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Data Mining and Fault Tolerance in
Warehousing

Christopher Reining1, Omar Bousbiba1, Svenja Jungen1, Michael ten Hompel1

1 – TU Dortmund University

This paper surveys the significance of data mining techniques and fault tolerance
in future materials flow systems with a focus on planning and decision-making.
The fundamental connection between datamining, fault tolerance, andmaterials
flow is illustrated. Contemporary developments in warehousing are assessed to
formulate upcoming challenges. In particular, the transition towards distributed
systems and the increasing data volume is examined. The significance of taking
fault tolerance into account is emphasized. Ultimately, research issues are derived
by conflating theprevious findings. They comprise aholistic approach towards the
integration of data science and fault tolerance techniques into future materials
flow systems. Tackling these research issueswill help to proactively harmonize the
data representation to specific datamining techniques and increase the reliability
of such systems.
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1 Introduction

1.1 Increasing Data Volume and Data-Driven Operations

Nowadays the amount of available data in materials flow systems grows faster
than the performance of computers to process them. Due to the implementa-
tion of superior sensors, more data is available for analysis. The application of
distributed systems and current trends such as Internet of Things (IoT), Cyber-
physical systems (CPS) and Industry 4.0 reinforce this trend (Xu, He and Li, 2014;
International Controller Association, 2014; Hofmann and Rüsch, 2017). Smart
devices are expected to decide and act autonomously or in collaboration with
each other (Schuh and Stich, 2014, pp.203–213). Decentralization is seen as neces-
sary in order to increase flexibility, reduce reaction time, and adapt to unplanned
scenarios (Wilke, 2008). Accordingly, the area of decision-making broadens, in-
put factors diversify, and standardized processes are fragmented or eliminated.
Then again, there is a desire for predetermination when it comes to planning and
controlling materials flow systems. Paradoxically, further information gathering
and processing do not necessarily facilitate decision-making (Günthner and Ten
Hompel, 2010, pp.2–5). Emerging data analysis methods are expected to create
valuable information for both humans andmachines to enable enhanced cooper-
ation (Klötzer and Pflaum, 2015). Superior data processing shall relieve human
workers by taking on recurring decisions autonomously.

In contrast to other scientific fields, there is little knowledge about data analyt-
ics in logistics so that further research is crucial (Rahman, Desa and Wibowo,
2011). Firms consider data and its analysis as a relevant resource to ensure their
future competitiveness (Mazzei and Noble, 2017). At the current stage, data in
warehousing systems is mainly used for anomaly detection and process control.
To achieve additional benefit from the potential offered by the available data,
processingmethods for proactive optimization and prediction have to be enabled.
Data-driven operations require relevant information to be obtained from raw data
(Manyika et al., 2015). Their implementation connects human employees and
their creativity in solving problems with state-of-the-art technology so that both
can act ideally in real-time. This results in an environment which actively sup-
ports the cooperation of man and technology. The transition fromwarehousing
as an isolated task into digital social networks is proposed by “Social Networked
Industry” (ten Hompel, Putz and Nettsträter, 2017).
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1 Introduction

1.2 Rising communication complexity

From the findings of the previous subsection it can be concluded that distributed
systems will be more widely used in future logistics facilities. In such systems,
tasks are spread and solved in smaller groups of autonomous cooperating com-
puting systems (Becker, Weimer and Pannek, 2015), that are also referred to as
nodes. A distributed system can be described as a collective set of nodes, which
interact with each other throughmessage exchange. In contrast to centralized
systems, there is no so-called “master-node”, which holds the full control over all
components in the system (Tanenbaum and Steen, 2008). Moreover, the applica-
tion of a distributed system is often predetermined by the physical distribution of
its components.

Each node has to be able to cooperate with each other node, e.g. by exchanging
messages. All tasks have to be distributed and processed by each participating
node in the distributed system. If several individual tasks exhibit time causal
dependency or are limited due to physical restrictions, nodes have to be able to
coordinate their tasks with each other. Two autonomous intelligent forklift trucks
that try to take goods from a narrow alleyway are an exemplary case. If they are
unable to coordinate, a deadlockmight occur. A deadlock describes a blocking
state of a system in which each participating nodeNi blocks each other nodeNj

(i 6= j) by holding a lock on a particular objectOi (objectOi is locked by node
Ni) of interest. Suppose that a group of cooperating autonomous forklift trucks
tries to gather goods from a narrow alleyway. Further suppose that one of the
forklift trucks crashes. As long as the fault is not detected, all forklift trucks may
remain in a blocking state.

The coordination problem can be simplified when all fault-free nodes of a dis-
tributed system share the same global view of open tasks as well as a global view
of the progress of accomplished tasks. Depending on their malfunction, faulty
components can hinder the fault-free nodes from reaching a global view.

Due to the complexity of future distributed systems and the increasing reliability
requirement (e.g., autonomous cooperating forklift trucks working in the same
area as a human worker), it is important to make these systems resilient against
faults. Otherwise, corruption (e.g., flash corruption due to supply voltage faults)
of subcomponents will result in high costs and/or safety risks. This may cause the
distributed system to enter an unsafe state. The problem of ensuring that fault-
free nodes of a distributed system always share the same global view (reaching
an agreement or consensus) independent of any presence of faulty nodes is also
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known as Byzantine agreement problem. The Byzantine generals’ problemwas
first introduced by Lamport, Shostak and Pease (1982). With the help of agree-
ment protocols, reaching a global view among fault-free nodes becomes possible.
Byzantine agreement protocols have a long tradition. Thus, the state-of-the-art
in the design of agreement protocols compromised a huge number of solutions
(Lamport, Shostak and Pease, 1982; Jochim and Forest, 2010). Therefore, the fun-
damental problem of reaching agreement in the presence of faulty components
can be seen as solved. Its unsolvability for different fault assumptions and/or
systemmodels has been proven by both Fischer, Lynch and Paterson (1985) and
Santoro and Widmayer (2007).

Now, the challenge has become an optimization problem of the communication
complexity (e.g., reducing the total number of communication rounds, number
of redundant nodes andmessage transmission per communication round) which
depends on the number of tolerated faults (Jochim and Forest, 2010; Khosravi
and Kavian, 2012; Bousbiba, 2015).

1.3 Contribution and Outline

This paper contributes scientific hypotheses and questions to be evaluated in fur-
ther projects in the field ofmaterials flow systems, datamining and fault tolerance.
It constitutes the necessary knowledge basis and sensitizes the ensuing issues
from both an academic and an industrial point of view (BVL - Bundesvereinigung
Logistik e. V., 2017).

The rest of the paper is organized as follows: The second section contemplates
warehousing from a researcher’s perspective. The link to knowledge discovery
and the transition towards distributed systems are discussed. The third section
further illustrates the significance of fault tolerance in this context. Finally, re-
search issues are derived based on the previous findings.
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2 Challenges in Materials Flow Systems

2.1 Warehousing Operations and Tasks

As shown in figure 1, warehousing employs three elements, namely systems,
processes andmanagement. Thus, a feasible way to formalize operations is to
consider them as a combination of these elements. This approach implies a wide
variety of configurations. In basic terms, warehousing processes are conducted
within a system in accordance with an underlying management strategy. Typical
planning and decision tasks interact with these operations. They comprise tech-
nology selection, capacity planning of personnel and equipment and packaging
planning.

Figure 1: Elements of warehousing (Rohrhofer and Graf, 2013, pp.8–9)
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As illustrated in figure 1, the storage space allocation of each article is defined
by the warehouse management. It influences the effort of each order picking
process, for example the travel time to corresponding storage locations. Likewise,
the layout of the order picking system has a potentially major impact as it deter-
mines each shelf’s position. More sophisticated warehousing principles cause
more complex combinations of the elements. In a two-stage order picking system
the interaction with the conveyor systemwould have to be taken into account.
Then again, a conveyor itself is a electromechanical component. The aforemen-
tioned context emphasizes the interdependency of planning and decision tasks
with warehousing. Other points of view, e.g. frommaintenance or performance
availability, reveal further ties.

On one hand, formalization of warehousing operations is desired in order to
apply methods from other fields of science and represents a current research
issue. On the other hand, task solving requires a high degree of domain knowl-
edge. Running a warehouse is often characterized not only by interdependencies
but uncertainties and rising task-complexity (Faber, de Koster and Smidts, 2013;
Schieweck, Kern-Isberner and ten Hompel, 2016). These aspects hinder the appli-
cation of analytical approaches. The required data, target figures and restrictions
are depending on the operation’s configuration and decisions already taken in
related tasks.

Analytical approaches can be found in a wide range of technical standards and
scientific works. They are limited to specific subsystems and use cases because
warehousing is characterized by parallel and sequential operations that rigid
formulas can hardly deal with. Materials flow simulation offers an alternative to
deal with this issue. The commonly used discrete event simulation yet requires
formalized operations and input parameters to obtain useful information (Timm
and Lorig, 2015). Once the observed (sub-)system exceeds a certain level of
complexity both analytical and simulative approaches tend to be infeasible to
use in practical application (Roessler, Riemer and Mueller, 2015). They are either
based on heavily simplified assumptions or they require a disproportional effort,
e.g. specialized personnel or long preparation and running time of the simulation
models (Frank, Laroque and Uhlig, 2013).

Applicable methods of data collection rely on observation and posterior analysis.
In most cases, the conventional method of turning raw data into useful knowl-
edge is done by manual analysis and interpretation (Bohács, Gáspár and Rinkács,
2012). Due to the necessary domain knowledge and insufficient formalization,
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the analysis and information extraction is conducted by specialists. While plan-
ning tasks usually offer a relatively long time frame, many decisions concerning
warehousing are of short-term nature. For example, newly incoming goods in a
distribution centre have to be assigned to one of several possible storage loca-
tions without a time lag. The assignment to a location is then performed based
on a multitude of input factors of which some, e.g. the daily retrieval volume
for the upcoming weeks, may not be available yet. Nevertheless, these figures
may be predictable from past data. In such cases, warehousing operations can be
expected to improve once they are data-driven.

2.2 Application of Knowledge Discovery and Data Mining

It is estimated that about 60% of data mining projects fail (Goasduff, 2015). Con-
cerning warehousing, potential issues leading to this unsatisfactory situation are
outlined.

The figure 2 below illustrates a widely recognized approach towards Knowledge
Discovery in Databases (KDD) as proposed by Fayyad, Piatetsky-Shapir and Smyth
(1996). Its nine steps are consideredmore closely to assess the applicability of
the KDD process in warehousing. An overview of alternative process models is
provided by Mariscal, Marbán and Fernández (2010). In literature, there is a wide
variety of coexisting terminologies for data science related terms. Still, the drawn
conclusions are valid regardless of the used terminology. A potential distinction
of related terms is provided by Mitchell-Guthrie (2014).

The first step in theprocess is todevelopanunderstandingof theobserved system,
gather necessary domain knowledge and identify the goal of the KDD process.
While the warehouse operators may provide the necessary domain knowledge,
goals can be derived fromdifferent sources. Inwarehousing there is awide variety
of key figures to examine. The goals may be set by technical staff or stipulated by
the senior management.

Next, a target data set has tobe created. For example, data about thepast through-
put volume or technical properties of the stored goods and their assignment to a
storage location may be of interest. This data can be taken from the Warehouse
Management System (WMS), Enterprise Resource Planning System (ERP) or other
sources of information. Most IT-systems in use have evolved historically with-
out regards to Knowledge Discovery. Human practitioners often generate article
master data with emphasis on easy comprehensibility. Redundancy or noise
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Figure 2: Overview of the KDD Process according to Fayyad, Pi-atetsky-Shapir and
Smyth (1996)

avoidance has usually not been the priority when implementing the information
systems.

The third step comprises data cleansing and pre-processing. This is necessary
because the gathered data will very likely have inconsistencies, errors, out of
range values, missing values and so forth. The goal of this step is to bring the
data into a state which enables data mining methods to work as intended. While
being time-consuming and labour-intensive, pre-processing facilitates the pro-
ceeding steps (Witten et al., 2017, pp.56–65). The same is true for the fourth step,
data transformation. It comprises the search for useful features to represent
the distinctive characteristics of the data. This procedure often goes along with
dimensionality reduction. Data cleansing, pre-processing and transformation
have to be conducted in accordance with the requirements of each data mining
method. Accordingly, previous steps have to be repeated iteratively once an oper-
ation or an outcome turns out to be infeasible later on. The often given short-term
nature of warehousing operations suggests that the utilization of data mining is
vitally dependent on an efficient data preparation. An overview of pre-processing
methods is provided by García, Luengo and Herrera (2016).

Data mining itself appears as the fifth step of the KDD process. A particular data
mining method has to bematched with the predefined goal of the KDD process.
The sixth step comprises the selectionof ahypothesis andadatamining algorithm.
The search for useful patterns and interesting information is conducted in the
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seventh step. It is crucial to recognizehelpful dataminingmethodsandalgorithms
for each warehousing task to exploit their potential. The chosen method and
algorithm codetermine the optimal configuration of the overall KDD process.
There are two thinkable scenarios but not limited to the following. Either the
sheer amount of data is too big to bemanually analysed, impeding data-driven
decisions or the necessary information for making a valid decision is unknown
beforehand.

While the first scenario is a topic of descriptive data mining, the second is a con-
ceivable scenario of predictive data mining. Both scenarios may coincide in prac-
tice.

A commonway to differentiate dataminingmethods is given by Fayyad, Piatetsky-
Shapir and Smyth (1996):

— Regression

— Anomaly detection

— Association rule learning

— Clustering

— Classification

— Summarization

The data mining algorithm defines the model representation, the evaluation and
the search method. For example, concrete algorithms of the regression method
are, among others, the linear, polynomial and logistical regression. It is obvious
that practitioners that choose to implement data miningmethods are required to
observe amultitude of possibilities. The question arises, which of the available
methods and algorithms correspond to one or more warehousing tasks.

In the eight step theminedpatterns are interpreted, e.g. by visualization. Previous
steps may be repeated in further iterations of the KDD process. This is the case
when the knowledge gain and its usability turn out to be insufficient. Often occur-
ring short-term nature of warehousing operations suggests that time-consuming
iterations are disadvantageous. They are ought to be avoided by a reasonable
configuration of the KDD process in the first place. In the final step, the extracted
knowledge is validated andmade available for further processes.

To conclude this section, existing approaches to integrate KDD and datamining in
warehousing are referenced. Ming-Huang Chiang, Lin and Chen (2014) presented
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an approach to improve the efficiency of order picking systems by finding associa-
tions between orders. The associations are the basis for heuristics tominimize the
travel distance. Pang and Chan (2017) utilized data mining to find relationships
among costumer orders. The identification of relationships helps to determine
rational storage locations to minimize the picking effort. Gils et al. (2016) in-
troduced an approach to predict the workload of order picking zones based on
past data. The forecast can be used to determine the required number of em-
ployees and their assignment within the warehouse in a rational manner. Knoll,
Prüglmeier and Reinhart (2016) presented an approach to use machine learning
for predictive inbound logistics planning. It facilitates the system’s adaptation
to future scenarios. Their approach is based on the development of a logistics
information structure (ontology).

The literature review shows that so far there is little effort spent on embedding
data mining methods and algorithms into a holistic KDD process. They rather
focus on finding suitable methods and algorithms for specific problems.

2.3 Distributed Systems in Warehousing

A central unit (master-node) controls the majority of current materials flow com-
ponents. For example, a high-bay storage, a sorting system or a pick-by-light
system are self-contained units in the sense that all information gathered and all
decisions made within this system refer to a central unit. Therefore, warehousing
operations are not triggered and conducted along several units. They are coordi-
nated with help of the ERP, WMS or other central IT systems instead. To face the
increasing flexibility demand, the distribution of warehousing operations among
autonomous units is a current topic in both academic and industrial research.
The underlying idea of realisation approaches is a plug-and-play behaviour of au-
tonomous agents also referred to as ad-hoc-networking. Each agent is a modular
unit (Lieberoth-Leden, Regulin and Günthner, 2016; Seibold and Furmans, 2017).
In a distributed system, the warehousing system components are fluctuating. For
example, the layout of the order picking zones cannot be assumed static once the
facility is built. The system is repeatedly shifting its form in short terms. Agents
may enter or leave the system for a multitude of reasons such as the required
performance capacity, maintenance intervals and so forth. Furthermore, a single
benign malfunctioning agent (e.g. fail-silent or crash) does not necessarily lead
to a system crash, as it would be the case with a malfunctioning conveyor system
in a high bay storage. Exemplary realisation approaches are referenced below.
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Karis Pro (Colling et al., 2016) is an automated guided vehicle. Decentralized
job creation without a prior teaching of transport connections between transfer
points offers flexibility towards layout changes. Due to its modular construction
and decentralized control, additional hardware like a central master computer
are not necessary. Toru Robot (Kremen, 2016) is a warehouse robot that is able to
pick items off shelves autonomously. In order to identify objects the robots create
a map using laser sensors that scan the environment. This data is shared with
other robots working in the same warehouse. The Grid Sorter (Colling, Seibold
and Furmans, 2016) is a conveyor system which provides efficient and space-
saving sorting of goods. The system’s decentralized controllers and its structure
consisting of identical rectangular conveyor modules allow flexible adaption to
changing requirements. A reservation algorithm facilitates the transportation
of goods, which are larger than a single conveyor module. The use of Cellular
Transport Vehicles (Kirks et al., 2012) offers possibilities for areas where flexibility
and changeability is required, planning reliability is not guaranteedor automation
is not desired due to the lack of flexibility. The communication and control among
the entities is realized by a decentral architecture. They are flexible in their topol-
ogy meaning the formation of the entities is changeable at any time. Research
and applications of distributed materials flow systems are neither geographically
restrained to Europe (GreyOrange, 2017) nor solely focused on packaged goods
(Serva Transport Systems, 2017). A further overview is given by Karabegović
(2015).

The literature review shows that current research on distributedmaterials flow
systemsmainly focuses on technical issues regarding control and organization
of the agents such as deadlock prevention or safety aspects (see e.g. (Kopecki,
2015)). So far, the data collection and processing, e.g. by the agent’s environmen-
tal sensors, are subordinate to this purpose. Therefore, the data representation
among agents from different suppliers is very likely not harmonized. As each
agent is a source of data, the number and heterogeneity of data sources increases.
Consequently, manual data analysis becomes increasingly impractical. The find-
ings in this subsection further emphasize the urgency of proactively integrating
knowledge discovery methods in future materials flow systems.
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3 Fault Tolerance

The information in future distributed materials flow systems will be gathered
from different locations and mobile systems. Using a centralized approach of
data collection will be slow and expensive because all transferred information
must be gathered by themaster node. In other words, the entities and themaster
node need to be fully connected. Due to the communication bottleneck, costs and
high communication overhead, it can be concluded that a distributed solution
(i.e. a distributed knowledge discovery system) will be applied.

Data mining techniques in a distributed knowledge discovery systemmay help
to improve the overall system by providing useful information to the group. This
information (e.g., on several blocking areas) can be used by the autonomous
robots to adapt their path planning in real-time in order to meet their constraints.
Thus, the group will not reach a temporary deadlock.

In a distributed system, a global view has to persevered even if some of the com-
ponents behave faulty. Otherwise, the extracted knowledge from the gathered
datasets may result in faulty decisions. Another important aspect is the time in
which a decision has to be made. Cooperating agents may rely on the knowledge
extracted by the distributed knowledge discovery system in real time. This implies
that the decision made by a distributed knowledge discovery system has a big
impact on the effectiveness and efficiency of the overall logistics system (Dou,
Chen and Yang, 2015).

Although the information provided by data mining can help to improve the effec-
tiveness and efficiency of the overall logistics system, fault tolerance techniques
must be applied nevertheless. The efficiency of large and/or complex distributed
system heavily depends on the correct behaviour of its components and the
decision made with the help of a distributed knowledge discovery system. For
instance, Lee and Lin (2006) have shown that data mining techniques combined
with fault tolerance techniques are able to cope with a certain degree of polluted
data (containing a certain degree of noise, which – without using fault tolerance
techniques – would lead to ambiguous conclusions).
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4 Identification of Research Issues

In section 2.2 it has been stated that an efficient design and quick application of
the KDD process require the dataminingmethod and algorithm to be determined
beforehand. Consequently, it is necessary to define a frameworkwhich allows the
assignment of data mining methods and algorithms on one side to warehousing
tasks and the given time horizon on the other side. An approach to this issue
is given in figure 3. While data science provides methods and algorithms, ware-
housing tasks need to be formalized and abstracted to be assigned to them. The
time horizon possibly restricts feasible methods. As illustrated in figure 3, the
long-term packaging planning (e.g., the necessary amount of pallets or packages
in a specific time frame) is a possible use case of regression. In contrast, storage
space allocation as a short-term decision could be a use case for classification. In
such a case, formalization becomes an issue. The classification of articles is not
static over time. The retrospectively identified best classification is not necessar-
ily the actually applied classification at the time the goods had been examined
for the first time. This discrepancy is usually not shown in the provided data. A
high degree of domain knowledge is necessary to retrospectively identify the best
classification of an article.

The overview is far from being complete and serves as a starting point for further
research. An identified match of a warehousing task and a data mining method
does not necessarilymean that data science provides the best solution. Analytical
or simulative approaches may provide better solutions in regards to accuracy
and/or expenditure of time. Determining the limits of these approaches may
reveal a variety of feasible use cases of data mining in warehousing for further
examination.

In distributed systems, the harmonization of data representation among the
agent becomes an issue. A standardized framework can take the requirements
of efficient data mining into account. An industrial standard to be used by all
suppliers of materials flow components may be the final goal of this approach.

The question arises in what way the necessary computing capacity for short-term
data mining applications is provided. The data could be gathered and processed
by a central unit, by each agent on its own (with sufficient computing capacity) or
cooperative by amultitude of agents (distributed). As stated in Section 3 any form
of cooperation requires a certain degree of fault tolerance, such as in a distributed
knowledge discovery system and/or cooperative multi-agent system.
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Figure 3: Research Gap between data mining methods and warehousing tasks

With respect to fault tolerant solutions in futuredistributedmaterials flowsystems,
the following research issues were identified. Designing an efficient Byzantine
agreement protocol for different network topologies (Tanenbaum and Steen,
2008) is required as the complexity of materials flow systemswill grow. In general,
agreement protocols require a quadratic communication overhead to solve the
Byzantine agreement problem. By relaxing the fault assumption (Jochim and
Forest, 2010; Khosravi and Kavian, 2012) to simple faults (e.g., which cause fail
silent behaviour) it is possible to solve the problemwith linear communication
overhead. However, such solutions cannot be applied in thepresenceofmalicious
faults (e.g., benign or malicious Byzantine faults).

One way to reduce the communication overhead is to design or deploy new
efficient fault tolerant signature algorithms (Echtle, 1999). Many agreement pro-
tocols suffer from redundant message transmissions (Jochim and Forest, 2010).
To provide fault tolerance, messages need to be retransmitted in recurrent com-
munication rounds. It raises the question whether the design of a new signature
algorithmmay help to reduce the number of unnecessary retransmissions while
simultaneously providing sufficient fault protection.
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5 Conclusion

With the help of fault diagnosis algorithms and gossip-basedmembership pro-
tocols (Aljeri, Almulla and Boukerche, 2013) faults can be detected. Appropriate
measures will be taken faster. As the detection of faulty behaviours without hu-
man interventions will play an important role in future logistics processes, such
algorithms will help groups of cooperating nodes to remain functional in the pres-
ence of faults or breakdowns. For instance, if an intelligent forklift truck, which
has reserved an area in order to complete its task, breaks down unexpectedly,
it will block an area for a non-specific time. However, if the fault is detected by
the other intelligent forklift trucks in the group, the area can be freed and the
information about the faulty intelligent forklift truck can be further distributed to
a sink, e.g. to a service engineer as well as to the knowledge discovery system.

5 Conclusion

The datasets being processed and analysed in future industry 4.0 warehousing
applications will be tremendous. In order to extract useful knowledge from the
gathered raw data, fault tolerant distributed knowledge discovery systems need
to be applied. While there is a consensus that data science methods offer a
great potential for planning and decision-making in warehousing, there is little
knowledge about feasible use cases for data mining methods among typical
warehousing tasks. This paper reviewed the status quo of data mining and fault
tolerance. Crucial research issues have been derived and concrete approaches to
address themhave been outlined. In the InnovationslaborHybrideDienstleistung,
the Chair of Materials Handling and Warehousing at the TU Dortmund University
plans to further work on this topic.
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