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ABSTRACT 

 

Recentered influence functions (RIFs) are statistical tools popularized by Firpo, Fortin, 

and Lemieux (2009) for analyzing unconditional partial effects on quantiles in a 

regression analysis framework (unconditional quantile regressions). The flexibility and 

simplicity of these tools has opened the possibility of extending the analysis to other 

distributional statistics using linear regressions or decomposition approaches. In this 

paper, I introduce three Stata commands to facilitate the use of RIFs in the analysis of 

outcome distributions: rifvar() is an egen extension used to create RIFs for a large 

set of distributional statistics;  rifhdreg facilitates the estimation of RIF regressions, 

enabling the use of high-dimensional fixed effects; and oaxaca_rif to implement  

Oaxaca-Blinder type decomposition analysis (RIF decompositions).  

 

KEYWORDS: Recentered Influence Functions; Unconditional Partial Effects; 

Unconditional Quantile Regression; RIF Regressions; Distributional Statistics; Oaxaca-

Blinder; RIF Decomposition 
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1. INTRODUCTION 

 

Influence functions (IF) are statistical tools that have been used for analyzing the robustness of 

distributional statistics, or functionals, to small disturbances in data (Cowell and Flachaire 2007) 

or for a simplified strategy to estimate asymptotic variances of complex statistics (Cowell and 

Flachaire 2015; Deville 1999). More recently, Firpo, Fortin, and Lemieux (2009) suggested the 

use of IFs, specifically recentered influence functions (RIFs), as a tool for analyzing the impact 

that changes in the distribution of explanatory variables X have on the unconditional distribution 

of Y.  

 

The method introduced by Firpo, Fortin, and Lemieux (2009) focused on the estimation of 

unconditional quantile regression (UQR), which allows the researcher to obtain partial effects of 

explanatory variables on any unconditional quantile of the dependent variable. The simplest 

version of this methodology, referred to as recentered influence functions–ordinary least squares 

(RIF-OLS), is easily implemented making use of the user-written command rifreg by the 

same authors.1 As part of their conclusions, the authors highlight the potential extensions of this 

strategy for analyzing other distributional statistics, as well as the potential usefulness for 

generalizing the traditional Oaxaca-Blinder (OB) decomposition for analyzing differences of 

outcome distributions across groups.2 

 

After its introduction, UQR became a popular method for analyzing and identifying the 

distributional effects on outcomes in terms of changes in observed characteristics in areas such as 

labor economics, income and inequality, health economics, and public policy. The potential 

simplicity and flexibility the methodology offers for the analysis of any distributional statistics 

also motivated subsequent research to expand the use of RIFs in the framework of regression 

analysis.  

 

                                                            
1 The user-written program rifreg implements the estimation of what the authors call RIF-OLS for UQRs. 
2 The use of RIF regressions within the OB decomposition approach has been discussed in the review of 
decomposition methods in Fortin, Lemieux, and Firpo (2011) and, more recently, in Firpo, Fortin, and Lemieux 
(2018). 
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In a recently published paper, Firpo, Fortin, and Lemieux (2018) discuss the application of RIF 

regressions for the variance and Gini coefficients, with emphasis on the generalization of the OB 

decomposition.3 Borgen (2016), building on the work of Firpo, Fortin, and Lemieux (2009), 

provides the command xtrifreg for the efficient estimation of UQRs in the presence of a 

single high-dimensional fixed effect, but limited to quantile regressions. 

 

Cowell and Flachaire (2007), for their analysis on the sensitivity of inequality measures to the 

presence of extreme values, provide IFs for the most commonly used inequality indices including 

the Atkinson index, the generalized entropy index, and the logarithmic variance index. Essama-

Nssah and Lambert (2012), who discuss the use of RIF regressions and OB decompositions for 

the analysis of distributional changes, provide a large set of IFs and RIFs for distributional 

statistics relevant for policy analysis, including Lorenz and generalized Lorenz ordinates, Foster-

Greer-Thorbecke (FGT) poverty indices, and Watts and Sen poverty indices. Most recently, 

Heckley, Gerdtham, and Kjellsson (2016) examine the use of RIFs for measures of health 

inequality, with emphasis on bivariate rank-dependent concentration indices. While there is no 

available command associated to this implementation, the authors provide a Stata do-file used for 

their analysis. 

 

While RIF regressions and RIF decompositions have become important tools of analysis in the 

empirical literature, to the best of my knowledge, there are only limited attempts to provide a 

simplified framework to allow the use of RIFs as a standard analytical tool. Within the statistical 

software Stata, only the user-written command xtrifreg is readily available from the ssc 

archives. The command that started it all, rifreg, is limited in the estimation of RIF statistics 

and is not available in the ssc archives, although it can be accessed manually from the author’s 

website.4 Furthermore, while RIFs and reweighted regressions are broadly used for the 

generalization of the OB decomposition for statistics beyond the mean, no commands exist to 

facilitate such analysis. 

                                                            
3 While recently published, the working paper version of the paper dates from 2007 and was cited in their 2009 
paper as part of the extensions on the use of RIFs in regression analysis. The program rifreg estimates all the 
RIFs proposed in the paper. 
4 The command can be accessed at: https://faculty.arts.ubc.ca/nfortin/rifreg.zip 



3 
 

This paper introduces three Stata commands that aim to facilitate the use of RIF regressions and 

RIF decompositions. The first command, rifvar(), is a byable plug-in extension that works 

with egen and can be used to estimate RIFs for a large set of distributional statistics, such as 

those described in Firpo, Fortin, and Lemieux (2018), Essama-Nssah and Lambert (2012), 

Cawley, Cowell, and Flachaire (2007), and Heckley, Gerdtham, and Kjellsson (2016). The 

second, rifhdfe, is a wrapper program for regress (StataCorp) and reghdfe (Correira 

2017), that in combination with rifvar()is used to estimate RIF regressions in the presence of 

high-dimensional fixed effects. Finally, the third command, oaxaca_rif, is a wrapper around 

oaxaca (Jann 2008) that can be used to implement standard and reweighted OB 

decompositions (see Fortin, Lemieux, and Firpo [2011] and Firpo, Fortin, and Lemieux [2018]). 

 

The rest of this paper is structured as follows. Section 2 provides an overview for understanding 

what IFs are and how they are estimated. Section 3 introduces and explains the use of rifvar 

to estimate RIF variables. Section 4 describes the use of rifhdreg for the estimation of RIF 

regressions. Section 5 describes the use of oaxaca_rif for the estimation of standard and 

reweighted decompositions using RIF decompositions. Section 6 provides an illustration of the 

commands, and section 7 concludes. 

 

 

2. RECENTERED INFLUENCE FUNCTIONS AND DISTRIBUTIONAL STATISTICS  

 

2.1. Distributional Statistics: Basics 

When analyzing social welfare, inequality, poverty, or any other measure that describes the 

distributional characteristics of an outcome of interest, it is necessary to have access to one of the 

following pieces of information. The most common scenario is to have access to the full set of 

values corresponding to each observation in the population or sample. If the sample/population is 

finite of size n, it can be referred to as ܻ ൌ ሾݕଵ, ,ଶݕ … ,   is the outcome ofݕ ሿ, where eachݕ

interest (i.e., income) of the ith person.  
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The second scenario is one where one may or may not know the income level of each individual 

in the sample, but one knows the relative position of all individuals compared to the rest of the 

population (cumulative distribution function or cdf) or how frequent or common it is to observe 

an individual with any given level of income (probability density function or pdf). Using the 

function ܨሺሻ to refer to the cdf and ݂ሺሻ to the pdf, the vector of information required for 

analyzing distributions can be more briefly written as a set of ordered pairs, 

ܨ ൌ ሾሺݕ, ݕ|ሻሻݕሺܨ ∈ Թሿ or ݂ ൌ ሾሺݕ, ݂ሺݕሻሻ|ݕ ∈ Թሿ, where y represents any real number 

(generally positive when referring to income).5 This simply means that if one has access to any 

of these vectors of information (ܻ, ,ܨ ݂), any distributional statistic can be derived. 

 

Let us call the ݒሺ. ሻ a functional that uses all the information contained in ܻ, ܨ, or ݂ to estimate 

a distributional statistic of Y. This functional can be used to estimate statistics relevant to policy 

analysis like the mean, qth quantile, poverty indices, or inequality indices. To measure the 

impact a change in the distribution of income will have on the distributional statistic, one can 

simply compare the indices swapping the cdf from the observed distribution ܨ to the ex post 

distribution ܩ.6 This can be written as follows: 

 

ݒ∆ ൌ ሻܩሺݒ െ  ሻ (1)ܨሺݒ

 

Thus, ∆ݒ is the change in the distributional statistic generated by a change in distribution from 

௬ܨ →  ௬. This change can be as large as implying that everyone in the population receives aܩ

fixed transfer (shifting the function ܨ௬ሺሻ to the right),7 or as simple as having a new person (with 

random income) added to the sample, changing the rankings of everyone in the sample. The first 

scenario is a simplified example of what DiNardo, Fortin, and Lemieux (1996) used for 

analyzing changes in the distribution of wages. The second scenario is an exercise that can be 

used for understanding the definition of IFs and RIFs. 

 
                                                            
5 It is useful to remember that the functions ܨሺሻ and ݂ሺሻ are not arbitrary functions and obey a strict set of 
properties and relations among them to represent well-defined distribution functions: ݂ሺݕሻ  0	∀	݄ ∈ Թ, 
 ݂ሺݔሻ݀ݔ
௬
ିஶ ൌ ሻݕሺܨ݀ ,ሻݕሺܨ ൌ ݂ሺݕሻ, ܨሺെ∞ሻ ൌ ሺ∞ሻܨ ,0 ൌ 1, and ܨሺݕଵሻ  ଶሻݕሺܨ 	⇔ ଵݕ   .ଶݕ

 .ሺሻ and ݂ሺሻܨ ሺሻ and its counterpart ݃ሺሻ have the same properties asܩ 6
7 This thought experiment can also be thought of as if suddenly people with lower income disappear while people 
with higher income become more numerous. 
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2.2. Estimations of IFs and RIFs: Gâteaux Derivative  

The thought experiment of adding of a new person to a sample can also be considered as a case 

of data contamination in the original distribution, and equation (1) can be used to estimate the 

influence of this thought experiment on the statistic ݒ. The problem with this example is the 

magnitude of the change ∆ݒ will depend on the magnitude of the change from ܨሺሻ →  ሺሻ. Forܩ

a population of size N, changes to the distribution caused by one additional person will be larger 

compared to the same experiment with a population of size 2N. A solution is to standardize the 

change in the statistic ∆ݒ with respect to some measure that quantifies the change of the 

distribution	൫∆ሺܩ െ  :ሻ൯ܨ

 

∆௦ݒ ൌ ∆௩

∆ሺீೊିிೊሻ
ൌ ௩ሺீೊሻି௩ሺிೊሻ

∆ሺீೊିிೊሻ
  (2) 

 

This process can be extended to measure ∆௦ݒ  for an infinitesimally small change in the 

distribution function from ܨ →  . This idea is what lies behind the Gâteaux derivative, aܩ

generalization of the directional derivative for functional analysis. The derivative is used to 

construct IFs, which can be used as measures of robustness of functionals to data outliers 

(Hampel 1974) and facilitate the visualization of the structure of the distributional statistic as a 

function of the available data. Before proceeding to the formal definition of the IF, it is useful to 

revisit and formalize the thought experiment just described.  

 

Assume the observation to be introduced in the sample has an income equal to ݕ. Since this is 

the only element of that distribution, its cdf can be characterized as follows:  

 

ሻݕሺܪ ൌ ݕ	∀	0 ൏ ሻݕሺܪ & ݕ ൌ ݕ	∀	1    (3)ݕ

 

This indicates that the distribution ܪ only puts mass at the value ݕ.8 With this definition, we 

can construct the distribution that would be observed in ܩ, combining the observed distribution 

from ܨ and ܪ: 

 

                                                            
8 Conversely, this means that ݀ܪ௬ሺݕሻ ൌ ݕ∀	0 ് ௬ሺ݄ሻܪ݀	and	ݕ ൌ ݕ	݂݅	∞ ൌ  .	ݕ
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ܩ ൌ ሺ1 െ ܨሻߝ    (4)ܪߝ

 

In other words, ܩ is the resulting distribution when the original distribution ܨ is transformed in 

the direction of ܪ. This expression also quantifies the change in the distribution when moving 

from ܨ →  Figure 1 provides a graphical example of the changes observed as a result of .ߝ  asܩ

this change in the distribution (contamination) of the distribution function. 

 

Figure 1. Comparison between Original and Contaminated Distributions 

 

 

With this last concept in place, we can finally provide the formal definition of the IF:  

 

;ݕ൫ܨܫ ሻ൯ܨሺݒ ൌ limఌ→
௩ቀሺଵିఌሻிೊାఌுೊቁି௩ሺிೊሻ

ఌ
ൌ

డ௩ሺிೊ→ுೊሻ

డఌ
 (4) 

 

The IF is a directional derivative that shows how the distributional statistic ݒ would change when 

there is a small change in the distribution ܨ௬ that gives more weight to observations with values 

  .ݕ

 

It is important to notice that the IF will be different for each point of reference ݕ (contamination 

point) used for its estimation. Also, as discussed in Firpo, Fortin, and Lemieux (2009), Cowell 

and Flachaire (2015), and Essama-Nssah and Lambert (2012), the IF has the following 

properties: 
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 ;ݕ൫ܨܫ ሻ൯ܨሺݒ ܨ݀ ൌ 0 (5) 

ܰ~௬൯ܨ൫ݒ ቀݒሺܨሻ,
ఙಷ
మ

ே
ቁ  (6) 

ூிߪ
ଶ ൌ  ;ݕ൫ܨܫ ሻ൯ܨሺݒ

ଶ
  (7)ܨ݀

 

Instead of using the IF directly, Firpo, Fortin, and Lemieux (2009) propose the use of the 

recentered version of the statistics, referred to as the RIF, which is equivalent to the first two 

terms of the von Mises (1947) linear approximation of the corresponding distributional 

statistic	ݒ: 

 

;ݕ൫ܨܫܴ ሻ൯ܨሺݒ ൌ ሻܨሺݒ  ;ݕ൫ܨܫ	  ሻ൯ (8)ܨሺݒ

 

This expression maintains the same properties of IFs and can be used directly for the estimation 

of standard errors of any statistic for which an RIF exists. While this change has no impact for 

the estimation of RIF regressions—other than changes in the intercept in the case of RIF-OLS—

using the RIF is crucial for the implementation of RIF decompositions. 

 

Many authors have examined the properties of distributional statistics and have derived the 

corresponding RIFs for a myriad of statistics. Appendix 1 provides a list of all distributional 

statistics, the corresponding RIFs, and the sources where they have been obtained and are 

currently available in the program that is described in next section. 

 

 

3. ESTIMATING RIFS: egen newvar=rifvar(oldvar), [options] 

 

The estimation of RIFs is a task of variable complexity. Some statistics have a simple 

mathematical expression that requires few lines of code to define the corresponding RIF. The 

easiest example is the RIF for the mean, since the RIF mean for any value ݕ is simply itself. 

Other statistics, however, may require many intermediate steps to correctly define their 

corresponding RIF. 
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The user-written command rifreg can be used to estimate RIF regressions and create the 

corresponding RIF, but it is limited to the analysis of the variance, quantile, and Gini coefficient. 

If one is interested in the analysis of other distributional statistics, I suggest the use of a new 

command called rifvar().9 This is a plug-in program that adds new functions to the 

command egen, facilitating the estimation of RIFs for a large set of distributional statistics.10 

 

The syntax of the command is as follows: 

 

egen [type] newvar = rifvar(varname) [if exp] [in range] [, 

by(varname) weight(varname) rifoptions ] 

 

where varname is the variable being analyzed and newvar is the new variable name where the 

RIF will be stored, given the restrictions set by [if]and/or[in]. All statistics allow for the use 

of the options by(varname), used to indicate the variables over which the RIF will be estimated 

(i.e., sex or race group), and weight(varname), used to indicate weights for the estimation of 

the RIFs.  

 

rifoptions allows the user to specify which distributional statistics are used to obtain the RIF 

statistic. Table 1 provides a detailed list of the statistics that are currently available for 

estimation. The column options indicate the options, required or otherwise, needed to estimate 

the RIF associated to the statistic named in the description column. In appendix 2, a summary of 

performance simulation is provided to show how well the RIF standard errors approximate to the 

simulated standard errors for all these statistics. 

  

                                                            
9 Internally, the program is stored in a file named grifvar.ado. rifvar()builds on the rifreg command 
and the do-file provided in the appendix in Heckley, Gerdtham, and Kjellsson (2016). All codes were adapted to 
allow for the estimations by groups. 
10 See appendix 1 for the full set of statistics, formulas, and sources. 
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Table 1. rifvar rifoptions 
Options Description 
mean Sample mean  
var Variance 
q(#p) [kernel(kernel) bw(#)] pth Quantile, where 0 ൏  ൏ 100. The options kernel(.) and bw(.) 

are not required. The default is to use a gaussian kernel. All kernel 
functions available for the command kdensity are also allowed.1 

Unless otherwise specified, the Silverman’s plug-in optimal bandwidth 
is used. 

iqr(#p1 #p2) [kernel(kernel) 
bw(#)] 

Interquantile range: q(p2) - q(p1), where 0 ൏ ଵ  ଶ ൏ 100. Options 
for bandwidth (bw) and kernel function (kernel) are the same as for 
the quantile case. 

gini Gini inequality index. 
cvar Coefficient of variation 
iqratio(#p1 #p2) 
[kernel(kernel) bw(#)] 

Interquantile ratio: q(p2)/q(p1), where 0 ൏ ଵ  ଶ ൏ 100. 
Options for bandwidth (bw) and kernel function (kernel) are the 
same as for the quantile case. 

entropy(#a) Generalized entropy index with sensitivity parameter #a. 
atkin(#e) Atkinson inequality index with inequality aversion #e>0 
logvar Logarithmic variance 
glor(#p) Generalized Lorenz ordinate at #p where 0 ൏  ൏ 100 
lor(#p) Lorenz ordinate at #p where 0 ൏  ൏ 100 
ucs(#p) Share of income held by richest 1-p%. 1-lor(#p) 
iqsr(#p1 #p2) Interquantile share ratio: (1-lor(#p2))/lor(#p1), where 0 ൏ ଵ  ଶ ൏

100. 
mcs(#p1 #p2) Share of income held by people between #p1 and #p2: lor(#p2)-

lor(#p1). where 0 ൏ ଵ ൏ ଶ ൏ 100. 
pov(#a) pline(#|varname) FGT poverty index given sensitivity parameter #a. For a=0 one obtains 

the poverty head count, a=1 poverty gap and a=2 poverty severity. 
FGT are defined based on the poverty line pline(.), which can be a 
scalar (fixed poverty line) or a variable (variable poverty line) 

watts(#povline)  Watts poverty index. It requires a number or variable to define the 
poverty line. 

sen(#povline) Sen poverty index. It requires a number to define the poverty line. 
tip(#p) pline(#) Three I’s of poverty (TIP) curve ordinate at  for poverty line defined 

by pline(#). where  0 ൏  ൏ 100. 
agini Absolute Gini 
acindex(varname) Absolute concentration index using varname as the rank variable. 
cindex(varname) Concentration index using varname as the rank variable. 
eindex(varname) lb(#)ub(#) Erreygers index using varname as the rank variable, with lower 

bound #lb and upper bound #ub, and  #݈ܾ ൏  ܾݑ#
arcindex(varname) lb(#) Attainment relative concentration index using varname as the rank 

variable, with lower bound #lb 
srindex(varname) ub(#) Shortfall relative concentration index using varname as the rank 

variable, with upper bound #ub 
windex(varname) lb(#)ub(#) Wagstaff concentration index using varname as the rank variable, 

with lower bound #lb and upper bound #ub, and  #݈ܾ ൏  ܾݑ#
Note: 1To use other kernel functions, the full kernel name should be used and not their abbreviations (i.e., 
biweight instead of bi), with one exception: to request using the epanechnikov kernel, one should use epan. 
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4. RIF-REGRESSION: rifhdreg 

 

As previously indicated, IFs and RIFs have been used in statistics as a tool for analyzing the 

robustness of statistics to outliers and as a method to draw statistical inferences from complex 

statistics (Cowell and Flachaire 2015; Deville 1999; Efron 1982; Hampel 1974). A recently 

popularized use by Firpo, Fortin, and Lemieux (2009), Heckley, Gerdtham, and Kjellsson 

(2016), and Essama-Nssah and Lambert (2012) is the estimation of RIF regressions.  

 

Firpo, Fortin, and Lemieux (2009) use this strategy to estimate unconditional partial effects 

(UPE) of small changes in the distribution of the dependent variable characteristics X on the 

distributional statistic ݒ. The authors use this strategy for the estimation of  UQRs using a linear 

model as the easiest method for approximating this partial effect.11 Paraphrasing the original 

paper, the intuition behind RIF regressions can be described as follows. 

 

Assume there is a joint distribution function ݂,ሺݕ,  ሻ that determines the linear and nonlinearݔ

relationships between the dependent variable ܻ and all independent/exogenous variables ܺ. 

Similar to the standard linear model, under the exogeneity assumption of ܺ, the interest does not 

fall on estimating the full joint density function, but only the conditional distribution function 

݂|ሺܻ|ܺ ൌ ሻݔ ൌ
ೊ,ሺ௬,௫ሻ

ሺ௫ሻ
, so that ܨ|ሺݕ|ܺ ൌ ሻݔ ൌ  ݂|ሺݕ|ܺ ൌ ݖሻ݀ݔ

௬
ିஶ . By definition, 

following the law of iterated expectations, the following is true: 

 

ሻݕሺܨ ൌ ܺ||ሺܻܨ ൌ ሻݔ  ሻ (9)ݔሺܨ݀

 

which simply states the unconditional cumulative distribution of y can be obtained by integrating 

(averaging) the marginal cumulative ܨ|ሺܻ|ܺ ൌ   .ሻ over all possible realizations of Xݔ

                                                            
11 For the special case of quantiles, the RIF is defined as ݍሺሻ 

ିଵ൫௬ஸೊሺሻ൯

൫ೊሺሻ൯
. Since the only element of this 

expression that varies across observations is 1൫ݕ   ሻ൯, Firpo, Fortin, and Lemieux (2009) propose to model thisሺݍ
element using three methods: a linear probability model (RIF-OLS), a probit model (RIF-probit), or a nonparametric 
binomial model (RIF-NP). 
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Next, assume that one is interested in analyzing the distributional statistic	ݒሺܨሻ. Based on the 

concepts described previously and the properties of IFs and RIFs (see equations [5] to [7]), the 

statistic ݒ can be rewritten as: 

 

ሻ൯ݕሺܨ൫ݒ ൌ ;ݕ൫ܨܫܴ ሻ൯ܨሺݒ  ሻ (10a)ݕሺܨ݀

ሻ൯ݕሺܨ൫ݒ ൌ ሻ൯ݕሺܨ൫ݒ   ;ݕ൫ܨܫ ሻ൯ܨሺݒ   ሻ (10b)ݕሺܨ݀

 

Again, using the law of iterated expectations, equation (9) can be used to rewrite equation (10b) 

as a function of the distribution of the explanatory variables ܨሺݔሻ: 

 

ሻ൯ݕሺܨ൫ݒ ൌ ሻ൯ݕሺܨ൫ݒ   ;ݕ൫ܨܫ ሻ൯ܨሺݒ ܺ|ݕ௬|ሺܨ݀ ൌ  ሻ (11)ݔሺܨ݀	ሻݔ

 

An intuitive interpretation of this expression is: if there is a small change in the distribution of 

the exogenous characteristics ∆ݔܨ, assuming that the conditional distribution ܨ௬| is constant, it 

will generate a change in the unconditional distribution ∆ܨ which will translate into a change in 

the statistic ∆ݒ൫ܨሺݕሻ൯. This is measured by averaging the IFs through the changes in the 

distribution ∆ܨ.  

 

An alternative way of expressing this equation using the law of iterated expectations is the 

following: 

 

ሻ൯ݕሺܨ൫ݒ ൌ ;ݕ൫ܨܫ൫ܴܧ ܺ|ሻ൯ܨሺݒ ൌ ൯ݔ   ሻ (12)ݔሺܨ݀

 

This last equation is used by Firpo, Fortin, and Lemieux (2009) to validate the use of RIFs 

related to regression analysis. Assuming a linear approximation of the relationship between Ys 

and Xs, then OLS can be used to estimate a linear model to capture how changes in ∆ܨ relate to 

changes in ∆ݒ. The difference with the standard OLS model is that RIF-OLS uses the estimated 

;ݕ൫ܨܫܴ   in the data as the dependent variable and regresses itݕ ሻ൯ for each observationܨሺݒ

against all the variables of interest12: 

                                                            
12 This is a two-step process that is done internally within the user-written commands rifreg and xtrifreg. 
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;ݕ൫ܨܫܴ ሻ൯ܨሺݒ ൌ ܺ′ߚ  ሻߝሺܧ,ߝ ൌ 0 (13) 

 

While the use of OLS directly relates the RIF regression to standard regression analysis, some 

differences in the interpretation exist. In the standard OLS, the typical interpretation of the 

coefficients is that for the average person (in the sample), a one-unit increase in X will increase ݕ 

in ߚ units (for that average person), everything else held constant. The interpretation from the 

RIF-OLS is slightly different. To obtain the UPE on the statistic ݒ, one first needs to obtain 

unconditional expectations on both sides of equation (13): 

 

ሻܨሺݒ ൌ ܧ ቀܴܨܫ൫ݕ; ሻ൯ቁܨሺݒ ൌ ሺܧ ܺ′ߚሻ  ሻߝሺܧ ൌ 	 തܺ′(14) ߚ 

 

From here the UPE is given by: 

 

డ௩ሺிೊሻ

డതೖ
ൌ  (15) ߚ

 

Based on equation (15), the correct interpretation of the UPE is if the distribution of ݔ changes 

such that the unconditional average increases by one unit (∆ തܺ=1), the expected change in the 

distributional statistic is equal to ߚ. This interpretation identifies one weakness of using a linear 

regression that includes the explanatory variables linearly: it only captures one aspect of the 

distribution of X, the unconditional mean. This can be easily mended by including higher-order 

polynomials and interactions that would better capture some of the nonlinear relationships across 

the explanatory variables. For example, assuming only one exogenous variable, the following 

specification could be applied: 

 

;ݕ൫ܨܫܴ ሻ൯ܨሺݒ ൌ ߚ  ଵߚ ܺ  ଶሺߚ ܺ െ തܺሻଶ    (16)ߝ

 

Considering the unconditional expectations, one obtains the following: 

 

ሻܨሺݒ ൌ ߚ  ଵߚ തܺ  ሺሺܧଶߚ ܺ െ തܺሻଶሻ ൌ ߚ  ଵߚ തܺ   ሺܺሻ (17)ݎଶܸܽߚ
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The UPE can now obtained as a function of changes in two moments of the unconditional 

distribution of X: the mean and the variance.13   

 

The estimation of RIF regressions in Stata, under the linearity assumption, is easily implemented 

using the user-written command rifreg (for Gini, variance, and quantiles) or xtrifreg (for 

quantiles with one high-dimensional fixed effect). However, there are no commands for the 

estimation of RIF regressions for other distributional statistics, nor for when two or more high-

dimensional fixed effects need to be estimated.  

 

For the estimation of both RIF regressions under both scenarios, I introduce the command 

rifhdreg. This command is a wrapper that uses the same two-step procedure used in rifreg 

and xtrifreg. The first step estimates the corresponding RIF for each observation in the 

sample of interest for a specific distributional statistic using the previously introduced 

rifvar()command. The second step uses the RIF as the dependent variable and estimates a 

linear model—using the official command regress (official Stata command) when no fixed 

effects are used and reghdfe (Correira 2017) when fixed effects are specified—to estimate the 

RIF-OLS models. The syntax of the command is as follows: 

 

rifhdreg depvar [indepvars] [if] [in] [weight], rif(rifvar) 

[retain(str) replace abs(varlist) scale(real) regress_options 

reghdfe_options ]  

 

The main difference with the regress and reghdfe commands is that rifhdreg requires 

specifying the distributional statistic of interest with the option rif(rifvar). 

 

rif(rifvar) specifies the statistic of interest, internally estimating the corresponding RIF. It 

uses the same syntax presented in table 1. For example, to estimate the RIF regression for the 

interquantile share ratio, one can type rifhdreg y x1 x2 x3, rif(iqsr(10 90))  

 

                                                            
13 While not yet explored, it is possible to use RIFs of other distributional statistics of X as explanatory variables to 
better capture how changes in the distribution of X (∆ܨሻ affect the distribution statistic of ݕ (∆ݒሺܨሻ). 
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retain(str) as an option that saves the internally constructed RIF for the restricted sample 

used in the regression under a newly named variable.  

 

replace allows for saving the internally constructed RIF if the variable name specified in 

retain(str)already exists. 

 

abs(varlist)identifies the fixed effects to be absorbed. Each variable listed here represents 

one set of fixed effects.  

 

scale(real)is used to provide a value and rescale the dependent variable, and is useful for 

statistics like the Lorenz ordinate or quantile shares, which are measures that fall between 0 and 

1. The default option is 1 (norescaling). 

 

When abs(varlist)is used, rifhdreg calls for reghdfe to estimate the RIF-OLS model, 

and all options in reghdfe are available. Otherwise it uses regress to estimate the model, 

allowing for all regress options.14  

 

The command reports OLS asymptotic standard errors by default, but one can request other 

standard errors allowed in regress or reghdfe commands. Based on the recommendation 

provided in Firpo, Fortin, and Lemieux (2009) and the simulations presented in appendix 1, 

bootstrapped standard errors should be used when the statistic of interest is the unconditional 

quantile or related statistics, as well as for the Atkinson inequality index. For the correct 

estimation of bootstrap standard errors, one should use the bootstrap prefix before the 

rifhdreg command. 

 

 

 

 

 

                                                            
14 It should be noticed that while all regress and reghdfe options are permitted, not all of them may be 
appropriate for the estimation of RIF regressions. I recommend using them with caution. 
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5. RIF DECOMPOSITION: oaxaca_rif 

 

As previously described, one of the main advantages of RIF regressions is they can easily be 

used to analyze factors affecting inequality due to small changes in distribution characteristics. 

Often, however, there is interest in analyzing the impact of a large change in the distribution of 

the characteristics: specifically, comparing and decomposing the gaps in the distributional 

statistics between two groups, taking into account any linear and nonlinear differences in the 

joint distribution across those groups. RIF regressions will not be appropriate for analyzing the 

impact of such change, and a different strategy is required. 

 

The OB decomposition is one of the most extensively used methodologies in labor economics 

and aims to analyze outcome differences between two groups (Blinder 1973; Oaxaca 1973). 

These differences are characterized as functions of differences in characteristics (composition 

effect) and differences in coefficients associated with those characteristics (wage structure 

effect). The OB decomposition is done by estimating separate regressions for each one of the 

groups of interest, effectively accounting for all possible interactions between the grouping 

variable and the relationships between outcome and exogenous variables. 

 

While the original methodology was created to analyze outcome differences at the mean, several 

papers that followed provided extensions and refinements to extend the analysis to other 

distributional statistics (see Fortin, Lemieux, and Firpo [2011] for a review). Additionally, under 

the assumptions of ignorability (conditional independence) and overlapping support, the 

aggregate structure effect can be identified and interpreted as a treatment effect. 

 

Firpo, Fortin, and Lemieux (2018) describe the use of RIF regressions in combination with a 

reweighted strategy (DiNardo, Fortin, and Lemieux 1996) as a feasible methodology for 

decomposing differences in distributional statistics beyond the mean. This is referred to as RIF 

decomposition. This methodology has three advantages compared to other strategies in the 

literature: the simplicity of its implementation, the possibility of obtaining detailed contributions 
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of individual covariates on the aggregate decomposition,15 and the possibility of expanding the 

analysis to any statistic for which an RIF can be defined. This strategy can be described as 

follows. 

 

Assume there is a joint distribution function that describes all relationships between the 

dependent variable Y, the exogenous characteristics X, and the categorical variable T: 

( ݂,,்ሺݕ, ,ݔ ܶ)). Since there are only two groups based on T, the joint probability distribution 

function and cumulative distribution of Y conditional on T can be written as: 

 

݂,
 ሺݕ, ሻݔ ൌ ݂|

 ሺܻ|ܺሻ ݂
ሺܺሻ (18a) 

ܨ
ሺݕሻ ൌ  |ܨ

 ሺܻ|ܺሻ݀ܨ
ሺܺሻ (18b) 

 

where the subscript k indicates that the density is conditional on ܶ ൌ ݇ with ݇ ∈ ሾ0,1ሿ. To 

analyze the differences between groups 0 and 1 for a given distributional statistic ݒ, the 

cumulative conditional distribution of Y can be used to calculate the gap: 

 

ݒ∆ ൌ ଵݒ െ ݒ ൌ ܨሺݒ
ଵሻ െ ܨሺݒ

ሻ (19a)  

ݒ∆ ൌ ݒ ቀ |ܨ
ଵ ሺܻ|ܺሻ݀ܨ

ଵሺܺሻቁ െ ݒ ቀ |ܨ
 ሺܻ|ܺሻ݀ܨ

ሺܺሻቁ (19b)  

 

From equation (19b) it is easy to see that differences in the statistics of interest ∆ݒ will arise 

because of differences in the distribution of Xs ൫݀ܨ
ଵሺܺሻ ് ܨ݀

ሺܺሻ൯ or because of differences in 

the relationships between Y and X ቀܨ|
ଵ ሺܻ|ܺሻ ് |ܨ

 ሺܻ|ܺሻቁ. In the context of the standard OB 

decomposition, this is equivalent to comparing differences in average characteristics and 

differences in coefficients. 

 

To identify how important differences in characteristics (composition effect) and differences in 

coefficients (wage structure effect or coefficients effect) are for explaining the overall gap in the 

                                                            
15 Akin to the standard regression analysis, the identification of the detailed contribution of covariates also requires 
the zero conditional mean assumption. In other words, any other variable not accounted for in the model has a 
distribution that is independent from the measured characteristics X. 
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distributional statistic ∆ݒ, it is necessary to create a counterfactual scenario. Define the 

counterfactual statistic ݒ as follows: 

 

ݒ ൌ ܨሺݒ
ሻ ൌ ݒ ቀ |ܨ

 ሺܻ|ܺሻ݀ܨ
ଵሺܺሻቁ (20) 

 

Using this counterfactual, the gap in the distribution statistic ݒ can be disaggregated into two 

components: 

 

ݒ∆ ൌ ଵݒ െ ᇣᇧᇤᇧᇥݒ
∆௩ೄ

 ݒ െ ᇣᇧᇤᇧᇥݒ
∆௩

 (21) 

 

where ∆ݒ reflects the gap attributed to differences in characteristics, while ∆ݒௌ would reflect 

the differences attributed to the relationships between Y and X.16 The difficulty is the 

identification of the counterfactual statistic ݒ, because the combination of characteristics and 

outcomes is not observed in the data. Based on the review in Fortin, Lemieux, and Firpo (2011), 

two broad strategies have been suggested for the identification of the counterfactual statistic ݒ. 

The first strategy follows the standard OB decomposition, using linear regressions and their 

approximations to identify ݒ. Specifically, following equation (14), separate RIF regressions 

can be estimated for each group, so the counterfactual statistic can be identified as follows: 

 

ଵݒ ൌ ܧ ቀܴܨܫ൫ݕ; ܨሺݒ
ଵሻ൯ቁ ൌ തܺଵᇱߚመଵ (22a) 

ݒ ൌ ܧ	 ቀܴܨܫ൫ݕ; ܨሺݒ
ଵሻ൯ቁ ൌ തܺᇱߚመ (22b) 

ݒ ൌ തܺଵᇱߚመ (22c) 

 

This alternative mirrors the standard OB decomposition where ∆ݒ ൌ ሺ തܺଵ െ തܺሻߚ and 

ௌݒ∆ ൌ തܺଵ൫ߚመଵ െ  መ൯. The main disadvantage of this strategy, discussed in Barsky et al. (2002) inߚ

the context of conditional means, is the counterfactual statistic ݒ may be incorrectly identified if 

                                                            
16 In the labor economics literature, this is often referred to as the wage structure effect. 
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the model is misspecified,17 or if the local approximation obtained using RIF cannot be extended 

beyond the local extrapolations. The alternative is to use a semiparametric reweighting 

approximation, as discussed in Barsky et al. (2002) and DiNardo, Fortin, and Lemieux (1996), to 

identify the counterfactual distribution ܨ|
 ሺܻ|ܺሻ݀ܨ

ଵሺܺሻ based on the observed data. This 

procedure can be described as follows. 

 

The problem of identifying the counterfactual scenario is that we do not directly observe the 

distribution of outcomes and characteristics that the counterfactual distribution ܨ|
  implies (see 

equation [20]). However, from an abstract point of view, it is possible to obtain an approximation 

for the counterfactual distribution by multiplying the observed distribution of characteristics 

ܨ݀
ሺܺሻ with a factor ߱ሺܺሻ, so it resembles the distribution ݀ܨ

ଵሺܺሻ: 

 

ܨ
 ൌ  |ܨ

 ሺܻ|ܺሻ݀ܨ
ଵሺܺሻ ≅  |ܨ

 ሺܻ|ܺሻ݀ܨ
ሺܺሻ߱ሺܺሻ    (23) 

 

Using Bayes rule, the reweighting factor ߱ሺܺሻ can be identified as follows: 

 

߱ሺܺሻ ൌ ௗி
భሺሻ

ௗி
బሺሻ

ൌ
ௗி|ሺ|்ୀଵሻ

ௗி|ሺ|்ୀሻ
ൌ

ௗி|ሺ்ୀଵ|ሻ

ௗிሺ்ୀଵሻ

ௗிሺ்ୀሻ

ௗி|ሺ்ୀ|ሻ
ൌ ଵି



ሺ்ୀଵ|ሻ

ଵିሺ்ୀଵ|ሻ
	  (24) 

 

where  is the proportion of people in group T=1 and ܲሺܶ ൌ 1|ܺሻ is the conditional probability 

of someone with characteristics X being part of group 1. In other words, to identify the 

counterfactual distribution ܨ|
 , one can estimate the reweighting factor ߱ሺܺሻ using parametric 

or nonparametric methods to estimate the conditional probability ܲሺܶ ൌ 1|ܺሻ. As described in 

Firpo, Fortin, and Lemieux (2018), in practice, a probit or logit model can be used to estimate 

this conditional probability.  

 

Once these reweighting factors are obtained, equation (22c) is estimated as: 

 

ݒ ൌ ܧ ൬ܴܨܫቀݕ; ܨሺݒ
ሻቁ൰ ൌ തܺᇱߚመ (25) 

                                                            
17 Notice that the concept of misspecification here also includes the idea of accounting for changes in the whole 
distribution of X, not only the mean. 
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And the decomposition components are now defined as: 

 

ݒ∆ ൌ തܺଵᇱ൫ߚመଵ െ መ൯ᇣᇧᇧᇧᇤᇧᇧᇧᇥߚ
∆௩ೞ



 ሺ തܺଵ െ തܺሻᇱߚመᇣᇧᇧᇧᇤᇧᇧᇧᇥ
∆௩ೞ



 ሺ തܺ െ തܺሻᇱߚመᇣᇧᇧᇧᇤᇧᇧᇧᇥ
∆௩



 തܺᇱ൫ߚመ െ መ൯ᇣᇧᇧᇧᇤᇧᇧᇧᇥߚ
∆௩



  (26) 

 

The components ∆ݒ௦
   ௦ correspond to the OB aggregate wage structure effect, whereasݒ∆

ݒ∆
  ݒ∆

  correspond to the aggregate composition effect. These two components are further 

decomposed into a pure wage structure (∆ݒ௦
) and composition effect (∆ݒ

), plus two 

components that can be used to assess the overall fitness of the model. ∆ݒ௦ is the reweighting 

error that is used evaluate the quality of the reweighting strategy and is expected to go to zero in 

large samples. ∆ݒ
 is the specification error and is used to assess the importance of departures 

from linearity in the model specification or the RIF approximation. 

 

The implementation of OB decomposition in Stata is simple. The most popular command used 

for this type of analysis is the user-written command oaxaca (Jann 2008), which can be used 

for many of the extensions that have been developed for the analysis of average differences 

across groups. Extending the OB decomposition analysis to statistics other than the mean can 

easily be done by carefully calculating RIFs for the conditional distributions and using them as 

the dependent variable using the oaxaca command. However, no formal implementation of the 

estimation of RIF decompositions and the hybrid reweighted RIF decomposition is currently 

available. 

 

For the estimation of these two types of decompositions, I present the command oaxaca_rif. 

This program is a wrapper around oaxaca that uses processes suggested in Firpo, Fortin, and 

Lemieux (2018) for the estimation of the standard RIF decomposition (following equation [22c]) 

or the hybrid reweighted decomposition (equation [26]).  
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The syntax of the command is as follows: 

 

oaxaca_rif depvar [indepvars] [if] [in] [weight] , by(groupvar) 

rif(rifvar) [swp  wgt(#) cluster(varname) scale(real) retain(str) 

replace  rwlogit(varlist) rwprobit(varlist)] 

 

The internal syntax of oaxaca_rif allows the use of most of the options available in oaxaca. 

Parallel to the rifhdreg command, oaxaca_rif requires the option rif(rifvar)to define 

the distributional statistic to be used for the decomposition analysis. Internally, it calls on 

rifvar() to estimate the RIF for each group defined by by(), and follows equation (22c) to 

identify the counterfactual and implement the decomposition. 

 

The default option is to estimate the distributional statistic gap between observations with the 

lowest value in the grouping variable minus the observations in the group with the highest value, 

(group1-group2).  

 

swp can be used to request the gap to be estimated in the opposite order, (group2-group1).  

 

wgt(#) is used to define the counterfactual distribution. The default is the value 0, which 

identifies the decomposition according to equation (22c). Using wgt(1) instead uses ݒ ൌ

തܺᇱߚመଵ as the counterfactual.  

 

scale(real)is used to provide a value and rescale the dependent variable. It is useful for 

statistics like the Lorenz ordinate or quantile shares, which are measures that fall between 0 and 

1. The default value is 1 (no-rescaling). 

 

retain(str)and replace are used to store the internally generated RIF in a new variable or 

replace the existing variable if replace is used. For the reweighted decomposition, this option 

does not generate the RIF for the counterfactual option. 
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rwlogit(varlist)and rwprobit(varlist)are options used to specify the estimation of 

the reweighting factors using a logit or a probit model. When used, the command estimates the 

reweighted RIF decomposition.  

 

For the reweighted standard decomposition, the command first estimates the probability model, 

then estimates the reweighting factor ߱ሺܺሻ, and obtains the RIFs for the three scenarios. The 

decomposition output is obtained from two separate decompositions to identify the four 

components detailed in equation (26). 

 

The variables included in the options rwlogit(varlist)or rwprobit(varlist) may or 

may not be the same as the ones used in the specification of the main model. Adding higher-

order polynomials and interactions for the estimation of the conditional probability will improve 

the quality of the reweighting, but may create problems of overfitting and violation of the 

overlapping assumption. Similarly, interactions and polynomials may reduce problems of error 

due to model misspecification, but they can make the model more difficult to interpret. 

 

For standard errors, the default option is to report robust standard errors, equivalent to using the 

robust option in the oaxaca command.18 When the reweighted decomposition is requested, the 

command reports robust standard errors clustered at the individual level. This is done because for 

one of the internally estimated decompositions (see equations [22b] and [25]) the same sample is 

used for both groups. The option cluster(varname)supersedes the individual cluster option. 

Weights are allowed when robust or clustered standard errors are used. 

 

As shown for the case of RIF regressions, asymptotic and robust standard errors may not be 

appropriate for the decomposition of statistics related to quantiles or the Atkinson index. 

Furthermore, since the reweighting factors ߱ሺܺሻ are estimated variables, standard errors of the 

decomposition components need to be adjusted. Given the complexity of estimating asymptotic 

standard errors in the framework of RIF decompositions, the suggested alternative is to use 

                                                            
18 Robust standard errors for the oaxaca command are not available in all version of the command. For 
oaxaca_rif to work properly, be sure to have the latest version, which at the time of writing this paper is version 
4.0.5.  
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bootstrapped standard errors throughout. Bootstrapped standard errors can be obtained using the 

bootstrap prefix. Bootstrapped standard errors cannot be used in combination with weights. 

 

 

6. ILLUSTRATION: CHANGES IN INEQUALITY IN THE UNITED STATES, 1998 

VERSUS 2018 

 

To illustrate the use of RIF regressions and decompositions for the analysis of poverty and 

inequality, in this section the above-described commands are used to analyze the determinants of 

wage inequality in the US, exploring the changes between 1998 and 2018. For this example, data 

from the March Current Population Survey (CPS) is gathered for both years, concentrating on 

families, excluding members from other families within the household or any individual who is 

not a relative of the head of the household. Real family income is used as the dependent variable 

for the poverty analysis,19 while real family income per capita is used for the inequality analysis. 

 

Only variables that capture household characteristics are used as explanatory variables. These 

include: an indicator if the household is single headed, average age of the head and spouse (if 

present), number of children 0–17 years old in the household, number of people 25–64 years old 

(excluding head and spouse), and number of people 65 or above living in the household. I also 

control for noncitizenship status, Hispanic status, and nonwhite-couple status of the household. 

To account for socioeconomic characteristics, I control for the highest educational attainment of 

husband or wife, whether the household rents a house, and if either or both the husband and wife 

are currently employed. Controls for regions are also included.  

 

Table 2 provides the results of the RIF regressions for the years 1998 and 2018, using the Gini 

coefficient, the income share held by the upper 10 percent and lower 40 percent, and poverty 

severity as the distributional statistics of interest. Robust standard errors using survey weights are 

reported. This table also includes the weighted average characteristics for both years. 

                                                            
19 In the US, poverty lines are defined at the household level, not individual level.  
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Table 2. Determinants of Inequality in the US: RIF Regression Approach 
  Gini Index Share of Income Bottom 40% Share of Income Top 10% Poverty Severity Avg. Characteristics 

1998 2018 1998 2018 1998 2018 1998 2018 1998 2018 
                      
Singe-headed household 118.8* 110.4* -6.409* -5.378* 7.329* 7.664* 4.865* 4.127* 30.3 34.6 

(4.420) (4.528) (0.183) (0.162) (0.479) (0.521) (0.187) (0.158) 
Average householder age 
     24–44 -58.99* -35.92* 3.611* 1.507* -3.446* -3.228+ -4.014* -2.413* 52.7 40.9 

(6.992) (11.880) (0.380) (0.432) (0.616) (1.356) (0.531) (0.507) 
     44–64 -24.76* -28.87+ 1.808* 0.951+ -1.166 -2.867+ -4.065* -2.825* 29.8 37.7 
      (7.596) (11.770) (0.388) (0.425) (0.713) (1.346) (0.512) (0.481) 
     65+ -126.8* -80.86* 9.041* 4.409* -4.776* -5.129* -9.499* -6.724* 13.1 17.9 

(9.108) (12.720) (0.439) (0.458) (0.897) (1.455) (0.544) (0.514) 
#children 33.97* 36.61* -1.774* -1.912* 2.418* 2.288* 1.405* 1.176* 1.169 1.002 

(1.633) (1.606) (0.087) (0.073) (0.155) (0.168) (0.105) (0.097) 
# HH members ages 25–64 -50.26* -44.12* 2.193* 2.253* -4.104* -2.898* -1.564* -1.327* 0.111 0.156 

(4.315) (3.429) (0.207) (0.159) (0.434) (0.350) (0.148) (0.128) 
# Elderly (65+) -56.05* -37.77* 3.000* 2.457* -3.668* -1.649^ -1.926* -1.579* 0.024 0.036 

(9.217) (8.813) (0.453) (0.378) (0.935) (0.938) (0.239) (0.302) 
=1 Husband or wife  37.73* 17.04* -2.245* -0.658* 1.940* 1.378* 0.883* -0.106 12.5 18.4 
is Hispanic (5.666) (4.776) (0.261) (0.204) (0.579) (0.513) (0.245) (0.195) 
=1 Husband or wife  22.90* 25.03* -1.066* -1.110* 1.941* 1.847* -0.122 0.214 14.8 22 
is noncitizen (6.208) (5.150) (0.266) (0.203) (0.660) (0.573) (0.223) (0.181) 
=1 is not a white couple 7.428 7.267 -1.004* -0.511* -0.778^ 0.236 1.724* 0.685* 17.5 23.4 

(4.596) (4.618) (0.227) (0.180) (0.448) (0.517) (0.224) (0.167) 
Highest educational attainment 
     Less than high school 70.84* 57.23* -4.405* -3.711* 3.470* 2.417* 2.946* 1.749* 12.7 7.69 

(4.441) (4.703) (0.260) (0.272) (0.363) (0.382) (0.331) (0.385) 
     Some college -25.23* -30.60* 1.193* 1.606* -1.966* -2.004* -1.062* -1.148* 27.8 27.5 

(3.807) (4.312) (0.192) (0.184) (0.369) (0.463) (0.164) (0.180) 
     College -0.458 -42.65* -0.357 1.474* -0.783 -4.058* -1.261* -1.215* 19.1 24.2 

(5.689) (5.166) (0.235) (0.202) (0.616) (0.576) (0.142) (0.180) 
     Grad school 136.0* 28.65* -5.805* -1.842* 11.43* 1.329 -1.214* -1.139* 11.6 19 

(10.510) (7.559) (0.364) (0.257) (1.201) (0.880) (0.147) (0.178) 
Share of employed couples -112.7* -99.53* 6.654* 5.243* -6.461* -5.660* -6.989* -7.372* 68.7 66.6 

(5.617) (5.820) (0.254) (0.220) (0.579) (0.654) (0.288) (0.263)   
Census regions 
     Midwest -21.98* -28.45* 1.094* 1.252* -1.430+ -2.460* -0.405+ 0.126 23.7 21.4 

(5.735) (7.034) (0.234) (0.247) (0.623) (0.815) (0.162) (0.195) 
     South 7.979 -6.794 -0.339 0.412^ 0.744 -0.467 0.248 0.131 35.3 37.8 

(5.541) (6.654) (0.225) (0.228) (0.603) (0.774) (0.175) (0.177) 
     West 6.694 -4.119 -0.348 0.186 0.314 -0.483 -0.474* -0.306^ 21.9 23.4 

(6.240) (7.142) (0.250) (0.245) (0.683) (0.831) (0.170) (0.186)   
Constant 491.9* 517.6* 10.37* 10.30* 34.88* 38.00* 9.187* 8.939* 

(9.297) (13.570) (0.467) (0.505) (0.888) (1.537) (0.564) (0.569) 
Observations 49816 66618 49816 66618 49816 66618 49816 66618     
E(RIF) 454.3 469.9 13.35 12.36 33.61 34.15 2.69 2.623     

Note: Robust standard errors in parenthesis. ^ p<0.1, + p<0.05, * p<0.01.
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Inequality in the US has risen steadily for the last few decades. Based on data from the US 

Census Bureau, the Gini index has increased from 0.459 in 1997 to 0.482 in 2017. Despite this 

increase in inequality, average household income increased from $75,915 to $86,220, and the 

poverty rate decreased from 13.3 percent to 12.3 percent over the same period of time. The 

estimations for the constrained data used here are very similar. Based on the estimates from table 

2, inequality based on the Gini coefficient increased from 0.454 in 1997 to 0.470 in 2017, 

average real household income increased from $73,759 to $83,213, and poverty declined from 

11.63 percent to 10.15 percent. While there are many theories that have been provided to explain 

the reasons behind the rising inequality in the US, this exercise will concentrate on aspects that 

are more related to the socioeconomic characteristics of households.  

 

Overall, all models hint at the same direction of the estimated effects, with some differences in 

the magnitude of the effect the characteristics have on specific income inequality measures. In 

general, an increase in the share of single-headed households, an increase in the number of 

children living in the household, and an increase in the presence of minority households (mixed-

raced households, noncitizen households, or Hispanic households) are related to increases in 

inequality as measured by the Gini coefficient, a reduction in the share of income held by the 

bottom 40 percent of the population, and an increase in the share of income held by the top 10 

percent of the population. These characteristics are also related to increases in poverty severity. 

One exception is that the presence of nonwhite households seems to have no impact on the Gini 

coefficient, but reduces the share of income held by the top and the bottom of the population. 

This may imply that nonwhite households are more likely to be middle-income households, thus 

they are more likely to increase the share of income held by the middle class.  

 

One interesting result of the regressions is that the aging of the population may have a negative 

effect on inequality in the long run. If the share of older households increases, it would reduce 

the Gini, increase the share of income held by the bottom 40 percent of the population, and 

reduce income held by the top 10 percentile.  
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If the share of households where the average age is above 24 increases, it would reduce the Gini, 

increase the share of income held by the bottom 40 percent of the population, and reduce income 

held by the top 10 percentile.  

 

The effect, however, may depend on which segment of the population is aging faster. A faster 

increase in the share of households in the 44–64 age bracket would increase rather than decrease 

inequality. 

 

In terms of socioeconomic characteristics, changes in educational attainment have an ambiguous 

effect on inequality and poverty. If the share of households with less than a high school 

education declines, it will have a large impact on inequality. The estimates indicate that a 5 

percentage point decline (about a 33 percent reduction from the current average) can reduce 

inequality by 3 Gini points, assuming that the 5 percentage point decline translates into a 5 

percentage point increase in high school–educated households. If the increase is observed among 

households with some college and college education, the inequality-decreasing effect of better 

education may be larger yet (in 2017, but not 1997). However, if the change translates into an 

increase in households with a graduate education, inequality may increase. In all scenarios, an 

improvement in education has the potential to reduce poverty severity. 

 

The only variable in the model that may capture the health of the economy, as well as the labor 

force participation of the households, is the share of employment among the couples. The 

estimations suggest that increasing the share of employment in the population—most likely by 

generating more jobs in the economy—has a strong effect in reducing inequality. The models 

suggest that a 5 percentage point increase in the share of employed householders could reduce 

the Gini index by about 5 points, potentially reducing the poverty severity index by 0.33, or 

almost 10 percent of the observed levels in 1998 and 2018. Finally, the regional dummies 

indicate that even after controlling for other demographic characteristics, the Midwest region 

experienced the lowest levels of inequality and the second-lowest poverty severity in 1998. By 

2017, inequality in the region declined further. This decline was accompanied by a change in the 

poverty severity index, bringing it closer to levels seen elsewhere in the US. 
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Since both composition factors and structural factors have changed in 20 years, the next step 

could be to implement a decomposition analysis to see how those changes explain the increase in 

income inequality in the US. For the implementation, the same model specification is used for 

the estimation of the reweighting factors, using a logit model for the estimation. The results are 

shown in table 3. For simplicity, robust standard errors are provided in parenthesis.20

                                                            
20 Robust standard errors may be incorrect since we are not correcting for the errors introduced in the first stage of 
the estimation of the reweighting factors.  
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Table 3. Determinants of the Changes in Inequality in the US: RIF Decomposition 
  Gini Share of Income: Bottom 40% Share of Income: Top 10% Poverty Severity 
Average RIF              

2018 462.8* (1.956) 12.28* (0.071) 32.97* (0.222) 2.623* (0.058) 
    

Counterfactual 450.7* (2.947) 13.01* (0.112) 32.62* (0.334) 2.259* (0.070) 
1998 B’s 2008 X’s   

1998 439.4* (2.398) 13.46* (0.095) 31.66* (0.266) 2.690* (0.072) 
    

Total difference 23.37* (3.095) -1.180* (0.119) 1.308* (0.347) -0.0675 (0.093) 
  Gini Share of Income: Bottom 40% Share of Income: Top 10% Poverty Severity 

  
Composition 

effect 
Coefficient 

effect 
Composition 

effect 
Coefficient 

effect 
Composition 

effect 
Coefficient 

effect 
Composition 

effect 
Coefficient 

effect 
Aggregate decomposition 11.26* 12.12* -0.455* -0.725* 0.961* 0.347 -0.432* 0.364* 

  (1.591) (3.677) (0.064) (0.138) (0.177) (0.418) (0.038) (0.092) 
Pure composition effect 18.65* -0.761* 1.588* -0.402*   

  (1.437) (0.058) (0.157) (0.039)   
Pure coefficient effect 13.42* -0.788* 0.448 0.370* 

  (3.481) (0.129) (0.402) (0.086) 
Specification error -7.390* 0.306* -0.628* -0.0299^   

  (0.665) (0.028) (0.076) (0.017)   
Reweighting error -1.303 0.0633 -0.101 -0.0053 

    (0.869)   (0.045)   (0.062)   (0.034) 

Detailed Decomposition  

Pure 
composition 

effect 

Pure 
coefficient 

effect 

Pure 
composition 

effect 

Pure 
coefficient 

effect 

Pure 
composition 

effect 

Pure 
coefficient 

effect 

Pure 
composition 

effect 

Pure 
coefficient 

effect 
Single-headed household 6.711* 6.443* -0.387* -0.0879 0.366* 0.689* 0.239* 0.107 

  (0.294) (2.074) (0.016) (0.093) (0.020) (0.217) (0.012) (0.084) 
Age composition 1.711+ 35.70* -0.0457^ -2.376* 0.148^ 1.257 -0.282* 1.372^ 

  (0.720) (9.864) (0.027) (0.543) (0.082) (0.863) (0.023) (0.727) 
HH composition -6.138* 2.409 0.337* -0.0685 -0.393* 0.103 -0.362* -0.213 

  (0.706) (4.531) (0.035) (0.171) (0.064) (0.517) (0.025) (0.163) 
HH demographics 2.628* 0.902 -0.135* 0.153 0.146+ 0.467 0.141* -0.217* 

  (0.541) (3.220) (0.023) (0.124) (0.059) (0.370) (0.019) (0.078) 
HH education 9.835* -11.50* -0.322* 0.09 1.063* -1.728* -0.308* 0.177 

  (1.080) (4.402) (0.037) (0.203) (0.126) (0.457) (0.017) (0.192) 
Region 0.425* -5.25 -0.0130+ -0.0484 0.0469+ -1.169 0.00905+ 0.199 

  (0.161) (7.997) (0.006) (0.286) (0.018) (0.931) (0.005) (0.184) 
Share of employed couples 3.476* 5.154 -0.195* -0.357 0.211* 0.543 0.161* -0.740* 
  (0.280) (6.672) (0.015) (0.269) (0.020) (0.745) (0.013) (0.269) 

Constant -20.44 1.907* 0.286 -0.315 
    (15.79)   (0.738)   (1.626)   (0.847) 

Note: ^ p<0.1, + p<0.05, * p<0.01, Age composition: includes all age group categories; HH composition: includes the number of children, number of working-
age adults, and number of elderly in the household; HH demographics: aggregates the citizenship status, Hispanic status, and race status of the household; 
Region: aggregates the effect of all regions.  
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The top panel of table 3 summarizes the observed changes in inequality in the US. As described 

before, inequality in the US has increased by 23 Gini points over the period of study. This was 

reflected by an increase in the concentration of resources at the top of the income distribution by 

1.3 percentage points, as well as a decline in the share of income held by the bottom 40 percent 

of the population (1.2 percentage point decline), and a very small but statistically nonsignificant 

decline in poverty severity.  

 

Considering the counterfactual income distributions, changes in the distribution of observed 

characteristics explain between 40 percent to 75 percent of the observed changes in income 

inequality. The pure composition effect is larger, with a statistically significant specification 

error in all models, suggesting that a more flexible model should be used to better capture the 

composition effect. Interestingly, the decomposition regarding poverty suggests that changes in 

characteristics contributed to a reduced poverty severity index from 2.690 to 2.259, but the 

changes in the coefficients effect were large enough to counteract that effect. Except for the 

poverty severity analysis, the changes in the returns structure in the economy (coefficient effect) 

further increased inequality in the US. Nevertheless, while still large in magnitude, no 

statistically significant evidence is observed in regards to the impact of the coefficient effect on 

the share of income held by the top 10 percent of the income distribution. 

 

The detailed decomposition provides us with more interesting details regarding the observed 

changes in inequality in the US. The increase in the share of single-headed households 

contributed to an increase in inequality and poverty severity, an effect that was further deepened 

by the coefficients effect. The rapid decline of the share of households in the 24–44 year-old 

group counteracted other inequality-reducing age structure changes in the population. Although 

the results are less precise, changes in the age composition had a small impact on increasing 

inequality, but contributed to a reduction of poverty severity. Differences in the coefficients 

effect, however, had a much larger impact, pushing toward higher inequality. For poverty 

severity, while changes in household age structure help in reducing poverty severity, the 

coefficients effect had a larger effect in increasing poverty severity.  
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The decline in the number of children in the household and increase in number of working-age 

adults has contributed toward a reduction of inequality and poverty severity, with almost no 

effect from changes in the coefficients effect. However, the observed increases in the share of 

minority households in the population (Hispanic households, noncitizen households, and 

nonwhite households) seem to be related to increases in inequality. Interestingly, while a similar 

effect is found in terms of changes in characteristics and increases in poverty severity, the 

coefficients effect suggests poverty severity decreased in terms of income returns structure. 

 

Between 1998 and 2018, the share of households with a householder that has at least a college 

education increased by 12 percentage points. This change had one of the largest effects of 

increasing inequality but reducing poverty severity. Possibly due to this increase in the supply of 

highly educated workers, however, the excess returns to education declined, which is reflected in 

a decreasing coefficients effect on the Gini coefficient and the share of income held at the top of 

the population. Last but not least, the decline in the share of employment among householders 

has increased inequality and poverty severity. However, the weaker relationship between poverty 

severity and lower employment rates observed in 2018 made the coefficients effect of the share 

of employed couples more than compensate for the decline in employment 

 

 

7. CONCLUSIONS  

 

Influence functions (IFs) and recentered influence functions (RIFs) are important statistical tools 

that can be used to analyze the robustness of statistics to outliers, and obtain asymptotic standard 

errors of otherwise complex distributional statistics (Cowell and Flachaire 2007; Deville 1999). 

Firpo, Fortin, and Lemieux (2009) expand on this literature by proposing the use of RIFs in the 

context of regression and decomposition analysis. This is a simple strategy for analyzing UPEs 

on any distributional statistics for which an RIF can obtained.  

 

This paper revises the intuition behind the IF and RIF, and briefly discusses the setup under 

which they can be used for regressions and decomposition analysis. To facilitate the 

implementation of these strategies and make RIFs an easy-to-use tool for the applied 
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econometrician, I introduced three new Stata commands: rifvar(), rifhdreg, and 

oaxaca_rif. As an illustration, a simple analysis of the determinants of inequality in the US 

between 1998 and 2018 was presented. It provides interesting results in regards to the 

demographic changes the US experienced between these years, and how they relate to the 

experienced increase in inequality and poverty. 
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ܨܫܴ ቀݕ, ሻቁ௬ሺܮܩ ൌ ሻሺݍ  ൫ݕ െ ݕሻ൯൫ሺݍ ൏ -ሻ൯ Essamaሺݍ
Nssah and 
Lambert 
(2012) 
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,ݕ൫ܨܫܴ  ሻ൯ሺܮ ൌ ሻሺܮ ൬1 െ
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ߤ
൰ 

ሻሺݍ

ߤ
 ቆ
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ሻሺݍ
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 ቆ

ݕ െ ሻሺݍ

ߤ
ቇ ൫ݕ ൏  ሻ൯ሺݍ

Essama-
Nssah and 
Lambert 
(2012) 

Upper class 
share 

ሻሺݏܿݑ ൌ 1 െ ,ݕ൫ܨܫܴ ሻሺܮ ሻ൯ሺݏܿݑ ൌ ሻሺݏܿݑ	 െ ,ݕ൫ܨܫ  ሻ൯ No sourceሺܮ

Interquantile 
share ratio ݏݎݍܫሺଵ, ଶሻ ൌ

1 െ ଶሻሺܮ

ଵሻሺܮ
,ݕ൫ܨܫܴ  ,ଵሺݏݎݍܫ ଶሻ൯ ൌ ݏݎݍܫ 

1
ଵሻሺܮ

൭െܨܫ൫ݕ, ଶሻ൯ሺܮ െ
1 െ ଶሻሺܮ

ଵሻሺܮ
,ݕ൫ܨܫ  ଵሻ൯൱ሺܮ

No source 

Middle-class 
share 

,ଵሺݏܿ݉ ଶሻ ൌ ଶሻሺܮ
െ  ଵሻሺܮ

,ଵሺݏܿ݉,ݕ൫ܨܫܴ ଶሻ൯ ൌ ,ݕ൫ܨܫܴ	 ଶሻ൯ሺܮ െ ,ݕ൫ܨܫܴ  ,ଵሻ൯ Daviesሺܮ
Fortin, and 
Lemieux 
(2017) 
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Foster-Greer-
Thorbecke 
poverty indices 

ܩܨ ܶሺߙ, ܼሻ

ൌ න ൬
ܼ െ ݕ
ܼ

൰
ఈ

ሻݕሺܨ݀


ିஶ
 

ߙ  0	, ܼ ൌ  ݈݁݊݅	ݕݐݎ݁ݒ

,ݕ൫ܨܫܴ ܩܨ ܶሺߙ, ܼሻ൯ ൌ ൬
ܼ െ ݕ
ܼ

൰
ఈ

ሺݕ  ܼሻ 
Essama-
Nssah and 
Lambert 
(2012) 

Watts index 
ܹሺܼሻ ൌ න ln

ܼ
ݕ
ሻݕሺܨ݀




,ݕ൫ܨܫܴ  ܹሺܼሻ൯ ൌ ln

ܼ
ݕ
ሺݕ ൏ ܼሻ 

Essama-
Nssah and 
Lambert 
(2012) 

Sen index ܵሺܼሻ

ൌ
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ሺܼሻܨܼ
න ሺݖ




െ  ሻݕሺܨሻ൯݀ݕሺܨሺܼሻെܨሻ൫ݕ

,ݕሺܨܫܴ ሻ ൌ ,ݕ൫ܨܫܴ ܵሺܼሻ൯ ൌ െ
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ሺܼሻܨ
ܵሺܼሻ െ
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ሺܼሻܨܼ

න ൫ܨሺܼሻ െ ݔሻ൯݀ݔሺܨ
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Essama-
Nssah and 
Lambert 
(2012) 

TIP curve 
ordinate ܶܫ ܲሺܼ, ሻ ൌ න ሺݖ

௫


െ  ሻݕሺܨሻ݀ݕ

ݔ ൌ min൫ܼ,  ሻ൯ሺݍ

,ݕ൫ܨܫܴ ܫܶ ܲሺܼ, ሻ൯ ൌ ቈ
ሺܼ െ ሻݕ ∗ ሺܼ  ܼ	݂݅	ሻݕ ൏ ሻሺݍ

൫ܼ െ ሻ൯ሺݍ  ሺݍሺሻ െ ሻሺݍሻሺݕ  ܼ	݂݅	ሻݕ  ሻሺݍ
 

Essama-
Nssah and 
Lambert 
(2012) 

Absolute Gini ݅݊݅݃ܣ

ൌ 2න ሺݕ െ ሻݕሺܨሻሺߤ
ஶ

ିஶ
െ 0.5ሻ݀ܨሺݕሻ
ൌ ,ݕ൫ݒܥ2  ሻ൯ݕሺܨ

.ݕሺܨܫܴ ሻ݅݊݅݃ܣ ൌ െ݅݊݅݃ܣ  ൫ߤ௬ െ ൯ݕ  2 ൬ܨݕ௬ሺݕሻ െ ܮܩ ቀܨ௬ሺݕሻቁ൰ Essama-
Nssah and 
Lambert 
(2012) 

For the following indices, one assumes that the data used can be written as: ሺܪ, ܻሻ ൌ ሾሺ݄ଵ, ,ଵሻݕ ሺ݄ଶ, ,ଶሻݕ … ሺ݄,   .ሻሿݕ
The joint probability function for ܪ and ܨ are ு݂,ிೊ and ܨு,ிೊ, and the data contamination is ߜ,௬ሺ݄, ሻݕ ൌ 1	if	݄  ݄	&	ܨሺݕሻ   ሻݕሺܨ
Absolute 
concentration 
index 

,൫݄ܫܥܣ ு,ிೊ൯ܨ
ൌ ,൫݄ݒܥ2  ሻ൯ݕሺܨ

where h is the variable interest 
and y the ranking variable. 

ܨܫܴ ቀ݄, ,൫݄ܫܥܣ ு,ிೊ൯ቁܨ ൌ ,൫݄ܫܥܣ ு,ிೊ൯ܨ  ܨܫ ቀ݄, ,൫݄ܫܥܣ  ு,ிೊ൯ቁܨ

ܨܫ ቀ݄, ,൫݄ܫܥܣ ு,ிೊ൯ቁܨ

ൌ െ2ܫܥܣ൫݄, ு,ிೊ൯ܨ  ሺߤு െ ݄ሻ  2ቆ݄ܨு,ிೊ െ න න ݄	 ு݂,ிೊ݄݀
ஶ

ሻݔ௬ሺܨ݀
௬

ቇ 

Heckley, 
Gerdtham, 
and 
Kjellsson 
(2016) 

Concentration 
index ܫܥሺ݄, ሻܨ ൌ

,൫݄ܫܥܣ ு,ிೊ൯ܨ
ுߤ

ܨܫܴ  ቀ݄, ,൫݄ܫܥ ு,ிೊ൯ቁܨ ൌ ,൫݄ܫܥ ு,ிೊ൯ܨ 
ுߤ െ ݄
ுߤ
ଶ ,൫݄ܫܥܣ	 ு,ிೊ൯ܨ 

1
ுߤ

ܨܫ	 ቀ݄, ,൫݄ܫܥܣ  ு,ிೊ൯ቁܨ
Heckley, 
Gerdtham, 
and 
Kjellsson 
(2016) 

Erreygers index ܫܧ൫݄, ,ு,ிೊܨ ,ܾݑ ݈ܾ൯

ൌ
,൫݄ܫܥܣ4 ு,ிೊ൯ܨ

ܾݑ െ ݈ܾ
 

ܨܫܴ ቀ݄, ,൫݄ܫܧ ,ு,ிೊܨ ,ܾݑ ݈ܾ൯ቁ ൌ ,൫݄ܫܧ ,ு,ிೊܨ ,ܾݑ ݈ܾ൯ 
4

ܾݑ െ ݈ܾ
ܨܫ	 ቀ݄, ,൫݄ܫܥܣ  ு,ிೊ൯ቁܨ

Heckley, 
Gerdtham, 
and 
Kjellsson 
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(2016) 
Attainment 
relative 
concentration 
index 

,൫݄ܫܴܣ ,ு,ிೊܨ ݈ܾ൯

ൌ
,൫݄ܫܥܣ ு,ிೊ൯ܨ
ுߤ െ ݈ܾ

 

ܨܫܴ ቀ݄, ,൫݄ܫܴܣ ,ு,ிೊܨ ݈ܾ൯ቁ
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1

ுߤ െ ݈ܾ
ܨܫ	 ቀ݄, ,൫݄ܫܥܣ  ு,ிೊ൯ቁܨ

Heckley, 
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and 
Kjellsson 
(2016) 

Shortfall 
relative 
concentration 
index 

,൫݄ܫܴܵ ,ு,ிೊܨ ൯ܾݑ

ൌ
,൫݄ܫܥܣ ு,ிೊ൯ܨ
ܾݑ െ ுߤ

 

ܨܫܴ ቀ݄, ,൫݄ܫܴܵ ,ு,ிೊܨ ൯ቁܾݑ

ൌ ,൫݄ܫܴܵ ,ு,ிೊܨ ൯ܾݑ 
݄ െ ுߤ

ሺܾݑ െ ுሻଶߤ
,൫݄ܫܥܣ	 ு,ிೊ൯ܨ


1

ܾݑ െ ுߤ
ܨܫ	 ቀ݄, ,൫݄ܫܥܣ  ு,ிೊ൯ቁܨ

Heckley, 
Gerdtham, 
and 
Kjellsson 
(2016) 

Wagstaff index ܹܫ൫݄, ,ு,ிೊܨ ,ܾݑ ݈ܾ൯

ൌ
ሺܾݑ െ ݈ܾሻܫܥܣ൫݄, ு,ிೊ൯ܨ
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ܾݑ െ ݈ܾ
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Heckley, 
Gerdtham, 
and 
Kjellsson 
(2016) 
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APPENDIX 2. RIF STATISTICS AND STATISTICAL INFERENCE 

 

This appendix provides the Monte Carlo simulation results used to evaluate the use of RIFs for 

statistical inference regarding distributional statistics. This particular use of RIFs has been 

discussed in Cowell and Flachaire (2015), Deville (1999), and Efron (1982). 

 

For the statistics provided below, I use a sample of 2,500 observations of two variables, ࢞ and 

 , drawn from a jointly standard normal distribution, with variance 1 and correlation=0.5. To࢞

simulate data that resemble income distributions, the random draws for ࢞ and ࢞ are used to 

create draws from a chi2 distribution with 5 degrees of freedom, using an inverse transformation 

approach: 

 

,ݔ݅ ൌ ఞమሺହሻܨ
ିଵ ቀΦ൫ݔ,൯ቁ for ݇ ൌ 1	&	2 

 

where ܨఞమሺହሻ
ିଵ ሺ. ሻ is the inverse cumulative function corresponding to a chi2 distribution with 5 

degrees of freedom, and Φሺ. ሻ is the normal cdf. Based on this data structure, 10,000 repetitions 

are drawn and the RIFs detailed in table A1 are obtained for estimating the RIFs’ standard errors. 

For the bivariate distributional concentration, indices are estimated for variable ݅ݔ,ଵ based on the 

ranking from ݅ݔ,ଶ.  

 

A simple look at the results, in particular the ratio between the simulated standard error and the 

average standard error obtained from using the RIFs, shows that for most statistics the results are 

robust, with two exceptions.  

 

The largest biases seem to be associated with the estimation of standard errors for sample 

quantile, interquantile range, and interquantile ratio statistics, in particular when using quantiles 

at the lower end of the distribution (10th). On average, the RIFs’ standard errors overstate the 

simulation-based standard errors by almost 10 percent compared to the simulated standard errors. 

This has also been described in Firpo, Fortin, and Lemieux (2009), who indicate that the 



38 
 

estimation of the sample density increases the complexity for the estimation of the asymptotic 

standard errors for UQRs, suggesting instead the use of bootstrapped standard errors. 

 

One also observes that the variance associated to the Atkinson statistics understates the standard 

errors by almost 9 percent for an inequality aversion =2. Additional simulations (not shown here) 

suggest that the size of the bias increases with the degree of inequality aversion, but is negligible 

for low levels of inequality aversion. This also suggests the use of bootstraped standard errors 

when one is interested in drawing conclusions in regards to this inequality index. 

 

The use of RIFs for the estimation of standard errors seems to be robust for all other statistics, 

with an average bias of less than 1 percent, based on the current simulation. 
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Table A1. Simulation Results: Evaluating Asymptotic Performance of RIFs for the 
Estimation of Statistics Sample Errors 

Statistic 
Distributional 
statistic ݒ 

Simulation-
based standard 
error  

Avg. RIF 
standard 
error  

Ratio1 

Mean 5.0003 0.0630 0.0632 1.0031 

Variance 9.9946 0.4170 0.4166 0.9991 

10th quantile 1.6111 0.0490 0.0533 1.0865 

50th quantile 4.3525 0.0727 0.0739 1.0160 

90th quantile 9.2384 0.1623 0.1596 0.9831 

50/10 interquantile range 2.7414 0.0733 0.0753 1.0276 

90/50 interquantile range 4.8859 0.1538 0.1520 0.9877 

Gini index 0.3394 0.0044 0.0044 1.0030 

Coefficient of variation 0.6321 0.0106 0.0105 0.9945 

50/10 interquantile Ratio 2.7037 0.0801 0.0860 1.0740 

90/50 interquantile Ratio 2.1229 0.0420 0.0420 1.0019 

Entropy index e=0 0.2130 0.0060 0.0060 1.0006 

Entropy index e=1 0.1868 0.0050 0.0050 1.0006 

Entropy index e=2 0.1998 0.0067 0.0066 0.9944 

Atkinson index a=1 0.1919 0.0048 0.0049 1.0007 

Atkinson index a=1.5 0.2930 0.0079 0.0079 0.9933 

Atkinson index a=2 0.3995 0.0144 0.0132 0.9140 

Logarithmic variance 0.5355 0.0192 0.0192 0.9972 

Generalized lorenz ordinate at p=20 0.3079 0.0080 0.0080 1.0065 

Generalized lorenz ordinate at p=40 0.9080 0.0174 0.0175 1.0060 

Generalized lorenz ordinate at p=60 1.7812 0.0285 0.0286 1.0052 

Generalized lorenz ordinate at p=80 3.0037 0.0423 0.0423 1.0011 

Lorenz ordinate at p=20 0.0616 0.0014 0.0014 1.0042 

Lorenz ordinate at p=50 0.2616 0.0031 0.0031 1.0051 

Lorenz ordinate at p=80 0.6007 0.0037 0.0037 1.0035 

Upper class share at p=20 0.9384 0.0014 0.0014 1.0042 

Upper class share at p=50 0.7384 0.0031 0.0031 1.0051 

Upper class share at p=80 0.3993 0.0037 0.0037 1.0035 

Interquantile share ratio 90/10 10.8464 0.4258 0.4252 0.9987 

Interquantile share ratio 80/20 6.4894 0.1851 0.1856 1.0028 

Interquantile share ratio 60/40 3.5463 0.0692 0.0694 1.0033 

Middle-class share 10/90 0.7422 0.0031 0.0031 1.0049 

Middle-class share 20/80 0.5391 0.0033 0.0033 1.0053 

Middle-class share 40/60 0.1746 0.0016 0.0016 1.0041 

FGT(a=0,Z=2.5) headcount 0.2235 0.0084 0.0083 0.9949 

FGT(a=1,Z=2.5) poverty gap 0.0777 0.0036 0.0036 1.0058 

FGT(a=2,Z=2.5) poverty severity 0.0389 0.0023 0.0023 1.0082 

Watts poverty index Z=2.5 0.1154 0.0062 0.0062 1.0061 
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Sen poverty index Z=2.5 0.1072 0.0047 0.0048 1.0046 

TIP ordinate at p=10 z=2.5 0.1411 0.0039 0.0039 1.0034 

TIP ordinate at p=25 z=2.5 0.1942 0.0090 0.0091 1.0058 

TIP ordinate at p=50 z=2.5 0.1942 0.0090 0.0091 1.0058 

Absolute Gini 1.6963 0.0307 0.0308 1.0028 

Absolute concentration index 0.8521 0.0356 0.0354 0.9948 

Concentration index 0.1705 0.0066 0.0066 0.9941 

Erreygers index lb(1) ub(9) 0.4261 0.0178 0.0177 0.9948 
Attainment relative concentration 
index lb(1)  0.2130 0.0082 0.0082 0.9947 
Shortfall relative concentration index 
ub(9) 0.2132 0.0106 0.0106 0.9965 

Wagstaff index lb(1) ub(9) 0.4262 0.0178 0.0177 0.9948 
Note: Monte Carlo simulation using 10,000 repetitions. The ratio is defined as the ratio between the 
average RIF standard errors and the simulation-based standard errors.   

 


