of hard

indicators have a direct relation with the common factor, which represents the common

component that drives the series dynamics. However, they model the relation of the com-

mon factor with the soft indicators in a different way, and precisely they relate the level of

the soft indicators considered with the year-on-year common growth rate, written as the

sum of current values of the common factors and the last eleven lagged values. In their

empirical application, they deal with a relatively small number of indicators. What they

find is that exploiting information within each quarter their model improves upon the

accuracy of preliminary announcements in forecasting GDP and forecasting uncertainty

decreases during the forecasting period. Moreover, not only hard indicators are useful in

forecasting GDP but also business surveys are relevant, especially in the months when

real activity data are not available yes due to publication lags.

What Camacho and Perez-Quiros (2010) do for the Euro area is closely related to the

empirical work done by Evans (2005) for the US, who applies a model that allows for

variable reporting lags and temporal aggregation to a wide range of US macroeconomic

data releases. The author models the growth in GDP as the quarterly aggregate of an

unobserved daily process and specifies the relationship between GDP, data releases on

GDP growth and on other macroeconomic variables in such a way to accommodate the

different timing of data releases. By writing the model in state-space form (similar to

Mariano and Murasawa (2003) but accommodating for a more complex timing of the

releases), Evans (2005) obtains a real-time estimate of GDP on a daily basis as a product

of the Kalman filter applied to estimate the model. The results seem promising, showing

that within quarter data releases contain useful information for real-time estimation and

forecasting of GDP. However, gaps between the real-time estimates and ex-post GDP data

remain both persistent and significant.
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Another extension of the small-scale factor model of Mariano and Murasawa (2003) has

been analyzed by Marcellino, Porqueddu and Venditti (2012), to investigate business cycle

dynamics and for forecasting GDP growth at short-term horizons in the euro area. While

so far the parameters of the model have been considered as constant, the authors consider

time variation in the variance of the shocks, and they generalize the setup of Mariano and

Murasawa (2003) to allow for continuous shifts in the volatility of the shocks both to the

common components and to the single indicators. To do so, they model volatility shifts

as independent random walks. Moreover, differently from the other studies, the model is

estimated with a Bayesian technique, using a Gibbs sampling procedure. The authors use

the model to evaluate the impact of macroeconomic releases on point and density forecast

accuracy and on the width of forecast intervals, and they show how their setup allows to

make a probabilistic assessment of the contribution of releases to forecast revisions. From

a pseudo out of sample forecasting exercise, they find that stochastic volatility contributes

to an improvement in density forecast accuracy.4

5.4.2 Bridging with factors

As we have seen in Section 2.5.2, Giannone et al. (2008) provide a framework that

formalizes the updating of the nowcast and forecast of output and inflation as data are

released throughout the month and that can be used to evaluate the marginal impact

of new data releases on the precision of the now- and forecasts as well as the marginal

contribution of different groups of variables. The framework they propose is adapted from

the parametric dynamic factor model in state-space form proposed by Doz, Giannone and

Reichlin (2011) that helps handling ragged-edge data. They extract monthly factors and

use them in a state-space framework to forecast monthly GDP. The authors construct

pseudo intra-month vintages according to a stylized data release calendar. As a new block

of information is released, the factors are reestimated and the nowcast updated. The main

finding is that information matters: the precision of the signal increases monotonically

within the month, with the release of new data. Timeliness of the release and quality

matters for decreasing uncertainty. Banbura et al. (2012) present a similar but updated

and extended application that confirms this finding.

Barhoumi et al. (2008) compare small bridge equations and forecast equations in

which the bridging between monthly and quarterly data is achieved through a regression

on factors extracted from large monthly datasets. The authors consider the framework

proposed by Giannone et al. (2008), but they also extract the factors following Forni

et al. (2005), using generalized principal components which allow to take into account

the ragged-edge structure of the dataset. In their paper, they focus on the Euro Area

as a whole as well as on single Euro Area countries. The results obtained for the Euro

Area countries show that models that exploit timely monthly releases fare better than

4Aastveit, et al (2011) develop a nowcasting system that combines forecasts from VARmodels, bridging
equations, and factor models. They also focus on density forecasts, for which their approach works well.
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quarterly models, and among those, factor models do generally better than averages of

bridge equations.

5.4.3 Factor models in a mixed-frequency state space representation

Enriching the model proposed by Giannone et al. (2008), Banbura and Rünstler (2011)

and Banbura and Modugno (2010) make use of a large state-space model allows for joint

estimation of GDP and the factors in a single framework.

Banbura and Rünstler (2011) develop measures for understanding the importance of an

individual series in the forecasts: they derive the weights of the series in the forecast and

use them to calculate their contributions to the forecasts. Moreover, they assess the gains

in forecast precision due to certain series by measuring the increase in uncertainty once the

series have been removed from the explanatory variables. Banbura and Rünstler (2011)

use a factor model which implements the common factors as unobserved components in

a state-space form, and integrate the monthly factor model and a forecast equation for

quarterly GDP in a single state-space representation, using a mixed-frequency setup. The

authors confirm the finding of the importance of intra-quarter information, showing that

a quarterly AR model is clearly outperformed by the factor model. Moreover they find

evidence that differences in the timeliness of data releases can have strong effects on the

optimal weights of individual series in the forecast and on their contribution to forecast

precision.

Banbura and Modugno (2010) extend the analysis in Banbura and Rünstler (2011) by

augmenting the dataset by short history indicators and quarterly series. Moreover, they

allow the model to have an AR(1) idiosyncratic component. In their pseudo real-time

exercise, they recursively forecast the Euro area GDP on the basis of a large monthly

dataset. Compared to the previous data employed in Banbura and Rünstler (2011), they

introduce short-history indicators, the Purchasing Managers’Surveys, available only from

mid 1997. The results obtained including these new short history monthly indicators are

similar to the results obtained without including them, therefore it seems that these

additional series do not improve the precision of the projections. Also with the explicit

modelling of the serial autocorrelation of the idiosyncratic component the results do not

improve significantly.

Moreover, Angelini et al. (2008) provide an out-of-sample evaluation of the method

presented by Banbura and Rünstler (2011), and compare the forecasting performance of

this approach to the one obtained by pooling the forecasts from different selected bridge

equations. In order to evaluate the impact of new data releases on current GDP nowcast

throughout the quarter, they update the model two times per month, measuring the

accuracy of the forecasts computed using the information available at each date. The

results they find show that the factor model forecast tracks GDP more accurately, most

likely due to the fact that the factors take into account the information content of cross

correlations across series.
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5.4.4 Factor-MIDAS

Marcellino and Schumacher (2010) propose to merge factor models with the MIDAS ap-

proach, which allows to now- and forecast low frequency variables as GDP exploiting

information in a large set of higher-frequency indicators. They consider three different

MIDAS approaches - basic, smoothed and unrestricted - and the three alternative factor

estimation methods that can account for unbalanced datasets, explained in Section 3.2,

to have a total of nine Factor-MIDAS approaches. They then focus on German GDP

and conduct now- and forecasting of quarterly GDP growth with a large set of timely

monthly economic indicators. To relate Factor-MIDAS to the methods from the exist-

ing literature, the authors introduce two other approaches in the empirical comparison:

a single-frequency factor model based on quarterly aggregated data and the integrated

state-space approach by Banbura and Rünstler (2011). In terms of empirical results,

MIDAS with exponentially distributed lag functions performs similarly to MIDAS with

unrestricted lag polynomials. In most of the cases, the simplest MIDAS with one lag of

the factors is the best performing. Autoregressive dynamics plays a minor role. As far as

the choice of the factor estimation technique is concerned, there are not significant differ-

ences among the different estimation methods. All Factor-MIDAS nowcasts can improve

over quarterly factor forecast based on time-aggregated data, while the results compared

to the state-space approach are less clear-cut and depend on the forecast horizon.

Kuzin, Marcellino and Schumacher (2012) discuss nowcast pooling versus nowcasting

of GDP growth for several countries, with single models in the presence of model uncer-

tainty, with mixed-frequency and ragged-edge data. The nowcasts are based on MIDAS

regressions with few indicators and Factor-MIDAS based on large datasets. The authors

compare the performance of many alternative specifications with respect to alternative

estimation methods, number of factors, indicators selected for MIDAS, the role of autore-

gressive dynamics. In their empirical analysis, they show that indicator models tend to

outperform factor models in this ex-post evaluation. It is much more diffi cult to beat

the benchmark when the models are selected based on information criteria or past perfor-

mance. As a method to avoid the specification search, all the nowcasts and forecasts can be

pooled together, using different selection schemes. This approach yields additional gains

with respect to the factor specification based on past performance, in particular when

all single-indicator and all Factor-MIDAS forecasts are combined together using inverse

MSE weights, providing full support in favour of pooling for nowcasting and short-term

forecasting.

6 Conclusions

In this paper we reviewed the literature concerning estimation and forecasting with mixed-

sampling frequency and ragged-edge data. At the moment, temporal aggregation is still

the predominant technique in the empirical applications: all data are sampled at the same

36



lower-frequency. In filtering the data so that the variables have all the same frequency,

potentially useful information is discarded. Empirical studies show that mixed-frequency

data matter, the use of the procedures that allow taking different frequencies and the

timeliness of the data into account improve the forecasts.

One of the early approaches to deal with mixed-sampling frequency is bridge equations,

still very common in central banks, where a dynamic equation is estimated between the

low-frequency variable and time-aggregated indicators. Separate high-frequency models

provide forecasts of the high-frequency indicators, and these forecasts are then aggregated

and plugged into the bridge equation. Empirical studies with bridge models show that

the exploitation of intra-period information reduces the forecasting error in the majority

of the cases. Bridge equations are a useful instrument especially in nowcasting, since the

more information becomes available, the more accurate they are in terms of RMSE.

A second strand of research is based on mixed frequency regressions, where a low-

frequency variable is explained by high-frequency indicators using parsimonious distrib-

uted lag models. MIDAS models are in general restricted to a limited set of variables,

and estimated via NLS. Different weighting functions have been used in the literature, but

which one is better to use is not clear-cut and depends on the specific analysis. Initially

MIDAS models were applied to financial data, investigating stock market returns or future

volatility, but recently MIDAS regressions have been employed to forecast macroeconomic

variables, providing promising results for short-term forecasting.

Another, line of research relies on the state-space framework, in connection with both

factors and VAR representations. The state-space setup treats the low-frequency vari-

able as a high-frequency series with missing observations. The use of the Kalman filter

allows real-time filtering, i.e., taking quarterly economic activity explained by monthly

indicators as example, it is possible to obtain an estimate of GDP growth in each month.

However, because of the intensive computation required by this framework and a rela-

tively high number of parameters to be estimated, only models with few variables can

be implemented. Within the class of factor models, different factor estimation techniques

are described in the literature to handle the ragged-edge problem.

Recently, mixed frequency factor models and MIDAS regressions have been merged

into Factor-MIDAS, which allows to forecast a low-frequency variable, exploiting the

monthly information available in large datasets and handling unbalanced data as typical

in real-time. Various factor estimation methods have been employed, without significant

differences in their forecasting performance. Evidence shows that taking into account

higher frequency information and exploiting the most recent observations pays off: Factor-

MIDAS outperform quarterly factor forecasts based on time-aggregated data.

In summary, there is consensus that exploiting data at different frequencies matters,

but it is not clear which method is superior. State-space models are a system approach

and allow the estimation of the missing high-frequency data thanks to the use of the

Kalman filter. Within this class of models, different ways to estimate VAR parameters
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or factors taking into account the unbalancedness of the datasets have been proposed,

but the differences don’t seem to be so pronounced. At the same time, the state-space

approaches generally work only if the number of variables in the model is quite low, due

to a dramatic increase in the number of parameters and associated complexity of the

estimation. MIDAS models appear to be more robust to mis-specification compared both

to bridge equation models and state-space approaches, and computationally simpler.
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