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Existing models of nonrenewable resources assume that sophisticated agents compete with other sophisticated agents. This study
instead uses a level-𝑘 approach to examine cases where the focal agent is uncertain about the strategy of his opponent or predicts
that the opponent will act in a nonsophisticated manner. Level-0 players are randomized uniformly across all possible actions, and
level-𝑘 players best respond to the action of player 𝑘 − 1. We study a dynamic nonrenewable resource game with a large number
of actions. We are able to solve for the level-1 strategy by reducing the averaging problem to an optimization problem against a
single action. We show that lower levels of strategic reasoning are close to the Walras and collusive benchmark, whereas higher
level strategies converge to the Nash-Hotelling equilibrium. These results are then fitted to experimental data, suggesting that the
level of sophistication of participants increased over the course of the experiment.

1. Introduction

Existing models of nonrenewable resource markets assume
that optimizing agents compete against other optimizingv
agents in environments characterized by Cournot or Stack-
elberg competition (see [1–5] and many others). This implies
that agents will, in the Nash equilibrium, have a perfect
understanding of what their opponents will do. In reality,
however, agents may experience considerable uncertainty
about the strategy the opponent will follow. For example,
agents may not have all the information (such as cost func-
tions, stock sizes) required to calculate an opponent’s Nash
equilibrium strategy [6, 7]. In such cases, they must form
beliefs about the possible strategies chosen by the opponent
and maximize their expected profits given these beliefs.

Similarly, even with perfect information, agents may in
some cases expect their opponent not to follow the Nash-
Hotelling equilibrium. For example, the opponent may face
political pressure to maximize current revenue and produce
atmaximal capacity or otherwise be too focused onmaximiz-
ing present revenue rather than discounted profits (see, e.g.,
[8–10]). In such cases, agents must again form beliefs about

the possible strategies chosen by the opponent and maximize
their expected profits given these beliefs.

We model the ensuing uncertainty about the opponent’s
chosen strategy using a level-𝑘 framework (see, e.g., [11–
16]), a commonly used approach to model nonequilibrium
opponents in behavioral economics. The framework starts
by specifying the strategy for a level-0 player, who is argued
to choose a random production trajectory from the set of
all possible trajectories. Level-𝑘 players then best respond to
the strategy of a level-(𝑘 − 1) opponent. We use a standard
linear demand function that allows us to compute the Nash,
collusive, and Walrasian benchmark. We then show that
higher level strategies converge to the Nash-Hotelling equi-
librium, while lower level strategies may closely approximate
theWalras and collusive benchmark. Finally, we fit the results
to experimental data from van Veldhuizen and Sonnemans
[17] to empirically estimate the distribution of types and find
that participants appear to be using higher level strategies in
latter parts of the experiment.

The contribution of this paper is threefold. First, we add
to the literature on nonrenewable resources by suggesting a
novel way to analyze nonequilibrium behavior. Second, we
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contribute to the literature on level-𝑘 reasoning in behavioral
economics by applying level-𝑘 to the novel setting of nonre-
newable resources.Third, we fit our theoretical results to data
from an existing laboratory experiment.

2. Model and Benchmarks

We assume that two players, player 𝑘 and player 𝑘 − 1, are
active in a nonrenewable resource market characterized by
linear demand and Cournot competition. (The reason for
giving players integer numbers as identifiers is that we later
will assume player 𝑘 plays the level-𝑘.) Both players are
assumed to start with a fixed stock of resources (𝑆0) which
they can allocate over a discrete number of time periods
(𝑇). The quantity of the resource extracted by player 𝑘 in
period 𝑡 is denoted as 𝑞𝑡𝑘. Further, let the set of quantities
player 𝑘 allocated over the 𝑇 periods be denoted by 𝑔𝑘 =(𝑞1𝑘, 𝑞2𝑘, . . . , 𝑞𝑇𝑘 ). We will refer to 𝑔𝑘 as player 𝑘’s trajectory in
the remainder of the text.

Given two trajectories 𝑔𝑘, 𝑔𝑘−1 of players 𝑘 and 𝑘 − 1,
respectively, and assuming a linear demand function, the
profit for player 𝑘 is defined as

𝜋 (𝑔𝑘, 𝑔𝑘−1) = 𝑇∑
𝑡=1

(𝛽𝑡 (𝑎 − 𝑏 (𝑞𝑡𝑘−1 + 𝑞𝑡𝑘)) 𝑞𝑡𝑘) . (1)

Here, 𝑎 and 𝑏 are parameters of the demand function and 𝛽
is the discount factor. In line with the lab experiment, we will
use symmetric firms and take 𝑆0 = 170,𝑇 = 6, 𝑏 = 1, 𝑎 = 372,
and 𝛽 = 1/(1 + 𝑟) = 1/1.1.

Player 𝑘’s problem is to choose a strategy that maximizes
the sum of discounted profits, subject to the resource con-
straint:

maximize
𝑞1
𝑘
,𝑞2
𝑘
,...,𝑞𝑇
𝑘
∈[0,𝑆0]

𝜋 (𝑔𝑘, 𝑔𝑘−1)
subject to

𝑇∑
𝑡=1

𝑞𝑡𝑘 ≤ 𝑆0. (2)

Player 𝑘 − 1 solves an analogous problem. There are
three relevant benchmarks to consider: theNash equilibrium,
collusion, andWalras. For the Nash equilibrium, both players
maximize their own profits given the strategy of the oppo-
nent. In the collusive case, the two players maximize joint
profits, and in the Walras case, each player maximizes its
profits while taking prices as given. Table 1 shows the relevant
trajectories; for amore detailed derivation see vanVeldhuizen
and Sonnemans [17].

Two results are worth highlighting. First, all three bench-
marks have decreasing trajectories.This follows directly from
the standard result that the shadow price of the resource
increases over time at the rate of interest [18]. Second, relative
to Nash, the collusive quantities are smaller in early periods
and larger in late periods; the converse is true for Walras,
which is again a standard result [19].

Table 1: The first three rows present the Nash, Walras, and
collusive quantities for each period.The fourth row gives the average
production quantity for a level-0 for each period. The remaining
rows give the trajectories for different level-𝑘 players.𝑞1 𝑞2 𝑞3 𝑞4 𝑞5 𝑞6
Nash 50 42 34 25 15 4
Walras 62 49 35 20 4 0
Collusion 43 38 32 26 19 12𝑘 = 0 (average) 24.29 24.29 24.29 24.29 24.29 24.29𝑘 = 1 59 48 35 22 6 0𝑘 = 2 45 39 34 26 20 6𝑘 = 3 52 44 34 24 13 3𝑘 = 4 48 41 34 26 16 5𝑘 = 5 50 43 34 24 15 4𝑘 = 6 49 42 34 26 15 4𝑘 ≥ 7 50 42 34 25 15 4

3. Level-𝑘 Approach

We now move away from the symmetric benchmarks dis-
cussed in the previous section in order to derive the optimal
strategies for players of different level-𝑘. As the first step, the
level-𝑘 framework requires a level-0 strategy to be specified.
A typical approach (see, e.g., [12–14]) is to assume that a level-0 player uniformly randomizes across all possible actions.
In a dynamic game such as ours, randomization can occur
at two levels: actions (i.e., the quantity chosen in period 𝑡),
and trajectories (i.e., resource allocations over all periods). In
addition, the standard framework does not tell us whether the
resource constraint should be required to hold with equality.
We will start by presenting the results for randomization
over trajectories while allowing the resource constraint not to
hold with equality. That is, we initially only require that each
trajectory 𝑔0 = (𝑞10, . . . , 𝑞𝑇0 ) satisfies

𝑇∑
𝑡=1

𝑞𝑡0 ≤ 𝑆0. (3)

We discuss the results of the other three cases in Section 5.

3.1. Level-0. Wewill start by considering the set of all possible
trajectories of the level-0 player, denoted by 𝐺0. For the
purpose of this derivation and to facilitate a comparison with
the experimental data, we consider the case where players
can only choose discrete extraction quantities. We therefore
discretize the interval of possible quantities 𝑄 fl [0, 𝑆0] into𝑛𝛼 ∈ N \ {0, 1} equidistant values with distance𝛿 fl

𝑆0𝑛𝛼 − 1 . (4)

The discrete set of valid extraction quantities for a given
period is then𝑄 fl {𝛿𝛼 : 𝛼 ∈ {0, 1, . . . , 𝑛𝛼 − 1}} . (5)

We denote the corresponding set of possible trajectories for
the level-0 player that consist of quantities in 𝑄 by 𝐺0 ⊆ 𝐺0.
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Note that lim𝛿→0𝐺0 = 𝐺0. In the experiment we have that 𝛿 =1, and therefore 𝐺0 contains all integer extraction quantities
in 𝑄.

We denote the cardinality of𝐺0 by 𝑛ℓ fl |𝐺0|.We can now
number trajectories in 𝐺0𝐺0 = {𝑔0,0, 𝑔0,1, . . . , 𝑔0,𝑛ℓ−1} (6)

and add a corresponding index ℓ to the quantities defining
each trajectory in 𝐺0:𝑔0,ℓ = (𝑞𝑡0,ℓ)𝑡=1,...,𝑇 = (𝑞10,ℓ, 𝑞20,ℓ, . . . , 𝑞𝑇0,ℓ) . (7)

3.2. Level-1. Thenext step is to derive the strategy of the level-
1 player. The level-1 player’s goal is to maximize the expected
sum of his discounted profits 𝜋, conditional on his opponent
playing the level-0 strategy. Player 1’s objective Π1 can be
expressed as Π1 = 1𝑛ℓ ∑ℓ∈𝐺0𝜋 (𝑔1, 𝑔0,ℓ) . (8)

Then the optimization problem for level-1 reads as follows:
maximize
𝑞11 ,𝑞
2
1 ,...,𝑞
𝑇
1 ∈[0,𝑆0]

Π1,
subject to

𝑇∑
𝑡=1

𝑞𝑡1 ≤ 𝑆0. (9)

3.2.1. Averaging Problem. Writing outΠ1 explicitly, using the
definition of 𝜋(𝑔1, 𝑔0) given in (1), and changing the order of
the two sums (the averaging over strategies and the sum over
time periods), we can write

Π1 = 1𝑛ℓ 𝑛ℓ∑ℓ=1 𝑇∑𝑡=1 (𝑞𝑡1 ⋅ 𝛽𝑡 ⋅ (𝑎 − 𝑏 (𝑞𝑡1 + 𝑞𝑡0,ℓ)))
= 𝑇∑
𝑡=1

(𝑞𝑡1 ⋅ 𝛽𝑡 ⋅ (𝑎 − 𝑏(𝑞𝑡1 + 1𝑛ℓ 𝑛ℓ∑ℓ=1𝑞𝑡0,ℓ⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑞𝑡eff

))). (10)

This allows us to accumulate the averaging process in an
effective quantity 𝑞𝑡eff that expresses the average production of
the level-0 player in period 𝑡.

Since the level-0 player is assumed to choose among the
trajectories 𝐺0 in a uniformly random fashion, the averaging
process of all the strategies is symmetric with respect to the
time index. It follows that the value of 𝑞𝑡eff is independent of
the period:

𝑞𝑡eff = 1𝑛ℓ 𝑛ℓ∑ℓ=1𝑞𝑡0,ℓ š 𝑞eff , ∀𝑡 ∈ {1, . . . , 𝑇} . (11)

Proposition 1. The value of 𝑞eff depends only on the number
of periods and the total available resource per player:𝑞eff = 𝑆0𝑇 + 1 . (12)

Proof. We define the set𝐺𝛼0 ⊂ 𝐺0 that contains all trajectories
with a total resource extraction of 𝛿𝛼: 𝐺𝛼0 fl {𝑔0,ℓ : ∑𝑡 𝑞𝑡0,ℓ =𝛿𝛼}.

The cardinality of 𝐺𝛼0 is denoted by 𝑛𝐺𝛼0 fl |𝐺𝛼0 |. Its value
can be expressed using a binomial coefficient:

𝑛𝐺𝛼0 = (𝛼 + 𝑇 − 1𝑇 − 1 ) . (13)

Using the combinatorial identity,

𝑚∑
𝑙=0

(𝑙 + 𝑛𝑛 ) = (𝑛 + 𝑚 + 1𝑛 + 1 ) , (14)

we can calculate the number of all possible strategies

𝑛ℓ = 𝑛𝛼−1∑
𝛼=0

𝑛𝐺𝛼0 = 𝑛𝛼−1∑
𝛼=0

(𝛼 + 𝑇 − 1𝑇 − 1 ) = (𝑇 + 𝑛𝛼 − 1𝑇 ) . (15)

We now rewrite 𝑞eff in terms of the sum over all elements
of the matrix 𝑞𝑡0,ℓ:

𝑞eff = 1𝑛ℓ 1𝑇 𝑇∑𝑡=1 𝑛ℓ∑ℓ=1𝑞𝑡0,ℓ = 1𝑛ℓ 1𝑇 𝑛𝛼−1∑
𝛼=0

𝑛𝐺𝛼0 ⋅ 𝛿𝛼
= 1𝑛ℓ 1𝑇 𝑛𝛼−1∑

𝛼=1

𝑛𝐺𝛼0 ⋅ 𝛿𝛼. (16)

Using (13), we arrive at the following expression for 𝑞eff :
𝑞eff = 𝛿𝑛ℓ 𝑛𝛼−1∑

𝛼=1

𝛼𝑇 (𝛼 + 𝑇 − 1)!(𝑇 − 1)!𝛼! = 𝛿𝑛ℓ 𝑛𝛼−1∑
𝛼=1

(𝛼 + 𝑇 − 1)!(𝑇)! (𝛼 − 1)!
= 𝛿𝑛ℓ 𝑛𝛼−2∑
𝛼=0

(𝛼 + 𝑇)!(𝑇)! (𝛼)! (14)= 𝛿𝑛ℓ (𝑇 + 𝑛𝛼 − 1𝑇 + 1 )
(15)= 𝛿 𝑇! (𝑛𝛼 − 1)!(𝑇 + 𝑛𝛼 − 1)! (𝑇 + 𝑛𝛼 − 1)!(𝑇 + 1)! (𝑛𝛼 − 2)!
= 𝛿 (𝑛𝛼 − 1)𝑇 + 1 = 𝑆0𝑇 + 1 .

(17)

We emphasize that we obtained an expression for 𝑞eff that
does not depend on 𝛿, the step size of the discretization. It
follows that we can now take the limit 𝛿 → 0, 𝑛𝛼 → ∞ and
recover the same result for the case of continuous allocation
quantities (𝐺0 ≡ 𝐺0).
3.2.2. Solving the Level-1 Problem. In the previous section, we
have shown that the problem (9) that requires the evaluation
of a potentially large sum can be reduced to a much simpler
problem. In particular, we have shown that

Π1 = 1𝑛ℓ ∑ℓ∈𝐺0𝜋 (𝑔1, 𝑔0,ℓ) = 𝜋 (𝑔1, 𝑔0,eff) , (18)
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where

𝑔0,eff = (𝑞eff , 𝑞eff , . . . , 𝑞eff) . (19)

Using this definition of Π1, the problem (9) is compu-
tationally equivalent to the original problem (2) where the
opponent is known to play a particular trajectory. We can
now formulate this problem as a nonlinear programwith one
integer decision variable (𝑞𝑡) for each of the 6periods and find
the globally best strategy by numerically solving the problem.
We use the mixed-integer nonlinear programming (MINLP)
solver SCIP [20] to solve the problem to global optimality. A
phase space analysis of the level-1 problem can be found in
Fügenschuh et al. [21].

A global optimumwill be attained evenwhen the problem
is nonconvex, as is the case when producers are choosing
between discrete extraction quantities, as in the experiment
below. In the continuous case, the problem is convex and the
global optimum can also be found with a local NLP solver.

3.3. Solving for 𝑘 > 1. We can now find solutions up to an
arbitrary level-𝑘 using an iterative process. For each level-𝑘,
we solve (2) using the trajectory computed in the last level
for the 𝑘− 1 player. We implemented this as a shell script that
solves each level with an individual call to our solver of choice
SCIP, using the results of the previous level as input.

4. Computational Results

Table 1 displays the computational results. To allow for a
better comparison with the experiment, we required all
quantities to be integers for all levels except level-0 (which
is an average). The results for level-𝑘 for 𝑘 ≥ 1 are identical if
we start the iterations with a rounded effective quantity of 24
instead of the exact value of 170/7.

The level-0 player extracts on average a quantity of170/7 ≈ 24.29 in each period. Relative to the Nash equilib-
rium, the level-0 player therefore on average moves its
production toward later periods. The level-1 player responds
to this by moving production to earlier periods. As a result,
the level-1 strategy is much closer to Walras than to the Nash
equilibrium. Faced with the high initial extraction of the
level-1 player, the level-2 player then responds by moving
production back to later periods and so on. This alternating
process quickly converges to the Nash equilibrium quantities;
at level-7, the solution has converged; that is, all players of
level-𝑘 for 𝑘 ≥ 7 play exactly the same quantities.

5. Alternative Definitions of Level-0

In the previous sections, we assumed that the level-0 player
picks any of the possible trajectories with an equal probability.
In this section we will consider the case, where the player
picks one of the possible actions (i.e., quantities) in each
period with an equal probability. As demonstrated in Figure 1
for a stylized example, this leads to different probabilities for
the strategies.

Let us revisit the objective of the level-1 player for this
definition of level-0:Π1 = ∑

ℓ∈𝐺0

1𝑝ℓ𝜋 (𝑔1, 𝑔0,ℓ)
= 𝑛ℓ∑
ℓ=1

1𝑝ℓ 𝑇∑𝑡=1 (𝑞𝑡1 ⋅ 𝛽𝑡 ⋅ (𝑎 − 𝑏 (𝑞𝑡1 + 𝑞𝑡0,ℓ)))
= 𝑇∑
𝑡=1

(𝑞𝑡1 ⋅ 𝛽𝑡 ⋅ (𝑎 − 𝑏(𝑞𝑡1 + 𝑛ℓ∑
ℓ=1

1𝑝ℓ 𝑞𝑡0,ℓ⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑞𝑡eff2

))).
(20)

Again it is possible to condense the (weighted) averaging
process in an effective quantity 𝑞𝑡eff2. This is stated in the
following proposition. Note that, in contrast to Proposition 1,
the value of 𝑞𝑡eff2 depends not only on the total available
resource 𝑆0, but also on the actual period 𝑡.
Proposition 2. For 𝑡 = 1, 2, . . . , 𝑇 it holds that𝑞𝑡eff2 = 𝑆02𝑡 . (21)

Proof. By induction over the time period 𝑡. For 𝑡 = 1 we have
that

𝑞1eff2 = 1𝑆0 + 1 𝑆0∑
𝑞10=0

𝑞10 = 1𝑆0 + 1 𝑆0 (𝑆0 + 1)2 = 𝑆021 . (22)

Denote by 𝑆𝑡 the residual resource in period 𝑡. For the
induction step, assume the proposition is true for some 𝑡.That
means 𝑞𝑡eff2 = 𝑆0/2𝑡.This value is also computed directly from
the tree as

𝑞𝑡eff2 = 𝑆0∑
𝑞10=0

𝑆0−𝑞
1
0∑

𝑞20=0

⋅ ⋅ ⋅ 𝑆0−∑𝑡−2𝑗=1 𝑞𝑗0∑
𝑞𝑡−10 =0

𝑆𝑡 (23)

(cf. Figure 1), where

𝑆𝑡 = 𝑆0−𝜎∑
𝑞𝑡0=0

𝑞𝑡0, (24)

and as abbreviation we set

𝜎 fl
𝑡−1∑
𝑗=1

𝑞𝑗0. (25)

The value of 𝑞𝑡+1eff2 is computed as follows:

𝑞𝑡+1eff2 = 𝑆0∑
𝑞10=0

𝑆0−𝑞
1
0∑

𝑞20=0

⋅ ⋅ ⋅ 𝑆0−∑𝑡−2𝑗=1 𝑞𝑗0∑
𝑞𝑡−10 =0

𝑆𝑡+1, (26)

where

𝑆𝑡+1 = 𝑆0−𝜎∑
𝑞𝑡0=0

1𝑆0 + 1 − 𝜎 𝑆0−𝜎∑
𝑞𝑡+10 =0

𝑞𝑡+10 . (27)
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Figure 1: Probability tree for the case of randomizing over quantities for 𝑆0 = 2 and 𝑇 = 2. In the case where the level-0 player picks a
strategy at random, all strategies would have the same probability of 𝑃 = 1/𝑛ℓ = 1/6. In the alternative case shown in this figure, the player
picks between all available quantities in each period with the same probability. This leads to a different distribution of probabilities over the
strategies, as shown in the tree.

We show that the next period 𝑡 + 1 leads to a division by 2 of
the residual resource 𝑆𝑡. In other words, it remains to show
that 2𝑆𝑡+1 = 𝑆𝑡. On the one hand, computing 𝑆𝑡 in (24) leads
to

𝑆𝑡 = (𝑆0 − 𝜎) (𝑆0 + 1 − 𝜎)2 . (28)

On the other hand, computing 𝑆𝑡+1 in (27) leads to

𝑆𝑡+1
= 𝑆0−𝜎∑
𝑞𝑡0=0

1𝑆0 + 1 − 𝜎 − 𝑞𝑡0 (𝑆0 − 𝜎 − 𝑞𝑡0) (𝑆0 + 1 − 𝜎 − 𝑞𝑡0)2
= 12 𝑆0−𝜎∑
𝑞𝑡0=0

(𝑆0 − 𝜎 − 𝑞𝑡0) = 12 [[
𝑆0−𝜎∑
𝑞𝑡0=0

(𝑆0 − 𝜎) − 𝑆0−𝜎∑
𝑞𝑡0=0

𝑞𝑡0]]= 12 [(𝑆0 + 1 − 𝜎) (𝑆0 − 𝜎) − 12 (𝑆0 − 𝜎) (𝑆0 + 1 − 𝜎)]
= 12 [(𝑆0 − 𝜎) (𝑆0 + 1 − 𝜎)2 ] = 12𝑆𝑡,

(29)

which completes the proof.

Intuitively, the level-0 producer who uniformly random-
izes over actions extracts on average half of his resource in
period 1. This implies that at the start of period 2 he will
on average only have half of his resources left. Randomizing
implies that hewill then extract half of his remaining resource
in period 2. This process continues until the final period.

After deriving the general expression for the effective
quantities for the alternative definition of level-0, we can
compute 𝑞eff2 for the six periods of our game with a resource
stock 𝑆0 = 170. For the following levels, the procedure is the
same as described in Sections 3.2.2 and 3.3.

The results of these derivations are presented in Table 2.
Relative to the Nash equilibrium, the level-0 player defined
this way extracts a much larger fraction of his resource in

Table 2:The first three rows present the Nash,Walras, and collusive
quantities for each period as in Table 1. The fourth row gives the
average production quantity for the alternative definition of level-0
for each period.The remaining rows give the trajectories for different
level-𝑘 players. 𝑞1 𝑞2 𝑞3 𝑞4 𝑞5 𝑞6
Nash 50 42 34 25 15 4
Walras 62 49 35 20 4 0
Collusion 43 38 32 26 19 12𝑘 = 0 (average) 85 42.5 21.25 10.63 5.31 2.67𝑘 = 1 32 42 40 32 20 4𝑘 = 2 58 42 31 22 13 4𝑘 = 3 45 42 36 27 16 4𝑘 = 4 52 42 33 24 15 4𝑘 = 5 48 42 35 26 15 4𝑘 ≥ 6 50 42 34 25 15 4

period 1 and a much smaller fraction in periods 3 to 5. The
level-1 player responds by moving his extraction from period1 to periods 3 to 5, leading to a u-shaped trajectory. Level-2
best responds to level-1 by moving extraction back to period1. As before, this leads to an alternating process that quickly
converges to the Nash equilibrium trajectory.

Finally, we consider the effect of requiring the resource
constraint to hold with equality. For the definition of level-0
discussed in the previous sections, deriving 𝑞eff for the case of
full resource consumption (i.e., ∑𝑡 𝑞𝑡0 = 𝑆0) is much simpler.
In this case we have the following.

Proposition 3. If only trajectories satisfying ∑𝑇𝑡=1 𝑞𝑡0 = 𝑆0 are
considered in 𝐺0, the value of 𝑞eff is given as follows:𝑞eff = 𝑆0𝑇 . (30)

Proof. We have that 𝑛ℓ = 𝑛𝐺𝑛𝛼−10 , (31)
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and following the idea of (16) we can write

𝑞eff = 1𝑛ℓ 1𝑇 𝑇∑𝑡=1 𝑛ℓ∑ℓ=1𝑞𝑡0,ℓ = 1𝑛ℓ 1𝑇𝑛ℓ ⋅ 𝛿 (𝑛𝛼 − 1) = 𝑆0𝑇 . (32)

For our parameters, this changes the average level-0
trajectory to 170/6 in each period, with only aminor effect on
the level-1 and level-2 quantities and none for higher levels.

For the alternative definition of level-0 discussed here, we
can similarly require the level-0 player to extract his entire
resource in the last period.

Proposition 4. If only trajectories satisfying ∑𝑇𝑡=1 𝑞𝑡0 = 𝑆0 are
considered in 𝐺0, then for 𝑡 = 1, 2, . . . , 𝑇 − 1 it holds that

𝑞𝑡eff2 = 𝑆02𝑡 , (33)

and for the final period 𝑡 = 𝑇
𝑞𝑇eff2 = 𝑆02𝑇−1 . (34)

This will leave all the effective quantities unchanged (in
comparison to the case where not all resources must be
spent), except for the last one 𝑞6eff2, where the value of 𝑞6eff2
would be twice the value given in row 𝑘 = 0 of Table 2
(i.e., equal to 𝑞5eff2 ≈ 5.31) which is a small difference that
has only a minor effect on level-1 and no effect on higher
levels. Overall, requiring the resource constraint to hold with
equality therefore does not impact our computational results.

6. Experimental Data

The model studied in this paper was implemented in a lab-
oratory experiment by van Veldhuizen and Sonnemans [17].
In their experiment, participants went through 10 repetitions
of the same 6-period set-up. In each repetition, participants
started with a limited resource they could use over the 6
periods of the game. The resource was then replenished at
the start of the next repetition. We refer to their paper for
more details on the experimental design and instructions.
However, it is important to note that participants were
rematched to a different opponent for every repetition (or
round).Their first period quantity in each of the 10 repetitions
could therefore not be based on any knowledge of the prior
behavior (i.e., the level-𝑘) of their opponent and can hence
serve as a proxy for their level in the cognitive hierarchy.

We classify all participants in the experiment by the level
that most closely corresponds to their first period choice of
quantity, as per Table 1. We use the point prediction for the
Nash equilibrium but allow quantities to deviate slightly from
the point prediction of level-𝑘 and the other benchmarks, in
order to capture all quantities that lie between Walras and
collusion. However, the results presented below are robust
to using just the point prediction for the level-𝑘 players as
well. We only classify quantities that are either three units
smaller than the collusive quantity or three units larger than

Table 3: This table shows the number of participants who chose
a particular extraction quantity in the first period of, respectively,
the first and last (10th) repetition (or round) of the experiment. The
corresponding levels follow from the analysis in Section 6.

Quantity Type Round
1 10<40 Level-0 9 3

40–43 Collusive 11 6
44–46 Level-2 7 9
47–49 Level-4 1 350 Nash 11 12
51–55 Level-3 2 13
56–60 Level-1 7 8
61–65 Walras 1 8>65 Level-0 15 2

Progression of experiment participants

103 92 64 85 71
Experimental round

1.5

2

Av
er

ag
e l

ev
el

Figure 2:The figure plots the average level implied by the quantities
chosen by participants in each round in the experiment. Quantities
are coded as per Table 3, except that theNash equilibriumquantity is
coded as level-5; Collusive andWalras quantities are coded as level-
0.

the Walras quantity as level-0. We use the three-unit wiggle
room in order not to immediately classify any deviation from
Walras or collusion as level-0 behavior. Quantities between
collusion and Walras could of course be generated by level-0
players as well but correspondmore closely to the predictions
for players on higher levels.

Table 3 presents the level implied by the chosen quantity
of each participant in round 1 and round 10 of the experi-
ment. The number of participants classified as level-0 seems
to decrease quite strongly from round 1 (24 participants)
to round 10 (5 participants). The number of participants
classified as level-1, level-2, and particularly level-3 increased
correspondingly. Figure 2 presents the average level for each
of the 10 rounds, where the Nash quantity is coded as level-5,
and collusive/Walras quantities are coded as level-0. In line
with Table 3, there is a clear and significant upward trend
in the average level. The coefficient of a linear regression of
participants’ level on the round is significant (𝑝 < 0.001,
standard errors clustered by participant). These results sug-
gest that participants learned to make higher level decisions
over successive repetitions of the experiment. Classifying
participants using the alternative results presented in Table 2
does not substantively affect our results. Using the results
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of Table 2, every producer classified as level-1 to level-4
in Table 3 is classified as one level higher. In addition, six
producers in round 1 and two producers in round 10 would be
reclassified from level-0 to level-1.The coefficient for round in
the linear regression is still significant (𝑝 < 0.001).
7. Discussion

Existing models of nonrenewable resources assume sophis-
ticated agents compete with other sophisticated agents. This
study instead uses a level-𝑘 approach to examine situations
where the focal agent is uncertain about the strategy of his
opponent or predicts the opponent will act in a nonso-
phisticated manner. We modeled the uncertainty about the
opponent’s chosen strategy using a level-𝑘 framework.

Interestingly, when the level-0 player is randomized over
all possible trajectories, the level-1 player’s optimal strategy
is quite close to the Walras benchmark. Intuitively, this
player best responds to a random opponent, who on average
underextracts the resource in early periods (relative to Nash).
As a result, the level-1 player’s best response is to instead
overextract the resource in early periods. Similarly, the level-
2 player best responds to level-1 and is therefore closer to
the collusive quantity than to Nash. Thus, for producers who
expect their opponents to be randomized in this way (or
expect the opponent to best respond to randomizers), it is
not optimal to choose the Nash equilibrium strategy. Instead,
it is optimal to choose a strategy that closely approximates,
respectively, collusion or Walras. Only higher levels of ratio-
nality will more closely approximate the Nash equilibrium.
We obtain similar results under three alternative definitions
of the level-0 player, in the sense that quantities chosen by
lower levels are likely to correspond more closely to Walras
and collusion than to Nash and that higher levels converge to
the Nash equilibrium trajectory.

We then applied these computational results to data
from a laboratory experiment, which allowed us to classify
participants by the level of reasoning implied by their choices
in the first period. For the early part of the experiment,
many participants were classified as level-0. However, by the
time they had garnered some experience in the game, their
implied level of rationality increased. This seems intuitive
and in line with the idea that repeated exposure to the
same problem increases the quality of participants’ responses
due to imitation, improved understanding of the game, and
possibly updated beliefs about the likely type of the average
opponent.

Throughout our analysis we have assumed that level-𝑘
best responds to level-(𝑘 − 1), as is the standard approach
in the literature. An alternative approach (e.g., the cognitive
hierarchy model of Camerer et al. [14]) assumes that higher
levels form beliefs about the distribution of lower level types
and best respond to themix of these types. In our setting, this
approach would change the trajectory of higher level types,
with, for example, level-2 player’s trajectory lying somewhere
in between the level-2 and level-1 trajectory estimated above.
This approach will also not, in general, converge to the Nash
equilibrium, provided that even high types assume that there
is a nonnegligible fraction of level-0 and level-1 players.

A further extension of our resultswould allowhigher level
players to update their beliefs about the distribution of lower
level types based on the actions of their opponents.This could
thenmake it optimal for the higher level types tomasquerade
as a lower level type, in order to induce lower level opponents
to adopt a more favorable trajectory. Though a full analysis
of this set-up is beyond the scope of the present paper, we
consider this a promising extension for future work.

Finally, the results also illustrate the applicability of
numerical methods in solving iterated problems such as ours.
For continuous cases, analytic methods are able to compute
the Nash equilibrium either directly or as the limit of a level-𝑘 model where 𝑘 converges to infinity. However, we are not
aware of analytical methods that are able to directly compute
the strategy for a given finite value of 𝑘, especially when the
set of possible production quantities is discrete, rather than
continuous. By contrast, our paper illustrates that numerical
solvers are able to provide the strategy for up to any level𝑘. Numerical tools seem particularly well-suited in cases
where the exact parameters of interest are known, such as the
experimental data set analyzed in this paper.
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