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Abstract

We derive the optimal monetary policy in a sticky price model when
private agents follow adaptive learning. We show that this slight departure
from rationality has important implications for policy design. The central
bank faces a new intertemporal trade-off, not present under rational expec-
tations: it is optimal to forego stabilizing the economy in the present in
order to facilitate private sector learning and thus ease the future intratem-
poral inflation-output gap trade-offs. The policy recommendation is robust:
the welfare loss entailed by the optimal policy under learning if the private
sector actually has rational expectations is much smaller than if the cen-
tral bank mistakenly assumes rational expectations when in fact agents are
learning.
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1 Introduction

Monetary policy makers can affect private-sector expectations through
their actions and statements, but the need to think about such things
significantly complicates the policymakers’ task. (Bernanke (2004))

Optimal monetary policy design is extensively studied under the assumption of
rational expectations (RE). Despite the fact that the role of deviations from RE is
emphasized in several theoretical and empirical papers1, the influence of less-than-
rational expectations on the optimal policy conduct is not yet well understood.
Instead, earlier literature examined the robustness of Taylor rules derived under
RE, and have shown that slight deviations from rationality are important for
policy design. Taylor rules that are optimal or guarantee determinacy under RE,
can lead to instability if private expectations follow adaptive learning (see Bullard
and Mitra (2002), Evans and Honkapohja (2003a), Evans and Honkapohja (2003b)
and Evans and Honkapohja (2006)).

In this paper, we investigate the interaction between departures from RE and
monetary policy from a different angle: instead of examining the asymptotic be-
havior of Taylor rules, we address the issue of how a rational central bank (CB)
should optimally conduct monetary policy if the private sector forms expectations
with adaptive learning. We assume the CB is rational within the model, knows
how private agents form their expectations, and takes their expectations formation
scheme into account when solving its control problem. We conduct our analysis in
a standard dynamic stochastic general equilibrium (DSGE) model with nominal
rigidities, in order to facilitate comparison with the earlier literature.

The main contribution of this paper is to derive analytically the optimal solu-
tion. The advantage of closed-form solutions is to provide a better understanding
of policy trade-offs. There is a well known intratemporal inflation-output gap
trade-off. We show that a slight departure from RE introduces a new intertempo-
ral trade-off. In period t the CB renounces to its ability to stabilize the economy
in the way that would be optimal under RE and discretion, in order to reduce
future inflation expectations, hence ease the future intratemporal inflation-output
gap trade-off. Hence a slight departure from rationality is not only relevant for
the limiting stability of the equilibrium, but inherently changes policy design. Our
quantitative analysis shows that incorporating the intertemporal tradeoff into poli-
cymaking increases welfare substantially even if the departure from RE equilibrium
is small.

Our policy recommendation is that stabilizing private inflation expectations
is more important when these deviate from rationality than under RE. Earlier
literature analyzing the welfare effect of different Taylor rules have also shown that

1See for example Marcet and Nicolini (2003), Milani (2007), Slobodyan and Wouters (2009).
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the CB should act against inflation beliefs more aggressively than what is suggested
by an RE model (see for example Ferrero (2007), Orphanides and Williams (2005b)
and Orphanides and Williams (2005c)). Our analytical solutions rationalize these
earlier numerical results.

Our results also provide a rationale for the general practice by CB to closely
monitor private sector expectations. Under RE this is not justified, since expecta-
tions are pinned down by the model and the monetary policy rule. Instead, once
we depart from rationality, expectations become a state variable, therefore optimal
policy should condition on private expectations.

When expectations are rational, a credible CB can manipulate them by com-
mitting to a future course of action; instead, under adaptive learning there is no
such role for promises, since beliefs are affected only by past occurrences. Never-
theless, Sargent (1999), chapter 5, obtains the remarkable result that the optimal
policy in the Phelps problem2 is such that a CB patient enough can replicate
asymptotically the commitment solution under RE. This finding partly general-
izes to our setup. Optimal policy does not replicate the commitment solution,
but there is a qualitative similarity: the impulse response to a cost-push shock is
similar to the commitment case, in the sense that the contemporaneous impact
of a cost-push shock on inflation is small (compared to the case of discretionary
policy under RE), and inflation reverts to the equilibrium in a sluggish manner.
This similarity is stronger when the CB is more patient. Both under RE and
learning, this pattern comes from the CB’s ability to directly manipulate private
expectations, even if the channels used are quite different. Under commitment,
the policymaker uses credible promises about the future, while under learning, the
pattern results from the impact that past actions have on beliefs. Thus, the ability
to manipulate future private sector expectations through the learning algorithm
plays a role similar to a commitment device under RE, hence eases the future
short-run trade-off between inflation and the output gap.

Assuming that the CB knows and makes active use of the exact form of private
expectations is undoubtedly a very strong hypothesis. In reality, there is still a
lively debate about how to model private sector expectations; therefore we also
perform two kinds of robustness checks, one under Knightian and the other un-
der probabilistic uncertainty. We compare the optimal learning rule derived in
our paper to the time consistent optimal rule derived under RE. When the CB
is uncertain about the nature of expectations formation in the sense of Knight
(1921),3 the optimal learning rules derived in our paper are more robust. When,
instead, the CB has a probability distribution defined over the set of possible forms

2Phelps (1967) formulates a control problem for a natural rate model with a rational CB and
private agents endowed with a mechanical forecasting rule, known to the CB.

3Knightian uncertainty refers to the impossibility of forming a probability assessment of the
possible states of the world.

3



of private expectations, the expected welfare losses are smaller under the optimal
learning rules even if the CB assigns only a very small probability to the possibility
that agents use learning instead of RE.

A relevant topic for future research is to examine how robust this policy recom-
mendation is to different deviations from rationality. In a paper closely related to
ours, Gaspar, Smets, and Vestin (2006) focus on the case when private agents learn
about the persistence of inflation, when firms index to lagged inflation. They show
numerically that an optimally behaving CB aims to anchor inflation expectations
better. This result is analogous to ours and suggests that if the private sector is
not fully rational, an increased concern for stabilizing inflation expectations is an
important policy advice independently of the exact rule followed by private agents
to form their expectations.

The rest of the paper is organized as follows. In Section 2, after briefly recalling
the discretionary optimal policy when expectations are rational, we show the exis-
tence of the new intertemporal trade-off under learning. Section 3 characterizes the
optimal allocations (and the interest rate rule that supports them) when agents use
constant gain learning, underlining how the presence of the intertemporal trade-
off increases the CB aggressiveness against inflation beliefs. Section 4 relaxes the
assumption that expectations follow constant gain learning, and shows that our
main results remain valid under decreasing gain learning. Section 5 argues that
the optimal policy rule derived in the previous sections is robust to uncertainty
about the agents’ expectations formation mechanism, and Section 6 concludes.

2 The model

We consider the baseline version of the New Keynesian model; in this framework,
the economy is characterized by two structural equations.4 The first one is an IS
equation:

xt = E∗
t xt+1 − σ−1(rt − E∗

t πt+1 − rrt), (1)

where xt, rt and πt denote the time t output gap (i.e. the difference between
actual and natural output), the short-term nominal interest rate and inflation,
respectively. σ is a parameter of the household’s utility function, representing risk
aversion, and rrt is the natural real rate of interest, i.e. the real interest rate that
would hold in the absence of any nominal rigidity. We assume that it is distributed
as an AR(1) process:

rrt = ρrrt−1 + εt, (2)

4For details of the derivation of the structural equations of the New Keynesian model see,
among others, Yun (1996), Clarida, Gali, and Gertler (1999) and Woodford (2003).
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where εt ∼ N(0, σ2
ε ). Note that the operator E∗

t represents the private agents’
expectation conditional on the time t information set, which is not necessarily
rational. The above equation is derived by loglinearizing the household’s Euler
equation and imposing the equilibrium condition that consumption equals output.

The second equation is the so-called New Keynesian Phillips Curve (NKPC):

πt = βE∗
t πt+1 + κxt + ut, (3)

where β denotes the subjective discount rate, κ is a function of structural parame-
ters, and ut ∼ N(0, σ2

u) is a white noise cost-push shock5; this relation is obtained
from optimal pricing decisions of monopolistically competitive firms whose prices
are staggered à la Calvo (1983).6

The loss function of the CB is given by:

E0

∞
∑

t=0

βt
(

π2
t + αx2

t

)

, (4)

where α is the relative weight put by the CB on the objective of output gap
stabilization.7

2.1 Benchmark: discretionary solution under rational ex-

pectations and learning

Under adaptive learning credibility of the CB has no role, because promises about
the future do not influence expectations. Therefore, our benchmark under RE is
discretionary monetary policy, when the CB takes private sector beliefs as given.
In Kreps (1998) terminology, this is equivalent to assuming that the monetary
authority is an anticipated utility maximizer. It can be argued that in real life
beliefs have both a backward looking component, sensitive to past occurrences,
and a forward looking one, which can be influenced by commitments of a credible
CB. Hence, both of these aspects can be relevant for monetary policymaking.
There has been extensive research on the topic of central banks’ credibility under
RE. We think it is important to understand also the other extreme, when the CB
credibility plays no role, because expectations are backward looking.

5 Note that the cost-push shock is usually assumed to be an AR(1) process, however we instead
assume it to be iid to make the problem more tractable. This assumption is also supported by
Milani (2006), who shows that learning can endogenously generate persistence in inflation data,
and assuming a strongly autocorrelated cost-push shock becomes redundant.

6In other words, the probability that a firm in period t can reset the price is constant over
time and across firms.

7As is shown in Rotemberg and Woodford (1997), equation (4) can be obtained as a quadratic
approximation to the expected household’s utility function; in this case, α is a function of
structural parameters.
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The policy problem is to minimize the social welfare loss (4), subject to the
structural equations (1) and (3), and given the private sector’s expectations:

min
{πt,xt,rt}

∞

t=0

E0

∞
∑

t=0

βt
(

π2
t + αx2

t

)

(5)

s.t. (1), (3)
E∗

t πt+1, E
∗
t xt+1 given for ∀ t

As shown in Clarida, Gali, and Gertler (1999), the optimality condition to this
problem (at time t) is:

κ

α
πt + xt = 0. (6)

Using (6), Evans and Honkapohja (2003b) derive the following law of motion for
inflation and the output gap, and the interest rate rule that implements these
allocations:

πEH
t =

αβ

α + κ2
E∗

t πt+1 +
α

α + κ2
ut (7a)

xEH
t = −

κβ

α + κ2
E∗

t πt+1 −
κ

α + κ2
ut . (7b)

rt = rrt + δEH
π E∗

t πt+1 + δEH
x E∗

t xt+1 + δEH
u ut, (7c)

where:
δEH
π = 1 + σ κβ

α+κ2

δEH
x = σ
δEH
u = σ κ

α+κ2 .

In the terminology introduced in Evans and Honkapohja (2003b), this is an expectations-
based reaction function; they show that this rule guarantees not only determinacy
under RE, but also convergence to the RE equilibrium when expectations E∗

t evolve
according to least squares learning.

If agents have RE (i.e., if E∗
t = Et), the system of equations (7) collapses to:

πRE
t =

α

κ2 + α
ut, xRE

t = −
κ

κ2 + α
ut ,

which is the optimal policy under discretion derived in Clarida, Gali, and Gertler
(1999).
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2.2 Optimal policy under learning

If private agents follow learning, a fully rational CB could do better than our
benchmark (7c). In this section we show how optimal monetary policy is modified
when the monetary authority optimizes taking into account its effect on private
sector expectations.

We assume that the private sector’s expectations are formed according to the
adaptive learning literature.8 Agents do not know the exact process followed by
the endogenous variables, but recursively estimate a Perceived Law of Motion
(PLM) consistent with the law of motion that the CB would implement under
RE. As shown in Clarida, Gali, and Gertler (1999), the optimal allocations of
the discretion and the commitment solution under RE have different functional
forms and are therefore associated with different PLMs. In this paper, we restrict
our attention to the discretionary case. In particular, we assume that agents
believe that inflation and the output gap are continuous invariant functions of
the cost-push shock only, πt = π(ut) and xt = x(ut).

9 This hypothesis, together
with the iid nature of the shock, implies that the conditional and unconditional
expectations of inflation and output gap coincide, and are perceived by the agents
as constants. Hence, it is natural to assume that agents estimate them using their
sample means.10 Throughout the paper we will assume that expectations evolve
following the algorithm:

E∗
t πt+1 ≡ at = at−1 + γt (πt−1 − at−1) (8)

E∗
t xt+1 ≡ bt = bt−1 + γt (xt−1 − bt−1) , (9)

where γt is a deterministic sequence of gains in the interval (0, 1), which governs
how responsive estimate revisions are to new data. In the next two sections, we
will be more explicit on the precise form taken by γt.

We choose equations (8)-(9) to model the private sector’s PLM since they are
consistent with the optimal discretionary RE solution in our setup; hence, it is
the correct PLM if the CB has no credibility, which is the case under adaptive
learning.11

8The modern literature on this topic was initiated by Marcet and Sargent (1989), who were
the first to apply stochastic approximation techniques to study the convergence of learning al-
gorithms. For an extensive monograph on this paradigm, see Evans and Honkapohja (2001).

9In the terminology of Evans and Honkapohja (2001) chapter 11, the PLM is a noisy steady
state.

10To be precise, in the algorithms (8) and (9), the observations are weighted geometrically if
γt = γ, while if γt = 1/t all observations receive equal weight.

11If we had assumed a hybrid NKPC, motivated by indexation to past inflation among firms, a
model consistent PLM of private agents should also have included lagged inflation (as in Gaspar,
Smets, and Vestin (2006)). We think the Gaspar, Smets, and Vestin (2006) analysis is important
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To analyze the optimal control problem faced by the CB, we suppose that the
policymakers take the structure of the economy (equations (1) and (3)) as given;
moreover, we assume that the CB knows how private agents’ expectations are
formed, and takes into account its ability to influence the evolution of the beliefs.
Hence, the CB problem can be stated as follows:

min
{πt,xt,rt,at+1,bt+1}

∞

t=0

E0

∞
∑

t=0

βt
(

π2
t + αx2

t

)

(10)

s.t. (1), (3), (8), (9),
a0, b0 given.

Note that contrary to our benchmark problem (5), the CB now also takes first
order conditions with respect to private expectations. When expectations depart
from rationality and follow a law of motion, they become a natural state variable.

Assuming that the CB knows the exact learning algorithm followed by private
agents is a strong hypothesis. In real life, there is still no consensus about how
we should model private expectations. Nevertheless, we think it is important to
examine how the policy recommendation changes if private agents depart slightly
from rationality, and the monetary authority takes this departure into account.
In Section 5, we relax this assumption and examine the robustness of our results
when the CB is uncertain about how the private sector forms its expectations.

The first-order conditions at every t ≥ 0 are:

λ1t = 0 (11)

2πt − λ2t + γt+1λ3t = 0 (12)

2αxt + κλ2t − λ1t + γt+1λ4t = 0, (13)

Et

[

β

σ
λ1t+1 + β2λ2t+1 + β (1− γt+2) λ3t+1

]

= λ3t, (14)

Et [βλ1t+1 + β (1− γt+2) λ4t+1] = λ4t, (15)

where λit, i = 1, ..., 4 denote the Lagrange multipliers associated with (1), (3),
(8) and (9), respectively. The necessary conditions for an optimum are the first-
order conditions, the structural equations (1)-(3) and the laws of motion of private

and more research is needed on how the exact nature of expectation formation modifies the
optimal policy recommendation. Nevertheless, not assuming indexation not only enables us to
derive closed-form solutions, but is also supported by empirical evidence. There is a recent
strand of empirical literature that argues that the presence of indexation is not a robust feature
of the data; see Benati (2008) and Cogley and Sbordone (2005), among others. Furthermore,
Woodford (2007) questions the necessity (and the correctness) of price indexation to replicate
inflation dynamics, especially when expectations are not rational.
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agents’ beliefs, (8)-(9). Note that the optimality conditions are not time invariant
if the γt depends on time; however, because they are exogenous and deterministic,
the policy function that solves the optimality conditions does not depend on the
period when the CB optimizes, even if it is not time invariant. Thus, the optimal
policy characterized above is time consistent, in the sense of Lucas and Stokey
(1983) and Alvarez, Kehoe, and Neumeyer (2004).12 Combining equations (11)
and (15), we get:

λ4t = β (1− γt+2)Et [λ4t+1] ,

which can be solved forward, implying that the only bounded solution is:

λ4t = 0. (16)

If we put together equations (11)-(13) and (16), we derive the following opti-
mality condition:

2πt + 2
α

κ
xt + γt+1λ3,t = 0, (17)

where λ3,t is the Lagrange multiplier on the evolution of inflation expectations.
From (17) we can isolate two trade-offs faced by the CB in designing the optimal

policy. When γt+1 = 0, namely when expectations are constant and, consequently,
cannot be manipulated by the monetary authority, (17) simplifies to:

κ

α
πt + xt = 0 , (18)

which is identical to the optimality condition derived in the RE optimal monetary
policy literature when the CB sets the optimal plan taking the private sector’s
expectations as given (i.e., in the discretionary case). When a cost-push shock is
present, (18) represents a well-known intratemporal trade-off between stabilization
of inflation at t and the output gap at t: because of the nonzero term ut in the
Phillips Curve (3), πt and xt cannot be set contemporaneously equal to zero in
every period. Clarida, Gali, and Gertler (1999) describe (18) as implying a “lean
against the wind” policy: in other words, if the output gap (inflation) is above
target, it is optimal to deflate the economy (contract demand below capacity).

Under learning (i.e., when γt+1 > 0), the CB faces an additional intertemporal
trade-off between optimal behavior in t and in later periods, generated by its
ability to manipulate future values of inflation expectations. The CB has to take

12A problem solved at t is said to be time consistent for t+ 1 if the continuation from t+ 1 of
the optimal allocations chosen at t solves it in t+1; moreover, in period zero it is time consistent
if the problem in period t is time consistent for t+ 1 for all t ≥ 0.
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into account how its choice about inflation/output at time t influences inflation
expectations, and thus future intratemporal trade-offs between inflation/output.

The term γt+1λ3,t shows an important difference compared with earlier results:
the optimal decision should be conditional on the current stance of inflation expec-
tations. The interpretation of this term is very simple: equation (8) implies that
a change in πt will influence the next period’s inflation expectations, at+1, by a
factor γt+1, and a change in inflation expectations affects welfare losses by a factor
λ3,t. The sign of λ3,t depends on current inflation expectations: because target
inflation is zero, an increase in inflation expectations drives them further away
from the target when expectations are positive; this in turn increases welfare loss
so the Lagrange multiplier on inflation expectations is positive. When inflation
expectations are negative, the opposite occurs: increasing inflation expectations
drives them closer to the steady state, thus λ3,t is negative.

When inflation expectations are positive (so λ3,t > 0) and inflation is positive,
the optimal contraction of xt is harsher than under discretionary policy. It is well
documented in the literature that disinflations have real costs.13 Brayton and
Tinsley (1996) and Erceg and Levin (2003) argue that disinflation can be costly
because of slowly adjusting expectations. Our results show that, under learning, it
is indeed optimal to incur high output losses (compared with discretionary policy)
in order to contain inflation expectations. Moreover, the higher inflation expecta-
tions are, the higher λ3,t is and the bigger the output loss the CB should engineer
in order to bring down inflation.

When inflation expectations are negative (λ3,t < 0), (17) implies that the lean
against the wind policy is not always optimal. If, for example, inflation is positive
but inflation expectations are sufficiently negative, the optimal value of xt can be
zero or even positive.

Let us summarize our first result for later reference:

Result 1. Learning introduces an intertemporal trade-off not present under ratio-
nal expectations.

3 Constant gain learning

In this section, we assume that agents’ beliefs are updated according to a constant
gain algorithm, namely that γt = γ ∈ (0, 1) for any t.14 In Section 4 we will

13For evidence on the costs of ending moderate inflations, see for example Ball (1994). Note
that our model is valid only around the steady state, so it cannot be used to model hyperinfla-
tionary episodes.

14As discussed extensively in the learning literature, private agents are likely to use such a
learning scheme if they believe structural changes are going to occur.
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relax this assumption and examine how optimal policy changes when agents follow
decreasing gain learning.

We can combine the conditions for an optimum derived in Section 2.2, spe-
cialized to the constant gain specification, to characterize analytically the optimal
allocations implemented by the CB; the results are summarized in the following
Proposition.

Proposition 1. There exists a unique solution of the control problem (10) with
γt = γ, and the policy function for inflation associated to it has the form:

πt = ccgπ at + dcgπ ut. (19)

The coefficient ccgπ can be characterized as follows:

-if γ ∈ (0, 1), we have that 0 < ccgπ <
αβ

α + κ2
,

-if γ = 0, i.e. if expectations are constant, we have that ccgπ =
αβ

α + κ2
,

and
dcgπ =

α

κ2 + α + αβ2γ2(β − ccgπ ) + βγ (1− γ) (αβ − (κ2 + α) ccgπ ) .

Following the adaptive learning terminology, we call (19) the actual law of motion
(ALM) of inflation.

Under the optimal policy, increasing at increases current inflation, but less than
proportionally, because αβ

α+κ2 < 1. As is shown in the Appendix, ccgπ depends on all
the structural parameters. Its dependence on the constant gain γ is not necessarily
monotonic. In fact, a higher value of γ has two effects on ccgπ . On the one hand, a
higher γ increases the effect of current inflation on future expectations, therefore
the CB has a higher incentive to engineer a lower feedback from inflation expec-
tations to inflation (i.e. a lower ccgπ ). On the other hand, a higher γ reduces the
impact of current expectations on future expectations, which reduces the benefits
from a reduction of the expectations, so there is an incentive to set a higher ccgπ . In
Figure 1 we show a numerical example with the calibration of Woodford (1999),
with β = 0.99, σ = 0.157, κ = 0.024 and α = 0.04. In this case, the first effect
dominates, therefore ccgπ is a monotonically decreasing function of γ. With differ-
ent parameterizations, characterized by a higher κ and a lower α, the relationship
would indeed be nonmonotonic, with ccgπ being a decreasing function of γ for small
values of the tracking parameter, and increasing when γ is big. However, empir-
ical estimates of the tracking parameter find that γ is typically smaller than 0.1,
therefore the decreasing brunch of ccgπ as a function of the gain parameter seems
the most relevant from an empirical point of view.15

15For examples of estimates of γ, see Milani (2007), Orphanides and Williams (2005a), and
Branch and Evans (2006).
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Using the structural equation (3) we can derive the optimal allocation of the
output gap:

xt = ccgx at + dcgx ut, (20)

where:

ccgx =
ccgπ − β

κ
,

dcgx =
dcgπ − 1

κ
.

ccgπ < αβ

α+κ2 (see Proposition 1) implies ccgx < − κβ

α+κ2 ; if the private sector expects
inflation to be positive, the optimal CB response will imply a negative output
gap, i.e. the policymaker will contract economic activity (using the interest rate
instrument) in order to attain an actual inflation rate sufficiently lower than the
expected one. Using (19) and (20) in (1) we can derive the nominal interest rate:

rt = rrt + δcgπ at + δcgx bt + δcgu ut, (21)

where:

δcgπ = 1− σ c
cg
π −β

κ
,

δcgx = σ,

δcgu = −σ d
cg
π −1
κ

.

The interest rate rule (21) is an expectations-based reaction function, which is
characterized by a coefficient on inflation expectations that is decreasing in ccgπ : an
optimal ALM for inflation that requires a more aggressive undercutting of inflation
expectations (a lower ccgπ ) calls for more aggressive behavior from the CB when
it sets the interest rate (a higher coefficient on inflation expectations in the rule
(21)). Moreover, the coefficient on bt is such that its effect on the output gap in
the IS curve is fully neutralized.

Because ccgπ < β (see Proposition 1) δcgπ is always greater than one. In response
to a rise in expected inflation, optimal policy should raise the nominal interest rate
sufficiently to increase the real interest rate. In other words, the Taylor principle
emphasized in Clarida, Gali, and Gertler (1999) holds.

Plugging (19) into (8), we get:

at+1 = at + γ(ccgπ − 1)at + γdcgπ ut

= (1− γ(1− ccgπ )) at + γdcgπ ut,
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which is a stationary AR(1).16 Thus, as is well known in the literature on adaptive
learning, the contemporaneous presence of random shocks in the ALM and of a
constant gain specification of the updating algorithm prevent the expectations from

converging asymptotically to a precise value: instead, at ∼ N

(

0,
γ2(dcgπ )

2

1−(1−γ(1−c
cg
π ))

2σ2
u

)

.

3.1 Comparison with the EH rule

In this section, we compare optimal monetary policy under constant gain learning
to the rules used earlier in the literature, where the CB is treated as an anticipated
utility maximizer. In particular, we refer to the rule (7c), derived in EH.

In the optimal interest rate rule (21), the coefficient on the output gap expec-
tations is the same as in the discretionary rule (7c), while the other two coefficients
are typically different. Proposition 1 implies δcgπ > δEH

π : the optimal interest rate
response to out of equilibrium inflation expectations is more aggressive than the
interest rate response of EH, hence inducing a smaller increase in inflation in re-
sponse to an increase in a (ccgπ < cEH

π ). This is due to the fact that when the CB
takes into account its ability to influence agents’ beliefs, it optimally chooses to
undercut future inflation expectations more than it would do otherwise.

From Proposition 1, it also follows that δcgu > δEH
u : optimal policy reacts more

aggressively to cost-push shocks then the EH rule. After a positive cost-push
shock, the optimally behaving CB raises the interest rate more aggressively than
what an anticipated utility maximizer CB would do; this in turn decreases output,
which has a negative effect on inflation. Thus, an aggressive interest rate rule
in response to the cost-push shock decreases the influence of the cost-push shock
on inflation (in fact, ccgπ < αβ

κ2+α
implies that dcgπ < α

κ2+α
), and this in turn eases

agents’ learning about the true equilibrium level of inflation.
On the other hand, under optimal policy both coefficients in the ALM of xt

are higher in absolute value than under EH, hence allowing a higher feedback from
out of equilibrium expectations and noisy cost-push shocks to the output gap.

The difference between (7c) and (21) can be summarized as follows:

Result 2. When the central bank takes into account not only the intratemporal
trade-off but also the intertemporal trade-off, it accommodates less the effect of out
of equilibrium inflation expectations and noisy cost-push shocks on inflation. In
this way, optimal policy facilitates learning of the private sector.

It is also worth noting that optimal policy decreases the autocorrelation of
inflation compared with EH.17 The optimal rule’s strong feedback to inflation
expectations dampens the interaction between inflation and expectations. This

16In fact, because 0 < ccgπ < 1, it immediately follows that 0 < (1− γ(1− ccgπ )) < 1.
17It can be easily derived that the autocorrelation of inflation under constant gain with EH is

13



lowers the persistence of a shock’s effect on expectations and on inflation. This
result is analogous to the findings of Gaspar, Smets, and Vestin (2006) in a different
model. They show that when firms index their prices to past inflation it is optimal
to decrease inflation persistence.

Welfare loss analysis

To obtain a quantitative measure of the welfare gains of using the optimal learning
rule (21), we present a numerical welfare loss analysis. Because welfare losses in
utility terms are hard to interpret, we report consumption equivalents (following
Adam and Billi (2007)): for a given monetary policy rule we calculate the cumu-
lative utility losses resulting from deviations from the steady state allocation and
then express the equivalent percentage decrease of the steady state consumption
that results in the same cumulative utility loss. We use the calibration of Wood-
ford (1999): β = 0.99, κ = 0.024, α = 0.048 and σ = 0.157.18 We perform a
Monte Carlo with simulation length 10,000 and a cross-sectional sample size of
1,000. Cost-push shocks are drawn from a normal distribution with 0 mean and
variance 0.1. Initial beliefs are the RE equilibrium: a0 = b0 = 0.

Table 1 reports consumption equivalents when agents use constant gain learn-
ing, both under the corresponding optimal learning rule (CG) and under the EH
rule (7c).19 For small tracking parameters, the results are in the range of the
original estimates of Lucas (1987): consumption losses resulting from cyclical fluc-
tuations are small.20 The higher the tracking parameter, the higher the consump-
tion equivalents are, both under optimal policy and under the EH rule, because of
higher variance of inflation expectations (see also Figure 2). This in turn implies
higher variance of inflation and output, both under CG (see equation (19) and
(20)) and under EH (see equation (7)), and higher consumption equivalents.21

EπEH
t πEH

t−1 =
(

αβ
α+κ2

)2 (

1− γ + γ αβ
α+κ2

)

σ2
aEH

+ αβ
α+κ2

(

α
α+κ2

)2

γσ2
u while under the optimal rule

EπCG
t πCG

t−1 = (ccgπ )2 (1− γ + γccgπ )σ2
aCG

+ccgπ (dcgπ )2 γσ2
u. We have already seen that σ2

aCG
< σ2

aEH
,

ccgπ < αβ
α+κ2 and dcgπ < α

α+κ2 , thus Eπ
CG
t πCG

t−1 < EπEH
t πEH

t−1 .
18Similar consumption equivalents are obtained using other standard calibrations, like Clarida,

Gali, and Gertler (2000) and McCallum and Nelson (1999).
19It is worth noting that the EH rule is designed to ensure learnability of the optimal RE in a

decreasing gain environment, and its performance under constant gain is never considered in the
EH paper; however, it can be useful to employ a constant gain version of their rule to illustrate
potential advantages of fully optimal monetary policy.

20Consumption equivalents are higher if we start the economy away from the RE equilibrium.
Also, the gain of using the optimal rule is higher when initial expectations are further away
from the RE equilibrium, because the main advantage of the optimal rule is that it helps private
agents to learn the equilibrium faster then the EH rule.

21Inflation and output gap variance can be expressed as a linear function of the variance of the
cost-push shock, therefore the absolute value of consumption equivalents is bigger for a bigger
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Table 1: Consumption equivalents using CG and EH under constant gain learning
γ pCG pEH pCG/pEH pCG

π /pEH
π pCG

x /pEH
x

0.0183 0.013 0.0130 0.9991 0.9966 1.2097
0.05 0.0148 0.0151 0.9774 0.9464 3.5609
0.08 0.0171 0.0184 0.9280 0.8561 6.9223
0.1 0.0188 0.0211 0.8881 0.7914 8.941
0.3 0.0369 0.0608 0.6068 0.4246 15.7893
0.5 0.0551 0.1104 0.4994 0.3114 16.1679
0.9 0.0908 0.2187 0.4151 0.2311 15.7401
Woodford (1999) calibration, a0 = 0.

The gain from using optimal policy over the EH rule can be nonnegligible even
if initial inflation expectations are at the RE equilibrium, and expectations stay
close to the RE equilibrium. For tracking parameters below 0.05, which is a typical
range of estimates for the US22, the gain from using an optimal interest rate rule
can be around 1 − 3%. The higher the gain parameter, the more optimal policy
decreases inflation expectations variance compared with EH (also see Figure 2),
and the bigger is the gain in consumption equivalents. For the extreme case of
γ = 0.9, the steady state consumption loss of using the EH rule is 60% higher than
under the the optimal rule.

The long-run gains of containing inflation expectations come at a cost in the
short run. Figure 4 plots the transition path of cumulative consumption equiva-
lents. In the first periods, the optimal interest rate rule (21) yields ex-post higher
cumulative welfare losses expressed in consumption terms than the EH rule; later,
however, our rule starts generating smaller welfare losses. These findings are con-
sistent with results 1 and 2: because of the intertemporal trade-off, it is optimal to
react to out of equilibrium inflation expectations more aggressively than the EH
rule in order to undercut more future expectations, even if it results in short-term
output gap losses. As soon as inflation expectations become small enough, this
initial loss is more than compensated.23

Another way to gauge what the intertemporal trade-off implies for welfare is
to calculate separately the equivalent permanent consumption decrease because of
losses caused by only inflation or output gap variation (see Table 1). The main

σ2
u, but the ratio of consumption equivalents under CG and EH is not sensitive to the choice of
σ2
u.
22See for example Branch and Evans (2006), Milani (2007) and Orphanides and Williams

(2005a).
23Results not reported here show that the further away initial expectations are from the RE

equilibrium, the larger the long-run gains are and the bigger are the short-run costs of using the
optimal rule. For details, see the working paper version of this paper.
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result is that optimal policy lowers inflation variation at the cost of higher output
gap variation. The higher is the tracking parameter, the more inflation variation
is lowered: for γ = 0.9 an optimally behaving CB engineers a 77% lower welfare
loss in inflation when it properly conditions on expectation formation, permitting
at the same time 15 times more variation in the output gap compared with the
EH rule.24

In this section, we derived the fully optimal monetary policy when agents follow
constant gain learning and compared it to the optimal discretionary rule, when
the CB does not make active use of its influence on expectations. The next section
shows similarities to the commitment solution under RE.

3.2 Comparison with the commitment solution

In this section, we show that the optimal policy response to a supply shock under
learning is qualitatively similar to that of the commitment solution under RE.
However, despite the similarities in short-run behavior, in the limit, the two equi-
libria are different. The learning equilibrium intrinsically depends on how private
agents learn.

Figure 5 displays the impulse response function of inflation to a unit shock
under CG and discretionary RE policy. In the optimal RE discretionary policy,
inflation rises on impact and immediately reverts to the steady state once the
iid shock dies out. Under learning the policymaker engineers a smaller initial
response of inflation; in subsequent periods inflation gradually converges back to
the steady state value. Gali (2003) shows a similar disinflation path for the optimal
policy under RE and commitment : a smaller initial inflation compared with the
discretionary case, in exchange for a more persistent deviation from the steady
state later.25

These similarities arise because under both learning and RE commitment the
CB can directly manipulate private expectations, even if the channels used are
quite different. Under commitment, the policymaker uses a credible promise on
the future to obtain an immediate decline in inflation expectations and thus in in-
flation; moreover, the necessity to fulfill past commitments introduces additional

24In the framework of Gaspar, Smets, and Vestin (2006), the CB engineers a lower welfare
loss in inflation without a significant cost in output. This result is difficult to compare with ours
because the presence of indexation changes their setup along three important dimensions: the
CB wants to stabilize a quasi-difference of inflation instead of inflation itself, the NKPC is of
the hybrid type, and in our model agents learn about the expected value of inflation while in
Gaspar, Smets, and Vestin (2006) agents learn about the persistence of inflation.

25This behavior of optimal policy under commitment leads to welfare gains over discretion
because of the convexity of the loss function; this preference for slower but milder adjustment to
shocks is at the heart of the stabilization bias.
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inertia in inflation and output. Under learning, we observe a smaller initial re-
sponse of inflation relative to the RE discretionary case because optimal policy
dampens the inflation response to the cost-push shock to ease private agents’
learning (Result 2), and the past-dependent nature of private sector beliefs imparts
sluggishness on the system. In this sense, we can say that the ability to manipu-
late future private sector expectations through the learning algorithm plays a role
similar to a commitment device under RE, hence easing the short-run trade-off
between inflation and the output gap.

One difference compared with the impulse response of inflation under full com-
mitment RE is that there is no overshooting of inflation under learning. Com-
mitment policy under RE engineers a sequence of negative inflation after the first
period, yet a positive sequence under learning. A second difference is that the
full commitment is characterized by a smaller output decrease compared with RE
discretionary policy (see Clarida, Gali, and Gertler (1999)), while under learning
the initial decrease of output is bigger than under discretion and RE. The reason
for this is that while under RE the commitment of the CB can improve the cur-
rent terms of the inflation-output trade-off, under learning monetary policy can
only influence future expectations and can improve only future inflation-output
trade-offs.

Sargent (1999), chapter 5, shows a similarity between the optimal policy under
adaptive learning and the RE commitment solution in the Phelps problem: optimal
monetary policy drives the economy close to the Ramsey optimum, and when the
discount factor β equals 1, optimal policy under learning replicates the Ramsey
equilibrium. In the Phelps problem, the discretion and commitment outcome
of inflation have the same functional form, therefore when agents learn in this
functional form they can converge to both equilibria. A sufficiently patient CB
is willing to incur higher short-term losses for the opportunity to drive private
expectations to the welfare-improving Ramsey equilibrium.

In our model, discretionary and commitment solutions under RE have a dif-
ferent functional form; hence the equilibrium depends on how agents learn, and
Sargent’s result does not hold anymore. However, in our case an increase in the
discount factor also makes the optimal disinflationary path under learning move
closer to the commitment solution. This can be seen in Figure 5: as β gets closer
to 1, the initial response of inflation becomes milder and the path back to the
steady state longer.

The findings in this subsection strengthen the point that when we abandon the
RE paradigm, several issues arise in monetary policy design that are not present
when agents are fully rational, and the implications for policymaking go beyond
the asymptotic learnability criterion: as we showed, the equilibrium law of motion
of optimal inflation can be significantly affected by the way agents learn, and
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careful consideration of private sector beliefs can play a role qualitatively similar
to a commitment device, even in the absence of CB credibility.

4 Decreasing gain learning

In this section, we relax the assumption of constant gain learning and show that
our main results remain valid also with decreasing gain learning .26

We assume agents use the following decreasing gain learning rules (henceforth
DG):

E∗
t πt+1 ≡ at = at−1 + t−1(πt−1 − at−1), (22)

E∗
t xt+1 ≡ bt = bt−1 + t−1(xt−1 − bt−1), (23)

where the only difference from (8)-(9) is the substitution of γ with t−1. Under
certain conditions on the values used to initialize this algorithm (see Evans and
Honkapohja (2001)), it is equivalent to estimating the conditional expectations of
inflation and output gap every period with OLS.27

In the Appendix, we derive the following optimal allocations.

Proposition 2. The solution of the control problem (10) with γt = 1/t yields the
following policy function for inflation:

πt = cdgπ,tat + ddgπ,tut, (24)

where cdgπ,t and ddgπ,t are deterministic functions of time characterized as follows:

- lim
t→∞

cdgπ,texists, and is given by lim
t→∞

cdgπ,t =
αβ

α+ κ2
;

- for any t < ∞, we have that cdgπ,t <
αβ

α + κ2

and

ddgπ,t =
P1,t

cdgπ,t+1
1

t+1
−A11,t

,

where the matrices P1,t and A11,t are defined in the Appendix.

26Decreasing gain algorithms place equal weight on all observations, which is optimal in sta-
tionary environments.

27Note that, because the conditional expectations of inflation and output gap are assumed by
the learners to be constant, the OLS estimate is just the sample averages of the two.
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With decreasing gain, during the transition Result 2 holds: there is a new
intertemporal trade-off, therefore it is optimal to decrease the effect of out of
equilibrium expectations on inflation compared with the EH rule (equation (7)) in
order to drive future inflation expectations closer to the equilibrium. This relaxes
the future intratemporal inflation-output gap trade-off embedded in the Phillips
curve. The ALM for the output gap is:

xt = cdgx,tat + ddgx,tut, (25)

where

cdgx,t =
cdgπ,t − β

κ
,

ddgx,t =
ddgπ,t − 1

κ
.

As in the constant gain case, if the private sector expects inflation to be positive,
the optimal CB will contract economic activity more than the EH rule.28 The CB
is ready to pay a short-term cost represented by a wider current output gap in
order to contain future inflation expectations.

The nominal interest rate rule is:

rt = rrt + δdgπ,tat + δdgx bt + δdgutut, (26)

where

δdgπ,t = 1− σ
c
dg
π,t−β

κ
,

δdgx = σ,

δdgut = −σ
d
dg
π,t−1

κ
.

Because cdgπ,t < β (see Proposition 2) δdgπ,t is always bigger than 1; hence, the
Taylor principle holds. In the Appendix, the following results are derived.

Proposition 3. Assume that t < ∞; then:

- δdgπ,t > δEH
π , δdgut > δEH

u ,

- lim
t→∞

δdgπ,t = δEH
π , lim

t→∞
δdgut = δEH

u .

During the transition, the optimal interest rate rule is similar to the constant
gain rule: it reacts more aggressively to out of equilibrium expectations (and cost-
push shocks) than the EH rule.

28From cdgπ,t <
αβ

α+κ2 it follows that cdgx,t < − κβ
α+κ2 . Compare with the ALM under EH (7).
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An interesting result is that the coefficient on inflation expectations in the
interest rate rule (26) is time-varying, reflecting the fact that the CB’s incentives to
manipulate agents’ beliefs evolve over time. This implies that during the transition,
optimal policy should be time-varying even in a stationary environment. This
coefficient can be characterized as follows:

Proposition 4. Let δdgπ,t be given by 1− σ
c
dg
π,t−β

κ
; then, there exists a T < ∞ such

that
{

δdgπ,t

}∞

t=T
is a monotonic decreasing sequence.

After time T , the bank dampens its aggressiveness in reacting to out of equi-
librium inflation expectations (and cost-push shocks).29 For empirically relevant
coefficient estimates, time T is maximum a few quarters. Numerical analysis on
the grid β = 0.99 and α ∈ [0.01, 2], κ ∈ [0.01, 0.5] shows that T is typically very
small.30 We find that after the fourth period (from the fourth to the fifth period
and so on) δdgπ,t always decreases, while in the first four periods δdgπ,t might increase
(hump-shaped) for a combination of low values of α and high values of κ (see
Figure 6). Figures 7 and 8 show that for the Woodford (1999) calibration, δdgπ,t and

δdgu,t always decrease over time (i.e., T = 0).31

To further clarify this issue, consider the following example: a new CB governor
is appointed, and agents start learning how this affects the equilibrium. In this
situation it is optimal for the CB to react more aggressively to out of equilibrium
inflation beliefs in the first period, when agents pay more attention to new infor-
mation and the CB’s possibilities of influencing private expectations are therefore
greater. This policy is beneficial even at the cost of larger short-term losses in
terms of output gap variability. As time passes, expectations will be influenced
to a lesser extent by the most recent realizations of the inflation rate, hence the
CB’s reaction will more closely reflect the case where the policymakers cannot
manipulate expectations.

The asymptotic properties of the ALM, (24) and (25), depend on the limiting
behavior of at, which is given by the stochastic recursive algorithm:

at+1 = at + (t + 1)−1
(

(cdgπt − 1)at + ddgπ,tut

)

. (27)

We study its properties in the Appendix, where we use the stochastic approx-
imation techniques32 to prove the following Proposition:

29From (26) it is easy to see that the change in δdgu,t through time has the same sign as δdgπ,t.
30We have chosen the grid to include typical calibrated values for the US and the euro area.
31δdgπ,t is always decreasing also for other calibrations widely adopted in the New Keynesian

literature, such as those taken from Clarida, Gali, and Gertler (2000) and McCallum and Nelson
(1999).

32For an extensive monograph on stochastic approximation, see Benveniste, Métivier, and
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Proposition 5. Let at evolve according to (27); then, at → 0 a.s.

This result, together with the boundedness of cdgπ,t, implies that cdgπ,tat goes to

zero almost surely; moreover, it is easy to see that ddgπ,t →
α

κ2+α
, therefore we can

conclude that πt →
α

κ2+α
v almost surely, where v is a random variable with the

same probability distribution as ut. The equilibrium corresponds to the discre-
tionary RE equilibrium, and private agents learn the unconditional expectation of
inflation and output under discretionary RE.33

It follows from Proposition 3 that the optimal policy converges to the EH
policy. Because in the limit expectations converge to a constant, it is intuitive
that in the limit optimal policy behaves as if expectations were fixed. However,
during the transition optimal policy results in substantially lower welfare losses.
For the Woodford (1999) calibration, even if we start inflation expectations from
the RE equilibrium, a0 = 0, in the long run the consumption equivalent under
the optimal rule is about 10% lower than that of EH. If initial expectations are
slightly different from the long-run equilibrium then gains are even higher. For
a0 = 1 the welfare losses under the optimal policy are 42% lower than under EH. In
the first period, the optimal interest rate rule (26) yields ex-post higher cumulative
welfare losses expressed in terms of consumption than the EH rule; later, however,
our rule starts generating smaller welfare losses. These findings are similar to the
numerical results of the constant gain.

An alternative way to examine the mechanisms at work when the CB employs
the optimal rule instead of the EH rule is to look at the path of expectations.
Both the optimal and the EH rule are E-stable under learning, so expectations
converge to the discretionary REE; the difference is the speed of convergence.
Figure 9 shows a typical realization of the evolution of expectations under both
rules. We can observe that inflation expectations converge faster and output gap
expectations converge more slowly with our rule than with the EH one. This is a
consequence of the intertemporal trade-off (Result 1): when the CB does take into
account its influence on the learning algorithm, it has an incentive to undercut
future inflation beliefs. However, because of the intratemporal trade-off between
inflation and output, the cost of keeping inflation closer to its RE value is a wider
output gap, and consequently a slower convergence of b to its RE value.

In this section, we have proved that our main results do not depend on what
type of learning algorithm private agents follow. Our new results are that under
decreasing gain learning, optimal policy should be time-varying: more aggressive
on inflation initially and less in subsequent periods. In the limit, expectations

Priouret (1990); the first paper to apply these techniques to learning models was Marcet and
Sargent (1989).

33Note that the PLM of private agents does not nest the commitment REE, only the discre-
tionary REE.
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converge to the discretionary RE equilibrium, and optimal policy is equivalent to
the one derived under the assumption of constant expectations.

5 Robust policy advice

In this section, we relax the assumption that the CB has perfect knowledge about
the learning algorithm followed by private agents and ask what the policy recom-
mendation is when the monetary authority is uncertain about the nature of private
sector expectations.34 In particular, we aim to define consistent policy advice on a
set of private agents’ expectations formation schemes empirically relevant for the
US.

Let us conduct an experiment, in which we assume that the US Federal Reserve
is uncertain about how the private sector forms its expectations but, relying on
the empirical literature, it can define a relevant set of expectations, which includes
both constant gain with a small gain and RE. The empirical literature on the
US shows that a constant gain algorithm with a small tracking parameter is a
good approximation of the data. For example, Milani (2007) estimates the New
Keynesian model with adaptive learning using Bayesian methods and finds γ to be
0.0183. Orphanides and Williams (2005a) and Branch and Evans (2006) calibrate
γ to fit the Survey of Professional Forecasters and find that tracking parameters
between 0.01 and 0.04 fit survey expectations well. We therefore consider tracking
parameters in this range.

In addition, let us assume that the FED has no probability distribution over
the possible forms of private expectations. Instead, it uses robust control and looks
for the policy that minimizes the maximum loss.35

We perform numerical Monte Carlo analysis to examine welfare losses when
private expectations are taken from this set and the CB interest rate rule is either
an optimal rule for a given small gain parameter or the discretionary rule under
RE (7c). We assume initial inflation expectations coincide with RE (a0 = 0),
so constant gain expectations with a small gain will stay close to the rational
forecasts. We can think of this economy as populated by agents who are making
only very small mistakes compared with the rational forecasts.

Table 2 reports consumption equivalents. In order to present the results in a
compact way, the last line of Table 2 shows percentage increases in consumption

34We have assumed that the CB perfectly observes all the relevant state variables of the system,
namely the exogenous shocks and the agents’ beliefs. It is possible to show that our main results
extend to a more general framework, where the shocks or the expectations are not observable,
and the CB has to solve a signal extraction problem to learn about them. For details, see the
working paper version of this paper.

35For an extensive treatise on the use of robust control techniques in economics, see Hansen
and Sargent (2007).
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equivalents of the worst case compared with the optimal rule for a given private
expectation. The main result is that the worst-case scenario is using the EH rule

Table 2: Consumption equivalents under the optimal or an incorrect rule, initial
inflation expectations at RE

Expectations γ = 0.0183 γ = 0.03 γ = 0.04 RE
Interest rate rule
γ = 0.0183 0.013006 0.013548 0.014157 0.012642
γ = 0.03 0.013009 0.013542 0.014130 0.012642
γ = 0.04 0.013015 0.013545 0.014126 0.012643
EH 0.013017 0.013606 0.014294 0.012641
The worst rule EH EH EH γ = 0.04
% increase of cons.eq.∗ 0.13 0.47 1.18 0.02
∗ worst rule compared with the optimal
Woodford (1999) calibration. Starting from RE: a0 = 0.
Consumption equivalents for a given underlying private sector expectation
formation and a given interest rate rule.

when private agents are learning. A min-max rule (following Hansen and Sargent
(2007)), which minimizes the maximum loss, is always a rule that is optimal under
learning.

Under RE, all of these rules lead to a determinate equilibrium. The EH rule
provides smaller losses than optimal learning rules (see last line of Table 2), and
the reason for this is that learning rules allow for volatility in the output gap that
is too high.36

However, losses under RE caused by mistakenly using an optimal learning rule
are smaller than losses associated with the use of the discretionary EH rule when
agents are learning.

When private agents are learning and the FED uses a misspecified learning
rule, consumption equivalents increase but the loss is always smaller than losses
associated with using the EH rule. The bigger the misperception of the monetary
policy about γ is, the bigger the increase in consumption equivalents. When, for
example, agents follow constant gain with γ = 0.04 and the CB uses the optimal
interest rate rule, the consumption equivalent is 0.014126. When the optimal rule
with γ = 0.03, is used the consumption equivalent increases to 0.01413, which
is a 0.03% increase. If the FED uses γ = 0.0183, which is further from the
true tracking parameter, the consumption increases by 0.22% to 0.014157. The
percentage increase in loss achieved using the EH rule is 1.18%, which is bigger
than with any of the learning rules.

36Since learning rules decrease the volatility of inflation and allow for higher volatility in the
output gap, for small values of α learning rules do outperform the EH rule even under RE.
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The main advantage of the optimal learning rules compared with EH is that
they help private agents to learn the RE forecasts faster. When we initialize
the economy at the RE equilibrium, it is likely that this advantage would be
quantitatively less relevant, since beliefs stay close to RE. Therefore, we repeat
the numerical analysis for a0 = 0.1. Table 3 reports that the gain associated with
using a learning rule over the EH rule is bigger in this case. The EH rule increases
consumption equivalents compared with the optimal policy by 0.4−2%. Learning
rules, on the other hand, result in smaller losses under learning, even if they are
misspecified.

Table 3: Consumption equivalents under the optimal or a wrong rule, initial infla-
tion expectations not RE

Expectations γ = 0.0183 γ = 0.03 γ = 0.04 RE
Interest rate rule
γ = 0.0183 0.014132 0.014593 0.01514 0.012642
γ = 0.03 0.014143 0.014577 0.015094 0.012642
γ = 0.04 0.014163 0.014584 0.015086 0.012643
EH 0.01418 0.014722 0.015372 0.012641
The worst rule EH EH EH γ = 0.04
% increase of cons.eq.∗ 0.39 0.98 1.87 0.03
∗ worst rule compared with the optimal
Woodford (1999) calibration. Starting out of RE equilibrium: a0 = 0.1.
Consumption equivalents for a given underlying private sector expectation
formation and a given interest rate rule.

Let us now assume that the monetary authority is able to formulate a probabil-
ity distribution over private expectations, and ask what is the minimum probability
of the private agents following learning that makes the FED choose a learning rule
over a discretionary rule. In particular, let’s assume that the FED’s prior is that
with probability p private agents follow constant gain learning with a given track-
ing parameter, and with probability 1− p agents have RE. Then, we can calculate
the expected welfare loss of using EH as the sum of two components: p times the
consumption equivalent under constant gain learning with the EH rule, and 1− p
times the consumption equivalent of using EH under RE. Then, find a cutoff value
of p for which the expected loss in consumption terms of using the CG rule is less
than the welfare loss of the EH rule.

A surprising result is that the cutoff value of p is between 1 and 1.5% even when
initial expectations are at the RE equilibrium.37 This means that it is optimal to
use the learning rule even if the CB attributes only a very small probability to
agents following learning and a very high probability to RE.

37Cutoff values for p are lower when we initialize the economy out of RE.
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In summary, our “policy advice” for the FED is to choose an optimal learning
rule, even if it attributes only a very small probability to learning.

6 Conclusions

We have shown that deviations of private sector beliefs from RE can have impor-
tant policy implications that go beyond the possible failure to converge asymptot-
ically to RE. Besides the well-known intratemporal inflation-output gap trade-off,
when expectations are less than rational the CB faces an intertemporal trade-off
between stabilizing the economy in the present and in the future. Optimal policy
does not stabilize the economy in the present in order to influence future inflation
expectations and ease future inflation-output gap trade-offs.

Importantly, if there is uncertainty about the way the private sector forms its
beliefs, optimal policy derived under less than RE is more robust than optimal
policy under RE. Because there is an ongoing debate regarding the degree of
rationality embedded in private expectations, our results suggest that monetary
policy should take into account the possibility of an intertemporal trade-off arising
from the nature of private expectations formation.

Overall, our results suggest that the way private expectations are formed is
a significant issue for policy design, and monetary policy should closely monitor
private expectations. We hope this result will motivate more research interest in
understanding how private expectations are formed in different environments. In
most of the paper, we took the extreme view that the CB has perfect knowledge;
because it is a strong assumption, it seems important to learn by how much optimal
policy changes when the CB does not have full knowledge of the way private
expectations are formed, such as for example in Woodford (2009).
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A Constant gain learning

In this section, we provide an outline of the derivation of the inflation law of motion (19)
and prove Proposition 1.

Combining the optimality conditions (11-14) and (16) we can write:

κ

α
πt + xt = βEt

[

βγxt+1 + (1− γ)
(κ

α
πt+1 + xt+1

)]

.

Using the Phillips curve (3) and the evolution of inflation expectations (8), we get:

Et [πt+1] = A11πt +A12at + P1ut, , (28)

where

A11 ≡
κ2 + α+ αβ2γ (1− γ (1− β))

αβ (1− γ (1− β)) + κ2β (1− γ)
,

A12 ≡ −
αβ (1− β (1− γ) (1− γ (1− β)))

αβ (1− γ (1− β)) + κ2β (1− γ)
,

P1 ≡ −
α

αβ (1− γ (1− β)) + κ2β (1− γ)
.

Hence, at an optimum, the dynamics of the economy can be summarized by stacking
equations (8), (9) and (28) and obtaining the trivariate system:

Etyt+1 = Ayt + Put , (29)

where yt ≡ [πt, at, bt]
′, and

A ≡





A11 A12 0
γ 1− γ 0
γ
κ

−βγ
κ

1− γ



 , P =





P1

0
−γ

κ



 .

The three boundary conditions of the above system are:

a0, b0 given
lim
s→∞

|Etπt+s| <∞ . (30)

The last one is a result of the fact that, if there exists a solution to the problem (10) when
the possible stochastic processes {πt, xt, rt, at+1, bt+1} are restricted to be bounded, then
this would also be the minimizer in the unrestricted case.38

Because A is block triangular, its eigenvalues are given by 1−γ and by the eigenvalues
of:

A1 ≡

(

A11 A12

γ 1− γ

)

. (31)

38The proof is available from the author upon request.
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In Lemma 1 we show that A1 has one eigenvalue inside and one outside the unit circle,
which implies (together with (1 − γ) ∈ (0, 1)) that we can invoke Proposition 1 of
Blanchard and Kahn (1980) to conclude that the system (29)-(30) has one and only one
solution. In other words, there exists one and only one stochastic process for each of the
three variables of y such that (30) is satisfied. Moreover, note that y1t ≡ [πt, at]

′ does
not depend on bt; therefore, the processes for inflation and a that solve (together with
the process for b) the system (29)-(30) are also a solution of the subsystem:

Ety1t+1 = A1y1t + (P1, 0)
′ ut ,

together with the boundary conditions

a0 given, lim
s→∞

|Etπt+s| <∞ .

By Lemma 1, we can invoke Proposition 1 of Blanchard and Kahn (1980) to conclude
that the law of motion for inflation can be written in the form:

πt = ccgπ at + dcgπ ut,

as stated in Proposition 1.

Lemma 1. Let A1 be given by equation (31) in the text; then it has an eigenvalue inside
and one outside the unit circle.

Proof. First of all, we recall that a necessary and sufficient condition for a 2 by 2 matrix
to have one eigenvalue inside and one outside the unit circle, is that:39

|µ1 + µ2| > |1 + µ1µ2| ,

where µ1, µ2 are the eigenvalues of the matrix; in the case of A11, the above condition
can be written equivalently as:

κ2 + α+ αβ2γ (1− γ (1− β))

κ2β (1− γ) + αβ (1− γ (1− β))
+ 1− γ >

1 +
κ2 + α+ αβ2γ (1− γ (1− β))

κ2β (1− γ) + αβ (1− γ (1− β))
(1− γ) +

αβ (1− β (1− γ) (1− γ (1− β)))

κ2β (1− γ) + αβ (1− γ (1− β))
γ ,

where we have used the fact that the trace is equal to the sum of the eigenvalues, and
that the determinant is equal to the product. After simplifying the above inequality, we
get:

−γ > −γ

(

κ2 + α+ αβ2γ (1− γ (1− β))− αβ (1− β (1− γ) (1− γ (1− β)))

κ2β (1− γ) + αβ (1− γ (1− β))

)

,

39LaSalle (1986).
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so that all we have to prove is that:

κ2 + α+ αβ2γ (1− γ (1− β))− αβ (1− β (1− γ) (1− γ (1− β)))

κ2β (1− γ) + αβ (1− γ (1− β))
> 1 .

Some tedious algebra shows that this is equivalent to the following expression:

κ2 (1− β (1− γ)) + α (1− β) (1− β (1− γ (1− β))) > 0 ,

which is always true, because β and γ are assumed to be smaller than one.

We now prove the rest of Proposition 1. First of all, we can guess that inflation follows
the ALM (19) and use the optimality condition (28) and the method of undetermined
coefficients to verify that ccgπ must satisfy the following quadratic expression:

p2 (c
cg
π )2 + p1c

cg
π + p0 = 0 ,

where

p2 ≡ γ
[

κ2β (1− γ) + αβ (1− γ (1− β))
]

,

p1 ≡ (1− γ)
[

κ2β (1− γ) + αβ (1− γ (1− β))
]

−
[

κ2 + α+ αβ2γ (1− γ (1− β))
]

,

p0 ≡ αβ (1− β (1− γ) (1− γ (1− β))) ,

and that:

dcgπ =
α

κ2 + α+ αβ2γ2(β − ccgπ ) + βγ (1− γ) (αβ − (κ2 + α) ccgπ )
.

The polynomial in ccgπ can be equivalently rewritten as follows:

ccgπ = −
p0 + p2 (c

cg
π )

2

p1
≡ f(ccgπ ) .

We will prove that the function f(·), defined on the interval [0, 1], is a contraction, so
that it admits one and only one fixed point; moreover, because the two roots of the
quadratic expression have the same sign (this is due to the fact that both p2 and p0 are
positive), it follows that the other candidate value for ccgπ is greater than one, which is
not compatible with the boundary conditions.40

First of all, we show that f(·), when defined on the interval [0, 1], takes values on
the same interval.

Lemma 2. f(ccgπ ) is strictly monotone increasing on the interval [0, 1].

40Because it would imply an exploding inflation.
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Proof. Note that:

f ′(ccgπ ) =
2γ[αβ(1 − γ(1− β)) + κ2β(1− γ)]

κ2 + α+ αβ2γ (1− γ (1− β))− (1− γ)[κ2β (1− γ) + αβ (1− γ (1− β))]
ccgπ ,

which is positive if and only if the denominator is positive:

κ2 + α+ αβ2γ (1− γ (1− β))− (1− γ)[κ2β (1− γ) + αβ (1− γ (1− β))] ≶ 0.

After rearranging:

κ2
(

1− β(1− γ)2
)

+ α[1− β(1− γ)(1− γ(1 − β))] + αβ2γ (1− γ (1− β)) ≶ 0,

which is always positive. Thus we have proved that f(ccgπ ) is strictly monotone increasing
on the interval [0,1].

Lemma 3. f(ccgπ ) : [0, 1] → [0, 1]

Proof. Because f(ccgπ ) is strictly monotone, increasing it suffices to show that f(0) > 0
and f(1) < 1:

f(0) =
αβ (1− β (1− γ) (1− γ (1− β)))

κ2 + α+ αβ2γ (1− γ (1− β))− (1− γ)[κ2β (1− γ) + αβ (1− γ (1− β))]
,

where the denominator is positive (see the preceding proof), and also the numerator is
trivially positive. Thus f(0) > 0:

f(1) =
γ
[

κ2β (1− γ) + αβ (1− γ (1− β))
]

+ αβ (1− β (1− γ) (1− γ (1− β)))

κ2 + α+ αβ2γ (1− γ (1− β))− (1− γ)[κ2β (1− γ) + αβ (1− γ (1− β))]

After rearranging, we get:

f(1) ≶ 1 ⇐⇒ 0 ≶ κ2 (1− β (1− γ)) + α (1− β) (1− β (1− γ (1− β))) ,

but, as we argued above, the RHS of the last inequality is always positive; hence, f(1) <
1.

To show that f(·) is a contraction, it suffices to show that its derivative is bounded
above by a number smaller than one: in fact, by the mean value theorem, we know that
for any a, b, there exists a c ∈ (a, b) such that:

|f(a)− f(b)| ≤
∣

∣f ′(c)
∣

∣ |a− b| ,

and if |f ′(c)| ≤M < 1 for any c ∈ [0, 1], we have the definition of a contraction.

Lemma 4. For any x ∈ [0, 1], 0 < f ′(x) ≤ f ′(1) < 1.
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Proof. First of all, note that:

f ′(x) =
2γ[αβ(1 − γ(1− β)) + κ2β(1− γ)]

κ2 + α+ αβ2γ (1− γ (1− β))− (1− γ)[κ2β (1− γ) + αβ (1− γ (1− β))]
x,

is positive and increasing in x, so that max
x∈[0,1]

f ′(x) = f ′(1); after some algebraic manip-

ulation, we get:

f ′(1) ≶ 1 ⇐⇒ (1− βγ) β (1− γ (1− β)) + βγ (1− γ (1− β))− 1 ≶
κ2

α

(

1− β
(

1− γ2
))

Because β, γ ∈ (0, 1), we have:

(1− βγ) β (1− γ (1− β))+ βγ (1− γ (1− β))− 1 < 1− βγ+βγ (1− γ (1− β))− 1 < 0,

so that f ′(1) will be smaller than one (κ
2

α

(

1− β
(

1− γ2
))

is always positive).

Moreover, we prove the following result.

Lemma 5. Let f(·) be defined as above; then, f
(

αβ
κ2+α

)

≤ αβ
κ2+α

.

Proof. Note that:

f

(

αβ

κ2 + α

)

=
αβ (1− β (1− γ) (1− γ (1− β)))

κ2 + α+ αβ2γ (1− γ (1− β))− (1− γ)[κ2β (1− γ) + αβ (1− γ (1− β))]
+

+
γ
[

κ2β (1− γ) + αβ (1− γ (1− β))
]

κ2 + α+ αβ2γ (1− γ (1− β))− (1− γ)[κ2β (1− γ) + αβ (1− γ (1− β))]

(

αβ

κ2 + α

)2

R
αβ

κ2 + α
,

if and only if:

(

κ2 + α
)

αβ (1− β (1− γ) (1− γ (1− β))) + γ
[

κ2β (1− γ) + αβ (1− γ (1− β))
]

αβ
κ2+α

κ2 + α+ αβ2γ (1− γ (1− β))− (1− γ)[κ2β (1− γ) + αβ (1− γ (1− β))]
R 1.

For γ = 0 it is easy to verify that f
(

αβ
κ2+α

)

= αβ
κ2+α

. If γ > 0, because the αβ
α+κ2 < β,

the LHS of the above inequality is smaller than:

(

κ2 + α
)

αβ (1− β (1− γ) (1− γ (1− β))) + βγ
[

κ2β (1− γ) + αβ (1− γ (1− β))
]

κ2 + α+ αβ2γ (1− γ (1− β))− (1 − γ)[κ2β (1− γ) + αβ (1− γ (1− β))]
,

which is equal to one; in fact:

(

κ2 + α
)

(1− β (1− γ) (1− γ (1− β))) + βγ[κ2β (1− γ) + αβ (1− γ (1− β))]

κ2 + α+ αβ2γ (1− γ (1− β))− (1− γ)[κ2β (1− γ) + αβ (1− γ (1− β))]
R 1,
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is equivalent to:

−
(

κ2 + α
)

β (1− γ) (1− γ (1− β))+(1− γ (1− β)) [αβ (1− γ (1− β))+κ2β (1− γ)] R αβ2γ (1− γ (1− β)) .

But the LHS can simplified as:

κ2 (β (1− γ) (1− γ (1− β))− β (1− γ) (1− γ (1− β)))+αβ (1− γ (1− β)) (1− γ (1− β)− (1− γ)) ,

which is equal to:
αβ2γ (1− γ (1− β)) .

Summing up, we showed that (if γ > 0) the following holds:

(κ2 + α) (1− β (1− γ) (1− γ (1− β))) + βγ[κ2β (1− γ) + αβ (1− γ (1− β))]

κ2 + α + αβ2γ (1− γ (1− β))− (1− γ)[κ2β (1− γ) + αβ (1− γ (1− β))]
= 1 ,

which implies that:

f

(

αβ

κ2 + α

)

<
αβ

κ2 + α
.

We are now ready to prove the Proposition.

Proof of Proposition 1. Combining the lemmas 3 and 4 we obtain that f(·) is a
contraction when defined on the interval [0, 1]; moreover, by Lemma 5 we get that f ,
when defined on [0, αβ

κ2+α
], takes values on the same interval. This result, together with

Lemma 4 and with the inequality αβ
κ2+α

< 1, implies that f(·) is a contraction also when

defined on the interval [0, αβ
κ2+α

] and, therefore, that the optimal ccgπ must be between

zero and αβ
κ2+α

.

Finally, note that when γ = 0, f(ccgπ ) collapses to αβ
κ2+α

, which completes the proof.

B Decreasing gain learning

In this section, we prove Propositions 2 and 5.

Proof of Proposition 2. To derive the optimal allocations, note that we can use first-
order conditions (11-14) and (16) and γt = 1/t to rewrite:

κ

α
πt + xt = βEt

[

β
1

t+ 1
xt+1 +

κ

α
πt+1 + xt+1

]

.

Using (3) to substitute out xt in the above equation, and then using the evolution of
inflation expectations (22) we get:

Et [πt+1] = A11,tπt +A12,tat + P1,tut , (32)
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where:

A11,t ≡
κ2 + α+ αβ2 1

t+1

(

1 + β 1
t+1

)

αβ(1 + β 1
t+1 ) + κ2β

,

A12,t ≡ −
αβ

[

1− β
(

1− 1
t+1

)(

1 + β 1
t+1

)]

αβ(1 + β 1
t+1 ) + κ2β

,

P1,t ≡ −
α

αβ(1 + β 1
t+1 ) + κ2β

.

Hence, at an optimum, the dynamics of the economy can be summarized by stacking
equations (22), (23) and (32), and obtaining the trivariate system:

Etyt+1 = Atyt + Ptut , (33)

where yt ≡ [πt, at, bt]
′, and

At ≡







A11,t A12,t 0
1

t+1 1− 1
t+1 0

1

t+1

κ
−

β 1

t+1

κ
1− 1

t+1






, Pt =







P1,t

0

−
1

t+1

κ






.

We can find the solution with the method of undetermined coefficients with the guess:41

πt = cdgπ,tat + ddgπ,tut .

The sequence
{

cdgπ,t

}

must satisfy the nonlinear, nonautonomous first-order difference

equation:

cdgπ,t =
cdgπ,t+1

(

1− 1
t+1

)

−A12,t

A11,t − cdgπ,t+1
1

t+1

, (34)

and the sequence
{

ddgπ,t

}

is defined as

ddgπ,t =
P1,t

cdgπ,t+1
1

t+1 −A11,t

,

as stated in the Proposition. Clearly, once we solve for cdgπ,t, finding the value of ddgπ,t is
a trivial task. Of course, there exist infinite sequences that satisfy equation (34), one

for each initial value cdgπ,0. However, because the boundary conditions require πt to stay
bounded, we will concentrate on the solutions that do not explode. To characterize its
properties, first note that if we solve forward the following difference equation:

cdgπt = βcdgπt+1 +
αβ

κ2 + α
(1− β) ,

41This guess corresponds to the unique solution under constant gain learning.
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we obtain one and only one bounded solution, i.e.:

cdgπt =
αβ

κ2 + α
∀t .

Moreover, we can rewrite the difference equation defining cdgπt as:

Gt ≡ A11,tc
dg
π,t − cdgπ,t+1 = −

1

t+ 1
cdgπ,t+1 −A12,t +

1

t+ 1
cdgπ,tc

dg
π,t+1 ≡ Ft .

If cdgπ is bounded, it is easy to show that F has a limit:

lim
t→∞

Ft = − lim
t→∞

A12,t =
α

κ2 + α
(1− β) .

We can also show that the difference equation defined by G converges to:

β−1cdgπ,τ − cdgπ,τ+1 .

Summing up, in the limit we have that cdgπ evolves according to:

cdgπτ = βcdgπτ+1 +
αβ

κ2 + α
(1− β) ,

which, as we state in the Proposition, has one and only one bounded solution:

cdgπτ =
αβ

κ2 + α
.

We prove the last part of the statement by contradiction. Assume that there exists a
T <∞ such that cdgπT ≥ αβ

α+κ2 ; we show that this implies cdgπt >
αβ

α+κ2 for any t > T . First
of all, we can write:

cdgπ,T+1

(

1− 1
T+1

)

−A12,T

A11,T − cdgπ,T+1
1

T+1

= cdgπT ≥
αβ

α+ κ2
.

Rearranging and simplifying, this turns out to be equivalent to:
(

1−
1

T + 1

(

1−
αβ

α+ κ2

))

cdgπT+1 ≥
αβ

α+ κ2
A11,T +A12,T . (35)

Note that the RHS is equal to:

αβ

α+ κ2
A11,T +A12,T =

αβ

αβ(1 + β 1
t+1) + κ2β

[

β

(

1 + β
1

t+ 1

)(

1−
1

T + 1

(

1−
αβ

α+ κ2

))]

=
αβ

α+ κ2
(

1 + β 1
t+1

)−1

(

1−
1

T + 1

(

1−
αβ

α+ κ2

))

>
αβ

α+ κ2

(

1−
1

T + 1

(

1−
αβ

α+ κ2

))

,
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where the last inequality is a result of the fact that
(

1 + β 1
t+1

)−1
< 1; putting together

the last inequality and (35), we get:

cdgπT+1 >
αβ

α+ κ2
.

Then, we can apply the above argument to cdgπT+2 as well and, proceeding by induction,

conclude that cdgπt >
αβ

α+κ2 for any t > T . An immediate consequence is that lim
t→∞

cdgπt >

αβ
α+κ2 , which is a contradiction to the result stated before, namely lim

t→∞
cdgπt = αβ

α+κ2 .

Hence, we have showed that there is no t <∞ such that cdgπt ≥
αβ

α+κ2 .

To prove Proposition 4 we first state and prove the following technical lemma:

Lemma 6. Let λ1 be the smallest root of the second-order polynomial:

ρ (p) ≡ ω2p
2 + ω1p+ ω0 ,

where:
ω2 ≡ −γ

[(

κ2 + α
)

β + αβ2γ
]

,
ω1 ≡

[(

κ2 + α
)

(1− β (1− γ)) + αβ2γ2 (1 + β)
]

,
ω0 ≡ −αβ

[

1− β
(

1− γ + βγ − βγ2
)]

,

and where the restrictions on the parameters α, β and κ are the same as those imposed
in the rest of the paper. Then, there exists a γ ∈ (0, 1) such that when γ ∈ (0, γ], the
following holds:

∂

∂γ
λ1 < 0 .

Proof. First of all, note that applying the implicit function theorem, we have:

∂

∂γ
λ1 = −

∂ρ/∂γ

∂ρ/∂p

∣

∣

∣

∣

p=λ1

≷ 0 ⇔
∂ρ

∂γ

∣

∣

∣

∣

p=λ1

≶ 0 , (36)

where we used the fact that, because ω2 < 0, ∂ρ
∂p

∣

∣

∣

p=λ1

> 0. Moreover, we have:

∂ρ

∂γ
≡ ψ (p) = ̟2p

2 +̟1p+̟0 ,

where
̟2 ≡ −

[(

κ2 + α
)

β + 2αβ2γ
]

,
̟1 ≡

[(

κ2 + α
)

β + 2αβ2γ (1 + β)
]

,
̟0 ≡ αβ2 [β − 2βγ − 1] .

It is easy to show that, (i) there exists a γ1 such that, for γ < γ1, the largest root of ρ (�)
is bigger than the largest root of ψ (�) (actually, the former goes to infinity as γ goes to
zero); (ii) there exists a γ2 such that, for γ < γ2, the quadratic polynomial:

ρ (p)− ψ (p) ,
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has one positive and one negative root. Combining this result with the fact that both
ρ (�) and ψ (�) are concave, we obtain that, for γ < γ ≡ min {γ1, γ2}, the smallest root
of ρ (�) lies between the two roots of ψ (�); in other words:

∂ρ

∂γ

∣

∣

∣

∣

p=λ1

> 0 .

Using this result in (36) completes the proof.

An immediate corollary of the above lemma is the following:

Corollary 1. Let λ1t be the smallest root of the second-order polynomial:

ρt (p) ≡ ω2tp
2 + ω1tp+ ω0t ,

where
ω2t ≡ − 1

t+1

[

(

κ2 + α
)

β + αβ2 1
t+1

]

,

ω1t ≡

[

(

κ2 + α
)

(

1− β
(

1− 1
t+1

))

+ αβ2
(

1
t+1

)2
(1 + β)

]

,

ω0t ≡ −αβ

[

1− β

(

1− 1
t+1 + β 1

t+1 − β
(

1
t+1

)2
)]

.

Then, there exists a T <∞ such that {λ1t}
∞
t=T is a monotonic increasing sequence.

Proof. First of all, note that λ1t and ωit, i = 1, 2, 3, are defined as the correspondent
coefficient in the statement of Lemma 6, with γ replaced by (t+ 1)−1; hence, t+1 ≥ 2 is
equivalent to γ ≤ γ implies t+1 ≥ T +1, where T +1 is the integer part of 1

γ
. Invoking

the result of Lemma 6, we get that λ1t increases as (t+ 1)−1 decreases.

We are now ready to prove Proposition 4.

Proof of Proposition 4. First of all, note that δdgπt is decreasing if and only if cdgπt is
increasing; hence, we prove this latter statement. Recall that:

cdgπ,t =
cdgπ,t+1

(

1− 1
t+1

)

−A12,t

A11,t − cdgπ,t+1
1

t+1

,

which means that, for any finite t, we have:

cdgπt+1 =
A11,tc

dg
π,t +A12,t

1− 1
t+1

(

1− cdgπ,t

) .

Because 1 − 1
t+1

(

1− cdgπ,t

)

is a positive expression, cdgπt+1 − cdgπt ≷ 0 is equivalent to the

second-order inequality:

ω2t

(

cdgπt

)2
+ ω1tc

dg
πt + ω0t ≷ 0 ,
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where
ω2t ≡ − 1

t+1

[

(

κ2 + α
)

β + αβ2 1
t+1

]

,

ω1t ≡

[

(

κ2 + α
)

(

1− β
(

1− 1
t+1

))

+ αβ2
(

1
t+1

)2
(1 + β)

]

,

ω0t ≡ −αβ

[

1− β

(

1− 1
t+1 + β 1

t+1 − β
(

1
t+1

)2
)]

.

Let λ1t, λ2t be the two roots of the above quadratic expression, such that λ1t < λ2t;
because ω2t,ω0t < 0 for any t, and −(ω1t/ω2t) can be easily shown to be positive, we
know that λ1t,λ2t > 0 and that:

λ1t < cdgπt < λ2t ⇐⇒ cdgπt+1 − cdgπt > 0 .

It is easy to see that λ2t >
αβ

α+κ2 for any t, which implies that:

λ1t < cdgπt <
αβ

α+ κ2
⇐⇒ cdgπt+1 − cdgπt > 0 ,

because we showed in Proposition 2 that cdgπt <
αβ

α+κ2 for any finite t. Now assume, for

the sake of contradiction, that cdgπt ≤ λ1t for some τ ≥ T , where T is the one defined in

Corollary 1; then, cdgπτ+1 ≤ cdgπτ and, for Corollary 1, λ1τ+1 > λ1τ .

Combining these two inequalities yields the conclusion that cdgπτ+1 ≤ λ1τ+1. Repeat-
ing the preceding line of reasoning infinitely many times implies that a subsequence of
{

cdgπt

}

moves monotonically away from αβ
α+κ2 , so that lim

t→∞
cdgπt , if it exists, is definitely

smaller than αβ
α+κ2 , contradicting Proposition 2. This completes the proof.

Finally, we prove Proposition 5. First of all, we briefly describe some results of the
stochastic approximation42 that we will exploit in the proof.

Let us consider a stochastic recursive algorithm of the form:

θt = θt−1 + γtQ (t, θt−1,Xt) , (37)

where Xt is a state vector with an invariant limiting distribution, and γt is a sequence
of gains; the stochastic approximation literature shows how, provided certain technical
conditions are met, the asymptotic behavior of the stochastic difference equation (37)
can be analyzed using the associated deterministic ODE:

dθ

dτ
= h (θ(τ)) , (38)

where
h (θ) ≡ lim

t→∞
EQ (t, θ,Xt) .

E represents the expectations taken over the invariant limiting distribution of Xt, for
any fixed θ. In particular, it can be shown that the set of limiting points of (37) is given
by the stable resting points of the ODE (38).

42Ljung (1977), Benveniste, Métivier, and Priouret (1990) provide a recent survey.
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Proof of Proposition 5. Note that our equation (27) is a special case of (37), where
the technical conditions are easily shown to be satisfied; moreover, it is also easy to see
that:

h (a) = lim
t→∞

(cdgπ,t − 1)a =

(

αβ

α+ κ2
− 1

)

a ,

which has a unique possible resting point at a∗ = 0. Because αβ
α+κ2 < 1, we have that a∗

is globally stable, which proves the statement.

C Comparison with EH rule

Proof of Proposition 3. First of all, note that:

δdgπ,t ≷ δEH
π ⇐⇒ σ

β − cdgπ,t
κ

≷ σ
κβ

α+ κ2
,

where the second inequality can be rewritten as

β

κ
−

κβ

α+ κ2
≷
cdgπ,t
κ

.

Rearranging the terms, we get:

δdgπ,t ≷ δEH
π ⇐⇒

αβ

α+ κ2
≷ cdgπ,t .

Because we have shown in Proposition 2 that t < ∞ implies cdgπ,t <
αβ

α+κ2 , we conclude

that δdgπt > δEH
π . Using a similar argument, it is easy to show that:

δdgut ≷ δEH
u ⇐⇒

α

α+ κ2
≷ ddgπ,t ,

which implies, because:

dcgπ =
α

κ2 + α+ αβ2γ2(β − ccgπ ) + βγ (1− γ) (αβ − (κ2 + α) ccgπ )
<

α

α+ κ2
,

that δdgut > δEH
u whenever t < ∞. Finally, note that Proposition 2 also shows that

lim
t→∞

cdgπ,t =
αβ

α+κ2 , which trivially yields lim
t→∞

δdgπ,t = δEH
π and lim

t→∞
δdgut = δEH

u .
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Figure 1: Feedback parameter in the ALM for inflation as a function of γ
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Figure 2: Variance of inflation expectations
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Figure 3: Variance of output gap expectations
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Figure 4: The dynamics of welfare losses (ratio of cumulative consumption equiv-
alents under CG and EH) under constant gain learning, with initial beliefs at the
rational equilibrium
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Figure 5: Impulse response of inflation for an initial cost-push shock u = 1. Solid
line: optimal policy under learning and private agents following learning with
γ = 0.9. Dashed line: optimal discretionary policy under RE with private agents
having rational expectations. Initial conditions: a0 = 0, π0 = 0, x0 = 0.
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From the fourth period on δdgπ is always decreasing. (β = 0.99)
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gain learning
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