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1. Introduction

The present paper is focused on estimation techniques for evaluating an educational
program in terms of a subsequent duration of, say, unemployment or employment.
Our empirical work is focused on total time outside the unemployment state after
participating in the Swedish Adult Education Initiative (AEI, Kunskapslyftet). Ex-
its to further studies as well as to employment are targeted by this program and
the corresponding durations are therefore merged together. The AEI is a five year
adult education program that started in July 1997 and targets primarily adult unem-
ployed who lack a three year secondary school education. Employees with a short
education can also be included. The AEI contains previous educational arrange-
ments for adults and gives a financial framework for municipalities. Previous labor
market training (LMT, Arbetsmarknadsutbildning) programs run by the Swedish
Labor Market Board were at the same time planned to be reduced by volume. This
did not materialize immediately, however. Axelsson and Westerlund (1999) give an
extensive background description on programs and participants.

When future unemployment spells are accounted for in a decision, based on the
net present value to enroll in a training program or not, there is an obvious depen-
dence between unemployment spells and the decision. The mechanism is analogous
to what we expect to find for post-program wage evaluations (see Appendix A). This
is one route for motivating the selection problem for the duration model, and there
can be others (e.g., Ham and LaLonde, 1996, Hujer et al., 1999, and Melkersson,
1999).

Note that evaluating programs using durations rather than income measures
can usually be made much more easily as well as more promptly. Durations can
frequently be obtained from administrative registers, while income measures may
be obtained by questionnaires or by tax records with a delay of up to several years.
Moreover, short post-program unemployment spells are likely to be of more policy
interest than income enhancement effects.

Duration models are usually cast in either a hazard function formulation (the
proportional hazard function appears to be the most widely used one) or in terms
of a loglinear duration model. Our main emphasis is on the latter. The appeal
of the loglinear model is that the model setup is closer to the Tobit model for
which there is considerable prior research on the effects of selection or of censoring,
and also that it a priori may be possible to get by without making excessive and
explicit distributional assumptions. One such assumption is that of a proportional
hazard. We will demonstrate a way to nonparametrically obtaining estimated hazard
functions for the two groups (cf. Brinnés, 1992a).

In addition to the selection problem, censoring is a feature of most duration data
sets that also needs to be accounted for. The paper discusses some adaptations to
previously suggested estimation procedures to account for both selection and cen-
soring rather than for merely censoring or merely selection. Two of the estimation
procedures (adaptations to the Powell (1986) and Buckley and James (1979) esti-
mators) are partly evaluated in a Monte Carlo study before we proceed to give some



empirical results related to the Swedish Adult Education Initiative.

We start in Section 2 by setting up the model framework and by discussing which
measure is to form the basis for the evaluation. Section 3 discusses estimation in
accordance with the two measures singled out in Section 2. Section 4 provides
the Monte Carlo evidence on small sample properties of estimators and tests. The
empirical results are given in Section 5. A discussion of some key issues raised in
this paper is saved for the final section. Among such issues we demonstrate that the
present modelling strategy remains a valid approach also for a multiple-spell model
exercise.

2. Model Framework

We consider a loglinear duration model and a conventional selection model:*

y = Int=xB+ad+ow (1)
B 1, 6=zv+£>0
¢ = {0, 5<0. 2)

The exogenous variable vector x is assumed to contain a constant term so that the
intercept (3; contains any nonzero mean of w, which also is assumed to have unit
variance. With this formulation we rule out time dependent explanatory variables,
but are not restricted to only proportional hazard function models.? If the educa-
tional program is to be beneficial we expect « to be negative, i.e. to correspond to
a shorter unemployment duration. If instead ¢ is the duration of employment, we
expect a to be positive.

With regard to the selection mechanism formulated in (2) it is of the conventional
form, but could be generally defined. The simple analysis of Appendix A suggests
that (2) is not the most clever specification. Estimation techniques that avoid fully
accounting for the form of (2) by avoiding to estimate (1-2) jointly, should therefore
be of great interest.

There are, at least, two alternatives for evaluating the effects of educational
programs in this framework (e.g., Maddala, 1983, and Heckman, 1990). The «
parameter corresponds to the expected potential outcome of the program, i.e. how
much an unemployed individual would gain if had he/she been placed into training.?
A second alternative is to use the average impact of the training program on the
log duration, i.e.

E(yld=1) = E(yld =0) = a+ o[Ew[¢ > —z7) - EW|{ < —zv)l.  (3)

LA multiple-spell version of the model is discussed in the final section.

2Tt is possible to introduce time dependence, dummy variables reflecting time intervals, etc. by
letting the dependent variable in (1) be a logarithmic function of such variables. For the estimators
considered in this paper this would, however, create problems to which there, at least, for now are
no good solutions.

3This criterion becomes more involved if there are different shape parameters o1 and og corre-
sponding to d =1 and d = 0.



This follows since

Eyld=1) = xB+a+cEw|{> —zv) (4)
E(yld=0) = xB+cE(w|¢ < —zv). (5)

To evaluate the measure in (3) we either have to make a distributional as-
sumption or provide some nonparametric estimator for the conditional expecta-
tions. This reasoning carries over to the natural time scale ¢, on which the ratio
E(tld = 1)/E(t|d = 0) will be independent of the characteristics in the x vec-
tor, while the difference E(t|d = 1) — E(t|d = 0) will not. Here, exp(a) corre-
sponds to the former measure on the Int scale. For small o the effect in per-
cent is then approximately 100a. On the ¢ scale a > 1 corresponds to an effect
that prolongs the studied duration and a@ < 1 to a shortening effect. The ratio
E(tyld = 1)/E(to)ld = 1) = exp(a)E(exp(ow)|d = 1)/E(exp(ow)|d = 0), with
to = exp(x0) exp(ow) and t, = tgexp(a), corresponds to (3).

Depending on which measure is the one of ultimate interest it will have consid-
erable impact on how we should estimate the unknown parameters of the models.
The former measure, o, makes semiparametric estimators based on relatively weak
assumptions feasible.

If 7 = exp(w) has hazard function v,(7) the hazard function corresponding to
(1) can for given d be written

A(t) = 7ot e VEPred) L exp(—h(xB + ad)),

where 1) = o=, This hazard function will be proportional only under quite specific
assumptions on the form of (7). For a given density function of 7, g(7), the density
function of ¢ given d is

F(t) = gtV e P eP+aD )=t oxp(—ah(xB + ad)).
3. Estimation

In addition to selection, right censored durations are a rule rather than an exception.
We need to account for the censored observations in order to avoid biased inferences.
The assumption we make is the conventional one, i.e. that the censoring mechanism
is independent of the duration ¢ and to the right (Type 1 censoring or a weakly
exogenous censoring mechanism). An observation is censored when y > ¢, where ¢
is the possibly random censoring point, and we then set the indicator variable w = 0
for that event. For noncensored observations, y < ¢ and w = 1.

For inferential purposes one difficulty arises with giving a well-motivated bivari-
ate distributional specification for (w,&)’. Such an assumption is needed for full
maximum likelihood (ML) estimation of the two relationships (1)-(2) as well as for
least squares (LS) estimation based on parametric assumptions. In the Tobit model
context a bivariate normal assumption is the most widely used one, but alternatives
such as a multivariate logistic distribution could be applied.

3



The general shape of the likelihood function is

L = [[fwld=1)"Pr(y>cld=1)""“Pr(d=1)
X Hf(y|d =0)“Pr(y > c|d = 0)'™ Pr(d = 0). (6)

d=0

Our main focus will be on estimators compromising between being based on as
few assumptions on the distributions for In¢ and ¢ as possible and being a tractable
procedure. Therefore, the ML estimator will be given no further discussion in this
paper, though ML gives all that is required for either measure. A least squares esti-
mation procedure based on the bivariate normality assumption is given in Appendix
B.

When the evaluation measure of key importance is o (and we additionally wish to
estimate the unknown vector 3) we consider two approaches to estimation that are
both tractable and based on relatively weak assumptions. One approach is related to
the trimmed mean and eliminates observations in the left tail of the y distribution
to the same extent as the fraction that is missing due to censoring in the right
tail. By this, symmetry is restored and the mean is a consistent estimator. This is
the essence of the Powell (1986) symmetrically trimmed least squares estimator for
censored data. In the second approach, we take the opposite stand and forecast the
censored observations so as to obtain a full sample. An iterated use of forecasting
and least squares estimation is the essence of the Buckley and James (1979) and
Horowitz (1986) estimators.

These two approaches to estimation can both be extended to incorporate instru-
mental variables for dealing with the endogeneity of d, and they do not use explicit
distributional assumptions in accounting for censoring. Note also that the selection
equation is of no direct use for these estimators, which then are of a limited informa-
tion type. The benefit of not accounting fully for the selection equation is a gain in
robustness, but a potential loss of efficiency if the selection equation by coincidence
would be correctly specified. The two estimators are introduced in an instrumental
variable setting with equally many instruments/basic variables and unknown 3 and
« parameters. An extension into GMM estimators seems straighforward, but is not
considered.

3.1 Limited Information Estimation

The extension of the Powell (1986) estimator to right censored data and to include
instrumentation for d is straightforward. The key assumption for Powell’s symmetri-
cally trimmed estimator is that w has a symmetric distribution, while the estimator
remains consistent and asymptotically normal also under heteroskedasticity in ow.

Define ' = (8, a), xt = (x;,d;) and &; = (x;,d;), where d; is an instrumental
variable for d;. For instance, d; can be the predicted value from a first stage Probit
model applied to (2) or from a regression of d on the explanatory variables and their

cross-products.



The Powell estimator adapted to right censoring (cf. Brannés, 1992b, ch. 3) and
instrumental variables may be written

n

n -1
6= [Z 1(x0 <cz-)§<;X;‘] Z 1(x:0 <)%, max (y;, 250 — ¢;). (7)

i=1 i=1

For uncensored observations, ¢; may be set at some large value so that the indicator
functions in practise are equal to one and the maximum value in (7) is equal to y;.
The estimator is iterated until convergence. Santos Silva (1998) recently proposed
a modification for the Tobit model version that both reduces the problem with
nonconvergent iterations and speeds up iterations substantially. As we only observe
the smaller of y; and ¢; an arbitrarily set ¢; would seem to rule out the usefulness of
the Santos Silva (1998) approach in the present setting.
A consistent estimator of the covariance matrix is of the form

Cov(6) =n"tC'DC™,

where

C = nt Z 1(2x50—c; <y < ¢;))Xx;

i=1
n

D = nt Z l(xfé <¢;)min (&7, (¢; — x?

i=1

Santos Silva (1998) found no strong reason to improve on the covariance matrix
estimator suggested by Powell (1986) for the Tobit model. The covariance matrix
estimator given above therefore only adapts the original Powell’s estimator to right
censored data and for the instrumental variables.

Honoré and Powell (1994) provide an estimator that also uses trimming but ap-
plies to nonsymmetric distributions as well. In a simulation they found the Powell
estimator to be relatively robust against nonsymmetric distributions, but that their
estimator and in particular the Buckley and James (1979) estimator performed very
well in terms of bias and MSE. Unfortunately, the Honoré and Powell (1994) esti-
mator requires an observed censoring variable also when censoring is not registered.
This is too strong an assumption for most purposes. For the adapted Powell es-
timator we chose to set the censoring values at some large value for noncensored
observations. As the Honoré and Powell (1994) estimator is based on pairs of ob-
servations this may be a more sensitive setting. For this reason the estimator is left
outside this study.

Buckley and James (1979, for right censored duration data) and Horowitz (1986,
for left censored at zero - Tobit model data) propose estimators that resemble the
EM-algorithm and for duration data estimate F(w|w > ¢ — x*@) nonparametrically.
In this case, there is no symmetry assumption on w. An extension to allow for
instrumental variables appears straightforward here as well. This estimator does not



allow for heteroskedasticity, however. Briannds and Laitila (1989) and Moon (1989)
demonstrate considerable sensitivity in this respect. James and Smith (1984) proves
consistency for a simple model and Wu and Zubovic (1995) study the fluctuations
of the algorithm.

For given d;,

E(yilyi > ¢;) = xiB + ad; + 0 E(w;|w; > (¢; — x,8 — ad;) /o),

where we employ the nonparametric Kaplan-Meier or product-limit estimator for
the estimation of the conditional expectation in the right hand side expression. Let
€ = y;‘—xz-B—ézdi with y7 = min(y;, ¢;) be the residual. The product-limit estimator
of the survivor function, 1 — F'(.), is

1-Fw) = ] (1 - %yu) , (8)

€uy<w o

where €1) < €y < ... < €, are the size ordered values on é;, n(; is the number of
residuals at risk at ;) (i.e. just to the left of é(;)), m(; is the number of completed
durations at €, and py;) = 1 if m() > 0 and p;) = 0 otherwise. If the largest ¢
is censored, the remaining mass is assigned to é,) by convention. At iteration 7 of
the algorithm we have the following predictor for censored observations

b= xB, +andi+ Y f(85)e5/[1 - F(e)], (9)

Ji8j>é;

where f(é;) is an estimator of f(.) that can be obtained from F'(.). Instead of OLS
estimation in the regression of y or ¢ (for censored observations) on x and d as in the
original Buckley and James (1979) estimator, we propose an instrumental variable
estimator

5= (X'X')'X'y, (10)

where ¥ has elements y or §. The estimation of the covariance matrix of 85,
for the basic model is discussed in Brénnés (1992b). An extension to the present
instrumental variable context is straightforward:

Cov(@p,) = 62(X'X ) X'X(X"X)™".

For 6% we use only residuals for full observations. Using a kernel estimator of f(.)
and some smoother of F(.) may eliminate the potential cyclicity of the algorithm.
The cyclicity arises due to the discrete jumps in f(.) and F(.).

These estimators provide & estimates and correspond to the first measure. In
Section 5 we will indicate a way to estimate the second measure of Section 2 as well.
To obtain the second measure one could also use normal distribution results and a
first stage Probit ML estimator, or say, run a polynomial regression of w on é which



then is used to approximate the conditional expectations. We will not pursue such
ideas further in this paper.

Within the hazard function setting accounting for selection is quite straightfor-
ward. As one approach we suggest: start with the conventional likelihood equations
based on a hazard function Ao(t) exp(x*8) for the parameter vector 0, i.e.

n

OlnL y

=1

where A;(6) is the integrated hazard function and may depend on other parameters
than @ as well. Leave the residual part, y; — A;(0), intact. In the instrumental
variable part, x}, replace the d variable by d or a whole set of instrumental variables
(e.g., those included in z). Finally, use GMM based on the modified and possibly
unaltered (for other parameters) likelihood equations instead of ML estimation to
obtain estimates.

4. Monte Carlo Study

This small Monte Carlo aims at: [1] studying the OLS (as a reference), the Powell,
and the Buckley-James (the latter two with instrumental variables and accounting
for censoring) estimators of the o parameter in terms of their small sample per-
formances, and (2| studying the power properties of conventional ¢-tests of & = 0
against a # 0. We recognize from the outset that this study can be at most partial.
The outcome could therefore screen out estimators/tests that underperform severly.
A positive outcome cannot be overly stressed, however.
The study is based on the simple data generating process

i = 14z +adi+w;

d = 1, 62225—ZZ+§1>0
o 0, 6;<0.

We let « = 0,0.1,0.2,0.3, and p = o0, = —0.7,-0.35,0,0.35,0.7. In the first
experiment the distributions of w; and &, are both normal with zero means and unit
variances, while in the second experiment w; is a linear combination of the normal
¢, and a standardized extreme-value variable w}. The explanatory variables x; and
z; are generated as independent from uniform (0, 5) distributions and kept constant
during replications. Censoring is varied as ¢; = p + 1),;, where 7, is standard normal
and p = 3.5 (corresponding to 50-53 percent of censored observations) and 4 (38-
41 percent censoring). For the second experiment the censoring percentages are
marginally higher. The sample sizes are set to 500 and 5000, and 1000 replications
are run in each cell. The nominal test size is set at 0.05. As an instrumental variable
we use aﬂ = z;. The direct correlation between d and d is about -0.77.

For the Powell estimator preliminary inspection reveals a cyclical problem; esti-
mates at the iterative step & may be equal to estimates at k — 2, k — 3, or so on.
In the simulations we therefore check over 5 steps for identical estimates. If there

7
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Figure 1: Biases of the OLS (only in left hand graph A) and the adapted Powell
(black and square marker) and Buckley-James (white and circular marker) estima-
tors for n = 500 and 40 percent censoring. Graph A is for the normal distribution
case and graph B for the extreme-value/normal distribution case.

Power

Figure 2: Power functions for adapted Powell (solid line) and Buckley-James (dot-
dashed line) test statistics of a = 0 against a # 0 (n = 500 and 5000, 40 percent
censoring, and p = 0 and 0.7). Graph A is for the normal distribution case, and
graph B is for the extreme-value/normal case.



are smaller than 0.00001 differences, we interrupt iterations and take the average of
the final four iterations to be the estimates. The checking starts at the 6th iterative
step. The inspection suggests that differences in estimates over the cycles are quite
small and may go unnoticed with a less stringent convergence criterion than the
used: no difference between successive iterations should exceed 0.00001. No cyclical
problem was detected for the Buckley-James estimator.

In Figure 1 we report bias results of the OLS, Powell and Buckley-James es-
timators for n = 500. The left graph is for the normal distribution case and the
right hand graph for the case of the linear combination of extreme-value and nor-
mal. The OLS estimator expectedly stands out with its huge bias that is invariant
with respect to « but increases linearly with the value of p.* In graph A both the
adapted Powell and Buckley-James estimators have biases that only marginally be-
come larger with p. These estimators also have marginally larger biases for larger
values on . The bias of the Buckley-James estimator is slightly larger than that of
the Powell estimator for « = 0.3 but smaller at a = 0. All biases but those of the
Buckley-James estimator for a < 0.1 are negative. For n = 500, the variance of the
Powell estimator is 0.018 for 40 percent censoring and 0.015 for the Buckley-James
estimator. For 50 percent censoring we have variances 0.020 and 0.015, respectively.
For this censoring degree, the variances drop to 0.002 and 0.002-0.003, respectively,
for n = 5000. The biases of the two adapted estimators are slightly higher for the
higher censoring degree. In graph B we notice that the Buckley-James estimator
has larger absolute bias than the Powell estimator for two cases (o = 0 and 0.3).
It follows from this limited experiment that there are no huge differences in mean
square error behavior between the adapted Powell and Buckley-James estimators.

Powell and Buckley-James estimators that do not account for selection have
biases not too different from those of the OLS estimator. From this we conclude
that, at least in this case, selection has a biasing effect that is more severe than has
censoring. For n = 500 and 40 percent censoring the Powell estimator required 6-7
iterative steps, while the Buckley-James estimator required 9-12 steps. The Powell
estimator is much faster to calculate. In particular for n = 5000 the repeated sorting
required in the Buckley-James estimator makes simulating it quite time consuming,.

The power functions for test statistics of & = 0 against a # 0 based on the
adapted Powell and Buckley-James estimators are displayed in Figure 2 for the two
sample sizes, 40 percent censoring, p = 0 and 0.7, and for the two experiments
(graph A and B, respectively). Obviously, there is no strong effect of p as lines
are quite close in particular for the larger sample size. There is an expected strong
sample size effect that also reverses the order between the two tests. The Powell test
is more powerful for n = 5000, while the Buckley-James test is more powerful for the
smaller sample size. The sizes of both test statistics are throughout significantly too
small. For the Buckley-James estimator in the normal distribution experiment with
50 percent censoring the sizes are 0.059 and 0.060 for the two levels of p, respectively.

4Obviously, the biases, variances, etc. of the OLS estimator can be analytically determined
under distributional assumptions. Under normality some of the reults given in Appendix B will be
useful.



Table 1: Variables and descriptive statistics (n = 15990).

AEI LMT

Standard- Standard-
Variable Mean deviation Mean deviation
Insider time 87.9 60.5 187.6 107.6
Gender (Female=1) 0.72 0.45  0.42 0.49
Age 33.1 7.1 30.4 9.0
Children at home 1.08 1.18 0.63 1.06
Disability 0.07 0.26 0.12 0.32
Nationality (Swedish) 0.93 025  0.85 0.36
Nationality (Nordic country, non-Swedish) 0.03 0.16 0.02 0.13
Nationality (Europe, non Nordic) 0.02 0.13 0.08 0.27
Education (Primary school) 0.22 0.41 0.19 0.39
Education (Seconday school)® 0.09 0.29 0.29 0.46
Education (Post-secondary school) 0.06 023  0.15 0.36
Unemployment benefit (1997) 0.86 0.35  0.66 0.47
Unemployment, cash assistance (1997) 0.03 0.16  0.02 0.15
Unemployment rate (counties, 1998) 6.71 148  6.48 1.43
Days in event database (1995-96)° 402.1 2672  413.7 258.9
Number of states in event data base (1995-96)  3.51 272 397 2.72
Ending training May—June 1998 0.83 0.38 0.31 0.46
number of observations 14 578 1412

Notes: Most of the data comes from the event history database Hindel kept at the
Swedish Labour Market Board for administrative purposes.

% Secondary school is the three year form, i.e. 2 year secondary serves as a base.

b As unemployed.

Neither is significantly different from the nominal size.

5. Empirical Results

The Swedish Adult Education Initiative (AEI) started in July 1997 and targets
primarily adult unemployed who lack a three year secondary school education. Em-
ployees with a short education can also be included. Axelsson and Westerlund (1999)
give an extensive background description on programs and participants.

The results presented in this section are based on a sample of 15 990 individuals
who participated in AEI or labor market training (LMT) programs ending in either
of the periods May — June 1998 (78 percent of the observations) or December 1997
— January 1998 (22 percent). Participant were unemployed before entering either
program. The evaluation variable under study is the total time outside the active or
passive measures (collectively labelled unemployment) of the Labor Market Board.
The total time then contains time spent in employment (about 15 percent of the
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Figure 3: Kaplan-Meier estimated survival functions for post-program insider time
in days for AEI (dot-dashed line) and LMT (solid line).

exits are to employment) as well as outside the labor force, e.g., in studies (about
73 percent). For the duration variable we choose to use the term insider time for
brevity.?

In Table 1 we give a summary of the utilized variables together with descriptive
statistics. In Figure 3 the survival functions for the AEI and LMT groups are
exhibited. The censoring degree is as high as 77.4 percent of all durations. Obviously,
this can be interpreted as a good signal as it indicates that about 77 percent of all
individuals were occupied in studies or had employment at the time when durations
were obtained. About 9 percent of the individuals come from LMT and among
them about 59 percent had ongoing studies or employment. It should be observed
that AEI programs are intended to prepare participants, e.g., for further studies
as well as for work. Table 1 shows that average insider times are much longer for
LMT participants. These to a lesser extent pursue further studies. The average
participant in either program has a history of unemployment reflected by the large
average number of days of unemployment during 1995-1996 as well as the number
of states occupied. The differences between the two participant groups are not
significant. Figure 3 indicates a median insider time of 238 days for AEI participants
while the median exceeds 350 days for LMT participants. The sudden drop at only
a few days as well as at about 150 days for AEI participants appears to arise from

®No connection to the insider-outsider theory is intended.
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Table 2: Parameter estimates for the duration model.

Powell Buckley-James
Variable Est.  s.e. Est. s.e.
Gender 0.115 0.100 -0.006  0.017
Age/10 0.021 0.051  0.007  0.005
Children at home -0.015 0.032 -0.003  0.007
Disability -0.022 0.129 -0.052  0.031
Nationality (Swedish) 0.084 0.203 0.074  0.053
Nationality (Nordic country) 0.039 0.294  0.067 0.072
Nationality (Europe) -0.053 0.300 -0.075  0.073
Education (Primary school) 0.016 0.148 -0.036  0.020
Education (Seconday school) 0.170 0.175 -0.037  0.035
Education (Post secondary school) -0.316 0.192  0.089  0.037
Unemployment benefit -0.715 0.273 -0.607  0.027
Unemployment, cash assistance -0.343 0.232 -0.379  0.054
Unemployment rate/10 0.081 0.278 0.070  0.056
Days in event database/1000 -0.316 0.192 -0.185  0.043
Number of states in event database/10 -0.174 0.179 -0.170  0.043
Participant in AEI -1.640 0.538 -1.547  0.090
Ending late 1998 1.313 0.083 1377 0.028
Constant 5.305 0.377  5.260  0.091

Note: Buckley-James 6% = 1.018.

those that end or have a break from AEI report themselves as unemployed from the
early days of the summer.

For the creation of an instrumental variable for d we use a first stage Probit
model estimated by ML. The results and the specification are given in Table C1 in
Appendix C. The correlation between d; and d; = Pr(d; = 15) is 0.59. Running
a regression between the d; obtained by the selection model and the explanatory
variables of the model gives an R? of 0.30, which we regard as quite innocent.

The estimation results for the duration model are summarized in Table 2. The
given estimates (Powell and Buckley-James) correspond to the estimators that ac-
count for both censoring and selection. The key parameter of interest is that of the
AEI dummy variable and for both estimators we get a negative sign corresponding
to shorter insider times for AEI participants. The effect is in fact substantial as it
corresponds to 80.6 percent shorter insider times for the Powell estimator and 78.7
percent for the Buckley-James estimator. The effect is significant for both estima-
tors. The only other variables that have significant effects using the Powell estimator
are those of the unemployment benefit and the indicator for ending education in the
early part of the summer 1998. The former variables has the effect of shortening
insider times which is the expected result. Using the Buckley-James estimator in-
dicates some differences, but the main conclusions remain even stronger. As the
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Buckley-James estimator has substantially smaller standard errors several variables
now have significant effects. Both forms of unemployment support have significant
effects of the expected negative signs. The history variables, days and number of
states, both have significant effects of expected signs as has the ending late 1998
indicator variable.

In Table C2 in Appendix C we give estimates obtained by inappropriately used
OLS, Powell and Buckley-James estimators. These do not account for censoring,
selection or both. These estimators are utilized to indicate the impact of neglecting
censoring and selection and not for their estimates per se.® We note, however, that
signs in most cases remain unaltered between these estimators and those of Table
2. The sizes of parameter estimates are frequently smaller. The effect of the AEI
program participation is substantially smaller when the selection effect is neglected.
For these estimates the AEI insider times are 71.3, 73.5 and 69.8 percent shorter,
respectively. Notable is also the much larger standard errors of the Powell than of
the OLS and Buckley-James estimators. In most cases the OLS and Buckley-James
estimates are relatively close to each other.

Next we turn to the implied density and hazard functions of the estimated mod-
els. As the basis for this exercise we choose to use the Buckley and James (1979)
estimator, as the distribution function, Fg(w), of w is already estimated in this
case. The model estimated by the Powell estimator would require that we first es-
timate Fy(.). In Figure 4 we give the estimated density function fo(w). The used
kernel estimator is based on a standard normal density function as the kernel and
the bandwidth is set equal to 1. As is obvious the estimated density is negatively
skewed with a fat left tail. The tails are fatter than those of a standard extreme-
value distribution (corresponding to Weibull distributed duration ¢). The estimated
asymmetric density function is not very different from the density employed in the
Monte Carlo study as the second experiment. Hence, though the Powell estimator
presumes symmetry it was not found to be excessively sensitive to asymmetry, and
therefore the Powell estimates can not be disregarded for this reason. Obviously,
the skewness speaks against the use of normality based ML estimation or the least
squares procedure of Appendix B.

To obtain the hazard function of ¢t we use the result that the distribution function
of t for given d can be written in terms of the Fy, distribution:

F(t) = Fo[(Int — x8 — ad)/0].

The hazard function conditional on d can with substituted estimates be written on
the form

) — 1 fo[(Int — xB — ad) /5]
1— Fol(Int —xB — ad)/6]

To test formally against a selection effect using a Durbin-Wu-Hausman test is not straightfor-
ward in this case. The test rests on one estimator being efficient (and consistent) under the null
of no selection effect. Obviously, we have no such estimator.

13



Residual

Figure 4: Estimated density function f(w) (solid line) and standard normal density
function (dashed line).
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Figure 5: Estimated hazard function based on Buckley-James estimates of the model
(uncensored observations; AEI, circle marker, and LMT square marker).
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Here, (Int —xB3— éd) /6 corresponds to the standardized residual. By evaluating
the function at noncensored values we get the hazard functions of Figure 5. The
graph is based on observed values and the markers indicate individual values on the
calculated hazard function values. One conclusion is that proportionality does not
appear to receive support for low values on ¢, while for higher values the functions
coincide. Further support for this claim is that there appears to be an interior
maximum which rules out a Weibull distributed ¢t — the only proportional hazard
that could arise from the present model setup. The second conclusion is that there
appears to be negative duration dependence, so that returning to the unemployment
state gets less likely with time.

As a final point we return to the second measure of the participation effect,
cf. (3). Given residuals w; we estimate the conditional expectation for given d; =
0 and d; = 1, respectively, by their sample analogs. The measure is on the log
scale —1.672 for the Buckley-James estimator, i.e. larger than & = —1.547. The
corresponding measures for the day scale ¢ are 0.053 vs. exp(—1.547) = 0.213. The
former corresponds to -94.7 percent.

6. Discussion

The paper has suggested instrumental variable adaptations to two well-known es-
timators for censored data. One advantage with the suggested procedures is that
only weak distributional assumptions need to be invoked. The results of the small
Monte Carlo study suggests that the two estimators are quite well-behaved in sam-
ple size regions that can be expected to arise in empirical work. The estimators by
and large give analogous results in the empirical study, albeit the adapted Powell
estimator has larger standard errors. This may be due to using less information for
this estimator but also due to heteroskedasticity. Correcting the Buckley and James
covariance matrix estimator for heteroskedasticity does not alter standard errors by
much.

Among other estimators that are based on weak assumptions it appeared difficult
to adapt the Honoré and Powell (1994) estimator for our purposes. The Robinson
(1988) estimator cannot be applied as the x variables will reappear in the correction
factor for censoring. In some approximate version with x variables that do not
enter directly but rather in some mixed form the Robinson estimator could easily
be applied for the present purposes.

For models based on specified hazard functions no particular problem arises,
except that conventional programs for duration data can not be applied. For correct
instrumental variable estimation, the model in the residual part of the moment
condition should be based on d, while d is to be used in the instrumental variable
part. Obviously, the proportional hazard function is at present the only reasonable
point of departure if some variable(s) are time dependent.

Recent evaluation research (e.g., Ham and LaLonde, 1996) is frequently based
on multiple-spell models. With the present model type we may consider, say, the
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following model version

Yoi = XB+ad; +we +e;  (after)

Ypi = Vit wp + e (program)
(before)
(

Ypi = W0 4wy +Ye;

di = zy+E + Y. >0) (selection rule).

These equations are correlated through the common random effect ¢; for individual
1 and also due to correlation between, at least, the pair w,; and ;. It still remains
legitimate to focus only on the y,; equation and to use an instrumental variables
estimator for only this equation. Obviously, there will be an additional loss in
efficiency from not estimating all the equations jointly. The yq;, yp and y,; equations
could be estimated jointly by ITV/GMM techniques, and this requires some extensions
to the considered estimator. Estimation of these types of models with a left censored
Yqi variable was first considered by Nelson and Olson (1978) and Amemiya (1979).
Brinnis (1992b) discussed adaptations to these estimators for right censored data
by using the Powell (1986) estimator. In this framework it is obviously important to
reflect on simultaneity vs. conditional interpretations, that reflect the time ordering
of spells. The current interest in discrete mixing distributions for ¢; is here facing an
identifiability barrier as features of, e.g., w,; and &; can not be separately estimated
unless additional information or assumptions are introduced. If that could be done,
the vy, is the dependent variable of a switching regression model with unknown
sample separation.

When it comes to the empirical exercise, the results are very much the expected
ones. The dependent variable, which we for brevity reasons chose to call insider time,
mainly represents the times to employment and further studies. During studies an
individual is outside the labor force. For those leaving AEI, a substantial fraction
(about 73 percent of the exits are to studies) of the individuals advance to higher
levels of education within AEI or elsewhere. As the AEI attempts to enhance the
educational level this may be as positive an effect as it is that some end up in
regular employment. The newly developed estimators suggest that AEI participants
have significantly shorter times before re-entering unemployment. On comparison
of estimates it appears that the selection effect on estimates is stronger than that of
censoring.
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Appendix A: Present Value

T0 UO LO ..
-— e o ®© ®© o = Training (0)
T U, : L, -

. * = . Training (1)
0o 1° T PR time

Figure A: The spells used for present value calculations [T" indicates training with
benefit By, U is unemployment with benefit By, and L is work with wages w"
(Training state, 0) and w' (Training state, 1)].

We give a simple and stylized example, cf. Figure A, of the net present value
calculation. Under the Training (0) and Training (1) regimes we get the present

values
To Tg o0
P = / Bye %dt + / Bye %dt + / wle O dt
0

0

T0O ’TO
Tl Té 0,0)

pt = / BUe_atdt—I—/ BUe_atdt—I—/ whe%,
0 Tl T

0

where 6 is the discount rate. Hence, By is the compensation under unemployment
as well as under both types of training. It follows that the difference 6 is a random
variable since the 79, 7§, w® and w! are assumed to be random variables:

5= Pl . PO — % (6_0T8 . 6—97'(1)) +% (e—GTéwl . e—@Tng)

Therefore, 6 and the duration variables are obviously correlated and will produce
a selection effect in the duration model. If the unemployment spell for trainees
(0) follows an exponential distribution with parameter 1, and for trainees (1) with
parameter j;, both spells are independent of the random wages with E(w!) =
n+ a = E(w’) + «, and in addition times in training are fixed, then the expected
difference is

B(6) = B(P' ~ P°) = 5o (Bu — ) + 1 (n+ o~ Bo)]

where co = 119 exp(po7°) /(o +0) and c1 = py exp(py ') /(11 +0).
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Appendix B: Full Information Estimation

Consider the case when the training impact is measured by (3). The following
estimator is based on joint normality in (w,&)’. Obviously, the ML estimator may
be applied in this case, but we prefer to expand on a procedure that is closer to
least squares. Under normality and using (4-5) we may write the model for full
observations as

Yi = Xiﬁ —+ dei + O'O'w§>\1' + &4, (Bl)

where o, is the covariance (and the correlation in this case) between w and ¢ and
Ai = ¢(zy)/P(zv) with ¢(.) and ®(.) the standard normal density and distribu-
tion functions, respectively. Here, E(g;) = 0 and the conventional normalization
V(¢;) = 1 was already employed. For censored observations we need the conditional
expectation expression

E(yzyyz > CZ') = Xz’,B + ad; + O'O'wg)\i + E(Ei‘&‘i > C; — Xi,B—Oédi — O'O'w§>\i), (BQ)

where for evaluating the final term a standardization by the variance of ¢;, o, is
required. Under the normality assumption we get

Vie) = O-gi = ‘72‘735 {1 — (ZeY) N — A?‘P?} )

where we have used the notation ¢, = [d; — ®(z;y)]/[1 — P(zy)].
Corresponding to (B2) we then get:

E(yilyi > ¢i) = %8 + ad; + 00, + 0], (B3)

where A is defined as \; but evaluated at (¢; — x;8—ad; — 00,e\;) /0.

For estimation we will lay out the following estimation procedure that can be
seen as an extension of the Heckman 2-step estimator and that is also related to the
Fair as well as the EM-algorithm. Probit ML can be used to estimate 4 and then
to calculate 5\1-, while to get initial values on @ and on oo,¢, we may adopt, say, a
nonideal OLS estimator based on (4-5) using observed values on y and ¢ to regress
on x,d and X. With such estimates in hand the Fair algorithm, that resembles an
EM-algorithm, alternates between;

[1 ] predicting observations for y > ¢; for this § = E(y|y > ¢) in (B3) is used,
with o, A; and A} calculated from Probit ML estimates and the initial guesses
on «a, 3 and oo, [the E-stepl, and

[2 ] the observations y that correspond to fully observed durations are then com-
bined with predicted observations § and employed for LS estimation of «, 3
and oo, in (B1) [the M-step].
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The algorithm stops the iterations when changes between successive values on
0* = (a,8',00,¢) are small enough. To estimate the covariance matrix we will
employ the White estimator

A %

Cov(0) = (X.X,) 'X!SX,(X.X,)?,

where X, has columns consisting of x;, d; and 5\1 and where S is a diagonal matrix
with squared residuals as elements on the diagonal.
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Appendix C: Probit Model Result and Duration Model Estimates

Table C1: Probit model maximum likelihood estimates.

Variable Est. s.e.
Gender 0.647 0.082
Age 0.342  0.020
Age? -0.004 0.0003
Children at home -0.054 0.018
Disability -1.140 0.142
Nationality (Swedish) 0.360 0.091
Nationality (Nordic country) 0.471  0.152
Nationality (Europe) -0.190 0.120
Education (Primary school) -0.088  0.047
Education (Seconday school) -0.725 0.049
Education (Post secondary school)  -0.794  0.060
Unemployment benefit 0.782 0.070

X Gender -0.017  0.090
Unemployment, cash assistance 0.769 0.145

X Gender 0.143 0.228
Unemployment rate -0.081 0.012
Days in event database -0.0001 0.0001

X Disability 0.001 0.0003
Number of states in event database -0.043 0.009

X Disability 0.058 0.026
Constant -7.008 0.365

20



Table C2: Parameter estimates for duration models neglecting censoring and/or
selection.

OLS Powell Buckley-James
Variable Est. s.e. Est. s.e. Est. s.e.
Gender 0.059 0.019 0.089 0.074 0.011  0.017
Age/10 0.017 0.012  0.010 0.043 0.018 0.011
Children at home -0.013 0.008 -0.017 0.032 -0.004  0.007
Disability -0.036 0.032 -0.010 0.121 -0.039  0.031
Nationality (Swedish) 0.052 0.054  0.080 0.200  0.060  0.053
Nationality (Nordic country) 0.036 0.074 0.036 0.293  0.044  0.072
Nationality (Europe) -0.053 0.075 -0.109 0.296 -0.053  0.073
Education (Primary school) -0.031 0.021 -0.049 0.086 -0.031  0.020
Education (Seconday school) 0.019 0.028 0.063 0.110 0.016  0.027
Education (Post secondary school) 0.120 0.035 0.219 0.159 0.122  0.034
Unemployment benefit -0.623 0.026 -0.817 0.148 -0.658  0.025
Unemployment, cash assistance -0.397 0.055 -0.410 0.191 -0.427  0.053
Unemployment rate/10 0.091 0.057  0.127 0.242  0.096  0.055
Days in event database/1000 -0.183 0.044 -0.322 0.190 -0.197  0.043
Number of states in event database/10 -0.127 0.042 -0.163 0.176 -0.136  0.041
Participant in AEI -1.248 0.033 -1.346 0.100 -1.198  0.032
Ending late 1998 1.039 0.021  1.256 0.079 1.320 0.021
Constant 4.941 0.080  5.195 0.312  4.961  0.078

Notes: The OLS estimator does not account for censoring nor selection. The Powell
and Buckley-James estimators do not account for selection.
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