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Abstract

The solutions of a macroeconometric model with expectations of future-dated variables
has to be approximated by numerical simulations. A brief review of deterministic and
stochastic dynamic simulations of a backward-looking model is followed by a concep-
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expectations) model. Detailed numerical methods for solving the models are beyond
the scope of this note.
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1 Introduction

Solutions of a dynamic macroeconometric model with expectations of future-dated vari-
ables (called leads) have to be approximated numerically by simulation. There is more
than one way to proceed, and we present different methods and sketch different algorithms.
In particular we seek to clarify some complicating issues that have to be dealt with when
undertaking stochastic simulations in a rational expectations model with leading variables.

There are many sources of uncertainty in an econometric model. Fair (1984) distin-
guishes between stochastic disturbances/shocks, estimated rather than known parameter
values, exogenous variables and the simplified structure of the model. Gallo and Don
(1991) add uncertainty due to unreliable data. We limit our discussion to stochastic sim-
ulation of a given model, where shocks and estimates of unknown parameters are the only
recognized sources of uncertainty. We condition on the model and the exogenous values. In
light of the partial incorporation of uncertainty in the simulations, it seems reasonable to
view the simulated variability as a conservative estimate of the predictive uncertainty. As
the paper focuses on simulation techniques we do not pursue this discussion any further.
Neither modelling nor estimation are issues of this paper.

When doing stochastic simulation of a model with rational agents we have to dis-
tinguish between uncertainty faced by the modeller (imprecise estimates and unexplained
shocks) and uncertainty faced by rational expectation forming agents (unforseeable shocks).
For the simulation disturbances we discuss three alternatives: Agents have perfect fore-
sight, know the distribution of the shocks or only the expectations. As for the parameter
estimates we have to distinguish between knowledge of the modeller and the rational
agents. Unfortunately, implementing and testing the algorithms on an operative macroe-
conometric model are beyond the scope of this paper. Nevertheless, this note might serve
as a preparatory introduction to such an undertaking.

The structure of this paper is as follows. The next section reviews the backward-
looking model, while section 3 looks at solutions of the nonlinear model by stochastic
simulations. These two sections serve as background for the following sections and their
methods. The forward-looking model is discussed in section 4, which presents the iterative
method of Fair and Taylor (1983) and the more recent stacked-time method, see e.g.
Armstrong et al. (1998), Hollinger (1996), Juillard et al. (1998). The fifth section continues
with stochastic simulation of the forward-looking model. Different algorithms are sketched,
first with stochastic disturbances only, and then with stochastic parameter estimates in
addition. A final section concludes.

2 Simulation of a backward-looking model

A macroeconometric model is a nonlinear dynamic simultaneous equation system. With-
out forward-looking behaviour its structural equations can be written generally as

f(yt,yt−1,xt, β) = ut ∼ IID(0,Σ), (1)

where f denotes a vector of functions and lag operators. The arguments yt, yt−1, xt and β

are vectors of current and lagged endogenous variables, exogenous variables and structural
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parameters (coefficients). The vectors of structural errors or shocks, ut, are assumed to
be intertemporally independent and identically distributed (IID), with zero mean vector
and a contemporaneous covariance matrix Σ. The dynamic structure of the model is
made explicit by the inclusion of a single lag yt−1, which is fully general1. Lags in the
exogenous variables are irrelevant for the discussion, and are dropped to simplify notation.
Definitional equations do not contribute to the simulation properties of the model and are
consequently ignored.

The parameters are estimated from T observations on xt and (due to the lag) T +1
observations on yt. The estimated model is

f(yt,yt−1,xt, β̂) = ût ∼ ID(0, Σ̂), t = 1, . . . , T, (2)

Hats denote estimated values. The vector β̂ contains the estimated parameter values.
By construction the vectors of empirical residuals ût are dependent, but approximately
identically distributed (ID) and serially uncorrelated, with zero mean and an empirical
covariance matrix Σ̂. We have used the terms error or shocks for the stochastic variables
ut and residual for their empirical values ût.

The system of nonlinear equations (1) generally does not yield a closed form solution
for yt in terms of the predetermined variables yt−1,xt,ut and the parameters β. However,
for relevant values of the variables the system implicitly defines a presumably unique
solution, expressed by yt = g(yt−1,xt,ut, β). The standard numerical approximation to
this solution is a deterministic dynamic simulation of the estimated model (2),

ỹt = g(ỹt−1,xt, ũt, β̂), ỹ0 = y0, t = 1, . . . , T, (3)

where tildes denote simulated values. The simulation disturbances are denoted by ũt,
which are any input values representing the error terms or shocks. When ût is put into
an in-sample simulation the estimated model (2) reproduces data exactly, and ỹt = yt

for t = 1, . . . , T . Common procedure is to input either the expected values of the shocks,
ũt = 0 or, in an in-sample simulation, the empirical residuals, ũt = ût as intercept
corrections. We let such intercept corrections be represented by exogenous variables.

When the model is linear in variables (1) can be written as

Ayt −Byt−1 −Cxt = ut,

where A, B and C are coefficient matrices. Constant terms can be represented by con-
stants in C and x. For an invertible A

yt = A−1Byt−1 +A
−1Cxt +A−1ut.

The endogenous variables are functions of the error terms. Consequently they are stochas-
tic variables, and

E[yt | xt] = A−1BEyt−1 +A−1Cxt

1For a linear (in parameters) model this can be seen writing the model in companion form, cf. Hendry

(1995, ch. 8 and A1.6). This idea of adding current and lagged variables defined as higher order lags of

existing variables carries over to a nonlinear model. Alternatively, the vector f of functions and/or lag

operators can contain higher order lag operators.
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as E[ut | xt] = 0. With zero simulation disturbances the linear version of (3),

ỹt = Â−1B̂ỹt−1 + Â
−1Ĉxt ≡ Π̂ ỹt−1 + Γ̂ xt,

approximates the conditional expected values of the endogenous variables, ỹt ≈ E[yt | xt].
The approximate equality results from the fact that only estimates of the true values of the
parameters are known. When expectation values of stochastic input variables are mapped
onto expectation values of stochastic output values we speak of certainty-equivalence. For
linear models the property of certainty-equivalence allows the model operator to find the
expected values of the endogenous variables in one single deterministic simulation. For
nonlinear models certainty-equivalence does not hold, as in general

E[yt | xt] = Eg(ỹt−1,xt, ũt, β̂) �= g(Eyt−1,xt,0, β̂).

If the model is only mildly nonlinear, say including slightly curved functions of endogenous
variables in only a few equations, then the zero residual deterministic simulation might still
be a reasonable approximation to the expected values of the endogenous variables, see Fair
(1984), Fisher and Salmon (1986), Hall and Henry (1988). The common methodology of
deterministic simulation implicitly follows the standard statistical practice of plugging in
the best estimate of unknown model parameters, and treating as stochastic only variables
specified to be stochastic. Below we shall relax this practice by considering the parameter
estimates as stochastic too.

3 Stochastic simulation of a backward-looking model

From the specification and estimation of the econometric model it follows that the shocks
ut in (1) and the estimates β̂ in (2) are stochastic variables. The premise of parameter
constancy is not violated, since it is the estimator that is stochastic. The unknown pa-
rameters β are still perceived as constants. The only model input being deterministic,
by definition, is the exogenous variables x. In ex post (within sample) simulations their
values are historical observations or counterfactual values upon which the simulations, and
consequently the conclusions, are conditioned. When simulating the estimated model (2)
one can take into account these sources of variability which lead to uncertainty in the
model solutions.

The mapping of variables implies a mapping of probability distributions of stochastic
input variables onto a distribution of stochastic output variables. Classical econometrics
let us assume that the stochastic input variables are independent. Then the two mappings
can be schematically expressed as

β̂

↓
ỹt−1,xt, ũt → model → ỹt

⇓
Dỹ,t−1(ỹt−1), xt, Dû(ũt) → model → Dỹ,t(ỹt),

↑
Dβ̂(β̂)
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where the Ds denote the joint distributions of the simulated endogenous variables, the
joint distributions of the simulation disturbances and the joint distributions of the param-
eter estimates. A time subscript on the distribution of y accommodates nonstationarity.
Since the mapping of the input variables is known only implicitly through the structural
model (2), the resulting mapping of the variables’ distributions is unknown. But, the un-
known output distributions Dỹ,t(ỹt), t = 1, . . . T, can be estimated by dynamic stochastic
simulations. The central limit theorem suggests that for weakly nonlinear models we may
anticipate approximate normality of the endogenous variables2.

The term deterministic simulation is synonymous with an iterative numerical so-
lution of the deterministic model. The term stochastic simulation covers an additional
operation. First sampling the stochastic input variables, then approximating the implicit
reduced form solution by numerical iteration. The two tasks can be seen as first sampling
on the input side directly and then on the output side of the model indirectly. Stochastic
simulation is basically about sampling the distributions of the stochastic variables of the
estimated model. The sampling is carried out simply by replicating a single (“determin-
istic”) simulation n = 1, . . . , N times. Each replication n is simulated with new values of
the stochastic input variables randomly drawn from their respective postulated and esti-
mated input distributions. A very simple way to do this is to assume multivariate normal
distributions for the error terms and, consequently, for the parameter estimates, and to
center the distributions on the empirical residuals (to be discussed) and the estimated
values. Denoting a simulated random variable by a tilde and a replication superscript (n)

(while a hat denotes an estimate) stochastic simulations are performed according to:

Algorithm 1: Stochastic simulation of a backward-looking model

For n = 1, 2, . . . , N replications of a single dynamic simulation

β̃(n) ∼ InIN(β̂, Ω̂),

For t = 1, 2, . . . , T periods within a single dynamic simulation

ũ(n)
t ∼ In,tIN(0, Σ̂),

ỹ(n)
t = g(ỹ(n)

t−1,xt, ũ
(n)
t , β̃(n)), ỹ(n)

0 = y0.

The vector of simulation parameters β̃(n) is independent over replications, denoted by In,
and identically distributed normal (IN), centered on the estimate with empirical covariance
matrix Ω̂. Its value only changes with the replication n, and remains constant through the
T simulation periods. The vector of simulation disturbances ũt (which is not strictly the
error term in the model (1)) is independent over both replications and time, denoted by In,t,
and identically distributed normal, centered on the expectation 0. Its covariance structure
is that of the empirical residuals. A new value is drawn every simulation period t in every
replication n. Stochastic perturbations to realized or expectation values of the error term,
and to the estimates provide a simple and common way to generate stochastic variation, see

2The Lindeberg generalization of the central limit theorem implies under general conditions (applicable

in nearly every practical situation) that a sum of a large number of independent random variables with

finite moments converges to a normal distribution, see Davidson and McKinnon (1993, ch. 4.7).
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Fair (1984) and Hollinger (1990). A single multivariate path (multiple time series) over t =
1, . . . , T periods is simulated in each replication n = 1, . . . , N. The path is a hypothetically
possible realization of the model economy. The stochastic simulation procedure given
by the algorithm above yields a bundle of different paths {(y(n)

1 , y
(n)
2 , . . . , y

(n)
T )}Nn=1The

dispersion of the sample paths reflects conditional uncertainty in the model solutions.

4 Simulation of a forward-looking model

When the model (1) in addition to lagged variables contains expectations of future-dated
variables (leads) yt+1 it can be modified to

f(yt,yt−1,E[yt+1 | It−1],xt, β) = ut ∼ IID(0,Σ), (4)

where It−1 ⊆ {yt−1, β,Eut = 0,Σ,Et−1xt = xt,Et−1ut = 0 ∨ ut} denotes the information
set at the end of period t−1. As with the lags the inclusion of a single lead is fully general.
With the shorthand notation ȳt+1 = E[yt+1 | It−1] we have the forward-looking version of
the implicit solution (3)

ỹt = g(ỹt−1, ȳt+1,xt, ũt, β̂), ỹ0 = y0, t = 1, . . . , T. (5)

While the backward-looking model (2) could be solved recursively by numerical iteration
to yield the implicit solution (3), the solution (5) of the forward-looking model depends
on expectations of the future in addition to realizations of the past. This has severe
implications on both the uniqueness of the solution and the method of approximating one.

When the model is linear in variables (4) can be written as

Ayt +Byt−1 +Cxt −DE[yt+1 | It−1] = ut,

where A, B, C and D are coefficient matrices. Constant terms can be represented by
constants in C and x. When A is invertible the linear version of (5) becomes

ỹt = −Â−1B̂ỹt−1 − Â−1Ĉxt + Â−1D̂ỹt+1 (6)

≡ Π̂ỹt−1 + Γ̂xt + Υ̂ỹt+1

by certainty-equivalence: E[ut | It−1] = 0 ⇒ ȳt+1 = E[yt+1 | It−1] = ỹt+1. Unlike the
linear backward-looking model the solutions cannot be computed recursively since the
current solution depends on future solutions in addition to past solutions. Generally, the
solutions for all periods have to be found simultaneously.

The model (6) can alternatively be written with ỹt+1 as the left hand side variable:

D̂ỹt+1 = Âỹt + B̂ỹt−1 + Ĉxt

Then, if D had full rank the recursion

ỹt+1 = D̂−1Âỹt + D̂
−1B̂ỹt−1 + D̂

−1Ĉxt

≡ Ψ̂ỹt + Π̂ỹt−1 + Γ̂xt.
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would approximate the expected values of the endogenous variables. But, since the model
is far from likely to contain expectations of all endogenous variables, the coefficient matrix
D almost surely has reduced rank. Then it cannot be inverted, and the solution for all dat-
ings of the endogenous variables have to be found simultaneously rather than recursively.
This shows that expectations of future-dated variables complicate the solution procedure
for linear as well as nonlinear models. There is a relatively large literature on linear ratio-
nal expectations models compared to nonlinear models, see for instance Gourieroux and
Monfort (1997, ch. 12), Holly and Hughes-Hallett (1989, ch. 7) and Wallis (1980). Fisher
(1992) presents a comprehensive set of techniques for handling nonlinear as well as linear
econometric models with rational expectations.

There are several different methods of finding a solution (5) for the general nonlinear
forward-looking model (4). If the expectation values ȳt+1 were known, along with the
already simulated values of the lagged endogenous variables ỹt−1, the exogenous values xt

and the simulation disturbances ũt, the solution ỹt could be found by the same numerical
simulation procedure as for the backward-looking model (2). The two solution methods
to be reviewed actually use the same numerical simulation procedure as for the backward-
looking model. They differ in how they treat the expectations ȳt+1 to be able to do
that. The perhaps most well known method is the iterative method due to Fair and
Taylor (1983, 1990), denoted FT. Another more recent method (available in the TROLL
software) is the Stacked-Time method, denoted ST, see e.g. Fisher et al. (1986), Hollinger
(1996). To decide the terminal conditions, that is the values for the expectations beyond
the last simulation period, ȳT+1, FT and ST both use the extended path method. The two
methods are not disjunct. In the TROLL software ST can be a part of the FT-method.
The next two subsections explain why this is so, as do Armstrong et al. (1998).

4.1 The Fair-Taylor method (FT)

This method starts by choosing an initial time path for the expectations, extended k

periods beyond the original interval:

Ȳ1 = (ȳ1
2, . . . , ȳ

1
T+1,︸ ︷︷ ︸

original interval

ȳ1
T+2, . . . , ȳ

1
T+k+1︸ ︷︷ ︸

extension

),

where k ≥ 1. The length of the time extension ȳ1
T+2, . . . , ȳ

1
T+k+1, that is the size of k,

depends on what one assumes or knows about the values in the final period T . The reason
for the extension will be clear shortly. Given these values of the expectation variables the
model can be solved by recursive dynamic simulation, just like a backward-looking model.
The solution of the model given the expectations Ȳ1 is the time path

Ỹ1 = (ỹ1
1, . . . , ỹ

1
T+1,︸ ︷︷ ︸

original interval

ỹ1
T+2, . . . , ỹ

1
T+k︸ ︷︷ ︸

extension

, ȳ1
T+k+1︸ ︷︷ ︸

terminal value

),

where
ỹ1

t = g(ỹ1
t−1, ȳ

1
t+1,xt, ũt, β̂), ỹ1

0 = y0, t = 1, . . . , T + k. (7)
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For each period t the solution (7) is approximated by iteration. Fair and Taylor (1983)
denote these iterations required for each period-specific solution Type I iterations. The
FT-method proceeds to iterate on the solution path (of Type I solutions) by letting the
simulated values replace the expectation values, setting Ȳi+1 = Ỹi, i = 1, 2, . . ., that is
ȳi+1

t = ỹi
t for t = 2, . . . , T + k, before resimulating the whole time span t = 1, 2, . . . , T + k.

The method presupposes that each new dynamic simulation Ỹi is closer to the
true solution than the previous one Ỹi−1, since each simulation then uses an improved
approximation to the true expectation values. When

∣∣ỹi
t − ỹi−1

t

∣∣ ≤ δII for every t =
1, . . . , T +1, where δII is a prescribed tolerance level, convergence on the original interval
has been achieved after i iterations. Each of the i iterations is called a Type II iteration.
While Type I iterations are for each solution period, each Type II iteration is for the whole
solution path.

We denote the Type II solution path Ỹi by Ỹ only. It depends on the terminal
expectation values ȳ1

T+k+1 and the length k − 1 of the extension. We denote this by

Ỹ(k, ȳ1
T+k+1) = (ỹ1, . . . , ỹT+1,︸ ︷︷ ︸

original interval

ỹT+2, . . . , ỹT+k︸ ︷︷ ︸
extension

, ȳ1
T+k+1︸ ︷︷ ︸

terminal value

)

= (ỹ1, . . . , ỹT+1) � (ỹT+2, . . . , ỹT+k) � ȳ1
T+k+1

≡ Ỹorg(k, ȳ1
T+k+1) � Ỹext(k, ȳ1

T+k+1) � ȳ1
T+k+1,

where � is a concatenation operator. The terminal vector ȳ1
T+k+1 has not been changed

during the simulations since its dating is outside the simulation time span.
We only need the solution path Ỹorg(k, ȳ1

T+k+1) through the T + 1 periods of the
original interval. We want this path to be independent of the choice of the terminal
vector ȳ1

T+k+1. This can be achieved by pushing it sufficiently far into the future. That
is the reason for the (length k of the) extension. Whether the subpath Ỹorg(k, ȳ1

T+k+1)
is approximately independent of the terminal vector can be checked by adding another
period T + k + 2. A new terminal vector ȳ1

T+k+2 is chosen, and the initial expectation
path Ȳ1 = Ỹ(k, ȳ1

T+k+1) � ȳk+1,1
T+k+2 formed. Type II iterations are again performed until

convergence, yielding

Ỹ(k + 1, ȳ1
T+k+2) = (ỹ1, . . . , ỹT+1,︸ ︷︷ ︸

original interval

ỹT+2, . . . , ỹT+k, ỹT+k+1︸ ︷︷ ︸
extension

, ȳ1
T+k+2︸ ︷︷ ︸

terminal value

)

≡ Ỹorg(k + 1, ȳ1
T+k+2) � Ỹext(k + 1, ȳ1

T+k+2) � ȳ1
T+k+2.

Now, if maxt

∣∣∣Ỹorg(k + 1, ȳ1
T+k+2)− Ỹorg(k, ȳ1

T+k+1)
∣∣∣ ≤ δIII , where δIII is another pre-

scribed tolerance level, the solution path through the original simulation interval, Ỹorg =
(ỹ1, . . . , ỹT+1) is practically independent of the length of the extension and the termi-
nal vector. We then have a Type III solution path Ỹorg after only one Type III it-
eration. If the convergence criteria is not met, FT iterates on the full solution path
Ỹ(k, ȳ1

T+k+1) by extending it one period (k ← k + 1) each Type III iteration. When
Ỹorg(k, ȳ1

T+k+1) ≈ Ỹorg(j, ȳ1
T+j+1) for all j > k irrespective of ȳ1

T+j+1 we have a Type
III- and final solution. Each Type III iteration involves several Type II iterations, which
again performs Type I iterations for each period.
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So far we have not mentioned the disturbances nor the exogenous input. The exogenous
values are either in-sample observations, with a possibility of counterfactual changes, or
projected future values. For in-sample simulations the empirical residuals ût are often used
as intercept corrections. We let such intercept corrections be represented by exogenous
variables (xj,t ∈ xt). Assuming approximate certainty-equivalence, ũt = E[ut | It−1] = 0
implies ȳt+1 ≈ ỹt+1, and (5) becomes

ỹt = g(ỹt−1, ỹt+1,xt,0, β̂), ỹ0 = y0, t = 1, . . . , T. (8)

This is the solution Fair and Taylor approximate by the iterative technique outlined above,
(discarding periods T + 1, . . . , T + k). The structure of the Fair-Taylor algorithm is

Initialize

Set start values and choose expectation paths through all periods including the
terminal,

Type III iterations

Do until Type III solutions on the original simulation interval do not change

significantly between Type III iterations:

Extend the simulation path with a new terminal period,

Type II iterations (for the given extension)

Do until Type II solutions for all periods do not change significantly

between Type II iterations:

Set expectations equal to previous Type II solutions,

Type I iterations (for each simulation period)

With expectations equal to the previous (Type II) solutions

simulate through all periods but the terminal,

End Do-loop for Type II iterations

Let the new Type III solutions be equal to the final Type II solutions,

End Do-loop for Type III iterations

To simplify notation in the algorithms, where it is not necessary we do not distinguish
notationally between expectations ȳt and simulations ỹt but use only yt. The actual
algorithm is

Algorithm 2: Fair-Taylor deterministic simulation of a forward-looking model

Initialize

Prescribe the tolerance levels δII and δIII ,

Decide the initial extension length l, and let k = l − 1,

Choose an extended start path Y(k,yT+k+1) = (y1
t )

T+k+1
t=1 ,

Extend the exogenous path with xT+1, . . . ,xT+k,

8



∆III =∞,

Type III iterations (over k)

Do until ∆III ≤ δIII

k = k + 1 and i = 1,

Choose vectors for the added final period: y1
T+k+1 and xT+k,

Y1(k,y1
T+k+1) = Y(k − 1,y1

T+k) � y1
T+k+1

∆II =∞,

Type II iterations (over i)

Do until ∆II ≤ δII

i = i + 1,

Type I iterations (for each period t)

Simulate Yi(k,y1
T+k+1) with Y

i−1(k,y1
T+k+1) as expectations

End For-loop with Type I iterations,

Let ∆II = maxt

∣∣Yi(k,y1
T+k+1)−Yi−1(k,y1

T+k+1)
∣∣

End Do-loop for Type II iterations,

Let Y(k,y1
T+k+1) = Y

i(k,y1
T+k+1),

Let ∆III = maxt

∣∣Yorg(k,y1
T+k+1)−Yorg(k − 1,y1

T+k)
∣∣

End Do-loop for Type III iterations

The backward-looking model in the previous sections is simultaneous across equations
within the current period. The forward-looking model with model-consistent leads (ra-
tional expectations) is simultaneous across time as well as across equations. The Type I
iterations solve the simultaneity of current endogenous variables, while the Type II and
Type III iterations solve the simultaneity of current and future periods.

4.2 The Stacked-Time method (ST)

Like FT the ST-method approximates solutions of f(yt,yt−1,yt+1,xt, β̂) = 0 for more
time periods than in the original interval t = 1, . . . , T . Rather than doing it iteratively
like FT, the solutions for all time periods t = 1, . . . , T, T + 1, . . . , T + k are found in one
go by solving the stacked-time equation system

f(y1,y0,y2,x1, β̂) = 0
...

f(yT ,yT−1,yT+1,xT , β̂) = 0

f(yT+1,yT ,yT+2,xT+1, β̂) = 0 (9)
...

f(yT+k−1,yT+k−2,yT+k,xT+k, β̂) = 0

f(yT+k,yT+k−1, ȳT+k+1,xT+k, β̂) = 0

9



given y0, xT+1, . . . ,xT+k, and ȳT+k+1. By k being set sufficiently far into the future it is
assumed that a reasonably chosen ȳT+k+1 hardly affects the solution path in the original
time interval, (Hall and Henry (1986) list four ways of deciding terminal values). All
equations in the original model are duplicated for each simulation period, and each timing
of a variable is considered to be a distinct variable itself. Rather than solving the original
model period by period, the stacked (and then “static”) model is solved for all periods
simultaneously. Time is effectively removed from the solution of the model by integrating
it into the stacked structure. The system of equation systems (9) illustrates that the
numerical task of solving a small forward-looking model can be equivalent to solving a
very large backward-looking model.

The benefit of time-stacking is elimination of the time dimension and the problem
of future values. The cost is increased size of the model, which can be substantial. For a
linear model the stacking leads to a huge matrix which is block tridiagonal, and can be
effectively inverted with sparse matrix techniques, see e.g. Hollinger (1996). For a nonlinear
model approximative solution techniques have to be applied. The stacking eliminates the
Type II iterations in the FT-method, as the solutions for all periods are found directly by
Type I iterations. In the TROLL software Stacked-Time solutions can optionally replace
Type II iterations in the FT-macro. To check for the independence of the solution on the
terminal conditions the Type III iterations have to be performed. In practice, iterations
on k are often not performed. One rather chooses an assumingly large enough value of k

right away, and then does not bother about the Type III iterations.

5 Stochastic simulation of a forward-looking model

In this paper the purpose of stochastic simulation is motivated by the need to update
agents’ expectations about model output in light of their recognized uncertainty about
model input. In stochastic simulation of the backward-looking model (2) the stochastic
nature of parameter estimates reflects the model builder’s uncertain knowledge of their
true values. The errors on the other hand are standard stochastic variables in the model.
Despite the different interpretation of their stochasticity, the errors and the estimates
were treated the same way in the simulations. When it comes to stochastic simulation
of the forward-looking model things get more complicated. Therefore let us first look at
simulation with stochastic error terms only.

We start with a single dynamic simulation with stochastic shocks (that is one repli-
cation n where the superscript (n) has been dropped to simplify notation):

ỹt = g(ỹt−1, ȳt+1,xt, ũt, β̂), ỹ0 = y0, t = 1, . . . , T + k (10)

What separates this simulation from the deterministic simulation (8) is that the distur-
bances ũt are not set equal to their expectations 0. The disturbances perturb the solutions
relative to the expectations, hence the simulated values ỹt+1 do not coincide with the ex-
pected values ȳt+1. This is a complicating factor compared to the deterministic simulation
based on certainty-equivalence. The realization and the expectation cannot be solved to-
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gether as one and the same variable. Extra simulations are needed for the expectations.
Once ȳt+1 is quantified, ỹt can be simulated with ũt input instead of 0.

The simulations of the expectation vectors ȳt+1, t = 1, . . . , T + k − 1 (the terminal
ȳT+k+1 is not simulated, it is set exogenously) cannot be done in one go. The reason is
that the agents form their expectations of future values based on the information available
at the time the expectations are formed. When a new value yt is realized, that value
is different from what the agents expected because of the shocks ut. Consequently, the
agents update their expectations based on this new information. This implies that for
each viewpoint date at the beginning of period t it is necessary to perform simulations
to update the expectations ȳt+1, ȳt+2, . . .. Updating after each period has one advantage
though. We only need the expectation values for period t+1. But to reduce the influence
of terminal values the model needs to be solved for k periods ahead of t + 1, that is for
s = t, . . . , t + k + 1.

One remaining big issue concerns the way the agents form their expectations. Under
the rational expectations hypothesis the agents know the model f and the parameters β̂.
The latest realizations ỹt−1 are known, and the exogenous values xt can be considered
known at the start of period t. When it comes to the temporal shocks ut, there are three
possible interpretations. The next three subsections discuss these three possibilities in
turn.

5.1 Agents have perfect foresight

The most demanding assumption on behalf of the economic agents implies the easiest
solution method. If we assume that the agents know the exact value of the future shocks
ut+1, then E[yt+1 | It−1] = yt+1. In this case what separates each replicated stochastic
solution path from the single deterministic solution path based on certainty-equivalence
is that the (expected) zero shocks in (8) are replaced by a random shock ut. For a single
dynamic simulation the stacked-time equation system (9) is replaced by

f(y1,y0,y2,x1, β̂) = u1

...

f(yT+k,yT+k−1, ȳT+k+1,xT+k, β̂) = uT+k.

A full stochastic dynamic simulation experiment performs n = 1, . . . , N deterministic
dynamic simulations. Each replicated dynamic simulation (y(n)

1 , . . .,y(n)
T+k) is driven by

a unique sequence or path of shocks (u(n)
1 , . . .,u(n)

T+k). The extended exogenous path
xT+1, . . . ,xT+k, the start vector y0 and the single terminal expectation vector ȳT+k+1

remain fixed over the replications. In a stochastic simulation the shock paths will cause
the solution paths to diverge, while the fixed terminal expectation vector will try to pull
them together towards the end of the simulation. It is thus important to make the exten-
sion of k periods long enough to avoid significant influence of the terminal vector on the
solutions in the original time interval t = 1, . . . , T .
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Algorithm 1 showed the recursive structure of solving a stochastic backward-looking model.
The simultaneous model was solved recursively in the second For t-loop, as a multivariate
function of variables predetermined at each period t. Algorithm 3 below differs from
algorithm 1 by the lack of a For t-loop in which the model is solved recursively. The
model has to be solved simultaneously for all variables and all periods.

Algorithm 3: Stochastic simulation of a perfect foresight model

For n = 1, 2, . . . , N replications of a single dynamic simulation

ũ(n)
1 , . . . ũ(n)

T+k ∼ In,tIN(0, Σ̂),

Solve by FT or by ST:

ỹ(n)
1 = g(y0, ỹ

(n)
2 ,x1, ũ

(n)
1 , β̂), .

...

ỹ(n)
T+k = g(ỹ(n)

T+k−1, ȳT+k+1,xT+k, ũ
(n)
T+k, β̂).

5.2 Agents know only the expectation of the shocks

The least demanding assumption on behalf of the economic agents is to assume that
they only know the expected value of the shocks, Eut = 0. Their expectations can then
be approximated by separate deterministic dynamic simulations (8) based on certainty-
equivalence. With viewpoint t, ȳt+1 is found by simulating t + k + 1 periods:

ȳt = g(ỹt−1, ȳt+1,xt,0, β̂),
...

ȳt+k = g(ȳt+k−1, ȳt+k+1,xt+k,0, β̂),

or, in a more compact notation,

ȳs = g(ȳs−1, ȳs+1,xs,0, β̂), ȳt−1 = ỹt−1, ȳt+k+1 = ȳ1
t+k+1, s = t, . . . , t + k. (11)

This single replication is a deterministic dynamic simulation like (8), only shorter. For each
viewpoint the expectations can be simulated deterministically. Out of the k+1 simulated
vectors only ȳt+1 is used. Then with ȳt+1 estimated by this separate deterministic dynamic
simulation over k periods, the stochastic realization ỹt can be simulated just like the
backward-looking model.

The complete stochastic dynamic simulation of the forward-looking model consists
of N replicated dynamic simulations over T + k periods. Each dynamic simulation (10) is
a possible outcome of the dynamic process of the (model) economy. During the unfolding
of the process the agents update their expectation. This is reflected by the separate and
shorter dynamic simulations (11) that we have to do for each viewpoint t = 1, . . . T +k, in
each replication (10). The replicated dynamic simulations are different because of different
outcomes of the residual process and because the agents form different expectations based
on different realizations of the model economy.

Each viewpoint-t simulation of the expectations path k periods into the future needs
a terminal value ȳ1

t+k+1. Instead of guessing terminal vectors for each viewpoint-t simu-
lation of each replication (n), one can perform a deterministic dynamic simulation with
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certainty-equivalence (8) through all periods t = 1, . . . , T + k, to provide a set of terminal
values (the final terminal value ȳ1

T+k+1 still needs to be set exogenously). These values
are simulated once from viewpoint t = 1, and might appear biased” from later viewpoints
of simulated realizations. But that causes no problem. We are only using the vector that
is k+1 periods ahead of the current period t as a terminal value for the simulation of the
expectation of the next period t + 1. It does not matter if the values ȳ1

t+1, . . . , ȳ
1
t+k in

between are off. They have served their purpose as previous terminal values. The horizon
k should be set large enough for the period-t solution not to be too sensitive to biased”
terminal values ȳ1

t+k+1.
Below we sketch an algorithm for the case where the agents know the expected

value of the shocks and form their expectations as if they were doing certainty-equivalence
simulations. The initial deterministic simulation of the stacked-time model (9) requires
the solution for T + k time specific vectors. A single replication (n) of the stochastic
simulation requires in addition T times the solution of k time specific vectors plus a final
simulation to get the wanted solution. This amounts to simulating NT (k + 1) vectors in
addition to the T + k vectors of an initial deterministic simulation. This is more clearly
seen from the algorithm below.

Algorithm 4: Stochastic simulation with zero expectations

Choose a sufficient extension length k and a terminal expectations vector ȳ1
T+k+1,

Extend the exogenous path with xT+1, . . . ,xT+k,

Solve the stacked-time model

f(ȳ1
1,y0, ȳ1

2,x1, β̂) = 0
...

f(ȳ1
T+k, ȳ

1
T+k−1, ȳ

1
T+k+1,xT+k, β̂) = 0

to approximate the model consistent or rational expectation path ȳ1
1+k+1, . . . , ȳ

1
T+k

to be used as terminal expectations ȳ1
t+k+1 in the last line of of the stacked-time

model in the For t-loop below,

For n = 1, . . . , N replications of a single dynamic simulation

Let ỹ(n)
0 = y0,

For t = 1, . . . , T periods within a single dynamic replication (n)

Solve the stacked-time model

f(ȳ(n)
t , ỹ(n)

t−1, ȳ
(n)
t+1,xt, β̂) = 0

...

f(ȳ(n)
t+k, ȳ

(n)
t+k−1, ȳ

1
t+k+1,xt+k, β̂) = 0

to approximate agents’ model consistent expectation path ȳ(n)
t , . . . , ȳ(n)

t+k

given the previous simulation ỹ(n)
t−1 and the terminal expectation ȳ1

t+k+1,

keep only ȳ(n)
t+1,
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draw one random vector ũ(n)
t ∼ N(0, Σ̂),

given ȳ(n)
t+1 and ũ(n)

t simulate the period-t specific solution

ỹ(n)
t = g(ỹ(n)

t−1, ȳ
(n)
t+1,xt, ũ

(n)
t , β̂). (12)

End For t-loop (returns a solution path (ỹ(n)
t )Tt=1 for replication n),

End For n-loop (returns a bundle of N solution paths {(ỹ(n)
t )Tt=1}Nn=1).

Algorithm 4 solves the model NT (k + 1) + (T + k) times. This is a lot more than the
N(T + k) solutions of Algorithm 3. The N(T − 1)k + (T + k) extra solutions are due to
agents updating of expectations when they observe the realized values of each period.

5.3 Agents know the distribution of the shocks

An alternative to agents’ limited knowledge of the shocks is to assume that (i) agents know
not only the expectation but rather the whole distribution of the shocks, ut ∼ IID(0,Σ),
and in addition that (ii) at each viewpoint t they form their future expectations as if they
solve

Etyt = Etg(yt−1,Etyt+1,xt,ut, β),
...

Etyt+k = Etg(Etyt+k−1,Etyt+k+1,xt+k,ut+k, β),
... (13)

To approximate this expectation formation at viewpoint t, starting from simulation ỹt−1,
we would have to simulate

ȳt = Etg(ỹt−1, ȳt+1,xt, ũt, β̂),
...

ȳt+k = Etg(ȳt+k−1, ȳt+k+1,xt+k, ũt+k, β̂),

where the expectation is with respect to the simulation residual ũt ∼ In,tIN(0, Σ̂). A more
compact notation, which corresponds to (11) is

ȳs = Etg(ȳs−1, ȳs+1,xs, ũs, β̂), ȳt−1 = ỹt−1, ȳt+k+1 = ȳ1
t+k+1, s = t, . . . , t + k.

The obvious problem is that in order to simulate ȳs we need to know ȳs+1. Let us
assume that we have preliminary estimates of every expectation ȳs, for instance from a
deterministic certainty-equivalence simulation. Then we could simulate

ỹ+(m)
t = g(ỹt−1, ȳt+1,xt, ũ

(m)
t , β̂) for m = 1, . . . ,M, (14)

and
ỹ−(m)

t = g(ỹt−1, ȳt+1,xt,−ũ(m)
t , β̂) for m = 1, . . . ,M, (15)
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with antithetic residuals ±ũ(m)
t , and calculate the sample mean

ȳt =
ỹ+(m)

t + ỹ−(m)
t

2
=

1
2M

2M∑
m=1

(
ỹ+(m)

t + ỹ−(m)
t

)
. (16)

Using antithetic residuals is a standard variance reducing technique for estimating ex-
pectations which in this context allows a smaller number of replications M to achieve a
given precision in the simulated expectations, see for instance Ripley (1987) and Calzolari
(1979). We could continue with simulating (14)–(15) and calculating (16) for viewpoints
t, . . . , t + k. Replacing the preliminary estimates with the new estimates of expectations,
the procedure could be iterated to improve the single vector ȳt+1 needed at each viewpoint
t in the replication (10). Allowing the agents to know the distribution of the error term
and to form expectations as if they solve (13) imply that we have to perform stochastic
simulations to estimate expectations within the overall stochastic simulation to estimate
the distribution of the endogenous variables. This is clearly a very demanding task which
we shall not consider further.

5.4 Uncertain knowledge of β

We now look at how to incorporate into the simulations uncertainty in our knowledge of
the true values of the model parameters β. So far we have proceeded as if both the modeller
and the economic agents knew the true values β = β̂. Under the rational expectations
hypothesis the agents indeed do know the true values. But the modeller only knows the
best estimates and their sample distribution. To simulate the model under this perspective,
we may assume that the estimates β̂ are the true values, and that the sample distribution
N(β̂, Ω̂) reflects the imprecise knowledge of the modeller. Then we only need to make two
changes to algorithm 4. First we have to add

Draw a random vector β̃(n) ∼ IN(β̂, Ω̂),

to the beginning of the For t = 1, . . . , T loop. Then we have to modify the final period-
specific simulation (12) to use this parameter vector:

ỹ(n)
t = g(ỹ(n)

t−1, ȳ
(n)
t+1,xt, ũ

(n)
t , β̃(n)).

The two stacked-time simulations in algorithm 4 that mimic the expectation formations
continue to use the “true” parameter vector β̂. The agents form their expectations knowing
the true value of the parameter vector. There is no uncertainty in their expectations.
The uncertainty in the model simulations come from the error terms and the modeller’s
uncertain knowledge of β in (12).

The best sample-based estimate of the true parameter vector is β̂. As such this
estimate is used in the simulations of the expectations. But uncertainty in the modellers
knowledge of the true parameter implies the same uncertainty about the (true) value
the agents use. It is thus possible to simulate the parameter vector for the agents too.
Then there are two possible ways to proceed. We may draw a new parameter vector
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for each replication (n) and use it in simulating both the expectation path Ȳ(n) and the
solution path Ỹ(n), just like we did with β̂ in the residual simulations in subsections 5.1,
5.2 and 5.3. Or, recognizing that we do not know the true value the agents use, we
may simulate their parameter vector in addition to the modeller’s vector of estimates.
That amounts to replicating the procedure in the paragraph above: Draw parameter
vectors of the agents β̂

(n)
A ∼ InIN(β̂, Ω̂), and for each value β̂

(n)
A simulate the expectations.

For each replication n do stochastic simulation with m = 1, . . . ,M replications of the
modellers vector of estimates independently drawn from the sample distribution of the
estimate β̃

(n)
M ∼ InIN(β̂, Ω̂). The subscript A and M denote the values of the agents and

the modeller. The M replications of model solutions are nested within the N replications
of agents expectations. For large N this procedure can be approximated by independent
draws of the two vectors within the same single replication, saving the expensive nested
simulation. We summarize the three alternatives:

(a) Let β̂A = β̂ and draw β̃
(n)
M ∼ InIN(β̂, Ω̂),

(b) Draw β̂
(n)
A = β̃

(n)
M = β̃(n) ∼ InIN(β̂, Ω̂),

(c) Draw independently of each other β̂
(n)
A ∼ InIN(β̂, Ω̂) and β̃

(n)
M ∼ InIN(β̂, Ω̂).

The three alternatives are shown in an algorithm that is very similar to algorithm 4:

Algorithm 5: Stochastic simulation with random residuals and estimates

Choose a “sufficient” extension length k and a terminal expectations vector
ȳ1

T+k+1,

Extend the exogenous path with xT+1, . . . ,xT+k,

For n = 1, . . . , N replications of a single dynamic simulation

Let ỹ(n)
0 = y0 and ȳ(n),1

T+k+1 = ȳ
1
T+k+1,

Either

(a) let β̂A = β̂ and draw β̃
(n)
M ∼ InIN(β̂, Ω̂),

(b) draw one random vector β̂
(n)
A ≡ β̃

(n)
M ∼ InIN(β̂, Ω̂) or

(c) draw two independent random vectors β̂
(n)
A , β̃

(n)
M ∼ InIN(β̂, Ω̂),

Solve the stacked-time model

f(ȳ(n),1
1 ,y0, ȳ

(n),1
2 ,x1, β̃

(n)
A ) = 0

...

f(ȳ(n),1
T+k , ȳ(n),1

T+k−1, ȳ
1
T+k+1,xT+k, β̃

(n)
A ) = 0

to get an initial rational expectation path ȳ(n),1
1+k+1, . . . , ȳ

(n),1
T+k to be used as

terminal expectations ȳ(n),1
t+k+1 in the last line of the stacked-time model in

the For t-loop below,

For t = 1, . . . , T periods within a single dynamic simulation
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Solve the stacked-time model

f(ȳ(n)
t , ỹ(n)

t−1, ȳ
(n)
t+1,xt, β̃

(n)
A ) = 0

...

f(ȳ(n)
t+k, ȳ(n)

t+k−1, ȳ
(n),1
t+k+1,xt+k, β̃

(n)
A ) = 0

to approximate the model consistent or rational expectation path

ȳ(n)
t , . . . , ȳ(n)

t+k given the previous simulation ỹ(n)
t−1 and the terminal

expectation ȳt+k+1 from the initial stacked-time simulation,

keep ȳ(n)
t+1,

draw a random vector ũ(n)
t ∼ In,tIN(0, Σ̂),

simulate the period-specific solution

ỹ(n)
t = g(ỹ(n)

t−1, ȳ
(n)
t+1,xt, ũ

(n)
t , β̃

(n)
M ).

End For t-loop (returns one solution path (ỹ(n)
t )Tt=1 for replication n),

End For n-loop (returns a bundle of N solution paths {(ỹ(n)
t )Tt=1}Nn=1).

Algorithm 5 seems likely to find more dispersed solutions paths than algorithm 4 since the
parameter vector of the agents also varies with the replications. The stochastic simulation
produces T period-specific multivariate samples {ỹ(n)

t }Nn=1, one for each t = 1, . . . , T . In
the literature the main motivation for stochastic simulation appears to have been to assess
bias in the deterministic simulation ỹt (3) relative to a mean stochastic simulation,

b̂t = bias(ỹt) =
1
N

N∑
n=1

ỹ(n)
t − ỹt, (17)

and not so much to approximate the uncertainty in a deterministic solution by, say the
standard deviation of the stochastic simulation,

σ̂t = st.dev(ỹt) =

√√√√ 1
N − 1

N∑
n=1

(
ỹ(n)

t − ȳt

)2
≈

(
ỹ(n)

t

)2
− (ȳt)

2 , (18)

Deterministic bias appears to be small in operative macroeconometric models which are
only mildly nonlinear and dominantly backward-looking, see for instance Fair (1984),
Fisher and Salmon (1986) or Hall and Henry (1988). This need not be so for forward-
looking models. In any case, uncertainty in the form of standard deviations or prediction
intervals should be interesting too, and useful.

6 Concluding remarks

When a model contains just a few expectation variables, is mildly nonlinear and has
neglectible shock persistence, one might be tempted to try a major shortcut to the above
algorithms: Simulate the model deterministically once to get the expectations, then do
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a regular stochastic simulation with “exogenous” expectations. Such a procedure might
be attempted as a first approach when the simulation horizon is short. The obvious
advantage is that programs for stochastic simulation of backward-looking models can be
used. A potentially serious disadvantage is that the simulated samples seem likely to be
both biased and underdispersed.

Deterministic and stochastic simulations of both backward- and forward-looking
models are all conditional on the path of the vector of exogenous variables. In a forward-
looking model this introduces a type of inconsistency. Unless they have perfect foresight
the agents do not use actual values, but rather some expectations of the exogenous vari-
ables when solving for model consistent expectations of the endogenous variables. In ex
ante simulations this inconsistency can be relieved (in an ad hoc way though) by adding
white noise to smooth exogenous projections in the final solving for the endogenous vari-
ables. Solving for agents’ expectations remains based on the smooth projections. For
in-sample simulation the corresponding procedure can be inverted. Now the exogenous
expectations can be approximated by smoothing the observed values. The final solving
for the endogenous variables uses the realized values of the exogenous variables.
Ex ante simulations might involve stochastic simulation of perturbations to fixed smooth
expectations paths for the exogenous variables in addition to stochastic simulation of the
shocks and the parameter estimates. The in-sample simulations on the other hand entail
only the use of two exogenous paths, the actual and the smoothed data. Despite the
procedure being ad hoc, resulting increases in estimated standard errors of the solutions,
or equivalently, widening of prediction intervals, might be significant and informative.
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