ECONSTOR

Visser, Mark; Fasang, Anette Eva

Article - Accepted Manuscript (Postprint)
 Educational assortative mating and couples' linked late-life employment trajectories

Advances in Life Course Research

Provided in Cooperation with:
WZB Berlin Social Science Center

Suggested Citation: Visser, Mark; Fasang, Anette Eva (2018) : Educational assortative mating and couples' linked late-life employment trajectories, Advances in Life Course Research, ISSN 1040-2608, Elsevier, Amsterdam, Vol. 37, pp. 79-90, https://doi.org/10.1016/j.alcr.2018.04.005

This Version is available at: https://hdl.handle.net/10419/209684

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

Educational assortative mating and

 couples' linked late-life employment trajectoriesTable A1: Population data on marital status of men aged 65-80 (absolute numbers and percentages)

Year	Unmarried	Married	Widowed	Divorced	Total
1998	41,017	557,152	71,873	35,755	705,797
2000	42,269	573,089	73,008	39,787	728,153
2003	44,032	590,620	72,144	46,672	753,468
2009	49,610	674,025	72,149	66,364	862,148
1998	5.8	78.9	10.2	5.1	100.0
2000	5.8	78.7	10.0	5.5	100.0
2003	5.8	78.4	9.6	6.2	100.0
2009	5.8	78.2	8.4	7.7	100.0
Average	5.8	78.6	9.5	6.1	100.0

Note: several selections were made to ensure that the national figures refer to the same group of people as our study sample, that is, men aged 65-80 years in the four survey years (1998, 2000, 2003 and 2009). Source: Statistics Netherlands 2017.

Table A2: Substitution cost matrix

	IN	UN	DI	ER	VII	VI	V	IV	III	II	I
IN	0	1	1	1	10	10	10	10	10	10	10
UN	1	0	1	1	10	10	10	10	10	10	10
DI	1	1	0	1	10	10	10	10	10	10	10
ER	1	1	1	0	10	10	10	10	10	10	10
VII	10	10	10	10	0	1	2	3	4	5	6
VI	10	10	10	10	1	0	1	2	3	4	5
V	10	10	10	10	2	1	0	1	2	3	4
IV	10	10	10	10	3	2	1	0	1	2	3
III	10	10	10	10	4	3	2	1	0	1	2
II	10	10	10	10	5	4	3	2	1	0	1
I	10	10	10	10	6	5	4	3	2	1	0

Note: IN=inactive, UN=unemployed, DI=disabled, ER=early retired and VII through I refer to the EGP classes.

Table A3: Distribution of alternative measure of education across all clusters

	High-status dual-earners	Low-status dual-earners	High-status male breadwinner	$\begin{array}{r} \text { Low-status } \\ \text { male breadwinner } \end{array}$	Dual-joblessness/ disability	Total
Educational level						
Neither highly educated	30	40	48	82	17	217
	13.8\%	18.4\%	22.1\%	37.8\%	7.8\%	100\%
Both highly educated	16	5	7	0	1	29
	55.2\%	17.2\%	24.1\%	0.0\%	3.4\%	100\%
Only male highly educated	20	3	23	2	2	50
	40.0\%	6.0\%	46.0\%	4.0\%	4.0\%	100\%
Only female highly educated	6	3	3	1	1	14
	42.9\%	21.4\%	21.4\%	7.1\%	7.1\%	100\%
Total	72	51	81	85	21	310
	23.2\%	16.5\%	26.1\%	27.4\%	6.8\%	100\%

Note: highly educated refers to higher vocational and university education.
Source: FSDP 1998, 2000, 2003 and 2009.

Table A4: Distribution of previous disability across all clusters

	High-status dual-earners	Low-status dual-earners	High-status male breadwinner	Low-status male breadwinner	Dual-joblessness/ disability	Total
Ever disabled						
No	72	47	80	82	16	297
	24.2\%	15.8\%	26.9\%	27.6\%	5.4\%	100\%
Yes	0	4	1	3	5	13
	0.0\%	30.8\%	7.7\%	23.1\%	38.5\%	100\%
Total	72	51	81	85	21	310
	23.2\%	16.5\%	26.1\%	27.4\%	6.8\%	100\%

Note: ever disabled refers to at least one disability episode in at least one of both partners' employment career before the age of 45 .
Source: FSDP 1998, 2000, 2003 and 2009.

Table A5: Logistic regression analyses of couples' late-life employment trajectories, average marginal effects ($N=310$)

	High-status dual-earners	Low-status dual-earners	High-status male breadwinner	Low-status male breadwinner	Dual-joblessness/ disability
Educational level					
Neither highly educated	ref.	ref.	ref.	ref.	ref.
Both highly educated	0.222 ***	-0.050	0.069	-0.381 **	-0.073
Only male highly educated	0.165 **	-0.063	0.093	-0.167 **	-0.016
Only female highly educated	0.052	0.006	0.075	-0.162	0.040
Birth year female	0.013 **	0.008 *	-0.016 ***	-0.001	-0.005 ~
Non-religious couple	0.091 *	0.022	-0.036	-0.098 ~	-0.007
Age difference					
Equal age	ref.	ref.	ref.	ref.	ref.
Male older	0.070	0.118 ~	0.016	-0.115 *	-0.061 ~
Female older	-0.046	0.251 *	-0.222	0.049	0.007
Age youngest child 0					
Youngest tertile	-0.109 ~	-0.029	-0.026	0.109 *	0.030
Medium tertile	ref.	ref.	ref.	ref.	ref.
Oldest tertile	0.055	-0.018	0.041	-0.080	-0.009
Number of children					
No children	ref.	ref.	ref.	ref.	ref.
One child	-0.164	0.036	0.050	0.120	0.000
Two children	-0.025	-0.032	-0.013	0.123	-0.033
Three children	-0.065	-0.027	0.024	0.067	0.002
More than three children	-0.091	0.029	0.010	0.067	0.025
Age of current marriage female	0.007 ~	-0.005	-0.001	-0.003	0.002
Parental education					
Male's father highly educated	0.096 *	-0.074	0.032	-0.046	-0.028
Male's mother highly educated	-0.038	0.012	0.077	-0.042	-0.026
Female's father highly educated	-0.022	-0.012	-0.002	0.023	0.001
Female's mother highly educated	0.004	0.100 ~	0.048	-0.128 ~	-0.072

[^0]Note: five separate logistic regression analyses were performed to obtain the estimates for each cluster (coded 1) relative to all other clusters (coded 0). Source: FSDP 1998, 2000, 2003 and 2009.

Table A6: Logistic regression analyses of high-status dual-earners cluster, average marginal effects

	Low-status dual-earners	High-status male breadwinner	Low-status male breadwinner
Educational level			
Neither highly educated	ref.	ref.	ref.
Both highly educated	0.282 **	0.153	0.437 ***
Only male highly educated	0.272 **	0.060	0.233 ***
Only female highly educated	0.127	-0.104	0.155
Birth year female	0.001	0.026 ***	0.009
Non-religious couple	0.041	0.133 ~	0.068
Age difference			
Equal age	ref.	ref.	ref.
Male older	-0.006	0.118	0.141 ~
Female older	-0.405 *	0.096	-0.062
Age youngest child			
Youngest tertile	-0.121	-0.111	-0.122 ~
Medium tertile	ref.	ref.	ref.
Oldest tertile	0.076	0.028	0.129 ~
Number of children			
No children	ref.	ref.	ref.
One child	-0.247	-0.270	-0.292
Two children	0.032	-0.008	-0.153
Three children	-0.031	-0.140	-0.182
More than three children	-0.169	-0.079	-0.325 ~
Age of current marriage female	0.015	0.009	0.007
Parental education			
Male's father highly educated	0.225 *	0.121	0.130 *
Male's mother highly educated	-0.021	-0.105	0.036
Female's father highly educated	0.002	-0.045	-0.035
Female's mother highly educated	-0.095	-0.004	0.178 *
N	123	153	157
Pseudo R^{2}	0.207	0.182	0.414

$\sim p<0.10 ;{ }^{*} p<0.05 ; * * p<0.01$; ${ }^{* * *} p<0.001$
Note: each column of estimates is based on a separate logistic regression analysis.
Source: FSDP 1998, 2000, 2003 and 2009.

Table A7: Logistic regression analyses of low-status dual-earners cluster, average marginal effects

	High-status dual-earners	High-status male breadwinner	Low-status male breadwinner
Educational level			
Neither highly educated	ref.	ref.	ref.
Both highly educated	-0.282 **	-0.091	0.313 ~
Only male highly educated	-0.272 **	-0.135	0.100
Only female highly educated	-0.127	-0.012	0.262 ~
Birth year female	-0.001	0.021 **	0.013 ~
Non-religious couple	-0.041	0.069	0.147 ~
Age difference			
Equal age	ref.	ref.	ref.
Male older	0.006	0.119	0.257 *
Female older	0.405 *	0.567 **	0.300
Age youngest child			
Youngest tertile	0.121	-0.012	-0.113
Medium tertile	ref.	ref.	ref.
Oldest tertile	-0.076	-0.083	0.037
Number of children			
No children	ref.	ref.	ref.
One child	0.247	-0.074	-0.157
Two children	-0.032	-0.092	-0.191
Three children	0.031	-0.181	-0.110
More than three children	0.169	-0.052	-0.089
Age of current marriage female	-0.015	-0.001	0.001
Parental education			
Male's father highly educated	-0.225 *	-0.120	-0.071
Male's mother highly educated	0.021	-0.032	0.058
Female's father highly educated	-0.002	-0.028	-0.029
Female's mother highly educated	0.095	0.074	0.217 *
N	123	132	136
Pseudo R^{2}	0.207	0.166	0.194

${ }_{\sim} p<0.10 ;{ }^{*} p<0.05 ; * * p<0.01$; ${ }^{* * *} p<0.001$
Note: each column of estimates is based on a separate logistic regression analysis.
Source: FSDP 1998, 2000, 2003 and 2009.

Table A8: Logistic regression analyses of high-status male breadwinner cluster, average marginal effects

	High-status dual-earners	Low-status dual-earners	Low-status male breadwinner
Educational level			
Neither highly educated	ref.	ref.	ref.
Both highly educated	-0.153	0.091	0.438 **
Only male highly educated	-0.060	0.135	0.187 *
Only female highly educated	0.104	0.012	0.212
Birth year female	-0.026 ***	-0.021 **	-0.008
Non-religious couple	-0.133 ~	-0.069	0.130 ~
Age difference			
Equal age	ref.	ref.	ref.
Male older	-0.118	-0.119	0.090
Female older	-0.096	-0.567 **	-0.077
Age youngest child			
Youngest tertile	0.111	0.012	-0.135
Medium tertile	ref.	ref.	ref.
Oldest tertile	-0.028	0.083	0.055
Number of children			
No children	ref.	ref.	ref.
One child	0.270	0.074	-0.061
Two children	0.008	0.092	-0.178
Three children	0.140	0.181	-0.074
More than three children	0.079	0.052	-0.084
Age of current marriage female	-0.009	0.001	0.004
Parental education			
Male's father highly educated	-0.121	0.120	0.056
Male's mother highly educated	0.105	0.032	0.069
Female's father highly educated	0.045	0.028	-0.005
Female's mother highly educated	0.004	-0.074	0.140
N	153	132	166
Pseudo R^{2}	0.182	0.166	0.222

$\sim p<0.10 ;{ }^{*} p<0.05 ;{ }^{* *} p<0.01 ;{ }^{* * *} p<0.001$
Note: each column of estimates is based on a separate logistic regression analysis.
Source: FSDP 1998, 2000, 2003 and 2009.

Table A9: Logistic regression analyses of low-status male breadwinner cluster, average marginal effects

	High-status dual-earners	Low-status dual-earners	High-status male breadwinner
Educational level			
Neither highly educated	ref.	ref.	ref.
Both highly educated	-0.437 ***	-0.313 ~	-0.438 **
Only male highly educated	-0.233 ***	-0.100	-0.187 *
Only female highly educated	-0.155	-0.262 ~	-0.212
Birth year female	-0.009	-0.013 ~	0.008
Non-religious couple	-0.068	-0.147 ~	-0.130 ~
Age difference			
Equal age	ref.	ref.	ref.
Male older	-0.141 ~	-0.257 *	-0.090
Female older	0.062	-0.300	0.077
Age youngest child			
Youngest tertile	0.122 ~	0.113	0.135
Medium tertile	ref.	ref.	ref.
Oldest tertile	-0.129 ~	-0.037	-0.055
Number of children			
No children	ref.	ref.	ref.
One child	0.292	0.157	0.061
Two children	0.153	0.191	0.178
Three children	0.182	0.110	0.074
More than three children	0.325 ~	0.089	0.084
Age of current marriage female	-0.007	-0.001	-0.004
Parental education			
Male's father highly educated	-0.130 *	0.071	-0.056
Male's mother highly educated	-0.036	-0.058	-0.069
Female's father highly educated	0.035	0.029	0.005
Female's mother highly educated	-0.178 *	-0.217 *	-0.140
N	157	136	166
Pseudo R^{2}	0.414	0.194	0.222

$\sim p<0.10 ;{ }^{*} p<0.05 ; * * p<0.01 ;{ }^{* * *} p<0.001$
Note: each column of estimates is based on a separate logistic regression analysis.
Source: FSDP 1998, 2000, 2003 and 2009.

[^0]: $\sim p<0.10 ; * p<0.05 ; * * p<0.01$; *** $p<0.001$

