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Purpose: While simulation-based optimization has been discussed in theory and 
practically employed at container terminals, the different publications in this field 
have not yet been presented and compared in a structured manner. This paper gath-
ers the latest developments and examine the similarities and differences of the pro-
vided approaches. Furthermore, research gaps are identified.  
 
Methodology: The recent literature of simulation-based optimization on container 
terminals is examined using a mapping review approach. Emphasis is laid on the cov-
ered problems, chosen meta-heuristics, and the shapes of the solution space.  
 
Findings: In the applied literature of container terminals genetic algorithms prevail, 
both for scheduling problems and for the determination of discrete and/or continu-
ous parameters. Because of the no-free-lunch-theorem for optimization, it is open 
whether the chosen optimization approach serves the purpose best.  
 
Originality: To the best of our knowledge, the existing literature regarding simula-
tion-based optimization at container terminals has never been addressed in a de-
tailed overview. The elaborated comparison of the different publications leads to fur-
ther research directions 
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1 Introduction 

In globe-spanning supply chains, maritime container terminals are of major 

importance. In terms of volume, over 80% of the world merchandise trade 

is handled by ports while in 2017 17.1% of global trade volumes were con-

tainerized (UNCTAD 2018). Container terminals need to run smoothly and 

cost-efficiently both for the economy depending on the transported goods 

and the terminal owners to stay in competition. Therefore, container termi-

nal operations have been an active field of research for a long time 

(Steenken, Voß & Stahlbock 2004; Gharehgozli, Roy & DeKoster 2016). One 

major obstacle the authors present is that container terminals differ from 

each other in their terminal layout, the employed equipment, and the level 

of automation and digitalization, to name a few. This increases the diffi-

culty to generalize insights of case studies and to transfer solutions and 

best practices between container terminals. On the other hand, container 

terminals will need to change and learn from the success stories of others 

in order to stay competitive. A continued market concentration in liner 

shipping allows shipping alliances to exert high pressure on container ter-

minals (UNCTAD 2018).  

The sheer complexity of a container terminal as well as the lack of general-

izability for results obtained from a specific field study make it necessary to 

limit oneself on certain aspects. Some study fields have been of special in-

terest, such as the Berth Allocation Problem (BAP), the Quay Crane Assign-

ment Problem (QCAP), or the Quay Crane Scheduling Problem (QCSP) 

(Stahlbock & Voß 2007). Bierwirth & Meisel (2010) show that in literature 

there are use-case-specific assumptions, like spatial con-straints (discrete, 
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continuous or hybrid berth layout), knowledge about arrival times in ad-

vance, whether ships have a strict time schedule etc. Furthermore, while 

some publications focus on a single problem (Dai et al. 2008), others per-

ceive this as too narrow and formulate an integrated problem consisting of 

several parts (cf. Liang, Huang & Yang 2009). Many of these problems have 

been shown to be NP-hard, which is a major challenge (Steenken et al. 

2004). While exhaustive search is theoretically possible, in many areas it has 

shown to be too time-consuming for practical appli-cation (Woeginger 

2003). Hence, for real-world applications approximations need to suffice 

(Bierwirth & Meisel 2015). 

Among others, sufficiently good input parameters can be estimated by us-

ing simulation-based optimization. For the same problem, different optimi-

zation algorithms can be used. This leads to the underlying question of this 

paper: Which algorithm(s) lead(s) to the best results under limited re-

sources? In the following section, first more background on simulation-

based optimization and related work is provided. In Section 3, the method-

ology is described. The results are presented and discussed in Section 4. 

Finally, in Section 5 conclusions are drawn.  

2 Background and Related Work 

The term "simulation-based optimization" is the key concept of this publi-

cation. Depending on the publication, different definitions or informal de-

scriptions are used for the same term. In the following, first a definition for 

simulation-based optimization is provided. Afterwards, previous related 

publications are presented. 
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2.1 Simulation-based Optimization 

Zhou et al. (2018) define simulation-based optimization as a method "to 

evaluate the performance of the system for a given configuration, while the 

optimization algorithm explores alternative configurations in the solution 

space and identifies the optimal setting". In this publication this definition 

is narrowed: Simulation-based optimization is a procedure to examine the 

most promising subset of all available solutions, i.e. parameter configura-

tions. Therefore, multifidelity approaches such as presented by Li et al. 

(2017) are out of focus. To evaluate a specific parameter configuration, it is 

entered into a system which imitates (parts of) the container terminal. Such 

a system can be e.g. self-written code, or simulation software. For this pub-

lication it needs to meet the general definition of simulation as a "[r]epre-

sentation of a system with its dynamic processes in an experimentable 

model to reach findings which are transferable to reality; in particular, the 

processes are developed over time." (Verein Deutscher Ingenieure 2014). 

Furthermore, simulation models can incorporate randomness to reflect the 

stochasticity of the real-world system. This surpasses simple deterministic 

evaluation schemes which can be evaluated within split-seconds. 
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Figure 1: The cycle of simulation and optimization for simulation-based 
optimization 

The concept of simulation-based optimization goes by different names, 

such as Simulation Evaluation (Figueira & Almada-Lobo 2014), Simulation 

Optimization (Amaran et al. 2016) or Optimization via Simulation (Xie, Fra-

zier & Chick 2016). The integral assumption is that the system (here: con-

tainer terminal) is too complex to directly apply mathematical program-

ming methods. Stochasticity and interaction of the different subsystems 

hinder the observer to predict the impact of certain parameter configura-

tions. The container terminal is assumed to be so complex that directly ex-

amining internal processes are fruitless. 

Simulation-based optimization belongs to the larger family of black-box 

optimization procedures which are also referred to as meta-heuristics 

(Chopard & Tomassini 2018) or derivative-free optimization procedures 

Use 𝐻 to identify 
promising parameters, 

𝑖 ≔ 𝑖 ൅ 1

Choose 𝑥ሺ௜ሻ ∈ Χ from 
promising parameters

Run experiment:
𝑦ሺ௜ሻ ൌ 𝑓 𝑥ሺ௜ሻ

Observation is recorded:
𝐻 ≔ 𝐻 ∪ ሼ 𝑖, 𝑥ሺ௜ሻ, 𝑦ሺ௜ሻ ሽ

Abort search process 
according to given 

criterion

Initialize variables:
History 𝐻 ≔ ∅
Counter 𝑖 ≔ 0
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(Rios & Sahinidis 2013). Meta-heuristics are characterized by their univer-

sality. They can be used in many different disciplines for optimization, e.g. 

Simulated Annealing (SA) has been used for vehicle routing (Yu et al. 2017), 

job shop scheduling (van Laarhoven, Aarts & Lenstra 1992), or to define ge-

netic structures of populations (Dupanloup, Schneider & Excoffier 2002). 

A visualization of the concept simulation-based optimization can be seen 

in Figure . During the ongoing search process, in the history 𝐻 the so far 

obtained observations are gathered. They guide the search by identifying 

promising parameters ሼ𝑥ሽ, of which one, 𝑥ሺ௜ሻ, is chosen for a simulation ex-

periment. The observed result 𝑦ሺ௜ሻ is recorded and can be used to further 

guide the search. Usually meta-heuristics are formulated in a way that a 

stopping criterion needs to be explicitly defined. This can be defined e.g. by 

time, by number of cycles, the (lack of) obtained improvement within the 

last 𝑘 evaluations. 

The algorithmic steps to define a metaheuristic are by definition generic so 

that it can applied to new cases. Wolpert & Macready (1997) show that a 

metaheuristic which exploits the underlying structure of a certain optimi-

zation problem very well, leads to results worse than random results for an-

other optimization problem. In other words, a meta-heuristic which picks 

the right next parameter configuration for every optimization problem 

can't exist. Still, empirical work can show that a certain meta-heuristic ex-

ploits the underlying structure of a specific problem better than another. 

This makes it inevitable to use large datasets, if available benchmarks, as 

well as reported results in comparable literature.  
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2.2 Related Work 

A plethora of literature reviews deal with metaheuristics. Some, like Xu et 

al. (2015), used maritime logistics as a use case for showing the applicability 

of more general concepts. They present different optimization approaches, 

i.e. ranking and selection, black-box search methods that directly work 

with the simulation estimates of objective values, meta-model-based 

methods, gradient-based methods, sample path optimization, and sto-

chastic constraint and multi-objective simulation optimization. For con-

tainer terminals, recently only a subset of these options has been applied. 

Zhou et al. (2018) reviewed different ways of how simulation and optimiza-

tion had been jointly used in the field of maritime logistics. That included 

optimization tasks regarding the landside and waterside of the container 

terminal as well as the scheduling of vessels from the perspective of a ship 

owner. Based on the gathered literature, they differentiate between several 

modes, i.e. simulation-supported optimization, simulation optimization it-

eration, optimization-embedded simulation, and simulation-based optimi-

zation. The latter category is elaborated on in this publication. 

Bierwirth & Meisel (2015) present the literature related to seaside opera-

tions planning. They focus on BAP, QCAP and QCSP and options of how to 

integrate them. A detailed problem classification for each of the problems 

provides an overview of past work in this field. Tactical planning is out of 

their scope and they do not examine the employed methodology, i.e. which 

algorithm has been used to search through which kind of solution space. 

Several more general literature overviews about container terminals exist 

(Steenken et al. 2004; Stahlbock & Voß 2007; Carlo, Vis & Roodbergen 

2014b, 2014a; Gharehgozli, Roy & DeKoster 2014, 2016; Dragović, Tzannatos 

& Park 2017).  
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Previous literature reviews follow two threads: Either the subject of simula-

tion-based optimization is approached on a methodological level, then 

practical aspects of the container terminals often are less of concern. Or the 

subject is approached from a problem-based perspective and the em-

ployed methods are out of focus. This paper brings these threads together 

in order to create a new perspective. 

3 Methodology 

According to the literature review typology of Grant & Booth (2013), the fol-

lowing review is referred to as a mapping review. It targets at categorizing 

the existing literature about simulation-based optimization at container 

terminals. The focus of this study is to investigate which aspects of the con-

tainer terminal have been optimized with simulation-based optimization, 

which search algorithms have been used, and how the shape of the solution 

space looks like. The latter can indicate which algorithms could serve as al-

ternatives. Grant & Booth (2013) argue that mapping reviews are an appro-

priate tool for gaining an overview and identifying research gaps. 
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Figure 2: The process of searching the literature 

The literature search process can be seen in Figure 2. Scopus, Web of Sci-

ence, and Google Scholar are used to obtain the literature of interest. This 

review aims at covering a wide range of recent publications so that rare ap-

proaches are covered as well. The search terms to identify simulation-

based optimization are "simulation", and "optimization" (alternatively in 

British English "optimisation"). This ensures that all the different terms for 

the same concept (as described in Section 2.1) are covered. Furthermore, 

the term "container terminal" (or "container terminals") needs to be men-

tioned in the publication. The search has been restricted to published con-

ference articles and journal articles. The time range of interest is limited to 

the last five calendrical years, i.e. 2014 - 2018. Newer publications are ig-

nored for the sake of repeatability. Each of the found articles needs to 

match the following criteria: (1) the publication is in English, (2) the scope 

Filter 
Conditions

Search 
Terms

Databases

 “simulation”

 “optimization” and its alternative British spelling “optimisation”

 “container terminal” or its plural form

 Time: Last five calendrical years, i.e. 2014 – 2018

 Type: Conference article or journal article

 Language: English

 Focus: Handling processes at one container terminal

 Methodology: simulation‐based optimization (as previously defined)

 Scopus

 Web of Science

 Google Scholar
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of the examined system is restricted to one or several problems at one con-

tainer terminal, (3) the examined problem solely examines the characteris-

tics of the handling processes, and (4) the authors optimized one aspect of 

the container terminal, and (5) they used simulation-based optimization as 

previously defined for optimization.  

The obtained literature is presented in a categorized manner in order to in-

crease the comprehensibility. The distinction is based on the structure of 

the solution space and leads to two groups: (1) permutation space, or (2) an 

n-dimensional discrete or continuous space. 

3.1 Permutation Space 

For a set with k distinct items, k! permutations exist. The most common ob-

served problem is to decide about in which order a set of tasks will be exe-

cuted. In most cases, the permutation space can be restricted as con-

straints exist, such as dependencies between tasks. Still, with a growing 

size of the set, the solution space quickly turns intractable. At container ter-

minals, plenty of well-examined scheduling problems exist (Steenken et al. 

2004; Stahlbock & Voß 2007; Bierwirth & Meisel 2010, 2015; Gharehgozli et 

al. 2016). A set of resources of the same type, such as Quay Cranes (QC), 

Yard Trucks (YT), or Yard Cranes (YC), needs to be assigned to transport con-

tainers from a source to a destination. The major difficulty lies in determin-

ing which machine is paired with which task. These scheduling problems 

suffer from exactly that explosion of the solution space which is one of the 

reasons for a mostly sub-optimal employment of equipment at container 

terminals. 

On a methodological level, the scheduling problems for the different types 

of equipment (i.e. QCSP, YCSP, and Vehicle Dispatching Problem (VDP)) 
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share many characteristics. Hartmann (2004) defines a general scheduling 

model to "consist of the assignment of jobs to resources and the temporal 

arrangement of the jobs subject to precedence constraints and sequence-

dependent setup times". The model is later applied to assign straddle car-

riers, automated guided vehicles, and stacking cranes to transportation 

tasks, as well as workers to jobs related to the maintenance of reefer con-

tainers. This encourages the perspective that the different scheduling prob-

lems can be compared on a methodological level, and approaches which 

have been applied for one scheduling problem might also be used for an-

other. 

3.2 n-dimensional Discrete and/or Continuous Space 

When a researcher or practitioner is asked to optimize a container terminal 

without further constraints, plenty of alternatives exist. With each ques-

tioned design decision, the solution space grows exponentially. For the 

simple case of choosing between two levels for each considered factor (e.g. 

different strategies for each equipment type), for 𝑛 different factors 2௡ pos-

sible solutions exist. With an increasing amount of levels, this amount fur-

ther increases. This makes the execution of a grid search quickly intracta-

ble. The choice of the most promising subset of the solution space is diffi-

cult because of the complex interactions of the different subsystems at a 

container terminal. 

When planning the extension or modification of a terminal, different facets 

of a terminal are of interest. Often the effect of changes in the berth layout, 

yard layout, and gate and rail area layout on the behavior of the container 

terminal is of interest (Leriche et al. 2016; Kotachi et al. 2018). As a change 
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in one of them influences the performance of the others, the subset to eval-

uate must be chosen with care. Furthermore, the amount of equipment to 

purchase increases the levels to investigate and hence the size of the solu-

tion space tremendously. The solution space can be limited by examining 

only a coarse grid which seems relevant and promising to experts (Kotachi, 

Rabadi & Obeid 2013).  

4 Results and Discussion 

The literature search described in Section 3 discovers recent publications 

which have used simulation-based optimization at container terminals, 

covering lots of different problems, ranging from optimization tasks in eve-

ryday work life to supporting major investment decisions. Especially the 

short-term optimization tasks are described as some kind of scheduling 

problems, i.e. the solution is an efficient sequence of jobs. The long-term 

decision problems, such as layout determination and equipment pur-

chases, are reflected by discrete or continuous values. 

4.1 Permutation Space 

In Table 1 the compilation of different simulation-based optimization ap-

proaches which deal with permutations is presented. In addition to the al-

ready mentioned scheduling problems, the Tug Pilot Assignment Problem 

(TAP), the Quay Crane Dual-Cycling Scheduling Problem (QCDS), the Stor-

age Space Allocation Problem (SSAP), the Vehicle Dispatching Problem 

(VDP), and the Sequencing of Optimization Problem (SOP) are covered. The 

ampersand (&) indicates the integration of several problems. Mostly Ge-
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netic Algorithms (GA) are used, and second most Particle Swam Optimiza-

tion (PSO). Here the ampersand indicates that two algorithms were inter-

twined. The algorithm on the left side is on the upper level, while the algo-

rithm on the right side of the ampersand is on the lower level. Simulated 

Annealing (SA), Taboo Search (TS) and Beam Search (BS) are used less fre-

quently. Evolutionary Algorithms (EA) are a superclass of GAs and share 

many commonalities. The solution space matrix is derived from the graph-

ical or textual description of the solution representation. This was not nec-

essarily the internal representation during the search process, e.g. the im-

plementation following the BS methodology constructs the solution based 

on several sets. Furthermore, neighborhood definitions often needed for SA 

are not accounted for. Yet, the shape of the solution space determines 

which algorithms can be used. The number sign (#) followed by an equip-

ment type represents the number of distinct machines - similarly for tasks, 

containers or facilities on the container terminal. Here, one- or two-dimen-

sional matrices have been used. One-dimensional matrices decode the se-

quence of tasks and use specific schemes for the assignment to different 

machines. The second dimension is mostly used for distinguishing between 

different types of equipment or the different instances. 

The literature deals with many different equipment scheduling problems 

(QCAP, QCSP, QDCS, YCSP, VDP, TAP), problems related to area usage (BAP, 

SSAP), and the determination of a sequence of how to optimize different 

problems at a container terminal (SOP). It can be seen that even when two 

publications cover the same problem, the way the results are obtained al-

ways differ. Not two publications work on the same problem with the same 

algorithm, and a solution space of the same shape. This makes it difficult to 

draw conclusions directly. 
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Table 1: Simulation-based Optimization in the Permutation Space 

Reference Problem Algorithm 
Solution Space     
Matrix Dimensions 

Al-Dhaheri, Jebali & Diabat 
2016 

QCSP GA #𝑄𝐶𝑠 ൈ #𝑏𝑎𝑦𝑠 

Arango et al. 2013 BAP GA #𝑣𝑒𝑠𝑠𝑒𝑙𝑠 𝑥 60 

Cordeau et al. 2015 SSAP SA, TS #ℎ𝑜𝑢𝑠𝑒𝑘𝑒𝑒𝑝𝑖𝑛𝑔 𝑡𝑎𝑠𝑘𝑠 

Gudelj, Krčum & Čorić 2017 VDP GA 
#𝑡𝑎𝑠𝑘𝑠 ൅ 2
⋅ #𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑠 

൅#𝑒𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡 

Haoyuan & Qi 2017 QCSP GA, PSO, SA #𝑠ℎ𝑖𝑝 𝑎𝑟𝑒𝑎𝑠 𝑤𝑖𝑡ℎ 𝑡𝑎𝑠𝑘𝑠 

He, Huang & Yan 2015 YCSP GA & PSO #𝑡𝑎𝑠𝑘𝑠 ൈ 2 

He et al. 2015 
VDP & YCSP & 
QCSP 

GA & PSO #𝑡𝑎𝑠𝑘𝑠 ൈ  3 

Olteanu et al. 2018 QCAP & QCSP GA 
#𝑄 ൈ  #𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 

 𝑐𝑜𝑛𝑡′𝑠 

Said & El-Horbaty 2015 SSAP GA #𝑠𝑡𝑜𝑟𝑎𝑔𝑒 𝑏𝑙𝑜𝑐𝑘𝑠 

Supeno, Rusmin & Hin-
dersah 2015 

VDP GA 
#𝑡𝑟𝑎𝑛𝑠𝑝. 𝑡𝑎𝑠𝑘𝑠 

൅#𝑌𝑇𝑠 

Zeng, Diabat & Zhang 2015 QDCS GA & GA 
        2 ⋅ #𝑟𝑜𝑤𝑠 ൅  1, 

#𝑐𝑜𝑛𝑡′𝑠 𝑡𝑜 𝑙𝑜𝑎𝑑 

Zhao et al. 2015 SSAP GA, PSO #𝑠𝑡𝑎𝑐𝑘𝑖𝑛𝑔 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠 
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A yet untouched topic is the interpretation of the solution space. When de-

coding a single sequence into a schedule covering several machines, in lit-

erature many approaches exist. It remains an open question whether some 

encoding schemes have superior properties for the solution space explora-

tion and exploitation. All solutions are represented by a one- or two-dimen-

sional matrix. Often some of the complexity is delegated to problem-spe-

cific algorithms for fixing infeasible solutions as well as the encoding and 

decoding of the problem into actions in the simulation model. For PSO, one 

viable way is to translate the discrete space into a continuous space for the 

search phase and translate it back into the discrete space before translat-

ing the sequence into measurable actions inside the simulation model (He, 

Huang & Yan 2015a).  

4.2 n-dimensional Discrete and/or Continuous Space 

In Table 2, a summary of the reviewed studies is presented. The variable 𝐾௜  

simply represents a decision variable which is of continuous nature. The 

type of two decision variables could only not be verified for the publication 

of Leriche et al. (2016) because of a lack of provided details. This is indicated 

by an apostrophe. In the Table, different problems are in focus: Four of the 

publications deal with the terminal layout and equipment. In addition, pa-

rameters for a rail system or an empty container policy are tuned. Like in 

permutation space, GAs prevail. Other employed meta-heuristics are EAs, 

Scatter Search (SS), and Glow-worm Swarm Optimization (GSO). 

Among the publications in Table 2, Kotachi et al. (2018) tunes the largest 

number of distinct facilities simultaneously, covering the berth layout 

(length of berth), yard layout (number of import and export rows, number 

of YCs per row) and the gate (number of lanes). Due to this complexity, first 
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the sequence of the optimization tasks was solved in the permutation 

space (see the previous section). Four of the seven publications deal with 

block planning, general layout planning and equipment purchases. The de-

cisions are of high impact and due to the differences between container ter-

minals the answers of the studies can hardly be generalized. Yet a concep-

tual framework is of interest in the industry (Lin, Gao & Zhang 2014; Kotachi 

et al. 2018). For policy parameter tuning, the previously listed BAP is ad-

dressed again. Here, parameters of a decision support module are tuned 

(Ursavas 2015). 

Table 2: Simulation-based Optimization in the n-dimensional Discrete 
and/or Continuous Space 

Reference Problem Algorithm Solution Space 

Haoyuan and Dongshi 
2016 

Block Planning  GA ሼ0, 1ሽଷ଺ 

Kotachi et al. 2018 Layout & Equipment EA 
𝐾ଵ ൈ 𝐾ଶ ൈ 𝐾ଷ  ൈ 𝐾ସ 

ൈ 𝐾ହ  ൈ 𝐾଺ ൈ 𝐾଻ 

Leriche et al. 2016 
Rail system parame-
ters 

SS 𝐾ଵ ൈ 𝐾ଶ′ ൈ 𝐾ଷ′ 

Sáinz Bernat et al. 2016 
Empty container pol-
icy parameters 

GA ℕଶ 

Shahpanah et al. 2014 Layout & Equipment GA ℕସ 

Ursavas 2015 
BAP Priority Control 
Policy Parameters 

SS 
        ℝ#௩௘௦௦௘௟ ௖௟௔௦௦௘௦, 
ℕ#௕௘௥௧௛௦ൈ#௩௘௦௦௘௟ ௖௟௔௦௦௘௦  

Zukhruf et al. 2017 Equipment GSO ℕଶ 
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Similarly, Sáinz Bernat et al. (2016) tune parameters which are used for an 

empty container policy. At this point, optimization works on a meta-level 

and does not optimize the actual problem anymore. 

In total, in three out of seven cases GAs are used, and all search algorithms 

(i.e. GA, EA, SS, and GSO) are population-based meta-heuristics. Interest-

ingly, at no point Random Search (RS) has been used as a baseline. RS has 

shown better search results than human-guided search processes in other 

domains (Bergstra & Bengio 2012). Any meta-heuristic needs to be better 

than random to contribute to the optimization process.  

5 Conclusions and Future Research Directions 

Several publications hardly vary the parameters which control the behavior 

of a meta-heuristic. In addition, little justification is given for the reason 

why a meta-heuristic has been chosen. This might be a very challenging 

task. If one knew the exact behavior of the complex system, one would not 

need simulation. If one knew sufficiently good rules of thumb for the deci-

sion problems at hand, one would not need optimization. Therefore, argu-

ing for a specific meta-heuristic with specific parameter values is difficult. 

Sörensen (2015) argues that by deconstruction one can gain deep insight 

into how each of the components of a meta-heuristic work. Watson, Howe 

& Darrell Whitley (2006) showed how a tabu search algorithm can be exam-

ined by running different experiments. Such steps help to understand why 

certain performance measures are obtained - something that might be 

more helpful than just obtaining and reporting better scores. To give one 

example, He et al. (2015a) and He et al. (2015b) use GA & PSO while He 
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(2016) use GA & SA for different types of scheduling problems. The theoret-

ical reasoning or initial empirical evidence for why in the third scientific 

contribution GA & PSO is not applied could be of further interest. In this re-

gard, the research about meta-heuristics for maritime research problems is 

in its infancy. 

5.1 Limitations of This Literature Review 

The search was restricted to a short time range of five years, thus it could 

not detect developments over a longer time period. The search terms were 

chosen with care but the fusion of optimization and simulation goes by dif-

ferent names, so some publications could have stayed undetected. The 

large scope of covering all kinds of simulation in the scope of a single con-

tainer terminal resulted in some typically reported optimization problems 

(see e.g. Gharehgozli et al. 2016) and some rather specialized issues, espe-

cially in the n-dimensional discrete and/or continuous search space. This 

wide range limits how the optimization approaches can be reasonably 

compared. For this reason, the contentual perspective is lacking, such as 

the practical and theoretical assumptions made, or how a found solution 

representation is exactly interpreted in the simulation model. In some pub-

lications, several intermediate solution representations were presented. 

This could not be sufficiently covered in the overview. Furthermore, similar 

optimization problems exist outside container terminals (Xu et al. 2015). 

The focus on one container terminal limits the covered literature and ne-

glects problems which are similar in theory. 
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5.2 Future Research Directions 

The aforementioned limitations create great opportunities for future explo-

rations: When focusing on one problem (or a group of similar problems), by 

far more criteria can be examined and compared meaningfully. On the one 

hand, the contentual perspective needs to be elaborated. A fair comparison 

of different optimization strategies needs to take into account which con-

ceptual model and simulation model have been developed and which as-

sumptions have been made. On the other hand, the algorithms can be ex-

amined in more detail, including the algorithm selection and parameter 

tuning process. 

In general, the search process of meta-heuristics needs to be further inves-

tigated. Sörensen (2015) advocates to intensify the research less on the 

pure performance of a meta-heuristic but more on the how and why. In this 

literature review, GAs have been used in 16 out of 25 publications. What is 

the reason behind that? How promising are other meta-heuristics? An in-

depth analysis of the search behavior can possibly provide the reasoning 

for the selection of the most appropriate algorithm in future. 

Only a few instances of meta-heuristics operating in the n-dimensional dis-

crete and/or continuous space have been presented. As Kotachi et al. (2018) 

argue, this is one essential approach in the field of terminal planning. The 

same type of solution space has been of great interest in the automated 

machine learning community as well (Bergstra et al. 2011; Hutter, Hoos & 

Leyton-Brown 2011). It remains an open research question how well the 

meta-heuristics can be applied to simulation models. Different meta-heu-

ristics alongside with different meta-heuristic parameters need to be em-

pirically compared to gain more insights. 
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