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ABSTRACT 

 

This paper describes the application of a semiparametric approach, known as a varying 

coefficients model (Hastie and Tibshirani 1993), to implement a Oaxaca-Blinder type of 

decomposition in the presence of self-selection into treatment groups for a continuum of 

comparison groups. The flexibility of this methodology may allow for detecting heterogeneity of 

the role of endowment and coefficient effects when analyzing endogenous dose treatments. The 

methodology is then used to revisit the impact of obesity on wages (Cawley 2004), using body 

mass index (BMI) as the continuous group variable. The results suggest that body weight does 

have a negative impact on wages for white women, but the impact decreases for higher BMI 

levels. For white men, the impact is also negative and significant, but positive for low levels of 

BMI, which explains why they are not significant in the linear instrumental variables approach. 

 

KEYWORDS: Oaxaca-Blinder Decomposition; Heckman Selection; Heckit; Semiparametric; 

Kernel; Nonlinear; Body Mass Index; Weight; Wages 

 

JEL CLASSIFICATIONS: C14; I19; J31; J71 
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1. INTRODUCTION 

 

Since the seminal papers from Blinder (1973) and Oaxaca (1973), many studies have used what 

is known as the Oaxaca-Blinder (OB) decomposition for analyzing outcomes differences 

between two well-defined groups. Such differences are characterized as functions of differences 

in characteristics (composition effect) and differences in coefficients associated with those 

characteristics (wage structure effect). Subsequent research provided refinements that extended 

the OB decomposition analysis to nonlinear functions and distributional statistics other than the 

mean, as well as strategies to identify the model when some of the underlying assumptions do 

not hold (see Fortin, Lemieux, and Firpo [2011] for a review of other methodological 

extensions). 

 

While the OB decomposition can be directly applied to scenarios with naturally discreet groups 

(i.e., union and nonunion workers, men and women, whites and nonwhites), the application of 

OB-type decompositions in cases with a continuum of comparison groups is not standard. Ñopo 

(2008) and Ulrick (2012) have proposed extensions to the standard OB decomposition allowing 

for a continuous group variable, using ad hoc parametric approximations. Neither strategy, 

however, deals with the scenario where the assumption of conditional independence does not 

hold, as is the case when there is self-selection of individuals into groups based on unobservables 

(endogenous membership).  

 

The purpose of this paper is to propose a strategy to extend the OB decomposition to a 

continuous group variable using a semiparamatric approach known as varying coefficient models 

(Hastie and Tabshiran 1993). To account for endogenous selection, I abstract from a 

generalization of the Heckman selection model (Heckman 1979; Lee 1978; Li and Racine 2007; 

Vella 1998). This strategy can be useful for analyzing heterogeneous dose-treatment effects 

when endogeneity in terms of self-selection is expected. For example, in the context of labor 

market outcomes, the methodology can be used for analyzing the impact of smoking and 

smoking intensity on wages (Hotchkiss and Pitts 2013), obesity and body mass index (BMI) on 

wages (Cawley 2004), or training duration on employment probabilities (Kluve et al. 2011). 
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The rest of the paper is structured as follows. Section 2 describes the basic OB decomposition 

analysis in the presence of self-selection/endogenous membership. Section 3 introduces the use 

of a generalized selection term, here called the generalized inverse Mills ratio (GIMR), when 

individuals self-select into more than two ordered groups. Section 4 describes the use of varying 

coefficient models in the implementation of an OB-type decomposition. Section 5 provides an 

example of the implementation of the methodology by revisiting the wage penalty of obesity 

based on the research of Cawley (2004). Section 6 concludes.  

 

 

2. THE OB DECOMPOSITION WITH SELECTION: BASICS 

 

In the standard OB approach, the goal is to analyze how differences in observed characteristics 

and returns to these characteristics contribute to the average differences in the outcomes between 

two groups. For the appropriate identification of the OB decomposition, the strategy requires that 

the potential outcomes can be estimated using two well-specified linear models with exogenous 

membership into each group. This ensures that the distribution of the errors is orthogonal to the 

group membership.  

 

In many instances, however, the assumption of membership exogeneity is likely to be violated if 

individuals self-select to be part of a specific group (i.e., part of the treated group).1 When this 

happens, the conditional distribution of the errors is no longer independent of the group 

membership, ruling out the identification strategy of the standard decomposition approach. 

 

As described in Heckman (1979), this endogenous selection can be considered an omitted 

variable problem that can be corrected by modeling the selection process and using this 

information to add a correction term in the model specification.2 This strategy requires the 

estimation of a three-equation model that is described as follows: 

 

                                                            
1 Fortin, Lemiux, and Firpo (2011) provide other scenarios where the conditional independence assumption might be 
violated.  
2 This strategy has been used in the framework of the OB decomposition in terms of a switching regression model 
with unknown selection. See, for example, Lee (1978). 
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ݕ ൌ ܺߚ  ܦ	݂݅	,ߤ
∗ ൏ 0 or	ߝ ൏ െܼߛ (1a) 

ݕ ൌ ܺߚ  ܦ	݂݅	,ߤ
∗  0 or ߝ  െܼߛ (1b) 

ܦ
∗ ൌ ܼߛ    (1c)ߝ

 

Where ܦ
∗ is the latent propensity of an individual (i) to be part of group B, and ܼ is a vector of 

variables related to individuals’ membership that may include variables not included in X.3 If we 

assume that (ߤ,, ,,ߤ   :) are distributed jointly normalߝ

 

,,ߤ ,,ߤ ~ܰቌߝ
0
0
0
,

ఓߪ
ଶ . ఓߪߩ
. ఓߪ

ଶ ఓߪߩ
ఓߪߩ ఓߪߩ 1

ቍ (2) 

 

the model can be estimated using a full information maximum likelihood (FIML) or a two-step 

procedure (heckit). The latter involves including estimates for the inverse Mills ratio (IMR), also 

known as the selection correction term, in the main outcome model based on the information 

coming from the selection equation. In specific, for this setup, the IMR (ߣሻ would be defined as 

follows: 

 

,,|ܼߤ൫ܧ  ൯ܦ ∝ 	 ߣ ൌ
ିథሺఊሻ

ሺିఊሻ
∗ 1ሺ݅ ∈ ሻܣ  థሺఊሻ

ሺఊሻ
∗ 1ሺ݅ ∈  ሻ (3)ܤ

 

where ߶ሺ. ሻ stands for the normal density function and Φሺ. ሻ for the normal cumulative density 

function.  

 

The parameters (ߛ) can be obtained by estimating equation (1c) using a probit model, while 

unbiased estimations for equations (1a) and (1b) can be obtained using ordinary least squares 

(OLS) by including the corresponding IMR as explanatory variables:  

 

ݕ ൌ ܺߚ  ߣߜ  ݁
	݂݅	݅ ∈  (4a) ܣ

                                                            
3 While identification of the Heckman selection model can be obtained based on nonlinearity alone, having an 
instrumental variable is recommended for better identification of the model. 
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ݕ ൌ ܺߚ  ߣߜ  ݁
	݂݅	݅ ∈  (4b) ܤ

 

In this setting, an estimation of the adjusted outcome gap after controlling for selection can be 

written as follows: 

 

݅|	ݕሺܧ ∈ ሻܤ െ ݅|	ݕሺܧ ∈ ሻܣ ൌ തݕ∆ ൌ መߚݔ̅  ߣመ̅ߜ െ መߚݔ̅    (5)ߣመ̅ߜ

തݕ∆ െ ൫ߜመ̅ߣ െ ൯ߣመ̅ߜ ൌ ത௦ݕ∆ ൌ መߚݔ̅ െ  መ (6)ߚݔ̅

 

and can be used to implement any of the standard OB decompositions based on assumptions of 

the counterfactual wage structure.4 As described in Fortin, Lemieux, and Firpo (2011), outcome 

differences accounted for by differences in the coefficients (structure effect) can be interpreted as 

the treatment effect of membership, after adjusting for differences in observed characteristics and 

endogenous selection. 

 

 

3. GENERALIZED SAMPLE SELECTION 

 

In the model described above, we assume that the only information known about the selection 

process is that individuals are members of one of two groups (A or B). As discussed in Vella 

(1998), the grouping variable may contain additional information, such as intensity, that can be 

used to obtain a better approximation of the selection correction term, even if the interest remains 

in analyzing differences between two groups.  

 

As before, consider a model where we observe the continuous characteristic (ܦ) for each 

individual, which can be used to broadly classify them into groups A and B (dichotomization of 

the groups). This characteristic could be the number of hours worked per week, number of 

cigarettes smoked in a month, or weeks of training before reentering into the labor force, among 

others. The selection process and outcome equations can be described as follows: 

                                                            
4 For example, assuming counterfactual wages are given by the wage structure observed in group B, the components 
of the decomposition would be given by	∆ݕത௦ ൌ ሺ̅ݔ െ ߚሻݔ̅  ߚሺݔ̅ െ ߚሺݔ̅ ሻ, whereߚ െ  ሻ can be interpretedߚ
as a treatment effect under the conditional independence assumption.  
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ݕ ൌ ܺߚ  ܦ	݂݅	,ߤ  ܿ (7a) 

ݕ ൌ ܺߚ  ܦ	݂݅	,ߤ  ܿ (7b) 

ܦ ൌ ܼߛ     (7c)	ߝ

 

with ߤ,, ,,ߤ   following a joint normal distribution as defined before, with some arbitraryߝ

threshold ሺܿሻ to define membership, and with equation (7c) representing the equation (or 

equations) that describe the data-selection process. It is easy to see that this model reverts to the 

standard switching regression model if a dichotomous transformation 1ሺܦ  ܿሻ is used for 

equation (7c). 

 

Many authors have proposed various alternatives for the estimation of these types of selection 

models, using both parametric and semiparametric strategies (see Li and Racine [2007, sec 10.3] 

and Vella [1998]). In general, following the approach proposed by Heckman (1979), these 

methodologies suggest that to obtain consistent estimators for the parameters (ߚ), one should 

include an approximation of the selection bias term as a control in the main regression model. In 

this paper I concentrate on three methodologies that assume the overall distribution of D is 

observed, with extensions to scenarios where D is partially observed. 

 

Vella (1998) discusses the estimation of models such as the one described above and suggests 

that a feasible strategy is to estimate the selection process (equation [7c]) as a tobit model if D 

has a censored distribution. Without loss of generality, assuming D is censored at zero, the 

selection correction term or IMR is defined as:5 

 

,ܦ,หߤ൫ܧ ܼ൯ ∝ ߣ
∗ ൌ െ ଵ

ఙ

థቀ
ೋം


ቁ

ቀି
ೋം


ቁ
1ሺܦ ൌ 0ሻ  ଵ

ఙ

ିఊ

ఙ
∗ 1ሺܦ  0ሻ (8) 

 

These are often called generalized residuals. It should be noticed that when D is not censored, 

equation (7c) can be estimated using standard OLS and the IMRs are simply the OLS residuals. 

                                                            
5 It should be noticed that if the whole distribution of D is observed (i.e., there is no censored information in D), the 
procedure can also be done using a simple OLS model. This would be equivalent to a control function approach that 
includes the errors from the first step to the outcome model. 
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Including the residuals to the main models would be equivalent to the control function for 

endogeneity (Wooldridge 2015). 

 

As Vella (1998) and Li and Racine (2007) describe, using this correction term provides 

estimations that are more stable and efficient than using the standard IMR (which assumes 

dichotomous grouping). However, similar to the analysis of endogenous variables, an 

instrumental variable is required to identify the coefficients of the selection correction term and 

the treatment intensity (D). 

 

An alternative method described in Vella (1998) is one where the selection process corresponds 

to a setting with discreet but ordered selection rules. If we assume that ܦ෩ is a discretized 

transformation or classification of ܦ (i.e., ܦ෩ ൌ ܿ	݂݅	ܭ ∈ ሼ݈݈, ෩ܦ ሽ), and that݈ݑ
∗ is the latent 

propensity of an individual to be part of group ܦ෩ ൌ  then the selection equation process can be ,ܭ

written as: 

 

෩,ܦ 
∗ ൌ ܼߛ     (9a)	ߝ

෩ܦ ൌ

ە
ۖ
۔

ۖ
ۓ
෩ଵ,ܦ																					݂݅								0

∗ ൏ 0 → ߝ ൏ െܼߛଵ
෩ଵ,ܦ		݂݅								1

∗  ෩ଶ,ܦ	&	0
∗ ൏ 0		 → െܼߛଵ  ߝ ൏ െܼߛଶ

⋮ ⋮
ܬ െ ෩ିଵ,ܦ			݂݅	1

∗  ෩,ܦ	&	0
∗ ൏ 0 → െܼߛିଵ  ߝ ൏ െܼߛ

෩,ܦ		݂݅									ܬ
∗  0 → െܼߛ  ߝ

  (9b) 

 

Note that equation (9b) is a different way of writing the selection model described in Vella 

(1998), where all coefficients in ߛ are permitted to vary. Also note that all latent coefficients are 

affected by the same shock (ߝ). Under the parallel lines assumption (Williams 2016), an ordered 

probit model (O-probit) can be used to estimate this model, where only the constant is allowed to 

vary across models. 

 

Similar to the binary-group case, the outcome equations can be consistently estimated using OLS 

by simply including a selection correction term, which for the selection rule described by 

equations (9a) and (9b) takes the form: 
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,෩ܦ,หߤ൫ܧ ܼ൯ ∝ ߣ
∗ ൌ ିథሺఊభሻ

ଵିሺఊభሻ
1෩ୀ  ∑ థሺఊೖሻିథሺఊೖశభሻ

ሺఊೖሻିሺఊೖశభሻ
∗ 1෩ୀ

ିଵ
ୀଵ 

థ൫ఊ൯

൫ఊ൯
∗ 1෩ୀ (10) 

 

where ߣ
∗ is the GIMR (Vella 1998). Here the term ܧ൫ߤ,หܦ෩, ܼ൯ is only an approximation of the 

correction term ܧ൫ߤ,หܦ, ܼ൯, as it can be considered as the expected value of the correction 

term for all values of ܦ within the group ܦ෩. However, if more detailed groups are created and 

larger samples are available, one should expect	ܧ൫ߤ,หܦ෩, ܼ൯ → ,ܦ,หߤ൫ܧ ܼ൯. If no 

instrumental variables are used in the selection equation model, the GIMR will be strongly linear 

with the estimated latent index, and the estimator will be poorly identified.  

 

As described in Chernozhukov, Fernandez-Val, and Melly (2013), there are more flexible 

alternatives for the estimation of the selection model, by allowing all parameters in ߛ to vary 

with D and by estimating all possible models for each threshold in D. This can be done using 

independent models (Foresi and Perachi 1995), or using simultaneous models such as the 

generalized O-probit model (Terza 1985). Both alternatives, however, impose great 

computational burden and may produce unrealistic predicted probabilities in the model as the 

number of groups (J) increase.6 

 

Taking from the literature on distributional regressions (Chernozhukov, Fernandez-Val, and 

Melly 2013), the last alternative suggested here is to use global distributional regressions to 

characterize the cumulative distribution of the outcome	ܨሺݖ|ܦሻ. This can be done using a 

fractional probit model that takes the form: 

 

ሻݖ|ܦሺܨ ൌ ܲሺ݀  ሻݖ|ܦ ൌ Φሺܼߛሻ  (11) 

 

                                                            
6 See Williams (2016) for a brief discussion of this problem in the case of generalized ordered logit models, where 
the model produces negative probabilities of belonging to a particular group.  
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Empirically, this model can be estimated by substituting ܲሺ݀   ሻ with the sample estimatorݔ|ܦ

of the unconditional cumulative distribution	ܨሺܦሻ ൌ
ଵ


∑1ሺ݀ ൏  ሻ, or some otherܦ

approximation of it.7 In this case, the corresponding GIMR takes the form: 

 

,ܦ,หߤ൫ܧ ܼ൯ ∝ ߣ
∗ ൌ ሻܦሺܨ ∗

மሺఊሻ

ሺఊሻ
െ ቀ1 െ ሻቁܦሺܨ

மሺఊሻ

ሺିఊሻ
 (12) 

 

Once the corresponding selection correction terms have been estimated, and the average wage 

gap corrected for the selection term, the OB decomposition can be implemented in the standard 

way, using equation (6). In this framework, the structure effect can be interpreted as the average 

treatment between the untreated and treated group.  

 

 

4. THE OB DECOMPOSITION WITH A CONTINUUM OF GROUPS WITH 

SELECTION  

 

4.1. Varying Coefficients Model and Heterogeneity of the Treatment Effect 

The previous section described the construction of sample selection correction terms that use the 

information on the intensity of the treatment/selection variable to obtain the GIMR, which can be 

used to implement an OB decomposition comparing any two groups. A simple generalization of 

the OB structure that accounts for a continuum of groups can be written as: 

 

ݕ ൌ ܺࡰࢼ    (13)	ߤ

 

where ࡰࢼ is a vector of parameters that vary with the grouping variable (D). Without loss of 

generality, including the GIMR term into the model to obtain unbiased estimates through OLS 

provides a model that can be written as: 

 

ݕ ൌ ܺࡰࢼ  ߣࡰࢾ
∗  ݁	 (14) 

 

                                                            
7 This can be done, for example, using the kernel cumulative density estimation of D. 
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where ܺ is a vector that includes the constant and explanatory variables, and ߣ
∗ is the estimate 

of the GIMR for person ݅.8  

 

In principle, as stated in Ulrick (2012), with enough information it is possible to estimate all the 

parameters in the above equation for any value of ܦ by simply estimating models with 

constrained data. However, in most applications, the number of observations with a specific 

value for ܦ may be insufficient to provide an appropriate estimation of coefficients	ܤሺܦሻ ൌ

ሼߚ,  ሽ. Borrowing from the literature on nonparametric econometrics, feasible estimations canߜ

be obtained for the parameters ܤሺܦሻ	using an extension of local regression estimations, known 

as varying coefficient models (Hastie and Tibshirani 1993; Li and Racine 2007).9 Using this 

strategy, one imposes no restrictions on the coefficients	ܤሺܦሻ other than them being smooth and 

differentiable in ܦ. 

 

This method expands on the use of kernel local smoothing regressions, allowing for a flexible 

parameterization of the outcome model in equation (14), modeling the conditional mean 

ܦ|ݕሺܧ ൌ ݀ሻ as a linear function of explanatory variables and a selection term in the neighbor of 

ܦ ൌ ݀. This would, in principle, allow us to obtain estimates of the coefficients ܤሺܦሻ for every 

point of interest (d): 

 

ܦ|ݕሺܧ ൌ ݀ሻ ൌ ෝ݉௬ሺ݀ሻ ൌ ሺܧ ܹܤሺ݀ሻ|݀ሻ ൌ ሺܧ ܹ|݀ሻܤሺ݀ሻ ൌ ෝ݉௪ሺ݀ሻܤሺ݀ሻ  (15) 

 

with ܹ ൌ ሾ1, ܺ , ߣ
∗ሿ and the function ෝ݉௭ሺ݀ሻ representing the conditional mean of any variable Z 

in the neighborhood d. This model can be estimated by minimizing the objective function: 

 

ܮ	ሺௗሻ݊݅ܯ ൌ ∑൫ݕ െ ܹܤሺ݀ሻ൯
ଶ
ܭ ቀିௗ


ቁ (16) 

 

which is equivalent to minimizing the weighted squares errors of the model, with weights given 

by the kernel function, ܭሺ. ሻ, and the bandwidth,	݄. As discussed in Hastie and Tibshirani (1993), 

                                                            
8 Notice that ߣ

∗ does not vary with respect to the grouping variable (D), but rather the individual realization	ሺܦ). 
9 See Cameron and Trivedi (2005, ch. 9) for details on kernel regression estimators.  
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to reduce problems with boundary bias, the recommendation is to use a local constant 

approximation for ܤሺ݀ሻ ≅ Bሺ݀ሻ  Bଵሺ݀ሻሺܦ െ ݀ሻ. The constant component of these 

coefficients,	ܤሺ݀ሻ ൌ ሾߚ
, ߜ

ሿ, represents the local effect that a variable (X) has on the outcome 

(y) in the neighborhood of ܦ ൌ ݀. This can be used to implement the OB decomposition for the 

selectivity-corrected outcome between any two particular groups, depending on assumptions 

regarding the reference group (Fortin, Lemieux, and Firpo 2011). 

 

4.2. Bandwidth Selection and Standard Errors 

An important aspect of the estimation of varying coefficients is the choice of bandwidth ሺ݄ሻ. 

Larger bandwidths help reduce the variance of the estimated parameters, but increase the bias. In 

contrast, smaller bandwidths can reduce the bias at a cost of higher variance.10 While there are a 

few suggestions in the literature regarding to the choice of bandwidths (see, for example, Hoover 

et al. [1998]), a leave-one-out crossvalidation procedure using a single smoothing parameter (݄ሻ 

for smoothing all explanatory variables is used here. This implies choosing ݄ so that it minimizes 

the following expression: 

 

ܥ ܸሺ݄ሻ ൌ ∑ ߱ሺܦሻ൫ݕ െ ܺߚ
ିሺ݄ሻ െ ߜ

ିሺ݄ሻ ∗ ߣ
∗൯
ଶ

∈  (17) 

 

where ߚ
ିሺ݄ሻ and ߜ

ିሺ݄ሻ are the  ݅௧ leave-one-out estimated coefficients for a given bandwidth 

(h) and a point of interest (D); ߱ሺܦሻ is a weight function that serves to avoid difficulties of slow 

convergence caused by the sparse distribution of D. Because the bandwidth does not affect the 

calculation of the GIMR, the parameter ߣ
∗ will be considered exogenous for the estimation of the 

crossvalidation criteria. 

 

In the present context, the analytical estimation of the standard error of varying coefficient 

models with selection can be considerably cumbersome to implement. Under the assumption that 

the selection term is fixed and exogenous, Li and Racine (2007) provide expressions for the 

asymptotic distribution of the standard errors for the local linear estimator of varying coefficient 

                                                            
10 See Li and Racine (2007, sec. 9.3.2)  
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models.11 However, because the model described above is based on a two-step estimation 

process, the estimation of the standard errors needs additional adjustments (Heckman 1979).    

 

Because of the added complexity, a more feasible method, albeit computationally intensive, is 

using pair-wise bootstrapped standard errors. The benefits of this strategy have been discussed in 

Yatchew (2003) and Keele (2008), and, more recently, its application has been formally 

discussed in Cattaneo and Jansson (2018) in the framework of kernel regressions. The procedure 

can be described as follows: 

 

Step  1.  Obtain a random paired bootstrap sample ( ଵܵሻ from the original sample. 

Step  2. Estimate the selection correction term ሺߣௌଵ
∗ ሻ using any of the methods presented in 

section 3. 

Step  3.  Estimate the coefficient for the outcome models for all points of interest d, based on 

the bootstrap sample ሺ ଵܵሻ using local kernel regressions. 

Step  4.  Estimate the decomposition components for the group(s) of interest. 

Step  5.  Repeat steps 1 through 4 B-times to obtain the empirical distributions’ aggregated 

and detailed decomposition components. 

 

In the next section, an application of this semiparametric strategy is presented, revising the main 

results from Cawley (2004), where BMI will be used as the continuum of groups for the 

decomposition analysis.  

 

 

5. APPLICATION: REVISING THE IMPACT OF OBESITY ON WAGES 

 

Several studies have found that body weight is negatively correlated to wages, in particular for 

white women (Cawley 2004; Sabia and Rees 2012; Averett 2011; Fikkan and Rothblum 2012). 

The most common explanations for this negative correlation are: obesity lowers wages by 

reducing productivity and increasing discrimination; low wages may cause obesity due to 

unhealthy eating habits caused by lower income; or that unobserved factors simultaneously cause 
                                                            
11 See Li and Racine (2007, sec 9.3.2) for further details.  
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higher body weights and lower wages. In his review of the literature, Cawley (2004) criticizes 

the robustness of various strategies that have been followed in the literature to analyze the 

relationship between body weight and wages, and suggests the application of an instrumental 

variable approach to better capture the causal relationship between BMI and wages.  

 

Using data from the National Longitudinal Survey of the Youth (NLSY) for the years 1981 to 

2000, Cawley (2004) provides estimations for the impact of BMI and weight on wages, using 

siblings’ BMI, sex, and age as instruments for own BMI.12 Correcting for reporting errors on 

weight and height, the evidence of his preferred model suggests that the negative effect of higher 

BMI on wages is only statistically significant for white women, with no statistically significant 

effect for other groups.  

 

For the illustration of the proposed methodology, BMI will be considered the continuous group 

variable that is used to analyze the wage gaps in relation to body weight. Due to the higher 

demands that the methodology imposes on the data, some changes on the data definitions and 

model specifications are introduced. To compare the results with the instrumental variable 

approach used in Cawley (2004), I first replicate the original results and present various 

estimations showing how sensitive the results are to changes in the variables’ definitions and 

model specifications. Second, I briefly describe the specific OB decomposition approach used 

for the present example, given that no natural comparison group exists. Finally, I provide 

estimations of the semiparametric decomposition approach under the preferred assumptions. 

 

5.1. Replication and Variable Definition Changes 

Cawley (2004) estimates instrumental variable models for six different demographic groups 

based on gender and race, using measures for BMI that are corrected for self-reporting error13 as 

the main explanatory variable, and using siblings’ BMI, age, and sex as instrumental variables. 

Making use of clustered standard errors at the individual level and using sampling weights, he 

reports that BMI has a negative impact on wages for all groups and races, but is only statistically 

                                                            
12 The author implements a larger set of regression analysis using methodologies previously used in the literature. 
However, for the purpose of this paper, I will concentrate only on the instrumental variable approach. Further details 
on the data construction can be found in Cawley (2004). 
13 See Cawley (2004, 454) for a complete description of the data and model specification. 
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significant for white women. Replications of these results are provided in table 1, pooling 

together blacks and Hispanics into nonwhites. According to this result, an increase in BMI of one 

point would translate into a 1.5 percent reduction in wages for white women, with no statistical 

impact for other groups. 

 

Because of the multiple steps involved in the semiparametric methodology proposed here, the 

original model specification required some adjustments.14 First, sampling weights are excluded 

from the analysis, so that clustered bootstraped standard errors can be applied directly. Second, 

in the original replication files, Cawley (2004) kept sample observations with missing data in the 

model specification. He did so by replacing missing values with zeros and adding dummy 

variables indicating if a variable has missing observations. To reduce the number of explanatory 

variables in the model, data with missing information in the general intelligence score, highest 

grade attained, job tenure, and county employment rate are excluded from the sample so that the 

dummy indicators are dropped from the specification as well. Instead of including both father’s 

and mother’s highest degree of education, both variables are combined to a single variable 

(parents’ highest degree of education). Observations with missing data on both parents are also 

excluded from the sample. Finally, observations with a BMI below 14 and above 60 are also 

excluded from the sample. This reduces the total sample from 44,026 observations to 40,087 

observations. 

 

Reestimating the results using the same specifications used in Cawley (2004) incorporating the 

changes described above, shows that the conclusions are robust to the model and sample 

specification changes, with small changes in the point estimates (see table 1). From here forward, 

the replication will focus on the estimates for white males and females only, since the results are 

small and not statistically significant for nonwhite groups. 

  

                                                            
14 See the appendix for a complete set of results and intermediate steps for the data and model specification changes. 
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Table 1. Replication and Modified Specification Results 
Replication of Cawley (2004) 
 Ln(wage per hr) White Nonwhite 

Male Female Male Female 
BMI -0.0131 -0.0168*** -0.00369 -0.00515 

[0.00831] [0.00496] [0.00508] [0.00544] 
N 13355 10800 11185 8686 
Replication with changes in model specification and sample 
  Ln(wage per hr) White Nonwhite 

Male Female Male Female 
BMI -0.0127 -0.0154*** -0.00425 -0.00735 

[0.00804] [0.00493] [0.00504] [0.00545] 
N 12184 10101 9844 7958 
Note: Clustered standard errors at the individual level are in parenthesis. * p<0.1, ** p<0.05, *** p<0.01 

 

 

Since the methodology proposed here uses various options for the estimation of the GIMR (a 

control function approach), I test the sensitivity of the results from Cawley (2004) in the 

restricted sample by reestimating the model including the GIMR in the specification. This is 

equivalent to adjusting for endogeneity using a control function approach (Wooldridge 2015). 

For the estimation of the O-probit model, two options for dependent variables are used: one that 

categorizes BMI data in 10 groups of equal size (OP1), and one that categorizes BMI data in 10 

groups with the same range (OP2). For the fractional probit model (FP), the empirical cumulative 

distribution of BMI is used as the dependent variable. In addition to using the siblings’ data as 

instruments, second-order interactions are also included as instruments to account for further 

nonlinear effects. The results with clustered bootstrapped standard errors are shown in table 2. 
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Table 2. Replication with Restricted Data: Control Function Approach 

Instruments: Siblings: BMI, age, and sex 
BMI, age, sex + quadratic 

terms and interactions 
  White Nonwhite 

Male Female Male Female 
OLS GIMR -0.0127 -0.0154*** -0.012 -0.0150*** 

[0.00833] [0.00527] [0.00748] [0.00530] 
OP1 GIMR -0.0149*** -0.0135*** -0.0143*** -0.0131*** 

[0.00419] [0.00280] [0.00423] [0.00280] 
OP2 GIMR -0.0171*** -0.0149*** -0.0162*** -0.0143*** 

[0.00457] [0.00297] [0.00464] [0.00296] 
FP GIMR -0.0128*** -0.0130*** -0.0122*** -0.0127*** 
  [0.00412] [0.00273] [0.00418] [0.00272] 
N 12184 10101 12184 10101 
Note: Clustered bootstrapped standard errors at the individual level in parenthesis using 250 repetitions. OP1 uses a 
categorical variable that divides the sample in 10 groups of equal size; OP2 uses a categorical variable that divides 
the sample in 10 groups of equal range. * p<0.1, ** p<0.05, *** p<0.01 

 
 

As expected, the results using the OLS residuals are identical to the standard instrumental 

variable approach, showing marginal changes when interactions are added as instruments. For 

the rest of the models, however, the results are somewhat different. Using alternative methods 

for the estimation of the GIMR shows that the impact of BMI is statistically significant for both 

white men and women at conventional levels. Furthermore, the impact of BMI is slightly larger 

for men, while it declines somewhat for women. It will be shown later that BMI does have a 

negative and significant impact on wages for men, but only over a restricted segment of the BMI 

distribution. For the rest of the paper, linear and quadratic terms of the instrumental variables 

will be used to account for nonlinear effects and identification, and decomposition will be 

implemented using OLS GIMR. 

 

5.2. Semiparametric Oaxaca Decomposition 

Oaxaca Decomposition Approach and Implementation 

In order to implement an OB decomposition in the present framework, it is necessary to define 

an appropriate comparison/baseline/untreated group to analyze wage gaps across BMI. A 

common approach is to use individuals with a “healthy” BMI level as the baseline group, and 

compare the results against all other groups (over- and underweight). Following this premise, 

people with a BMI considered healthy (between 18.5 and 25) are used as the comparison group. 
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They represent approximately 48 percent of white men and 62 percent of white women. Using 

this reference group, the OB decomposition is obtained by estimating the following equations: 

 

lnሺ݁݃ܽݓሻ ൌ ܺߚ  ܫܯܤଵሺߜ െ పതതതതതതതሻܫܯܤ  ܴܯܫܩଶߜ  ܫܯܤ	݂݅	݁ ∈ ሺ18.5,25ሻ  (18a) 

lnሺ݁݃ܽݓሻ ൌ ܺߚ௧ሺ݀ሻ  ଵሺ݀ሻߜ ∗ ሺܫܯܤ െ ݀ሻ  ଶሺ݀ሻߜ ∗ ܴܯܫܩ  ݁	∀݀ ∈    (18b)ܫܯܤ

 

The first equation is estimated using a sample of the comparison group only, whereas the second 

is estimating using kernel local linear regressions, as described in section 4.1. Notice that both 

equations include the GIMR variable to adjust for sample selection, and that BMI is also 

included in equation (18a) to control for any impact it may have on wages even within the 

healthy weight group.15 This variable is centered at the mean, so it uses the average BMI as the 

reference point for estimating the constant. 

 

For the implementation of the OB decomposition, a threefold decomposition is used on the 

selectivity-corrected wage gap using the following formulas: 

 

Composition effect: ∆ܺሺ݀ሻ ൌ ൫ ෝ݉௫ሺ݀ሻ െ   (19a)ߚሺܺ|݄ሻ൯ܧ

Wage structure effect: ∆ߚ	 ൌ ሺ݀ሻߚሺܺ|݄ሻሺܧ െ  ሻ (19b)ߚ

Interaction: ∆ܺሺ݀ሻ∆ߚ ൌ 	 ൫ ෝ݉௫ሺ݀ሻ െ ሺ݀ሻߚሺܺ|݄ሻ൯ሺܧ െ  ሻ (19c)ߚ

 

where ෝ݉௫ሺ݀ሻ is the local linear predicted mean of the variable ܺ, ܧሺܺ|݄ሻ is the average 

characteristics for people with a healthy BMI, and ߚ and ߚሺ݀ሻ are the coefficients 

corresponding to the comparison group and for people with a BMI around d.  

 

As described in section 3.2, the bandwidth for the kernel regressions is selected separately for 

white men and white women using a crossvalidation procedure. The specification in equation 

(18b) and the OLS GIMR are used as a benchmark for the estimation of the optimal bandwidths, 

which are used for all models, even if the GIMR is estimated through other methods. To reduce 

the impact of sparse areas in the distribution of BMI on the bandwidth selection, two approaches 

                                                            
15 This follows the critique raised by Cain (1986) in regards to the use of a pooled sample as a comparison or 
nondiscriminatory group, where he suggests including the group variable as a control in the pooled regression.  
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were taken. The first is to set ߱ሺܦሻ ൌ 0 for observations that fall in the top and bottom 1 

percent of the distribution. The second is to use a strictly monotonic transformation of BMI— 

specifically the cumulative distribution G(BMI)—as the running variable for the local linear 

regressions, avoiding the sparse distribution problem.16 Using this transformation is similar to 

using of a varying bandwidth, since more information will be used in areas that are more 

sparsely distributed than others, but can also be compared to the use of k-nearest-neighbors 

estimators. All models are estimated using Gaussian kernel functions. Table 3 provides the 

optimal bandwidths obtained from the crossvalidation criteria for both men and women in the 

sample.  

 

Table 3 Cross-validated Optimal Bandwidths  
Variable of 
Reference Men 

CV 
criterion Women 

CV 
criterion 

BMI 3.2900 -1.40814 4.8540 -1.56378 
G(BMI) 0.1769 -1.40852 0.2241 -1.54543 

Note: CV=Crossvalidation log of mean squared leave-one-out error. 

 

5.3. Aggregate Decomposition Results 

Figure 1 plots the total selectivity-corrected wage gap across the BMI for men and women, 

comparing people at all points of the BMI distribution with those in the comparison group. The 

panels on the right provide the estimates that use the original BMI variable for the 

semiparametric regression, while the panels on the left show the estimates using the transformed 

variable, G(BMI). The darker and lighter regions show the 90 percent and 95 percent confidence 

intervals constructed using a clustered bootstrap procedure with 1,000 repetitions. For men and 

women, the displayed gaps are provided for the relevant range of BMI, which excludes the top 

and bottom 1 percent of the distribution. 

 

According to the estimations, the selectivity-corrected wage gap for men and women exhibits an 

inverse-U shape with respect to their BMI. For women, I estimate a negative but not statistically 

significant wage gap for all points of the BMI distribution. Based on the semiparametric 

estimation that relies on the transformed BMI data, women at the top of the BMI distribution 
                                                            
16 In principle, this transformation should have no effect on the estimation of the semiparametric model. If ݖ ൌ ݃ሺݔሻ, 
and ݃ሺሻ is a strictly monotone transformation, then ܧሺݕ|ܺ ൌ ሻݔ ൌ ห݃ሺܺሻݕ൫ܧ ൌ ݃ሺݔሻ൯ ൌ ܺ|ݕሺܧ ൌ  .ሻݔ
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earn, on average, 8 percent less than a woman with an average BMI, which is significant only at 

the 10 percent level. The results based on kernel regressions with the original distribution of BMI 

provide qualitatively similar results but with estimations with lower precision, especially when 

looking at women with high and low BMI scores. 

 

In the case of men, the results suggest those with a BMI above 23 exhibit a positive and 

statistically significant wage gap compared to the average. The largest positive gap (17 percent) 

is observed for men with a BMI around 27, but this declines steadily for men with higher BMI, 

and turns statistically not significant for men with a BMI above 31. Men with a BMI below 22 

show a negative wage gap as large as 32 percent (based on the original variable distribution). 

Similar to the results for women, the estimates for men at the top of the BMI distribution are less 

precise when using the original BMI for the semiparametric regression. Because the results using 

the transformed variable are more precise than the alternative, the rest of the paper will center on 

these estimations alone.17 

 

                                                            
17 Figures in the appendix provide various robustness checks including: sensitivity to alternative GIMRs, results 
based on kernel regressions with original BMI distribution, and differences in the bandwidth estimation. 
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Figure 1. Selectivity Corrected Wage Gap over BMI by Gender 

 
Note: Darker and lighter areas correspond to the 90 percent and 95 percent confidence intervals. Confidence 
intervals constructed based on bootstrapped standard errors with 1,000 repetitions clustered at the individual level.  
 

Similar to the standard OB analysis, the total wage gap reported in figure 1 is not an adequate 

measure of the wage gap driven by differences in BMI because it is driven by differences in 

characteristics (composition effect), coefficients (wage structure effect), or a combination of 

both. In figure 2, I provide the semiparametric estimations for these three components for men 

and women, using the kernel regression based on the transformed data and using the OLS GIMR. 
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Figure 2. Aggregated Semiparametric Decomposition Components 

 
Note: Darker and lighter areas correspond to the 90 percent and 95 percent confidence intervals. Confidence 
intervals constructed based on bootstrapped standard errors with 1,000 repetitions clustered at the individual level.  
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According to the estimations, the composition (or endowment) effect has a large and statistically 

significant impact when explaining the wage gaps based on BMI. Its magnitude, which is larger 

for men than women, shows a monotonically increasing trend with respect to BMI, but at a 

decreasing rate. Across the distribution of BMI, differences in characteristics explain a wage gap 

that ranges between -20 percent to 21 percent for men and -12.6 percent to 13.7 percent for 

women when looking at people with BMI of 18 and 40, and compared to people with a healthy 

BMI. This implies that white men and women with higher BMI have in average better 

endowments, which translates into higher wages. 

 

The most important component of the decomposition is the wage structure effect. This effect can 

be interpreted as the treatment effect of BMI on wages after controlling for observed 

characteristics and endogenous selection. The first thing to notice, consistent with Cawley 

(2004), is that the wage structure effect for women shows a monotonically decreasing trend with 

respect to BMI across the whole distribution. However, the results suggest that BMI has a 

negative and nonlinear impact on wages. The estimations show that there is a steady decline in 

the wage structure component among women with a BMI between 18 to 30, with a wage gap that 

goes from 6.3 percent for women with a BMI of 18, to -12 percent for women with a BMI of 30. 

In comparison, only marginal changes in the wage gaps are observed above and below these 

thresholds. 

 

For men, the effect of BMI on wages shows a different pattern. On the one hand, the results are 

less precise and no statistically significant differences across BMI levels are observed. Setting 

aside the low precision of the estimates, the wage structure effect for men shows an inverse-u 

shape with respect to BMI. Compared to men with a BMI of 25, for whom a point estimate of 2.2 

percent wage gap is estimated, the wage premium declines at lower and higher ends of the BMI 

distribution. Men at the top of the BMI distribution are estimated to have a wage gap of -15 

percent, while men at the bottom face a wage gap of -3 percent. This may explain why the 

instrumental variable estimates for men (see table 1 and 2) are negative but not statistically 

significant.  
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The last component of the decomposition is the interaction effect, which accounts for the fact 

that average wages are different because both coefficients and characteristics differ across 

groups. For men and women, the interaction effect grows negative with a higher BMI. In the 

case of men, the interaction effect is never statistically significant, whereas for women it is 

statistically significant at conventional levels and accounts for up to -9 percentage points of the 

total wage gap for women with high BMI. 

 

5.4. Revisiting Cawley (2004): Partial Effect of BMI on Wages 

One of the conclusions in Cawley (2004) is that a one standard-deviation increase in body weight 

(roughly 32 pounds), or equivalently a 5.5 point increase in BMI, is associated with a 9 percent 

drop in wages.18 This is a linear extrapolation of the estimates of Cawley’s preferred model, 

which suggests that a one-point increase in BMI is associated with a wage reduction of 1.7 

percent.  

 

While the results provided above cannot be directly compared to these findings, the delta method 

can be used to obtain partial effects that can be directly compared to Cawley’s results. Figure 3 

provides the estimations of the change of the wage structure effect as a function of BMI, and 

compares them to the effect based on the instrumental variable approach.19 

 

As described in table 2, the instrumental variable estimations suggested that BMI has a negative 

impact on wages, where a one-point increase in BMI is associated with 1.5 percent lower wages 

for women and 1.2 percent lower wages (not statistically significant) for men. Looking at the 

partial effects estimated with the semiparametric OB decomposition (Figure 3) suggests that the 

effect is negative, nonlinear, and statistically significant for men and women.  

 

The marginal effect of BMI on the wage structure for women with a BMI between 20 to 25 is 

larger than that based on the linear instrumental variable estimate. The largest estimated partial 

effect indicates that an increase in BMI of one point for a woman with a starting BMI score of 

                                                            
18 Cawley (2004, 465) stated that a two standard-deviation change in weight is associated with a 9 percent change in 
wages, when in fact this estimate reflects the impact of a one standard-deviation change in weight. 
19 For internal consistency, the instrumental variable estimations include the quadratic terms and interactions as 
instruments. 
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22.5 relates to a wage decline of 2.5 percent—an almost 65 percent greater effect than the 

instrumental variable estimate  of 1.5 percent.  The negative impact of a higher BMI is not 

statistically significant for women with a BMI below 20 or above 29, and the impact is below 0.5 

percent for women with a BMI below 18 or above 30. Men with a BMI below 25 seem to enjoy a 

small positive wage gain associated with increasing BMI, although it is not statistically 

significant. The wage penalty due to a higher BMI is statistically significant above 27, with the 

largest wage decline measured at 2.3 percent (at a BMI of 29.5), almost twice as large as the 

instrumental variable estimates. While the partial effect on wages decrease as BMI increases, it 

remains statistically significant through the rest of the BMI distribution. 

 

Figure 3. Partial Effect of BMI on the Wage Structure Effect 

 
Note: Darker and lighter areas correspond to the 90 percent and 95 percent confidence intervals. Confidence 
intervals are constructed using the delta method and are based on bootstrapped standard errors with 1,000 repetitions 
clustered at the individual level. 

 

 

6. CONCLUSIONS 

 

In this paper, I have presented a methodology for the implementation of OB decomposition when 

the grouping variable is continuous in the presence of potential endogenous selection into 

groups. This methodology uses a semiparametric approach, known as varying coefficient models 

(Hastie and Tabshiran 1993), which has the advantage of providing a more flexible specification 

on the parameterization of the coefficients. The use of the GIMR, also known as generalized 

residuals, allows for a feasible strategy to control for endogenous selection based on the 
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continuous grouping variable. This methodology may prove useful for the analysis of 

endogenous treatment effects with varying treatment intensity, especially when heterogeneous 

effects are present. 

 

In the application example, I revise the results from Cawley (2004) to evaluate the causal effect 

of BMI on wages. Using BMI as the endogenous but continuous grouping variable, I apply the 

proposed methodology, using siblings’ BMI, age, and sex and their interactions as instruments 

for the estimation of the selection correction terms (GIMR) that should correct for the 

endogeneity of body weight and BMI. Similar to Cawley (2004), the application of the strategy 

does not account for possible self-selection into the labor force driven by body weight. 

 

The application of the semiparametric OB decomposition shows that the association between 

BMI and wages is nonlinear, and that the negative impact of BMI on wages may be larger for 

women than that described in Cawley’s (2004) original paper for women with a healthy BMI, but 

much smaller for women at the top and bottom of the BMI distribution. Furthermore, it showed 

that for men, BMI also has a statistically significant and negative association with wages, which 

was not captured previously because of the weak but positive impact that BMI has on wages for 

men with a low BMI. 
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APPENDIX. SENSITIVITY TO MODEL SPECIFICATIONS AND BANDWIDTH 

Table A1. Replication of Cawley (2004) with Model and Sample Modifications 
Replication of Cawley (2004) 
  White Black Hispanic 
  Male Female Male Female Male Female 
BMI -0.0131 -0.0168*** -0.00258 -0.00191 -0.00914 -0.0124 
  [0.00831] [0.00496] [0.00678] [0.00600] [0.00731] [0.0125] 
N 13355 10800 6811 5651 4374 3035 
Pooling Black and Hispanic         
  White Nonwhite   
  Male Female Male Female      
BMI -0.0131 -0.0168*** -0.00369 -0.00515      
  [0.00831] [0.00496] [0.00508] [0.00544]   
N 13355 10800 11185 8686      
Excluding Sample Weights          
  White Nonwhite     
  Male Female Male Female      
BMI -0.0126 -0.0149*** -0.00241 -0.00643      
  [0.00789] [0.00471] [0.00472] [0.00518]   
N 13355 10800 11185 8686      
Dropping if Parents’ Education Is Missing        
  White Nonwhite   
  Male Female Male Female      
BMI -0.0118 -0.0147*** -0.003 -0.00634   
  [0.00803] [0.00480] [0.00481] [0.00518]      
N 12393 10195 10465 8224      
Modifying Model Specification          
  White Nonwhite      
  Male Female Male Female   
BMI -0.0124 -0.0155*** -0.0048 -0.00673   
  [0.00805] [0.00487] [0.00492] [0.00535]   
N 12191 10111 9854 7963     
Dropping Extreme BMI Values (below 16 and above 60) 
  White Nonwhite      
  Male Female Male Female   
BMI -0.0127 -0.0154*** -0.00425 -0.00735      
  [0.00804] [0.00493] [0.00504] [0.00545]   
N 12184 10101 9844 7958      

Note: * p<0.1, ** p<0.05, *** p<0.01. Clustered standard errors in parenthesis. 
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Figure A1. Kernel Densities of BMI across Race and Sex 

 

Figure A2. Selectivity Corrected Log Wage Gap by Gender and GIMR Estimation 
Low Wage Gap Women 

 
Low Wage Gap Men 
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Figure A3. Aggregate Semiparametric Decomposition: OLS-GIMR 
with Kernel Regression Using BMI 

 

 
Note: Dashed line is the estimation that uses G(BMI) in the kernel regression. 
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Figure A4. Aggregate Semiparametric Decomposition with Kernel Regression Using G(BMI) 
Sensitivity to GIMR Estimation Method 
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Figure A5. Aggregate Semiparametric Decomposition: Sensitivity to Bandwidth (OLS-GIMR) 

 

 


