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Computing Dynamic Routes in Maritime Logistic 
Networks 

Hervé Mathieu, Jean-Yves Colin and Moustafa Nakechbandi 

Abstract 

In this paper, we study the problem of finding the path that maximizes the gain 
toward one of several destination ports subject to uncertain information on the 
expected gain in each port. Although the cost of a ship trip between two points is 
usually predictable, some events may happen, thus impacting the cost. The price 
of goods to be delivered may fluctuate during the trip (thus impacting the gain), 
or the price to pay at the destination point can be higher than expected (in case 
of a strike for example). All of this has important economical consequences for 
the ship-owner and for the port on a long-term basis. In this context, it is important 
for a ship-owner to be able to react quickly when a destination port is no longer 
available. When a port terminal is on strike for example, ships are rerouted to 
other ports to be loaded and unloaded. We propose in this paper a simple and 
yet efficient algorithm to re-compute the path of the ship, when she is on the way, 
based on the computation of the longest path in a weakly dynamic graph, in order 
to maximize the global gain of the trip. 
 
Keywords: dynamic graph, longest path problem, maritime network, route 
planning, time and costs factors. 
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1. Introduction 

Static graphs have a long history of being used to efficiently represent static 
problems. In these problems, all the data are known from the start. The real world 
is not static, however, and the solutions to static problems may not always be 
used (Alivand, Alesheikh and Malek, 2008). Some data may change, or be 
unknown in advance. For example, the traversal duration of a location may 
depend on traffic density, the presence or not of traffic jams, work in progress, 
etc. that are all time dependent and usually hard to predict. Thus several 
approaches have been proposed to study parametric graphs (Ahuja, Magnanti 
and Orlin, 1993) and dynamic graphs (Boria and Paschos, 2011). 
Fully dynamic algorithms, for example, are applied to problems that can be 
solved in polynomial time. They start with a computed optimal solution, and then 
try to maintain it when changes occur in the problem. They often propose 
sophisticated data structures to reach this goal (Demetrescu and Italiano, 2004). 
When the delay between a change and the moment a new solution is needed is 
very small, or when the problem itself is NP-hard, faster algorithms are needed. 
These re-optimizing algorithms usually start from an initial solution that is not 
optimal but is expected to be of good quality, if possible. As soon as a change is 
detected, they compute a new solution, trying to do it faster than classical 
algorithms. Or they compute a new solution as quickly as the classical algorithms 
but this resulting solution is better than the ones found by classical algorithms. 
These algorithms include meta-heuristics such as ants colony algorithms (Balev, 
Guinand and Pigné, 2007), or swarm algorithms (Bajgan and Farahani, 2012). 
Another approach used is probabilistic. Probabilities are associated to some 
variables in the graph, such as the value of a weight, or the presence of a node 
or of a constraint, for example. The algorithms used in these problems usually 
compute a solution and then do some robustness analysis in the probability 
space (Fulkerson, 1962). Or they do a quick re-optimization of the solution once 
the parameters of the problem are perfectly known (Bertsimas, 1988; 
Jaillet, 1985). 
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In this paper, we study route planning in a maritime network (Joly, 1999). More 
specifically, we study the problem of finding the most interesting path toward one 
of several destination ports subject to uncertain information on the expected gain 
in each port. Although the cost of a ship trip between two points is usually 
predictable, some events may happen, thus impacting the cost. However, in most 
cases, only the final part of the trip is subject to change. The price of goods to be 
delivered may locally fluctuate during the trip (thus impacting the gain), or the 
price to pay at the destination point can be higher than expected. For example, 
it may happen that the dockers of a maritime port are on strike (examples of 
strikes include Le Havre-Rouen-Marseille 2008, Liverpool between 1995 and 
1998 also known as Liverpool's Dockers' strike, Rotterdam 2013). Actually, the 
strike phenomenon in maritime ports happens on a regular basis all over the 
world. To have an idea of the strike impact on maritime traffic, we can quote the 
example of the Greek port of Piraeus : Piraeus’ volume peaked at 1.6 million TEU 
(Twenty feet Equivalent Unit) in 2003, but strikes and unrest led to a throughput 
of only 433,000 TEU in 2008 (Notteboom, 2013). Moreover, "exceptional" events 
can make a destination port unavailable: bombing, blockade because of 
economical sanctions etc. It is then necessary to reroute a ship when its 
destination port is unavailable as soon as possible (Hamburg South Terminal, 
2013). All of this has important economical consequences for the ship-owner and 
for the port on a long-term basis. Thus, when a merchandise ship has to stay 
docked in a port without being taking care of, it implies a money loss that can be 
important for the ship-owner: sailors’ wages, ship rental, blocked merchandise, 
disrespect of deadlines for merchandise delivery (penalties), and extra fuel 
consumption. In this context, it is important for a ship-owner to be able to react 
quickly when a destination port is no longer available. 
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2. Problem Statement 

Maritime Shipping Graph (MSG): To study this problem, we will consider a graph 
G = (V, E). V is the set of nodes, V = S ∪ P ∪ {D}, S = {1, 2, … s} is the set of 
stable nodes, P={X1, X2, … Xp} is the set of non-stable nodes (representing 
destination ports) and D is the destination node. E is the set of edges, and to 
each edge is associated a weight w ∈ R. All the edges between a node of S and 
any other node are stable and their negative weights, that represent costs, never 
change. There is no edge between a stable node and D. However all edges 
leading to the final destination D in the graph are not stable and their weights 
may change at any time. The Xi nodes indicate the various ports available for 
delivery, and D is an added node indicating the abstract delivery of the load. Each 
edge between a node Xi and node D is non-stable and has a value xi, 
representing the current expected profit for delivering the load in port Xi. We call 
this graph a MSG, Maritime Shipping Graph (see figure 1). 
The length of a path is the sum of the weights of its edges. Longest paths that do 
not include any variable edge may be computed with the Dijkstra algorithm. 
For example, taking the simplistic example of a wheat cargo, starting from 
Argentina to Europe, it may pass through several points (such as the Horn Cap 
or the Panama Canal). The price to pay, in oil, time, fees and such is usually 
known and may be represented by a simple static graph. Once the ship is close 
to Europe, each possible port will have different and possibly changing profit due 
the local conditions (port availabilities, adding the cost of train or road transports, 
strikes…). The profit earned PE considered is: 

PE = SP - LF - TC 
with SP being the selling price at final destination, LF being local fees and 
expenses at final destination, and TC being travel costs to Europe. 
For example on the graph of Fig. 1, starting from node 1, we intend to reach one 
of the final ports X1, X2 or X3. The profit expected from port Xi will be the price 
received for the cargo minus the cost to deliver it, minus the cost to go to the 
port. 
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Fig. 1: Example of Maritime Shipping Graph with 3 variable edges (x1, x2, x3) 
to the destination D (dashed lines on the graph).{1,2,3,4,5,6} is the set S of 
stable nodes and {X1, X2, X3} is the set P of non stable nodes. 

We aggregate the price received there for the cargo with the cost to deliver there 
in a non-stable value xi that is represented on the graph as an edge between 
node Xi and a virtual node D. 
We are interested in the “One-to-All” Longest Path Problem (LPP),that is, finding 
the longest paths from one node to all other nodes of this graph. This must be 
done considering the weights of the non-stable edges. Preliminary results on the 
Shortest Path Problem (SPP) on weakly dynamic graphs with one variable edge 
were presented in (Colin, Ould Cheikh and Nakechbandi, 2013). In Nakechbandi, 
Colin and Ould Cheikh (2013) this result is extended to two variable arcs. In both 
results, alternative shortest paths or parametric routing tables are pre-computed 
for all possible values of the non-stable weights. Thus when the non stable 
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weights change, new optimal paths may directly and immediately be deduced 
and used without any further re-computations. 
The LPP we study will use the model illustrated on Fig. 1. Each stable value is a 
negative value representing its cost, and the non-stable value of this kind of 
weakly dynamic graph is the price received for the cargo minus the 
miscellaneous local costs (including the effects of strikes, if any.) 

3. Main results 

3.1 The proposed algorithm 
We present now the following algorithm to solve this problem: 
Algorithm 
Input: G=(V, E) is a MSG, with P being the subset of non stable nodes, and D 
being the destination 
Output: longest paths LP(j, D) from any node j of G to D 
For each non-stable node Xi of P do 
 Compute LPS(Xi) = set of longest paths that do not use a variable 
 edge, from all nodes j, j ∈ V- {D} to node Xi using 
 the reverse Dijkstra algorithm. 
 Let dXi[j] = the length of the path in LPS(Xi) that starts from j ∈ V- {D} 
 of the graph. 
End For 
The longest path LP(j, D) from j to D is the path such that length (LP(j, D)) = max 
(dXi[j]+ xi , Xi ∈ P) 
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3.2 Example:We now apply the algorithm on the graph of 
Figure 1 

The least costly distance from each stable node to each non-stable node is 
presented in Table 1. 

Stable node to non 
stable node  

X1 X2 X3 

1 -40 -70 -65 
2 -30 -60 -65 
3 -50 -55 -45 
4 -65 -65 -55 
5 -20 -30 -35 
6 -40 -25 -15 

Tab. 1: distances from all stable nodes to all non stable nodes 

For example, the value of the least costly path from node 3 to go to node X1 is -
50, to go to node X2 is -55 and to go to node X3 is -45. 
We now suppose that the current expected profits at the possible delivery ports 
are (x1, x2, x3) = (1000, 1100, 1200). 
The length of the longest path (that is the one with the highest total profit) from 
node 3 to D is max (1000 – 50, 1100 – 55, 1200 – 45) = 1155. From node 3, the 
longest path will go to port X3 for delivery in the current conditions. 
Now, if x3 falls to 1050 and the other values do not change, then the length of 
the longest path from node 3 to node D is max (1000 – 50, 1100 – 55, 1050 – 
45) = 1045. From node 3, the longest path will go to port X2 for delivery in these 
new conditions. 

3.3 The proposed algorithm 
Theorem 1: Let G=(V, E) be a Maritime Shipping Graph, and { xi, with Xi ∈ P } be 
the values of the non stable edges. Let dXi[j] the longest path without non stable 
edges from a stable node j to Xi , Xi ∈ P. Then the length of the longest path from 
a node j to node D is max { dXi[j] + xi, with Xi ∈ P } 

193 



Hervé Mathieu, Jean-Yves Colin and Moustafa Nakechbandi 

Theorem 2: The complexity of the algorithm is O((m + n log n)p)with n being the 
number of nodes, m the number of edges and p the number of non stable 
nodes.One interesting use of this result is in the building of pre-computed 
parametric routing tables. These parametric routing tables include critical 
conditions that can easily be used to establish very quickly a new destination if 
the expected profit in any possible final destination crosses a computed threshold 
value. 
We call critical conditions of a given node, the set of length functions associated 
to the longest paths to this given node computed by the algorithm. Because the 
functions of this set are constants, or very simple linear functions of the non-
stable weights, they can be computed and compared very easily. Thus for each 
target node, the set of alternative paths can be stored along with the associated 
set of critical conditions. As soon as any variable weight changes, the critical 
conditions of the target node just need to be re-computed and compared. Then 
the new longest path may be chosen among the alternative paths stored for this 
node. No re-computation of longest paths is needed, no data beside the current 
values of the variable edges need to be exchanged, and all decisions may be 
taken locally. 
The result found by the proposed algorithm can then be used to build alternative 
routing tables for each ship starting from any location of the graph. The same 
tables can then be used to route these ships to the most profitable destination at 
any time during its journey. 
We develop the above ideas in the next part, using the example of Fig. 1. 

4. Developed Example 

We now again use the example of Fig. 1 with the current values (x1, x2, x3) = 
(1000, 1100, 1200) for the current non-stable weights. Applying the algorithm 
gives the distances, from all nodes to D, presented in the right part of Table 2: 
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 X1 X2 X3 Distance 
to D 
using 
(X1, D) 

Distance 
to D 
using 
(X2, D) 

Distance 
to D 
using 
(X3, D) 

Best distance to 
D if 
(x1, x2, x3)= 
1000,1100,1200  

1 −40 −70 −65 x1−40 x2−70 x3−65 1135 

2 −30 −60 −65 x1−30 x2−60 x3−65 1135 

3 −50 −55 −45 x1−50 x2−55 x3−45 1155 

4 −65 −65 −55 x1−65 x2−65 x3−55 1145 

5 −20 −30 −35 x1−20 x2−30 x3−35 1165 

6 −40 −25 −15 x1−40 x2−25 x3−15 1185 

X1 0 −40 −50 x1 x2−40 x3−50 1150 

X2 −40 0 −10 x1−40 x2 x3−10 1190 

X3 −50 −10 0 x1−50 x2−10 x3 1200 

Tab. 2: distances from all stable nodes to all non-stable nodes, and to D with 
(x1, x2, x3) = (1000, 1100, 1200) 

Now, for any node, the length of its longest distance depends on the values of 
the non-stable edges. The possible lengths are summarized in Table 3. 
Next, it is now possible to build a parameterized routing table in each node to go 
to D. In the parameterized routing table of a given node, which neighbor to use 
depends on which part of the max formula gives the highest result using the 
current values of the non-stable edges. Table 4 presents the parameterized 
routing tables of nodes 3 and 4 if we have (x1, x2, x3) = (1000, 1100, 1200). With 
these values, x3–55 in Table 5 at node 4 gives the highest result of 1145, so a 
ship at node 4 with the above conditions will go next to node 6. 
We now start to compute the sensitivity of the result in each node, stable or not, 
only if one non-stable value changes. At node 1 for example, the best path to D 
has a length of 1135, and uses edge (X3, D) to D. 
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Node Parameterized longest 
distance to go to D 

1 Max(x1−40, x2−70, x3−65) 
2 Max(x1−30, x2−60, x3−65) 
3 Max(x1−50, x2−55, x3−45) 
4 Max(x1−65, x2−65, x3−55) 
5 Max(x1−20, x2−30, x3−35) 
6 Max(x1−40, x2−25, x3−15) 
X1 Max(x1, x2−40, x3−50) 
X2 Max(x1−40, x2, x3−10) 
X3 Max(x1−50, x2−10, x3) 

Tab. 3: Parameterized longest distance to go to D 

If current highest critical condition at 
node 3 is 

Then go to neighbor node: 

x1 – 50 5 
x2 – 55 6 
x3 – 45 6 

Tab. 4: Parameterized routing tables of nodes 3 to go to node D, (x1, x2, x3) = 
(1000, 1100, 1200) 

If current highest critical condition at 
node 4 is  

Then go to neighbor node: 

x1 – 65 3 
x2 – 65 6 
x3 – 55 6 

Tab. 5: Parameterized routing tables of nodes 4 to go to node D, (x1, x2, x3) = 
(1000, 1100, 1200) 
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The second best destination port is X2, using edge (X2, D) to D, and has a length 
of 1030. The remaining possible destination is X1, using edge (X1, D) to D, and 
has a length of 960. 
Now, for a different path to be chosen if only one non-stable value changes, two 
cases are possible. Either the profit at the best destination port falls so much that 
the second best becomes better, or the profit at one destination port that is not 
the best one climbs so much that it becomes the best one. 
Comparing the values found in Table 2, and using the computed distance formula 
to go from any stable node to any non stable node, we can deduce that, at node 
1 for example, the second best destination port becomes the best one if x3−65 < 
1030, that is if x3 < 1095. We can also deduce that, at node 1, destination port 
X1 will becomes the best destination port if x1−40 > 1135, that is if x1 > 1175. 
And that, at node 1, destination port X2 will becomes the best destination port if 
x2−70 > 1135, that is if x2 > 1205. 
We call these values (1175, 1205, 1095) at node 1 the critical values of node 1 
for the prices at destination ports (X1, X2, X3) if (x1, x2, x3) = (1000, 1100, 1200). 
If any single profit change occurs from the initial conditions (x1, x2, x3) = (1000, 
1100, 1200), then there will be no path change to consider if the new price is not 
above its critical value for a non best destination port, or is not below its critical 
value for the best destination port. Furthermore, if the local profit changes again 
many times whereas the other non-stable profits do not change, than there is no 
re-computation needed of any path and values. 

5. Conclusion 

In this paper, we studied the problem of finding the most interesting path (the one 
that maximizes the gain) toward one of several destination ports subject to 
uncertain information on the expected gain in each port and rerouting a ship 
when needed. 
We proposed a simple and yet efficient algorithm to re-compute the path of the 
ship, when she is on the way, based on the computation of the longest path in a 
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weakly dynamic graph, in order to maximize the global gain of the trip. Parametric 
routing tables are pre-computed, and critical values are deduced. 
As a final remark, one can note that a particular pathological classical situation 
that may arise in this kind of problem is that the expected values between two 
possible final destinations may change several times such that the ship must 
alternatively follow a path along and edge from A to B, then back from B to A, 
several time. It is a well-known problem of sensitivity in dynamic problems. One 
idea of heuristic may be that the ship is not allowed to come back toward another 
destination port unless the total expected profit there is superior to the total 
expected profit before the last change. With this heuristic, it is not possible for a 
ship to travel forever between two ports, because the prices will not increase 
forever. 
In the future, we intend to study the problem of finding longest paths in weakly 
dynamic graphs when some non-stable edges are not close to the destination 
node (passing through the Suez Canal for example). 
We also intend to work on extending this result to the problem of arbitraging multi-
deliveries when a ship at one time or another must reach several destinations 
successively. 
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