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Finite-Time Horizon Logistics Decision Making 
Problems: Consideration of a Wider Set of Factors 

Petros Boutselis and Ken McNaught 

Abstract 

The newsvendor’s problem (NVP) formulation is applied to many logistics 
problems in which the principal decision is the level of inventory which should be 
ordered to meet stochastic demand during a finite time-horizon. This type of 
decision makes demand the central variable to be examined and since the time 
horizon is finite, there is variable risk throughout the period. While the NVP 
formulation is applicable to many areas (e.g. retail business, service booking, 
investment in health-insurance, humanitarian aid, defence inventory for 
operations), modelling and research into the factors affecting demand and its 
uncertainty has been conducted mainly where the goal is to increase demand 
(e.g. price, rebate, substitutability). This paper describes ongoing work on 
modelling demand within the NVP framework where little prior specific demand 
information exists and uncertainty plays a crucial role. The suggested approach 
is to model demand and its uncertainty using other causally related, case-specific 
factors by applying Bayesian inference. Initial work in progress on a case study 
is outlined. In future the approach will be tested in several case studies and will 
adopt the innovative approach of Sherbrooke (2004) and Cohen et al (1990) for 
its validation, through which the model’s outputs along with the real life demand 
data are provided as inputs to a simulation and the results compared. Thus the 
simulation’s final output is the evaluation measure. The future expected benefit 
from this work is to offer decision makers an intuitive demand modelling tool 
within an NVP framework where modelling uncertainty is of great importance and 
past demand data are scarce. 
Keywords: newsvendor, bayesian, risk, validation 
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1. Introduction 

The newsvendor problem (also commonly known as the newsboy or single 
period problem) is one of the classical problems in operations management and 
has been extensively studied since the pioneering effort of Edgeworth (1888). A 
recent review of the area is provided by Qin et al (2011). The main question that 
it seeks to answer is how much of one or more types of commodity a 
”newsvendor” should order, as an effort to deal with some unknown/uncertain 
and in some cases even risky future demand, given that the time horizon that 
he/she expects demand for it is finite6. If the newsvendor orders too much, the 
left-over items are usually assumed to have low or even zero residual value, 
while if the newsvendor orders too little, there is an opportunity cost associated 
with lost sales. Even though its name seems to limit its applicability to the case 
of a professional newspaper salesman under the dilemma of how many papers 
to order for the following day, its area of application is much wider and the lost 
sales component may be replaced, for example, with a more general shortage 
penalty. A list of existing and possible future areas of application includes the 
following: 
  

6 This paper differentiates the use of the newsvendor’s type of problems from what 
Nahmias (1989, pp 233) suggests who expands its applications to incorporate infinite 
periods. The main decision making issue that arises when the time period is considered 
“finite” is not just that it is a one-off case. On the contrary, it can include more than one 
period in between. The suggested idea of “finite” is that it is not practically possible to use 
any of the leftover inventories for subsequent periods after the “finite” planning one. 
Regarding the intention for “no inventory left”, it includes the cases in which all leftover 
inventory can be used but for a less profitable gain than if it was actually used within the 
examined period. Even though, the same idea of the newsvendor’s finite-period planning 
could be applied in a repetitive, infinite notion known as “myopic policies” (see for example 
Powell (2010), the problems dealt with by the newsvendor’s formulation are different due 
to the fact that after the period of interest (which in certain cases can be of unknown length) 
the periods which follow cannot be used to make-up for opportunity costs by keeping some 
of the left-over inventory. The examples provided will make this notion clearer. 
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1 Seasonal / fashion goods 
2 Advanced booking in services such as hotels, airplanes, etc. In such 

cases the commodity that is managed/ordered is the number of places 
in the airplane or in the hotel and the finite period is the duration of the 
flight or the hotel season. 

3 Amount of insurance money to invest for health etc. In this case the 
uncertain demand concerns future health issues and the type of 
commodity to decide upon in advance is the amount of insurance 
money that has to be invested. This demand will be realized not within 
a repetitive, infinite manner. A point to stress in this example is that past 
data on the demand do exist but only for similar cases. 

4 Selecting spare parts for a product at the end of its production life, i.e. 
before it becomes obsolete7. Here, the uncertain demand is the number 
of spare parts that have to be produced, not as was done in the past 
when the system that used them had a long operational life and thus 
inventory could be held to cover future demands and backorders could 
be issued for unfulfilled ones, but for a shorter, finite period since the 
production line will stop. 

5 Deciding on the water reservoir level on an island that is isolated and 
waits for replenishment for the summer period. Obviously the 
commodity that has to be decided upon is the amount of water to be 
stored, given that it has a shelf-life shorter than the next examined 
period. The demand can be known with adequate precision from past / 
historical data, however, extreme weather forecasts or a new 
differentiation in the relative tank capacities could ask for a new 
formulation of how this demand could be realized. 

7 As Khouja (1999) stresses “…, the reduction in product life cycles brought about by 
technological advances makes the SPP (Single-Period Problem ie the newsvendor’s one) 
more relevant”, and obsolescence costs and management is an issue of great importance 
to large organizations like the MOD. 
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6 Large military operations “Last Order”, i.e. how much to order when a 
decision to withdraw from an operation has been taken. In these cases 
decisions on ordering any amount of a certain commodity have to be 
taken wisely since whatever is transported out, unless used, will also 
have to be transported back. 

7 Humanitarian aid in multiple places that have suffered disasters. As 
Chakravarty (2014) stresses, such cases include an increased risk 
since prior values of lead times and supply chain efficiency may have 
changed due to distractions to the supporting infrastructure. In his work 
Chakravarty (2014) studies scenarios that deal with limited resources 
and develops a model in which an initial capacity based on demand 
forecast is built and further capacity is added when additional 
information on demand is available. The suggestion in this case is that 
such efforts could benefit from an NVP formulation. 

8 The load of a shipment within a supply chain. The amounts and mixtures 
of commodities loaded each time are usually not completely known in 
advance and have to be either consolidated in full loads and thus result 
in accumulating inventory costs and increased lead times for some of 
the items as they wait in the warehouses to be gathered, or depart in 
half-loads and thus increase transport costs. For some commodities it 
is space8 allocation that has to be decided in advance before the 
commodities “arrive” and place a “demand” for some space. What has 
to be decided is how much space will be allocated and when for a finite 
period of time that the actual demand for that space will be realized. 

9 The “hedge contracts” that energy providers use in order to insure 
against the risk of unknown demand. 

8 The commodities provide data which are prone to change in number and type, while 
space (or space per value to differentiate among commodities which will compete for the 
same space area) is a more generic variable. 
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2. Modelling demand in the newsvendor’s problem 

Demand is the main problem for the newsvendor. He/she has to predict or even 
affect its value in order to be able to optimize his/her set objectives. 

2.1 The importance of modelling demand uncertainty 
In the classical infinite-horizon inventory systems in which demand needs to be 
modelled like the continuous review, or the periodic review ones, the length of 
the risk period is more or less controllable by the manager. This risk period is 
considered as the period during which the decision maker wants the amount on 
hand and the amount ordered to be enough9 so that the commodity does not run-
out until the arrival of that next order. It is a period of risk because during that, 
any demand fluctuations cannot be faced immediately by a new arrival but by 
only just hoping that what is on hand and what is expected to arrive soon will be 
able to cope with these fluctuations. In inventory systems like the Continuous 
Review, or the Periodic Review, this risk period affects the inventory planning 
and the level of inventory kept has to be increased by a safety stock. This stock 
can be subsequently adjusted according to new different demand data or 
decisions on budget or service levels. Therefore, in these policies there is the 
opportunity to improve unsatisfactory performance by applying adjustments. 
In the case of the newsvendor’s problem, the whole period from the time that the 
order is placed until the time that the problem is over is a period of risk. Even 
when there are cases in which some small corrections10 can be made on the way 
until the end of the examined period the same risks/dilemmas hold for the 
newsvendor: to order neither too little nor too much since in either case he/she 

9 This notion of “enough” is the one used to define the service level for the infinite inventory 
management systems. However, in newsvendor type problems it cannot be considered as 
such. This is because the actual idea of a safety stock is one of the things that the optimum 
newsvendor’s solution wants to avoid, ie not to have left-overs. 
10 Even though the sequential filling of the inventory has many practical applications it is 
not a common research subject. For relative work and discussion see Murray and Silver 
(1966) and Khouja (1999). 
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will have unwanted opportunity costs. Furthermore, when the examined period is 
over there is no opportunity to make up for unsatisfactory performance. 
Consequently, in the newsvendor’s settings demand uncertainty should be 
considered for the whole period of the problem11. 
As Porteus (2002) notices, what needs to be minimized is the combination of the 
holding and shortage costs, ie what will be provoked by the variation of the 
demand below or above its expected “deterministic” value. 

2.2 Models of the newsvendor’s demand problems 
What has previously been shown is that at least within the newsvendor’s problem 
setting, uncertainty plays a vital role and therefore should be considered within 
any relevant model. The demand models used in the literature mainly fall into 6 
categories: 

1 Those that use functions in order to investigate the dependency of the 
demand on other factors, mainly the price and thus see how these 
factors can be used so that they can drive demand. 

2 Those that model demand by considering scenarios of possible values 
but without considering any probability distribution for these values. 

3 Those that model demand using certain probability distributions and 
calculate their respective parameters from past demand data or from 
Subject Matter Experts (SMEs). 

4 Those that model demand using certain probability distributions and 
calculate their respective parameters using Bayesian inference from 
“fresh” data. 

5 Those that model the values of demand using uncertainty theory. 
6 Those that model the values of demand using fuzzy logic. 

11 For another comprehensive discussion on misleading managerial results/decisions 
when not incorporating uncertainty in the demand see Shih (1979, p. 688). 
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2.2.1 Using functions to model demand 
Functions have been used to model and investigate the dependency of demand 
on other variables, mainly the price. Within a functional form, the uncertainty has 
been considered in the literature in either an “additive”, “multiplicative”, or 
“additive-multiplicative” modelling approach12: 

a. (Polatoglu 1991) and (Qin, et al. 2011)refer to the previous work of (Mills 
1959) who expresses demand D(p,ε) by taking the sum of the expected 
demand as a function of the price d(p), plus a random variable ε which 
is independent, and has a zero expected value: 𝐷𝐷(𝑝𝑝, 𝜀𝜀) = 𝑑𝑑(𝑝𝑝) + 𝜀𝜀. The 
name convention used for this type of model is the additive model. 
However, as Polatoglu (1991) reasonably argues, in that way there is a 
strong assumption that the variance of the demand is constant and 
independent of the price. This is not always correct of course. It is 
reasonable that there were will be cases in which comparatively very 
low prices will have a different effect not only in the expected demand 
but also on its variance. Additionally, Polatoglu (1991) and Zabel (1970) 
emphasize the fact that the use of a function which relates demand to 
the expected price via a linear function with a negative coefficient, 
allows for negative values of the demand unless there is a further 
assumption on a lower limit to the values of the prices. On the same 
issue Zabel (1970) further emphasises the need to make sure that the 
probability of getting negative values due to the additive density function 
is set to zero. 

b. A similar type of treatment of the demand is obtained by representing it 
with a multiplicative model (Qin et al. 2011; Chen, Yan and Yao 2004; 
Zabel 1970). The structural difference between this and the additive one 

12 Huang, Leng and Parlar (2013) have created a very comprehensive table for the used 
functional forms (Table 1) in which they include the Linear, Power, Hybrid, Exponential, 
Logarithmic and Logit deterministic demand functions. Furthermore, in their (Table 2) they 
have also included a list of the stochastic equivalent functions which are frequently applied 
in the newsvendor types of problem setting. 
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is that the random factor is now multiplied by the function of the 
expected price 𝐷𝐷(𝑝𝑝, 𝜀𝜀) = 𝑑𝑑(𝑝𝑝)𝜀𝜀. The random variable is again 
independent of the price but is now multiplied by the main part and has 
a mean of 1. However, as is again reasonably stressed by Polatoglu 
(1991), in this way the variance of the demand is dependent on the 
square of the product of the random term and the expected value of the 
price and as a result as prices keep on rising, the variance decreases 
at a much faster rate. 

c. A combined additive-multiplicative model incorporates both notions in a 
function which has the form of 𝐷𝐷(𝑝𝑝) = 𝑑𝑑(𝑝𝑝,𝑍𝑍) = 𝛼𝛼(𝑝𝑝)𝑍𝑍 + 𝛽𝛽(𝑝𝑝), (Young, 
1978). In this generic form p is the price and Z is a random variable with 
price independent cdf, 𝛼𝛼(𝑝𝑝) and 𝛽𝛽(𝑝𝑝) are decreasing functions of the 
price. Therefore, the additive model can be obtained by setting 𝛼𝛼(𝑝𝑝) ≡
1, so the prices affect only 𝛽𝛽(𝑝𝑝), ie the location of the demand 
distribution, while the multiplicative model can be obtained by setting 
𝛽𝛽(𝑝𝑝) ≡ 0, which means that the prices influence the demand scale. 
However, as Kocabiyikoglu and Popescu (2011) point out, even in this 
general formation the additive-multiplicative models make restrictive 
assumptions that drive the newsvendor’s problem results, such as a 
monotonic relationship between price and demand variability, while 
empirical studies show that such relationships may not hold and thus 
the theoretically formed functions often have a poor performance. 

The above counter-intuitive elements in the modelling approaches to uncertain 
demand give further ground to criticism when they are examined and evaluated 
in the same problem areas. In a number of papers there has been consideration 
of: 
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• The newsvendor’s selling price (for example Qin et al., 2011; Arcelus, 
Kumar and Srinivasan, 2005; Petruzzi and Dada, 1999; Polatoglu, 
1991), 

• The portion of the “supplier’s price discount” to be passed from the 
newsvendor to the end customer (for example Qin et al., 2011; Petruzzi 
and Dada, 1999). 

The suggested decisions relative to a deterministic model differ when the 
demand uncertainty is represented within an additive and within a multiplicative 
model. 
In order to deal with these ambiguities Kocabiyikoglu and Popescu (2011) 
introduced a unified framework. Their model has the general form of 𝐷𝐷(𝑝𝑝) =
𝑑𝑑(𝑝𝑝,𝑍𝑍), with p again being the price and Z a random variable with price 
independent cdf, which makes no assumptions regarding the effect of price on 
the variability of demand and furthermore can incorporate other functional forms 
of the relationship between demand and price, apart from the additive, 
multiplicative and additive-multiplicative ones, such as the attraction models (eg 
power, logit), willingness-to-pay (WTP), etc. Furthermore, they introduce another 
concept, the Lost Sales Rate (LSR) with which they try to capture a framework 
in which the study of decisions on price and inventory level can take place when 
the demand uncertainty has to be taken into consideration. They define LSR to 
be the complement of the demand CDF (and therefore the probability of lost 
sales). Additionally, LSR elasticity is defined with the use of both price and 
inventory level and thus, for a given quantity, it combines the sensitivity of lost 
sales given its building factors of inventory and price. Therefore, their significant 
contribution with regards to the problems previously mentioned is that they 
identify which combinations of price and inventory level lead to LSR elasticity 
being monotone. 
However, questions on the root causes of the differences in the results originating 
from the different treatment of the demand uncertainty, ie through additive, 
multiplicative and additive-multiplicative functions remain, and the reasonable 
arguments of Polatoglu (1991), Zabel (1970), Kocabiyikoglu and Popescu (2011) 
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and other authors have not been adequately addressed, apart from stating that 
there should be specific restrictive assumptions applied in each case. 

2.2.2 Using scenarios to model demand 
In these cases demand is represented by considering scenarios with different 
possible values but without assigning any probability distributions. 
This approach has been developed by Vairaktarakis (2000). He argues that 
reasonable probability distributions of demand can be almost impossible to 
determine in cases when the decision situation is unique and there is little or no 
historical data. Furthermore, he stresses that when probability distributions are 
used, the problem can become too difficult to solve and the assumptions that are 
then introduced to make it tractable can turn it into a “mediocre representation of 
reality”. 
Vairaktarakis’s (2000) suggested approach to modeling uncertainty is through 
the different possible scenarios/values that the demand can take and then 
applying robust decision theory criteria to assist the decision maker. If demand 
is continuous then a range of values can be used instead. He then solves a 
constrained optimization problem to suggest the optimum order level. 
One of the assumptions considered in this case is that possible demand values 
for each item are defined based on the understanding of the manager on “the 
sources that affect uncertainty (such as market and competitive environment)” 
(Vairaktarakis, 2000, p. 214). The author thus implicitly states that the elicited 
scenarios/values of demand will be considered and used under the assumption 
of different values of factors which have an effect on demand. However, as the 
functional models have shown, the mean demand can take different values 
according to the relevant factors which sometimes can vary a lot. Furthermore, 
the number of different factors to be considered can possibly make the elicitation 
of demand values a difficult task for the manager. 
On the same issue Vairaktarakis (2000, p. 215) suggests that the values for the 
demand should only contain likely realizations unless the decision maker wants 
to hedge the operational risk against some extremely unlikely scenarios. This 
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assumption is inherent to this applied modelling approach since it does not imply 
any different weight/probability to the different possible scenarios/values and 
thus it would consider an equal weight to very unlikely scenarios/values. 
However, in cases where there is little prior experience, the decision maker may 
be reluctant to define which of the different values/scenarios are very unlikely. 
At another point the author states: “stocking decisions for subsequent periods 
are independent of decisions made in previous periods” (Vairaktarakis, 2000 p 
215). This assumption is not always realistic. Prior stocking decisions affect 
demand and obviously posterior stocking decisions as well, and have been 
studied extensively (Huang, Leng and Parlar, 2013). Furthermore, this 
assumption reduces the valuable opportunity offered to the decision maker to 
learn from past experience and it is not the way that people tend to work in 
practice (Cyert, DeGroot and Holt, 1978; Harpaz, Lee and Winkler, 1982). 

2.2.3 Using probability distributions to model demand 
In these cases demand is modeled by the use of certain probability distributions, 
with parameters estimated from past demand data. 
Extensive work has been done by Braden and Freimer (1991) who have worked 
on providing a selection of demand distributions for the newsvendor models. 
Their work is developed under the realization that the demand may not be 
perfectly known from the sales that follow. This is because sales can be a mixture 
of exact and left-censored observations of demand. The term “left-censored” is 
used to show that since there will be cases in which customers do not find the 
product because all of the previously ordered quantity has been sold-out and 
therefore the newsvendor’s estimate of the demand is that it is at least as much 
as his initial order. Braden and Freimer (1991) have shown that the exponential 
family of distributions is applicable to such type of mixed observations. 
As was mentioned earlier and pointed out by Vairaktarakis (2000), this approach 
can suffer from difficulty due to the sometimes complicated demand probability 
functions, while it is quite difficult to elicit probabilities when there is little past 
data and experience. Regarding the latter, an additional drawback of the 
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approach is that it does not use data from other factors that have a causal 
relationship with the demand and may be easier to obtain. Such factors could be 
like the ones implied by Vairaktarakis (2000) who asked the experts to 
conceptually consider drivers affecting demand uncertainty related to the market 
and competition, an approach which on the other hand is used in the functional 
models. 

2.2.4 Using probability distributions to model demand and 
Bayesian Inference to refine the probability parameters 

Here, demand is modelled again by the use of certain probability distributions; 
however, their parameters θ_i follow prior distributions which are updated to 
posterior distributions using Bayesian inference from “fresh” data. The chosen 
probability families can include those suggested by Braden and Freimer (1991), 
while the initial parameters can be obtained from approaches like: 

• Reliability analysis as suggested by Petrovic, Senborn and Vujosevic 
(1988), 

• “Objective Bayes” suggested and practically tested by Sherbrooke 
(2004)13 

• “Empirical Bayes” implemented by Scarf (1959) and Robbins (1964) 
One of the early, very important works in this area was that of Murray and Silver 
(1966) who examined the optimum sequential production of fashion goods with 
the demand being unknown but updated by the use of Bayesian inference over 
time. A different application was developed by Cyert, DeGroot and Holt (1978) 
who studied an approach to reducing risk in investments. Their suggestion was 
to find how decision makers could make sequential investments that could gather 
information useful for subsequent decisions. The information they were looking 

13 It should be noticed that Petrovic, Senborn and Vujosevic (1988) and Sherbrooke (2004) 
refer to low demand and high unit price items and even though the suggested policies are 
for the infinite-time horizon problems this does not differentiate the suggested approach to 
the modelling of demand. 
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to obtain was the profit gained (or lost) and thus their respective prior probability 
distribution could be refined into a better informed posterior by the use of 
Bayesian Inference. Their work was continued by Harpaz, Lee and Winkler 
(1982) who again used Bayesian inference to model a perfectly competitive firm’s 
learning from experience and thus reducing its uncertainty on demand. 
The attractiveness of learning in facilitating decision making prompted several 
other researchers to work on this idea. Azoury (1985) used two finite horizon 
inventory models, one for consumable and one for reparable items and showed 
that solving the Bayesian problem by applying dynamic modelling, under certain 
conditions is no harder than if the distribution parameters were known. Eppen 
and IYer (1997) applied the same modelling approach for fashionable goods in 
order not only to optimize the amount of order but also to suggest how much to 
divert to the owned outlet stores. Their model is developed by the use of historical 
data and buyer judgement and is solved through stochastic dynamic 
programming. Furthermore, Berk, Gurler and Levine (2007) show that a two-
moment Bayesian modelling of demand parameters distribution works 
adequately both in theoretical and operational applications. 
However, the same issues apply as the ones referred to in the last category. 

2.2.5 Using uncertainty theory to model demand 
The users of this approach argue that when there are not enough sample data 
only the experts’ belief degree of the underlying distribution can be used, and 
within that there can be considerable bias. In order to deal with experts’ belief 
degree in modelling demand uncertainty Ding and Gao (2014) adopt and apply 
the Uncertainty Theory developed by Liu(2007)14.  

14 This theory was further expanded by Liu (2009) 
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2.2.6 Using fuzzy logic to model demand 
In this case uncertainty is modelled by considering demand values as fuzzy 
variables. One of the works in this area was that of Ji and Shao (2006) whose 
main goal was to model the combined decision making of the manufacturer and 
the retailers and apply a hybrid optimization based on fuzzy simulation along with 
a genetic algorithm to optimize the expected profit. 

2.3 Factors that affect demand and have been used to 
model it 

This paper has found great value in the seminal work of Huang, Leng and Parlar 
(2013) who have thoroughly examined not only the functions but also the factors 
that have been used in order to model demand and not only for the newsvendor’s 
problem formulation, and in the work of Khouja (1999) who has introduced a 
similar taxonomy specifically for the newsvendor’s problem. The factors 
examined are: 

1 Prices set either by the newsvendor or his/her supplier 
2 Rebate 
3 Lead-time that affects the customer’s level of satisfaction 
4 Space presented to the customer, thus affecting his perception of 

product availability 
5 Quality 
6 Advertising 

One point worth noticing is that the literature’s orientation has mainly been on 
examining demand’s dependency on factors which can increase it. This 
obviously is true if the newsvendor is a retailer or manufacturer and primarily 
wants to optimize monetary objectives. However, there are cases when it would 
be preferable if the demand is the smallest possible. A number of factors that are 
relevant in such cases could include: 

1 In the case of deciding how much money to invest in an individual’s 
health, the quality of the state’s health care programs 
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2 In the case of deciding on the final quantity of military supplies to deliver 
before a withdrawal, the level of enemy military presence in an area 

3 The weather forecast in problems where water has to be provided to an 
isolated place 

3. The application of Bayesian Networks to 
newsvendor problems 

An important point regarding demand distributions has been raised by 
Sherbrooke (2004) in which he observes that the mean demand is “drifting” with 
time. The factors in each case that cause/impose this drift15 can be analysed 
through engineering breakdown approaches using Subject Matter Experts’ 
(SME) opinions. Consequently, there is an inherent gap in the approaches that 
use just probability distributions (3rd modelling approach) since they define them 
by the use of past data only. The same issue seems to exist in the use of 
uncertainty theory and fuzzy logic (5th and 6th modelling approaches). 
Vairaktarakis (2000) in his use of scenarios in the 2nd modelling approach asks 
the SMEs to consider the factors that define the values which demand can take 
but fails to account for the relative strengths of their effects and also prompts 
them to exclude very rare values of demand unless they want to hedge for them. 
On the other hand, Bayesian inference models (4th modelling approach) 
consider this drift effect but need fresh data on demand itself to do that, 
something that is rarely available in many of the newsvendor-type problems. Of 
all the previously discussed modelling approaches, only the functional ones take 
into consideration the main factors that define the context within which demand 
is considered. However, they also fail to adequately model the uncertainty and 
its effect on decision making which is of vital importance to newsvendor-type 
decisions. Furthermore, in order to work they need sufficient data which is 

15 E.g. the wear-out of the system, different environmental conditions, change in the 
system’s use rate 

263 

                                                           



Petros Boutselis and Ken McNaught 

available mainly in market related applications but not in other areas within the 
newsvendor spectrum of problems. 
What is suggested is to combine the consideration of demand uncertainty and 
the demand-defining context formed by causal factors, which are likely to take 
uncertain values as well. A natural way of doing this is to form a joint probability 
distribution of all the relevant variables. The modern probabilistic framework of 
Bayesian Networks (BNs) provides an efficient way of representing, building and 
manipulating such a distribution in order to perform inference of various types. 
Furthermore, based on our literature search, we believe that its application to 
newsvendor type problems is novel. 

3.1 Requirements of a BN formulation 
A BN (Pearl, 1998) is a directed acyclic graph (DAG) in which the nodes 
correspond to variables of interest in the modelled domain and arcs correspond 
to direct probabilistic dependencies. Absence of an arc between two nodes does 
not necessarily imply that they are completely independent but that dependence 
might be mediated by another variable, for example. It does imply that they are 
at least conditionally independent under some conditions. For example, a simple 
BN containing the five variables ‘daily ice cream sales’, ‘ice cream price’ 
‘temperature’, ‘daily sun cream sales’ and ‘sun cream price’ is shown in Fig 1. 
Although the two sales variables are probabilistically dependent, there is no arc 
drawn between them since their dependence is a result of their common-cause 
parent variable, ‘temperature’ which does have a direct probabilistic dependence 
with each of them. We say that ‘ice cream sales’ and ‘sun cream sales’ are 
conditionally independent given temperature. In fact, the arcs from temperature 
to sales represent causal links but arcs in a BN do not have to be causal in 
general. 
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In addition other variables will have an indirect effect and be included in the BN 
to make the model more complete and the probability distributions easier to 
specify and obtain from either data or SMEs. 
It is obvious that the different values of these variables form different contexts 
within which demand can again take different distributions of values. Combining 
the likely demand distributions conditioned on the influencing variables with the 
prior distributions of the influencing variables themselves provides a coherent 
approach to modelling the demand. It also allows for the inclusion of related 
forecast variables in a straightforward fashion, e.g. relevant environmental 
forecasts such as temperature. The distinction between the forecast temperature 
which is known and the actual realised temperature which will be unknown when 
the order is placed is important in this type of model. As well as allowing the 
demand distribution to be updated when a new forecast is made, questions about 
the value of buying improved forecast information can also be addressed. 
Based on the above example, a BN model could have the form shown in Fig 2. 
Since this paper is reporting on work in progress, our next task is to quantify this 
model by obtaining the required probability distributions which its structure 
suggests. For a specific equipment or commodity this will involve a combination 
of historical data analysis and elicitation from SMEs. 
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Parlar through their review on empirical studies they suggest the following 
measures of goodness of fit: 

• The Standard Error of Estimate (SEE) 
• The log-likelihood statistic 
• Nonlinear Least Squares (NLS) with adjusted R2 

However, these are still not what is implied by Khouja16 since these measures 
are not intuitive to managers, and cannot be practically assessed.  
A more practical and intuitive approach for managers is suggested and has been 
successfully applied by Sherbrooke (2004) and Cohen et al (1990). Through this 
approach future demand is initially estimated using a candidate demand model. 
The predictions are used in the inventory system to calculate the suggested level 
of spares. Then the actual demand which is known from past data (kept for the 
validation of the models) is used to calculate the attained availability through 
simulation. The best demand model is the one which gives the optimum measure 
of system performance when real data are used, thus, the measure of goodness 
of fit relates to the manager’s objective itself. Furthermore, Sherbrooke (2004) 
also used as a complementary measure the estimated availability that the spares 
calculation model gave and then compared it to the “true”/attained availability to 
see if it was an optimistic estimate or not. Therefore, following this suggestion 
the following two measures of goodness of fit are suggested for research on 
practical cases: 

1 The actual result that would be attained using the suggested method of 
modelling the demand within the context of each specific application of 
the model17. 

16 Khouja (1999, p. 550) refers to the issue by saying: “Without some empirical work 
examining real life objectives of managers and the availability of information about demand, 
the practicality of these models cannot be assessed” 
17 For example if a Bayesian Network (BN) model of the demand was used in predicting 
the optimum space allocation in a transport problem, then the measure of the model’s 
effectiveness would be the actual revenue acquired if the procedure would follow the 
suggestions of the model and the true demand was applied. 
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2 The predicted optimum estimate18. 

5. Conclusions 

The newsvendor framework is applicable to a very wide problem spectrum. 
Several potential applications have been briefly described to give a sense of this. 
One of the major difficulties that its application poses is that compared to other 
infinite-time horizon management policies, consideration of demand uncertainty 
is of supreme importance to decision making. The traditional ways of modelling 
this demand have been outlined and some of the issues surrounding it discussed. 
In this paper, we propose the use of Bayesian networks to model demand in 
newsvendor type problems. This framework naturally permits consideration of a 
wider set of context-defining variables or factors which influence the demand. 
The usefulness of the BN approach is also enhanced in cases where little past 
demand data exists and decisions need to be taken by considering the 
relationship of demand with these context-defining variables. This paper is a 
report of work in progress and here we have only outlined the qualitative form of 
an example model relating to final supply of military equipment. The 
quantification of the model is the subject of ongoing work and will be reported in 
a future paper. According to our literature review the use of BNs in newsvendor 
type applications is novel. 
Furthermore, in order to develop a BN, close cooperation of the analyst with the 
manager/SME is of fundamental importance in the procedure and therefore the 
validation approach has to be in accord with the decision maker’s intuition. This 
is why the BN applications will be validated using practical approaches and 
measures of merit such as the ones suggested by Shrebrooke (2004) and Cohen 
et al (1990) that relate to the real effectiveness concerns of the decision makers. 

18 In the previous example this would be how much revenue was expected by the 
application of the model. 
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