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Abstract

The Johansen procedure for testing and estimating cointegration models is analysed
from a practitioner's perspective. We adress the robustness of the cointegration
tests in small samples and with respect to particular types of misspecification of the
model.

A small cointegrated system is parameterized and forms the basis for the Monte
Carlo simulations. Non-parametric estimates of the distribution of the Trace and  )-

Max tests are reported, as well as for some of the estimators for long- and short-run
parameters in the model respectively. Power properties and finite sample perfor-
mance for the cointegration test and estimators are discussed and the results are
interpreted in the light of available asymptotics.

The types of model misspecification considered include the case with wrong dynamic
specification (i.e. wrong order k in the VAR model) and the case when we ignore non-
normality in the DGP residuals (i.e. when the DGP residuals are subject to ARCH
(Auto Regressive Conditional Heteroscedasticity) or are serially correlated). We also
discuss how data properties like temporal aggregation or systematic sampling may
affect the inference on cointegration, and how the Johansen procedure performs
under those conditions. Finally, we consider the case with cointegration between
non-stationary latent variables which are observed with measurement errors.
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1 Introduction

1.1 Background and motivation

2

Empirical analysis of small systems of cointegrated time series has become a pop-

ular approach to modelling simultaneous relationships between 1(1) non-stationary

economic variables. The flourishing literature on cointegration has provided insights

about postulated long run relationships between economic variables and has sti-

mulated to the research on how these should be modelled in a dynamic context. The

pioneering work on cointegration was presented in Granger(1981,1983) and Granger

and Weiss(1983) and came as a natural extension of the univariate analysis of time

series with a unit root in Fuller(1976), Dickey and Fuller(1979), Phillips(1987) and

others. Engle and Granger(1987) proposed a simple two step approach to coin-

tegration based on OLS estimation which immideately caught widespread atten-

tion. Stock(1987) compared OLS and NLS estimators for the parameters in a single

equation error correction model (ECM) and analysed the asymptotic distribution

for long run and short run parameter estimates. The single equation ECM has later

been further analysed in Phillips and Hansen(1990), Stock and Watson(1990) and

Phillips and Loretan(1991).

An alternative approach to cointegration has been proposed in Johansen(1988). He

suggested to use the theory of reduced rank  regression , inspired by the seminal

work by Anderson(1951), cf. also e .g. Velu, Reinsel and Wichern(1986). This ap-

proach has been further developed in Johansen(1989,1992) and in Johansen and

Juselius(1990). Gonzalo(1989) has compared five different approaches to model bi-

variate cointegration, and his Monte Carlo results came up with very favourable

properties for Johansen's approach, which stimulated us to further analysis of this

approach. See also Phillips and Loretan(1991) for additional Monte Carlo evidence

on the relative merits of different approaches to cointegration.

The Johansen method is reasonably simple to implement on a PC, and it is also

fairly general in the sense that it can be used in a multivariate context to estimate

a small cointegrated system as well  as in the usual single equation error correction

model (ECM)  framework . A VAR( k) model with Gaussian errors forms the back-

bone in Johansen 's approach while e .g. Phillips ( 1991) analyses cointegration under
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more general assumptions for the error distribution (i.e. assuming weakly dependent

and heterogeneously distributed errors).

1.2 Non - stationarity and persistence in economic data

There is a controversy in the literature between people who believe in I(1) non-

stationary  time series  representations of economic  time series  in contrast to those

who favor trend stationary models (where the  time series  are 1(0) but non-stationary

and the non-stationarity stems from a deterministic polynomial trend (possibly in-

cluding break points for shift in the trend)). At the centre of this debate is how

literally one should interpret the unit root assumption. While most econometrici-

ans probably agree that economic variables seem to be characterized by substantial

persistence in memory (that shock die out very slowly), and frequently also by some

degree of time heterogeneity like heteroscedasticity, (e.g. with ARCH character-

istics), the claim that the variables contain a unit root seem to be more controver-

sial.

Phillips(1991) argues that prior knowledge about unit roots and cointegration re-

present important information about the data generating mechanism, DGP, and

that the restrictions which follows should be imposed during estimation. Phillips

and Loretan(1989), Johansen(1988) and Johansen and Juselius(1990) follow this

view while e.g. Sims, Stock and Watson(1990) are in favour of using unrestricted

models. Campbell and Perron(1991) take a more pragmatic standpoint in a recent

survey paper and suggest that the strategy in each case should be motivated by the

particular purpose of the analysis.

1.3 Some remarks about the methodology

A small cointegrated system is parameterized and used as basis for the Monte Carlo

simulations in this paper. We have specified a four dimensional stochastic process

and a system approach is preferred in order to determine the rank of the cointegra-

ting space and estimate the parameters in the model. The approach to cointegra-

tion in Johansen(1988) satisfies this requirement and has been used throughout

the paper. A reduced rank (canonical regression) procedure, similar to the one

developed in Anderson(1951), forms the basis for the tests and the asymptotics
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has been worked out for I(1) and cointegrated variables in Johansen(1988)1. Two

test statistics denoted  Trace  and Max respectively were derived in order to deter-

mine the rank of the cointegration space. These methods have later been further

developed by Johansen and Juselius(1990). Their approach have attracted parti-

cular interest among proponents of structural econometric modelling (SEM), since

it allows for quite general classes of (linear) parameter restrictions to be tested wit-

hin this framework'. The relevant test statistics turn out to be surprisingly simple,

with a limiting X2 distribution, cf. e.g. Johansen(1992) for details. Phillips(1991)

proves that this result holds more generally and in particular for the class of LAMN

(Locally Asymptotic Multivariate Normal) models.

The distribution of the two rank tests for cointegration and the estimators for the

long run parameters in the model turn out to be more complicated and have non-

standard asymptotic distributions. It is the performance of these tests and esti-

mators we will focus on in the following chapters.

A prototype DGP is constructed such that it contains a small cointegrated system

with three relationships (part 2). Some properties of the cointegration tests are

discussed in part 3 along with a discussion of the small sample performance. Part

4 presents some results from experiments where the model is misspecified in some

direction. Part 5 concludes the paper.

'Anderson(1991)  give interesting insights in the early development of econometric techniques
in the Cowles  Commision in  the 1940- 1950s and claim that many of the recent contributions in
econometrics have aspects of  "rediscovery "  to them.

'Cf. e.g.  Hendry and Mizon ( 1991 )  and Clements and Mizon ( 1991 )  who have  applied the VAR
cointegration model in this context.
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2 The model

A popular definition of cointegration is the following:

5

Definition  2.1  A vector of time series,  xt, with elements  xi, i = 1, .., p, each of

which are assumed to be I(d)  are said to  be  cointegrated I(d, k) if a  linear combina-

tion zt = /3'xt  is integrated  I(d - k) with 0 < k < d.

2.1 A small cointegrated system

Let the p-dimensional vector xt be generated from a linear VAR(k) model with

Gaussian errors3. All variables are assumed to be I(1), and we apply the compact

notation xt =  (xlt, x2t, ... , xpt)'.  The VAR(k) model is given by

k

(2.1)  xt = X: Rixt-i + /20+  et
i=1

and we assume et - Niid(O, S2). The long-run multipliers in this model may be ex-

pressed by the matrix H(1) =  Ip -  J:k l IIi, where I. is the identity matrix. It is con-

venient to rewrite the model for  xt  using the  interim multiplier  reparameterization4.

k-1

(2.2) Oxt riAxt-i  +  a O' xt-k  +  Et
i=1

The parameters in F3 = -4 + E:ij=1 Ili  j  = 1,...,(k-1)  and  a  may be thought of

as  short run  parameters while  ,Q contain the  long run  parameters in the model. The

prototype model is given by:

0.1  0.4 0 0 Oxl,t-1
0.3 0.1 0 0 Ox2,t-1
0 0 0 0 A x3,t-I
0 0 0 0 J L Ox4,t-1

1-0.4 0.2 0
0.2 -0.2 0 xi,t -2  - x2,t-2

0 0 0.25 x2,t-2  - x3,t-2

0 0  0 j Lx3,t-2 - x4,t-2

where etIIt-1 ^' Niid (0, , 14).

Elt

Ett

E3t

E4t

3This model has been extensively analysed by Johansen(1988) and Johansen and Juselius(1990).
4Cf. e.g. Johansen(1988), Johansen and Juselius(1990) or Hylleberg and Mizon(1989).
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Figure 2.1: A simulated trajectory for the model (2.3)

2.2 A simulated example

The intuition behind cointegration can be expressed as follows. Consider a group

of variables, for which the development over time is determined by (at least) one

unit root, and hence creates a non-stationary typically I(1) type of time trajec-

tory. Cointegration means that the non-stationarity is a common characteristic (or

feature) among the variables, and we expect the variables to stay together and not

drift too far apart from each other over time. A trajectory for cointegrated variables

is illustrated in figure 2.1 and shows a particular realization of the four-dimensional

stochastic process (2.3).

2.3 The dynamic properties

Some further remarks about the DGP are useful. (2.3) is parameterized with p =

4, r = 3 k = 2  and with a particular normalization of the long run system imposed

such that the differences between the series are stationary. In addition, the DGP

contain some short run dynamics but such that only one root has modulus one. The

unit root corresponds to the variable x4t which is specified as a random walk. The
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other roots have moduli less than one and there is also one pair of complex conjugate

roots which contributes to stable cycles in the trajectory. The error correction part

of the model will prevent the four variables from drifting too far apart and we will

typically see a long swing (unit root) behaviour for the cluster of non-stationary

variables, cf. figure 2.1 above.

How do the dynamic properties change when we change one of the columns in a? In

order to describe the dynamics in the DGP it is useful to look at the characteristic

roots of the following determinant5.

det

We have considered multiplicative changes in either the 2. or 3. column in a

using a scalar s E [4, 2, 1,1/5,1/100]. Table 2.1 decompose the roots of the system

determinant.

The roots for the prototype model (2.3) are shown in the middle part of table 2.1.

The two upper sets belong to models where we have increased the absolute values

of either  aj2  or  aj3  and the two bottom sets belong to models where we let either

aj2  or  aj3  approach 0. Figure 2.2 show simulated trajectories for the five cases in

the left part of table 2.1 (different aj2s) while figure 2.3 show the five right hand

cases (for different aj3s).

Since x4t is a simple random walk process and enters into the system only through

the parameter a33, we expect to see at least one unit root in table 2.1. In the limit

when aj-2 --i 0 or aj3 -p 0, we see that there will be two unit roots and the rank

of the cointegration matrix will be reduced from 3 to 2. The model has one or

two pairs of complex conjugate roots which give rise to cyclical movements in the

series. When the absolute values of either aj2 or aj3 are sufficiently increased the

modulus becomes larger than 1 for one of the pairs, and we obtain the explosive

cyclical pattern which is evident in the upper left part of figure 2.2 and 2.3. The

block diagonal structure in a will generate some interesting differences in the two

limiting cases when either  aj2  --* 0 or  aj3 --4 0.  When  aj3 ---+ 0,  the system will be

driven by two stochastic trends, one which drives the three series x1t, X2t  and X3t and

another which drives x4t. When  aj2 -* 0,  the pairs  (xlt , x2t) and (X3t  , x4t) will be

5Cf. Hendry and Mizon(1991) where they suggests a similar procedure based on the companion
form representation of the VAR(2) model.
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Table 2.1 Dynamic characteristics of the DGP (2.3). Multiplicative changes in
the columns  aj2  or  aj3.

Changes in aj2 Changes in aj3

Real
root

Imaginary
root

Modulus Real
root

Imaginary
root

Modulus

4 x  <e, 4  x 0 3

0.75 0.24 0.79 0.35 0.61 0.70

0.75 -0.24 0.79 0.35 -0.61 0.70

0.35 0 .95 1.01 0.85 - 0.85
0.35 -0.95 1.01 0.64 - 0.64

0.50 . 0 .50 0.50 0 .87 1.00
0.50 0.50 0.50 -0.87 1.00
0.00 - 0.00 0.00 - 0.00

1.00 - 1.00 1.00 - 1.00

2 x a 2 x a 3

0.35 0.73 0.81 0.35 0.61 0.70

0.35 -0.73 0.81 0.34 -0.81 0.70

0.76 0 .15 0.77 0 .85 - 0.85
0.76 -0 .15 0.77 0 .64 - 0.64
0.50 - 0.50 0.50 0.50 0.71

0.50 - 0.50 0.50 -0.50 0.71

0.00 - 0 .00 0.00 - 0.00
1.00 - 1.00 1.00 - 1.00

1 x a 2 I x a 3
0.35 0.61 0.70 0 .35 0.61 0.70

0.35 -0.61 0.70 0.35 -0.61 0.70

0.86 0 0 .86 0.85 0 0.85
0.84 0 0.64 0.64 0 0.64

0.50 0 0.50 0.50 0 0.50

0.50 0 0 .50 0.50 0 0.50

0.00 0 0 .00 0.00 0 0.00

1.00 0 1.00 1.00 0 1.00

1/5 x 121 1/5 xa '3

0.38 0.48 0.61 0.35 0.61 0.70

0.38 -0 .48 0.61 0 .35 -0.61 0.70
0.98 0 0 .98 0.85 0 0.85
0.45 0 0 .45 0.64 0 0.64

0.50 0 0 .50 0.01 0 0.01

0.50 0 0 .50 0.99 0 0.99

0.00 0 0.00 0 .00 0 0.00
1.00 0 1.00 1.00 0 1.00

1/100 X a 2 1/100 x 0 3
0.39 0.46 0.61 0.35 0.61 0.70

0.39 -0 . 46 0.61 0 .35 -0.61 0.70

1.00 0 1.00 0 .85 0 0.85

0.42 0 0 .42 0.64 0 0.64

0.50 0 0 .50 0.00 0 0.00
0.50 0 0.50 1.00 0 1.00

0.00 0 0 .00 0.00 0 0.00
1.00 0 1.00 1.00 0 1.00
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driven by separate stochastic trends. In both cases a typical long swing behaviour

is reckognized for each of the two sub-clusters.

2.4 A note on  renormalization

The model (2.3) is deliberately overparameterized (cf. Johansen(1989)), and the

2pr  (= 24) parameters in a  and  /3 are identified only up to some arbitrary linear

transformation. Any non-singular  r  x r matrix  D  can be used to obtain 'new' (but

observationally equivalent) matrices at and Qt such that /3t = /3D,  i.e.

-II (1) = a//' = aDY ' D'/3'

at pt,

In order to facilitate the interpretation of the estimated results, it is often necessary

to renormalize the original parameters Q and å. In applied work we often impose a

normalization of Q by dividing each column-with a column specific element kj, say

More generally we can renormalize  by  defining the matrix  D = (/3'R)-1  for an

appropriate choice of the  p x r  matrix  R.  For instance, to obtain the normalization

rule above we set  R = [t1, ... , t,.]  where tj are  p x 1  vectors with  (p - 1)  0's and a 1

in the  kjth  element.

For given rank r, we suggest the following procedure to renormalize the estimated

parameters . We let ,Q denote the renormalized estimates when we use a particular

transformation matrix D, i.e. = /3D. D has to be designed carefully, and we

use whatever available information we can think of about the long run system and

its natural representation in order to construct it. First we assign prior values

r parameters in each column of a tentative parameter matrix on the basis of

this information. The number of restricted parameters is r2 (=9) which leaves

(p - r)r  (=3) free parameters to be calculated to obtain /3. The r2 elements in the

transformation matrix D can be obtained from the expression

Svec(/3)  = S(I  ®  0 ')vec(D)

We have premultiplied with a r2  x pr  (= 9 x 12) matrix S which picks out the r2

restricted parameters in ,Q. This expression is solved for vec(D).

(2.4) vec(D)  = [S(I 0  /3')]-1Svec(/3)
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Finally, we calculate the free parameters and obtain  fl  =  #D-

In our case it is natural to select the a priori values in Q on the basis of the DGP

given by (2.3). The preassigned values are represented by the 0's and l's in the

matrix below, leaving /921, /332, Q43as free parameters. Note that this transformation

is performed in order to facilitate the interpretation and that the procedure does

not restrict  the estimated  long run matrix  -11(1) in any way.

Tentative  long run parameters  ,Q and renormalized  estimator Q

1

3( 0
0

0
_1

P 32

0

0
i

/
N32

0

0
0

i
/
N43

Appropriate  selection  matrix S

1 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

S= 0 0 0 0 0 1 0 0  0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0
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2.5 The Trace test for the cointegrating rank

Let zo = Oxt, z1 = L1xt_1 and z2 = xt_2. The sample moments between the z's

are denoted Mi; for j = 0, 1, 2. Now, define by Rot, Rkt the residuals from two

sets of auxilliary  regressions , i.e. those of zo and z2 on z1 respectively, and let

Si; = T-1 > 1 RttR;t , for  i, j  = 0, k denote their sample covariances. To determine

the rank of the long run parameter matrix II(1), we solve for the eigenvalues in the

following equation.

(2.5)  I i1Skk - SkoSpp  SOkI = 0

We test the null hypothesis Ho  : r < r  using two different test statistics which are

constructed in the following way.  We first sort the elements in A in descending order.

If there are  r  cointegrating equations ,  we would expect the  r  largest eigenvalues to

be greater than zero and represent the r linearly independent columns in  II(1) which

determines its rank . The last  (p-r)  eigenvalues are expected to be zero . The  Trace-

test for cointegration is based on the sum of these  (p - r)  smallest  ai's which are

zero under Ho, hence we test  Ho : r < r  against  H1 : r +  1  < r < p.

(2.6) Trace = -21n  Q = -T > ln(l - Ai)
i=f+1

The alternative test statistic is called AMax and test  Ho : r < r ,  but now against

the alternative  H1  : r = r +  1. In this case the test is  based on the  largest of the

(p - r)  .pi' s which are zero under Ho.

(2.7)  AMax = -21n  Q = -T ln(1 - aT+1)

2.6 The asymptotic distribution of the Trace test

Johansen(1988) derived the asymptotic distribution of the Trace-test statistic under

the null hypothesis above, and it can be shown that the limiting distribution is a

function of a m dimensional Brownian motion  B (m = p - r).  Apart from m it can

be shown that the limiting distribution of  Trace  is independent of other "nuisance

parameters", cf. theorem 4.1 in Johansen(1989). More precisely, it can be shown

that
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p p

(2.8) Trace -  T L  åi  ---  T E pi = tr{J dBB'[J BB'du]-1
J

BdB'}
i=r+1 i-i+1

where  B  is the m-dimensional Brownian motion, pi for  i =  1,  . . .  , m are eigenvalues

associated with the stochastic matrix above and all integrals are defined on the

unit interval. Critical values have been simulated for the case with no linear trend

in Johansen(1988). Johansen and Juselius(1989) have extended the simulations to

situations when there may be a deterministic trend in the DGP and they shown how

the asymptotic distribution of  Trace  change in this case 6.

2.7 The estimators for a ,  IF, and 0

When the variables are cointegrated, we can write the residuals et in (2.2) as et =

Rot  +  a[/9'Rkt].  In the hypothetical case when (3 is known,  a  can be estimated by

OLS since the model is linear in a. In practice, /3 is of course unknown and has to

be estimated .  If we know a ML estimator  for /3,  say /3,  we can still estimate & by

regressing Rot on  / 'Rkt  and obtain

(2.9)  a(/3)  = -S J (N I'S J )-1

A similar estimator for Pl is obtained from the expression

(2.10) I'1(Q) = M01M111- II(1)Mk1M111

where -II(1)  = &$'.  The estimators are consistent and converge to their true values

at the normal rate T112, cf. Johansen(1989,1992) for details.

Johansen(1988) showed that maximum likelihood estimators for the long run para-

meters, /3, can be found in terms of the estimated eigenvectors associated with the

r  greatest eigenvalues in  k  We set ,Q = (v1 , ... , vf) where  v  is the corresponding

matrix of eigenvectors. It can be shown that these estimators are superconsistent

(in the sense of Stock(1987)) and converge at the rate T, cf. Johansen(1989,1992)

for details.

'Extended  tables which cover higher dimensions  of the VAR  have been simulated by Osterwald-
Lenum ( 1990).
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2.8 A case study :  Estimation results based on simulated
data

In this part we will briefly discuss some experiences from the estimation of (2.2)

based on a simulated sample with T = 400 observations. A correctly specified

model is estimated "recursively" using the abovementioned procedures and we report

the tests for cointegration and parameter estimates. The initial sample size is 25

observations and subsequent observations are added until the entire sample is used,

which yields a time sequence of 376 estimates of test statistics, parameters and so

on.

Recursive plots of the four eigenvalues are shown in figure 2.4. As we would expect,

one of the eigenvalues turn out to be close to zero, while the other three approach

non-zero limiting values. The convergence towards stable values is reasonably fast,

but we note that all eigenvalues seem to be overstated at very small sample sizes (in

particular for less than 40 observations). The scaled  Trace-  and 'Max tests in figure

2.5 (scaled by the appropriate 5% fractiles reported in Osterwald-Lenum(1990)),

indicate that r = 3 (which is correct since the prototype model (2.3) is constructed

such that the true rank  f  = 3.). Interestingly, there is a striking similarity between

the two sequences of rank tests reported in figure 2.5. In order to understand this

similarity, and consequently the advocated use of the cointegration tests Ho  : r <= i

for  i  = 0,1,  . . .  , p - 1,  it is useful to apply some results from Johansen(1991) which

are inspired by the work by Pantula(1989).

Let  C,  (e)  denote the (e) critical region of the test sequence {To  >  co (E),  ... , T,, >

c,7(e)}, which can be constructed for  77 = 0, 1,. ..  , p - 1  where Ti denotes the test

statistic used to test Ho  : r < i  and ci(E) the e-quantile in the corresponding limiting

distribution. It can be shown that lim Prob(r E C,7) = 1 if the true rank  f  is not

contained in the range defined by j, (i.e. q < F), such that the test will reject a false

null hypothesis with certainty (at least asymptotically). Similarly, we will have that

lim Prob(r E C„) =  c  when  q  = F and lim Prob(r E  C,7) < e when ri > F. For

further details about the advocated sequence of tests, cf. Johansen(1991). In simple

terms this procedure may be formulated as follows. Start out with  q = 0, rl = 1, .. .

and so on and continue until the first non-rejection. In figure 2.5 this corresponds

to simply count the number of curves above 1. The first non-rejection occurred for
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Figure 2 .4: Estimated eigenvalues from simulated data .  Recursive plots for observa-
tions 25 to  400. Correct VAR(2)  specification.

77 = 3 in our case so we conclude that r = 3.

The estimated values and & show a more problematic pattern. Figure 2.6 shows

recursive plots of the estimated parameters for the four elements in the third column

(i.e. Oj3 and  c 3 j  = 1,... , 4 respectively). The estimates are unstable and seem

to jump around as we increase the sample size. This picture is however turned

around when we renormalize the parameters by the procedure suggested above, and
t.

4twe obtain new and remarkably stable estimates given  by Oj3  and åj3, cf. figure 2.7.

It is easily verified that the renormalized parameters lie close to their true values in

the DGP (2.3) and the former instability is a pure artifact which (in this case) is

easily removed. More evidence about these properties will be discussed later in this

paper, in connection with the Monte Carlo experiments.
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Figure 2.5 :  Scaled  Trace  tests  (left) and ' Max tests  (right )  for cointegration. Re-
cursive plots for observations 25 to 400 . Correct VAR( 2) specification.
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Figure 2.7: Renormalized estimates # j3 and &j3 , Vj. Recursive plots for observations
25 to 400. Correct VAR(2) specification

3 Monte Carlo results for a correctly specified
model

The small cointegrated system (2.3) is simulated n times and we have analysed the

distribution of the  Trace-  and A-max statistics. The objectives have been to learn

more about the small sample behaviour for these tests, and to see how the different

estimators perform in finite samples. To simplify the presentation, we have focused

on the distribution of three particular estimators (for one element in each of the

three matrices 0, a and F1), namely /321, &11 and ill. The corresponding "true"

values in the DGP (2.3) are 021 = -1, all = -0.4 and tyll = 0.1.

The number of replications n vary between the experiments, between ca. 1500 and

5000 and we have presented the results by simple non-parametric estimates of the

Monte Carlo distributions 7.

For the Trace- and A-max test statistics we have also reported the rejection frequen-

cies, based on the 5 % fractiles in the limiting distribution reported in Osterwald-

Lenum(1990).

7A standard  kernel estimator is used with a Gaussian kernel ,  and the densities are estimated
from the expression  f„(x) = 1/(nh„) Es 1 K((x - x;)/h ,,)  where  K(y) =  1/v/2 aexp(-y2/2). Cf.

Hendry(1989) or Silverman(1986) for details.
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Table 3.1 Size and power for the Trace and AMax tests for cointegration.
Correct VAR(2) specification,  T  = 400,  n  = 5000, (per cent)

18

Trace Å
Pr[RejectHo : r < 3] 5.02 5.02
Pr[RejectHo :  r <  2] 100 100
Pr[RejectHo :  r <  1] 100 100
Pr[RejectHo :  r =  0] 100 100

3.1 Baseline results  for the prototype model

The first Monte Carlo results for the Trace and A-max tests and the estimators

are based on a correct model specification (i.e. a VAR(2) model with Niid residu-

als) and we approximate the large sample properties using T = 400 observations.

The relevant asymptotics for appropriately normalized estimators of the long run

parameters, ,; j , has been derived in Johansen(1989). The limiting distribution is

non-standard and can be expressed as a function of Brownian Motions. The distri-

bution of the short run parameters  å;;  and %  can be shown to be asymptotically

normal. For details on the limiting distributions, see Johansen(1989).

The Trace and AMax tests

The Trace test rejected the hypothesis  Ho : r  < 3Ir = 3 (i.e. that  r  is less than or

equal to the true rank 3) in 5.02 % of the replications for a sample size T = 400, which

indicates a correctly sized tests. The  Trace  test has substantial power according to

these results (at least when evaluated at this particular parameter point and we

note e.g. that the hypothesis  Ho : r  < 2Ir = 3 was rejected in 100 % of the cases.

Rejection frequencies are reported in table 3.1. The estimated distribution of  Trace

is shown in figure 3.1. The 5% critical value is 12.54, cf. Osterwald-Lenum(1990),

and is marked with a vertical line in the figure.

In figure 3.2 the estimated distribution of the 'Max test observator shows similar

results as  for  Trace.  The 5% critical value is 11.44.

'The size evaluated at T = 400 observations corresponds to the number of observations at
which the critical values were origina lly simulated .  In simulations of the asymptotical distribution
of  Trace  for  T =  1000 using n = 10000 replications, we have obtained ca. 1 percent point larger
critical values at the 5 % level.
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Figure 3.1: Estimated density function  for the  Trace test statistic . Correct VAR(2)
specification ,  T  = 400,  n  = 5000
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Figure 3.3: Estimated density functions for 021. Correct VAR( 2) specification,
T = 400,n  = 5000.

The estimators

The Monte Carlo results for the estimators seem to support the asymptotic results

in Johansen(1989,1992). Figure 3.3 shows the estimated distribution of the free long

run coefficient in the first cointegrating equation, 021.

The estimator is median unbiased, symmetrically distributed around its true value

-1 and seem to be highly concentrated around this value. The asymptotical results

in Johansen(1989,1992) (to which we refer the readers for technical details and

proofs) tells us to expect the limiting distributions for the estimators of the long

run and the short run parameters respectively to be very different. The essential

difference can be interpreted in terms of the  super consistency  property which hold

for the estimators of the long run parameters, 0. The Monte Carlo distributions

for the short run parameters å11 and yll are shown in figure 3.4 and 3.5. Both

seem to be median unbiased and symmetrically distributed around the true values

but both distributions seem to be less concentrated than we observed for the long

run estimators. The predicted difference between the two sets of parameters in this

model, in terms of conducting inference, seem to be confirmed by the Monte Carlo

simulations reported here.

The parameter restriction y = 0 has been imposed during the estimation of this
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Figure 3.4: Estimated density functions for &11 and 711. Correct VAR( 2) specifica-
tion,  T  = 400,  n  = 5000.

model. We have also estimated models including a constant term, in which case the

Monte Carlo distribution for 021 came out with heavier tails, indicating a loss of

efficiency.

3.2 Power properties in the case of "near cointegration"

The parameters in (2.3), for simplicity abbreviated 80, belong to a finite dimensional

parameter space 0 (8o E 0). We will now demonstrate how the distributions of the

cointegration  tests will be affected when we change 00 in certain directions9.

The particular changes we consider here have already been introduced in part 2.

We compare five DGPs where the values in o 1j2 differ and gradually approach zero.

Some of the consequences from this were briefly discussed above and we saw that in

the limit (when aj2 = 0), the cointegrating rank was reduced from three to two. For

very small values in a particular column in a, the feed-back from the corresponding

cointegrating relationship to the rest of the system will be weak, and we denote

this as  "near cointegration".  In (2.3) there are originally three cointegrating vectors,

'Ideally, we would of course prefer to analyse a more complete power surface for the cointegration
tests but this would have blown up the computational costs considerably. We have therefore only
considered a few points in the parameter space. All calculations are based on GAUSS-386 version
2.1.
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but when aj2 -  0, only two will be left and the difference 1 2t - x3t will become

I(1) non-stationary in the limit. This property is evident from the bottom right

trajectory in figure 2.2 where  x2t  and X3t seem to be driven by separate stochastic

trends.

The Trace test

The power of the cointegration test can be defined by the probability  Pr[Reject Ho :

r < 21r = 3]). When aj2 - +  0, this probability will approach the nominal size of a

different test, namely  Pr[Reject Ho : r < 21r  = 2]) since the limiting true rank will

be reduced by 1.

It follows that the numerical value  a j 2i  or conversely the particular parameter point

eo E O in which we simulate the model, may have considerable effects on the power

of the Trace test. Hence, the ability to determiner (and conduct correct inference

about the long run parameters in the model) will depend on the true paramet-

ers in the DGP. Johansen(1989) has shown that in the case with "near cointegra-

tion", (e.g. with asymptotically vanishing values of say %2), the limiting distribu-

tions of the  trace  and  A-Max  tests for cointegration have to be modified such that

terms involving Brownian motions (cf. (2.8) are replaced by similar terms from an

Ornstein-Uhlenbeck type stochastic process. Some simulation results are reported

in Johansen(1989) for the  Trace  test in the case when  r  is reduced with 1 asym-

ptotically.

A different approach is used here. Instead of simulating the limiting distribu-

tion for  Trace  under the Ornstein-Uhlenbeck assumptions, we have investigated the

power properties on the basis of simulations of the small cointegrated system (2.3).

Five experiments are compared where we gradually reduce the weights in aj3 to-

wards zero. The results turn out to yield strong support to the power results in

Johansen(1989), cf. figure 3.6. and table 3.2. It becomes increasingly difficult to

detect cointegrating vectors when they have a sufficiently small weight in the error

correction representation. Similar results hold for both the  Trace  and the  A-Max

test for cointegration.
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Figure 3.5: Estimated density function for the Trace test statistic for ail x c E
[4,2,1,1/5, 1/100)  j = 1, ... , 4.  Correct  VAR(2)  specification ,  T =  250,  n  = 2000

Table 3.2 Size and power of the Trace test for cointegration.

Different parameterizations aj2 x c E [4, 2, 1, 1/v', 1/250]

c = 4
c = 2
c = 1
c =  1/v' 250
c =  1/250

j  = 1, ... , 4  T =  250, n
Size

Pr[Reject Ho : r < 3]

2000, (per cent).
Power

Pr[Reject H0 : r < 2]
Power

Pr[Reject Ho : r < 1]

5.90 100.00 100.00
6.00 100.00 100.00
5.90 99.15 100.00
1.60 7.05 100.00
1.05 5.05 100.00
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Figure 3.6: Estimated density functions  for P21 for

a,2  X c E  [4,2,1,1/V2-50,1/2501,  j =  1,...  , 4.  Correct VAR(2)  specification,
T = 400,n  = 2000.

The Estimators

We saw above that a reduction in aj2 caused gradual shifts to the left in the distri-

bution of  Trace.  In contrast, there seems to be almost no effect on the distribution of

the estimator P21 from changing a;2 in this way, cf. figure 3.6. Hence, the inference

about long run parameters in the model appears to be robust with respect to the

size of a12, provided that we conduct correct inference about r and use the relevant

information to renormalize the system.

On the other hand, we see from figure 3.7 that the effects on the distribution of

all and yll are significant. When we decrease a12 the shape of the distributions

of the short run estimators change, and the variance seem to increase substantially

(although the estimators seem to remain median unbiased).
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3.3 Finite sample performance

In applied work, the available data consist of a finite (and often relatively small)

number of observations. In many cases we will try to determine the cointegrating

rank on the basis of e.g. 50 or 100 observations using annual or quarterly time series.

It would therefore be of great advantage to know the small sample properties of the

different tests and estimators. We have conducted a number of experiments where

we gradually increase the sample size by 50 or 100 observations and compare results

for  T E  [50,100,150, 200, 250] and  T E  [100, 200, 300, 400, 500]. Figures from the

latter set of experiments are shown below.

The Trace and AMax tests

Figure 3.8 shows the Monte Carlo distributions for  Trace  and  A-Max  for the se-

quence of hypotheses described in part 2.8. It is evident that the distributions of

Trace  and  A-Max  go off to infinity with  T  in the cases when the true rank (F = 3)

is not contained in the range  77 of r-values satisfying the null hypothesis. We see

that the distributions shifts to the right when we increase the sample size. This

reflects the consistency property of the test sequence in Johansen(1991), i.e. that

lim Prob(r E CO) = 1 for  77 < F. Similarly, note that for  71 = F  = 3, the distribution
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corroborate reasonably well the conjecture that the nominal size of the test (e = 5%)

is correct ,  although the results in column I of table 3.3 show some variation .  This is

shown in the bottom of figure 3.8 where we see that the location of the distributions

is independent of the sample size.

The results indicate furthermore that we loose power when we reduce the sample

size and we note that all three cointegrating relationships are detected only for a

sufficiently large sample ,  cf. the reported rejection frequencies in table 3 .3. In small

samples, T = 50, we find the correct rank in only 15 % of the simulations. The

power improves when we increase the sample  size  but we need almost 200 observa-

tions before the power exceeds 90 %. Asymptotically the power is 100% as we have

demonstrated above.

In part 3.2 we saw how the power of the cointegration test depend on the true

parameters in the DGP (in particular on the'values in a) and that it becomes incre-

asingly difficult to detect cointegration in a direction where the feedback back onto

the system is weak .  It is interesting to note that even when the feedback is weak,

as long as it remains different from zero the asymptotic result above will apply and

the cointegration test has 100%  power .  When ajk -+ 0 for some  k,  the cointegra-

tion test has only trivial power since the test degenerates .  Since the location of

the distribution of  Trace  depend on  T,  the combined effect is that the power of the

cointegration test may be very low in finite samples. Given the formulation of the

hypothesis ,  we will tend to underestimate r.

How important are these problems in practice? If the model is built primarily for

forecasting ,  it may not matter too much if one erroneously excludes a cointegrating

vector, which only has a weak link back to the rest of the system. If, on the other

hand the purpose is to detect and learn about 'deep structural parameters to which

there may be attached a particular theoretical interpretation, low power of the coin-

tegration test may complicate the interpretation of the results considerably (it may

e.g. be difficult to impose the relevant prior restrictions on Q if r  is underestimated).
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Figure 3.8: Estimated density functions  for  Trace  and  A-Max .  Correct VAR(2)
specification ,  T E  [100,  200, 300 ,  400, 500],  n =  1850
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Table 3.3 Size and power for the  Trace test  for cointegration.
Results in small samples . Correctly specified VAR(2)
model with true rank f = 3, n = 2000

28

T
Size

Pr[Reject Ho :  r<  3]
Power

Pr[Reject Ho :  r<2]
Power

Pr[Reject Ho : r < 1]
50 4.40 14.85 65.95
100 5.80 47.65 99.40
150 5.85 77.00 100.00
200 6.20 95.15 100.00
250 5.90 99.55 100.00

100 6.61 44.43 99.41
200 6.83 92.96 100.00
300 5.76 99.95 100.00
400 5.97 100.00 100.00
500 5.65 100.00 100.00

The estimators

Figure 3.9 shows the distribution of /321 for different  sample sizes . The estimator

seem to be median unbiased and also symmetrically distributed around its true value

-1. The variance decreases when we increase the sample size. When we use more

than 300 observations, the shape of the distribution seem to become invariant with

respect to further increases.

The distributions of å1l and ill are shown in figure 3.10. Both seem to have a nega-

tive bias in small samples, but as we increase the sample size, they converge towards

their true values. The distribution also becomes more smooth, symmetric and conc-

entrated with a smaller variance. This is in line with the theoretical asymptotics

which in this case predict normality.
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Figure 3.9: Estimated density functions for  0 21. Correct VAR( 2) speci fication,
T E [100, 200, 300,  400, 5001,  n = 1850
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Figure 3.10: Estimated density functions for &11 and tyll. Correct VAR(2) specifi-
cation, T E [100, 200, 300, 400, 500], n = 1850.
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4 Monte Carlo results for some misspecified mod-
els

4.1 Misspecified dynamics,  the VAR (k) has wrong order

In applied work the order k of the VAR will generally be unknown to the researcher.

A number of model selection criteria (to determine k) have been discussed in the

literature, usually based on tests for serial correlation or (multivariate) normality.

Recent results in Jacobsson(1991) suggests that a multivariate portmanteau stat-

istic like the multivariate Box-Pierce test, will work well in a number of situations.

Intuitively we would expect it to be more harmful to chose k too small rather than

too large. Too many lags would violate the principle of parsimony in the model spe-

cification and give rise to superfluous parameters and loss of efficiency in estimation.

Too few lags however, will in most cases lead to an insufficient representation of the

model dynamics and may also cause problems for the inference on cointegration and

estimation of the long run parameters in the model.

We can illustrate this by simulation results for different model specifications where

we let the order  k  vary. Five cases are considered with  k E  [1, 2, 3]. For k E [2, 3]

the model has been estimated twice, with the level part of (2.2) placed on the kth

lag as well as on the 1st lag. The interpretation of the long run matrix -II(1) = a#'

remain unchanged but the the short run parameters in  IF,  must be redefined, i.e.

such that F'l'  = ]p(k) - a,0'.  Hence, the "true value" -y = 0.1 change to Iii) = 0.5

when the level part is put on lag 1.

The Trace test

Figure 4.1 shows only minor differences between the estimated distributions of the

Trace statistic in the five experiments. The dotted curve represents the VAR(1)

case when the order k is underspecified. The other curves represents the pairs of

VAR(2)s and VAR(3)s respectively. Some power is lost in the VAR(1) case and the

most favourable results are obtained for a correct choice k = 2. As we might expect,

it has absolutely no effect on the distribution of  Trace  whether we put the level part

on the 1. or the k. lag. Interestingly, the cointegration test seem to be able to

determine the correct rank  r  reasonably well even when  k  is specified too small.
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Table 4.1 Size and power for the Trace test for cointegration.
Incorrect order k in  the VAR,  true value is k = 2.
Long run parameters

k=2, LR=2
k=2, LR=1
k=1, LR=1
k=3, LR=3
k=3, LR=1

Size
Pr[Re j ect Ho

5.50
5.50
3.65
5.00
5.00

0.040

0.045

0.050

in (2.2) on 1. or k. lag. n  = 2000
Power

r < 3] Pr[Reject Ho
100

100
97.95
99.90
99.90

Trace-test for cointagratlon.

5% crit. tiE
value j
12.54

0.035

0.030
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0.020
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,a

Figure 4 .1: Estimated density function for the Trace test statistic .  Incorrectly
specified  VAR(k)  models ,  true value is k = 2.  Long run parameters in (2.2) on 1.
or k. lag. n = 2000.
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Figure 4.2: Estimated density functions for #2, * Incorrectly specified  VAR(k)  models
when the true value is  k = 2.  Level part of  (2.2) on 1. or  k.  lag .  n  = 2000.

The estimators

For a correct or overspecified dynamic representation of the VAR, i.e. when k > 2,

we find that the distribution of 021 is median unbiased and symmetric, while the

results for k = 1 indicate a serious bias problem when we attempt to renormalize

the estimated results in the usual way. In this case we are not able to recover the

"true" value, hence the estimator / 21 seems to be inconsistent when the dynamic

specification is too restricted. There seem to be no visible loss of efficiency from

overspecification of the VAR, in the sence that more of the probability mass ends

up in the tails of the distribution of 1321.

We find similar results for the estimators for the short run parameters. When

k  is too small,  k =  1, the distribution of ål1 is seriously dislocated, indicating

inconsistency, while for  k  > 2 we obtain consistent estimates of all. For  k  = 3 there

is a loss of efficiency compared to the results when k = 2. The results for ^%11 (for

k E  [2,3])  yield similar results. Note again that when the level part of the model is

placed on the Ist lag rather than the kth, the "true value" changes from 0.1 to 0.5.

This explains the shift in the distribution in figure 4.3. The estimators are clearly

consistent and we see again somewhat larger variance in the case when k = 310

10For technical reasons the models are estimated with a constant term and three seasonal
dummies included. In the case when k = 1 it is the distribution of the estimated constant term
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Figure 4 .3: Estimated density functions for &I, and tyll. Incorrectly specified
VAR(k)  models when the true value is  k = 2.  Level part of (2.2 )  on 1. or  k.
lag. n = 2000.



Inference on cointegration 34

4.2 Data are filtered through systematic  sampling or tem-
poral  aggregation

The DGP is given by (2.3) above, and give rise to stochastic sequences  {xt}T 1.

In this case we assume that we can only observe data from this process after the

sequence have been filtered. Two cases are considered in the following: 1) We

can observe every kth observation of the process and obtain a sequence of N ob-

servations given  by {xr}N 1 = [xlk, ... , xNk]• 2) We can only observe sums (or

averages) across k-period subintervals, i.e.  {xr}N 1 = [E,': xlk-j, ... , F-j=o xNk-j]

or {xr}N 1 = lxl, ..., xN]  where 2r =  k-1 Ej-O xrk-j•

In the first case we say that the data are observed subject to  systematic sampling

and in the latter case they are  temporally aggregated.  Data which are systematically

sampled are e.g. different types of  stock  data,  state variables like interest rates,

prices, asset holdings etc. Data which are temporally aggregated are typically flow

data  like e.g. production, consumption, export, import, which are accumulated per

unit of time during a fixed time interval.

Similar situations have been analysed in the context of univariate time-series mod-

els, cf. e.g. Brewer(1973), Wei(1978) and Weiss(1984). They have shown that it

is necessary, in order to analyse the properties of the observed process  {xr}N  1,  to

transform the DGP by an appropriate filter.

We consider first the case with  systematic sampling  of the data. Granger's re-

presentation theorem for cointegrated variables is useful to obtain the following

expression for {x }Tt t=1

(4.1)  Oxt = C(L)et

for  t =  1,.. . ,  T, cf. e .g. Johansen (1989)  for details .  C(L)  is a matrix lagpolynomial

and C ( 1) has reduced rank.  A problem with  (4.1) is that the LHS variable i xt is

unobservable .  If we premultiply with the sum operator  Sk(L) = (1 - L')/(l - L)

and rearrange the expression ,  we can write
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(4.2) Okxt = C(L)Sk(L)Et

= C(1) Sk(L)Et
et + et_1 + ...i-et-k} 1

+Cl(L)Aket

35

If we multiply in (2.2 ) (the interim multiplier representation )  by Sk( L)  and rear-

range, we obtain the expression

(4.3) Okxt = r(L)okxt-l  + ap'Sk(L)xt-k + Sk(L)Et

Note that while the LHS variable in (2.2) is unobservable in this case, (4.3) has a

LHS variable for which each kth value is available. We see from (4.2) that Okxt can

be expressed as a distributed lag in sums and differences of the residuals. The lagged

values of ikxt on the right hand side of (4.3) will therefore be explained by previous

values of the residuals and will in general be correlated with the composite residual

Sk(L)Et.  We will also have  missing observations  since only each kth observation of

xt (and  Okxt)  can be observed.

To illustrate the consequences for the estimation ,  consider the hypothetical case

when j9 is  known .  The least squares estimators  for r(L)  in (4.3) will then be in-

consistent since limt_,ooEAkxt_1(S(L)Et)'  z/  0.  Similar  problems apply for the

estimator for a since  limt +  ). 'Sk(L)xt_k(S(L)Et)'  #  0, and we expect asymptotic

biases to show up  in the  Monte Carlo distributions.

Next, if the data are  temporally aggregated,  and we only observe sums across k-

period subintervals, the Granger representation and summation filter can be applied

to obtain the following expression:

(4.4) A kSk(L)xt  = Sk(L)C( L)Sk(L)Et

= C(1)C(L) • Sk(L)Et  +C1(L) ,k ket
et+ et-1  + ...-Ftt-k-F 1

If we manipulate the interim multiplier representation in (2.2 )  we obtain

(4.5)  OSk(L)xt = r(L)Sk(L)xt_l + aQ'1k(L)xt-1 +  1k(
L Et
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In (4.5), we observe that the summation filter is insufficient to obtain an observable

expression on the left hand side of the equation. By applying the filter twice however,

(4.5) is transformed into an expression where each kth value of the LHS variable is

observable.

(4.6) AkSk(li)xt = Ir(L)aksk(L)xt_i + a/.i'Sk(L)[Sk(L)xt-1]  + [Sk(L)]2et

Again there  will be missing  observations on the right hand side of the equation,

arising in  the distributed lagpolynomials in kth differences of sums  OkSk(L)xt-i•

Taking probability limits, limte  E/ kS(L)xt_i([S(L)]2et)'  # 0 and OLS will yield

inconsistent estimates  of the short  run parameters  r(L) (and a).

It is less clear  what the properties of ,0 will be. Some evidence is provided below

using  Monte Carlo  simulations.

Two sets of experiments are reported, one for systematic sampling (where we sample

each kth observation of the DGP), and one for temporal aggregation (where we

observe sums across k-period subintervals). In both cases we compare the results

for  k =  1, 2, 314, 5 and we use a fixed sample size  N =  100 in. order to account for

the previously documented effects from changes in the sample size.

The Trace test

Given the sample size N = 100 it is not unexpected to find relatively low power

in the case without any aggregation. The results for this case are in line with the

previously reported finite sample results, cf. table 3.3.. It is perhaps more surprising

that the power of the  Trace  test is so dramatically improved (for given sample size

N =  100) when the width of the aggregation window  k  is increased. This result

holds for both temporal filters used in the experiments. A number of interesting

implications arises from this result. In particular we see that to guarantee proper

inference on cointegration (in terms of the power of the test), we should not only be

concerned with the number of observations but also that the observations cover a

sufficiently wide range of time (and variability in the series). Or put it in a different

way, we would prefer to have 100 annual. observations rather than e.g. 100 weekly

(or other highfrequent) observations, at least for the purpose of conducting inference

about the cointegrating rank.

!
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Table 4.2 The size and power for  the Trace  test for cointegration.
Correctly  specified  VAR(2)  model. Data are systematically
sampled or temporally aggregated  with k E [1,2,3,4,5],
N =  100,  n =  2000

T
Size

Pr[Reject Ho : r < 3]
Power

Pr[Reject Ho : r < 2]
Power

Pr[Reject Ho : r < 1]

Systematic
sampling

k=1 6.00 47.30 99.45
k=2 6.35 92.35 100
k=3 5.85 99.15 100
k=4 6.45 99.70 100
k=5 5.75 99.95 100

Temporal
aggregation

k=1 5.70 46.30 99.40
k=2 6.15 92.35 100
k=3 5.75 98.85 100

k=4 6.65 99.85 100
k=5 5.80 100 100
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Figure 4.4: Estimated density function for the Trace test statistic. Correctly spe-
cified VAR(2) model. Systematic sampling (left), temporal aggregation (right).
k E  [1, 2, 3, 4, 5],  N =  100, n = 2000
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Figure 4.5: Estimated density functions for i 21. Correctly specified VAR(2) model.
Systematic sampling (left), temporal aggregation (right). k E [1,2,3,4, 5], N = 100,
n = 2000

The estimators

The long run parameter estimator $21 seem to be consistent throughout the experi-

ments. The distributions are median unbiased and symmetrical around the correct

parameter value, cf. figure 4.5. We also note that the efficiency, illustrated by the

shape of the distributions, seem to be improved (although at a decreasing rate) as we

increase the window width. We saw above how the two types of aggregation could

contribute to improve the power of the  Trace  test and also improve the efficiency of

the long run parameter estimators. The situation is very different for the short run

parameter estimators, cf. figure 4.6. As shown above, the orthogonality between

the regressors and (composite) residuals will be violated when  k > 1.  When  k = 1

the estimators  &'11  and 71, are median unbiased, but the distributions shifts to the

left when we increase k. We also note that the variance increases substantially so

that the short run estimators become not only asymptotically biased but also less

efficient under temporal aggregation.
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Figure 4.6: Estimated density functions for  cx11 and 7'11. Correct VAR(2) specifi-
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N = 100, n = 2000

4.3 DGP  residuals are heterogeneous  with weak to med-
ium strong ARCH

In this case the model (2.2) is misspecified in a different sense. The residuals et

are assumed to be Niid in the model specification while their DGP happen to be a

heterogeneous process with ARCH. The previous DGP-assumption E [etetjZt_i] = E

is replaced by

(4.7) E [etet = Ht

= E + (I® ® et-1)/(IP ® CIP)(Et-i  ® IP)

The first order ARCH residuals are basically driven by the scalars c which determines

the contribution from lagged own squares of residuals on the the diagonal elements

in  Ht.  If we replace  cI,  in (4.7) by a matrix  Cl,  a more general (but still diagonal)

ARCH process can be obtained which has effects from lagged cross squares and

cross products of residuals as well. Here we report results from experiments with

c E [0,0.1,0.2, 0.3, 0.5], which covers the range from no ARCH to medium strong

ARCH in the residuals.
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Table 4.3 The size and power for the Trace test for cointegration.
Incorrectly specified VAR(2) model, true model has moderate
to medium strong ARCH in the residuals. c E [0,  0. 1,  0.2, 0.3, 0.5],
T =  400,  n =  1350

Size
Pr[Reject Ho : r < 3]

Power
Pr Reject Ho : r < 2]

Power
Pr[Reject Ho :  r<1

c= O 5.14 100 100

c=0.1 4.87 100 100
c=0.2 5.14 99.91 100
c=0.3 5.40 99.91 100
c=0.5 5.58 99.91 100

0.06

0.05

0.0D

0.04

0.03

0.02

7rece-teat for ootntegrattoa.
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Figure 4 .7: Estimated density function for the Trace test statistic .  Incorrectly
specified  VAR(2)  model ,  true model has moderate to medium strong  ARCH. T =
400, n = 1350

The Trace test

The distributin of  Trace  is only slightly shifted to the left when we introduce ARCH

into the residuals. The power of the test is good throughout the experiments, cf.

figure 4.7 and table 4.3.

The estimators

The distribution  of /321 is shown in figure 4.8. The shape  is relatively unchanged

when we gradually  increase  the ARCH  parameter c in (4 .7). A loss of efficiency from

applying QMLE should  be expected when c is increased and we see  that slightly
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Figure 4.8: Estimated density functions for 021. Incorrectly specified VAR(2) model,
true model has moderate to medium strong ARCH.  T =  400,  n =  1350

more of the probability mass ends up in the tails of the distribution in this case.

Since {Et,Zt} is a martingale difference sequence also when ft have ARCH such that

E [cIZt-1] = 0, the OLS estimators for the short run parameters will still be consist-

ent. We note however that the estimated distributions in figure 4.9, which are all

estimated from a sample size T = 400, look very different. The solid line denote the

distribution without ARCH and the asymmetry and bias in the other distributions

seem to be monotonously increasing in c. Without attempting to dig very deep

into small sample distribution theory for OLS estimators under different degree of

ARCH, we ascribe this difference to the  effective sample size.  While  T =  400 is

sufficiently large to yield a good approximation to the asymptotics in the absence

of ARCH it is clearly insufficient when the residuals are very heterogenously distri-

buted. Hence, a larger sample seem to be necessary to obtain median unbiasedness

in these cases.
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4.4 DGP residuals  are serially  correlated

In this case the DGP-residuals in (2.3) are serially correlated and generated by the

following lorder process:

(4.8) Et = CEt-1 + wt

wt is Niid and the scalar c determines the strength in the autocorrelation. A more

general autocorrelated process could have been obtained by replacing c with  a p x p

matrix R1. Here we report results for c E [0, 0. 1, 0.3, 0.6, 0.75, 0.90, 0.98, 0.99, 1.01

when the model specification is correct except that we pay no attention to the

residual structure and proceed using the Q (uasi )ML approach.

The Trace test

The case with no serial correlation c = 0 is used as benchmark (the solid line in

all figures). Figure 4.10 shows that the Trace test is robust with respects to weak

to medium strong serial correlation in the DGP residuals. We are able to detect

the correct cointegrating rank from the misspecified model (2.2). As shown in table

4.4 the power of the test deteriorates rapidly when c exceed 0.9. The abrupt fall

in power when c --> 1 indicate a dramatic change in the model properties when et

0
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Table 4.4 The size and power for the Trace test for cointegration.

43

Misspecified  VAR(2)  model, true model has serially correlated residuals
c E [0,  0. 1,  0.3,  0.6,  1.0],  T  = 400,  n =  1500

T
Size

Pr[Reject Ho r < 3]
Power

Pr[Re j ect Ho r < 2]
Power

Pr[Reject Ho r < 1]

c=0 6.25 100 100

c=0.1 6.25 100 100

c=0.3 6.05 100 100

c=0.6 5.80 100 100

c=0.75 5.80 100 100

c=0.90 5.41 99.21 100

c=0.98 3.69 29.66 80.75
c=0.99 3.36 15.36 61.70
c=1.0 2.37 9.82 52.34

become "near" I(1). Table 4.4 shows that the cointegration test also has wrong size

in this case.

The estimators

The distribution of the long run parameter /321 seem on the other hand to be robust

with respect to changes in c. There is no significant dislocation, even in the limiting

case when c = 1, and the distribution seem to be median unbiased. We note that

slightly more probabilty mass fill the tails of the distribution for large c-values,

indicating a loss of efficiency.

Given that all variables are "endogenous" in a VAR(k) model, we expect well known

textbook problems to arise when we use OLS in models with serially correlated

residuals and lagged endogenous regressors. The Monte Carlo results confirm this

intuition. All short run parameters in experiments with non-zero c-values are clearly

inconsistent, cf. figure 4.12. When we increase c, the dislocation of the distributions

becomes more significant. Since the experiments are based on fairly large samples

(T = 400) we should have good approximations to the asymptotic bias for the

estimators.
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Figure 4.10: Estimated density function for the Trace test statistic. Misspecified
VAR(2) model. True model has serially correlated residuals. c E [0, 0.1,  0.3,0.6, 1.0],
T = 400, N = 1500
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4.5 Data are observed with measurement errors

We assume that xt is generated by the small cointegrated system (2.3) but now

we regard xt as a latent vector process which is unobservable for the researcher.

The data are instead given by a sequence  {yt}T 1  which consist of two unobservable

components, xt (the signal process) and stochastic measurement errors yt (noise).

We have that

(4.9) Yt = xt + r)t

The measurement errors 1)tare generated from

(4.10)  rit = c77t-1 + wt

The stochastic variables wt and et (in (2.3)) are independent and Gaussian.

The two questions we have tried to answer with the Monte Carlo simulations are

the following. 1) If the observed data consist of two unobservable components,

one of which is a measurement error process like (4.10), how much persistence in

memory (i.e. 1. order auto correlation) can we allow for in the measurement error

process 77tand still be able to detect the correct number of cointegrating relationships
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among the latent xt's? And 2) to what extent do the measurement errors affect the

distributions of the estimated parameters?

A similar problem was studied by Fiscber(1990) in the context of iid stationary

measurement errors, using the DF- or CRDW-tests for cointegration. In our case,

we have applied the  Trace  test for cointegration since the problem with a latent,

cointegrated process observed with measurement errors can easily be analysed within

the multivariate cointegration framework presented above (cf. e.g. Eitrheim(1991)

for further details and Nowak(1991) for theoretical results).

The persistence in the measurement errors is determined by the parameter c in

(4.12). When we increase c from 0 to 1, the measurement error process will gradually

change from being iid white noise (with no memory) to a I(1) non-stationary process

with infinite memory. A sample size of 400 has been used throughout the Monte

Carlo analysis, which allows for "large sample" comparisons.

The Trace-test

Results for five different values of c E [0, 0.5, 0.75, 0.90, 1.001  are compared in figure

4.13 (left). The distribution of  Trace  shifts to the left and jeopardize the power of the

test when we increase c. This is also evident from the rejection frequencies in table

4.5. Interestingly, a substantial degree of persistence (high c-values) is necessary

before the power of the cointegration test deteriorates. To obtain a more detailed

picture of what happens at large c-values we have repeated the experiment with a

finer grid for c E  [0.75,0.95,0.98,0.99, 1.00]  (right).

We see that the third (and marginal) cointegrating vector becomes "hidden" in the

data when c > 0.98. Nor are we able to detect the second relationship and there is

evidence that even Ho : r = 0 may not be rejected in the case when c = 1 (although

this is less likely). On the other hand, the large shift in the distribution when

c increases from 0.98 to 0.99 indicates that correct inference on the cointegrating

rank r can be drawn even when there is a substantial degree of persistence in the

measurement error process.

The estimators

The estimated distributions of 321 are shown in figure 4.14. The distribution of
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Figure 4.13: Estimated density functions for the Trace test statistic. c E
[0.75, 0.95, 0.98, 0.99,1.00] (left) and c E [0.75, 0.95, 0.98, 0.99,1.00] (right) T =
400, n = 1650

Table 4.5 Empirical rejection frequencies for the Trace test for different values
of the persistence parameter c in (4.12), T = 400 , n= 1650

c = 0 0.50 0.75 0.90 0.95 0.98 0.99 1.00
Pr[Reject Ho : r < 3] 7.40 7.46 7.89 7.75 8.51 7.22 0.72 0.00
Pr[Reject Ho : r < 2] 100 100 100 100 100 92.12 5.12 0.85
Pr[Reject Ho : r < 1] 100 100 100 100 100 100 39.00 15.36
Pr[Reject Ho : r  = 01 100 100 100 100 100 100 91.40 76.17
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Figure 4.14: Estimated density functions for 921. c E [0, 0.5, 0.75,  0.90, 1.00]  (left)
and c E [0.75,0.95,0.98,  0.99, 1.00]  (right)  T =  400,  n  = 1650

921 is median unbiased and symmetrical for and we note in particular that there

seem to be no dislocation of the distribution even when there is a substantial degree

of persistence in the measurement error process. In the limiting case c = 1, we

have seen that the cointegration becomes hidden, and in this case we can also see a

significant change in the shape of the distribution of 921.

The estimated density functions for the short run parameters are shown in figure

4.15. Both estimators are clearly inconsistent, and the degree of dislocation depend

on the autoregressive parameter c. When we increase c, both distributions shift to

the right. Again we can interpret this in light of standard textbook results. Con-

sider the case with measurement errors in the explanatory variables in a standard

regression model. As is well known, OLS will be inconsistent since the RHS vari-

ables (which includes the measurement errors) will be correlated with the composite

residuals. The estimation bias will depend on nuisance parameters in the model like

the signal to noise ratio. In our model, the ratio  var(xt)/var(?lt)  will depend on c

and we would expect the estimation bias to occur for all parameters which converge

at the ordinary rate T-1/2 when these are estimated by OLS.



Inference  on  cointegration

36

32

EE

24

c=0

20

1e

12

c=1.0:

True va ue =-0.40

c=0.75
c=0.50

6 1 { •

4

° -0.6 -0.5

k

c=0.90

49

.roh.a.1)

45

40

35

30

True value = -0.40

1 20 c=0.75
) ..

I.

-0.1

10

/ 5

-0.4 -0.3 -0.2

0.mm.(1.1) cs 0 m.(1.1)

1210 c= 75 c=1.0
e c=0 c=0 .50 c=0.90

' 1
True ( 1
value

e

7

6

5

4

3

2

f

'

15

10

True value
= 0.10

! 1 c=0.75

-0.26 -0 .24 -0.20  - 0.16 -0 . 12 -0.05  - 0.04 -0.00

' !
4!

!

l 1 2

0
-0.4 -0.3  - 0.2 -0.1 -0 .0 0.1 0 .2 0.3 0 .4 0

0.00 0.05

c=0.98

' • 1

c=0.90 : - I

'n ; • ),

t
-
I

C=O  99
c=0.98

C=0.90 . ./. •.;
I 'r_ '•.

I ..

/:

1

0.10 0.15 0.20 0.25 0.30 0.35 0.40

Figure 4.15: Estimated density functions for å11 and y11. c E [0,0.5,0.75,  0.90, 1.00]
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5 Concluding remarks

The  Trace  test for cointegration has many interesting properties which are important

to understand in order to interpret and evaluate empirical results. We have il-

lustrated the test in different situations in order to learn more about its properties.

As previous theoretical studies has shown, the test lacks power against "near coin-

tegrated" alternatives and we demonstrate how the distribution of  Trace  depend

on some key parameters in the DGP and also how the location of the test statistic

depend on the sample size. The Monte Carlo results corroborate the theoretical

analysis in Johansen(1991) with respect to the advocated testing sequence, starting

out with  Ho : r = 0, Ho : r <  1 and so on and stopping at the first non-rejection.

Interestingly, both the "near cointegration" case and the small sample evidence indi-
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cate that r may be underestimated in finite samples.

On the other hand, provided that we conduct correct inference about r, it turns out

that the Monte Carlo distribution of the estimators of parameters in the long run

cointegrating vectors ,E are surprisingly robust with respect to changes in sample

size , changes in the key parameters in the DGP and the different types of model

misspecification considered. The suggested normalization procedure simplifies the

interpretation of the results, given relevant available prior information. Only in the

case when we underspecified the order of the VAR (and imposed insufficient flexi-

bility in the dynamic structure of the model) the renormalization failed to yield a

Monte Carlo distribution which was median unbiased around the true value given

by the DGP.

The short run parameters are consistently estimated by OLS in the prototype model

and we note that the short run estimators seem to be more biased in small samples

than the long run parameter estimators. This is also in accordance with theory since

the two sets of estimators are expected to have different limiting distributions and

only the long run parameter estimators are  super-consistent.  When the model is

misspecified, many well known textbook problems apply for the distribution of the

short run OLS-estimators, and we have provided examples where inconsistency arise

from breakdown in the orthogonality condition because of simultaneity (temporal

aggregation), contemporaneous presence of lagged endogenous variables and serially

correlated residuals and measurement errors in the data.

Although the distribution of the long run parameter estimators seem to be robust

against different types of model misspecification, alternative estimation methods

may be required to estimate the short run parameters (including &). A large number

of methods are available in the econometric literature, such as e.g. GIVE estimators,

which could be considered in order to correct for these biases.



Inference on cointegration

References

51

[1] T.W. Anderson(1951). Estimation linear restrictions on regression coeffici-

ents for multivariate normal distributions.  Annals of Mathematical Statistics,
22:327-351, 1951.

[2] T.W. Anderson(1991). Trygve  Haavelmo and simultaneous equation models.
Scandinavian Journal of Statistics ,  18:1-19, 1991.

[3] J.Y. Campbell  and P.Perron (1991).  Pitfalls and opportunities :  What macro-
economists should know about unit roots. 1991.

[4] M.P. Clements and G.E. Mizon(1991). Empirical analysis of macroeconomic
time series. VAR and structural models.  European Economic Review,  35:887-
932, 1991.

[5] D.A. Dickey and W.A.Fuller(1979). Distribution of the estimators for autore-
gressive  time series  with a unit root.  Journal of the American Statistical As-
sociation ,  74:427-431, 1981.

[6] 0. Eitrheim(1991).  Hidden  cointegration . Some Monte Carlo  evidence.  Dis-
cussion  Paper 1991/10, Oslo: Bank of Norway.

[7] R.F. Engle and C.W.J.Granger(1987). Cointegration and error correction: Re-
presentation, estimation and testing.  Econometrica,  55:251-276, 1987.

[8] W.A. Fuller(1976).  Introduction to Statistical Time Series .  New York: John
Wiley, 1976.

[9] J. Gonzalo(1989 ).  Comparison of five alternative methods of estimating long
run equilibrium relationships .  Discussion paper 55 ,  University of California,
San Diego, 1989.

[10] C.W.J.  Granger and  A.A.Weiss( 1983).  Time series analysis of error correc-
tion models. In T.Amemiya Karlin ,  S. and L.A.Goodman, editors ,  Studies  in
Econometric Time Series and Multivariate Statistics,  1983.

[11] C.W.J.  Granger (1981).  Some properties of time series data and their use in
econometric model specification .  Journal of Econometrics ,  16:121- 130, 1981.

[12] C.W. J. Granger ( 1983).  Cointegrated Variables and Error Correcting Models.
Discussion paper 13,  University of California ,  San Diego, 1983.

[13] D.F. Hendry and G.E. Mizon (1991).  Evaluating dynamic econometric models
by encompassing  the VAR.  1991. Unpublished manuscript.

[14] D.F.  Hendry (1989).  PC-GIVE  An Interactive Econometric Modelling System.
Institute of Economics and Statistics ,  University of Oxford, 1989.

[15] S. Hylleberg and G.E.Mizon (1988). Cointegration and error correction mechan-
isms.  Economic Journal ,  99:113- 125, 1989.



Inference on cointegration 52

I

[16] S. Johansen and K.Juselius(1990). Some structural hypotheses in a multivari-
ate cointegration analysis of the purchasing power parity and the uncovered
interest parity for UK. 1990. Institute of Mathematical Statistics, University
of Copenhagen.

[17] S. Johansen(1988). Statistical analysis of cointegration vectors.  Journal of
Economic Dynamics and Control,  12:231-254, 1988.

[18] S. Johansen(1989).  Likelihood based Inference on Cointegration. Theory and
Applications.  Technical Report, 1989. Lecture notes for a course on cointegra-
tion held at the Seminario Estivo di Econometria, Centro Studi Sorelle Clarke,
Bagni di Lucca, Italy in June 1989.

[19] S. Johansen(1990). Determination of cointegration rank in the presence of a
linear trend. 1990. Institute of Mathematical Statistics, University of Copen-
hagen.

[20] S. Johansen(1992). Estimation and hypothesis testing of cointegration vec-
tors in Gaussian vector autoregressive models.  Econometrica,  59(6):1551-1580,
1992.

[21] E. Nowak(1991).  Discovering hidden cointeg ration.  UCSD Discussion Paper 20,
University of California, San Diego, 1991.

[22] M. Osterwald-Lenum(1990). Recalculated and extended tables of the asym-
ptotic distribution of some important maximum likelihood cointegration test
statistics. 1990. Unpublished paper from Institute of Economics, University of
Copenhagen.

[23] S.G. Pantula(1989). Testing for unit roots in time series data.  Econometric
Theory,  5:256-271, 1989.

[24] P.C.B. Phillips and B.E.Hansen(1990). Statistical inference in instrumental
variables regression with I(1) processes. Review  of Economic Studies,  57:99-
125, 1990.

[25] P.C.B. Phillips and M. Loretan(1991). Estimating long run equilibria.  Review
of Economic Studies,  58:407-436, 1991.

[26] P.C. B. Phillips (1987).  Time series regression with a unit root .  Econometrica,
55:277-301, 1987.

[27] P.C. B. Phillips (1991 ).  Optimal inference in cointegrated systems .  Econo-
metrica ,  59(2):283- 306, 1991.

[28] B.W .  Silverman (1986 ).  Density Estimation for Statistical and Data Analysis.
London :  Chapman and Hall, 1986.

[29] C.A.  Sims, J .H. Stock and  M.W.Watson.  Inference in linear time series models
with some unit roots .  Econometrica ,  58(1):113-144, 1990.



Inference  on  cointegration 53

[30] J.H. Stock and M.W.Watson(1990).  A simple MLE of cointegrating vectors in
higher order integrated systems.  Technical Working Paper 83, 1990.

[31] J.H. Stock( 1987).  Asymptotic properties of least squares estimators of coin-
tegrating vectors .  Econometrica ,  55(5):1035 - 1056, 1987.

[32] R.P . Velu, G .C.Reinsel ,  and D.W.Wichern( 1986).  Reduced rank models for
multiple time series .  Biometrika ,  73:105- 118, 1986.



Inference on cointegration 54

Issued in the series ARBEIDSNOTATER
from Bank of Norway 1989 - 1991

1989 /1 Brodin, P. Anders

Makrokonsumfunksjonen i RIKMOD.
Utredningsavdelingen, 1989, 86 s.

1989 /2 Gulbrandsen, Bjarne

Prising og risikodekning ved utstedelse av valutaopsjoner.
Utredningsavdelingen, 1989, 66 s.

1989 /3 Grønvik, Gunnvald

Bankene som samfunnsinstitusjoner,
Utredningsavdelingen, 1989, 26 s.

1989 /4 Naug, Bjørn og Ragnar Nymoen

Dynamisk modellering av norsk import.
Utredningsavdelingen, 1989, 54 s.

1989 /5 Haraldsen, Jan Fr.

En rettslig analyse av norske valutareguleringsbestemmelser.
Finansmarkedsavdelingen, 1989, 79 s.

1989/6 Berg, Sigbjørn Atle, Finn R. Førsund og Eilev S. Jansen

Bank output measurement and the contruction of best practice fronti-
ers.

Research Department, 1989, 28 p.

1989 /7 Brodin, P. Anders and Ragnar Nymoen

The consumption function in Norway. Breakdown and reconstruc-
tion.
Research Department, 1989, 54 s.



Inference on cointegration 55

1989 /8 Vale, Bent

Impact of Central Bank Lending under Asymmetric Information in
Credit Markets.
Research Department, 1989, 35 p.

1989 /9 Mundaca, B. Gabriela

The Volatility of the Norwegian Currency Basket.
Research Department, 1989, 25 p.

1989 /10 Mundaca, B. Gabriela

A GARCH-Switching Equations Model: The Effect of Official Inter-
ventions on the Exchange Rate Volatility.
Research Department, 1989, 32 p.

1989 /11 Vikøren, Birger

En Empirisk Studie av foretakssektorens Netto Valutafordringer.
Utredningsavdelingen, 1989, 73 s.

1990 /1 Grønvik, Gunnvald

Scale-effects and unintended dynamics arising from banking regula-
tions.

Research Department, 1990, 34 s.

1990 /2 Brodin, P. Anders, Eilev S. Jansen og Erik Nesset (red)

RIMINI. Teknisk dokumentasjon av en aggregert makro-økonometrisk
modell.
Utredningsavdelingen, 1990, 115 s.

1990 /3 Grønvik, Gunnvald, Bjarne Gulbrandsen, Jan Tore Larsen og RØnnaug
Teige

Dataprosjektet FINDATR. Kvartalsvise finansielle sektorbalanser
1975 1 - 1989 3.
Statistikkavdelingen og Utredningsavdelingen, 1990, 51 s.



Inference  on  cointegration  56

1990 /4 Eitrheim, Øyvind

The demand for money in Norway. Econometric tests of the long
run relationship.
Research Department, 1990, 48 s.

1990 /5 Eitrheim, Øyvind

Testing long run relationships between economic time series using
likelihood-based inference on cointegration.
Research Department, 1990, 39 s.

1990 /6 Vale, Bent

Reserve requirements, asymmetric information, credit rationing and
screening costs.
Research Department, 1990, 51 p.

1990 /7 Ness, Torunn

Reguleringen av finansmarkedene i Norge. En studie av private kred-
ittforetak  og finansieringsselskaper.
Utredningsavdelingen, 1990, 67 s.

1990 /8 Naug, BjØrn

Importvolum og importpriser.

Utredningsavdelingen, 1990, 109 s.

1990 /9 Biblioteket

Indeks til Penger og Kreditt Nr.1/1973 - Nr.2/1990. Index to articles
in Economic Bulletin No.1973/1 - 1990/2.
Dokumentasjonsseksjonen, 1990, 72 s.

1991 /1 Brodin, P. Anders and Ragnar Nymoen

Wealth Effects and Exogeneity: The Norwegian Consumption Func-
tion 1966(1) - 1989(4).
Research Department, 1991, 49 p.



Inference  on  cointegration

1991/2 Berg, Sigbjørn Atle, Finn R. Førsund and Eilev S. Jansen

Malmquist indices of productivity growth during the deregulation
of Norwegian banking 1980-89.
Research Department, 1991, 30 p.

1991/3 Moene, Karl O. and Ragnar Nymoen

The dependency of labour demand on unemployment: Norwegian
industry 1966(1)-1989(4).
Research Department, 1991, 24 p.

1991 /4 Vale, Bent

An example of economies of scope in banking under asymmetric
information.
Research Department, 1991, 32 p.

1991/5 Berg, Sigbjørn Atle and Moshe Kim

Oligopolistic Interdependence and the Structure of Production in
Banking: an Empirical Evaluation.
Research Department, 1991, 29 p.

1991 /6 Vikøren, Birger

Exchange Rate Expectations and Risk Premium: An Empirical In-
vestigation.
Research Department, 1991, 30 p.

1991/7 Vikøren, Birger

The Saving-Investment correlation in the short and in the long run.
Research Department, 1991, 33 p.

1991 /8 Grønvik, Gunnvald

The transition from regulated to free credit markets: The Norwegian

57

case

Research Department, 1991, 48 p.



Inference on cointegration 58

1991/9  Eitrheim, Øyvind

Inference in small cointegrated systems. Some Monte Carlo results.
Research Department, 1991, 59 p.



KEYWORDS:

Multivariate analysis

Cointegration

Monte Carlo simulations


