Make Your Publications Visible. A Service of Leibniz-Informationszentrum Wirtschaft Leibniz Information Centre Bancroft, John ## **Conference Paper** Is Money Really Green? - An Investigation Into Environmental Supply Chain Practices, with a Cost Focus # **Provided in Cooperation with:** Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management Suggested Citation: Bancroft, John (2014): Is Money Really Green? - An Investigation Into Environmental Supply Chain Practices, with a Cost Focus, In: Kersten, Wolfgang Blecker, Thorsten Ringle, Christian M. (Ed.): Next Generation Supply Chains: Trends and Opportunities. Proceedings of the Hamburg International Conference of Logistics (HICL), Vol. 18, ISBN 978-3-7375-0339-6, epubli GmbH, Berlin, pp. 183-194 This Version is available at: https://hdl.handle.net/10419/209206 ### Standard-Nutzungsbedingungen: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte. https://creativecommons.org/licenses/by-sa/4.0/ #### Terms of use: Documents in EconStor may be saved and copied for your personal and scholarly purposes. You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public. If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence. # Is Money Really Green? - An Investigation Into Environmental Supply Chain Practices, with a Cost Focus John Bancroft #### Abstract In the setting of the supply chain and the environment, logistical operations are the most visible and contribute significantly to CO2 emissions (Dekker et al., 2011); Tol (2006) suggests that transportation accounts for 14% these emissions. As most products consumed have a global footprint it is important that logistics is managed with a green and cost effective approach. For third party logistics providers and in-house logistics operations to reduce CO2 emissions and "green up" their operations, it must be possible to do this whilst remaining competitive in areas such as cost, reliability and performance. Without this, it is unlikely that logistics providers will voluntarily make changes to their operations. This research paper will investigate current green initiatives as well as future approaches and evaluate them, focusing on those which can maintain or reduce costs whilst sustaining performance and reliability. Investment in environmentally friendly distribution practices has become a must for organisations; the degree to which this is practiced and invested in varies significantly. The motivation for this investment could be for numerous reasons; a genuine care for the environment, legislation, pressure from environmentalists or due to an increase in the cost of fossil fuels. For investment to be facilitated it must be sustainable fiscally, or these practices cannot be continued. Helper et al. (1997) and Conrad and Morrison (1989) suggest that previous attempts to reduce the impact of supply chain practices have frequently increased costs, thus discouraging investment in such practices. **Keywords:** green, cost focus, reliability, performance #### 1. Introduction In the later part of the 1900's to the present, there has been a growing focus on the damage that individuals and corporations are causing to the environment. This will undoubtedly continue as long as it is evident that the environment around us is deteriorating; natural resources are depleted, Carbon Dioxide (CO₂) emissions continue to rise and landfill sites become overfilled. Enter green logistics, often facilitated by corporate social responsibility (CSR) and regulative/legislative pressure. Managers are recognising the importance of appearing green to an organisation's reputation and how that can currently be an order winner, and as regulations become stricter, this will one day act as an order qualifier (Murphy et al., 1995). Some customers are willing to pay extra for green services and products; a survey from Reuters further enforces this idea. "Some 48 percent of the people surveyed also said they were prepared to pay a little bit more for sustainable goods." Similarly the same survey consisting of 20, 000 people from 10 countries also shows that "80 percent would reward brands that adopted sustainable practices" and that "72 percent would punish those that did not." (Reuters, 2009). Additionally, whilst there is some debate as to when fossil fuels will be depleted, there is a consensus that it will happen. Shafiee and Topal (2009) hypothesise that "fossil fuel reserve depletion times for oil, coal and gas of approximately 35, 107 and 37 years, respectively." As a result of this factor it is necessary to find suitable green alternatives to these fuels. Whether or not logistics can be made environmentally friendly or green, fiscally and economically effective, and maintain reliability and performance will be the focus of this paper. This paper will follow an inductive approach, exclusively using secondary data, qualitative and quantitative; from case studies, peer reviewed journals, other academic and industry sources. Exploration of current logistical practices, as well practices considered to be green shall be investigated. Quantitative data will primary consist of CO_2 emission figures, which is considered to be a key performance indicator that can be used to gauge logistical practices and their impact on the environment. # 2. Green Logistics/SCM CSCMP (2011) describes logistics management as "that part of the supply chain that; plans, implements, and controls the efficient, effective forward and reverse flow and storage of goods, services and related information between the point of origin and the point of consumption in order to meet customers' requirements". Rodrigue et al. (2009) goes on to explain green logistics is "supply chain management practices and strategies that reduce the environmental and energy footprint of freight distribution. The focus is often on material handling, waste management, packaging and transport." Pazirandeh and Jafari (2013) combine the two explanations and describe green logistics as a form of logistics that is both economically functional and environmentally friendly. Green logistics is all about "the harmonization of efficiency, environmental friendliness and energy conservation" and its goal is to ensure "sustainable development of freight transport..." (Geroliminis and Daganzo, 2005). The increasing emphasis towards green supply chain management (GrSCM) is predominately motivated by the further decline in the environment, such as lessening availability of raw materials, increasing levels of pollution, carbon dioxide (CO₂) emissions being a common problem and overfilled waste sites (Srivastava, 2007). "Over the past 10-15 years, against a background of increasing public and government concern for the environment, companies have come under mounting pressure to reduce the environmental impact of their logistics operations" (McKinnon et al., 2010). Zhu et al. (2007), has suggested that green supply chain and logistics practices, can have three impacts on an organizations performance: Environmental performance, such as the reduction of CO2 emissions, waste reduction and a decreasing use of materials and therefore generally less waste. Economical performance, which can lead to increases in some costs and decreases in others. Such as decrease of material and energy cost and increases in the cost of training employees. Operational performance, such as improved capacity utilization and decreased inventory levels. A fourth impact can be included: this is the increase in one-off investments. which is guite often typical of green logistics, as new technology/upgrades are required such as vehicles. Green vehicles typically cost more than their traditional counterparts (Dizikes, 2012). For example an electric delivery vehicle can cost up to \$150,000, whereas a traditional delivery vehicle is likely to only cost approximately \$50,000. UPS (2013) have found by introducing 100 electric delivery vehicles into their fleet, there can be a saving of 126,000 gallons of fuel per year. With the average price of gas per gallon at \$4.11 (California Energy Commission, 2014), this would amount to fuel savings of approximately \$500,000, not to mention the significant reduction in CO₂ emissions and noise. However these vehicles still need a charging source and where that energy comes from, will dictate the actual net savings in both costs and CO2 emissions. The current issue is that many charging sources for electric vehicles (EV) currently derive their energy from un-green sources, usually fossil fuels (Thomas, 2012). Consequently, whilst a vehicle may not have any tailpipe emissions, there is still a carbon footprint associated with the energy used to run that vehicle. Thomas (2012) goes on to argue that even if all US light duty vehicles (LDVs) were replaced by a combination of battery EVs and plug-in hybrids, green house gasses (GHGs) would be at most reduced by 25% and oil consumption could be reduced by less than 67%. However if all these vehicles were replaced by fuel cell electric vehicles powered by hydrogen made from natural gas, GHGs would be reduced by 44% and oil consumption by almost 100%. However if like Tesla, these sources can be derived from clean, renewable and non-polluting energy sources, such as solar, the CO₂ are virtually zero. Tesla are currently making radical improvements to the U.S electric vehicle charging infrastructure, of which, all of this energy is from clean solar energy and their aim is that by the end of 2015 98% of the U.S population will have access to these charging stations (Tesla, 2014). Equally by the end of 2015, the majority of Western Europe will also be covered with these Supercharger stations. While Tesla is radically developing the infrastructure for EVs, the issue currently is that this is specifically for Tesla owners and it is currently incompatible with other EVs; there are talks of this changing and accessibility being made for any EV, where the manufacturer is willing to work to Tesla's cost structure as well as the vehicular being designed so it is capable of accepting the power that the Supercharger provides (Hruska, 2014). #### 3. Conflicts and Matches There are a variety of approaches available for adoption by organizations that will green up logistics and throughout the supply chain, however not all of these are a viable option. Frequency and size of deliveries can be an issue when it comes to green logistics. Rodrigue et al. (2001) state that with green logistics "the idea is not for smaller and more frequent shipments which would result in more trips by smaller vehicles." Rodrigue et al. (2001) continues to state that green logistics aims to minimize the number of deliveries (trips) made, therefore implying the use of larger vehicles, filled to capacity and therefore moving more materials or products with less frequent deliveries. This would immediately conflict with any organization following a lean approach, whereby smaller more frequent deliveries are encouraged and therefore a buildup of inventory would occur throughout the supply chain. A build up of inventory generally equates to higher labour costs as well as handling equipment being required. In addition to this more materials usually leads to problems being hidden, such as quality defects. (Jacobs and Chase, 2008). What initially would appear to be simply extra storage space required soon leads to additional costs which spiral into unimagined costs, in the forms of transport, storage and general waste. Continuing with the focus of road transportation and the size of vehicle, perhaps the most common green KPI is CO_2 emissions, usually measured in grams per kilometer, CO_2 (g/km). The assumption previously discussed is that more frequent deliveries, in smaller vehicles, will lead to more CO_2 (g/km), however if larger vehicles are used to make less frequent deliveries, these emissions should be lower. Pirog et al (2001) measured the average emissions from three categories of road transport these were; heavy-duty trucks, midsize trucks and light trucks (below). | Transport Mode | Maximum Load
(kg) | Fuel Type | Specific total
CO ₂ emissions
(g/ton-km) | |------------------|----------------------|----------------------|---| | Heavy-duty truck | 17,300 | Diesel | 62 | | Midsize truck | 6,000 | Diesel | 122 | | Light truck | 700 | Gasoline
(Petrol) | 459 | Tab. 1: Road Transport CO₂ Emissions (Venkat and Wakeland, 2006) The three truck sizes and their CO_2 emissions are measured in grams of CO_2 per metric ton per kilometre. The above table shows that the larger the vehicle load size (kg), the less the CO_2 emissions (grams) per ton per kilometre. Jones and Womack (2002) and Venkat and Wakeland (2006) examined a windshield wiper supply chain and use the above figures to create calculate its CO2 emissions from the logistical activities within this supply chain from three perspectives; an agnostic approach, a lean approach, translating to frequent smaller batches and a green approach, large infrequent deliveries. All deliveries use full-truck and direct deliveries and the return trips are assumed to be efficiently used for other purposes. | Strategy | Vehicle size(s) | Delivery
frequency * | Specific total
CO2
emissions
(g/ton-km) | |----------------------|-------------------------------------|-------------------------|--| | Agnostic/Traditional | Heavy-duty
and Midsize
trucks | Twice a
week/Daily | 27,292 | | Lean | Midsize trucks | Daily | 27,816 | | Green | Heavy-duty
trucks | Once or twice a week | 12,912 | Tab. 2: CO₂ Comparison by Delivery Vehicle Size/Frequency in a Windshield Wiper Business (Venkat and Wakeland, 2006) *Delivery frequency is dependent on the stage in the supply chain and the intermediaries involved. While the message communicated from the above two tables, begins to at least suggest that lean and green logistics will have some fundamental conflicts, it also supports the notion that green logistics can reduce costs in some areas. There is a clear link between CO₂ emissions and fuel efficiency, in other words, the fewer emissions produced the more economical or efficient a journey is with regards to fuel consumption. Another conflict between green and the very nature of logistics is the time and speed involved. "By reducing the time of flows, the speed of the distribution system is increased, and consequently, its efficiency" (Rodrigue et al., 2001). When organizations achieve this it is often by the most polluting logistics providers and involves using the least energy efficient modes of transportation. There is an emphasis now on quick logistics, both from an organizational standpoint to reduce lead times so organizations further down the supply chain can in turn do the same. Similarly from a consumer prospective, when something is ordered online, the general consensus is that customers want it delivered for as little as possible, but also as quick as possible. With lean logistics this becomes a greater reality, as not only are costs reduced, but with frequent, smaller deliveries it is more likely that what is being shipped will get there faster. Whereas with green, it could be that there are only one or two deliveries made a day, in large heavy goods vehicles, which are loaded to full capacity, to minimize emissions. As previously mentioned green's speed and flexibility is also lessened by the modes of transport available which are considered green, and with a demand for almost instant gratification with some buyers, it is necessary to use what is considered a high polluting form of logistics in some cases, such as air transport. It is essential to offer reliable logistics, the key performance indicators (KPIs) for reliability are widely agreed upon as being on time deliveries, with the least possible threat of breakage or damage of goods. Rodrigue et al (2001) state that "the least polluting modes are generally regarded as being the least reliable in terms of on-time delivery, lack of breakage and safety." "Ships and railways have inherited a reputation for poor customer satisfaction, and the logistics industry is built around air and truck shipments ... the two least environmentally-friendly modes" (Rodrigue et al., 2001). Sea freight gives emissions of only 10 to 40 grams of CO₂ per ton per kilometer, seemingly the most environmentally friendly method of logistics, while railway transport has emissions of around 30 to 100 grams of CO₂ per ton per kilometer. Both are considered incredibly environmentally friendly with regards to emissions, however when the drawbacks are considered of both sea freight and railway, it is highly discouraging. Not only is shipping an incredibly slow method of transport, but there are a number of other factors which compound this. It is important to note the CO_2 emissions emitted by any of the transport modes in figure 1, do not show a complete picture, it merely considers the 'tail-pipe' emissions. Emissions are also produced through the production, refinery, storage and transportation of the fuels used to run these modes (Colvile et al., 2000). Fig. 1: CO₂ Emissions by Transport Mode (McKinnon. 2008) ## 4. Conclusions This paper discusses the approaches available to logistics operations to green up their operations and supply chain management, thusly limiting their impact on the environment. However, it is differentiated from current research by focusing on the impact of the change to environmentally friendly focus versus the traditional approach; the impact on reliability and economically; two factors which need serious focus for an organization. ### 5. Further Research I wish to carry out semi-structured interviews for primary data collection. Participants will include logistics practitioners from third party logistics providers in the UK and logistics professionals/consultants. A focus will be on the implementation and post-implementation phases; looking at upfront costs, the time it takes to recoup or offset any additional costs and effects on reliability and performance. ### References - Colvile, R., Hutchinson, E., Mindell, J. and Warren, R. (2001). The transport sector as a source of air pollution. Atmospheric environment, 35(9), pp.1537-1565. - Conrad, K. and C. J. Morrison (1989) "The impact of pollution abatement investment on productivity change: An empirical comparison of the U.S., Germany, and Canada," Southern Economic Journal, 55, 684-698. - CSCMP (2014). CSCMP Supply Chain Management | Council of Supply Chain Management | Professionals. [online] Available at: http://cscmp.org/aboutcscmp/definitions.asp [Accessed 21 Jun. 2014]. - Dekker, R., Bloemhof, J. and Mallidis, I. 2012. Operations Research for green logistics-An overview of aspects, issues, contributions and challenges. European Journal of Operational Research, 219 (3), pp. 671-679. - Dizikes, P. 2012. Driving the green. [online] Available at: http://web.mit.edu/press/2011/ctl-electric-powered-trucks.html [Accessed: 9 Nov 2013]. - The California Energy Commission (2014). California Gasoline Statistics & Data. [online] Available at: http://energyalmanac.ca.gov/gasoline/ [Accessed 21 Jun. 2014]. - Geroliminis, N. and Daganzo, C. (2005) A Review of Green Logistics Schemes Used in Cities around the World. University of California. - Helper, S. and Clifford, P. (1997) Can Green Be Lean?. Academy of Management Annual Meeting 1997. - Hruska, J. (2014). Tesla reveals plan to share Supercharger network with other electric car makers | ExtremeTech. [online] ExtremeTech. Available at: http://www.extremetech.com/extreme/184141-tesla-reveals-plan-to-share-supercharger-network-with-other-electric-car-makers [Accessed 21 Jun. 2014]. - Jacobs, R., Chase, F. (2008). Operations and Supply Chain Management the Core. New York: McGraw Hill/Irwin. - McKinnon, A. (2008). "The potential of economic incentives to reduce CO2 emissions from goods transport", paper prepared for the 1st International Transport Forum on Transport and Energy: the Challenges of Climate Change, Leipzig, 28-30 May. - McKinnon, A. et al. (2012) Green Logistics. London: Kogan Page. - Murphy, P. et al. (1995) Role and relevance of logistics to corporate environmentalism. International Journal of Physical Distribution & Logistics, 25 (2), p.5-19. - Pazirandeh, A. and Jafari, H. (2013). Making sense of green logistics. International Journal of Productivity and Performance Management, 62(8), pp.889-904. - Pirog, R. et al. (2001) Food, Fuel and Freeways: An lowa perspective on how far food travels, fuel usage, and greenhouse gas emissions. Leopold Center for Sustainable Agriculture, Iowa State University, Ames, Iowa. - Reuters (2009) Reuters. [online] Available at: www.reuters.com [Accessed: 4 Apr 2012]. - Rodrigue, J. and Slack, B. (2001) Green Logistics (The Paradoxes of). - Srivastava, S. (2007) Green supply-chain management: A state-of-the-art literature review. International Journal of Management Reviews, 9 (1), p.53-80. - Shafiee, S. and Topal, E. (2009) When will fossil fuel reserves be diminished. Energy Policy, 37 p.181-189. - Teslamotors.com, (2014). Supercharger | Tesla Motors. [online] Available at: http://www.teslamotors.com/en GB/supercharger [Accessed 17 Jun. 2014]. - Tol, R. 2006. The Stern Review of the economics of climate change: a comment. Energy \& Environment, 17 (6), pp. 977-981. - Thomas, S. 2012. How green are electric vehicles?. International journal of hydrogen energy, 37 (7), pp. 6053-6062. - Venkat, K. and Wakeland, W. (2006) Is Lean Necessarily Green?. Proceedings of the 50th Annual Meeting of the ISSS. - Zhu, Q., Sarkis, J. and Lai, K. (2007). Green supply chain management: pressures, practices and performance within the Chinese automobile industry. Journal of Cleaner Production, 15(11), pp.1041-1052. # **Next Generation** Prof. Dr. h. c. Wolfgang Kersten Prof. Dr. Thorsten Blecker Prof. Dr. Christian M. Ringle (Editors) # Next Generation Supply Chains **Trends and Opportunities** Edition 1st pdf edition, August 2014 Publisher epubli GmbH, Berlin, www.epubli.de Editors Wolfgang Kersten, Thorsten Blecker and Christian M. Ringle Coverdesign Frederik Duchâteau, Moritz Petersen Coverphoto Viktor Rosenfeld / flic.kr/p/e7ujK3 (CC BY-SA 2.0) ISBN 978-3-7375-0339-6 #### Copyright: This book are licensed under the Creative Common Attribution-ShareAlike 4.0 International License. This book can be downloaded at HICL (<u>hicl.org</u>) or at the TUBdok – Publication Server of the Hamburg University of Technology (<u>doku.b.tu-harburg.de</u>) – ISBN: 978-3-7375-0339-6 A printed version of this is available in your library or book store – ISBN 978-3-8442-9879-6 An alternate version for your ebook reader is available through online ebook stores – ISBN: 978-3-7375-0340-2 #### Preface Today's business environment is undergoing significant changes. Demand patterns constantly claim for greener products from more sustainable supply chains. Handling these customer needs, embedded in a sophisticated and complex supply chain environment, are putting the players under a constant pressure: Ecological and social issues arise additionally to challenges like technology management and efficiency enhancement. Concurrently each of these holds incredible opportunities to separate from competitors, yet also increases chain complexity and risks. This book addresses the hot spots of discussion for future supply chain solutions. It contains manuscripts by international authors providing comprehensive insights into topics like sustainability, supply chain risk management and provides future outlooks to the field of supply chain management. All manuscripts contribute to theory development and verification in their respective area of research. We would like to thank the authors for their excellent contributions, which advance the logistics research progress. Without their support and hard work, the creation of this volume would not have been possible. We would also like to thank Sara Kheiravar, Tabea Tressin, Matthias Ehni and Niels Hackius for their efforts to prepare, structure and finalize this book. Hamburg, August 2014 Prof. Dr. h. c. Wolfgang Kersten Prof. Dr. Thorsten Blecker Prof. Dr. Christian Ringle # Table of Contents | I. A Look Into the Future - Opportunities and Threats | | |--|----| | Identification of Megatrends Affecting Complexity in Logistics Systems | 3 | | Planning Approach for Robust Manufacturing Footprint Decisions2 Philipp Sprenger, Matthias Parlings and Tobias Hegmanns | :9 | | Future Problems in Logistics Due to Demographic Change5 Matthias Klumpp, Sascha Bioly and Christian Witte | i1 | | Logistics Trends 2020: A National Delphi Study Concerning the German Logistics Sector6 | 9 | | Stephan Zelewski, Alessa Münchow-Küster and René Föhring | | | Vision of a Service Value Network in Maritime Container Logistics8 Jürgen W. Böse, Carlos Jahn and Raman Sarin | 7 | | II. Sustainability Efforts Within the Supply Chain | | | Logistics Performance Measurement for Sustainability in the Fast Fashion Industry11 | 3 | | Anna Corinna Cagliano, Muhammad Salman Mustafa, Carlo Rafele and
Giovanni Zenezini | | | Design of Sustainable Transportation Networks13 | 37 | | Wendelin Gross and Christian Butz | | | Exploring Sustainability in Construction Supply Chains16 | 1 | | Margherita Pero, Eleonora Bottani and Barbara Bigliardi | | | Is Money Really Green? - An Investigation Into Environmental Supply Chain Practices, with a Cost Focus183 | |--| | John Bancroft | | Relevant Purchase Criteria or Basic Requirement: Customer Perspectives on Green Logistics195 | | Matthias Klumpp, Julia Naskrent and Nikolaus A. D. Hohl | | Information Systems and Reverse Logistics: Examining Drivers of Implementation on Multiple Case Study Scenario211 | | Josip Maric, Florence Rodhain and Yves Barlette | | Analysing the Role of Rail in Urban Freight Distribution223 | | Katrien De Langhe | | Truck Loading Dock Process – Investigating Integration of Sustainability245 | | Niels Hackius and Wolfgang Kersten | | How to Attract Air Freight Business: Defining Critical Success Factors for Regional Airports273 | | David M. Herold, Simon Wilde and Natalie Wojtarowicz | | Early Supplier Integration in Cast Product Development Partnerships – A
Multiple Case Study of Environmental and Cost Effects in the German Foundry
Value Chain289 | | Robert Christian Fandl, Tobias Held and Wolfgang Kersten | | Sustainable Logistic Scenarios in the NSR Region311 | | Jacob Kronbak, Angela Münch, Liping Jiang and Lisbeth Brøde Jepsen | | III. Handling Risk - Concepts Towards Robust SCM | | A Service Production Planning Model Integrating Human Risk Factors345 | | Nguyen Vi Cao and Emmanuel Fragniere | | Agility, Robustness, Resilience, Continuity and Anti-Fragility in Supply Chains | |--| | Immanuel Zitzmann | | Flexible Supply Chain Design under Stochastic Catastrophic Risks379 | | Yingjie Fan, Frank Schwartz and Stefan Voß | | A Risk Management Approach for the Pre-Series Logistics in Production Ramp-Up407 | | Patrick Filla and Katja Klingebiel | | The Imbalance of Supply Risk and Risk Management Activities in Supply Chains: Developing Metrics to Enable Network Analysis in the Context of Supply Chain Risk Management | | Christian Zuber, Hans-Christian Pfohl and Ulrich Berbner | | Risk Assessment in Managing the Blood Supply Chain447 | | Phongchai Jittamai and Wijai Boonyanusith | | Supply Chain Risk Management in International Trade Operations Between Germany and Brazil469 | | Meike Schroeder and Renato Barata Gomes | | The Forest Supply Chain Management: An Entropic Perspective487 | | Tarik Saikouk, Ismail Badraoui and Alain Spalanzani | | A Multi-Agent Based Approach for Risk Management in a Port Container Terminal515 | | Lorena Bearzotti and Rosa Gonzalez | | Authors | #### About HICL Since 2006 the annual conference Hamburg International Conference of Logistics (HICL) at Hamburg University of Technology (TUHH) is dedicated to facilitate the exchange of ideas and contribute to the improved understanding and practice of Logistics and SCM. HICL creates a creative environment which attracts researchers, practitioners, and industry thinkers from all around the world. Innovation is increasingly considered as an enabler of business competitive advantage. More and more organizations focus on satisfying their consumer's demand of innovative and qualitative products and services by applying both technology-supported and non technology-supported innovative methods in their supply chain practices. Due to its very characteristic i.e. novelty, innovation is double-edged sword; capturing value from innovative methods in supply chain practices has been one of the important topics among practitioners as well as researchers of the field. This volume, edited by Thorsten Blecker, Wolfgang Kersten and Christian Ringle, provides valuable insights into: - Innovative and technology-based solutions - Supply chain security management - Cooperation and performance practices in supply chain management ISBN: 978-3-7375-0339-6