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Abstract

This PhD thesis, entitled "Essays in Empirical Studies Based on Administrative Labour

Market Data", is composed of three independent chapters, a general introduction for all three

chapters at the beginning, and a brief conclusion in the end. While all three chapters are

independent research papers and can be read as such, each chapter applies and compares

different econometric frameworks by using individual-level administrative labour market data,

addressing important topics within the field of labour economics.

The first chapter of my thesis, entitled "On Omitted Variables, Proxies and Unobserved

Effects in Analysis of Administrative Labour Market Data", is written together with Ralf Wilke

and Pia Homrighausen. We present a unified framework that nests various approaches

aiming at reducing omitted variable bias in linear regression analysis. Linked administrative

labour market data in Germany is used for our two empirical applications–wage regression

and labour market transition model. We find empirical evidence for sizeable omitted variable

bias in a wage regression, while only a small number of coefficients is systematically affected

in the transition analysis. Benefit from the available linked administrative and survey data, it

is found that additional survey variables contribute only to the wage model, while the use of

work history variables and panel models lead to changes in coefficients in the two models.

Overall, panel data models with a restricted regressor set are found to control for more

unobserved effects than cross-sectional analysis with an extended variable set.
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The second chapter, entitled "Impact of Immigration on the Wages of Native Workers

in Denmark", examines the impact of immigrants on the wages of natives by using ad-

ministrative data from Denmark Statistics on the full population in Denmark for the period

from 2004 to 2013. Following Malchow-Møller et al. (2012), I apply OLS, FE and IV(2SLS)

models for the empirical analysis. Then I extend their study by investigating into the quantile

regression model, as not much previous literature has focused on the impact of immigrants

with different skill levels and different wage quantiles on the wages of natives in Denmark.

I find that high-skilled immigrants have a positive impact on natives, based on results from

all estimation models. I also obtained evidence from the quantile regression indicates that

the positive wage effect is mainly on natives who earn higher wages. In addition, according

to the estimation results from the FE, FE-IV, and quantile regressions, it is found that

low-skilled immigrants also have a positive effect on the wages of natives, and they have

a more positive impact on low-wage natives. Through OLS, FE, and quantile estimations,

I find that medium-skilled immigrants bring negative wage effects and the negative effects

dominants for the medium-wage native group. I show that my hypothesised mechanisms–the

wage efficiency theory as well as the demand-supply model–are strongly supported by the

empirical evidence I obtained.

The last chapter in my thesis, entitled "Analysis on native-immigrant wage gap in Den-

mark", empirically investigates the native-immigrant wage gap as well as discrimination

against immigrants for male workers in the labour market in Denmark. This is the first study to

empirically examine the native-immigrant wage gap in the aspect of different skill levels and

countries of origins, for the period of the year 2004 to 2013 in Denmark. I compare and apply

Oaxaca-Blinder and Melly (2005) decomposition approaches using Danish register data. I

find that the size of the wage gap is largely dependent on the skill level, and whether the wage

gap is positive is more associated with an immigrant’s country of origin. Wage differentials

were generally the smallest within the low-skilled group. After controlling education, I find that

a substantial part of this gap can be explained by the coefficient effect which is fully regarded
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as potential discrimination in this study. By comparing across different ethnic groups, I find

strong empirical evidence showing that the measured potential discrimination is the strongest

and most positive for immigrants from less developed countries, most of which are non-EU

countries. It is found through the decomposition approach based on quantile regressions that

stronger potential discrimination occurs at the upper wage quantiles in each group of origin.



Abstract-Danish

Denne ph.d.-afhandling, med titlen "Essays i empiriske studier baseret på administrativ

arbejdsmarkedsdata" er sammensat af tre uafhængige kapitler, en generel introduktion

til alle tre kapitler i begyndelsen og en kort konklusion til slut. Mens alle tre kapitler er

selvstændige forskningspapirer og kan blive læst som sådan, anvender og sammenligner

hvert kapitel forskellige økonometriske strukturer ved at bruge individniveau administrativ

arbejdsmarkedsdata, der adresserer vigtige emner inden for feltet arbejdsmarkedsøkonomi.

Det første kapitel af min afhandling, med titlen "Om udeladte variabler, proxier og uob-

serverede effekter i analyser af administrativ arbejdsmarkedsdata" er skrevet i samarbejde

med Ralf Wilke og Pia Homrighausen. Vi præsenterer en forenet struktur, der indlejrer

forskellige tilgange fokuseret på at reducere udeladt variabel bias i lineær regressions-

analyse i hinanden. Tysk linked administrativ arbejdsmarkedsdata bliver brugt til vores to

empiriske anvendelser - lønregression og arbejdsmarkedsovergangsmodeller. Vi finder

empirisk bevis for betydelige udeladte variabler i en lønregression, mens kun et lille antal

af koefficienter er systematisk påvirket i overgangsanalysen. Med udgangspunkt i den

tilgængelige linked administrativ- og surveydata finder vi at supplerende surveyvariabler kun

bidrager til lønmodellen, mens brugen af arbejdshistorievariabler og panelmodeller fører til

ændringer i koefficienter i de to modeller. Overordnet set bliver paneldatamodeller med en

begrænset uafhængig variabel fundet til at kontrollere for flere uobserverede effekter end

tværsnitsanalyse med et udvidet variabelsæt.
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Det andet kapitel, med titlen "Påvirkning af lønninger for indfødte arbejdere i Danmark

på immigration", undersøger hvilken indflydelse lønninger for indfødte arbejdere i Danmark

har på immigration ved at bruge administrative data fra Danmarks Statistik på den fulde

befolkning fra perioden 2004 til 2013. Efter Malchow-Møller et al. (2012), burger jeg OLS,

FE og IV(2SLS) modeller til den empiriske analyse. Derefter udvider jeg deres studie ved

at undersøge fraktilregressionsmodeller, da der ikke er meget af den forudgående litteratur

der har fokuseret på påvirkning af immigranter med forskellige færdighedsniveauer og

lønfraktiler på lønningerne for de indfødte i Danmark. Jeg kan konstatere at immigranter

med højt færdighedsniveau har en positiv indflydelse på de indfødte baseret på alle es-

timeringsmodeller. Jeg har også fundet bevis for at fraktilregressionen indikerer at the den

positive løneffekt er fokuseret på indfødte med højere lønninger. Dertil skal det tilføjes at ifølge

estimeringsresultaterne for FE-, FE-IV- og fraktilregressionerne finder jeg at immigranter med

et lavt færdighedsniveau også har en positiv effekt på de indfødtes lønninger og at de har en

mindre positiv indflydelse på lavtlønnede indfødte. Igennem OLS, FE og fraktilestimeringer

kan jeg konkludere at immigranter med et færdighedsniveau på middel medbringer negative

løneffekter og disse negative effekter dominerer for gruppen af indfødte med middelniveau

færdigheder. Jeg viser at min hypotetiske mekanisme-løn effektivitetsteori, såvel som udbud-

og efterspørgselsmodellen, er stærkt støttet af mit empiriske materiale.

Det sidste kapitel i min afhandling, med titlen "Analyse af indfødt-immigrant lønforskellen

I Danmark", undersøger empirisk indfødt-immigrant lønforskellen såvel som diskrimination

mod immigranter for mandlige arbejdere på arbejdsmarkedet i Danmark. Dette er det

første studie der undersøger indfødt-immigrant lønforskellen med henblik på forskellige

færdigshedsniveauer og oprindelseslande empirisk for perioden 2004 til 2013 i Danmark.

Jeg sammenligner og anvender Oaxaca-Blinder og Mellys (2005) nedbrydningstilgange med

brug af dansk registerdata. Jeg finder at størrelsen på lønforskellen er i høj grad afhængig af

færdighedsniveau og hvorvidt lønforskellen er positiv er mere forbundet med immigrantens
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oprindelsesland. Lønforskelle var generelt set mindst inden for gruppen med lavt færdighed-

sniveau. Efter der blev kontrolleret for uddannelse, fandt jeg at en substantiel del af forskellen

kan forklares med effektkoefficient, hvilket er betragtet som potentiel diskrimination i dette

studie. Ved at sammenligne på tværs af forskellige etniske grupper for immigranterne, kunne

jeg konkludere at der er stærkt empirisk bevis der viser at den målte potentielle diskrimination

er stærkest og mest positiv for immigranter fra mindre udviklede lande, hvoraf de fleste ikke

er EU-lande. Jeg fandt bevis gennem nedbrydningstilgangen baseret på fraktilregression

for at øget potentiel diskrimination foregår i de øvre lønfraktiler inden for hvert oprindelsesland.
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Introduction

The recent decades have seen the increasing availability of rich data source, which has

sparked a wave of both innovation and research. Within the field of labour economics, the

increasing significance of administrative labour market data has undoubtedly extended the

range for empirical studies. Comparisons on different econometric methodologies as well

as tests on different theoretical hypothesis become possible with the access to large-scale

individual-level data. Widely discussed issues, from generally discussed omitted variables

bias to specific empirical analysis on labour markets, can be investigated and implemented

by the use of more informative datasets.

In my PhD thesis (entitled "Essays in Empirical Studies Based on Administrative Labour Mar-

ket Data"), different econometric methodologies are compared and then applied using ad-

ministrative labour market data. The findings through three empirical studies provide insights

into the topics within labour economics. More specifically, various econometric frameworks

and empirical approaches to mitigate omitted variable bias are investigated in Chapter 1, the

impact of immigration on the wages of native workers in Denmark is examined in Chapter 2,

then the native-immigrant wage gap in Denmark is studied in Chapter 3, and finally a brief

conclusion for all chapters is presented.

Administrative datasets from Germany and Denmark are used in this thesis. Both datasets

are highly detailed and contain individual-level labour market data. Omitted variable bias in

the analysis of administrative labour market data in the first chapter is studied using specific
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linked data from Germany, while the other two empirical studies, on wage and immigration in

Chapter 2 and Chapter 3, are based on registered data provided by Statistic Denmark. All

three chapters are motivated by and developed based on existing literature, making a unique

and novel contribution within their perspective fields.

The linkage of administrative and survey data has generated an abundance of additional infor-

mation that was not previously accessible, which has induced a surge of extensive economic

research into the topics of labour economics. I start the thesis by investigating into on common

empirical strategies for reducing omitted variable bias in labour market research, together with

Ralf Wilke and Pia Homrighausen, in Chapter 1 (entitled "On Omitted Variables, Proxies and

Unobserved Effects in Analysis of Administrative Labour Market Data").

When there are one or more relevant variables missing in a model, the omitted variable bias

in the estimation results will occur. In the empirical studies based on labour market data, re-

searchers often use constructed variables from the individual work history, add survey-based

variables to the administrative data, or use available panel data to mitigate omitted variable

bias. However, little systematic research has been conducted to assess how the additional

information contributes to reducing the omitted variable bias. Attempts to investigate their role

are restricted to sensitivity analysis (e.g. Lechner and Wunsch, 2013; Arni et al., 2014; and

Caliendo et al., 2014). Motivated by this research gap, we conduct a study to test how such

additional information from labour market data contribute to the omitted variable bias in esti-

mation. With the access to administrative data which is linked to extensive survey data from

Germany, we are enabled to obtain relevant empirical evidence for our study.

In Chapter 1, We contribute to the existing literature by providing a unified framework that

nests various approaches aiming at reducing omitted variable bias in linear regression anal-

ysis. Our approach exceeds a sensitivity analysis as it tests a number of relationships and

restrictions that can be partly derived from a panel model. This is helpful in obtaining a more

profound understanding of the viability of the different approaches. Moreover, we apply our

framework to wage regression and a linear probability model for labour market transition anal-
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ysis. It is found that the availability of longitudinal information for key variables appears to add

more to the analysis than an exceedingly but possibly unfocused set of additional (survey)

variables at some point. Our results are not only crucial for empirical researchers but also for

data providers.

Based on the general guidance provided by Chapter 1, I then conduct two specific empirical

applications on wages and immigration in Chapter 2 and Chapter 3. In Chapter 2 (entitled

"Impact of Immigration on the Wages of Native Workers in Denmark"), I examine the impact

of immigration on wages of native workers, using the Danish register data which contain more

information on immigration than the German dataset applied for Chapter 1. My first motivation

of this chapter is that Denmark has witnessed a substantial increase in the employment of

immigrants since the early twenty-first century, especially after EU expansion (in the year

2004 and 2007). This fact makes it interesting to study the impact of the increasing immigrant

population brought to the local labour market in Denmark. Secondly, Denmark is a place

where individual-level and employer-employee linked labour market data for the full population

are available. With the additional data for immigrants, I am able to investigate the wage effect

of immigrants on natives empirically. The third motivation is that even though a vast amount of

research projects have been carried out on this topic, few consistent empirical evidence has

been found, particularly, in Denmark.

In Chapter 2, I briefly present reviews of selected studies on the impact of immigration on

wages, both theoretically and empirically. As regards those empirical papers with statistically

significant results, neither the U.S. nor European literature has reached a clear consensus.

Some studies have suggested a positive impact of immigrants on the wages of native workers

(Ottaviano and Peri, 2006; Ottaviano and Peri, 2012; Fogged and Peri, 2016, and etc.), while

others have indicated a negative effect (Card, 2001); Ortega and Verdugo, 2016; Malchow-

Møller et al., 2012, and etc.). Moreover, less empirical evidence has been provided on high-

skilled immigrants. Therefore, I follow and extend the approaches used by Malchow-Møller

et al. (2012). Apart from OLS, FE and IV models, I add a quantile regression model and

3



apply the Danish register data. Chapter 2 contributes to implementing the existing knowledge

on the impact of immigration on the wages of native workers in Denmark, during the period

(2004-2013) when immigrants increased rapidly. Particularly, this study provides empirical

evidence under several wage quantiles as well as within each skill level in Denmark.

Not surprisingly, although immigrants only account for a minor share of the population in most

countries, they have attracted increasing attention within both academia and politics. After the

empirical study on the impact of immigration on the wages of native workers in Chapter 2, I

turn my view on the aspect of immigrants. Following Chapter 2, Chapter 3 (entitled "Analysis

on Native-immigrant Wage Gap in Denmark") analyses the native-immigrant wage gap, as

well as the existence of wage discrimination against male immigrants, in different skill levels,

ethnic groups and wage quantiles for the labour market in Denmark. The years after EU

enlargement and the free movement in the labour market are of the interest (2004, 2007,

2009, 2010, and 2013).

Numerous theoretical and empirical studies have investigated into the native-immigrant wage

gap for decades, which include Chiswick (1978), Kee (1995), Lehmer and Ludsteck (2011),

and Hofer et al. (2017) etc. Several studies have empirically analysed income inequality

in Denmark (e.g. Nielsen et al., 2004; Nielsen, 2011). However, except for Nielsen et al.

(2004), empirical evidence on wage differentials by migration status is very scarce, not to

mention empirical evidence for the period after EU enlargement. This research gap provided

an incentive to conduct such an empirical study for the period from 2004 to 2013. Similar to

Chapter 2, this study is also enabled by the rich administrative data and a rapidly growing

immigrant population in Denmark during the year 2004 to 2013. Denmark is a case worthy of

further analysis in terms of how the native-immigrant wage gap differs depending on skill level

and nationality and whether potential discrimination plays a role in the wage gap.

Chapter 3 provides an overall summary of changes in the population and wage distributions

for both of the native and immigrant groups in the labour market in Denmark for the period

of 2004-2013. I apply and compare two decomposition frameworks–Oaxaca-Blinder (1973)

4



and Melly (2005)–for my empirical studies on the native-immigrant wage gap. I mainly focus

on changes in the potential discrimination within skill levels and groups of origin over the

period following EU enlargement in 2004 and 2007, and the introduction of free movement in

Denmark in 2009. The findings from the empirical analysis contribute to the wage inequality

literature in labour market in Denmark. Moreover, empirical evidence obtained in Chapter 3

provides comprehensive insights into native-immigrant wage gap and potential discrimination

against immigrants, under different skill levels as well as within various ethnic groups.

5
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Chapter 1

ON OMITTED VARIABLES, PROXIES AND

UNOBSERVED EFFECTS IN ANALYSIS OF

ADMINISTRATIVE LABOUR MARKET DATA
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Abstract: Empirical research addresses omitted variable bias in regression analysis by

means of various approaches. We present a framework that nests some of them and put it

to German linked administrative labour market data. We find evidence for sizeable omitted

variable bias in a wage regression, while a labour market transition model appears to be less

affected. Additional survey variables contribute only to the wage model, while the use of work

history variables and panel models lead to changes in coefficients in the two models. Overall,

panel data models with a restricted regressor set are found to control for more unobserved

information than cross-sectional analysis with an extended variable set.

Keywords: linked survey-administrative data, statistical regularisation
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1.1 Introduction
The problem of omitted variable bias is known as one of the classical issues in statistics. It

occurs in estimation results when one or more relevant variables are missing in a model. The

model attributes the effect of the missing variables to the estimated effects of the included

variables, causing bias on estimation results. To mitigate the omitted variable bias, empirical

research often includes the use of proxies or instrumental variables in an attempt to reduce

omitted variable bias in multivariate statistical regression analysis.

In practice, the problem of missing crucial variables in an estimation model spans almost ev-

ery empirical analysis within the field of labour economics. In empirical studies, based on

labour market data, researchers often use constructed variables from the work history of indi-

viduals, add survey-based variables to the administrative data, or use available panel data to

mitigate omitted variable bias. Despite the widespread use of work history and survey-based

variables, little systematic research has been conducted to assess how they contribute to the

estimation of the models. Motivated by this research gap, we conduct a study to examine how

such additional information from labour market data contribute to the omitted variable bias in

estimation.

In this paper, theoretically, we present a unified framework that nests various approaches

that aim to reduce omitted variable bias in linear regression analysis. We then apply our ap-

proach to two widely studied empirical applications – wage regression and a linear probability

model for labour market transition analysis, which are based on linked German administrative

labour market data. Empirically, we provide evidence on to what extent does the additional

information to reduce omitted variable bias contribute to the quality of results in our two ap-

plications. Moreover, in many countries, the use of administrative data and the addition of

variables requires a well-justified research plan. The findings in our paper can be used as a

guide.

This paper is organised as follows: in this section, introduction and background information of

this paper are presented. Then in Section 1.2, the econometric problem is outlined. Section
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1.3 describes the data and Section 1.4 shows the empirical findings. Finally, the last section

concludes.

1.1.1 Linked administrative and survey data

Linked administrative data is increasingly used for empirical research in economics, social

sciences and related disciplines. Their main advantages over survey-based data sources

are bigger sample sizes and higher precision of key variables. Administrative data cover the

population; hence its availability is not restricted to smaller and possibly non-random samples.

Key variables are generated through operations in firms and public services. They are less

prone to be misclassified due to few responding recall errors.

However, administrative data also have disadvantages over survey data. The variable set

is restricted to information generated through operations. Thus, there is often a systematic

lack of information on everything that exceeds the operational processes. This includes, for

example, the motivation of individuals, their personality traits, the size of social networks and

working climate in firms among many other things. Indeed, a number of studies based on

survey data have shown that such additional variables contribute to the estimation model.

Besides that, their availability enables the researcher to analyse problems which could not

be analysed with administrative data. Examples include Nyhus and Pons (2005), Mueller

and Plug (2006), and Heineck and Anger (2010) who use survey data with information about

personality traits to analyse individual labour market outcomes.

The existence of administrative data does not directly imply that all information collected is

indeed accessible to the researcher. In particular, not all variables may be available due to

a lack of data linkage between administrative registers. Moreover, in common practice, due

data confidentiality restrictions, data providers usually only give access to a random sample

of the population data, and only to a restricted set of variables. Therefore, typical research

based on administrative data is far away from using complete information about the population

with all variables collected in administrative processes.
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A sizeable random sample should not raise too many concerns for making inference with

these data. However, the unavailability of important variables casts concerns for the consis-

tency of estimates. There is extensive literature that considers the problem of omission of

variables in regression analysis. For example, Gelbach (2016) suggests a variable selection

approach that takes into account how much the omission of an available variable induces a

bias for the coefficients on the other still included variables. In the case where the variables

are missing due to the unavailable excess, Oster (2017) presents a comprehensive treat-

ment on the omitted variables and suggests approaches on how to approximate the size of

corresponding bias under restrictions.

1.1.2 Overview on empirical approaches for reducing omitted variable

bias

One general empirical approach for reducing omitted variable bias is to include constructed

variables from the individual work history. Examples include Kauhanen and Napari (2012) who

use linked employer-employee data to study career and wage dynamics within and between

firms in Finland. Fernández-Kranz and Rodríguez-Planas (2011) investigate the earnings

effect of women who switch to part-time work under different types of contracts in Spain.

Their study is based on Spanish longitudinal data from social security records. Baptista et

al. (2012) obtain new insights into career mobility using Portuguese longitudinal matched

employer-employee data. Using German administrative data, Biewen et al. (2014) conduct

an analysis of the treatment effects of labour market programmes.

Work history variables may directly belong to the population model, or they might be proxies

for otherwise unobserved variables such as performance. A prominent example in labour

economics is that human capital is difficult to measure and usually unobserved. However,

human capital is supposed to be an important variable in wage regression models. Therefore,

researchers use test scores, such as the IQ, as proxies for human capital (compare Neal and

Johnson, 1996; Bollinger, 2003). While the use of proxies is practically appealing, except for

some cases under certain assumptions, there is no guarantee that their use leads to a bias
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reduction or consistent estimation.

Another approach to mitigate the omission of variables is adding survey-based variables to

the administrative data, especially information on personal traits. While adding variables is

appealing, the generation of survey data is typically costly and time-consuming. Moreover,

the question arises to what extent these variables indeed reduce the omitted variable bias

in the model. The third approach is to use panel data instead of additional variables. The

availability of panel data makes it possible to control for correlated unobserved time-invariant

effects, reducing the need to control for as many variables as possible compared to cross-

sectional analysis.

1.1.3 Motivation and contribution
The use of work history and survey-based variables to reduce omitted variable bias has been

regarded as a common approach in the empirical literature. However, there is limited system-

atic research carried out to evaluate how those variables contribute to the estimation of the

models. Attempts to investigate the role of work history and survey-based variables are so far

restricted to sensitivity analysis, which is how the additional variables included in the model

affects estimation results. For example, Lechner and Wunsch (2013), Arni et al. (2014) and

Caliendo et al. (2014) investigate whether estimated treatment effects of labour market pro-

grammes on labour market outcomes are sensitive with respect to the inclusion of additional

variables.

Our study exceeds a sensitivity analysis, as it tests a number of relationships and restric-

tions that can be partly derived from a panel model. This is helpful in obtaining a deeper

understanding of the viability of the different approaches. We suggest a statistical frame-

work that allows us to test the conditions for the work history variables to be feasible proxy

variables. Moreover, we relate the results of the cross-sectional analysis with those of panel

analysis, to investigate to what extent additional cross-sectional variables explain the varia-

tion in unobserved individual time-invariant effects. In our analysis, we do exemplary wage

regressions and an analysis of labour market transitions. Our results suggest that additional
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cross-sectional variables control for considerably less relevant information than fixed effects in

panel analysis. Panel data analysis is found to give significantly different results, particularly,

in the wage regression model. The endogeneity of a number of regressors in the cross-

sectional models is confirmed. Our results are important for both empirical researchers and

data providers.

This paper addresses research gap on the evaluation of how additional information contribute

to the estimation of the models in labour market research as follows: Our starting point is

a widely used administrative data product with only a limited number of variables. We use

a sample of linked administrative data which are linked to extensive survey data from Ger-

many. In particular, we use the Integrated Employment Biographies (IEB) of the Institute for

Employment Research (IAB), which is linked with the Panel Study "Labour Market and So-

cial Security" (PASS). The PASS survey was funded by the German government to provide a

more comprehensive database for the evaluation of the effects of the so-called Hartz reforms

during the 2000s. Our data, therefore, contains many non-operations based variables which

are not available in administrative data. Centred around this scenario, we provide a formal

framework for estimation bias. The bias is due to the omission of important variables or the

use of imperfect proxy variables. We then assess the contribution of additional survey-based

non-operations related variables and work history variables to the model, as well as evaluate

to what extent the variables change the estimation results.

1.2 The model

We consider the situation where a researcher has access to some standard administrative

data product, with only a smaller number of administrative registers linked. Therefore, the set

of available variables is restricted to some core variables. We restrict ourselves to the linear

regression model. The population model is assumed to be:

y = Xβ +Wγ + v, (1.1)
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where β (J × 1) and γ (L × 1) are unknown parameters, and the set of β is the one we are

interested in this study. X (1 × J) are observable regressors (with the first element being a

constant) and W (1 × L) are unobserved regressors. We will later relax this to some of the

components of W being observed. We assume that the components of X and W are not

perfectly multicollinear. y is observed and v is unobserved. We assume E(v|X,W ) = 0.

1.2.1 General case of omitted variable bias
Because W is unobserved, the model in (1.1) cannot be directly estimated. Instead, one

could choose ignore the unobserved variables and use OLS to estimate the following model

(Equation 1.2):

y = Xβ + u, (1.2)

where u = Wγ + v. This is what is typically estimated in applications. It is well known

that if cov(xj, u) 6= 0 for some j causes β̂, the OLS estimator for β, to be inconsistent. We

focus here on a model with an unknown number(L) of omitted variables as this is the most

realistic scenario in applications. When there are more than one omitted variables, the L

linear projections of W onto the observable regressors are

W = Xδ +R,

with δ is J × L and R is 1× L. Let rl be the l’th component of R. By definition E(rl) = 0 and

cov(xj, rl) = 0 for j = 1, ..., J and l = 1, ..., L. When plugging W into (1.1) we obtain

y = X(β + δγ) +Rγ + v.

In this model, we assume Cov(X, γ) = 0. All regressors are uncorrelated with the composite

error, i.e. E(v|X,W ) = 0, and therefore, the probability limit of the OLS estimator β̂ for model

(1.2) is

plimβ̂ = β + δγ. (1.3)

Equation 1.3 is the well known omitted variables bias and its size depends on the strength of

the partial correlation between W and X, and the size of the elements of γ, i.e. the relevance

of the omitted variables in the population model (1.1).
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Since W is not observed, the size and direction of the bias are unknown in an application.

For this reason, the approach developed in Gelbach (2016) that focuses on variable selection

cannot be applied in our case. Although Gelbach has used omitted variables bias formula

to construct a conditional decomposition that accounts for various covariates’ role, in moving

base regressors’ coefficients. There is a limitation of his decomposition. In his approach, it

is generally required that the regression function can be correctly written as a linear function

of X and W . In order to make his framework valid in our case, X or W should not be

endogenous, nor mismeasured.

Neither the approach developed by Altonji et al. (2005), for using the degree of selection on

observables to investigate bias from the selection on unobservables, can apply in our case.

There are strong assumptions in their approach, such as the number of observed X and

unobserved W is large enough in order to avoid that any part dominates the distribution of

the outcome y. The size of W is unknown thus it is difficult to judge whether it has a similar

effect as the observed X on y. Therefore, the method in Altonji et al. (2005) is not suitable

to be applied in our study. We also focus on alternative approaches aiming at reducing the

omitted variable bias. However, none of these approaches is able to entirely remove bias or

reveal the size of the bias in the absence of additional restrictions.

We then looked at the method developed by Oster (2017), because it is a new approach to

estimate the omitted variable bias and would have therefore fit very well in our analysis. Oster

provides an in-depth analysis of omitted variable bias. She shows that a consistent, closed-

form estimator for omitted variable bias is possible to be constructed under less restrictive

assumptions, e.g. without observing one or multiple W . In particular, her model considers the

case of one component of X being related to W and requires that the components of W to

be uncorrelated. The restrictions rely on the relationship between X and the omitted factors

(proportional selection relationship), and knowledge of the R2 of the population model.

We apply Oster’s method in our empirical application, and a brief presentation of Oster’s

method is presented in Appendix II. We use Rmax which is developed by Oster to test to what
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extent additional information used to reduce omitted variable bias will contribute to the quality

of results. It is found that the sign and magnitude of the estimated proportional selection

relationship jumped strongly across variables. Given the coefficient instability and that the

restrictions on the models in Oster (2017) exceed what we assume in our model, we only

apply her method to our problem using information on some of the components of W (Z and

W1).

In this section, we suggest statistical frameworks on three common approaches to mitigate

omitted variable bias: Add work history variables Z, add linked survey variables W1(a subset

of W ), and perform panel analysis with unobserved effects. Moreover, we present mecha-

nisms for additional tests on several restrictions.

1.2.2 Add work history variables
One approach to mitigate omitted variable bias is to plug in constructed variables from the

observable history of cross section units. In labour market research these are for example

variables that characterise the work history of an individual and not simply lagged observable

variables. These are denoted as Z (1 × P ). We assume that none of the components of X

and Z are highly correlated or perfectly multicollinear in an application. In most applications P

is a small integer and P ≤ L. This means there are fewer constructed variables than omitted

variables.

The role of Z requires some discussion. A special case is attained if a zj is a proxy variable

for one unobserved wl, i.e. zj = wl + error with E(error) = 0. However, more generally

zj can be related to any W , i.e. zj = θ0 + Wθj + mj with E(mj|W ) = 0 for all j. θ0

(1× 1) and θj (L× 1) are unknown to the researcher. If zj is a proxy for wl, then only the l’th

element of θj is non-zero. This is the case that is typically considered by the proxy variable

literature (Lubotsky and Wittenberg, 2006, Bollinger and Minier, 2015). Using Z instead of

W can be also interpreted as a measurement error problem. Here any deviation from the

linear combination Wθj , which is mj , is the measurement error. Alternatively, one could think

of zj ∈ W . In this case the constructed variable would directly belong to the population
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model. Then mj = 0, one component of θj is 1 and the others are 0. Lastly, zj may not be

correlated with any component of W . In this case θj = 0 and zj should not be included at all.

A researcher normally faces the problem of not knowing the exact role of the components of

Z. In any case it depends on the statistical relationship between X, W and the mjs, whether

the inclusion of Z mitigates or increases the omitted variable bias.

Given that W and L are unknown, it is more convenient to write the linear projection on the

linear combination of Ws, i.e, Wγ = α + Zλ + e with E(e|Z) = 0) and parameters α (1× 1)

and λ (P × 1). α is the intercept. e can be interpreted as the measurement or approximation

error between Wγ and Zλ, which is the variation in the linear combination of unobserved

variables that is not explained by the linear combination of constructed and included variables

in Z. Therefore,

y = Xβ +Wγ + v

= Xβ + Zλ+ α + e+ v. (1.4)

For β in model (1.4) to be consistently estimated by OLS, it is additionally required that e is

uncorrelated with X and v with Z. The former is not the case if X plays a role in the linear

projection of Z and X on Wγ, so it is required E(Wγ|X,Z) = E(Wγ|Z). The latter requires

E(y|X,W,Z) = E(y|X,W ), i.e. the redundancy of Z in the population model. Whether the

bias in β̂ in model (1.4) is smaller or greater than in model (1.2) is an empirical question. This

depends on whether the correlations between the components of X and Wγ are greater or

smaller than the correlations between the components of X and e, respectively. If for example

the size of the components of δ are zero or very small, the inclusion of Z will increase the

bias in β̂ if there is correlation between Z and both X and v. Evidently, the better the fit of

the model for Wγ on Z, the more likely plugging in Z leads to bias reduction in β̂. This is

because e becomes smaller in magnitude which reduces its covariance with X. It is remarked

that λ has the interpretation of parameters of the linear projection on Wγ and we ignore the

identifiability of α and the first component of β because the intercept is assumed to be not of

interest. Bias in β̂ is the focus in our application.

19



1.2.3 Add linked survey variables

Another approach to mitigate omitted variable bias is to enhance the regressor set by conduct-

ing a survey or by using additional administrative variables that are normally not accessible.

Suppose that a subset W1 of W , by assumption the first L1 variables of W , is observable in

some random sample of the population. The idea is to do an analysis with a richer variable

set. For direct comparability of the results across models we always restrict the analysis to the

cross section units for which we have information on W1. Thus, we ignore the potential loss in

precision and focus on asymptotic bias only. We consider the case, where the researcher is

primarily interested in estimating the partial relationship between y and elements of X, rather

than between y and elements W1, although the latter will be typically also of interest. W2 is

1 × L2 and comprises of the last L2 elements of W with L1 + L2 = L. W2, the remaining

unobservable variables, may be correlated with X and W1. Therefore, their omission induces

a bias for estimated β and γ(1) in the regression of y on X and W1:

y = Xβ +W1γ(1) + u2, (1.5)

where γ(1) contains the first L1 elements of γ and u2 = W2γ(2) + v, where γ(2) consists of

the last L2 elements of γ. Unfortunately, there is no guarantee that including more variables

indeed reduces the bias, but in practice one should expect this. The reason is that the number

of summands in the bias term in equation (1.3) decreases from L to L2, when reducing the

number of omitted variables. However, this may not lead to a reduction in the bias as the

magnitude and sign of the various components of δ and γ are not restricted.

1.2.4 Panel analysis with unobserved effects

Instead of enhancing the set of observable variables, one can exploit the availability of lon-

gitudinal information, i.e. panel data, to mitigate the bias from the omission of W . y, X and

Z are observed in periods t = 1, ..., T with T ≥ 2 and observations are denoted as yit, Xit

and Zit, respectively, for units i = 1, ..., N . W1 is assumed to be observed in one period only

and W2 is never observed, thus, W has to be omitted from the model. In order to relax the
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exogeneity restrictions on X, we consider a fixed effects model:

yit = Xitβ + ai + qit

with ai + qit = uit. ai is assumed to be time invariant (the so called fixed effect) and qit is a

time varying error. Though, X is allowed to be correlated with a, the fixed effects estimator

will only consistently estimate β if E(qit|Xi, ai) = 0 with Xi = (X ′i1, ..., X
′
iT )′. However, this

depends on the relationship between W and X because

yit = Xitβ +Witγ + vit

= Xitβ + (W̄i + Cit)γ + vit

= Xitβ + ai + qit (1.6)

with W̄i =
∑T

t=1Wit/T and qit = Citγ+vit. ai therefore corresponds to the time constant part

of Witγ, which is not only the time constant variables in W but also the time average of the

time varying components of W . E(Citγ|Xi, W̄iγ) = 0 is required for consistent estimation by

means of a fixed effects panel data model provided that v is idiosyncratic. It is also insightful to

consider the role of Z when used in the fixed effects model. As discussed above, Wγ can be

expressed as a linear combination of the Z plus a measurement error. In terms of the panel

model this is Witγ = Zitλ + bi + sit. This linear projection decomposes the measurement

error into a time constant part (bi) and a time varying part (sit). Then, for the main model we

have

yit = Xitβ +Witγ + vit

= Xitβ + Zitλ+ bi + sit + vit. (1.7)

In order to consistently estimate β by means of a fixed effects model, bi is allowed to be

correlated with Xit and Zit, but we need E(sit|Xi, Zi, bi) = 0 and E(vit|Xi, Zi, bi) = 0 with

Zi = (Z ′i1, ..., ZiT )′. The latter is again satisfied if Z does not play a role in the population

model. The former, however, requires some discussion. bi captures all time constant features

of W which are not being absorbed by Z. The more of the time varying information of W is
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captured by Z, the smaller is sit. If the time varying information in Zit is related to the time

varying part of Wit, sit is smaller in size than Citγ. Then the inconsistency of the estimated

β compared to model (1.6) is smaller. If the measurement error is time constant, i.e. sit = 0,

the fixed effects estimator for model (1.7) is consistent (Wooldridge, 2010). A roughly time

constant measurement error (i.e. sit ≈ 0) may not be implausible in applications if Zit has the

interpretation of containing proxies.

1.2.5 Testable restrictions
In our empirical analysis, we do a comparative estimation of the various approaches aiming

to reduce omitted variable bias. In order to examine to what extent the results are sensitive,

we relate the result patterns to the theoretical considerations outlined in this section. Such

analysis exceeds a sensitivity analysis which has been done in previous empirical studies.

The underlying theory and the availability of W1 as well as the estimated fixed effects provide

a starting point for testing and checking the following restrictions:

I. The role of Z.

II. How the considered approaches relate, in terms of the ability to control for parts of Wγ.

III. Which of the X and Z show evidence of endogeneity.

Testable restrictions I The availability of W1 makes it possible to get some ideas of how

usually omitted variables are related to Z. In particular, one can estimate the strength of the

relationship between W1γ(1) and the Z. This shows which of the Z variables are related with

unobservables and how much the variation in Z is able to explain the variation in W1γ(1).

A high R2 would point to small measurement error. One can also test restrictions required

for Z being a set of valid proxy variables. However, valid inference requires that a model

without the omitted W2 can be consistently estimated, i.e. W2 is uncorrelated with all included

variables. Testable restrictions are E(W1γ(1)|X,Z) = E(W1γ(1)|Z) and E(y|X,W1, Z) =

E(y|X,W1), which have been motivated above. However, any correlations between (X,Z)

and W2 invalidate the inference.
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Testable restrictions II Once panel models (1.6) and (1.7) have been estimated, one can

check to what extent the survey variables W1 explain the components of these models that

control for the omitted W . One can test this by relating the estimated fixed effects to W1 and

Z in a cross-sectional model.

In our model settings, W1 is observed and is a subset of W , and W2 is never observed. Been

discussed in the cross-sectional models, W2 is 1×L2 and comprises of the last L2 elements

of W with L1 +L2 = L. W2, the remaining unobservable variables, may be correlated with X

and W1. Similarly to the framework in model (1.5), a panel regression model of yit on Xit and

W1it can be written as:

yit = Xitβ +W1itγ(1) + u2it, (1.8)

Where u2it = W2itγ(2) + vit, since the omission of W2it in panel models induces a bias for

estimated β and γ1 in model (1.8).

In the case where W2it is omitted, the effect of is included in an error term, as presented in

model (1.8). We are not sure whether and how much W2it can be captured by time consistent

part. It has been shown that in panel models that: ai = W̄iγ in model (1.6), and bi =

Witγ − Zitλ− sit in model (1.7).

Therefore, we are able to test how much the estimated fixed effects can explain W1it by

relating the estimation result ai and bi to W1it. After panel models (1.6) and (1.7) have been

estimated, we can perform above test in a cross sectional model. Given that only W1 is

observed in one period, the following linear projections are suggested:

â = W1ρ+ d (1.9)

b̂+ Zλ̂ = W1%+ f, (1.10)

Where d and f in model (1.9) and (1.10) include the effect of W2. d and f are unobserved and

uncorrelated with W1, and E(d) = E(f) = 0. The dependent variables in these models are
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the estimated components of the panel models (1.6) and (1.7) that are supposed to control

for the omitted W .

These regressions in model (1.9) and (1.10) can test two things : Firstly, the regression results

can reveal which components of W1 are indeed at least controlled for to some extent. This

can be indicated through the test on whether there is a linear partial relationship between the

components of W1 and the dependent variables.

Secondly, the R2 of these models shows us how much the variation in W1 explains the vari-

ation of the components that control for W . A low R2 would point to that the panel models

mainly control for information that is not in W1 and Z, thus the fixed effects ai and bi captures

the information in d, which includes W2. This result would suggest that a panel analysis using

a reduced regressor set is expected to be the more fruitful empirical approach than a cross

sectional analysis with an expanded regressor set. In contrast, if the R2 was high, the reverse

applies. And this would suggest that the fixed effects capture only little time constant informa-

tion of W2, meaning that a fixed effects panel analysis does not control for much more than

what is in W1. It is remarked that the R2 of models (1.9) and (1.10) increases with L1 and

approaches 1 if the entire W was used. Moreover, the models use W1 at one time point and

not the time constant part of W1 which is expected to result in a lower R2. However, the more

important the cross sectional variation in W1 than the longitudinal variation, the smaller the

expected effect on the R2.

Testable restrictions III Finally, simple regression based tests of the endogeneity of X and

Z can be conducted once fixed effects have been estimated. The idea is here to regress â or

b̂ on X or (X,Z), respectively. Any significant relationship points to that the fixed effects are

partially correlated with the observables, thus leading to inconsistencies of OLS estimates for

β for models (1.2) or (1.4). These tests will also reveal which variables or groups of variables

possess these patterns.
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1.3 German Administrative Data linked with Survey Data

For our analyses, we use the Integrated Employment Biographies (IEB) of the IAB. These

administrative registers contain information for every German once employed in a job subject

to social insurance contributions since 1973. This information includes socio-demographic

characteristics as well as daily records on employment and job seeking periods, receipt of

unemployment benefits and information about participation in active labour market policy pro-

grams.

Usually, access to these data is restricted to random samples and a subset of variables due to

data confidentiality reasons. In our application, we mimic the situation of a researcher working

with a standard administrative data set, which is accessible to a wider group of data users. In

particular, we focus on the widely used scientific-use-file version of the ”Sample of Integrated

Labour Market Biographies” (SIAB, cf. vom Berge et al. 2013). The SIAB is a 2 percent

random sample drawn from the IEB (approximately 1.6M individuals) and provides restricted

access to variables available in the IEB records. The SIAB is available as a standard data set

through the Research Data Center (FDZ) of IAB (http://fdz.iab.de/).

We enrich the administrative data by linking it with comprehensive survey data on the indi-

vidual level, with the household panel study "Labour Market and Social Security" (PASS, cf.

Berg et al. 2012). The PASS survey was implemented in 2006 to gain more insights into the

living conditions of (means-tested) unemployment benefit recipients in the household con-

text. Since then, the PASS survey, in general, provides several waves of survey data from

household and individual interviews on a wide variety of issues relating to the socio-economic

situation. About 80 percent of the individuals interviewed in the PASS survey agreed to link

the PASS survey data to the administrative records (approximately 22,000 individuals). A

very similar linked dataset is the ”PASS survey data linked to administrative data of the IAB”

(PASS-ADIAB) that is also available through the Research Data Center (FDZ) of IAB. For

more information on these data see Antoni and Bethmann (2014).
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Table 1.1: Data sources

Size IEB SIAB PASS survey

Variables Variables (X) variables (W1)

Integrated Employment 100% of x x

Biographies (IEB) the population

Sample of Integrated Labour

Market Biographies (SIAB) 2% of IEB x

Panel Study "Labour Market and

Social Security" linked with IEB 0.03% of IEB x x

(PASS-ADIAB)

For our comparative analysis, we restrict the sample to individuals aged 16 to 64 of different

households who have participated in the 5th wave of the PASS survey in 2011. This leaves

us with approximately 9,700 individuals. Since it is a common situation that survey data is

only available for one period, we do not use further waves of the PASS survey. We restrict

the analysis to the 5th wave to have information on personality traits that are not available in

prior waves. Using both, the restricted IEB data as well as information from the PASS data,

our sample contains variables from administrative registers available in the SIAB (X), gener-

ated work history variables (Z) as well as additional survey-based variables from PASS (W1).

Information on the size of each dataset and how they are linked to our empirical applications

are shown in Table 1.1.

With these data, we perform two exemplary applications: one wage regression and one labour

market transition analysis. Focusing only on individuals who are observed at least three

years in the administrative data, the sample of the wage regression consists of 2,435 persons

employed during the interview months. The sample of the transition regression consists of

1,484 persons who once have been registered as unemployed during the interview year and

are observed at least for three years in the administrative data. The dependent variable

y of the wage regression is the logarithmized average daily gross wage at the time of the

interview. X includes socio-demographic and employment-related variables such as gender,

age, trainee status, education, nationality, and industrial sector. The dependent variable y in
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the transition analysis is a dummy variable indicating whether an unemployed individual left

unemployment within 12 months (y = 1) or not (y = 0). As regressors, we use a subset of

the variables of the wage regression as well as dummies of unemployment related registers

such as the receipt of unemployment insurance benefits (German: Arbeitslosengeld, ALG I)

and means-tested unemployment benefits (German: Arbeitslosengeld II, ALG II). Table 1.9 in

Appendix III presents the full set of regressors used in the wage and transition regression as

well as their descriptive statistics.

The survey-based variables constituting W1 are linked PASS data. Among the survey vari-

ables, those supposed to have an impact on wage levels and/or labour market transitions,

are of special interest. While the survey incorporates a wide array of topics, we mainly focus

on labour market-related information. This includes information on personality traits and atti-

tudes (Big Five), job search, working hours and other social factors. Table 1.9 in Appendix III

presents the full set of survey variables used as well as their descriptive statistics.5Despite that

we use a rich set W1 variables, there may well be further important variables in the population

models that are unobservable to us (and thus in W2).

Variables Z are constructed from individual (un-) employment histories. Thus, they are com-

puted from past administrative records on employment and unemployment among other past

labour market outcomes. We construct four variables for the wage regression: length of job

tenure, the share of time employed over a total length of recorded labour market history, past

unemployment history, and working experience. For the transition analysis, we construct five

variables: past unemployment history at the time of transition, duration of current unemploy-

ment episode, recall history, past long-term unemployment (i.e. last unemployment episode

longer than 12 months), and participation in active labour market programmes within the last

three years.

5See www.fdz.iab.de for a full list of variables available in the PASS survey data.

27



1.4 Empirical Analysis

Due to the limited size of the survey population, we restrict ourselves to two exemplary linear

regression models: A wage regression and a linear probability transition model. For both

models, we do the analysis steps as outlined in Section 1.2. From our findings, we derive

some general guidance for empirical researchers who work with these or similar data.

The idea behind using work history variables Z in wage or transition models is twofold: These

variables capture otherwise unobserved individual features related to past labour market per-

formance and therefore they can be interpreted as proxy variables. In our application Z in-

clude among others the unemployment history and tenure with the current employer. While

past unemployment experiences should be related to work motivation and performance, the

tenure in a job should reflect job specific skills. Thus, these variables are correlated with

something that is typically not observable.

However, work history variables may actually belong to the population model. This is for ex-

ample if past unemployment experiences play a direct role in hiring decisions and therefore

for the probability of starting a new job. Similarly, job safety or the collective wage bargaining

process can be direct functions of tenure due to legal restrictions. In many countries, dis-

missal protection is stronger for long-time employees and recently hired employees usually

are not entitled to wage increases. However, if a component of Z belonged to the model, it is

correlated with the unobservables for the reasons mentioned above. Thus, it is endogenous.

This is why adding additional variables W1 to the model is expected to not only uncover en-

dogeneity of X but in particular of Z. The PASS data provide a large number of additional

variables. Similar to the method mentioned in Belloni et al. (2014), We apply the Post-LASSO

and an elastic net (see Appendix I) as tools for the selection of relevant variables in the two

models. While for the wage regression 35 variables are selected as the set of relevant W1

variables (see Table 1.8 in Appendix III), none of the survey variables appears to be relevant

in the transition model.
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1.4.1 Wage Regression

We consider a standard Mincer type wage equation with y is the log of the average daily

gross wage. As regressors X we use individual level and firm level data such as age, gen-

der, education and industry. As Z we use work history variables related to previous working

experience, tenure and previous unemployment experiences. For a complete list of variables

in this model see Table 1.9 in Appendix III.

As the first step we apply ordinary least squares to estimate linear models for E(y|X),

E(y|X,Z), E(y|X,W1) and E(y|X,Z,W1). Table 1.2 contains the main estimation results

for these models, denoted by W.A-W.D. The coefficients on W1 are for completeness reported

in Table 1.10 in Appendix III. The R2 increases from 0.32 in Model W.A to 0.41 in Model W.B

and to 0.50 in Model W.C. It increases further to 0.57 in Model W.D, pointing to that the set

of variables individually and jointly contribute to explaining variation in the dependent vari-

able. It is found that a number of coefficients on X differ considerably across the models,

pointing to omitted variable bias. For example the coefficient on gender decreases from 0.499

in Model W.A to 0.148 in Model W.D. This suggests that the estimated gender wage gap is

much smaller (only around 14% compared to 39%) when non-operations based variables are

included. Although still highly significant, this is an economically relevant reduction. In con-

trast, other coefficients such as nationality and several business sectors are invariant across

models W.A-W.D.
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The coefficients on several components of X, such as gender and higher education, change

monotonically from Models W.A to W.D. This could be interpreted as an improvement of the

estimates and a reduction in the omitted variable bias as the model R2 increases. As out-

lined in Section 1.2, however, there is no theoretical foundation that this is always true. For

some X, such as vocational training and nationality, the change is small and not statisti-

cally significant. For other variables in X, such as trainee, the coefficients do not change

monotonically (although not significantly) but they gain in precision and become statisti-

cally significant. As all Z variables are individually significant in Model W.D, the restriction

E(y|X,W1, Z) = E(y|X,W1) is violated. It can be seen from Table 1.3 that all but one com-

ponent of Z are individually significant in the linear projection on W1γ̂(1). This suggests that

there is a statistical partial relationship between the linear combination of Z and the linear

combination of W . However, the R2 of only 0.04 points to that the variation in Z only very little

explains the variation in W1γ̂ and therefore Z are poor proxies for W1. This is also confirmed

by a rejection of the restriction E(W1γ(1)|X,Z) = E(W1γ(1)|Z) with a P-value of virtually

0. Moreover, the coefficients on Z are mainly unchanged between Models W.B and W.D.,

which also suggest that the endogeneity of Z is not removed by adding W1. If anything, these

observations suggest that the Z variables are either components of W2 or they proxy for com-

ponents in W2. This would be in line with the increase in the R2 when we go from Model W.C

to W.D.

Table 1.3: Wage regression: Test restrictions for Z being feasible proxy variables

E(W1γ̂(1)|Z)
coef. / (SE)

Tenure (in years) -0.000
(0.001)

Share of working experience over total observation time 0.241***
(0.028)

Additional working experience (in years) -0.006***
(0.001)

Dummy: unemployment history in the past -0.175***
(0.019)

N 2435
R2 0.042

Robust standard errors in parentheses.
* p<0.10, ** p<0.05, *** p<0.010
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In order to shed more light on the role of W1 and Z in the previous models we estimate

panel data regression (1.6) and (1.7) with 3 periods for the same individuals as for the other

models. We include period interactions for all regressors and only report the coefficients for

the period that is used in the cross sectional models. In order to obtain coefficients on the

time constant variables, we estimate a dummy variable regression model with 2,435 individual

specific dummy variables. The results - without the estimated a - are displayed in Table 1.2

as Models W.E and W.F, respectively. It is evident that the coefficients on several of the X

and Z variables change considerably when using a panel model that allows for correlation be-

tween (X,Z) and the time constant part of the error. This points to violations of the stronger

exogeneity restrictions in cross sectional analysis. For example, the coefficient on higher edu-

cation drops sharply from 0.483 in Model W.B to 0.056 in Model W.F. A similar pattern can be

observed for several of the business sectors, while other previously strongly significant coeffi-

cients become weakly or insignificant in the panel analysis (e.g. gender). The multicollinearity

pattern driving this result is briefly discussed at the end of this subsection. But there are also

variables, such as trainee, for which precision increases. The coefficients on the Z variables

decrease in magnitude and these variables become considerably less individually significant.

A robust test whether the components of Z are jointly significant in Model W.F has a p-value

of 0.704. This observation and given that the R2 of Model W.F is not higher than that of Model

W.E suggest that Z does not additionally contribute to the model. The relevance of Z in Mod-

els W.B and W.D is therefore more likely due to correlation with W2 rather than because Z

directly belongs to the population model.

In the following we shed light on two more questions: First, to what extent do the variables in

W1 explain the variation of the estimated part of the panel model that is supposed to capture

the omitted W? Second, to what extent are the estimated fixed effects statistically related to

the includedX and Z? Any relationship suggests endogeneity of the latter in a cross sectional

regression.
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Table 1.4: The statistical relationship between the estimated component of the panel model
that controls for omitted W and the observable W1

E(â|W1) E(b̂+ Zλ̂|W1)

coef. / (SE) coef. / (SE)

Big Five: I am rather cautious, reserved 0.036 0.029
(0.047) (0.057)

Big Five: I tend to criticise people 0.000 -0.013
(0.041) (0.051)

Big Five: I attend to all my assignments with precision 0.044 0.045
(0.066) (0.080)

Big Five: I have versatile interests -0.132** -0.171**
(0.060) (0.073)

Big Five: I am inspirable and can inspire other people 0.027 0.032
(0.052) (0.064)

Big Five: I easily trust in people and believe in the good in humans 0.070* 0.094*
(0.041) (0.050)

Big Five: I tend to be lazy -0.203*** -0.250***
(0.043) (0.053)

Big Five: I am profound and like to think about things -0.115** -0.139**
(0.045) (0.055)

Big Five: I am rather quiet, introverted -0.292*** -0.375***
(0.046) (0.056)

Big Five: I can act cold and distant 0.004 0.017
(0.040) (0.049)

Big Five: I am industrious and work hard 0.200*** 0.282***
(0.076) (0.092)

Big Five: I worry a lot 0.225*** 0.291***
(0.041) (0.051)

Big Five: I have a vivid imagination and have a lot of phantasy -0.188*** -0.225***
(0.052) (0.063)

Big Five: I am outgoing and like company -0.005 0.021
(0.054) (0.066)

Big Five: I can be gruff and repellend towards other people -0.117*** -0.140***
(0.043) (0.053)

Big Five: I make plans and carry them out -0.025 -0.038
(0.057) (0.070)

Big Five: I easily get nervous and insecure 0.141*** 0.200***
(0.048) (0.058)

Big Five: I treasure artistic and aesthetic impressions 0.219*** 0.248***
(0.047) (0.057)

Big Five: I am not very interested in art -0.152*** -0.176***
(0.044) (0.053)

Dummy: satisfied with one?s life in general 0.389*** 0.410**
(0.142) (0.173)

Continued on next page...
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... table 1.4 continued
E(â|W1) E(b̂+ Zλ̂|W1)

coef. / (SE) coef. / (SE)

Dummy: was looking for a new job -0.458*** -0.402**
(0.165) (0.202)

Dummy: was looking for an additional job -0.708* -0.808*
(0.379) (0.463)

Dummy: was looking for a new and an additional job 0.170 0.402
(0.881) (1.078)

strength of connection to place of residence -0.031 -0.033
(0.046) (0.057)

Frequency of misunderstandings, tensions or conflicts -0.108** -0.168***
(0.049) (0.059)

Number of children in total (within and outside the household) 0.212*** 0.090
(0.056) (0.068)

Number of children in household 0.295*** 0.415***
(0.084) (0.103)

Dummy: none of parents has a HE degree 0.056 0.019
(0.092) (0.112)

Dummy: one parent has a HE degree 0.032 -0.016
(0.173) (0.212)

Current contract working time,total, without mini-job -0.042*** -0.055***
(0.008) (0.010)

Current actual working time, main occupation, without mini-job -0.074*** -0.095***
(0.014) (0.017)

Current actual working time,total, without mini-job 0.024* 0.029*
(0.014) (0.017)

Dummy: none of parents with migrational background -0.369** -0.314
(0.182) (0.223)

Size of household -0.753*** -0.844***
(0.064) (0.078)

Constant 9.482*** 9.667***
(0.639) (0.782)

N 2435 2435
R2 0.327 0.334

Robust standard errors in parentheses.
* p<0.10, ** p<0.05, *** p<0.010

Table 1.4 displays the results of the linear projections of W1 on the estimated components of

the panel models that capture the unobserved W as given by (1.9) and (1.10) for the cross

sectional data. In the case of Model (1.6) this is simply the estimated fixed effects â. In the

case of Model (1.7), this is the estimated fixed effect plus the estimated component related
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to Z, i.e. b̂ + Zλ̂. The estimated coefficients are from the panel regressions. Given that the

two regressions in Table 1.4 have different dependent variables with different variation, the

estimated coefficients and the R2 are not directly comparable. However, they show that the

variation in W1 explains around one third of the variation of the dependent variables. They

also show that a number of W1 variables is partially related with the dependent variables.

This is evidence that for the panel models effectively controlling for information in W1 without

directly using it. However, the remaining 2/3 of the variation must be due toW2. This suggests

that the panel models also effectively control for additional unobservables.

Table 1.5: Wage regression: Regression based endogeneity test for components of X and Z

E(â|X) E(b̂|X,Z)
coef. / (SE) coef. / (SE)

Gender (male=1) -4.867*** -6.249***
(0.026) (0.024)

Age 0.060*** 0.034***
(0.001) (0.001)

Dummy: trainee -0.150 -0.033
(0.375) (0.299)

Missing information on education -0.582*** -0.483***
(0.158) (0.155)

No formal degree -0.188* -0.126
(0.107) (0.098)

Vocational training -0.050 -0.082
(0.103) (0.094)

Higher Education 0.329*** 0.304***
(0.106) (0.097)

Dummy: German nationality 0.066 -0.037
(0.059) (0.055)

Agriculture -0.473*** -0.285***
(0.094) (0.095)

Hotel and restaurant -0.132 0.056
(0.080) (0.075)

Construction -0.285*** -0.179***
(0.059) (0.058)

Trade -0.147*** -0.076**
(0.039) (0.036)

Services -0.145*** -0.030
(0.035) (0.033)

Education and social health -0.185*** -0.102***
(0.037) (0.034)

Public institutions -0.192*** -0.196***
Continued on next page...
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... table 1.5 continued
E(â|X) E(b̂|X,Z)

coef. / (SE) coef. / (SE)
(0.045) (0.044)

Other sectors 0.223*** 0.293***
(0.080) (0.066)

Tenure (in years) 0.017***
(0.002)

Share of working experience over total observation time 0.327***
(0.048)

Additional working experience (in years) 0.004*
(0.002)

Dummy: unemployment history in the past -0.479***
(0.034)

Constant 3.735*** 4.172***
(0.124) (0.120)

N 2435 2435
R2 0.954 0.974

Robust standard errors in parentheses.
* p<0.10, ** p<0.05, *** p<0.010

Table 1.5 reports the results for regressions of the estimated fixed effects from the panel

analysis on the included regressors in the two models using the cross sectional data. It is

apparent that a large number of the coefficients differ significantly from 0. This points to

partial correlation between fixed effects and regressors and thus to endogeneity of the latter

in the cross sectional models of Table 1.2. This means there is significant bias in many of

the estimated coefficients of the cross sectional models W.A and W.B in Table 1.2. The large

values of the R2 for the two models in Table 1.5 reveal that the included regressors nearly

entirely explain the variation in estimated fixed effects. This causes a strong multicollinearity

pattern between some of the variables in the panel models of Table 1.2, which is reflected by

the partly huge standard errors in Models W.E and W.F., e.g. for the coefficient on gender. A

solution to mitigate this pattern would be to use information from additional periods but this

would then lead to an unbalanced panel.
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1.4.2 Transition Analysis

In this subsection we repeat the analysis by considering a probability model for leaving unem-

ployment. The framework In Section 2 is applied in a linear probability model. In particular,

the dependent variable "y" is now binary, and takes on the value one if the individual has left

unemployment within 12 months since the time of the interview. We apply the linear proba-

bility model(P (y = 1|X), P (y = 1|X,Z), P (yit = 1|Xit) and P (yit = 1|Xit, Zit)) to estimate

the partial relationship between various observables and the transition probability. As this

analysis is restricted to unemployed job seekers, the sample conditions on those being in the

job seekers register. For this reason, firm level variables are no longer available but other

variables such as claiming unemployment benefits. The full set of variables is again provided

in Table 1.9 in Appendix III. Also, the set of work history variable Z changes and becomes

related to past unemployment experiences and participation in active labour market policy

programs. As mentioned above, none of the survey variables have been selected by the

Post-Lasso and elastic net, thus the set W1 is empty. This suggests that the survey does not

contribute relevant information to the analysis.

Table 1.6: Transition analysis: Binary dependent variable (Dummy: left unemployment within
12 months)

T.A T.B T.C T.D
E(y|X) E(y|X,Z) E(yit|Xit) E(yit|Xit, Zit)

coef. / (SE) coef. / (SE) coef. / (SE) coef. / (SE)

Gender (male=1) 0.043* 0.034 0.111 -0.833
(0.022) (0.021) (0.879) (0.966)

Age -0.003*** -0.002* 0.016 0.033
(0.001) (0.001) (0.023) (0.026)

Missing information -0.007 0.006 0.048 0.013
on education (0.104) (0.099) (0.183) (0.143)

No formal degree -0.010 -0.030 -0.003 -0.033
(0.095) (0.090) (0.172) (0.133)

Vocational training 0.025 0.005 0.030 -0.003
(0.094) (0.089) (0.168) (0.127)

Higher Education 0.043 -0.021 0.094 0.053
(0.128) (0.127) (0.186) (0.151)

Dummy: German nationality 0.002 0.003 -0.077 -0.058
(0.037) (0.034) (0.074) (0.068)

Dummy: receiving 0.121*** 0.034 0.322*** 0.201***
Continued on next page...
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... table 1.6 continued
T.A T.B T.C T.D

coef. / (SE) coef. / (SE) coef. / (SE) coef. / (SE)
unemployment insurance benefits (0.026) (0.025) (0.097) (0.073)

Dummy: receiving mean-tested -0.163*** -0.088** 0.003 0.092
unemployment benefits (0.031) (0.036) (0.144) (0.121)

Dummy: West Germany -0.006 -0.023 0.027 0.024
(0.023) (0.023) (0.097) (0.095)

Dummy: left unemployment 0.510*** 0.537***
in the past (0.044) (0.063)

Unemployment duration -0.003*** -0.020***
(in months) (0.000) (0.002)

Dummy: left long-term unemployment -0.009 0.293***
(>12 months) in the past (0.032) (0.043)

Dummy: be recalled in the past 0.022 -0.004
(0.025) (0.039)

Dummy: participation in active labour market 0.035 -0.000
programmes in the past 3 years (0.022) (0.026)

Constant 0.949*** 0.555***
(0.119) (0.118)

N 1484 1484 3×1484 3×1484
R2 0.036 0.151 0.925 0.936
Percent correctly predicted (PCP) 0.763 0.787

Robust standard errors in parentheses.
* p<0.10, ** p<0.05, *** p<0.010

Table 1.6 shows the estimation results for the models P (y = 1|X), P (y = 1|X,Z), P (yit =

1|Xit) and P (yit = 1|Xit, Zit), which are denoted as T.A - T.D, respectively. It is apparent that

the estimated coefficients on the X variables are often similar and statistically not different

across the regressions T.A and T.B, except for the benefit claim related variables, which both

decrease in magnitude. The R2 increases from 0.036 to 0.151, which shows that the work

history variables contribute to the model, though, the Percent Correctly Predicted (PCP) after

the inclusion of Z only very marginally increases from 0.763 to 0.787. The results for the panel

models T.C and T.D in Table 1.6 also only show evidence for a small number of coefficients

(X,Z) to be sizably different in comparison to Models T.A and T.B. The coefficient on receiving

unemployment insurance benefits increases considerably, while the coefficient on receiving

mean-tested unemployment benefits changes sign but looses statistical significance. Among
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the Z variables, only the coefficients on unemployment duration and on having left long-term

unemployment change. In particular, they increase strongly in magnitude in model T.D. As the

latter is the interaction of having been long term unemployed and having left unemployment in

the past, these results suggest that past successes play an important role in explaining future

successes. While the W1 variables turned out to be irrelevant, the Z variables appear to be

the most important variables in the transition model and they remain relevant after controlling

for unobserved fixed effects. Thus, they may be relevant in the population model or may be

related to time varying information in W2 that has not been captured by the panel models.

Table 1.7: Transition sample: Regression based endogeneity test for components of X and Z

(1) (2)
E(a|X) E(b|X,Z)
β / (SE) β / (SE)

Gender (male=1) -2.844*** -2.020***
(0.018) (0.018)

Age 0.151*** 0.110***
(0.001) (0.001)

Missing information on education -0.024 0.024
(0.073) (0.077)

No formal degree -0.005 -0.013
(0.067) (0.070)

Vocational training 0.008 0.014
(0.066) (0.069)

Higher Education -0.027 -0.032
(0.098) (0.097)

Dummy: German nationality 0.054* 0.051*
(0.030) (0.027)

Dummy: receiving unemployment insurance benefits -0.232*** -0.196***
(0.021) (0.020)

Dummy: receiving mean-tested unemployment benefits -0.117*** -0.117***
(0.028) (0.034)

Dummy: West Germany -0.062*** -0.077***
(0.019) (0.019)

Dummy: left unemployment in the past 0.040
(0.039)

Unemployment duration (in months) 0.017***
(0.000)

Dummy: left long-term unemployment -0.274***
(>12 months) in the past (0.026)

Dummy: be recalled in the past 0.031
(0.020)

Continued on next page...
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... table 1.7 continued
(1) (2)

E(a|X) E(b|X,Z)
β / (SE) β / (SE)

Dummy: participation in active labour market 0.041**
programmes in the past 3 years (0.017)

Constant 0.953*** 0.565***
(0.089) (0.096)

N 1484 1484
R2 0.976 0.968

Robust standard errors in parentheses.
* p<0.10, ** p<0.05, *** p<0.010

Table 1.7 presents the results for the linear projection of X and X,Z on the estimated fixed

effects. Similar to the wage regressions, there is evidence for a number of variables being

endogenous in the cross sectional analysis of Models T.A and T.B. However, as already dis-

cussed, our results suggest that the omitted variable bias is limited for most variables in the

transition model. Table 1.7 also shows that the included regressors almost perfectly explain

the variation in estimated fixed effects, which suggests again a multicollinearity pattern for a

subset of the regressors in Table 1.6.

Before finishing this section we pay some special focus on the variable "participation in an ac-

tive labour market policy program" as participation in an active labour market policy program,

such as training, is a policy relevant variable that has received a lot of attention in empirical

labour market research. We do not find economically, nor statistically relevant changes when

comparing Models T.B and T.D. Lechner and Wunsch (2013) and Caliendo et al. (2014), who

focus among other things on the estimation of treatment effects on labour market transitions,

add more operations based administrative or interview based survey variables to their models

to check sensitivity of results. Our findings confirm their findings that the estimated treatment

effects are stable and thus may not be affected by omitted variables.

Despite these findings the endogeneity tests in Table 1.7 provide some evidence for this vari-

able being endogenous. In order to tackle endogeneity of labour market treatment variables,
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the academic literature typically applies instrumental variable techniques. In the future re-

search, we can construct an additional variable, e.g. the regional treatment intensity, similar

to the one used in Frölich and Lechner (2010) and Bookmann et al. (2014), as a candidate

for an instrument.

1.5 Conclusion and Discussion

In virtually any empirical regression analysis, there is limited availability of observed variables

and limited prior knowledge on which variables belong to the model. This paper provides a

unified framework that nests various approaches aiming at reducing omitted variable bias in

linear regression analysis. We work out the mechanisms driving the size of the bias and how

various models with different regressor sets or unobserved effects relate. Without imposing

restrictions on the relationship and role of the variables, it is, however, not possible to derive

model rankings that are valid in every application.

In our applications, we find evidence for sizeable omitted variable bias for a number of vari-

ables in the wage regression, while only a small number of coefficients is systematically af-

fected in the transition analysis. While the use of work history and survey variables in the tran-

sition analysis hardly changes the results, they seem to contribute to a reduction in omitted

variable bias in the wage regression as by including more and more variables the coefficients

often converge to their values in the most comprehensive panel data model. In particular, key

socio-demographic variables appear to move closer to the results of a panel analysis. When

exploiting the availability of panel data, we obtain evidence for cross-sectional results being

biased due to correlations with unobserved effects. Our results suggest that panel analysis

is expected to capture more relevant unobserved model components than an expanded re-

gressor set at one point of time. Beside asymptotic bias considerations, an analysis based

on administrative data only should also benefit from a higher precision due to the larger sam-

ple size, if for example, survey-based variables were only available for a small subset of the

population.
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Our results are not only crucial for empirical researchers but also for data providers. Due to

cost and data confidentiality constraints, data providers aim at supplying a maximum amount

of relevant information but a minimum of irrelevant information. Given our findings, the avail-

ability of longitudinal information for key variables appears to add more to the analysis than a

greatly but possibly unfocused set of additional (survey) variables at one time point. Further,

simulation studies on the case in this paper can be conducted in the future to support our

findings.
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Appendices

Appendix I: Statistical regularisation and variable selection

The survey data contains a large number of variables (around 40). But it is unknown which of

them actually belong to the regression model. In an overfitted model with many variables, esti-

mated coefficients may become implausibly large, while not contributing much to the precision

of the model fit. Moreover, the reporting of results is more convenient if irrelevant variables are

excluded. We apply the Lasso (least absolute shrinkage and selection operator) as a numer-

ical procedure to eliminate variables that do not or very little contribute to the model. Beside

their elimination, the model constraints the sum of the parameters on the regressors, making

their interpretation easier. The objective is minimising the usual sum of squared residuals

subject to a linear inequality constraint

(β̂, γ̂) arg min
N∑
i=1

(yi −Xiβ −Wiγ) subject to
∑
j

γj ≤ λ

with λ being the regularisation parameter (Tibshirani, 1996) and W is a regressor set that

contains the eventually chosen W1 but does not include W2. The linear inequality constraint

leads the Lasso to un-select variables, i.e. γ̂j = 0, if their coefficient is small in magnitude. It

also leads to the selection of one variable in the case of a group of highly correlated regres-

sors. In order to find (β̂, γ̂) we apply the algorithm suggested by Friedmann et al. (2010).

λ is determined by cross-validation such that it minimises the mean squared error. We use

the STATA package elasticregress (Townsend, 2017). As for the transition model the

Lasso does not select any of the variables, we have also applied an Elastic Net which com-

bines the Lasso with a Ridge regression. The Elastic Net did not select additional variables

for the transition model. Moreover, in this paper, Post-LASSO procedure is applied(Similar to

the method used in Belloni and Chernozhukov(2013)). We firstly apply LASSO to determine

which variables to drop, and then the selected variables are estimated using restricted model.
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Appendix II: A Brief explanation on the method using in Oster (2017)
In this paper, we apply method from Oster (2017) in part of our empirical strategy to test to

what extent additional information used to reduce omitted variable bias will contribute to the

quality of results. The following presents a brief explanation of Oster’s method.

Oster starts with a simple setup, and this is a very similar situation as discussed in our paper.

Assume that the model that determines wages is given by equation 1.11:

Y = βX +W + C (1.11)

Where W and C are two orthogonal components of unobserved "ability" and X is education.

Assume that both W and C are related to X, but W has a much larger variance than C has.

Oster also assumes that if one regress X on W and C, same coefficients will be obtained.

However, when one observes W (the high variance control), and the other observes C (the

lower variance control), the case will be different. The coefficient will appear stable when C is

included. This is not because of the small bias, but just because of the fact that the control is

less important in explaining wages.

Then Oster develops the case in model 1.11 to the regression model in equation 1.12, now C

in equation 1.11 can be observed:

Y = βX + ψω0 +W2 + ε (1.12)

where X is the (scalar) treatment, and ω0 is a vector of the observed controls, ω0
1, · · · , ω0

J .

W2 is not observed. Oster draws the setup of ε from AET who assumes that ε = 0 and that

W2 contains some error unrelated to X. Moreover, the proportional selection relationship

is defined as δ σ1X
σ2
1

= σ2X
σ2
2

, σiX = cov (Wi, X) and σ2
i = var (Wi) for i ∈ {1, 2}. δ is the

coefficient of proportionality.

Define W1 = ψω0. All elements of ω0 are assumed to be orthogonal to W2, thus W1 and W2

are orthogonal. Let β̊ be the coefficient from the short regression of Y on X, and R̊ be the R-

squared from that short regression. Let β̃ be the coefficient from the intermediate regression

of Y on X and ω0, and the R-squared denoted as R̃.
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Then, by performing the following auxiliary regressions, the omitted variable bias of the OLS

estimates β̊ and β̃ are determined:

(1) Regress each value ω0
1, · · · , ω0

J on X. λ̂ω0
i |X is the in-sample estimated coefficient on X

from these regressions in (1).

(2) Regress W22 on X. λ̂W2|X is the (unobservable) in-sample estimated coefficient on X

from the regressions in (2).

(3)Regress W2 on X and ω0. λ̂W2|X,ω0 is the coefficient on X from the regressions in (3).

Denote the population analogs of these values λω0
i |X , λW2|X , and λW2|X,ω0 .

Finally, Rmax is defined. Rmax is based on the R-squared from the hypothetical regressions of

Y on X, ω0 and W2. Oster points out that these R2 are values that are estimated in-sample

based on the available data, while Rmax is a (theoretical) population value.

Under restrict assumptions, the probability limits of the short and intermediate regression

coefficients in terms of the auxiliary regression coefficients can be written in equation 1.13:

β∗ = β̃ −
[
β̊ − β̃

] Rmax − R̃
R̃− R̊

, and β∗ P−→ β (1.13)

It has also been proved under less restricted assumptions, that the probability limits of the

short and intermediate regression coefficients in terms of the auxiliary regression coefficients

can be written as follows:

β̃
P−→ β + λW2|X,ω0

Further, Oster argues that in practical empirical applications, the outcome cannot be fully

explained even if the full control set is included, due to measurement error; hence an idea is

proposed to construct Rmax by using the information on the measurement error or expected

idiosyncratic variation in the outcome. In our case, Rmax equals to one if W can be fully

explained by the full control set. And in theory, Rmax should reflect how much of the variation

of in W2 could be explained if we had full controls for W1.

Once a dataset with a full set of controls is accessible, one can then explore coefficient bias
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when various sets of controls are excluded. Therefore, a test of whether the proportional

selection relationship would lead to better inference in the model setting becomes possible.

Appendix III: Tables
Table 1.8: Variable selection by LASSO and elastic net

Variable Names

Wage sample:

Big Five: I am rather cautious, reserved

Big Five: I tend to criticise people

Big Five: I attend to all my assignments with precision

Big Five: I have versatile interests

Big Five: I am inspirable and can inspire other people

Big Five: I easily trust in people and believe in the good in humans

Big Five: I tend to be lazy

Big Five: I am profound and like to think about things

Big Five: I am rather quiet, introverted

Big Five: I can act cold and distant

Big Five: I am industrious and work hard

Big Five: I worry a lot

Big Five: I have a vivid imagination and have a lot of phantasy

Big Five: I am outgoing and like company

Big Five: I can be gruff and repellend towards other people

Big Five: I make plans and carry them out

Big Five: I easily get nervous and insecure

Big Five: I treasure artistic and aesthetic impressions

Big Five: I am not very interested in art

Dummy: satisfied with one?s life in general

Dummy: was looking for a new job

Dummy: was looking for an additional job

Dummy: was looking for a new and an additional job

strength of connection to place of residence

Continued on next page...
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... table 1.8 continued

Variable Names

Frequency of misunderstandings, tensions or conflicts

Number of children in total (within and outside the household)

Number of children in household

Dummy: none of parents has a HE degree

Dummy: one parent has a HE degree

Current contract working time,total, without mini-job

Current actual working time, main occupation, without mini-job

Current actual working time,total, without mini-job

Dummy: none of parents with migrational background

Size of household

Not Selected by LASSO:

Big Five: I tend to be depressed, crestfallen

Big Five: I am relaxed and don?t let stress get to me

Dummy: satisfied with health

Working even without being dependent on wage

Number of real close friends/family members outside the household

Transition sample:

No variable is selected by LASSO and elastic net
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Table 1.10: Appendix: Estimated coefficients on W1 variables in Models W.C and W.D (con-

tinued from Table 1.2)

E(y|X,W1) E(y|X,Z,W1)

coef. / (SE) coef. / (SE)

Big Five: I am rather cautious, reserved -0.017 -0.017*

(0.011) (0.010)

Big Five: I tend to criticise people 0.025** 0.026***

(0.010) (0.009)

Big Five: I attend to all my assignments with precision -0.019 -0.016

(0.014) (0.013)

Big Five: I have versatile interests 0.001 0.006

(0.013) (0.012)

Big Five: I am inspirable and can inspire other people -0.009 -0.009

(0.011) (0.011)

Big Five: I easily trust in people and believe in the good in humans 0.002 0.007

(0.009) (0.008)

Big Five: I tend to be lazy 0.036*** 0.036***

(0.010) (0.009)

Big Five: I am profound and like to think about things 0.018* 0.018*

(0.010) (0.009)

Big Five: I am rather quiet, introverted -0.009 -0.010

(0.010) (0.009)

Big Five: I can act cold and distant -0.005 -0.005

(0.008) (0.008)

Big Five: I am industrious and work hard -0.008 -0.002

(0.018) (0.017)

Continued on next page...

56



... table 1.10 continued

E(y|X,W1) E(y|X,Z,W1)

coef. / (SE) coef. / (SE)

Big Five: I worry a lot -0.023** -0.018**

(0.009) (0.009)

Big Five: I have a vivid imagination and have a lot of phantasy 0.004 -0.000

(0.011) (0.010)

Big Five: I am outgoing and like company -0.028** -0.029***

(0.011) (0.010)

Big Five: I can be gruff and repellend towards other people -0.007 -0.000

(0.010) (0.009)

Big Five: I make plans and carry them out 0.059*** 0.050***

(0.013) (0.012)

Big Five: I easily get nervous and insecure -0.023** -0.019*

(0.011) (0.011)

Big Five: I treasure artistic and aesthetic impressions 0.005 0.009

(0.010) (0.009)

Big Five: I am not very interested in art 0.000 -0.004

(0.010) (0.009)

Dummy: satisfied with one?s life in general 0.164*** 0.122***

(0.031) (0.029)

Dummy: was looking for a new job -0.180*** -0.128***

(0.035) (0.033)

Dummy: was looking for an additional job -0.028 -0.001

(0.087) (0.079)

Dummy: was looking for a new and an additional job -0.093 -0.030

(0.171) (0.179)

strength of connection to place of residence 0.017* 0.024***

Continued on next page...
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... table 1.10 continued

E(y|X,W1) E(y|X,Z,W1)

coef. / (SE) coef. / (SE)

(0.010) (0.009)

Frequency of misunderstandings, tensions or conflicts -0.024** -0.023**

(0.011) (0.011)

Number of children in total (within and outside the household) -0.060*** -0.027**

(0.014) (0.013)

Number of children in household 0.050*** 0.049***

(0.017) (0.017)

Dummy: none of parents has a HE degree 0.033 0.013

(0.020) (0.019)

Dummy: one parent has a HE degree 0.105*** 0.100***

(0.036) (0.034)

Current contract working time,total, without mini-job 0.021*** 0.020***

(0.002) (0.002)

Current actual working time, main occupation, without mini-job 0.022*** 0.020***

(0.003) (0.003)

Current actual working time,total, without mini-job -0.011*** -0.010***

(0.004) (0.003)

Dummy: none of parents with migrational background 0.089** 0.108***

(0.040) (0.039)

Size of household 0.011 -0.015

(0.013) (0.013)

N 2435 2435

R2 0.502 0.570

* p<0.10, ** p<0.05, *** p<0.010
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Abstract: In this paper, I analyse the impact of immigrants with different skill levels on the

wages of natives in Denmark. I use administrative data on full population in Denmark for the

period 2004 to 2013. I follow and extend the paper by Malchow-Møller et al. (2012) in our

analysis. I find empirical evidence that an increase in the share of high-skilled immigrants

is associated with a higher wage of native workers, especially for high-wage earners.

Low-skilled immigrants are found to have a positive impact on most wage quantiles of natives,

while medium-skilled immigrants tend to bring negative wage effect. I further argue that the

empirical evidence I have obtained actively support the hypothesised mechanisms in this

paper.

Keywords: Immigration; Wage; Natives; Quantile regressions; Wage efficiency
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2.1 Introduction
Many developed countries have witnessed an immigration boom in recent years. In the context

of immigration into European countries, the recent literature agrees that a large inflow of

immigrants has been entering Western countries during recent decades. Attitudes towards

the increased immigrant numbers vary both at the national level and among ordinary citizens.

Debates on whether to open the door for more immigrants have become more fierce in most

European countries.

One of the major concerns raised by most parties is the potential impact of immigration on

employment in the local labour market. A vast amount of research projects have been carried

out on this topic, and wage, being an important part of labour economics, has been discussed

in numerous relevant works. Denmark has witnessed a strong increase in the employment

of immigrants since the early twenty-first century, and it is a place where individual-level and

employer-employee linked labour market data for the full population are available. This makes

it possible to conduct an empirical study on the wage effect of immigrants on natives.

There are a number of studies that have focused on immigration to Denmark, but they have

mainly focused on refugees and low-skilled immigrant groups. Less empirical evidence has

been presented on high-skilled immigrants, though Denmark is regarded as one of the EU’s

most active members in trying to recruit skilled workers from around the world. Moreover, the

conclusions of those empirical studies have varied. Therefore, I conducted a study based on

Danish register data in an attempt to obtain further relevant empirical evidence from different

econometric models. Particularly, in this paper, I am aiming to answer: Firstly, whether immi-

gration has any impact on the wages of natives in Denmark, after the EU enlargement in the

year 2004. Secondly, how the impact from immigrants within each skill levels differs. Thirdly,

how the impact differs across different wage quantiles of native workers.

This paper contributes to gaining a more comprehensive view of such impact on wages of the

native workers in Denmark during the period (2004-2013) when immigrants increased rapidly.
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Moreover, this study provides empirical evidence within several wage quantiles as well as

different skill levels in Denmark. The paper is organised as follows: Section 2.2 describes the

background and motivation of the paper. Section 2.3 presents our framework setting based

on ordinary least squares (OLS), fixed-effects (FE), instrumental variable (IV), and quantile

regression models. Information about the datasets and the variables used in the analysis is

given in Section 2.4. Section 2.5 compares the different estimation models, and then Section

2.6, further discusses what the empirical results suggest the impact of immigrants on the

wages of natives. Finally, conclusions and a further discussion appear in Section 2.7.

2.2 Background and motivation

Many observers have noted that increased immigration is likely to be part of any strategy to

keep European social security systems solvent. At the same time, the rise in immigration has

been associated with high levels of anti-foreigner sentiment, and the view that immigrants take

jobs from natives is widespread. Attitudes towards immigrants depend on the native group.

One major concern of natives is the impact of immigration on their wages. Some are quite

open to immigrants since they believe that all of society will gain from the new technologies

the immigrants bring into the country. With increased firm productivity, the wages of natives

could rise. In contrast, those who are not in favour of more immigration propose that it could

lower their wages. More immigrants do mean a larger labour supply, which might, in turn,

lowers average wages. Moreover, low-skill immigrants could ask for a lower wage because

their countries of origin might have a lower wage level than that of native Danish workers.

Hence, firms stand to gain more financially by employing those low-skilled immigrants than by

employing native Danes. To compete with the increasing number of low-skilled immigrants,

native workers could compromise by requesting a lower wage to avoid losing their jobs.

2.2.1 Background and literature
There are classical theoretical models on the impact of immigration on the wages of native

workers. Supply-and-demand theory predicts that the real wage rate for all workers will fall
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after the arrival of immigrants. Moreover, based on the bargaining model (McDonald and

Solow, 1981), increased "cheap labour" performed by immigrants could lower the bargaining

power of trade unions or workers in general and could increase firms’ alternative payback,

thereby decreasing wages. The model also implies that hiring more immigrants signals that

a firm has better alternative options; thus, native wages are additionally affected when this

occurs. On the other hand, according to the O-ring theory (Kremer, 1993), wages are often

an indirect measure of firm productivity, and an increase in one’s productivity increases the

productivity thus the wages of his or her co-workers. As high-skilled immigrants enter the

receiving country, their native co-workers’ wages could rise through this channel.

Later, as richer datasets became available for research, more empirical discussions began

to take place on the impact of immigrants on native workers in the local labour market in the

receiving country. Angrist and Kugler (2003) have reported small, mostly negative immigration

effects for European countries. They also apply an IV strategy based on the data of immigrants

from former Yugoslavia and find larger, though mostly insignificant, negative estimates. The

estimates typically demonstrate that a 10% increase in the foreign share would reduce native

employment rates by 0.2-0.7 of a percentage point. Ordinary least squares estimates are at

the low end of this scale, while IV estimates using the Balkan Wars are mostly larger than

the corresponding OLS estimates, implying the substantial displacement of native workers by

immigrants.

I narrow down the field of impact to the wages of native workers to focus on our primary re-

search question: Do immigration affect the wages of native workers? Wages are an important

topic in labour economics and immigration studies. There is a rich empirical literature stream,

and more specific discussions have studied the impact of immigrants on the wages of native

workers. Dustmann et al. (2005) briefly reviewed the simplest theoretical model that helps to

explain the effects of immigration on the economic outcomes of native workers in the receiving

country. They concluded that the same immigrant inflow might affect different recipient coun-

tries in divergent ways, depending on the skill structure of the native workforce. Studying a
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range of empirical evidence on the UK and other countries allowed them also to point out the

difficulties an analyst faces when attempting to assess the effects of immigration on wages

empirically. To date, at least in the empirical literature, a universal agreement has not been

reached regarding the impact of immigration on the wages of native workers.

Indeed, many recent empirical papers adopting different identification strategies have failed

to find a negative impact of immigration on natives’ wages. Manacorda et al. (2012) used a

pooled time series of British cross-sectional micro-data on male wages and employment from

the mid-1970s to the mid-2000s. They illustrated that immigration has primarily reduced the

wages of immigrants, but with little discernible effect on the wages of the native-born. Using

Spanish data, Carrasco et al. (2008) explored the effects of immigration on employment and

the wages of native workers using three samples varying in coverage of legal and illegal

immigration and in the dimensions along which labour market segments can be constructed.

Ordinary least squares and IV approaches were adopted, but overall, they did not find any

significant negative effect of immigration on either the employment rate or the wages of native

workers.

As regards those empirical papers with statistically significant results, neither the U.S. nor

European literature has reached a clear consensus. Some studies have suggested a pos-

itive impact of immigrants on the wages of native workers, while others have indicated a

negative effect. Since the situations in the U.S. and Europe are not comparable due to socio-

backgrounds and other factors, I first review empirical evidence from the U.S.

Various studies have reported a positive effect using U.S. data, and more of a focus on

high-skilled immigrants has emerged in recent decades. Ottaviano and Peri (2006) have

demonstrated that from 1990 to 2004, immigration increased the average wages of native

U.S. workers. This positive effect arose from a relatively large positive effect on the wages

of more highly educated native workers and a slight negative effect on the wages of native

high-school drop-outs. Ottaviano and Peri (2012) reported similar findings. They calculated

the effects of immigration on the wages of native U.S. workers of various skill levels, and they
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found that from 1990 to 2006, immigration had a small effect on the wages of native workers

with no high school degree (between +0.6% and +1.7%). It also had a small positive effect

on average native wages (+0.6%) and a substantial negative effect (-6.7%) on the wages of

previous immigrants in the long run.

At the same time, empirical evidence also supports the hypothesis that the presence of immi-

grants lowers the wages of native workers. Orrenius and Zavidny (2007) were the first to use

U.S. INS data on new recipients of legal permanent resident status to examine the effects of

immigration on wages. They used occupation as a proxy for skill and found that an increase

in the fraction of foreign-born workers tended to lower the wages of natives in blue-collar oc-

cupations, but did not have a statistically significant negative effect among natives in skilled

occupations. Using 1990 census data, Card (2001) likewise reported that immigration inflows

over the 1980s reduced the wages of low-skilled natives in traditional gateway cities in the

U.S.

Scant empirical evidence has been found in Europe supporting the hypothesis that immigrants

have a positive effect on the wages of native workers. Malchow-Møller et al. (2011) used a

dataset covering the entire Danish population from 1995 to 2007, and they reported positive

effects of foreign experts on the wages of local high-skilled workers in Denmark, but the effects

on low-skilled natives were not significant.

Some empirical evidence gained based on European data indicates that immigrants, partic-

ularly low-skilled immigrants, have a negative impact on the wages of native workers. For

example, Ortega and Verdugo (2016) exploited a large French panel for 1976-2007 and ap-

plied an FE model to examine the impact of low-educated immigration on the labour market

outcomes of blue-collar natives initially in jobs where immigrants had become overrepresented

in recent decades. Low-educated immigration generally lowers the wages of blue-collar work-

ers, but its impact is heterogeneous across sectors. More evidence on the overall impact of

immigration on natives’ wages in France for the period from 1990 to 2010 is quantified in Edo

and Torbal (2015). Their short-run simulations indicated that immigration had reduced native
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wages by 0.6%.

Returning to evidence from Denmark, taking advantage of the rich Danish dataset, Malchow-

Møller et al. (2012) tested the hypothesis that the employment of immigrants affects firm-

specific wages by using linked employer-employee data for 1993-2004. Denmark has ex-

perienced a particularly pronounced increase in the employment of immigrants, and the re-

searchers found that the increased use of low-skilled immigrant workers had a significantly

negative effect on the wages of native workers at the same workplace. However, a more re-

cent paper by Foged and Peri (2016) provided a different conclusion: Immigration has had

positive effects on native unskilled wages, employment, and occupational mobility. They used

longitudinal data on the universe of workers in Denmark from 1991 to 2008, and they tracked

the labour market outcomes of low-skilled natives in response to an exogenous inflow of

low-skilled immigrants. Hence, even studies using the same dataset can come to different

conclusions.

Therefore, in order to analyse the impact of immigration on the wages of native workers

in Denmark, I start by comparing our empirical results with the contradictory findings of

Malchow-Møller et al. (2012) and Foged and Peri (2016), based on the individual-level dataset

from Denmark. Malchow-Møller et al. (2012) use FE and IV models to study the impact

from immigrants with different skill levels, while Foged and Peri (2016) focus on Difference-in-

difference, and they are more interested in the refugee population. The period covering for the

studies are also slightly different–Malchow-Møller et al. (2012) only covers the period until the

year 2004, and Foged and Peri (2016) studies on a longer duration (covers the period 2004-

2007, when EU enlargement took place). This is an indication that the event of EU expansion

could have played a role in the impact of immigration. Hence, I am then motivated to look into

the period after the year 2004. The following paragraphs introduce two major changes: the

eastern enlargement of the EU, which took place in 2004, and the increasingly important role

of high-skilled immigrants in immigration studies.
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2.2.2 Recent changes in the Danish immigration environment
The recent changes in the Danish immigration environment, which motivate this study, are

briefly summarised in the following two aspects:

Immigrant flows to Denmark after 2004 The eastern enlargement of the EU took place in

2004, and from 2004 to 2007, the labour inflow to Denmark from Eastern European countries

tripled, rising from 10,000 individuals in 2003 to nearly 30,000 in 2007. Restrictions were

eased in 2007 and phased out in 2009. There are three different ways that people from

new EU member states can come to Denmark to work: they can be employed by Danish

companies, they can establish their own companies in Denmark, or they can be stationed in

Denmark by employers based overseas. Among the Eastern European immigrants living and

working in Denmark, Poles are clearly the dominant group. They comprised nearly 60% of

the Eastern European employees working in Denmark in 2006.

Highly skilled immigrants Highly educated immigrants or high-skilled workers are among

the populations that are increasingly welcomed by most countries. One famous case is the

H1B visa scheme in the U.S. The H1B visa policy was introduced in 1990. It is a non-immigrant

U.S. visa that allows U.S. employers to hire foreign workers in speciality occupations tem-

porarily. It was the main channel of entry for foreign science, technology, engineering, and

mathematics (STEM) workers in the U.S. In fact, 70%-80% of H1B visa holders worked in

STEM jobs.

The U.S. states that saw a large inflow of highly educated foreign-born workers experienced

faster growth in patenting per person (Hunt and Gauthier-Loiselle, 2010). Peri et al. (2015) es-

timated the equilibrium elasticity of aggregate employment and the wages of different groups

to STEM across cities and years. They found that an exogenous increase in STEM work-

ers totalling 1% of total employment increased the wages of college-educated workers and

non-college educated workers by 7%-8% and 3%-4%, respectively. However, the effects on

employment were not significant for the 1990-2010 period. Various studies have discussed
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whether the effects of highly educated immigrants on innovation translate into productivity

and wages. The early focus was on the key role of technological growth in productivity growth

(Jones, 2002). Later, some researchers started examining local human capital spillovers and

local multiplier effects of high-tech (STEM) workers (Moretti, 2004, 2012 and Glaeser, 2011).

In the context of Europe, Markusen and Trofimenko (2009) considered the special role of

foreign experts in the productivity of domestic firms at the micro level. Foreign experts can

increase productivity by teaching local workers ’new tricks’, and this phenomenon is more

relevant in developing countries. The researchers used the employment of native experts as

a proxy for an exogenous increase in productivity.

Europe started to focus on visa policies for high-skilled workers much later than the U.S. Den-

mark is one of the EU’s most active members in trying to recruit skilled workers from around

the world. Since 2002, Denmark has developed a selective system for labour immigration de-

signed to ensure that migrants with desirable and in-demand competencies can gain access

and residence. A new tax system for foreign experts was introduced in 2002. Under the new

scheme, foreign experts can stay as long as they wish without paying additional taxes after

the first three years, which had been required before 2002.

Highly skilled and educated migrants are in great demand, and Denmark is in competition with

other immigration countries. Immigration policy changes were introduced between 2006 and

2007, and these aimed at attracting high-skilled migrants (OECD, 2008). Denmark introduced

a new point-based green card scheme in 2008 for attracting skilled workers; points may be ac-

cumulated based on earnings, qualifications, and a shortage list. Under this scheme, foreign

workers with or without a concrete job offer can come to Denmark to seek work. They are

granted a residence permit solely on the basis of their qualifications. The majority of green

card holders originate from Pakistan, India, China, Iran, and Bangladesh. The green card

scheme was abolished in June 2016, but another programme, called ’the establishment card’,
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has a similar function.

2.2.3 Motivation of the paper

I explore the situation discussed above further via Figure 2.1, the left compares the wage

distributions of the total Danish population in 2004 and 2014, and the right separately displays

the log wages of immigrants and natives from 2004 to 2013. Both wages and log wages were

deflated according to the price level in the corresponding year. As both figures illustrate,

a slight increase occurred in the mean wages of both working populations. Moreover, the

distribution curve is steeper for 2004 than for 2014, as seen in the left of Figure 2.1; this could

imply a change in the wage distribution. The right of Figure 2.1 indicates a gap between

the wages of natives and immigrants during the ten years, and both groups experienced an

increase in wages during the period.

Figure 2.1: Comparisons on wage distributions

The large increase in immigration from Eastern Europe might have had an impact on the skill

structure of the local labour market in Denmark, while the high-skilled immigrant group might

be playing a more important role than in earlier years. Based on the empirical evidence pre-
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sented in most of the relevant literature from the U.S., which has already been discussed,

high-skilled immigrants could have a positive effect on the wages of native high-skilled work-

ers, and, in certain cases, the effect could be large enough to mitigate the negative impact

of low-skilled immigrants on native workers. This could be one explanation underlying the

evidence supporting the positive impact of immigrants on the wages of native workers. There-

fore, it is necessary to analyse the impact within and across different skill groups, and the

contribution of high-skilled immigrants cannot be ignored.

Earlier, Dustmann et al. (2013) used models similar to those of Malchow-Møller et al. (2012)

(IV and OLS ). Dustmann et al. (2013) employed UK Labour Force Survey data for 1997-

2005, and they calculated results for the different percentiles of the wage distribution. They

found that immigration depresses wages below the 20th percentile of the wage distribution,

but leads to slight wage increases in the upper part of the wage distribution. Dustmann et

al. (2013) have not focused on the impact of different immigrant skill groups, which Malchow-

Møller et al. (2012) did consider. Malchow-Møller et al. (2012) did not, however, examine

different quantiles of the wage distribution to analyse the impact of immigrants on the wages

of native workers.

There has not been a study that combined analysis of both different quantiles of the wage

distribution and different skill groups. Therefore, motivated by this research gap as well as

the two above-mentioned major changes: (1) the large inflow of the immigrants from the

European Economic Area to the local labour market in Denmark, and (2) the increasingly

attractive policies applicable to highly skilled immigrants in Denmark. It is worthwhile to pose

the following question:

1. Whether immigration has any impact on the wages of natives in Denmark, after major

changes that took place from 2004 to 2013.

2. How the impact from immigration within each skill levels differs. After the enlargement of
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the EU, have low-skilled immigrants still had a significant negative impact on the wages of

native workers, as supported by the previous empirical literature? Moreover, as high-skilled

immigrants play increasingly important roles in local labour markets, do they have a significant

impact on the wages of native workers in the workplace in Denmark?

3. How the impact of immigration differs across different wage quantiles of native workers.

This paper applies different econometric approaches to explore the above research questions.

Therefore, in this study, I further explored the full wage distribution, and, to obtain more com-

prehensive estimations for different percentiles of wages, I used IV models and the conditional

quantile regression approach instead of OLS, to further investigate the case in Denmark. I

examined the impact of immigration on the wages of native workers from different skill groups

for various quantiles of the wage distribution.

Furthermore, I decided to use the newest dataset based on the above two major changes

in the Danish immigration market, which took place after the period Malchow-Møller et al.

(2012) used. In other words, the analysis in this paper was based on data covering the ten

years following the sample period of Malchow-Møller et al. (2012). One purpose to determine

whether the immigration has an impact on the wages of native workers after EU enlargement.

At the same time, I can further verify the findings by Malchow-Møller et al. (2012) and Foged

and Peri (2016).

2.2.4 Hypothesis

Based on the classical theoretical models of wage efficiency theory and demand-supply

model which is discussed in Section 2.2, I propose the following hypothesis for the impact of

immigration within different skill levels on wages of natives:
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Hypothesis 1(H1): Positive wage effect might be brought by low-skilled immigrants, due to the

occupation upgrading behaviour of natives. Wage efficiency theory also support the possible

positive wage effect by low-skilled immigrants.

Hypothesis 2(H2): The increased natives and immigrants could squeeze in the medium-

skilled class, causing more fierce competition in this market as the share of medium-skilled

immigrants increases, and worsening the wages of natives.

Hypothesis 3(H3): Wage efficiency theory together with the O-Ring theory predict a positive

impact of high-skilled immigrants on the wages of natives.

The three hypothesis are discussed in detail as follows:

Low-skilled immigrants Task complexity for lower-skilled jobs usually is low; thus, low-skilled

workers often perform routine or manual work requiring fewer communication skills and other

specific abilities. These positions are the first choice for immigrants with low educational lev-

els, especially during their first year in the local labour market. With less bargaining power,

those low-skilled immigrants acquire a job by lowering the starting wage, which could poten-

tially reduce wages for natives with the same skill level.

However, if taking the occupation upgrading behaviour of natives into consideration, low-

skilled immigrants will not reduce the wages of natives. Occupation upgrading on the part

of native workers can occur as the local labour market seeks to protect labour from immigra-

tion (D’Amuri and Peri, 2014). In particular, natives can upgrade their skills to avoid competing

with low-skilled immigrants(Peri and Sparber, 2009), and this phenomenon is also supported

by empirical evidence based on European Labour Force survey data.
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Besides, according to wage efficiency theory(Akerlof, 1982), the wage could exceed the

market-clearing level in industries where the cost of replacing labour is high if managers want

to increase a firm’s productivity or efficiency or to decrease costs related to labour turnover.

In Denmark, labour turnover costs are high. Managers can increase the wage to motivate the

natives to stay for this reason. The comparison on the average experience of the low-skilled

workers within different types of firms shown in Table 2.1 confirmed the wage efficiency as-

sumption. As I can see from the figure, within firms of both natives and immigrants, the aver-

age experience of the worker in the low-skilled group is longer than it is in the firms with only

natives. In other words, with the share of immigrants within the firm increases, the average

experience of the workers increases. One possible explanation is that more native workers

have received the incentives to stay longer, and longer experience can also be associated

with higher pay. Therefore, immigrants will bring a positive impact on the wages of native

workers for the above reasons.

Table 2.1: Average experience in the firm of natives, mixed of natives and immigrants, and

immigrants

Experience (years) Natives only Natives and Immigrants Immigrants only

All 9.93 9.80 6.98

Low-skilled 9.16 9.32 6.58

Medium-skilled 10.3 10.23 7.98

High-skilled 9.36 9.09 6.84

Medium-skilled immigrants Regarding the medium-skilled group, a negative impact of im-

migrants can be placed on native workers because of the potential occupational upgrading

behaviour of the native workers. The increased native and immigrant workers could squeeze

in the medium-skilled class, causing more fierce competition in this market as the share of

medium-skilled immigrants increases, and worsening the wages of natives. Since the sup-

ply of medium-skilled workers would have been more than actual demand, more immigrants
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would have meant more competition for positions. The wages of natives, especially in the

low-skilled and medium-skilled markets, could plausibly have been worsened by the greater

number of medium-skilled immigrants holding less bargaining power and asking for lower

wages for the same job position.

High-skilled immigrants According to the O-Ring theory (Kremer, 1993), high-skilled im-

migrants can increase their native co-workers’ productivity by teaching new skills; they thus

increase a firm’s overall productivity. At the same time, firm productivity is often an indirect

measure of wages. Therefore, immigrants can increase the wages of natives by boosting a

firm’s total productivity.

Moreover, wage efficiency theory also supports our hypothesis for the high-skilled group. An-

other incentive for managers to pay more is to hire more productive workers; thus, a selection

effect cannot be ignored, particularly among high-skilled workers. High-skilled workers only

select high-wage positions because their reservation wage is too high for low-wage firms, but

high-wage positions attract applicants with various skill levels. Moreover, high-wage firms pre-

fer to recruit more productive workers to achieve an efficiency wage (i.e., higher pay results

typically in a higher return; e.g., Malcolmson, 1981) With more high-skilled immigrants arriv-

ing in Denmark, managers now have more applicants in the selection ’pool’. Higher wages

attract more applicants, especially highly qualified ones(Schlicht, 2005). The managers of a

high-wage firm tend to tighten hiring standards and to provide higher wages to attract more

productive workers to enlarge the potential applicant pool; in this way, they recruit more com-

petitive employees to enhance the firm’s productivity. Again, wages for all high-skilled and

high-wage earners are pushed upwards by this selection effect, and the increased number of

high-skilled immigrants facilitates this outcome.
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2.3 Econometric frameworks and estimation strategies

I tested the hypothesis that the employment of immigrants affects firm-specific wages by us-

ing linked employer-employee data from 2004 to 2013 from a developed country (Denmark)

which has experienced a particularly pronounced increase in the employment of immigrants.

I started by implementing the test strategy adopted by Malchow-Møller et al. (2012), who

conducted similar research. In this paper, the increased use of low-skilled immigrant workers

has a significantly negative effect on the wages of native workers in the workplace, when con-

trolling for the potential endogeneity of the immigrant share using both FEs and instrumental

variables. Next, I extended their empirical approach by applying FE quantile regressions.

2.3.1 OLS and FE

To examine whether the increased use of low-skilled immigrant workers following the eastern

enlargement of the EU had a significant negative effect on the wages of native workers, I

employed the identification approach for the OLS and the FE models used by Malchow-Møller

et al. (2012). I compared the effects within and across skill groups and especially focused on

the high-skilled immigrant group. Next, I compared the results from the OLS estimation and

FE models.

In this paper, I assume the wage equation of native workers is as follows:

wijt = β0 + β1Sjt + β2Cjt + eijt, (2.1)

Where, wijt is the (log) wage of individual i in workplace j in the period t. Sjt is the variables

of interested in this paper, it is the share of immigrants in the employment at workplace j

at time t, and Cjt is the control variable, it is a set of a time-variant observable individual

and workplace characteristics that can affect individual i at the workplace j at time t. In the

empirical test, I split the share of immigrant Sjt into three categories: low-skilled, medium-

skilled, and high-skilled. Hence, I could separately estimate the effects for each group of
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immigrants.

The basic OLS estimation of equation 2.1 could be biased due to shocks in a specific year,

characteristics of particular industries, or regional differences. Therefore, I firstly included

year×region to exclude the influence of year, industry, and region. The results of the estima-

tion including these year×region×industries FEs are reported as the OLS model estimation

in the empirical analysis.

Then, I introduced a set of FEs for each combination of workplace and worker, called job-

spell FEs, to control for shocks from the unobserved workplace and worker characteristics.

Hence, the OLS model incorporated the job-spell FEs, and a classic AKM model, presented

in equation 2.2, for wage analysis was applied for our empirical test as an FE model:

wijt = β0 + β1Sjt + β2Cjt + θij + εijt. (2.2)

Where θij is the job-spell effect, and other regressors are the same as in the OLS models.

Nevertheless, there could still be potential upward bias for β2 in the estimates due to posi-

tive demand shocks during a specified period. When firms pay higher wages because of an

increased need for workers, more immigrants can be attracted and hired thanks to their po-

tentially lower bargaining power and higher flexibility. Another upward bias could be caused

by the different attitudes of natives towards immigrants. Natives’ responses, as mentioned by

Malchow-Møller et al. (2012), can affect β2 in some cases. For example, if natives are forced

to leave the workplace because of the increased number of immigrants at a firm, the average

wages at the firm may decrease due to the reduced bargaining power of immigrants and the

increased share of immigrants in the firm. This type of endogeneity cannot be mitigated by

job-spell FEs, nor could I assess endogeneity with the datasets at hand.
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2.3.2 The IV approach

Various studies have proposed using an IV approach to overcome the endogeneity issue

mentioned above. However, most empirical evidence obtaining using such approaches in

immigration studies is only significant within the low-skilled group (e.g. Foged and Peri, 2016

and Malchow-Møller et al. 2012), and certain researchers have even reported insignificant

results for the IV approach. I applied an approach widely used in similar studies to include

the increase in the share of immigrants at the regional level to construct the instrument for the

share of immigrants in the firm.

To be more specific, for the low-skilled immigrant group, I instrumented the share of low-skilled

immigrants in the workplace j in the year t Sjt as z. I chose the shares of low-skilled immi-

grants in the workplace j in 1999 (five years prior to the first year of our sample) for four groups

of countries of origin for immigrants: (1) the EU-15 countries, plus Norway and Iceland; (2)

the EU-12 countries (those that joined the EU in 2004 and 2007); (3) all remaining developed

countries; and (4) developing countries and other observations with unknown origins. Then,

I multiplied them by regional increases between 1999 and year t in the employment of low-

skilled immigrants from each group of origin. In this way, I hence obtained the ”new” share of

low-skilled immigrants in the workplace in the year t for each particular ethnic group. Finally,

I added the ”new” shares of low-skilled immigrants from each group of origin together to form

the instrument for our IV (2SLS) regression model. I constructed the instruments for the other

two skill groups in the same way. Instrument z is described as follows:

z =
4∑
g=1

Sjg,1999(S̄gt/S̄g,1999) (2.3)

Here, g represents the origin group. The shares of low-skilled immigrants from origin group g

within overall regional employment in the year t and 1999 are expressed as the terms S̄gt and

S̄g,1999, respectively.

According to the classical assumptions for the IV approach outlined by the Wooldridge text-
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book, in order for the variable, z to serve as a valid instrument for Sjt, the following re-

quirements must be satisfied: Firstly, the instrument must be exogenous–in other words,

Cov(z, ε) = 0. The regional development in immigrant employment can be assumed to be

exogenous at the workplace level; thus the first condition is normally satisfied. Secondly,

the instrument must be correlated with the endogenous explanatory variable Sjt. That is,

Cov(z, Sjt) 6= 0. Networking effects among immigrants have been proven to have effects on

immigrants’ location choices during the job-search process (Hellerstein et al., 2008). In other

words, immigrants are more likely to be employed in workplaces that also employ immigrants

from similar ethnic groups. Therefore, the regional increase should theoretically be correlated

with an increased share of immigrants within the workplace. I verified this in the first stage

of the IV regression analysis. Similar instruments have been used for other empirical stud-

ies, such as Card (2001), Ottaviano and Peri (2012) and Peri et al. (2015), and they have

produced relatively effective results.

Later, I combined the IV and FE models in our empirical analysis. In short, I included

year×region×industry FEs and job-spell FEs in the IV (2SLS) models. These two FEs are

non-nested. In order to handle multi-way FEs and high-dimensional models in empirical ap-

plications, I choose the STATA package reghdfe which implements the estimator described in

Correia (2016) to perform regression on FE and FE-IV models in this paper.

2.3.3 Quantile regression

All methods used by Malchow-Møller et al. (2012) are linear regression models that only

based on the regression on the mean of wages. OLS, FE and IV approaches have been

applied in their paper, and earlier in this section, I also presented how the models are fitted into

our application. Then, we implemented the Malchow-Møller et al. (2012) study by applying

quantile regression to the overall immigrant sample (different skill groups) to obtain more

comprehensive estimations for different wage quantiles.
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The traditional linear regression model describes the process by which the dependent variable

is affected by the independent variable. OLS is one of the widely used linear regression mod-

els for estimating the coefficient. If the random error term of the model is from a distribution

with a zero mean of and homogeneous, then the least squares estimation is unbiased and

effective. Practically, the assumption of homogeneity is usually not met. For example, when

there is severe heteroscedasticity in the data, or in the case of fat tails and leptokurtosis, the

estimation of OLS will no longer be unbiased. To compensate for these shortcomings of the

OLS regression analysis, Laplace proposed a median regression (minimum absolute devia-

tion estimate), then on this basis, Koenker and Baset (1978) proposed a quantile regression

approach. The quantile regression is used to estimate a model by minimising the asymmetri-

cally weighted sum of absolute errors, instead of the sum of the squared residuals, as in OLS

(Koenker and Hallock, 2001).

Regarding the potential heterogeneity issue in my empirical application, different groups at

each wage level could consist of different combinations of workers with diverse nationalities

and skill levels, and an estimation bias could result from this variety. Such heterogeneity

is allowed in this paper, though this will to some extent lead to biased estimation results in

the least squares models (e.g. OLS, FE and IV). I will not place too much emphasis on

this issue in the framework since it is a common problem from the data. While the quantile

regression does not restrict the distribution of the error term, it takes the heteroscedasticity

of the error term into consideration. For this reason, approach Malchow-Møller et al. (2012)

study can be implemented by adapting quantile regressions to reduce corresponding potential

heterogeneity issue arising from OLS, FE and IV models.

Compared to the least squares models, such as FE and IV, the quantile regression model

not only has more relaxed restrictions, e.g. on the assumption of distributions, but also can

obtain more abundant information. The independent variable is estimated according to the

conditional quantile of the dependent variable, the regression models under all quantiles are
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then obtained. Therefore, it can provide a more comprehensive analysis of the relationship

between the variables, and it reflects the different influences of the various quantiles of the

independent variables on the dependent variable. The model includes the extreme values,

rather than just describing its conditional expectation (the mean value), as is in OLS, FE and

IV models. In other words, the quantile regression approach provides more robust estimations

to the outliers in the response measurements. The quantile regression approach provides an

opportunity to reveal the whole picture of the distribution of the wages in my empirical appli-

cations. Therefore, we adopt the quantile regression method to study separately considered

the influence of each on the wages of native workers.

In the econometric setting, I supposed the τ th (0 < τ < 1) conditional quantile function of

wage (log) is as follows:

Qτ (W |X) = Xβτ (2.4)

Given the distribution function of W : W = Xβτ + µτ , where X = Sβ1τ + Cβ2τ .

βτ can be obtained by solving:

βτ = arg min
β∈Rk

E (ρτ (W −Xβ)) (2.5)

β̂τ = arg min
β∈Rk

n∑
i=1

(ρτ (Wi −Xβ)) (2.6)

Where ρτ is the checkpoint function, defined as: ρτ = τγ if γ = 0, or ρτ (γ) = (τ − 1)γ if

γ < 0. Further, βτ is the vector of parameters. X is the vector of exogenous variables; it

includes the variables of interest for this paper S and the other control variables C. Q(W |X)

denotes the τ th conditional quantile of W , given X. In our empirical setting of the model,

W is the logarithm of the hourly wage of native workers. The set of the share of immigrant

within the firm is included in S. The set of exogenous variables in C includes exogenous

individual characteristics such as age group, gender, marital status, education, experience,

and tenure; these are defined as in the OLS and FE models. Using the estimation results
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for each τth quantile of wages, I will be able to analyse the different impacts of immigrants

on natives with the same wage levels. Similar to the OLS model, the interaction terms of

year×region×industries are included in the quantile regression model, and this makes the

estimation results comparable. In terms of individual fixed effects, I exclude them from this

quantile model at this stage, to avoid the incidental parameters problem (Neyman and Scott,

1948) arising from the individual-specific (fixed) effect panel quantile regression.

2.4 Data

Our empirical analysis was based on administrative data from Statistic Denmark (DST). As

the data were register based, measurement problems were negligible. I used individual data

as well as linked employer-employee data from the Integrated Database for Labour Market

Research (IDA ) to perform analyses using the OLS, FE, IV 2SLS, and quantile regression

models. Thanks to the rich data from DST, our sample included 31,685,350 observations

(50.36% males and 49.64% females) for all individuals of working age for the period from

2004 to 2013.

One previous relevant study (Malchow-Møller et al., 2012) only covered the period from 1993

to 2004, which was before the immigration boom from Eastern Europe, which took place from

2004 onwards. In our analysis, I used a more recent dataset to study the period from 2004 to

2013–the period after the labour inflow from Eastern European countries–to assess whether

the negative effect on the wages of native workers persisted after 2004.

I used observations on all individuals, both natives and immigrants, in the Danish labour

market to construct very detailed measures of the employment of immigrants at the workplace

(establishment) level. By examining the full population, I was able to compare the results

with previous empirical evidence from similar studies on low-skilled immigrants, and I also

analysed the impact of high-skill immigrants on the local labour market.
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I considered as workers all individuals of working age, defined as 18-65 years, residing in

Denmark. Any wage model based on worker and firm FEs is identified by worker moves

between firms. I applied OLS, FE, IV, and quantile regression models to estimate the impact

of immigrants on natives wages W ; Hence, I used the linked employer-employee data (IDA)

for the full population; this was particularly essential for small firms and cases in Denmark.

Without the full population, I could have easily run out of observations after several controls

on particular variables.

The (log) hourly wage rate was the dependent variable for all four models. I obtained this

value from the DST registers IDAN (2004-2010) and BFL (2011-2013). Wages for all years

were deflated by the average CPI of the year. Only full-time workers working in the private

sector in Denmark were included. After implementing the above controls, I had 9,599,171

observations for our estimation sample, which was sufficient for our empirical analysis.

Data on workers’ age, gender, marital status, labour market experience, tenure, education,

and family, and other characteristics3 were included in the wage models. I obtained most of

this information from the DST registers BEF and IDAN. Education is a highly important iden-

tifier for classifying an employee’s skill level. I split education into three levels–basic educa-

tion (low skilled), vocational education (medium skilled), and higher education (high skilled)–

according to International Standard Classification of Education codes. Table 2.2 presents

descriptive statistics for the individual characteristics for all population members, including

both natives and immigrants. The table suggests that the majority of workers had a vocational

education level (i.e., medium skilled), and only 4.7% workers were high-skilled.

Moreover, I used data from the BEF register to construct the immigrant group and native

group and to further examine the impact of immigrants on native workers. In this study, I

defined immigrants as individuals born outside Denmark with non-Danish parents. Moreover,

3Full list of variables used is provided in Section 2.5, and they are also explained in the appendix.
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Table 2.2: Summary statistics: Individual characteristics

Variable Mean Std. Dev. Min Max

Age 18 to 24 0.0697 0 1

Age 25 to 29 0.0955 0 1

Age 30 to 39 0.2720 0 1

Age 40 to 49 0.2811 0 1

Age 50 to 59 0.2228 0 1

Age 60 to 65 0.0498 0 1

Female 0.4470 0 1

Married 0.5501 0 1

Children 0-6 years 0.2234 0 1

Experience 9.7476 7.5652 0 36

Tenure 4.9812 6.3245 0 21

Union member 0.6944 0 1

Basic education 0.2881 0 1

Vocational education 0.6499 0 1

Higher education 0.0468 0 1

Copenhagen 0.1124 0 1

Large city 0.4729 0 1

Small city 0.4189 0 1

Number of observations 9,599,171

Note: Classification of size of cities is based on the population of the city,

and the term ’Copenhagen’ is referred to the Copenhagen city instead of

Greater Copenhagen Area.
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Table 2.3: Immigrant characteristics at individual level, selected years

Mean

1999 2004 2008 2013

Age 18-24 0.1119 0.0669 0.0604 0.0571

Age 25-29 0.1349 0.1241 0.1227 0.1495

Age 30-39 0.3008 0.3658 0.3259 0.3338

Age 40-49 0.2386 0.2686 0.2914 0.2678

Age 50-59 0.1861 0.1469 0.1673 0.1520

Age 60-65 0.0188 0.0238 0.0298 0.0335

Basic education(low-skilled) 0.6041 0.5778 0.5422 0.5138

Vocational education(medium-skilled) 0.3475 0.3724 0.3378 0.3456

Higher education(high-skilled) 0.0325 0.0385 0.0809 0.1256

Country of origin:

EU-15,Norway and Iceland 0.5489 0.2944 0.2671 0.2544

EU-12 new 0.0034 0.0721 0.0943 0.1771

Remaining developed countries 0.0032 0.0576 0.0513 0.049

Less developed countries 0.4445 0.5759 0.5873 0.5190
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an individual born abroad was regarded as an immigrant if no information on his or her par-

ents was available. According to this definition, our sample of working-age individuals was

comprised of 90.55% native workers and 9.45% immigrants. I then used the information on

countries of origin from the DST register BEF and the employer-employee linked IDA data

to construct the instrument variables. The DST defines the country of origin of an immigrant

based on both parents’ countries of birth. When none of the parents is known, the country

of origin is defined based on the person’s own information. If the person is immigrant, it is

assumed that the country of origin is equal to the birth country. When only one of parents’

information is known, the country of origin is defined based on the known parent. When both

parents are known, the country of origin is defined based on the mother’s country of birth or

the country of citizenship respectively. As mentioned earlier, I followed the classification used

by Malchow-Møller et al. (2012) and grouped the immigrants into four categories by country

of origin: (1) classical EU-15 countries, plus Norway and Iceland; (2) new EU-12 countries

(those that joined EU in 2004 and 2007); (3) remaining developed countries (according to UN

classification); and (4) developing countries, including unknown countries of origin.

Table 2.3 provides information on immigrant characteristics at the individual level for the years

1999, 2004, 2008, and 2013. The table clearly displays trends in the distribution of countries

of origin. As discussed in Section 2.2, with the enlargement of the EU in 2004 and 2007 and

the full opening of the Danish labour market to Eastern EU workers in 2009, the "new EU-12"

share almost doubled from 2008 to 2013. At the same time, the proportion of EU-15 immi-

grants decreased over the last decades, and the share of immigrants from less developed and

developing countries remained relatively steady; a slight increase was found before 2008, and

the figure fell in 2013. All evidence indicates that Denmark is becoming more international.

When I turn to the distribution of immigrant skill levels, I can see from Table 2.3 that the share

of high-skilled immigrants increased from 2004 to 2013. Various immigration policies aim-

ing to attract high-skilled immigrants may have succeeded to a certain extent. High-skilled

immigrants doubled within the ten years from 2004 to 2007.
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Figure 2.2: Wage Percentile

Figure 2.2 compares the hourly wages of natives and immigrants in different percentiles for

both 2004 and 2013. Immigrants belonging to most percentiles earned less than natives in

both 2004 and 2014, except for the lowest percentile in 2004. Furthermore, the average

wages for both groups increased from 2004 to 2013, and this finding confirms the information

found in Figures 2.1 in Section 2.2.

A more detailed comparison of the wages of natives and immigrants is in Table 2.4, which

compares natives and immigrants within similar groups. Not surprisingly, immigrants in most

groups earned less than natives. Of course, different factors might have contributed to this

situation, and job mismatches for immigrant could potentially be one cause. I will not further

discuss this issue here, and I leave it to Section 2.6. For the "abnormal" part in the table,

however, it is interesting to note that in both 2004 and 2013, for the youngest group (aged

18-24), immigrants earned more than natives. Very old (aged 60-65) immigrants apparently

received higher wages than natives in 2004, but the situation reversed in 2013. The situation

in 2004 was also described by Malchow-Møller et al. (2012). They deemed selection and
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other characteristics responsible. Finally, the wages of immigrants from the Eastern EU and

less developed countries were much lower than those of immigrants from other countries;

education and skill level could play a role in this gap.

Regarding the workplace-level data, I used variables from the BFL, FIRM, IDAN, IDAP, and

IDAS DST registers to construct relevant variables for the estimation. I measured the size

of the workplace by the number of employees. I then summarised and compared the share

of immigrants with different skill levels in each workplace and other employee traits (e.g.,

age, gender, and other controlled factors). Those summary statistics for the workplace-level

variables are presented in Table 2.5.

Being a country that has witnessed a substantial increase in the employment of immigrants,

Denmark is regarded as an interesting case for immigration studies. As seen from Table

2.5, the number of workplaces with immigrants doubled from 2004 to 2013, and the overall

share of immigrants in the workplace slightly increased during the ten years. However, the

employment of high-skilled workers in workplaces with immigrants was three times what it was

in 2004, while the employment of high-skilled workers in firms with only natives experienced

a minor increase during the same period and the percentage of high-skilled workers was far

less than that at firms that recruited immigrants. Additionally, the average size of firms with

immigrants was much larger than firms with only natives, and the difference was much larger

in 2013. In fact, the average firm with immigrants was almost 20 times larger than the average

firms without immigrants in 2013, while the former was only three times larger than the latter

in 2004.
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Table 2.6: Distribution of share of immigrant and share of different skill levels, workplace

level-updated

Share of immigrant with: Share of all workers with:

Mean Std. dev. Mean Std. dev.

Low-skilled, year 1999 0.0300 0.0576 0.3478 0.1902

Low-skilled, year 2004 0.0336 0.0542 0.3122 0.1543

Low-skilled, year 2008 0.0320 0.0440 0.2957 0.1318

Low-skilled, year 2013 0.0390 0.0505 0.2308 0.1525

Medium-skilled, year 1999 0.0051 0.0193 0.6232 0.1980

Medium-skilled, year 2004 0.0095 0.0150 0.6520 0.1827

Medium-skilled, year 2008 0.0128 0.0129 0.6451 0.1713

Medium-skilled, year 2013 0.0246 0.0156 0.6604 0.1903

High-skilled, year 1999 0.0028 0.0123 0.0290 0.0831

High-skilled, year 2004 0.0032 0.0110 0.0358 0.0918

High-skilled, year 2008 0.0045 0.0106 0.0592 0.1087

High-skilled, year 2013 0.0095 0.0184 0.1088 0.1584

Table 2.6 demonstrates the distribution of the share of immigrants across workplaces. I in-

clude the share of all workers in the workplace with the same skill level for comparison pur-

poses in the right-hand column. The share of low-skilled immigrants increased from 1999 to

2013; this could be the result of EU enlargement, the more open labour markets in Denmark

after 2009, and the arrival of more refugees who, on average, had less education. The ma-

jority of the recently arrived workers from the Eastern EU may also belong to the low-skilled

group since their wages are far below the average for medium-skilled workers. Meanwhile, the

average share of employment of all low-skilled workers decreased over the last 13 years. The

mean share of medium-skilled immigrants remained stable during the same period, but the

share of all workers increased. This could be the result of a possible response from natives
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seeking to protect themselves from the effect of immigration by upgrading their occupation to

a higher wage level. I discuss this effect in the discussion in Section 2.6. Moreover, the share

of both high-skilled immigrants and all high-skilled workers in the firm increased from 1999 to

2013, revealing the demand for high-skilled employees in Danish labour markets.

2.5 Empirical Analysis

In this section, I perform the OLS, FE, IV, and quantile regressions of the wages of native

workers on the share of immigrants with different skill levels in the workplace; the models also

included control variables, such as age group, tenure, and experience. I discuss the results

for the OLS, FE, and IV regressions in the following baseline specification. Then, I perform the

quantile regression and explore in detail the effects of immigrants of different skill levels on the

various wage percentiles. Robustness checks and other additional information are presented

in the appendix.

2.5.1 Baseline specification

For all regression models (OLS, FE, and IV), both individual- and workplace-level control vari-

ables were included. The individual characteristics were dummy variables for age group,

education level, gender, marital status, number of children aged 0-6 years old, and the

labour market-related variables included tenure, tenure squared, experience and experience

squared. At the workplace level, I particularly focused on the share of low-skilled, medium-

skilled, and high-skilled immigrants, and I also included the share of workers over 40 years

old, the share of female workers, the share of union members, the share of individuals with

a vocational education, the share of individuals with a higher education, and the logarithm

of the number of employees. Just as discussed in the framework setting in Section 2.3,

year×region×industries FEs were included in the OLS regression. I had 470 such FEs con-

trolling for the particular changes resulting from effects of specific regions and industries.
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Additionally, I included job-spell FEs in the FE regressions to control for the shocks from spe-

cific time-invariant worker-workplace characteristics. All standard errors were clustered at

workplace-year level.

I present estimation results for the OLS and FE in Table 2.7.4 Full results are presented in the

Appendix. I only considered the model jointly containing all shares of low-skilled, medium-

skilled, and high-skilled immigrants. I did not analyse any single share of immigrants of a

particular skill level (e.g., only the share of low-skilled immigrants in the workplace in a sin-

gle model) because a bias could have emerged from potentially omitting critical variables. I

present the additional specifications and further robustness checks in the appendix. As illus-

trated in column (1) in Table 2.7, all results from the OLS regressions were significant. Both

low-skilled and medium-skilled immigrants had a negative wage effect on native co-workers

in the firm, while the coefficient of high-skilled immigrants indicated a positive wage effect;

this figure was much larger in absolute value (0.34) compared to the effects of low-skilled

and medium-skilled immigrants (-0.09 and -0.18, respectively). The contribution from the

low-skilled immigrant group was relatively small, but consistent with most previous empirical

studies (e.g., Malchow-Møller et al., 2012 and Ortega and Verdugo, 2016).

However, after adding a job-spell FE to the model, the estimation results significantly changed

for the low-skilled immigrant group. The results from the FE regressions are illustrated in

column (2) in Table 2.7. Again, all estimations were significant. As I can conclude from the

4Notes: Estimations are based on a panel from 2004-2013. Full population include full-time native work-

ers aged 18-65 from workplaces with 10+employees. I included but not reported following control variables:

1)individual-level characteristics: experience, experience2, tenure, tenure2,six age groups(dummies), marital

status,children with 0-6 years, city size. 2) Workplace characteristics: share of female, number of employ-

ees(log), the share of medium educated, the share of highly-educated, the share of union members and share

of aged 40+. In fixed effects estimation, time-invariant variables drop out. Standard errors are robust in OLS,

and are clustered at the workplace-year level in FE
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Table 2.7: Share of Immigrants at workplace and the wage of native workers, OLS and FE

results

Dependent variable:log(hourly wage)

(1) (2)

OLS FE

Share in the workplace of:

Low-skilled immigrants -0.097∗∗∗ 0.156∗∗∗

(0.032) (0.041)

Medium-skilled immigrants -0.183∗∗∗ -0.231∗∗∗

(0.016) (0.015)

High-skilled immigrants 0.340∗∗∗ 0.259∗∗∗

(0.044) (0.054)

Job-spell fixeded effects No Yes

Region×time×industry fixed effects Yes Yes

Observations 8,216,496 8,216,496

R-squared 0.215 0.603

Standard errors in parentheses:

Robust standard errors are reported for OLS in column (1).

Standard errors for FE in column (2) are clustered in workplace-year level.

∗∗∗,∗∗ and ∗: H0 : βj = 0 rejected at 1%, 5% and 10% significance level respectively.
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table, the estimations for the medium-skilled immigrant group and the high-skilled immigrant

group were consistent with the results of the OLS regression. The absolute value of the

coefficient of the medium-skilled immigrant group increased. Meanwhile, the coefficient for the

high-skilled immigrant group was smaller than the OLS estimation, which is probably because

the positive effect was shared by the low-skilled immigrant group. In the FE regression, the

effects from the low-skilled immigrant group became positive and were larger as compared to

the OLS regression coefficient.

To be more specific, as regards the OLS and FE results, consistent estimations indicate that

an one percentage point increase in the share of high-skilled immigrants in the workplace

can contribute to 0.26 percentage point wage increase for native co-workers in the firm. The

impact of medium-skilled immigrants on native workers was significantly negative. The effect

from the low-skilled immigrant group was not clear, although after the job-spell FE was added

to the model, the impact of that group on the wages of native workers turned positive.

To solve the potential endogeneity problem, I then performed IV regressions with FEs on

year×region×industry and job-spell FEs. The results are reported in the Appendix (see Table

2.12). All instruments chosen passed the F-test and were positively correlated with the po-

tential endogenous variables, but all coefficients were small. Besides, I obtained much larger

coefficients from the IV (2SLS) regressions than from the OLS and FE regressions. This is

consistent with the empirical evidence from Malchow-Møller et al. (2012) except for the pos-

itive sign I found. In their paper, larger negative coefficients for significant estimations were

found in IV estimation for the low-skilled immigrant group. Considering the comparableness

of these results, I choose not to discuss them further.

To conclude, according to the OLS, FE, and IV regressions, positive effects of the high-skilled

immigrant group on the wages of native workers were confirmed by all estimations. However,

I cannot draw firm conclusions regarding the other two immigrant groups at this stage. As
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explained earlier, the effects of differently skilled immigrants could be felt by different quantiles

of wage earners. I examined those effects in detail through quantile regressions, illustrating

the impact of immigrants of different skill levels on the various percentiles of wage earners.

2.5.2 Additional empirical evidence from the quantile regression analy-

sis

By applying quantile regressions, I explored the impact of immigrants belonging to different

wage quantiles to gain a more comprehensive picture of the impact of immigrants of different

skill groups on natives. The same set of regressors employed in the OLS, FE, and IV analy-

ses was used for our quantile regression model, and a set of region×year×industry FEs was

included, same as what was used for OLS model. I used the 0.1th, 0.25th, 0.50th, 0.75th

and 0.9th wage quantiles for our analysis. I investigated the impact of key variables on dif-

ferent wage quantiles separately. The estimation results together with bootstrapped standard

errors are provided in Table 2.8, and columns 1 to 5 present the estimation for each quantile

separately.5 Full results are presented in the Appendix.

5Notes for Table 2.8: Same data set is used in quantile regressions. All control variables are included but are

not reported in Table 2.8, please refer to the explanations for Table 2.7.
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Table 2.8: Share of Immigrants at workplace and the wage of native workers, Quantile regres-

sion results

Dependent variable:log(hourly wage)

(1) (2) (3) (4) (5)

q10 q25 q50 q75 q90

Share in the workplace of:

Low-skilled immigrantsl 0.235∗∗∗ 0.265∗∗∗ 0.162∗∗∗ -0.031∗∗∗ -0.147∗∗∗

(0.0117) (0.0083) (0.0100) (0.0115) (0.0197)

Medium-skilled immigrants -0.089∗∗∗ -0.154∗∗∗ -0.205∗∗∗ -0.188∗∗∗ -0.235∗∗∗

(0.0036) (0.0025) (0.0039) (0.0044) (0.0074)

High-skilled immigrants 0.300∗∗∗ 0.094∗∗∗ 0.097 ∗∗∗ 0.300∗∗∗ 0.540∗∗∗

(0.0104) (0.0110) (0.0122) (0.0157) (0.0242)

Job-spell fixeded effects) No No No No No

Region×time×industry fixed effects Yes Yes Yes Yes Yes

Observations 8,216,496 8,216,496 8,216,496 8,216,496 8,216,496

Standard errors in parentheses.

∗∗∗,∗∗ and ∗: H0 : βj = 0 rejected at 1%, 5% and 10% significance level respectively.
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The results in Table 2.8 make clear that low-skilled immigrants had positive effects on the

wages of natives among most wage quantiles, while the impact of medium-skilled immigrants

was significantly negative. High-skilled immigrants had significant estimations for higher wage

quantiles. I then focused on different wage quantiles within each skilled immigrant group.

For the low-skilled immigrants’ group, the estimations for low and middle quantiles were con-

sistent with the FE and FE-IV results, while the estimations for higher quantiles (q75 and

q90) were similar to OLS results in Table 2.7. The estimation coefficients showed a decreas-

ing trend when moving from lower to higher quantiles (q10-q90). The positive wage effect

on low-wage and middle-wage was larger in absolute value than it was on natives in high-

wage quantiles. In other words, as the share of low-skilled immigrants increased, natives who

earned low wages experienced more positive growth in wages than natives with wages falling

in the middle, and natives who earn relatively high wages received negative impact from the

increase of low-skilled immigrants on their wages. This results indicated that the negative re-

sults obtained OLS could be from the impact on higher wage quantiles. The evidence showed

that a positive impact from immigration on the wages of native workers dominated in the low

and medium wage quantiles, and it will be used for later interpretations.

All coefficients for medium-skilled immigrants were significantly negative, and the impact

showed an increasing trend as the wage quantile rose from the low of 10% to the high of

90%. The effect was the largest among the three skill groups in 0.5th wage quantiles. The

estimations were also consistent with the OLS and FE results.

The results for the high-skilled immigrant group were consistent with all results obtained using

the previous OLS, FE, and IV models. Besides, the estimation results from the quantile re-

gression for this group were more informative. As indicated in columns 2 to 3, which represent

low- and medium-wage quantiles, the estimated coefficient for the high-skilled group for this

wage range was numerically much less than that for the higher wage quantile. This indicates
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that high-skilled immigrants tend to have a more positive impact on high-wage natives in the

statistical aspect.

From these results, I can conclude that low-skilled immigrants have a positive effect on the

wages of natives, while medium-skilled immigrants have a negative effect on natives, and

especially on medium-wage natives. Negative effects were dominant among medium-wage

natives. Finally, high-skilled immigrants tended to have a positive impact on natives who

earned higher wages, and their influence on other wage quantiles was not statistically sig-

nificant. The cross-quantile differences did not seem to be very large, except for high-skill

immigrants. Here, the top quantiles were much higher. Perhaps the executives and managers

at large international Danish firms are paid much more than the executives and managers at

firms with only Danish managers (and that possibly use Danish as the internal language).

2.6 Discussion on the impact of immigrants of different

skill levels

Based on the empirical evidence outlined in Section 2.5, I can now draw a clearer picture

of the impact of immigrants of different skill levels on the wages of native workers. In this

section, the above empirical analysis is discussed in the light of economic theories. Apart from

the low-skilled and medium-skilled immigrant groups, which have been studied by numerous

researchers, I additionally focus on high-skilled immigrants, who have more influence today

than in the past.

2.6.1 Low-skilled immigrants

Our empirical results from the OLS regression demonstrate minor negative effects of lower-

skilled immigrants on the wages of natives, and it could be biased by job/firm-specific shocks.
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The results from corresponding quantile regressions further indicate such shocks, since the

impact was only negative in high wage quantiles. In other words, low-skilled immigrants do not

reduce the wages of those natives. This is in accordance with the hypothesis H1 in Section

2.2 that positive wage effect might be brought by low-skilled immigrants, due to the occupation

upgrading behaviour of natives. Also, the wage efficiency theory predicts the positive wage

effect by low-skilled immigrants.

As discussed in the empirical analysis, the increase in low-skilled immigrants led to higher

wages among natives, especially in the low-wage quantile. This also confirms the occupation

upgrading theory discussed in Section 2.2. Low-skilled immigrants are increasing while low-

skilled workers’ share of total employment is indeed decreasing, as our data have demon-

strated in Section 2.4. The increase could be due to the large inflow of immigrants from

Eastern European countries; these individuals are mainly low-skilled workers. With better

unemployment benefits and social welfare coverage than immigrants, natives find it easier

than immigrants to return to college or continue with technical training to gain new skills and

to upgrade to new types of jobs where language skills and networking play a greater role.

Therefore, those natives are pushed to occupations paying higher wages. As Foged and Peri

(2016) have agreed, natives and immigrants are not perfect subsidies in the low-skilled labour

market; the authors also found positive impacts of low-skilled immigrants on native wages,

particularly for low-skilled natives. These results are aligned with our findings from the FE, IV,

and quantile regressions.

Moreover, our empirical evidence strongly supports the wage efficiency theory. The wage

could exceed the market-clearing level in industries where the cost of replacing labour is high

if managers want to increase a firm’s productivity or efficiency or to decrease costs related to

labour turnover. The empirical evidence I obtained indicated that managers could increase

the wage to motivate the natives to stay in order to reduce labour turnover costs. With more

low-skilled immigrants entered the Danish labour market, the increase of wages of natives
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increases may partly resulting from managers’ motivation to reduce labour turnover costs

within the firm.

2.6.2 Medium-skilled immigrants

The hypothesis H2 mentioned in Section 2.2–The increased natives and immigrants could

squeeze in the medium-skilled class, causing more fierce competition in this market as the

share of medium-skilled immigrants increases, and worsening the wages of natives–is firstly

confirmed by the descriptive data in Section 2.4 indicating that more natives moved from

the low-skilled group to medium-skilled occupations from 2004 to 2013. Then, as strongly

confirmed by the empirical evidence from the OLS, FE, and conditional quantile regressions,

medium-skilled immigrants have a negative impact on the wages of native workers. Basic

labour demand-and-supply theory could further explain this evidence. The share of medium-

skilled workers at native firms increased significantly from 2004 to 2013. One explanation for

this increase may be lower-skilled natives moving to medium-skilled types of work. Another

route could be the share of immigrants. Since the supply of medium-skilled workers would

have been more than actual demand, more immigrants would have meant more competition

for positions.

2.6.3 High-skilled immigrants

The estimation results from all regression models indicated a significant positive impact of

high-skilled immigrants. Only limited empirical results have previously been reported for this

group. According to the summary statistics displayed in Section 2.4, the proportion of high-

skilled immigrants increased dramatically in the local labour market in Denmark. The evidence

from our empirical tests indicates that high-skilled immigrants are influencing more local em-

ployees than ever, while Denmark has witnessed a boom in high-skilled immigrants. The two

mechanisms predicting the positive wage effect on natives–especially those in higher wage

quantiles’ of high-skilled immigrants are discussed in Section 2.2. Our empirical evidence
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strongly supports the hypothesis H3 in Section 2.2–Wage efficiency theory together with the

O-Ring theory predict a positive impact of high-skilled immigrants on the wages of natives.

Our empirical evidence strongly supports the O-Ring theory (Kremer, 1993), mentioned in

Section 2.2. Immigrants can increase the wages of natives by boosting a firm’s total produc-

tivity. The literature on skill transfer and technology spillover also confirms our results (Peri et

al., 2014; Peri, 2012; and Malchow-Møller, 2011 etc.).

Furthermore, our empirical analysis of high-skilled immigrant groups is also well aligned with

the wage efficiency theory. The efficiency wage hypothesis in Section 2.2 argues that usually,

wages are not always market clearing. To be more specific, the wage could exceed the

market-clearing level in industries where the cost of replacing labour is high if managers want

to increase a firm’s productivity or efficiency or to decrease costs related to labour turnover.

Mobility for markets where high-skilled workers usually work is relatively high compared to

those comprised of other groups (Tremblay, 2005), as those high-skilled workers can more

easily find a position elsewhere due to their competency in specific skills. Moreover, as the

earlier summary statistics illustrated, firms with immigrants have recruited many more high-

skilled workers during recent decades, while shares of high-skilled workers at firms with only

natives have remained stable, and the share of high-skilled workers across all workplaces

has increased significantly. The arrival of more high-skilled immigrants could be a signal of

greater labour demand in high-skilled sectors. To avoid high costs due to the labour turnover of

high-skilled employees (e.g., hiring and training), firms pay a higher wage to keep their skilled

workers. Hence, the wages of all high-skilled workers, including natives, increase. High-skilled

immigrants play a role in this mechanism as an indirect measure of labour demand.

Further, according to the wage efficiency theory, another incentive for managers to pay more is

to hire more productive workers; thus, a selection effect cannot be ignored, particularly among
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high-skilled workers. As discussed in Section 2.2, high-skilled workers only select high-wage

positions because their reservation wage is too high for low-wage firms, but high-wage po-

sitions attract applicants with various skill levels. Moreover, high-wage firms prefer to recruit

more productive workers to achieve an efficiency wage. With more high-skilled immigrants

arriving in Denmark, the managers of a high-wage firm tend to tighten hiring standards and

to provide higher wages to attract more productive workers to enlarge the potential applicant

pool; in this way, they recruit more competitive employees to enhance the firm’s productivity.

Again, wages for all high-skilled and high-wage earners are pushed upwards by this selec-

tion effect, and the increased number of high-skilled immigrants facilitates this outcome. Our

empirical evidence clearly confirmed our hypothesis.

2.7 Conclusion

In this paper, I have focused on an increase in the number of immigrants, especially high-

skilled groups, in a local labour market. I tested the impact of immigrants on the wages of

natives by using administrative data from Statistics Denmark on the full population in Denmark

for the period from 2004 to 2013. I found evidence that an increase in the share of high-skilled

immigrants leads to higher wages for native workers, especially high-wage earners. Empirical

evidence on low-skilled and medium-skilled immigrant groups has also been discussed in the

paper.

The empirical tests applied OLS, FE, IV (2SLS), and quantile regression models. High-skilled

immigrants were found to have a positive impact on natives, as confirmed by all estimation

models. Moreover, evidence from the quantile regression indicates that the positive wage

effect from high-skilled immigrants is mainly on natives who earn higher wages. In addition,

according to the estimation results from the FE, FE-IV, and quantile regressions, low-skilled

immigrants also have a positive effect on the wages of natives, and they have a more positive

impact on low-wage natives. As confirmed by the OLS, FE, and quantile estimations, medium-
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skilled immigrants have negative wage effects on, and the negative effects dominants for the

medium-wage native group.

I have also discussed the empirical findings based on the hypothesised mechanisms. I argued

that the positive wage effects of low-skilled immigrants could be due to wage efficiency theory

and the occupation upgrading behaviour of natives seeking to protect themselves from the

competition created by increased immigration. Then, the increase in medium-skilled natives

and immigrants generates even fiercer competition in this market as the share of medium-

skilled immigrants increases; the outcome is reduced wages for natives. Finally, the wage

efficiency theory explains the positive impact of high-skilled immigrants on the wages of na-

tives, especially high-wage earners, in terms of labour turnover and selection theory. Hiring

standards and wage levels both rise due to high-wage firms’ motivation to reduce costs asso-

ciated with labour replacement and to hire more productive workers.

2.7.1 Future discussions

As our research question examining the impact of immigrants on the wages of native workers

is part of the broader wage inequality literature on immigration, it was of interest to further

study changes in the distribution of immigrant wages to gain a full picture of the influence of

increased immigration on the local labour market in Denmark. According to our descriptive

data, potential wage decimation exists over immigrants. A more in-depth analysis could also

be performed on the skill mismatch between natives and immigrants to obtain more insight

into wage inequality issues.

103



Bibliography

Akerlof, G. A. (1982), ‘Labor contracts as partial gift exchange’, The quarterly journal of eco-

nomics 97(4), 543–569.

Angrist, J. D. & Kugler, A. D. (2003), ‘Protective or counter-productive? labour market institu-

tions and the effect of immigration on eu natives’, The Economic Journal 113(488), F302–

F331.

Card, D. (2001), ‘Immigrant inflows, native outflows, and the local labor market impacts of

higher immigration’, Journal of Labor Economics 19(1), 22–64.

Carrasco, R., Jimeno, J. F. & Ortega, A. C. (2008), ‘The effect of immigration on the labor mar-

ket performance of native-born workers: some evidence for spain’, Journal of Population

Economics 21(3), 627–648.

Correia, S. (2016), Linear models with high-dimensional fixed effects: An efficient and feasible

estimator, Technical report, Duke University. Working Paper.

D’Amuri, F. & Peri, G. (2014), ‘Immigration, jobs, and employment protection: evidence from

104



europe before and during the great recession’, Journal of the European Economic Associ-

ation 12(2), 432–464.

Dustmann, C., Fabbri, F. & Preston, I. (2005), ‘The impact of immigration on the british labour

market’, The Economic Journal 115(507).

Dustmann, C., Frattini, T. & Preston, I. P. (2013), ‘The effect of immigration along the distribu-

tion of wages’, The Review of Economic Studies 80(1), 145–173.

Edo, A. & Toubal, F. (2015), ‘Selective immigration policies and wages inequality’, Review of

International Economics 23(1), 160–187.

Foged, M. & Peri, G. (2016), ‘Immigrants’ effect on native workers: New analysis on longitudi-

nal data’, American Economic Journal: Applied Economics 8(2), 1–34.

Glaeser, E. (2011), Triumph of the city: How our greatest invention makes us richer, smarter,

greener, healthier, and happier, Penguin.

Hellerstein, J. K. & Neumark, D. (2008), ‘Workplace segregation in the united states: Race,

ethnicity, and skill’, The Review of Economics and Statistics 90(3), 459–477.

Hunt, J. & Gauthier-Loiselle, M. (2010), ‘How much does immigration boost innovation?’,

American Economic Journal: Macroeconomics 2(2), 31–56.

Jones, C. I. (2002), ‘Sources of us economic growth in a world of ideas’, The American Eco-

nomic Review 92(1), 220–239.

Koenker, R. & Bassett Jr, G. (1978), ‘Regression quantiles’, Econometrica: journal of the

105



Econometric Society pp. 33–50.

Koenker, R. & Hallock, K. (2001), ‘Quantile regression: An introduction’, Journal of Economic

Perspectives 15(4), 43–56.

Kremer, M. (1993), ‘The o-ring theory of economic development’, The Quarterly Journal of

Economics 108(3), 551–575.

Malchow-Møller, N., Munch, J. R. & Skaksen, J. R. (2011), ‘Do foreign experts increase the

productivity of domestic firms?’, The Scandinavian Journal of Economics .

Malchow-Møller, N., Munch, J. R. & Skaksen, J. R. (2012), ‘Do immigrants affect firm-specific

wages?’, The Scandinavian Journal of Economics 114(4), 1267–1295.

Malcomson, J. M. (1981), ‘Unemployment and the efficiency wage hypothesis’, The Economic

Journal 91(364), 848–866.

Manacorda, M., Manning, A. & Wadsworth, J. (2012), ‘The impact of immigration on the struc-

ture of wages: theory and evidence from britain’, Journal of the European Economic Asso-

ciation 10(1), 120–151.

Markusen, J. R. & Trofimenko, N. (2009), ‘Teaching locals new tricks: Foreign experts as a

channel of knowledge transfers’, Journal of Development Economics 88(1), 120–131.

McDonald, I. M. & Solow, R. M. (1981), ‘Wage bargaining and employment’, The American

Economic Review 71(5), 896–908.

Moretti, E. (2004), ‘Workers’ education, spillovers, and productivity: evidence from plant-level

106



production functions’, The American Economic Review 94(3), 656–690.

Moretti, E. (2012), The new geography of jobs, Houghton Mifflin Harcourt.

Neyman, J. & Scott, E. L. (1948), ‘Consistent estimates based on partially consistent obser-

vations’, Econometrica: Journal of the Econometric Society pp. 1–32.

OECD (2008), International migration outlook, Technical report, OECD, Paris.

Orrenius, P. M. & Zavodny, M. (2007), ‘Does immigration affect wages? a look at occupation-

level evidence’, Labour Economics 14(5), 757 – 773.

URL: http://www.sciencedirect.com/science/article/pii/S0927537106000674

Ortega, J. & Verdugo, G. (2016), Moving up or down? immigration and the selection of natives

across occupations and locations, Technical report, IZA.

Ottaviano, G. I. & Peri, G. (2006), ‘The economic value of cultural diversity: evidence from us

cities’, Journal of Economic geography 6(1), 9–44.

Ottaviano, G. I. & Peri, G. (2012), ‘Rethinking the effect of immigration on wages’, Journal of

the European economic association 10(1), 152–197.

Peri, G. (2012), ‘The effect of immigration on productivity: Evidence from us states’, Review

of Economics and Statistics 94(1), 348–358.

Peri, G., Shih, K. & Sparber, C. (2015), ‘Stem workers, h-1b visas, and productivity in us

cities’, Journal of Labor Economics 33(S1), S225–S255.

107



Peri, G., Shih, K. Y. & Sparber, C. (2014), Foreign stem workers and native wages and em-

ployment in us cities, Technical report, National Bureau of Economic Research.

Peri, G. & Sparber, C. (2009), ‘Task specialization, immigration, and wages’, American Eco-

nomic Journal: Applied Economics 1(3), 135–169.

Schlicht, E. (2005), ‘Hiring standards and labour market clearing’, Metroeconomica

56(2), 263–279.

Tremblay, K. (2005), ‘Academic mobility and immigration’, Journal of Studies in International

Education 9(3), 196–228.

108



Appendices

Appendix A: Notes for constructed variables for Table 2.2

In this paper, the following variables are constructed explicitly for the empirical analysis:

Hourly wage: It is calculated via dividing total annual wages including ATP by total hours

worked in the year.

Age dummies: Age 18-24, Age 25-29, Age 30-39, Age 40-49, Age 50-59, Age 60-65.

Children 0-6 years: A dummy indicator of whether there is a child in the household aged 0-6

years.

Experience: In years. Sum of days employed in the labour market, divided by 365.

Tenure: In years. Time employed within the workplace.
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Appendix B: Robustness checks

Appendix B.1: Robustness check for old workplace code

Table 2.9: Robustness check for old workplace code

Dependent variable:log(hourly wage)

(1) (2) (3) (4)

Share in the workplace of:

Low-skilled immigrants -0.211∗∗∗ -0.070∗∗

(0.029) (0.029)

Medium-skilled immigrants -0.177∗∗∗ -0.188∗∗∗

(0.011) (0.011)

High-skilled immigrants 0.258∗∗∗ 0.366∗∗∗

(0.042) (0.042)

Region×time×industry fixed effects Yes Yes Yes Yes

Observations 8,268,580 8,268,580 8,268,580 8,268,580

R-squared 0.216 0.216 0.216 0.216

110



Appendix B.2: Robustness checks on data sample compared to Malchow-Møller et

al.(2012)

Table 2.10: Comparison on Immigrant characteristics at individual level, selected years

This paper Malchow-Møller et al.

(2012)

1999 2004 1999 2004

Age 18-24 0.1119 0.0669 0.090 0.067

Age 25-29 0.1349 0.1241 0.138 0.122

Age 30-39 0.3008 0.3658 0.364 0.356

Age 40-49 0.2386 0.2686 0.240 0.281

Age 50-59 0.1861 0.1469 0.150 0.147

Age 60-65 0.0188 0.0238 0.012 0.018

Basic education(low-skilled) 0.6041 0.5778 0.444 0.492

Vocational education(medium-skilled) 0.3475 0.3724 0.322 0.288

Higher education(high-skilled) 0.0325 0.0385 0.234 0.220

Country of origin:

EU-15,Norway and Iceland 0.5489 0.2944 0.342 0.290

EU-12 new 0.034 0.0721 0.048 0.049

Remaining developed countries 0.032 0.0576 0.190 0.190

Less developed countries 0.4445 0.5759 0.419 0.470
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Appendix C: Regression ressults from FE-IV model

Table 2.11: Results of 1st stage IV regression

(1) (2) (3)

Instrument share of Low-skilled share of Medium-skilled share of High-skilled

immigrants immigrants immigrants

the immigrant group of:

Low-skilled 0.027∗∗

(0.012)

Medium-skilled 0.046∗∗∗

High-skilled 0.016∗∗∗

(0.004)

Observations 8,216,496 8,216,496 8,216,496

R-squared 0.627 0.818 0.759

Standard errors in parentheses.

∗∗∗,∗∗ and ∗: H0 : βj = 0 rejected at 1%, 5% and 10% significance level respectively.
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Table 2.12: Share of Immigrants at workplace and the wage of native workers, FE-IV results

Dependent variable:log(hourly wage)

(1)

FE-IV

Share in the workplace of:

Low-skilled immigrants 4.800∗∗∗

(1.538)

Medium-skilled immigrants -0.486

(0.476)

High-skilled immigrants 8.235∗∗∗

(2.479)

Job-spell fixeded effects Yes

Region×time×industry fixed effects Yes

Observations 8,216,496

R-squared 0.602

Standard errors clustered at workplace-year level in parentheses.

∗∗∗,∗∗ and ∗: H0 : βj = 0 rejected at 1%, 5% and 10% significance level respectively.

113



Appendix D: Full results from OLS regressions(From STATA log files)

*OLS Regression: Detailed results from STATA log file for colume (1) in Table 2.7

------------------------------------------------------------------------------------
                   |               Robust
              wage |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------------+----------------------------------------------------------------
 share_of_lowskill |  -.0969024   .0316977    -3.06   0.002     -.159029   -.0347758
   share_of_mskill |   -.183414   .0163114   -11.24   0.000    -.2153839    -.151444
share_of_highskill |   .3397619   .0444052     7.65   0.000      .252729    .4267948
               exp |   .0176329   .0002615    67.44   0.000     .0171204    .0181454
              exp2 |  -.0004862   7.78e-06   -62.52   0.000    -.0005014    -.000471
            Tenure |   .0018951   .0002872     6.60   0.000     .0013321     .002458
              ten2 |  -.0000527   .0000105    -5.02   0.000    -.0000732   -.0000321
         Age_18_24 |   .0930537   .0062727    14.83   0.000     .0807595    .1053479
         Age_25_29 |   .3012516   .0063415    47.50   0.000     .2888225    .3136807
         Age_30_39 |   .3889819   .0064013    60.77   0.000     .3764356    .4015282
         Age_40_49 |   .4379847    .006452    67.88   0.000      .425339    .4506303
         Age_50_59 |   .4187501   .0064093    65.33   0.000     .4061879    .4313122
         Age_60_65 |   .4256956   .0065138    65.35   0.000     .4129288    .4384625
         basic_edu |   .0115519   .0021942     5.26   0.000     .0072513    .0158526
    vocational_edu |   .0841027   .0019157    43.90   0.000     .0803481    .0878573
        higher_edu |    .172492   .0030487    56.58   0.000     .1665166    .1784674
           Married |   .0541982   .0007795    69.53   0.000     .0526705     .055726
  children_0_6_yrs |   .0276824   .0012383    22.35   0.000     .0252553    .0301095
        Copenhagen |   .0188997   .0025571     7.39   0.000     .0138878    .0239115
        large_city |   .0033646   .0022449     1.50   0.134    -.0010353    .0077646
        small_city |  -.0029147   .0020405    -1.43   0.153    -.0069141    .0010848
        lnemployee |   .0189257   .0006287    30.10   0.000     .0176936    .0201579
      share_female |  -.1728413     .00281   -61.51   0.000    -.1783489   -.1673337
       share_40_65 |  -.0326495    .004262    -7.66   0.000    -.0410029   -.0242962
   share_highskill |   .2717397   .0064374    42.21   0.000     .2591225    .2843568
      share_mskill |   .1924223    .006098    31.56   0.000     .1804704    .2043741
          share_UM |   .0127669   .0066649     1.92   0.055    -.0002962      .02583
------------------------------------------------------------------------------------

Appendix E: Full Regression results from FE model and additional FE

results on robust standard errors

Appendix E.1: Full regression results for FE model in Table 2.7
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**FE regressions: Full results from STATA log file for Table 2.7
****FE include year*region*industry FE and job-spell FE, 
****se clustered at workplace-year level
------------------------------------------------------------------------------------
                   |               Robust
              wage |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------------+----------------------------------------------------------------
 share_of_lowskill |   .1557325   .0347344     4.48   0.000     .0876542    .2238108
   share_of_mskill |  -.2310268   .0116161   -19.89   0.000    -.2537939   -.2082596
share_of_highskill |   .2590338   .0390229     6.64   0.000     .1825503    .3355173
               exp |   .0195552   .0002479    78.87   0.000     .0190693    .0200412
              exp2 |  -.0005395   7.65e-06   -70.56   0.000    -.0005545   -.0005246
            Tenure |   .0005858   .0002151     2.72   0.006     .0001642    .0010075
              ten2 |  -.0000238   8.59e-06    -2.77   0.006    -.0000407   -6.99e-06
         Age_18_24 |   .1023676   .0070085    14.61   0.000     .0886312     .116104
         Age_25_29 |    .319842   .0069094    46.29   0.000     .3062998    .3333842
         Age_30_39 |   .4044117   .0068542    59.00   0.000     .3909778    .4178456
         Age_40_49 |   .4545789   .0068573    66.29   0.000     .4411388    .4680191
         Age_50_59 |   .4283466   .0068712    62.34   0.000     .4148793    .4418138
         Age_60_65 |   .4380757   .0070742    61.93   0.000     .4242105     .451941
         basic_edu |  -.0208581   .0022367    -9.33   0.000    -.0252421   -.0164742
    vocational_edu |   .0469668   .0022367    21.00   0.000      .042583    .0513506
        higher_edu |   .1366584   .0025717    53.14   0.000      .131618    .1416987
           Married |   .0547302   .0009518    57.50   0.000     .0528647    .0565956
  children_0_6_yrs |   .0271343   .0012251    22.15   0.000      .024733    .0295355
        Copenhagen |   .0433269    .007289     5.94   0.000     .0290408    .0576131
        large_city |   .0032354     .00744     0.43   0.664    -.0113467    .0178175
        small_city |  -.0079913    .007386    -1.08   0.279    -.0224675     .006485
        lnemployee |   .0188896   .0002884    65.49   0.000     .0183242    .0194549
      share_female |   -.191283   .0017341  -110.30   0.000    -.1946818   -.1878841
       share_40_65 |   -.004697   .0028096    -1.67   0.095    -.0102038    .0008098
   share_highskill |   .2679309   .0046082    58.14   0.000      .258899    .2769628
      share_mskill |   .1180311   .0026884    43.90   0.000     .1127619    .1233002
          share_UM |   .1095753   .0034419    31.84   0.000     .1028292    .1163214
------------------------------------------------------------------------------------
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Appendix E.2: Addtional regression results from using robust standard error in FE

model in Table 2.7
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* Fe regressions: Results from using robusted standard errors:

Statistics robust to heteroskedasticity           Prob > F        =     0.0000
                                                  R-squared       =     0.6026
                                                  Adj R-squared   =     0.2674
                                                  Within R-sq.    =     0.1825
                                                  Root MSE        =     0.3307

------------------------------------------------------------------------------------
                   |               Robust
              wage |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------------+----------------------------------------------------------------
 share_of_lowskill |   .1557325   .0347344     4.48   0.000     .0876542    .2238108
   share_of_mskill |  -.2310268   .0116161   -19.89   0.000    -.2537939   -.2082596
share_of_highskill |   .2590338   .0390229     6.64   0.000     .1825503    .3355173
               exp |   .0195552   .0002479    78.87   0.000     .0190693    .0200412
              exp2 |  -.0005395   7.65e-06   -70.56   0.000    -.0005545   -.0005246
            Tenure |   .0005858   .0002151     2.72   0.006     .0001642    .0010075
              ten2 |  -.0000238   8.59e-06    -2.77   0.006    -.0000407   -6.99e-06
         Age_18_24 |   .1023676   .0070085    14.61   0.000     .0886312     .116104
         Age_25_29 |    .319842   .0069094    46.29   0.000     .3062998    .3333842
         Age_30_39 |   .4044117   .0068542    59.00   0.000     .3909778    .4178456
         Age_40_49 |   .4545789   .0068573    66.29   0.000     .4411388    .4680191
         Age_50_59 |   .4283466   .0068712    62.34   0.000     .4148793    .4418138
         Age_60_65 |   .4380757   .0070742    61.93   0.000     .4242105     .451941
         basic_edu |  -.0208581   .0022367    -9.33   0.000    -.0252421   -.0164742
    vocational_edu |   .0469668   .0022367    21.00   0.000      .042583    .0513506
        higher_edu |   .1366584   .0025717    53.14   0.000      .131618    .1416987
           Married |   .0547302   .0009518    57.50   0.000     .0528647    .0565956
  children_0_6_yrs |   .0271343   .0012251    22.15   0.000      .024733    .0295355
        Copenhagen |   .0433269    .007289     5.94   0.000     .0290408    .0576131
        large_city |   .0032354     .00744     0.43   0.664    -.0113467    .0178175
        small_city |  -.0079913    .007386    -1.08   0.279    -.0224675     .006485
        lnemployee |   .0188896   .0002884    65.49   0.000     .0183242    .0194549
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      share_female |   -.191283   .0017341  -110.30   0.000    -.1946818   -.1878841
       share_40_65 |   -.004697   .0028096    -1.67   0.095    -.0102038    .0008098
   share_highskill |   .2679309   .0046082    58.14   0.000      .258899    .2769628
      share_mskill |   .1180311   .0026884    43.90   0.000     .1127619    .1233002
          share_UM |   .1095753   .0034419    31.84   0.000     .1028292    .1163214
------------------------------------------------------------------------------------
(est8 stored)
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Appendix F: Full results from QR regressions and tests for equality

across quantiles(From STATA log files)
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* Quantile regressions: Detailed results from STATA log file for Table 2.8 in Section 5.2.

Simultaneous quantile regression                    Number of obs =    8216496
  bootstrap(20) SEs                                 .10 Pseudo R2 =     0.1849
                                                    .25 Pseudo R2 =     0.1253
                                                    .50 Pseudo R2 =     0.0947
                                                    .75 Pseudo R2 =     0.0876
                                                    .90 Pseudo R2 =     0.0834

------------------------------------------------------------------------------------
                   |              Bootstrap
              wage |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------------+----------------------------------------------------------------
q10                |
 share_of_lowskill |   .2345164   .0117355    19.98   0.000     .2115151    .2575176
   share_of_mskill |    -.08896   .0036303   -24.50   0.000    -.0960753   -.0818448
share_of_highskill |   .2998738   .0104243    28.77   0.000     .2794426     .320305
               exp |   .0187423   .0000787   238.27   0.000     .0185882    .0188965
              exp2 |    -.00052   2.31e-06  -225.19   0.000    -.0005245   -.0005154
            Tenure |   .0037093   .0000501    74.06   0.000     .0036111    .0038075
              ten2 |  -.0000937   2.10e-06   -44.54   0.000    -.0000978   -.0000896
         Age_18_24 |   .2237348   .0022839    97.96   0.000     .2192585    .2282111
         Age_25_29 |   .6488959   .0021829   297.27   0.000     .6446176    .6531742
         Age_30_39 |   .7206536   .0021559   334.27   0.000     .7164281    .7248791
         Age_40_49 |   .7403253   .0020041   369.41   0.000     .7363974    .7442533
         Age_50_59 |   .7289539   .0020954   347.88   0.000     .7248469    .7330609
         Age_60_65 |   .7304621   .0021094   346.29   0.000     .7263277    .7345964
         basic_edu |  -.0503082   .0007076   -71.10   0.000     -.051695   -.0489214
    vocational_edu |   .0291858     .00055    53.07   0.000     .0281079    .0302637
        higher_edu |   .0901444   .0008737   103.17   0.000     .0884319    .0918568
           Married |   .0250025   .0002075   120.50   0.000     .0245958    .0254091
  children_0_6_yrs |   .0193784   .0004492    43.14   0.000     .0184979    .0202589
        Copenhagen |   .0611646   .0028376    21.56   0.000      .055603    .0667261
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        large_city |   .0002235   .0028643     0.08   0.938    -.0053905    .0058375
        small_city |  -.0044001   .0028024    -1.57   0.116    -.0098928    .0010925
        lnemployee |   .0142614   .0000781   182.64   0.000     .0141084    .0144145
      share_female |  -.1557834   .0004584  -339.83   0.000    -.1566819   -.1548849
       share_40_65 |   .0819471   .0007854   104.33   0.000     .0804077    .0834865
   share_highskill |   .2513881   .0011774   213.51   0.000     .2490805    .2536958
      share_mskill |   .1472006   .0007859   187.29   0.000     .1456602     .148741
          share_UM |   .0169437   .0011755    14.41   0.000     .0146396    .0192477
             _cons |   3.915779   .0037728  1037.90   0.000     3.908385    3.923174
-------------------+----------------------------------------------------------------
q25                |
 share_of_lowskill |   .2652097   .0082959    31.97   0.000     .2489501    .2814693
   share_of_mskill |  -.1541295   .0024952   -61.77   0.000    -.1590199    -.149239
share_of_highskill |   .0942061   .0109943     8.57   0.000     .0726576    .1157546
               exp |   .0172168   .0000738   233.44   0.000     .0170723    .0173614
              exp2 |  -.0004749   2.29e-06  -207.74   0.000    -.0004794   -.0004704
            Tenure |   .0007328    .000054    13.58   0.000      .000627    .0008385
              ten2 |  -3.35e-06   1.80e-06    -1.87   0.062    -6.87e-06    1.66e-07
         Age_18_24 |   .3054428   .0025918   117.85   0.000      .300363    .3105225
         Age_25_29 |   .6187723   .0022394   276.31   0.000     .6143832    .6231614
         Age_30_39 |   .6861828   .0022139   309.94   0.000     .6818436     .690522
         Age_40_49 |    .709859   .0022775   311.68   0.000     .7053951    .7143228
         Age_50_59 |   .6981821   .0023278   299.94   0.000     .6936198    .7027444
         Age_60_65 |   .7048431   .0022767   309.59   0.000     .7003809    .7093054
         basic_edu |   -.044347   .0005517   -80.39   0.000    -.0454283   -.0432658
    vocational_edu |   .0337831   .0004991    67.69   0.000     .0328049    .0347613
        higher_edu |   .1084028    .000745   145.50   0.000     .1069425     .109863
           Married |   .0288623   .0001767   163.30   0.000     .0285159    .0292087
  children_0_6_yrs |   .0225367   .0003246    69.42   0.000     .0219004    .0231729
        Copenhagen |   .0640417   .0020893    30.65   0.000     .0599468    .0681366
        large_city |    .001302   .0020041     0.65   0.516     -.002626    .0052301
        small_city |  -.0037447    .002028    -1.85   0.065    -.0077195    .0002301
        lnemployee |      .0141   .0000621   226.94   0.000     .0139783    .0142218
      share_female |  -.1656077   .0004613  -359.01   0.000    -.1665118   -.1647036
       share_40_65 |   .0267267   .0008204    32.58   0.000     .0251187    .0283347
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   share_highskill |   .2879096   .0012172   236.53   0.000     .2855239    .2902953
      share_mskill |   .1521054   .0006341   239.88   0.000     .1508626    .1533482
          share_UM |   .0173675   .0010568    16.43   0.000     .0152963    .0194388
             _cons |   4.125075    .002882  1431.34   0.000     4.119427    4.130724
-------------------+----------------------------------------------------------------
q50                |
 share_of_lowskill |   .1617596   .0100313    16.13   0.000     .1420986    .1814206
   share_of_mskill |  -.2048517   .0030741   -66.64   0.000    -.2108768   -.1988265
share_of_highskill |   .0968769   .0121712     7.96   0.000     .0730217    .1207321
               exp |   .0173602   .0000701   247.71   0.000     .0172229    .0174976
              exp2 |  -.0004774   1.90e-06  -251.12   0.000    -.0004812   -.0004737
            Tenure |  -.0012902   .0000551   -23.40   0.000    -.0013983   -.0011822
              ten2 |   .0000524   2.01e-06    26.03   0.000     .0000485    .0000564
         Age_18_24 |    .152593   .0067689    22.54   0.000     .1393263    .1658598
         Age_25_29 |   .3178937   .0068596    46.34   0.000     .3044491    .3313384
         Age_30_39 |   .3901314   .0067317    57.95   0.000     .3769374    .4033254
         Age_40_49 |   .4219781   .0067688    62.34   0.000     .4087115    .4352448
         Age_50_59 |   .4042836   .0066845    60.48   0.000     .3911823    .4173849
         Age_60_65 |   .4195555   .0067514    62.14   0.000      .406323     .432788
         basic_edu |   -.017574   .0007609   -23.10   0.000    -.0190652   -.0160827
    vocational_edu |   .0447571   .0006573    68.09   0.000     .0434688    .0460455
        higher_edu |   .1325155   .0007696   172.19   0.000     .1310071    .1340239
           Married |   .0399547   .0002572   155.33   0.000     .0394505    .0404588
  children_0_6_yrs |   .0250412   .0003198    78.30   0.000     .0244144     .025668
        Copenhagen |   .0607857   .0017544    34.65   0.000     .0573472    .0642242
        large_city |   .0001576   .0018103     0.09   0.931    -.0033905    .0037058
        small_city |  -.0029957   .0017904    -1.67   0.094    -.0065048    .0005133
        lnemployee |     .01735   .0000735   235.90   0.000     .0172059    .0174942
      share_female |   -.188369   .0004297  -438.36   0.000    -.1892112   -.1875268
       share_40_65 |   .0022015    .000677     3.25   0.001     .0008747    .0035283
   share_highskill |   .2735892   .0013182   207.54   0.000     .2710055    .2761729
      share_mskill |   .1025354   .0006151   166.70   0.000     .1013299     .103741
          share_UM |   .0757468   .0010034    75.49   0.000       .07378    .0777135
             _cons |   4.566655   .0067888   672.67   0.000     4.553349    4.579961
-------------------+----------------------------------------------------------------
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q75                |
 share_of_lowskill |  -.0308245   .0115399    -2.67   0.008    -.0534423   -.0082067
   share_of_mskill |  -.1877681   .0044148   -42.53   0.000    -.1964209   -.1791153
share_of_highskill |   .2996361   .0157383    19.04   0.000     .2687896    .3304827
               exp |   .0182017   .0000982   185.37   0.000     .0180092    .0183941
              exp2 |  -.0005122   2.72e-06  -188.42   0.000    -.0005175   -.0005068
            Tenure |   -.004437   .0000965   -46.00   0.000     -.004626    -.004248
              ten2 |   .0001313   3.58e-06    36.69   0.000     .0001243    .0001383
         Age_18_24 |  -.1431733   .0027863   -51.38   0.000    -.1486344   -.1377121
         Age_25_29 |  -.0122186   .0027704    -4.41   0.000    -.0176484   -.0067887
         Age_30_39 |   .0861295   .0026003    33.12   0.000     .0810331    .0912258
         Age_40_49 |     .15382   .0025944    59.29   0.000     .1487351    .1589049
         Age_50_59 |   .1247297   .0028061    44.45   0.000     .1192298    .1302296
         Age_60_65 |   .1500446   .0028656    52.36   0.000     .1444282     .155661
         basic_edu |   .0078224   .0008706     8.99   0.000      .006116    .0095287
    vocational_edu |   .0608997   .0008551    71.22   0.000     .0592237    .0625757
        higher_edu |   .1743607   .0011185   155.89   0.000     .1721685    .1765528
           Married |   .0610172   .0004326   141.03   0.000     .0601692    .0618651
  children_0_6_yrs |   .0328922   .0003936    83.58   0.000     .0321208    .0336635
        Copenhagen |   .0579626   .0022235    26.07   0.000     .0536046    .0623206
        large_city |  -.0013454   .0022312    -0.60   0.547    -.0057184    .0030276
        small_city |  -.0012054   .0023623    -0.51   0.610    -.0058355    .0034246
        lnemployee |   .0224169   .0000823   272.33   0.000     .0222555    .0225782
      share_female |  -.2500856   .0006363  -393.03   0.000    -.2513327   -.2488385
       share_40_65 |  -.0583845   .0008979   -65.02   0.000    -.0601443   -.0566246
   share_highskill |   .2578079   .0019932   129.34   0.000     .2539013    .2617145
      share_mskill |   .0660427   .0005306   124.48   0.000     .0650028    .0670826
          share_UM |   .1767504   .0013347   132.43   0.000     .1741345    .1793663
             _cons |   5.021913    .003357  1495.95   0.000     5.015334    5.028493
-------------------+----------------------------------------------------------------
q90                |
 share_of_lowskill |  -.1467701   .0196576    -7.47   0.000    -.1852983   -.1082419
   share_of_mskill |  -.2345469   .0073622   -31.86   0.000    -.2489765   -.2201173
share_of_highskill |    .539768    .024221    22.29   0.000     .4922957    .5872403
               exp |   .0212045   .0001407   150.67   0.000     .0209287    .0214804
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              exp2 |  -.0006171   3.99e-06  -154.73   0.000    -.0006249   -.0006093
            Tenure |  -.0087332   .0001225   -71.29   0.000    -.0089733   -.0084931
              ten2 |   .0002313   4.71e-06    49.12   0.000     .0002221    .0002405
         Age_18_24 |  -.2848154   .0033162   -85.89   0.000    -.2913151   -.2783158
         Age_25_29 |   -.163971   .0033917   -48.34   0.000    -.1706186   -.1573233
         Age_30_39 |  -.0236489   .0031835    -7.43   0.000    -.0298885   -.0174093
         Age_40_49 |   .0863606   .0035673    24.21   0.000     .0793687    .0933524
         Age_50_59 |   .0493791   .0036882    13.39   0.000     .0421503    .0566078
         Age_60_65 |   .0917998   .0036621    25.07   0.000     .0846223    .0989773
         basic_edu |   .0163117   .0015591    10.46   0.000     .0132559    .0193675
    vocational_edu |   .0601777   .0014567    41.31   0.000     .0573226    .0630327
        higher_edu |   .2133431   .0016847   126.64   0.000     .2100412     .216645
           Married |   .0878236   .0007397   118.72   0.000     .0863738    .0892735
  children_0_6_yrs |   .0432508   .0008927    48.45   0.000     .0415012    .0450004
        Copenhagen |   .0498544   .0046574    10.70   0.000      .040726    .0589828
        large_city |  -.0013606    .005035    -0.27   0.787    -.0112291    .0085079
        small_city |  -.0012803   .0050367    -0.25   0.799    -.0111521    .0085915
        lnemployee |   .0230675    .000161   143.26   0.000     .0227519     .023383
      share_female |  -.2843541   .0010218  -278.29   0.000    -.2863568   -.2823515
       share_40_65 |  -.1741492   .0016313  -106.75   0.000    -.1773466   -.1709518
   share_highskill |   .2732949   .0033776    80.91   0.000     .2666749     .279915
      share_mskill |   .0775266   .0015765    49.18   0.000     .0744367    .0806164
          share_UM |   .2387495   .0021031   113.52   0.000     .2346275    .2428715
             _cons |   5.359812   .0058353   918.52   0.000     5.348375    5.371249
------------------------------------------------------------------------------------
(est61 stored)

. 

. test[q10=q25=q50=q75=q90]: share_of_lowskill share_of_mskill share_of_highskill

 ( 1)  [q10]share_of_lowskill - [q25]share_of_lowskill = 0
 ( 2)  [q10]share_of_mskill - [q25]share_of_mskill = 0
 ( 3)  [q10]share_of_highskill - [q25]share_of_highskill = 0
 ( 4)  [q10]share_of_lowskill - [q50]share_of_lowskill = 0
 ( 5)  [q10]share_of_mskill - [q50]share_of_mskill = 0
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 ( 6)  [q10]share_of_highskill - [q50]share_of_highskill = 0
 ( 7)  [q10]share_of_lowskill - [q75]share_of_lowskill = 0
 ( 8)  [q10]share_of_mskill - [q75]share_of_mskill = 0
 ( 9)  [q10]share_of_highskill - [q75]share_of_highskill = 0
 (10)  [q10]share_of_lowskill - [q90]share_of_lowskill = 0
 (11)  [q10]share_of_mskill - [q90]share_of_mskill = 0
 (12)  [q10]share_of_highskill - [q90]share_of_highskill = 0

       F( 12,8216468) =  797.53
            Prob > F =    0.0000
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Abstract: This paper analyses native-immigrant wage gap as well as potential discrimina-

tion against immigrants for male workers in the labour market in Denmark. I perform an

Oaxaca-Blinder and a Melly (2005) decomposition using Danish register data covering the

period between 2004 to 2013. With particular interest on the impact of EU enlargement and

free movement in the labour market on the wage gap, I focus my empirical analysis on the

years 2004, 2007, 2009, 2010 and 2013. I find that low-skilled immigrants experience smaller

wage gap and potential discrimination than medium and high-skilled groups. Moreover,

after controlling for education, a substantial part of this gap can be explained by coefficient

effects which I entirely regard as potential discrimination in this paper. By comparing across

different ethnic groups within immigrants, I also find strong empirical evidence showing

that the more distant2 the home country of the immigrant is from Denmark, the more wage

penalty is present. Besides, decomposition methods using quantile regressions indicate

larger discrimination at the upper quantiles of the wage distribution in most cases.

Keywords: Native-Immingrant wage gap; Oaxaca-Blinder; Decomposition on conditional

quantiles; Discrimination

2 In this paper, I measure the distant according to cultural and economic backgrounds.
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3.1 Introduction

Immigrants usually earn lower wages than natives in most developed countries. One could

come to a quick conclusion that this may be the result of discrimination. In fact, in the wage

inequality literature, the wage gap is explained by various factors, including personal and

productivity-related characteristics, macroeconomic effects, and policy effects; of course, the

influence of discrimination cannot be ignored. Studies examining discrimination in relation

to the wage gap have long been an essential part of inequality research. Numerous theo-

retical and empirical studies have investigated the native-immigrant wage gap for decades.

Furthermore, immigrants, in most cases, are willing to enter a country where they can receive

equal treatment; hence, the inequality issue is also essential for the policymaking process to

some degree. Not surprisingly, although they only account for a minor share of the population

in most countries, immigrants have attracted increasing attention within both academia and

politics. Moreover, the issue of discrimination has always been hotly debated and frequently

studied.

With rich administrative data and a rapidly growing immigrant population, Denmark is a com-

pelling case to investigate. As depicted in Figure 3.1, the number of immigrants entering the

labour market in Denmark began to increase dramatically in 2004, when EU enlargement

took place. Then, in 2009, Denmark opened its labour market to Eastern European countries.

Denmark has a small population but a relatively fast increasing population of immigrants. Con-

cerns regarding wage inequality for immigrants have long been a focal point since immigrants

have a relatively significant impact on the Danish labour market and since Denmark is ac-

tively working to attract high-skilled immigrants. With a large inflow of immigrants, Denmark

is a case worthy of further analysis in terms of how the native-immigrant wage gap differs

depending on skill level and nationality and whether potential discrimination plays a role in the

wage gap.
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In this paper, I focus on the following research questions: First, how native-immigrant wage

gap in the labour market in Denmark changes from 2004 to 2013, especially after EU en-

largement in 2004 and 2007, and free movement took place in Denmark in 2009. Namely, the

year 2004, 2007, 2009, 2010 (one year after free movement), and 2013. Second, whether

potential wage discrimination3 against immigrants exists during the study period. Finally, how

the native-immigrant wage gap and potential discrimination described in the first and second

question vary within different skill levels and under each group of the countries of origins.

This paper provides an overall summary of changes in the population distributions and wage

distributions of the native and immigrant groups, between 2004 and 2013. The findings from

the empirical analysis contribute to the wage inequality studies on the labour market in Den-

mark for the period after EU enlargement. Moreover, comprehensive insights into native-

immigrant wage gap and potential discrimination against immigrants, at different skill levels

as well as within different ethnic groups are obtained. This paper is organised as follows:

Section 3.2 discusses studies making a broad sweep across Europe and other regions and

provides background information on the immigrant-native wage gap. Section 3.3 gives the

motivation and proposes the hypothesis for this paper. Section 3.4 outlines the econometric

methodology, and Section 3.5 describes the Danish register data used. Then, Section 3.6

presents and discusses the results, and finally, Section 3.7 concludes the paper.

3When I use the term "discrimination" in this paper, I refer to the remaining component after I have controlled

for all possible factors in the wage model I can obtain. This term is not the same as the general political definition

in practical.
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Figure 3.1: Increasing immigration in Denmark

3.2 Literature and background

In this section, I start by looking into the relevant literature to acquire a basic understanding

of the wage inequality issue in different countries. I then present background information on

changes in the population, skill structure, and immigrant wage distribution in the Danish labour

market to gain an overview and to shed light on the motivation for the subsequent empirical

analysis.

3.2.1 Literature

Various discrimination models, such as the taste-for-discrimination and statistical discrimi-

nation models, have been frequently discussed in the inequality literature. The taste-based

discrimination model was proposed by Gary Becker in 1957. Becker modelled discrimination

as a personal prejudice, or taste, against associating with a particular group. When wages

and employment are determined by employers’ prejudices regarding, for example, nationality,

race, gender, and religion, discrimination issues arise in the labour market. As a result of the

"taste" of employers, wages and employment rates could vary for the same job position.
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In the statistical discrimination model, employers’ decisions on whom to employ, promote, and

reward are based on imperfect information on individuals’ ability and productivity, and this can

generate inequality. Kenneth Arrow has defined discrimination as "the valuation in the market-

place of personal characteristics of the worker that is unrelated to worker productivity." (Arrow,

1973). Later, Altonji and Blank (1999) provided an overview of this mechanism. For example,

according to the theory, a candidate’s foreign education background may be undervalued by

the employer. In this case, an employer could treat candidates with similar education differ-

ently (e.g., divergent decisions on wages or recruitment for native and immigrant workers).

Compared with employment differentials, wage differentials are a more fundamental measure

of labour market discrimination (Cain, 1986). Not surprisingly, income inequality has long

been one of the critical topics in discrimination studies, in both theoretical and empirical re-

search. Wage discrimination against immigrants occurs when there is unequal treatment in

terms of wages which penalises immigrants in comparison to natives. The literature on income

inequality is vast. However, in this paper, my focus is limited to empirical studies considering

immigrants. In recent years, extensive empirical studies have examined income inequality

among immigrants in many countries. There is overwhelming evidence of the existence of an

immigrant-native wage gap, and various empirical studies have analysed that differential.

Empirical analyses of immigrant-native wage differentials started early. One classical work on

this topic is the seminal 1978 paper by Chiswick. His paper described a wage penalty of 3%

for immigrants in the U.S. as compared with comparable native-born individuals, even after

controlling for socio-economic characteristics. Other studies based on U.S. data have con-

cluded that immigration has a minor effect on the native-immigrant wage gap at the national

level (e.g., Ottaviano and Peri, 2008 and Card, 2009).

When it comes to empirical research on European countries, Kee (1995) conducted an early

empirical study to gain evidence on the native-immigrant wage gap in the Netherlands. The

131



microdata for natives and immigrants came from the 1985 Labour Supply Panel of the Or-

ganisation for Strategic Labour Market Research and the 1984 Quality of Life Surveys, re-

spectively. The results illustrated that discrimination existed against Antilleans and Turkish

male immigrant groups, but no sign of discrimination against Surinamese and Moroccans

was found. The Oaxaca decomposition method was applied to decompose the wage gap.

Education and experience were found to be main contributors to the gap.

Studies in the United Kingdom have also reported that immigrants suffer a wage disadvantage

compared to their native-born counterparts. Earlier studies reported that the wages of white

immigrants and white natives were almost the same, while non-white immigrants suffered

from a wage penalty (e.g. Chiswick, 1980 and Bell, 1997). Later, empirical evidence from

Miranda and Zhu (2013) suggested a causal effect of English as additional language (EAL)

on the native-immigrant wage gap for male employees. A composition-adjusted male native-

immigrant wage gap of 12% was found, and it was slightly below the raw wage differential.

However, after controlling for the EAL indicator, the gap virtually disappeared. They also

applied the IV strategy and demonstrated that a 23% causal negative effect on wages was

attributable to the EAL variable. This study potentially indicates that instead of discrimination

explaining all differentials, the language barrier could be an important factor contributing to

the native-immigrant wage gap.

Having experienced a large inflow of immigrants, and benefiting from a rich large-scale admin-

istrative dataset, Germany has provided relatively more fruitful empirical evidence on income

inequality for immigrants. Veiling (1995) analysed the native-immigrant wage gap for male

workers of different nationality groups using a 1% sample of IAB data for 1989. He first ap-

plied a tobit estimation procedure to the wage equation to measure wage discrimination itself

and then carried out the Oaxaca-Blinder decomposition. The results illustrated that different

endowments of human capital explained most of the wage differentials between natives and

foreign nationality groups.
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Lang (2000) used empirical data from the German Socio-Economic Panel for 1997 to analyse

the income disparity among ethnic groups in West Germany. Lang found that more than 75%

of the wage differential between natives and foreign nationalities could be explained by the

human capital gap and that statistically significant discrimination could only be measured

in the groups of ethnic Germans from Eastern Europe. Other studies adopting a similar

approach have also reported that immigrants suffer from a wage disadvantage in Germany

(Constant and Massey, 2005 and Büchel and Frick, 2005).

In a later empirical work by (Lehmer and Ludsteck, 2011), the wages of foreign and native

male employees were compared based on employment register data. The foreign workers

came from various Eastern and Western European states and entered the German labour

market from 1995 to 2000. Through Oaxaca/Blinder type decompositions, the researchers

found that Poles had the highest wage differentials, but in general, the wage gaps between

the targeted groups were relatively small. Then, via quantile decompositions, they found that

coefficient effects tended to be larger at the bottom of the wage distribution.

Hirsch and Jahn (2012) stated that observable productivity characteristics (including occupa-

tion) could explain approximately 14 to 17 percentage points of the wage differential, after

controlling for occupation. Then, from the view of unobservable, Nanos and Schluter (2014)

attempted to identify factors responsible for wage differentials between migrants and natives

based on differences in search friction, reservation wages, productivity, and other similar fac-

tors. They examined the native-migrant wage gap by applying a structural empirical general

equilibrium search model with on-the-job search, using a large-scale German administrative

dataset covering the period from 1975 to 2004. Counterfactual decomposition was then per-

formed to analyse the native-migrant wage differentials. Migrant effects of different occupation

groups were a particular focus. On average, the migrant effect accounts for 19.6% of the wage

gap, while the migrant effect for skilled workers contributed 12-15%, and for clerks and service

workers, the effect was 23-39% of the average.
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As richer datasets become available, more comparative empirical evidence is emerging,

as are data on other European countries previously lacking empirical findings on native-

immigrant wage differentials. Kahanec and Zaiceva (2009) were the first to comparatively

examine the roles of foreign origin and citizenship in the EU8 and EU15 labour markets; they

used EU survey data from 2005. Ordinary least squares and Oaxaca-Blinder decomposition

techniques using the Neumark (1988) method were applied to measure the native/non-native

labour market divide. The researchers found that foreign origin could have a negative impact

on employment for both genders in the EU15, and males of foreign origin also suffered from

an earnings penalty in the EU15. In the EU8, being both of foreign origin and foreign-born

negatively affected employment and wages for both genders.

Berman and Aste (2016) quantitatively examined the effect of immigration on wealth and

income inequality through a pure statistical framework. By using empirical data from the U.S.

(1986-2012), the UK (1990-2004), and Australia (1995-2005), which all witnessed a large

inflow of immigrants into the labour market, they concluded that there is a relatively small

direct effect of immigration on inequality in those destination countries where immigrants only

account for a small proportion of the total population.

Chletsos and Roupakias (2017) applied the Blinder-Oaxaca methodology and found that the

wage gap between natives and immigrants from non-EU countries is greater than that be-

tween natives and EU foreigners in Greece. Data from the 2009 Greek Labour Force Survey

were used for the analysis. They also found evidence that post-migration human capital is a

crucial wage determinant, particularly for non-EU immigrants. Moreover, post-migration expe-

rience is more important and offsets the effect of experience obtained in the country of origin.

In addition, for those who terminate education in Greece, labour market experience is what

makes the greatest difference.

Hofer et al. (2017) provided empirical evidence of the existence of a native-immigrant wage
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gap in Austria. They used combined information from labour force surveys and administrative

social security data and found a wage penalty of 15 percentage points for immigrants relative

to natives. Although the Oaxaca-Blinder decomposition indicated that much of the wage gap

could be explained by differences in human capital endowments and job positions, decompo-

sition methods using quantile regression suggest greater discrimination against immigrants in

the upper quantile of the wage distribution.

Taking advantage of the rich administrative dataset for Luxembourg, Sologon and Kerm (2018)

examined trends in income inequality from 1988 to 2009. Only a small overall increase in

income inequality was found, and the study listed three factors contributing to that growth:

decreased persistent inequality in native groups, a lower employment share of natives, and a

rapidly growing employment rate for cross-border workers.

In Denmark, Nielsen et al. (2004) analysed wage differentials through immigrant wage gaps

and gender wage gaps within immigrant groups in Denmark for the period from 1984 to 1995,

and they found a higher wage penalty for male foreigners. Later, based on Danish register

data for the period from 1995 to 2002, empirical evidence from Nielsen (2011) indicated the

probable existence of statistical discrimination against immigrants in Denmark. He found that

foreign-educated immigrants were more prone to over-education than either native Danes or

immigrants educated in Denmark. Over-educated workers earned slightly more than their

co-workers but less than they would have earned given their level of education, and foreign-

educated immigrants benefit the least from their over-education. This evidence all points to

a classic case of statistical discrimination; as mentioned earlier in this section, an employer

could devalue a candidate’s foreign education due to imperfect information and thus offer a

lower wage than the worker could have earned for this competency.

In summary, native-immigrant wage gaps have been observed in many studies. In empirical

works, wage discrimination can be expressed as the unexplained part of wage differentials.
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The explainable portion is often attributable to education, training, and other observed produc-

tivity characteristics. In this paper, I adopt a narrower definition of discrimination: Holding job

characteristics such as industry constant, only unexplainable wage differentials between na-

tives and immigrants working in the same industry are defined as discrimination. The question

of how workers obtain their job offers is not considered by this definition.

3.2.2 Background

Despite much empirical evidence on native-immigrant wage differentials, the question of how

discrimination against immigrants contributes to that wage gap does not have a clear answer,

as seen from the literature mentioned above. There is no doubt that different countries could

have unique immigration environments, and this fact could lead to a wide range of empirical

evidence. Therefore, it is reasonable to zoom my study in on a single country, given that

comparable cross-country datasets are inaccessible or unavailable.

With rich administrative data and rapid immigration growth, Denmark is an interesting case

to investigate. As demonstrated in the introduction, the number of immigrants entering the

labour market in Denmark increased dramatically starting in 2004, when EU enlargement

took place. Immigration fell after 2008, probably due to the financial crisis. The number of

immigrants started to grow again after 2009. In particular, 2009 was also the year when

Denmark opened its labour market to Eastern European countries.

Hence it is interesting to look into the increase of immigrant population within different groups

of countries of origins. In this paper, I followed the classification used by Malchow-Møller et

al.(2012) and group immigrants into four categories by country of origin: (1) classical EU-15

countries, plus Norway and Iceland; (2) new EU-12 countries (those that joined the EU in

2004 and 2007); (3) remaining developed countries (according to UN classification); and (4)

developing countries, including unknown countries of origin. As illustrated in Figure 3.2, since

2007, immigration from all ethnic groups has grown, with immigration from less developed
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countries increasing the most. Meanwhile, immigration from new EU-12 countries has grown

at a relatively rapid rate, which indicates that free movement has attracted more immigrants

to the Danish labour market.

Moreover, there was also a spike in the number of immigrants from EU15 and less devel-

oped countries from 2007 to 2008. As OECD reports on International Migration-Denmark

(2015) confirm, the significant increase in immigrant numbers during this period was mostly

a consequence of new legislation regarding residence permits for work or study in Denmark

(introduction of green card scheme in 2007). According to the report, the substantial increase

in long-term immigration in 2008 was due to a rise in the number of foreign workers, and

particularly workers from EU countries. I further divide the EU15 group into two groups: the

southern EU15, which contains Italy, Spain, Greece, and Portugal, and the remaining EU15

countries. The right-hand part of Figure 3.2 clarifies that the increased immigration from the

EU15 group was mostly attributable to arrivals from Germany, the UK, and France coming for

working purposes.

Figure 3.2

Changes in population distribution

The next step is to check further how the immigrant population was distributed within each

skill level. I classify skill levels according to educational background, and the classification
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scheme is described in detail in Section 3.5. In Figure 3.3, the share of immigrants over total

immigration under each skill levels and within different ethnic groups during 2004 to 2013 is

presented. As I can conclude from the comparisons, before 2007, immigrants from new EU12

countries were the smallest group of origin. The share of new EU12 immigrants increased

the fastest, especially in the low-skilled group. New EU12 immigration even exceeded EU15

immigration, with the former becoming the second largest group of origin in the low-skilled

immigrant category. The share of EU12 immigrants did not increase obviously in the medium-

skilled and high-skilled groups, but it did exceed the share of immigrants from remaining

developed countries after 2010.

Other groups of origin experienced less significant changes within the different skill levels, ex-

cept for immigrants from less developed countries. This group represents a major immigrant

population, but its share of the low-skilled group has been decreasing rapidly. This could be

the result of the rapid growth of new EU12 immigrants in the low-skilled group. Moreover,

the share of immigrants from less developed countries within the high-skilled group started

increasing after 2005. Together with EU15 immigrants, they form a major portion of the high-

skilled population. Since 2007, immigrants from less developed countries become the largest

group of high-skilled workers. This could be an indication of the success of immigration poli-

cies aiming to attract high-skilled workers. Therefore, I further consider the skill structure

within each group of origin to paint a more detailed picture.

To compare the skill structure of these groups, I move to Figure 3.4. Overall, EU15 immigrants

and arrivals from remaining developed countries share a similar skill structure and have expe-

rienced comparable trends. Furthermore, unlike the relatively steady share of native workers

and total immigrant workers in the medium-skilled group, the share of medium-skilled immi-

grant workers from EU15, new EU12 and remaining developed countries decreased, while it

increased within immigrants from the group of less developed countries. Specifically focusing

on the new EU12 group, the share of medium-skilled workers decreased significantly. More-
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Figure 3.3

over, for all groups, low-skilled individuals comprised the largest population segment since

2004. Regarding the low-skilled population, although accounted for the largest population

segment, all immigrant groups saw difference increases/decreases, and certain cases stand

out. Again, in the new EU12 group, the share of low-skilled workers increased dramatically

among the immigrant group of new EU12 countries. In EU15 and remaining developed coun-

tries groups, there were sharp increases from 2004 to 2007. In addition, different from all

other groups of origin, there was a drop in the share of low-skilled immigrant workers from

less developed countries. High-skilled workers were the smallest segment for all immigrant

groups, but it showed increasing trends over the period, except the new EU12 immigrants’

group.
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Figure 3.4
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Change in wage distribution

As Figures 3.3 and 3.4 illustrate, the distribution of the population across different ethnic

groups and different skill levels changed over the period of study. Therefore, I now examine

whether the wage distribution shifted correspondingly. From Figure 3.5, I observe that the

wage distribution for both natives and immigrants was flatter in 2013 than in 2004. More-

over, the native-immigrant wage gap decreased dramatically before 2007 and then started

to increase after that point. The gap emerged in 2009 and reached a peak in 2010, which

could be due to the change in the population distribution of the groups of origin or/and skill

structures among immigrants. As depicted in the lower part of Figure 3.5, the wage gap for

different wage quantiles appears significantly different. The gap between the two tails of the

wage distribution is larger than the medium-low and high-medium quantile wage difference

for both native and immigrant groups. Therefore, the native-immigrant wage gap can vary

depending on the wage quantile and is worthy of further examination.

Figure 3.5
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3.3 Motivation and hypothesis

3.3.1 Motivation

With the large inflow of immigrants representing different ethnic groups and skill levels, it is

worthwhile to analyse the native-immigrant gap for different groups of origin and different skill

levels for the Danish labour market from 2004 to 2013. Years that saw major changes, such

as 2009 and 2010, when the free movement was introduced, are of particular interest.

Several studies have empirically analysed income inequality in Denmark (e.g. Nielsen et al.,

2004 and Nielsen, 2011); However, except for Nielsen et al. (2004), empirical evidence on

wage differentials by migration status is very scarce, not to mention empirical evidence for the

period after EU enlargement. This research gap provided an incentive to conduct such an

empirical study for the period from 2004 to 2013.

Furthermore, the substantial increase in immigration could have had an impact on the skill

structure in the local labour market in Denmark. As discussed in the literature (e.g., Nanos

and Schluter, 2014), the effect of immigration on native-immigrant wage differentials can vary

depending on the skill group. This has also been empirically confirmed by Liu et al. (2004).

They performed an empirical analysis on the intra- and inter-occupational wage gap between

immigrants and the natives based on Hong Kong 1996 census data, and they found different

occupation distributions between immigrants and the native-born. These arguments strongly

motivate a more inside look into the native-immigrant wage gap within different skilled groups

in Denmark.

Therefore, in this paper, I focus on the following questions on native-immigrant wage gap and

whether potential wage discrimination against immigrants existed:
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1. How native-immigrant wage gap in the labour market in Denmark changes from 2004 to

2013, especially after EU enlargement in 2004 and 2007, and free movement took place

in Denmark in 2009 (namely, the year of 2004, 2007, 2009, 2010 (one year after free

movement), and 2013).

2. Whether potential wage discrimination4 against immigrants exists during the study period,

if it exists, how it changes.

3. How the native-immigrant wage gap and potential discrimination described in the first and

second question vary within different skill levels and under each group of the countries of

origins.

Following the empirical strategies adopted by many similar studies on native-immigrant wage

gaps, I apply decomposition techniques in this paper to analyse the native-immigrant wage

gap for various skill levels. Moreover, in order to examine the degree of discrimination against

different nationalities, I also focus on particular groups of origin, such as new EU12 countries

and less developed countries. Given that the wage gap differs by wage quantile, as demon-

strated in Figure 3.5, a decomposition on the quantile regressions is also performed to gain

a fuller picture of the whole wage distribution. To be more specific, an Oaxaca-Blinder de-

composition is used for the analysis of the mean wage gap; then, decomposition based on

conditional quantiles is performed. The decomposition framework is presented in the later

methodology section (3.4).

4When I use the term "discrimination" in this paper, I refer to the remaining component after I have controlled

for all possible factors in the wage model I can obtain. This term is not the same as the general political definition

in practical.
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The findings from this study contribute to the wage inequality literature on the labour market

in Denmark, mainly it addresses the research gap of the relevant studies on the period after

EU enlargement. Further, empirical evidence obtained provides comprehensive insights into

native-immigrant wage gap and potential discrimination against immigrants, at different skill

levels as well as within different ethnic groups are obtained.

3.3.2 Hypothesis

According to the research questions of how native-immigrant wage gap and potential wage

discrimination against immigrants varies under different skill levels and within different ethnic

groups, I proposed the two hypothesis (H1 and H2), for the situation under different skill levels

and different ethnic groups separately. Both hypothesises are based on theoretical models of

statistical discrimination and taste-based discrimination (discussed in Section 3.2)

Before a detailed discussion on the hypothesis, I firstly start with all immigrants of all skill

levels, the theory of demand and supply suggests that the increased number of immigrants

and their relatively low bargaining power should result in immigrants earning lower wages

than natives. While the conditions for the native group remain stable, the native-immigrant

wage gap could grow. Regarding the discrimination issue, both taste-based and statistical

discrimination could occur in this case. With more immigrants arriving, employers could grow

more prejudiced against the immigrant population or have imperfect information on immigrant

workers’ qualifications; these outcomes would result in discrimination positively contributing

to the wage gap. Therefore, the hypotheses based on my research questions are as follows:

H1: The higher the skill level is, the larger the wage gap and potential statistical discrimination

could present.

In this paper, firstly, I consider the skill levels individually. For low-skilled immigrants, qualifica-

tions and productivity-related ability are not a strong requirement for low-skilled work. Hence
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the native-immigrant wage gap could be small and mainly due to discrimination. With more

low-skilled immigrants arriving in the country, competition might deepen among low-skilled im-

migrants, which could result in lower wages. However, natives’ wages could also be affected,

so the direction of change for the wage gap between low-skilled natives and immigrants is

unclear. However, as taste-based discrimination increases, the wage gap will increase.

Then, for the medium-skilled group, which is the largest category for the native working popu-

lation and accounts for a vital proportion of immigrant, statistical discrimination can play a role

in terms of the native-immigrant wage gap. Productivity-related characteristics play a more

significant role in wage setting for medium-skilled jobs than for low-skill jobs. When an em-

ployer devalues the overseas education background of an immigrant worker, his or her wage

could be lower than that of a native with similar capabilities and comparable education back-

ground. Given that the share of medium-skilled immigrants remained relatively steady though

slightly from 2004 to 2013, the wage gap might also be stable due to the unchanged discrimi-

nation level. However, due to assimilation effects, the wage gap might decrease. Moreover, a

demand-supply-type impact could also play a role in the wage gap.

For the high-skilled group, statistical discrimination might be greater; hence, the high-skilled

native-immigrant wage gap might be affected by this factor to a greater degree than for the

other two skill groups. Wages are mainly determined based on productivity for high-skilled

work; thus, the wage gap might be larger due to employers’ imperfect information on foreign

candidates’ education or working background. With a large inflow of high-skilled immigrants,

holding the discrimination level unchanged, the wage gap might increase according to the

supply-and-demand theory. While Denmark has implemented various immigration policies

to attract high-skilled immigrants, the bargaining power of high-skilled immigrants is relatively

stronger than that of immigrants from the other two skill level categories; hence, the policy can

play an important role in decreasing the wage gap, especially when the share of high-skilled

immigrants falls.
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H2: The more distant5 the immigrant’s home country from Denmark, the more positive the

discrimination.

In addition to my focus on different skill levels, I also compare the wage gap between natives

and different immigrant groups of origin to examine the discrimination level faced by different

nationalities. After 2009, the large inflow of low-skilled immigrants from new EU12 countries

could have caused an increased wage gap and more discrimination. As compared in Figures

3.3 and 3.4, the EU15 and remaining developed countries groups shared similar skill struc-

tures, with these populations consisting of a higher proportion of high-skilled immigrant than

seen in the native group. Therefore, the mean wage of immigrants from EU15 countries and

remaining developed countries could be higher than those of native workers; in this scenario,

the native-immigrant group would be negative. Lastly, the wage gap between natives and

immigrants from less developed countries could fall due to the increase in the high-skilled

population share. For all groups of origin, statistical discrimination could exist and contribute

to the wage gap. An employer could undervalue qualifications acquired in less developed

countries while overvaluing the education background of those from other areas with, for ex-

ample, more well-known universities. Differences in terms of cultural background also affect

the level of statistical discrimination.

To conclude, the hypotheses on the size of the wage gap between natives and different ethnic

groups are based mainly on my principal investigation of wage differentials for various skill lev-

els. The unique skill structure of each group of origin could explain the corresponding native-

immigrant wage gap. According to the theoretical definition of statistical discrimination, larger

cultural differences could cause more statistical discrimination. I tested these hypotheses by

applying decomposition techniques to my empirical procedures using the Danish dataset. I

present the decomposition methodologies in the following section; then I describe my dataset

for the empirical analysis in Section 3.5.

5In this paper, "distant" is measured in the aspect of cultural and economic levels.
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3.4 Decomposition methodologies

In general, discrimination in labour economics can be identified by comparing the estimated

coefficients of wage equations. A likelihood-ratio test for the restriction of equal parameters

for the native group and foreigners group was carried out for this purpose. However, if positive

and negative discrimination were coinciding, the rejection of equal parameters would still not

indicate that discrimination was at work. The typical approach used for studying earnings

differentials between immigrants and natives is to estimate earnings equations for the two

groups separately using OLS and to then decompose the mean differences between them

(Blinder, 1973; Oaxaca, 1973; e.g. Miller and Chiswick, 1985). I employed such typical

procedures and then decomposed the whole wage distribution to further investigate the wage

gap at the top and bottom of the distribution.

The problem of lack of causal interpretability in conventional decompositions is discussed in

relevant studies, such as Huber (2015). He argues that in both linear and nonparametric

decompositions, this concern usually arises. The problem comes from the choice of group

variables, such as gender or ethnicity which is determined at or even before birth. If the target

component is explained by the observed characteristics that are determined before the group

variable, the decompositions would bear a causal interpretation in some cases. In this study,

I chose immigrant status as the group variable. Unlike gender and ethnicity, immigrant status

is not determined before birth and can be decided. For this reason, the argument from Huber

(2015) on causal interpretability might not apply in this paper.

Therefore, I carried out a decomposition of wage differentials into an endowment component

and a discrimination component, following the approach in Oaxaca (1973) and Blinder (1973).

Then I applied Melly (2005) decomposition approach based on quantile regressions to inves-

tigate the native-immigrant wage gap for the whole wage distribution.
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3.4.1 Oaxaca-Blinder decomposition

I first employed the decomposition method developed by Oaxaca (1973) and Blinder (1973).

This approach can be used to obtain the average wage differential between natives and immi-

grants in a productivity-related difference(∆x) and a so-called discrimination component(∆u).

Assume two disjoint groups, N and I. Formally, let g ∈ N, I, where g is a group indicator (e.g.,

0 for natives and 1 for immigrants). Furthermore, let WN be the wage of a native (g = N), and

WI be the wage of an immigrant (g = I). The starting point is the so-called Mincerian wage

equation (Equation 3.1), which is separately estimated for each of the two groups(N and I).

Wg = Xgβg + ug (3.1)

Where the log hourly wage (Wg) for group g is a linear function of a set of variables denoted

by X. In turn, X is a vector of productivity-determining characteristics, while β is a vector of

the OLS wage regression coefficients. Then, the average wage gap can be decomposed in

the following way:

WN −WI =XN β̂N −XI β̂I (3.2)

=(XN −XI)β̂N +XI(β̂N − β̂I) (3.3)

=(XN −XI)β̂I +XN(β̂N − β̂I) (3.4)

According to the Oaxaca-Blinder decomposition method, the income gap between labour

groups is due to two factors: First, the different characteristics of human capital and em-

ployment units. Second, the labour market’s discrimination against specific groups. The

bar notation indicates that the log wage differential is evaluated for persons with the char-

acteristics of the average wage earner. Equations 3.2-3.4 decompose the native-immigrant

observed wage differential into a component resulting from differences in personal character-

istics and into a component due to discrimination. The decomposition requires an estimate

of the non-discriminatory wage structure. In this study, the native group comprised the non-

discriminatory group. Thus Equation 3.3 was applied for the Oaxaca-Blinder decomposition
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in the empirical applications. Therefore, I rewrote Equations 3.3 and obtained Equation 3.5:

∆x =(XN −XI)β̂N

∆u =XI(β̂N − β̂I) (3.5)

Where ∆x represents the share of the average wage gap due to the different endowments of

the two groups with productivity-related characteristics, and ∆u represents the unexplained

residual. It covers all unobservable differences between natives and immigrants. The dis-

crimination component is included in these unobserved effects. ∆u may overstate actual

discrimination if there are important unobserved qualification variables (for instance language

proficiency), see, e.g. Altonji and Blank (1999). Due to the data availability, I use variables

which captures part of the information as proxies for those unobserved factors, e.g. lan-

guage. In this paper, the term ”potential discrimination” refers to the unexplained component

∆u. Besides, since the decomposition approach is based on the mean differences between

native and immigrant groups which are calculated from the separate earning equations, the

explanatory variables X are the same for both groups. The choice of explanatory variables

X is further discussed in Section 3.5. Positive potential discrimination indicates that the im-

migrant should have received more with their current characteristics, while a negative sign of

∆u shows an indication that immigrants are paid too much compared to their characteristics.

3.4.2 Counterfactual wage distributions

Linear regression models are only based on the regression on the mean of wages, and so

as to the decomposition models based on OLS regressions, e.g. the Oaxaca-Blinder model.

Rather than relying on the mean, empirical researchers have increasingly been focusing on

the entire wage distribution and the associated decomposition procedures (see Fortin et al.,

2011). The quantile regression methodology, proposed by Koenker and Bassett (1978), al-

lows the characteristics of individuals to have different impacts at various points of the wage

distribution. Consequently, these factors can have effects on the implied decompositions at

each point, thus allowing an examination of impacts at the top and bottom of the distribution.
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Methods of decomposition based on conditional quantiles have been proposed in studies such

as Melly (2005), and Machado and Mata (2005). The approach by Melly (2005) overcomes

the problem of crossing quantile curves, and discusses more efficient ways in computing dis-

tributions than the approach by Machado and Mata (2005) (Fortin et al., 2011). The method

in Melly (2005) is also less restrictive than the JMP (Juhn et al.,1993). In Melly (2005), pro-

cedures are developed to convert a conditional distribution to an unconditional one, and this

allows the characteristics to influence the whole conditional distribution of W . Therefore, in

this paper, I follow the approach by Melly (2005).

Even though that it is much more difficult to decompose quantiles than the mean, the overall

decomposition strategy for conditional quantiles for this study is similar to the idea used

in Oaxaca-Blender approach. It is briefly presented as follows: Step 1: Obtain estimation

results from conditional quantile regressions for both native and immigrant groups.

Step 2: Obtain estimation results from the counterfactual distributions. Procedures based on

transforming a wage observation into a counterfactual observation is the object of interest in

this step.

Step 3: Calculate and decompose wage differences by using results from step 1 and 2.

To start, the conditional quantiles, which later decomposition is based on, is defined in Eq.

3.6 :

F−1Wg |Xg
(τ |Xg) = Xg · βg(τ) (3.6)

where in my application, W represents the log hourly wage, X is a row vector of wage co-

variates (e.g. education level, experience, etc.), and, g is a group indicator (e.g. 0 for natives

and 1 for immigrants). F−1Wg |Xg
is the τ th quantile of Wg which is conditional on Xg. Linearity

is assumed between the quantiles of Wg and Xg, and this assumption can be relaxed by the

use of dummy variables, polynomial expansions and interaction terms.
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It is difficult to estimate an entire conditional distribution function for each value of (Wg|Xg),

because one needs to know the entire conditional distribution of FWg |Xg . Thus the conditional

distribution cannot be directly used to the decomposing the changes in wage distribution,

and the unconditional quantiles of Wg are needed for decomposition procedures. Follow

the approach in Melly (2005), the unconditional distribution is obtained by integrating the

conditional distribution over the whole range of the distribution of the regressors. Let q0 be the

θ th quantile of Wg, q0 = F−1Wg
(θ), then

θ =

∫
1 · (Wg ≤ q0) dFWg(Wg) (3.7)

After changing the variable integrations in Eq. 3.7, one can obtain the following Eq. 3.8

θ =

∫ (∫ 1

0

1 ·
(
F−1Wg |Xg

(τ |Xg) ≤ q0

)
dτ

)
dFXg (3.8)

Define that {Wgi, Xgi}ni=1 is an independent sample, βg = {βg(τ1), · · · , βg(τJ)}, and that τj

is the equidistant grid point. Let the linear quantile regression be estimated at J equidistant

grid points. Next, replace F−1Wg |Xg
(τj|Xg) by its consistent estimate Xgβ̂g(τj), and the sample

analogue of q0 is then given by Eq. 3.9

q̂
(
β̂g, Xg

)
= inf

{
q :

1

n

n∑
i=1

J∑
j=1

(τj − τj−1) · 1 ·
(
Xgiβ̂g(τj) ≤ q

)
≥ θ

}
(3.9)

Therefore, q̂ is the θ th quantile of Wg. Then, step 2 can be performed to obtain counterfactual

distribution for the decomposition of wage differences. Same as in mean-based decomposi-

tion procedures, here I also use native group as a reference group for quantile decomposition.

Hence, the counterfactual distribution in my application is the distribution of W for the native

group N if its distribution of characteristics would be as in the immigrant group I. I construct

the counterfactual distribution based on Eq. 3.9

q̂
(
β̂I , XN

)
= inf

{
q :

1

n

n∑
i=1

J∑
j=1

(τj − τj−1) · 1 ·
(
XNiβ̂I(τj) ≤ q

)
≥ θ

}
(3.10)

Then the counterfactual distribution can be obtained by computing q̂
(
β̂I ,XN

)
in Eq. 3.10

for all θ, and using the estimated coefficients for group I and observed X from group N .

q̂
(
β̂N , XI

)
is the θth quantile of this counterfactual distribution of wages.
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The total estimated differential can be finally decomposed as :

q̂
(
β̂N , XN

)
− q̂

(
β̂I , XI

)
=
[
q̂
(
β̂N , XN

)
− q̂

(
β̂I , XN

)]
+ [q̂

(
β̂I , XN

)
− q̂

(
β̂I , XI

)
] (3.11)

Where XN and XI are vectors with the characteristics of native and immigrant separately,

βN and βI are the estimated coefficients on characteristics. q̂
(
β̂N , XI

)
is the counterfactual

earning distribution of individuals with characteristics in the native group. In other words,

what would have native earned if they were in the immigrant group. Eq. 3.11 allows us to

decompose the difference between native and immigrant wages (the left-hand side of Eq.

3.11) into the two factors that appear in the two brackets of the right-hand side of Eq. 3.11.

The first bracket captures the effect of coefficients, and the second captures the effect of

characteristics (the explained component). The explained components explain the part of

wage gap which is due to the different endowments of the two groups with productivity-related

characteristics, and the effect of coefficients represents the unobserved effects which cannot

be explained by the characteristics in X. The characteristics effect and the coefficient effect

in Eq. 3.11 have similar indication as the terms ∆x, and ∆u discussed in Eq. 3.5. Moreover,

the coefficient effect is regarded as "potential discrimination" in the later empirical analysis.

Again, a positive coefficient effect indicates that the immigrant in paid less compared to their

current characteristics, while a negative coefficient effect shows that immigrants received too

much than they would have.

3.5 Data

My empirical analysis was based on administrative data from Statistics Denmark(DST). As

the data were register based, measurement problems were negligible. I used individual data

as well as linked employer-employee data from the IDA to perform analyses on the native-

immigrant wage gap using Oaxaca-Blinder and Melly (2005) decomposition methods. As
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already mentioned in Section 3.2, given the differences in female labour market participation

in Europe, I only concentrated on full-time male workers aged between 18 and 64 years. I

used the full population of both natives and immigrants for my empirical analysis. Benefiting

from the rich DST data, my sample included 5,189,960 observations for male individuals of

working age from 2004 to 2013. The sample contained 1,184,092 individuals in total, including

1,102,490 natives and 81,732 immigrant workers. The immigrant workers accounted for 6.9%

of the total working population.

Regarding the immigrant-related identifiers, I used three primary ones in this paper: immigrant

indicator, country of origin, and indicators for each ethnic group in the immigrant population

I adopted for the empirical analysis. Firstly, I used the definition of the term immigrant given

by DST: Immigrants are born abroad, and neither parent is either a Danish citizen or born

in Denmark. If there was no information about either parent and the person had been born

abroad, he or she was also regarded as an immigrant. Moreover, the country of origin of

an immigrant was based on his parents’ countries of birth: When none of the parents is

known, the country of origin is defined based on the person’s own information. If the person is

immigrant, it is assumed that the country of origin is equal to the birth country. When only one

of parents’ information is known, the country of origin is defined based on the known parent.

When both parents are known, the country of origin is defined based on the mother’s country

of birth or the country of citizenship respectively. Then, I followed the classification used

by Malchow-Møller et al.(2012) and grouped the immigrants into four categories by country

of origin: (1) classical EU-15 countries, plus Norway and Iceland; (2) new EU-12 countries

(those that joined the EU in 2004 and 2007); (3) remaining developed countries (according

to classification by the UN); and (4) developing countries, including unknown countries of

origin. As illustrated in Figure 3.3 in Section 3.2, immigrants from less developed countries

accounted for a major immigrant population.

The dependent variable of the framework is the hourly wage (log). I calculated the hourly
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wage using the observation’s total contribution divided by the total number of hours worked

during the year; the variables used for the computation came from the linked IDA employer-

employee data. Wages for all years were deflated by the average CPI of the year. The choice

of independent variables for the wage decomposition was essential. In this study, I included

the major variables chosen by similar studies. Productivity-based and qualification-related

characteristics were selected to explain part of the wage gap. To be more specific, dummies

of different age groups (e.g., 18-24 years, 25-29 years, and 30-39 years), education levels,

marital statuses, city sizes, experience levels, union statuses, firm sizes, and industry sectors

were chosen as explanatory variables. The summary statistics and sensitivity analysis on the

selected variables are presented in the Appendix.

Education level was a key variable in my analysis. Education is an essential identifier to

classify an employee’s skill level. I classified education according to three levels: basic edu-

cation (low skilled), vocational education (medium skilled), and higher education (high skilled)

according to International Standard Classification of Education codes. However, the measure-

ment error in the immigrant sample was relatively high compared to it was the native sample.

Data on immigrants’ education backgrounds prior to entering Denmark were obtained mainly

from DST surveys. There are more missing data on the educational variable in the immigrant

sample than they are in the native sample, but the problem is not severe in general, only 3.4%

missing for immigrant sample over the whole period while the native sample contains 0.71%

missing value on education variables. However, large missing data within the education vari-

able were found in the immigrant sample in the year 2010, 27.45%, due to a change of the

coding of the variable. Therefore, I performed correction procedures on the education variable

in the year 2010 for the immigrant sample. I replaced the missing education data in 2010 with

basic education if the person was basic education in 2009 or 2011, because all observations

are full-time working population. As long as one is continuously observed in the dataset, the

education status cannot be changed. After the correction approach done on the education

variable, the missing value in the immigrant sample for all years reduced to 1.33%, and for
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the year 2010, it reduced significantly, from 27.45% to 10.59%. The comparison table of the

education variables before and after correction is included in the Appendix.

3.6 Empirical results and discussions

Based on the Danish data, I performed decomposition procedures to analyse the native-

immigrant wage gap. In this section, I present the empirical results obtained using the de-

composition approaches I discussed in Section 3.4: firstly, I performed an Oaxaca-Blinder

decomposition to decompose the native-immigrant wage gap based on the mean for a base-

line check, and then I focused on Mellys (2005) approach to examine the gap for all wage

quantiles. The key analysis was based on the Melly approach. This section concludes by

further discussing the results obtained from the above two approaches. To examine and com-

pare the discrimination level for different skill levels and ethnic groups, for both decomposition

approaches, I perform the decomposition on the whole sample, then on subsamples for the

various skill levels, and finally, on subsamples combining natives and each group of origin.

Results are reported for selected years: 2004, 2007, 2009, 2010, and 2013. The choice of

years is based on the discussion in Section 3.2. The EU enlargement took palace in 2004 and

2007; then, in 2009, the labour market freely opened to Eastern EU workers. That year saw

an enormous inflow of immigrants, especially immigrants from the low-skilled group. In 2010,

one year after the free movement, the share of low-skilled immigrants reached a relatively

high point. Finally, I was also interested in the results for the most recent year in my sample,

2013.

3.6.1 Oaxaca-Blinder decomposition

Before I performed the Oaxaca-Blinder procedures, according to the framework in Section 3.3,

I firstly set natives as the reference group for the decomposition. Then, based on the Mincer

155



wage equation, I predicted the mean wages for different skill levels and ethnic groups; I then

performed the decomposition for the corresponding samples. Full regression results as well as

additional detailed results from the mean predictions for native and immigrants of different skill

levels and each group of origin are in the tables in the appendix; the results are also organised

by skill level for each group of origin for purposes of comparison. I concluded that the high-

skilled group earned the most compared to all other skill groups. Moreover, to compare across

groups of origin, immigrants from remaining developed countries had the highest wages. I

then decomposed the native-immigrant wage gap under different skill groups for all groups of

origin and the wage gap within each group of origin for all skill levels individually. In this paper,

I focus on comparing the results from these two samples to check how the discrimination level

differs according to the skill group and group of origin.

Figure 3.6: Wage gap decomposition under different skill levels

Figure 3.6 provides the decomposition results for all immigrant groups of different skill levels.

Additional decomposition results for the various skill levels within each group of origin are

presented in the appendix. As Figure 3.6 makes clear, for the sample of natives and all

immigrants of all skill levels, the native-immigrant wage gap slightly increased beginning in

156



2004, while the unexplained effects, which I regarded as discrimination, decreased over the

study period and even became negative (-0.006 log pp, and the estimates were significant)

in 2013. The effects of characteristics were stronger than those of discrimination during the

period.

Then I move to the separate skill groups. As seen in Figure 3.6, the low-skill group had a

less clear trend in terms of wage differences over time, and the unexplained coefficient was

insignificant in 2004. The large inflow of low-skilled immigrants could have significantly influ-

enced the wage distribution for this immigrant group, and the Oaxaca approach was only the

mean decomposition. However, I also investigated whole quantiles for this group later in the

decomposition based on conditional quantiles. While one can observe from the comparison

of the results for 2004 and 2007 that as the share of low-skilled immigrants from new EU12

countries increased rapidly, the native-immigrant wage gap became more negative, and the

explanatory power of discrimination component was likewise increasing. The changes in the

wage gap and discrimination effects during the period for the medium-skilled groups were

clear. The gap increased, as did the discrimination effect meanwhile the share of immigrants

from EU12 countries with that skill level declined significantly. Regarding the high-skilled, the

size of both native-immigrant wage gap and unexplained component showed vibrate changes

over the period, particularly from 2007 to 2009, decreased fast until 2009 and then started

increasing slowly. If I compare across the skill groups, I see that the low-skilled group had

the smallest wage gap in terms of absolute value. The high-skilled group had the largest

wage gap and the highest discrimination level except in 2009; In 2009, the medium-skilled

group had the greatest wage gap and highest discrimination level. Moreover, after the skill

level was controlled, the explained component became very small. Therefore, the results also

indicated that education, which determined the skill level in this paper, explained most of the

characteristics effect.

Given that none of the total shares of natives and immigrants at each skill level changed dra-
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matically since 2004, only the share of groups from different countries of origin within each

skill level fluctuated during the whole period instead, I assume that country of origin plays a

key factor on the changes; Hence this gives the reason to examine the native-immigrant wage

gap further from the aspect of countries of origin. The results of the native-immigrant wage

gap decomposition for different groups of origin for all skill levels are outlined in Figure 3.7.

The EU15 group and the remaining developed countries had negative wage gaps and dis-

crimination effects, and the effects of discrimination outweighed the effects of characteristics

in all cases. Moreover, the wage gap showed smooth changes over the study period. In terms

of the rapid growth in the new EU12 group, the wage gap was positive and increasing; it was

larger than that for the EU15 group and the immigrants from remaining developed countries.

The estimations for unexplained differences in all study years were significant, unlike the EU15

group and the remaining developed countries, only minor negative discrimination was found

in some cases. Regarding the group from less developed countries, both a positive wage

gap and positive discrimination were identified by the decomposition, although these values

slightly decreased during the study period. Moreover, the wage gap and the discrimination

level were the highest seen for any group of origin in most years except in the year 2009.

From the above results, I can conclude that as regards the different skill levels, the mean wage

differentials for the low-skilled groups were the smallest differentials in most cases. Potential

discrimination dominants in the medium- and high-skilled groups. This finding is consistent

with my hypothesis presented in Section 3.3. In terms of groups of origin, I found that EU15

and remaining developed countries had negative mean wage gaps and discrimination, while

new EU12 immigrants and the group from less developed countries presented a positive wage

gap and discrimination in most cases. Except for the new EU12 group, discrimination effects

were no less than the effects of characteristics in most cases. Instead of ignoring extreme

cases within the distribution, which were not surprising given the substantial inflow of immi-

grants, I was also interested in examining the native-immigrant wage gap for the whole wage

distribution. Therefore, I then performed decomposition based on conditional quantiles to gain
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a complete picture of the wage gap and discrimination for different wage quantiles.

Figure 3.7: Wage gap decomposition under different ethnic groups

3.6.2 Melly decomposition

Moving beyond the analysis based on the mean, I now focus on the entire wage distribu-

tion. The decomposition approach proposed by Melly (2005) was applied for my empirical

analysis. Similar to my approach to the Oaxaca-Blinder procedures, again, I first decom-

posed the native-immigrant wage gap for all immigrants to obtain an overall picture. Then, I

decomposed the gap for different skill levels and groups of origin to gain a detailed picture

of the wage gap. With decomposition based on conditional quantiles, I acquired further in-

formation on the wage gap at different wage quantiles. As a departure point, I checked the

cumulative density function of wages. As illustrated in Figure 3.20 in the appendix, natives

earned higher wages than immigrants in most wage quantiles from 2004 to 2013. I, therefore,

defined natives as the non-discriminatory group for the decomposition, just as I did for the

earlier Oaxaca-Blinder decomposition. I then approximated the conditional wage distribution

with 100 quantile regressions (standard STATA procedures); statistical inferences were based
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on bootstrapped standard errors. Fifty bootstrap replications (standard STATA procedures)

were used to obtain an estimate of the variance of the estimators. Most estimations were

significant. The bootstrapped results and figures presenting the discrimination effects with

confidence intervals are presented in the appendix.

All groups of origin and all skill levels

I started the decomposition with the sample of all skill levels and all groups of origin. Figure

3.8 provides an overview of the native-immigrant wage gap and the extent to which the dis-

crimination component contributed to the gap for all immigrants of all skill levels and groups of

origin. Firstly, I focused on the middle quantile (the q20-q80 range, the middle section of the

graphs). A clear trend was evident: The coefficient effects, which were regarded as potential

discrimination in this study, increasingly contributed to the wage gap from 2004 to 2013. After

2007, the effects of discrimination even exceeded the effects of characteristics and dominated

the wage effect thereafter. Unlike minor negative discrimination in some cases I observed from

the Oaxaca-Blinder decomposition, the discrimination level was positive for the middle range

of the quantile. Since 2009, the effects of discrimination even exceeded the effects of charac-

teristics and dominated the wage effect thereafter. I next examined each tail of the distribution.

Less discrimination and a smaller wage gap were found at lower quantile, and the case is dif-

ferent for the higher quantile, where coefficient effects explained almost the entire wage gap

and potential discrimination had a stronger impact on the wage gap than characteristics. The

wage gap for those earning lower wages was mainly explained by productivity-related charac-

teristics, and these individuals experienced less potential discrimination than foreign workers

within the lower wage quantiles. The negative discrimination for the entire immigrant group in

2013 that I identified via the Oaxaca decomposition was observed for the lower quantiles in

that year.

As discussed in Section 3.2, during the study period, the share of low-skilled immigrants from
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2010 2013

Figure 3.8: Native-total immigrants wage gap decomposition in all skill levels 2004-2013

new EU12 countries increased dramatically. In fact, low-skilled immigrants were the chief

immigrant segment in all years, while the share of low-skilled immigrants from less developed

countries decreased over the same period. Again as mentioned in empirical analysis from the

Oaxaca-Blinder approach, could the potential increased discrimination effects derive from the

change of population distributions on country of origin? Some empirical evidence was found

through significant estimates obtained from the Oaxaca decomposition for comparisons of

different years, but they were only based on the mean. Therefore, I performed the Melly

decomposition for different skill groups for all immigrants to check how the discrimination level

changed according to skill level.
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Individual skill levels

Figures 3.9, 3.10 and Figure 3.11 offer the results for the native-immigrant wage gap decom-

position for each skill level for all immigrants for 2004-2013. If I compare skill groups, the

medium-skilled and high-skilled groups had larger wage gaps and faced more discrimination

than low-skilled workers. This finding is consistent with my previous hypothesis and the re-

sults of the Oaxaca-Blinder decomposition. For a job with stricter requirements in terms of

qualifications and educational background, stronger statistical discrimination could exist to-

wards immigrants with relevant foreign experience. Another commonality across the three

skill levels was that the effects of discrimination were larger than the effects of characteristics.

In other words, potential discrimination played an important role for each skill group from 2004

to 2013 for the middle wage quantiles.

Unlike the clear increase in positive discrimination after the year 2007, after I controlled for

skill (education), the native-immigrant wage gap in the low-skilled group became negative

in particular range of quantiles in all years. This outcome was also in accordance with the

Oaxaca results for the low-skilled group. For the middle wage quantiles, before the year

2009, potential discrimination explained more proportion of the wage gap, and it was negative.

Then, since 2009, the coefficient effect for this quantile became positive. Regarding the small

decrease in the share of low-skilled immigrants after the year 2007, the wage gap also turned

positive. However, the wage gap became negative again in 2013. In most years except the

year 2004 and 2013, the effects of characteristics explained little of the wage gap for the low-

skilled group; this indicated that education played an important role in explaining the wage

gap and was again consistent with the findings of the Oaxaca decomposition. The native-

immigrant wage gap for middle-wage quantiles in the medium-skilled group was flatter across

the quantiles than for the low-skilled group. In addition, as an important contributor to the

wage gap, discrimination exhibited decreasing effects until 2010; the wage gap decreased as

well. However, in 2013, the coefficient effect increased again. The effects of characteristics
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Low-skilled 2004 Medium-skilled 2004 High-skilled 2004

Low-skilled 2007 Medium-skilled 2007 High-skilled 2007

Low-skilled 2009 Medium-skilled 2009 High-skilled 2009

Figure 3.9: Native-total immigrants wage gap decomposition in each skill level 2004-2009
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Low-skilled 2010 Medium-skilled 2010 High-skilled 2010

Low-skilled 2013 Medium-skilled 2013 High-skilled 2013

Figure 3.10: Native-total immigrants wage gap decomposition in each skill level 2010-2013
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were relatively steady over the years and generally explained a minor portion of the wage gap.

I then investigated the high-skilled group. Similar to the medium-wage group, the level of dis-

crimination decreased until 2009; it then grew again in 2010 and 2013. Since 2007, with the

slight increase in the share of high-skilled immigrants, the effects of characteristics became

negative after approximately the 60th quantile, and in the year 2013, the effects of character-

istics explain more of the wage gap than potential discrimination does. This might explain why

in the Oaxaca decomposition, the gap for the medium-skilled group was much larger than that

for the high-skilled group after 2009. In the quantile decomposition, the negative wage gap

for the upper quantile within the high-skilled group lowered the mean wage gap.

If I consider the results at the tails of the wage distribution in Figure 3.11, I find that in the

lower tail of the low-skilled group, on average, the discrimination level was negative, and it

was relatively large in absolute terms as compared with that seen for the middle and upper

quantiles within the group. The same was true for the high-skilled group, except for the di-

rection of discrimination. The medium-skilled group also faced high positive discrimination at

the tails, but it is at both low and high quantiles. For the low-skilled groups, the discrimination

level did not change over the years.

In summary, on average, the wage gap and discrimination level for low-skilled immigrants

in the low-skilled group was lower than for medium- and high-skilled immigrants within the

medium- and high-skilled groups, respectively. The increased power of discrimination ob-

served in Figure 3.8 for all immigrants can be explained partly by the increase in the share

of low-skilled immigrants. However, as the discrimination effects were greater than the char-

acteristics effects in most cases for all three skill levels, and as the discrimination level in the

low-skilled group was increasing, it was relatively small compared to the medium- and high-

skilled groups, which both were decreasing at the same time. Another point regarding the

low-skilled immigrant group is that the sign of the direction of discrimination changed with the
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Total immigrants from all skill levels Total low-skilled immigrants

Total medium-skilled immigrants Total high-skilled immigrants

Figure 3.11

share of low-skilled immigrants within each group of origin. Therefore, it is difficult to judge

at this stage whether the increase was purely due to low-skilled immigrants. Discrimination

against certain nationalities could play a role as well, as the skill structure of the population

varied within each group of origin.

Individual groups of origin

According to the above arguments, I performed decompositions within the individual groups of

origin for all skill levels to check whether discrimination levels varied by region of origin. Since
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the EU15 group and the remaining developed countries shared similar trends, population

structures, and Oaxaca-Blinder decomposition results, and since the EU15 population was

much larger than the other, I only performed the decomposition on the EU15 group to com-

pare it with the new EU12 group and the less developed countries. The wage gap resulting

from skill differences was captured by education in the explainable part of the decomposition.

Therefore, the unexplained coefficient effect can be interpreted as potential discrimination

against different ethnic groups. The results of the decomposition are in Figure 3.12 and 3.13,

and comparisons of coefficient effect over the years for all wage quantiles in each group of

origin are depicted in Figure 3.14.

The results indicate a clear trend across the various ethnic groups. For the EU15, EU12,

and less developed countries groups, a higher positive discrimination level is evident. To

start, I first focus on middle-wage quantiles (q20-q80) in each group of origin. In the EU

15 group, discrimination and productivity-related characteristics almost equally contributed

to the wage gap in absolute value. Discrimination and the wage gap were both negative in

this group for all years. Positive effects of characteristics were present, but reversed from

2010. The EU15 group’s share of all immigrants held relatively steady over the years, but the

EU15 group’s share of medium-skilled immigrants fell in 2010, while its share of low-skilled

immigrants slightly increased in the same year. As Figure 3.11 clarifies, the effects of possi-

ble discrimination became more towards positive with the increase in low-skilled immigrants.

Hence, the decreasing effects of coefficient in absolute value in 2010 can be explained by the

increasing inflow of low-skilled EU15 immigrants. In general, being from an EU15 country can

result in a wage advantage since, for this group, potential discrimination is negative in most

cases.

The new EU12 group faced positive discrimination effects, which decreased from 2004 to

2007 as the share of new EU12 immigrants increased. Thereafter, productivity-based char-

acteristics explained more of the wage gap. With the large inflow of low-skilled immigrants
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EU15 2004 New EU12 2004 LD 2004

EU15 2007 New EU12 2007 LD 2007

EU15 2009 New EU12 2009 LD 2009

Figure 3.12: Native-immigrants wage gap decomposition in all skill levels under each immi-

grant group(EU12 New EU12 and Less Developed countries(LD))2004-2009
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EU15 2010 New EU12 2010 LD 2010

EU15 2013 New EU12 2013 LD 2013

Figure 3.13: Native-immigrants wage gap decomposition in all skill levels under each immi-

grant group(EU12 New EU12 and Less Developed countries(LD))2010-2013
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from the new EU12 group, skill explained more of the wage gap since in general, low-skilled

workers earn less than those in higher-skill jobs, and low-skilled immigrants account for major

part of the new EU12 group, while medium-skilled workers were dominant in the native group.

This fact is also the reason for the increasing wage gap from 2004 to 2013.

Thirdly, in the group from less developed countries, discrimination was positive in all years,

and this factor’s effect was stronger than that of characteristics. Furthermore, the wage gap

and discrimination effect increased with the wage quantile. Compared to other two ethnic

groups, this group had a lower wage gap than new EU12 immigrants but a higher wage gap

than EU15 immigrants. This outcome could be due to the combination of the individual skill

structure within each group of origin and the level of discrimination. Additionally, the level

of discrimination did not change much for the group from less developed countries over the

years for the middle wage quantile.

I then investigated each tail of the wage quantiles. All three groups present a larger wage

gap for the upper quantile. Furthermore, for the EU15 and the group from less developed

countries, a larger potential discrimination effect emerged, while in the new-EU12 group, the

coefficient effects were much lower in 2009 and 2010 than in other years. For the lower quan-

tiles, all groups had a relatively low level of discrimination in absolute terms. For immigrants

from less developed countries, for the lower quantile wage, the potential discrimination level

decreased.

To summarise, discrimination contributed more to the wage gap in the group from less de-

veloped countries than in the other two groups of origin. This finding suggests an increase

in the extent of discrimination the more culturally and economically distant the immigrant’s

home country is from Denmark. I reached the same conclusion via the Oaxaca-Blinder de-

compositions. I discuss this finding further in the next section. Moreover, the EU15 group had

a negative discrimination level, which means these immigrants had advantages over natives
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with similar qualifications. Finally, the upper quantiles faced higher levels of discrimination in

all three groups of origin.

Native-EU15 Native-EU12

Native-Less developed countries group

Figure 3.14

3.6.3 Further discussion on empirical results

Through the above analysis using Oaxaca-Blinder and Melly decomposition procedures, I

obtained consistent conclusions. According to the empirical results, the size of the wage

gap largely depends on the skill level, and whether the wage gap is positive is associated

with an immigrant’s country of origin. This finding confirms my hypothesis in Section 3.3 that

the higher the skill level is, the larger wage gap and potential statistical discrimination could
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present; and the more distant6 the immigrant’s home country from Denmark, the more posi-

tive the discrimination. Again, when I use the term "discrimination" in this paper, I refer to the

remaining component after I have controlled for all possible factors in the wage model I can

obtain. This term is not the same as the general political definition in practical. Moreover, "po-

tential discrimination" in this paper refers to the unexplained components in the decomposition

models.

When analysing the native-immigrant wage gap, I first investigated the skill level aspect. After

I controlled for education in each skill group, the explained portion of the wage gap became

relatively small. This confirmed the hypothesis that education (or skill level) is an important

factor in wage setting. In general, the native sample had a relatively high share of medium-

skilled workers, while the immigrant sample contained a high share of low-skilled workers.

This difference can explain why, on average, before controlling for education level, the effects

of characteristics were positive in most cases. With more low-skilled workers in the immigrant

group, the coefficient effect played a greater role in the wage gap. The increase in the share

of low-skilled immigrants enlarged the wage gap because low-skilled workers often earn less

than those at other skill levels. Experience and tenure can also play a role in the wage

gap, but the effects were small in my empirical study. The wage for the low-skilled group

was the smallest among all skill levels, and the size of the gap was more explained by the

"discrimination component". Regarding the wage gaps for the different groups of origin, I

found the largest gap within the group from less developed countries, followed by the new

EU12 group. For the EU15 and the group from remaining developed countries, the wage

gap became negative. Also, the wage gap for high-wage earners was larger for all groups

of origin since high-skilled workers were most likely to be at the upper wage quantiles within

each group. This finding is also consistent with Hofer at al. (2017), who used Austrian data.

The unexplained portion of the gap may be due to occupational differences or discrimination

6In this paper, "distant" is measured in the aspect of cultural and economic levels.
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against different ethnic groups. For the various skill groups, the unexplained part constituted

the dominant portion of the wage gap and also confirmed my earlier hypothesis, the size of

the coefficient effect is smaller in the low-skilled group in general. In terms of the various

wage quantiles, higher-wage earners experienced more potential discrimination, except for

those in the high-skilled group. The relatively high wages in the high-skilled group meant that

many of these individuals held managerial or key positions in their firm. Candidates for such

positions often already have a strong background. Statistical discrimination, of course, still

exists and could be positive due to different cultural backgrounds. The medium-skilled group

is more heterogeneous than the other two skill levels, for the reason that both low-skilled and

high-skilled immigrant workers could fall into medium-skilled due to overvalue or undervalue

of their qualifications.

For the groups of origin, the direction of the potential discrimination was more explicit. The

more distant (in terms of cultural and economic background) the immigrant’s home country

from Denmark, the more positive the discrimination. This finding was even consistent over

time. Immigrants from EU15 and other developed countries faced negative discrimination,

which meant that their foreign education or experience was overvalued by employers, giving

them the wage advantages in Denmark. While the new EU12 group can have larger cultural

differences than the EU15 group and immigrants from the U.S., Australia, Canada, and sim-

ilar countries, the new EU12 group had a more positive discrimination level. Moreover, for

the group from less developed countries, discrimination became positive. The share of high-

skilled workers within this group grew, but the wage gap and discrimination level exhibited

decreasing trends. This could be a result of the policies aiming to attract high-skilled immi-

grants. It could also be explained by a situation where there are more international students

who have finished their master’s or PhD studies in Denmark and they then stay to work. In this

case, education and qualifications of those international students would not have been deval-

ued, which would have reduced the discrimination. However, the discrimination against one’s

cultural background is different from the discrimination against one’s educational background;
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an assimilation effect would also contribute to the discrimination level7. Further research

should be done within each group of origin to distinguish whether discrimination is due to pol-

icy, assimilation effects, or increases in the number of highly educated international students

remaining in the country.

7the variable "Years since migration" is constructed to capture the assimilation effect. Since the information

on working experience for immigrants are only available after the immigrant entering Denmark, the variable

"experience" used in the models in this study has already capture part of the assimilation effect. Therefore, I did

not use "Years since migration" for the empirical analysis in this paper. However, additional robustness checks

on the inclusion of "years since migration" instead of "experience" have been performed, and they are shown in

the Appendix.
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3.7 Conclusion

In this paper, I have analysed the native-immigrant wage gap for male immigrants in different

wage quantiles for the labour market in Denmark. I also explored the existence of wage

discrimination against immigrants in the labour market in Denmark from 2004 to 2013. I

particularly focused on changes in the discrimination level over the period within skill levels

and groups of origin following EU enlargement in 2004 and 2007, and the introduction of free

movement in Denmark in 2009. I started the analysis by assessing changes in the population

distributions and wage distributions of the native and immigrant groups. I then applied the

Oaxaca-Blinder and Melly (2005) approaches to decomposing the native-immigrant wage gap.

To simplify the analysis, I only focused on males.

Results from both decomposition approaches confirm that the size of the wage gap is mostly

dependent on skill level and whether the wage gap positive is more associated with an immi-

grant’s country of origin. Wage differentials were generally the smallest within the low-skilled

group. For low-wage earners in the low-skilled and high-skilled groups, the wage gap and

discrimination level were larger than for other wage quantiles within the same skill category.

The medium-skilled group, however, presented a higher wage gap and effect of discrimination

among the high-wage population. The absolute value of discrimination increased with the

skill level. Furthermore, education (or skill level) was an important factor in wage setting; after

conditioning on skill level, the explained effects of characteristics became rather small. The

discrimination component was the dominant factor explaining the wage gap for the various

skill levels. Moreover, stronger discrimination also occurred for the upper wage quantiles in

each group of origin. In terms of whether the wage gap and discrimination were positive, the

country of origin played a role. Measured discrimination was the strongest and most positive

for immigrants from less developed countries, most of which were non-EU countries. More-

over, regarding the EU and developed countries such as the U.S. and Australia, negative

discrimination (i.e., advantages) was observed in the context of the wage gap. In other words,
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the more distant the home country of the immigrant from Denmark, the more positive was the

discrimination.

This paper has investigated the native-immigrant wage gap for males, but further research

should be conducted. At this stage, I cannot fully claim that the conclusions I obtained fit the

whole immigrant population in Denmark since results for females might present a different

picture. Therefore, comparative research should be performed as the next step, comparing

the wage differentials within different groups of origins at various skill levels. Moreover, the

assimilation effect has not been distinguished from the effects of discrimination. It is viewed

as one kind of discrimination in my paper since I had no information on language skills, which

could be a key factor contributing to success in the labour market. However, I could still

perform certain checks using the available data. Nielsen et al. (2004) investigated assimilation

in Denmark and used years since migration as a tool for measuring the assimilation effect.

I could also compare immigrants who received education in Denmark and stayed to work

with immigrants possessing a foreign education or work background. Policy effects cannot be

ignored, as various immigration policies aiming to attract high-skilled immigrants have been

implemented during recent decades. As discussed earlier, further research should be done

to analyse the influence of policy and assimilation within each group of immigrant origin in

Denmark.
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Appendices

Appendix A: Additional tables for Section 3.5

Table 3.1: Correction procedures on education variables

Native sample Immigrant sample Immigrant sample

before correction after correction

Missing 0.71% 3.40 % 1.33%

in 2010 0.57 % 27.45% 10.59%

Low-skilled 26.55% 62.39 % 63.10%

in 2010 24.71% 49.42% 55.20%

Medium-skilled 65.78% 24.81% 25.57%

in 2010 67.2% 18.55% 24.78%

High-skilled 6.96% 9.4% 10.00%

in 2010 7.51% 4.57 % 9.43%

Table 3.2: Descriptive statistics for male workers

Variable Names Natives Immigrants

mean sd mean sd

hourly wage(log) 5.3201549 .41912002 5.236966 .42251175

age 18-24 .08013683 .27150494 .08083912 .27258839

age 25-29 .091306 .28804379 .16123506 .36774831

age 30-39 .26002099 .43864577 .35926799 .47978678

age 40-49 .27369448 .44585407 .28537805 .45159515

age 50-59 .22497798 .41756787 .09880047 .29839448

age 60-65 .0572066 .23223698 .01126541 .10553931

low-skilled .26229875 .43988425 .631027 .48252751

medium skilled .65426989 .47560577 .25572674 .43626974

high skilled .0692822 .25393344 .09998846 .29998517

married .53412286 .49883432 .56853281 .49528191

Continued on next page...
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... table 3.2 continued

Variable Names Natives Immigrants

mean sd mean sd

children 0-6 yrs .20817414 .4060021 .29960413 .45808545

Copenhagen .09877812 .2983639 .21435195 .41037278

large city .4698621 .49909093 .44932054 .49742589

small city .43514969 .49577665 .34427847 .47513329

experience 9.8409508 7.4715813 5.7931955 5.7569399

Union .67953396 .46665576 .85589954 .35119222

number of employees 301.89397 695.42575 396.36167 858.65595

argricuture .04303977 .20294668 .07366277 .26122178

manufactoring .13940032 .34636382 .14873697 .35582967

energy .04234201 .20136826 .03862268 .19269433

construction .2233234 .4164734 .1703107 .37590623

trade .08003097 .27134116 .10034225 .30045634

transport .09176256 .28869051 .06923481 .25385348

finance etc .06085895 .23907143 .06983439 .25486818

personal service .16314128 .36949456 .15584628 .36271023

N 4921439 268521

Addition notes to Table 3.2

1. Experience: In years. Sum of days employed in the labour market, divided by 365.

2.Tenure: In years. Time employed within the workplace. This variable is not included in the

empirical tests but used for sensitivity analysis; the results are presented in Appendix F. In

this paper, I chose "Experience" in the regression models.
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3. The variable "Years since migration(YSM)" has also been constructed at the initial stage.

For the native group, it is equal to the age of an individual; For the immigrant group, it is

the number of years since one has entered in Denmark. However, since the working history

variable "Experience" captured part of features of YSM has been used in this study, I did not

report summary statistics for YSM in Table 3.2.

4. Hourly wage: It is calculated through dividing total annual wages including ATP by total

hours worked in the year.

5. Age dummies: Age 18-24, Age 25-29, Age 30-39, Age 40-49, Age 50-59, Age 60-65.

6. Children 0-6 years: A dummy indicator of whether there is a child in the household aged

0-6 years.

Appendix B: Full results from Oaxaca-Blinder decomposition for Figure

3.6 and Figure 3.7

Appendix B.1: Full results for Figure 3.6

Table 3.3: Oaxaca-Blinder decomposition results for males of different skilled groups: Native-

Total immigrants

(2004) (2007) (2009) (2010) (2013)

log wage log wage log wage log wage log wage

b/se b/se b/se b/se b/se

All Skilled groups

difference 0.094∗∗∗ 0.086∗∗∗ 0.085∗∗∗ 0.095∗∗∗ 0.098∗∗∗

(0.004) (0.004) (0.002) (0.002) (0.002)

explained 0.058∗∗∗ 0.078∗∗∗ 0.085∗∗∗ 0.091∗∗∗ 0.104∗∗∗

Continued on next page...
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... table 3.3 continued

(2004) (2007) (2009) (2010) (2013)

log wage log wage log wage log wage log wage

b/se b/se b/se b/se b/se

(0.002) (0.002) (0.001) (0.001) (0.001)

unexplained 0.036∗∗∗ 0.008∗∗ 0.000 0.003 -0.006∗∗

(0.004) (0.004) (0.002) (0.002) (0.002)

Low-skilled

difference -0.002 -0.037∗∗∗ -0.009∗∗∗ -0.005 -0.031∗∗∗

(0.005) (0.005) (0.003) (0.003) (0.003)

explained 0.002 -0.002 0.028∗∗∗ 0.035∗∗∗ 0.015∗∗∗

(0.003) (0.003) (0.002) (0.002) (0.002)

unexplained -0.004 -0.035∗∗∗ -0.037∗∗∗ -0.040∗∗∗ -0.046∗∗∗

(0.005) (0.005) (0.003) (0.003) (0.003)

Medium-skilled

difference 0.066∗∗∗ 0.071∗∗∗ 0.080∗∗∗ 0.091∗∗∗ 0.101∗∗∗

(0.008) (0.007) (0.004) (0.004) (0.004)

explained -0.019∗∗∗ -0.007∗∗∗ 0.015∗∗∗ 0.020∗∗∗ 0.027∗∗∗

(0.003) (0.003) (0.001) (0.002) (0.002)

unexplained 0.085∗∗∗ 0.078∗∗∗ 0.065∗∗∗ 0.071∗∗∗ 0.074∗∗∗

(0.008) (0.006) (0.004) (0.004) (0.004)

High-skilled

difference 0.194∗∗∗ 0.159∗∗∗ 0.049∗∗∗ 0.067∗∗∗ 0.100∗∗∗

(0.018) (0.015) (0.008) (0.008) (0.007)

explained -0.005 -0.015∗∗ 0.004 0.003 0.039∗∗∗

(0.008) (0.007) (0.003) (0.004) (0.003)

unexplained 0.199∗∗∗ 0.174∗∗∗ 0.045∗∗∗ 0.065∗∗∗ 0.061∗∗∗

(0.018) (0.014) (0.008) (0.008) (0.007)
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Table 3.4: Full results from Oaxaca-Blinder decomposition for Native-Total immigrants wage

gap

(2004) (2007) (2009) (2010) (2013)

log wage log wage log wage log wage log wage

b/se b/se b/se b/se b/se

explained 0.058∗∗∗ 0.078∗∗∗ 0.085∗∗∗ 0.091∗∗∗ 0.104∗∗∗

(0.002) (0.002) (0.001) (0.001) (0.001)

unexplained 0.036∗∗∗ 0.008∗∗ 0.000 0.003 -0.006∗∗

(0.004) (0.004) (0.002) (0.002) (0.002)

Explained)

lgage 0.028∗∗∗ 0.022∗∗∗ 0.028∗∗∗ 0.030∗∗∗ 0.028∗∗∗

(0.001) (0.001) (0.000) (0.000) (0.000)

basic edu 0.019∗∗∗ 0.007∗∗ -0.007∗∗ 0.024∗∗∗ -0.023∗∗∗

(0.003) (0.003) (0.003) (0.001) (0.003)

vocational edu 0.048∗∗∗ 0.058∗∗∗ 0.060∗∗∗ 0.025∗∗∗ 0.083∗∗∗

(0.003) (0.003) (0.003) (0.001) (0.004)

higher edu -0.014∗∗∗ -0.007∗∗∗ -0.008∗∗∗ -0.006∗∗∗ -0.010∗∗∗

(0.001) (0.001) (0.001) (0.000) (0.001)

Married -0.005∗∗∗ -0.003∗∗∗ -0.001∗∗∗ -0.001∗∗∗ -0.002∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)

children 0-6 yrs -0.017∗∗∗ -0.013∗∗∗ -0.008∗∗∗ -0.007∗∗∗ -0.006∗∗∗

(0.001) (0.001) (0.000) (0.000) (0.000)

Copenhagen -0.005∗∗∗ -0.005∗∗∗ -0.003∗∗∗ -0.004∗∗∗ -0.004∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)

lgexp 0.019∗∗∗ 0.035∗∗∗ 0.026∗∗∗ 0.032∗∗∗ 0.043∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001)

Union 0.001∗∗ -0.001∗∗∗ 0.001∗∗∗ 0.002∗∗∗ -0.001∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)

lnemployee -0.005∗∗∗ -0.006∗∗∗ -0.006∗∗∗ -0.007∗∗∗ -0.006∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)

Continued on next page...

186



... table 3.4 continued

(2004) (2007) (2009) (2010) (2013)

log wage log wage log wage log wage log wage

b/se b/se b/se b/se b/se

argricuture -0.000∗∗∗ -0.000 0.001∗∗∗ 0.001∗∗∗ 0.000∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)

manufactoring 0.000∗∗∗ 0.001∗∗∗ -0.000 0.000 -0.000∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)

energy 0.001∗∗∗ 0.001∗∗∗ -0.000 -0.000∗∗∗ 0.000∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)

construction -0.005∗∗∗ -0.004∗∗∗ -0.001∗∗∗ -0.001∗∗∗ -0.000

(0.000) (0.000) (0.000) (0.000) (0.000)

trade -0.000 0.000∗ 0.001∗∗∗ 0.000∗∗∗ 0.000

(0.000) (0.000) (0.000) (0.000) (0.000)

transport -0.001∗∗ -0.001∗ 0.004∗∗∗ 0.005∗∗∗ 0.005∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)

finance etc -0.007∗∗∗ -0.007∗∗∗ -0.001∗∗∗ -0.001∗∗∗ -0.001∗∗∗

(0.001) (0.001) (0.000) (0.000) (0.000)

personal service 0.000 -0.001∗∗∗ -0.001∗∗∗ -0.001∗∗ -0.002∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)

Unexplained)

lgage -0.006 0.047 0.043 0.046 -0.056

(0.065) (0.057) (0.039) (0.041) (0.042)

basic edu 0.124∗∗ 0.226∗∗∗ 0.218∗∗∗ -0.035∗∗∗ 0.249∗∗∗

(0.057) (0.034) (0.030) (0.005) (0.041)

vocational edu 0.067∗∗∗ 0.109∗∗∗ 0.113∗∗∗ 0.005∗∗ 0.128∗∗∗

(0.023) (0.013) (0.013) (0.003) (0.017)

higher edu 0.028∗∗∗ 0.038∗∗∗ 0.041∗∗∗ 0.004∗∗∗ 0.061∗∗∗

(0.007) (0.004) (0.005) (0.001) (0.008)

Married 0.041∗∗∗ 0.031∗∗∗ 0.028∗∗∗ 0.035∗∗∗ 0.037∗∗∗

(0.006) (0.005) (0.003) (0.003) (0.003)
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... table 3.4 continued

(2004) (2007) (2009) (2010) (2013)

log wage log wage log wage log wage log wage

b/se b/se b/se b/se b/se

children 0-6 yrs 0.024∗∗∗ 0.021∗∗∗ 0.014∗∗∗ 0.011∗∗∗ 0.002

(0.003) (0.002) (0.002) (0.002) (0.001)

Copenhagen -0.001 -0.005∗∗∗ 0.003∗∗ 0.003∗∗∗ 0.006∗∗∗

(0.002) (0.002) (0.001) (0.001) (0.001)

lgexp -0.025∗∗∗ 0.002 0.042∗∗∗ 0.058∗∗∗ 0.082∗∗∗

(0.004) (0.005) (0.004) (0.004) (0.005)

Union -0.047∗∗∗ -0.047∗∗∗ -0.041∗∗∗ -0.038∗∗∗ -0.050∗∗∗

(0.010) (0.008) (0.005) (0.005) (0.005)

lnemployee -0.071∗∗∗ -0.089∗∗∗ -0.060∗∗∗ -0.076∗∗∗ -0.137∗∗∗

(0.013) (0.011) (0.007) (0.007) (0.007)

argricuture -0.001 -0.000 -0.001 0.001 -0.005∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001)

manufactoring 0.007 -0.002 -0.006∗∗∗ -0.005∗∗∗ -0.012∗∗∗

(0.005) (0.003) (0.001) (0.001) (0.001)

energy 0.002 -0.000 -0.000 0.001∗∗ -0.002∗∗∗

(0.002) (0.002) (0.000) (0.000) (0.000)

construction 0.001 -0.000 0.009∗∗∗ 0.007∗∗∗ -0.004∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.001)

trade 0.006∗ 0.003 0.004∗∗∗ 0.005∗∗∗ -0.001

(0.003) (0.002) (0.001) (0.001) (0.001)

transport 0.002 0.000 -0.006∗∗∗ -0.004∗∗∗ -0.008∗∗∗

(0.002) (0.002) (0.001) (0.001) (0.001)

finance etc 0.003 -0.004 -0.004∗∗∗ -0.002∗∗∗ -0.005∗∗∗

(0.003) (0.002) (0.001) (0.001) (0.001)

personal service 0.001 -0.001 -0.007∗∗∗ -0.007∗∗∗ -0.016∗∗∗

(0.001) (0.001) (0.002) (0.002) (0.001)

Constant -0.121 -0.321∗∗∗ -0.389∗∗∗ -0.005 -0.276∗∗∗
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... table 3.4 continued

(2004) (2007) (2009) (2010) (2013)

log wage log wage log wage log wage log wage

b/se b/se b/se b/se b/se

(0.112) (0.082) (0.063) (0.040) (0.079)

N 246910 254158 587218 578504 617376

Table 3.5: Full results from Oaxaca-Blinder decompostion for Native-immigrant wage gap in

Low-skilled group

(2004) (2007) (2009) (2010) (2013)

log wage log wage log wage log wage log wage

b/se b/se b/se b/se b/se

explained 0.002 -0.002 0.028∗∗∗ 0.035∗∗∗ 0.015∗∗∗

(0.003) (0.003) (0.002) (0.002) (0.002)

unexplained -0.004 -0.035∗∗∗ -0.037∗∗∗ -0.040∗∗∗ -0.046∗∗∗

(0.005) (0.005) (0.003) (0.003) (0.003)

Explained)

lgage 0.038∗∗∗ 0.024∗∗∗ 0.032∗∗∗ 0.034∗∗∗ 0.024∗∗∗

(0.002) (0.001) (0.001) (0.001) (0.001)

Married -0.007∗∗∗ -0.007∗∗∗ -0.004∗∗∗ -0.006∗∗∗ -0.008∗∗∗

(0.001) (0.001) (0.000) (0.000) (0.000)

children 0-6 yrs -0.029∗∗∗ -0.023∗∗∗ -0.015∗∗∗ -0.016∗∗∗ -0.015∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.000)

Copenhagen -0.006∗∗∗ -0.006∗∗∗ -0.004∗∗∗ -0.005∗∗∗ -0.006∗∗∗

(0.001) (0.001) (0.000) (0.000) (0.000)

lgexp 0.016∗∗∗ 0.029∗∗∗ 0.024∗∗∗ 0.031∗∗∗ 0.032∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001)

Union 0.000 -0.001∗ 0.003∗∗∗ 0.003∗∗∗ -0.001∗∗∗
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... table 3.5 continued

(2004) (2007) (2009) (2010) (2013)

log wage log wage log wage log wage log wage

b/se b/se b/se b/se b/se

(0.001) (0.001) (0.000) (0.000) (0.000)

lnemployee -0.005∗∗∗ -0.007∗∗∗ -0.007∗∗∗ -0.007∗∗∗ -0.006∗∗∗

(0.001) (0.001) (0.000) (0.000) (0.000)

argricuture 0.000∗∗ 0.000∗∗∗ 0.000 0.001∗∗∗ -0.001∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)

manufactoring 0.003∗∗∗ 0.003∗∗∗ 0.000∗∗ 0.000∗∗∗ -0.000∗∗∗

(0.001) (0.000) (0.000) (0.000) (0.000)

energy 0.003∗∗∗ 0.003∗∗∗ -0.000∗∗∗ -0.000∗∗∗ 0.000

(0.000) (0.000) (0.000) (0.000) (0.000)

construction -0.010∗∗∗ -0.010∗∗∗ -0.002∗∗∗ -0.003∗∗∗ -0.000∗∗

(0.001) (0.001) (0.000) (0.000) (0.000)

trade 0.001∗∗∗ 0.001∗∗∗ 0.000∗∗ 0.000 -0.001∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)

transport 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.004∗∗∗ 0.003∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)

finance etc -0.008∗∗∗ -0.009∗∗∗ -0.001∗∗∗ -0.001∗∗∗ -0.002∗∗∗

(0.001) (0.001) (0.000) (0.000) (0.000)

personal service 0.000 -0.000 -0.001∗∗∗ -0.001∗∗∗ -0.003∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)

Unxplained)

lgage 0.416∗∗∗ 0.364∗∗∗ 0.290∗∗∗ 0.323∗∗∗ 0.110∗∗

(0.077) (0.069) (0.050) (0.055) (0.056)

Married 0.035∗∗∗ 0.032∗∗∗ 0.027∗∗∗ 0.032∗∗∗ 0.040∗∗∗

(0.007) (0.006) (0.004) (0.004) (0.004)

children 0-6 yrs 0.037∗∗∗ 0.032∗∗∗ 0.023∗∗∗ 0.022∗∗∗ 0.006∗∗∗

(0.004) (0.003) (0.002) (0.002) (0.002)

Copenhagen 0.000 -0.006∗∗∗ 0.001 0.001 0.005∗∗∗
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... table 3.5 continued

(2004) (2007) (2009) (2010) (2013)

log wage log wage log wage log wage log wage

b/se b/se b/se b/se b/se

(0.002) (0.002) (0.002) (0.002) (0.002)

lgexp -0.024∗∗∗ 0.015∗∗ 0.059∗∗∗ 0.082∗∗∗ 0.096∗∗∗

(0.005) (0.006) (0.005) (0.006) (0.006)

Union -0.027∗∗ -0.064∗∗∗ -0.061∗∗∗ -0.054∗∗∗ -0.061∗∗∗

(0.012) (0.010) (0.007) (0.007) (0.007)

lnemployee -0.057∗∗∗ -0.070∗∗∗ -0.053∗∗∗ -0.064∗∗∗ -0.185∗∗∗

(0.016) (0.015) (0.009) (0.010) (0.009)

argricuture -0.003∗ -0.003∗∗∗ -0.002 0.001 -0.008∗∗∗

(0.002) (0.001) (0.001) (0.002) (0.001)

manufactoring -0.001 -0.014∗∗∗ -0.012∗∗∗ -0.011∗∗∗ -0.019∗∗∗

(0.007) (0.005) (0.002) (0.002) (0.001)

energy -0.002 -0.007∗∗∗ -0.001 -0.000 -0.002∗∗∗

(0.003) (0.002) (0.001) (0.001) (0.000)

construction 0.001 -0.003 0.003 0.006∗ -0.013∗∗∗

(0.002) (0.002) (0.003) (0.003) (0.002)

trade 0.004 -0.006∗ 0.005∗∗∗ 0.007∗∗∗ -0.002

(0.005) (0.003) (0.002) (0.002) (0.001)

transport 0.001 -0.003 -0.007∗∗∗ -0.005∗∗∗ -0.009∗∗∗

(0.003) (0.002) (0.001) (0.001) (0.001)

finance etc 0.007∗∗ -0.007∗∗∗ -0.006∗∗∗ -0.006∗∗∗ -0.009∗∗∗

(0.003) (0.003) (0.001) (0.001) (0.001)

personal service 0.002∗ -0.000 -0.004∗ -0.002 -0.010∗∗∗

(0.001) (0.001) (0.002) (0.002) (0.001)

Constant -0.394∗∗∗ -0.293∗∗∗ -0.299∗∗∗ -0.372∗∗∗ 0.016

(0.082) (0.072) (0.051) (0.055) (0.054)

N 76103 77425 155737 136180 161311
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Table 3.6: Full results from Oaxaca-Blinder decompostion for Native-immigrant wage gap in

Medium-skilled group

(2004) (2007) (2009) (2010) (2013)

log wage log wage log wage log wage log wage

b/se b/se b/se b/se b/se

explained -0.019∗∗∗ -0.007∗∗∗ 0.015∗∗∗ 0.020∗∗∗ 0.027∗∗∗

(0.003) (0.003) (0.001) (0.002) (0.002)

unexplained 0.085∗∗∗ 0.078∗∗∗ 0.065∗∗∗ 0.071∗∗∗ 0.074∗∗∗

(0.008) (0.006) (0.004) (0.004) (0.004)

Explained)

lgage 0.009∗∗∗ 0.007∗∗∗ 0.016∗∗∗ 0.020∗∗∗ 0.019∗∗∗

(0.001) (0.000) (0.001) (0.001) (0.001)

Married -0.006∗∗∗ -0.002∗∗∗ -0.000 -0.001∗∗ -0.001∗

(0.001) (0.001) (0.000) (0.000) (0.000)

children 0-6 yrs -0.012∗∗∗ -0.009∗∗∗ -0.008∗∗∗ -0.007∗∗∗ -0.007∗∗∗

(0.001) (0.001) (0.000) (0.000) (0.000)

Copenhagen -0.006∗∗∗ -0.006∗∗∗ -0.004∗∗∗ -0.005∗∗∗ -0.006∗∗∗

(0.001) (0.001) (0.000) (0.000) (0.000)

lgexp 0.018∗∗∗ 0.026∗∗∗ 0.017∗∗∗ 0.020∗∗∗ 0.028∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001)

Union 0.001∗ -0.001∗∗∗ -0.000 0.001∗∗∗ -0.001∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)

lnemployee -0.006∗∗∗ -0.008∗∗∗ -0.006∗∗∗ -0.008∗∗∗ -0.007∗∗∗

(0.001) (0.001) (0.000) (0.000) (0.000)

argricuture -0.000∗ -0.000∗ -0.000∗∗∗ -0.000∗∗∗ -0.000∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)

manufactoring 0.000 0.000 -0.000∗∗ -0.000 -0.000∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)

energy -0.000 -0.000 0.000∗∗ 0.000∗∗ 0.000∗∗∗
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... table 3.6 continued

(2004) (2007) (2009) (2010) (2013)

log wage log wage log wage log wage log wage

b/se b/se b/se b/se b/se

(0.000) (0.000) (0.000) (0.000) (0.000)

construction -0.001 -0.001∗∗ -0.000 -0.001∗∗∗ -0.000

(0.000) (0.000) (0.000) (0.000) (0.000)

trade 0.001∗∗ 0.002∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)

transport -0.002∗∗∗ -0.001∗ 0.001 0.001∗∗ 0.002∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001)

finance etc -0.014∗∗∗ -0.014∗∗∗ -0.002∗∗∗ -0.002∗∗∗ -0.002∗∗∗

(0.002) (0.002) (0.000) (0.000) (0.000)

personal service -0.000∗∗ 0.001∗∗∗ 0.002∗∗∗ 0.003∗∗∗ 0.002∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)

Unexplained)

lgage -0.111 0.070 0.059 0.120∗ 0.209∗∗∗

(0.134) (0.104) (0.068) (0.068) (0.067)

Married 0.042∗∗∗ 0.022∗∗ 0.028∗∗∗ 0.040∗∗∗ 0.034∗∗∗

(0.012) (0.009) (0.006) (0.006) (0.005)

children 0 6 yrs 0.017∗∗∗ 0.012∗∗ 0.009∗∗∗ 0.002 0.006∗∗

(0.006) (0.005) (0.003) (0.003) (0.003)

Copenhagen -0.002 -0.001 0.001 0.005∗∗ 0.006∗∗∗

(0.004) (0.003) (0.002) (0.002) (0.002)

lgexp -0.021∗∗ -0.034∗∗∗ -0.035∗∗∗ -0.029∗∗∗ -0.017∗

(0.009) (0.011) (0.009) (0.010) (0.010)

Union -0.061∗∗∗ -0.012 -0.013 -0.006 -0.036∗∗∗

(0.017) (0.013) (0.008) (0.008) (0.007)

lnemployee -0.044∗ -0.071∗∗∗ 0.006 -0.001 -0.018

(0.025) (0.019) (0.012) (0.012) (0.012)

argricuture 0.001 0.003∗ -0.000 0.001 -0.000
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... table 3.6 continued

(2004) (2007) (2009) (2010) (2013)

log wage log wage log wage log wage log wage

b/se b/se b/se b/se b/se

(0.002) (0.001) (0.001) (0.001) (0.001)

manufactoring 0.008 0.003 -0.004∗ -0.004∗ -0.004∗∗

(0.008) (0.006) (0.002) (0.002) (0.002)

energy 0.002 0.003 -0.001∗ 0.000 -0.002∗∗∗

(0.004) (0.003) (0.001) (0.001) (0.001)

construction -0.002 -0.001 0.006∗∗ 0.006∗∗ 0.003

(0.003) (0.003) (0.003) (0.003) (0.002)

trade 0.003 0.008∗ 0.002 0.003∗∗ 0.003∗∗

(0.006) (0.004) (0.002) (0.001) (0.001)

transport 0.001 0.002 -0.006∗∗∗ -0.002 -0.001

(0.004) (0.003) (0.002) (0.002) (0.002)

finance etc 0.000 0.004 -0.003∗∗ -0.001 0.000

(0.006) (0.006) (0.002) (0.002) (0.001)

personal service 0.001 0.000 -0.003 -0.005 -0.008∗∗∗

(0.003) (0.002) (0.004) (0.003) (0.002)

Constant 0.252∗ 0.070 0.020 -0.058 -0.100

(0.139) (0.107) (0.067) (0.067) (0.065)

N 160233 161781 385936 365009 397490
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Table 3.7: Full results from Oaxaca-Blinder decompostion for Native-immigrant wage gap in

High-skilled group

(2004) (2007) (2009) (2010) (2013)

log wage log wage log wage log wage log wage

b/se b/se b/se b/se b/se

explained -0.005 -0.015∗∗ 0.004 0.003 0.039∗∗∗

(0.008) (0.007) (0.003) (0.004) (0.003)

unexplained 0.199∗∗∗ 0.174∗∗∗ 0.045∗∗∗ 0.065∗∗∗ 0.061∗∗∗

Explained)

(0.018) (0.014) (0.008) (0.008) (0.007)

lgage -0.004 -0.001 0.003∗∗ 0.004∗∗ 0.021∗∗∗

(0.003) (0.001) (0.001) (0.002) (0.002)

Married -0.014∗∗∗ -0.009∗∗∗ -0.006∗∗∗ -0.005∗∗∗ -0.002∗∗

(0.002) (0.002) (0.001) (0.001) (0.001)

children 0-6 yrs -0.003∗∗ -0.003∗∗ -0.001∗∗∗ -0.001∗∗∗ 0.000

(0.001) (0.001) (0.000) (0.000) (0.000)

Copenhagen -0.002∗∗ -0.000 -0.000 -0.000 0.000

(0.001) (0.001) (0.000) (0.000) (0.000)

lgexp 0.018∗∗∗ 0.031∗∗∗ 0.015∗∗∗ 0.016∗∗∗ 0.028∗∗∗

(0.003) (0.004) (0.001) (0.001) (0.001)

Union -0.000 -0.002∗∗ 0.003∗∗∗ 0.002∗∗∗ 0.001

(0.002) (0.001) (0.001) (0.001) (0.001)

lnemployee 0.001 0.003∗∗∗ -0.009∗∗∗ -0.011∗∗∗ -0.012∗∗∗

(0.000) (0.001) (0.002) (0.002) (0.001)

argricuture -0.002 0.000 0.000 0.000 -0.000

(0.001) (0.001) (0.000) (0.000) (0.000)

manufactoring -0.001 -0.004∗∗ -0.003∗∗∗ -0.003∗∗∗ -0.003∗∗∗

(0.002) (0.002) (0.001) (0.001) (0.000)

energy -0.007∗∗∗ -0.004∗∗ -0.000 -0.000∗∗ -0.000

(0.002) (0.002) (0.000) (0.000) (0.000)
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... table 3.7 continued

(2004) (2007) (2009) (2010) (2013)

log wage log wage log wage log wage log wage

b/se b/se b/se b/se b/se

construction 0.005∗∗ 0.001 0.001 -0.000 -0.001∗∗∗

(0.002) (0.002) (0.001) (0.001) (0.000)

trade -0.009∗∗∗ -0.004∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗

(0.002) (0.002) (0.000) (0.000) (0.000)

transport -0.005∗ -0.004∗ 0.006∗∗∗ 0.007∗∗∗ 0.008∗∗∗

(0.003) (0.002) (0.001) (0.001) (0.001)

finance etc 0.023∗∗∗ 0.009∗∗∗ 0.000 -0.000 -0.001∗∗∗

(0.003) (0.002) (0.000) (0.000) (0.000)

personal service -0.005∗∗∗ -0.027∗∗∗ -0.006∗∗∗ -0.007∗∗∗ -0.002∗∗∗

(0.001) (0.003) (0.001) (0.001) (0.001)

Unexplained)

lgage 0.994∗∗∗ 0.883∗∗∗ 0.410∗∗ 0.390∗∗ 0.249∗

(0.330) (0.295) (0.161) (0.167) (0.138)

Married 0.085∗∗∗ 0.050∗∗ 0.030∗∗ 0.038∗∗∗ 0.033∗∗∗

(0.026) (0.021) (0.012) (0.012) (0.010)

children 0-6 yrs 0.019 0.012 0.000 -0.004 0.004

(0.013) (0.009) (0.006) (0.006) (0.005)

Copenhagen -0.007 -0.011 0.014∗∗∗ 0.013∗∗∗ 0.018∗∗∗

(0.009) (0.008) (0.004) (0.004) (0.004)

lgexp -0.034∗ -0.032 0.018 0.048∗∗∗ -0.004

(0.020) (0.026) (0.017) (0.018) (0.017)

Union -0.155∗∗∗ -0.077∗∗∗ -0.067∗∗∗ -0.048∗∗ -0.037∗∗

(0.046) (0.029) (0.018) (0.019) (0.016)

lnemployee -0.259∗∗∗ -0.214∗∗∗ -0.196∗∗∗ -0.185∗∗∗ -0.169∗∗∗

(0.053) (0.043) (0.025) (0.025) (0.021)

argricuture 0.006∗ 0.003 0.003∗∗∗ 0.003∗∗∗ 0.002∗∗∗

(0.003) (0.002) (0.001) (0.001) (0.001)
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... table 3.7 continued

(2004) (2007) (2009) (2010) (2013)

log wage log wage log wage log wage log wage

b/se b/se b/se b/se b/se

manufactoring 0.008 0.020∗∗∗ 0.006 0.011∗∗∗ 0.003

(0.009) (0.007) (0.004) (0.003) (0.002)

energy 0.012∗ 0.011∗∗ 0.002∗∗ 0.004∗∗∗ 0.001

(0.007) (0.005) (0.001) (0.001) (0.001)

construction 0.000 0.004 0.015∗∗∗ 0.014∗∗∗ 0.008∗∗∗

(0.004) (0.003) (0.003) (0.003) (0.002)

trade 0.004 0.016∗∗∗ 0.006∗∗∗ 0.007∗∗∗ 0.002∗

(0.008) (0.006) (0.002) (0.002) (0.001)

transport 0.014∗ 0.015∗∗∗ 0.005 0.009∗∗ -0.002

(0.008) (0.005) (0.003) (0.003) (0.002)

finance etc -0.049∗∗ -0.016 -0.004 0.002 -0.006∗∗∗

(0.020) (0.013) (0.003) (0.003) (0.002)

personal service -0.017∗∗ -0.008 -0.021∗∗ -0.030∗∗∗ -0.038∗∗∗

(0.008) (0.007) (0.010) (0.009) (0.007)

Constant -0.422 -0.484 -0.176 -0.208 -0.002

(0.347) (0.297) (0.155) (0.163) (0.131)

N 8118 12763 41764 42018 55622

197



Appendix B.2: Full results for Figure 3.7

Table 3.8: Wage differentials and decompostion results across different ethnic groups: all

skilled

(2004) (2007) (2009) (2010) (2013)

log wage log wage log wage log wage log wage

b/se b/se b/se b/se b/se

Native-total immigrant)

difference 0.094∗∗∗ 0.086∗∗∗ 0.085∗∗∗ 0.095∗∗∗ 0.098∗∗∗

(0.004) (0.004) (0.002) (0.002) (0.002)

explained 0.058∗∗∗ 0.078∗∗∗ 0.085∗∗∗ 0.091∗∗∗ 0.104∗∗∗

(0.002) (0.002) (0.001) (0.001) (0.001)

unexplained 0.036∗∗∗ 0.008∗∗ 0.000 0.003 -0.006∗∗

(0.004) (0.004) (0.002) (0.002) (0.002)

EU15

difference -0.062∗∗∗ -0.074∗∗∗ -0.039∗∗∗ -0.042∗∗∗ -0.049∗∗∗

(0.009) (0.008) (0.005) (0.005) (0.005)

explained 0.016∗∗∗ 0.041∗∗∗ 0.055∗∗∗ 0.059∗∗∗ 0.068∗∗∗

(0.004) (0.004) (0.002) (0.002) (0.002)

unexplained -0.077∗∗∗ -0.115∗∗∗ -0.094∗∗∗ -0.100∗∗∗ -0.117∗∗∗

(0.008) (0.007) (0.005) (0.005) (0.005)

EU12

difference 0.114∗∗∗ 0.137∗∗∗ 0.136∗∗∗ 0.176∗∗∗ 0.223∗∗∗

(0.022) (0.012) (0.006) (0.006) (0.005)

explained 0.080∗∗∗ 0.182∗∗∗ 0.195∗∗∗ 0.210∗∗∗ 0.236∗∗∗

(0.012) (0.007) (0.003) (0.003) (0.003)

unexplained 0.034∗ -0.045∗∗∗ -0.058∗∗∗ -0.034∗∗∗ -0.013∗∗∗

(0.020) (0.012) (0.006) (0.005) (0.004)

RDI

difference -0.098∗∗∗ -0.091∗∗∗ -0.069∗∗∗ -0.053∗∗∗ -0.070∗∗∗

(0.019) (0.016) (0.011) (0.011) (0.012)
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... table 3.8 continued

(2004) (2007) (2009) (2010) (2013)

log wage log wage log wage log wage log wage

b/se b/se b/se b/se b/se

explained -0.056∗∗∗ 0.004 0.025∗∗∗ 0.035∗∗∗ 0.044∗∗∗

(0.010) (0.008) (0.005) (0.005) (0.005)

unexplained -0.042∗∗ -0.095∗∗∗ -0.094∗∗∗ -0.089∗∗∗ -0.114∗∗∗

(0.017) (0.016) (0.011) (0.011) (0.012)

LDI

difference 0.181∗∗∗ 0.170∗∗∗ 0.153∗∗∗ 0.160∗∗∗ 0.146∗∗∗

(0.005) (0.004) (0.003) (0.003) (0.003)

explained 0.086∗∗∗ 0.092∗∗∗ 0.087∗∗∗ 0.090∗∗∗ 0.089∗∗∗

(0.003) (0.002) (0.001) (0.002) (0.002)

unexplained 0.095∗∗∗ 0.077∗∗∗ 0.065∗∗∗ 0.069∗∗∗ 0.057∗∗∗

(0.005) (0.004) (0.003) (0.003) (0.003)

199



Table 3.9: Full results from Oaxaca-Blinder decompostion for Native-EU15 wage gap

(2004) (2007) (2009) (2010) (2013)

log wage log wage log wage log wage log wage

b/se b/se b/se b/se b/se

explained 0.016∗∗∗ 0.041∗∗∗ 0.055∗∗∗ 0.059∗∗∗ 0.068∗∗∗

(0.004) (0.004) (0.002) (0.002) (0.002)

unexplained -0.077∗∗∗ -0.115∗∗∗ -0.094∗∗∗ -0.100∗∗∗ -0.117∗∗∗

(0.008) (0.007) (0.005) (0.005) (0.005)

Explained)

lgage 0.014∗∗∗ 0.010∗∗∗ 0.017∗∗∗ 0.016∗∗∗ 0.013∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001)

basic_edu 0.016∗∗∗ 0.008∗∗ -0.005∗∗ 0.024∗∗∗ -0.020∗∗∗

(0.003) (0.003) (0.002) (0.001) (0.003)

vocational_edu 0.047∗∗∗ 0.061∗∗∗ 0.061∗∗∗ 0.024∗∗∗ 0.087∗∗∗

(0.003) (0.004) (0.003) (0.001) (0.004)

higher_edu -0.027∗∗∗ -0.017∗∗∗ -0.024∗∗∗ -0.017∗∗∗ -0.028∗∗∗

(0.002) (0.002) (0.001) (0.001) (0.002)

Married 0.001∗∗ 0.001∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗

(0.001) (0.001) (0.000) (0.000) (0.000)

children_0_6_yrs -0.015∗∗∗ -0.011∗∗∗ -0.008∗∗∗ -0.007∗∗∗ -0.005∗∗∗

(0.001) (0.001) (0.000) (0.000) (0.000)

Copenhagen -0.006∗∗∗ -0.006∗∗∗ -0.004∗∗∗ -0.005∗∗∗ -0.006∗∗∗

(0.001) (0.001) (0.000) (0.000) (0.000)

lgexp 0.014∗∗∗ 0.026∗∗∗ 0.024∗∗∗ 0.029∗∗∗ 0.039∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001)

Union 0.001∗∗ -0.002∗∗∗ 0.002∗∗∗ 0.002∗∗∗ -0.001∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)

lnemployee -0.006∗∗∗ -0.006∗∗∗ -0.006∗∗∗ -0.008∗∗∗ -0.009∗∗∗

(0.001) (0.001) (0.000) (0.000) (0.000)

argricuture -0.000 -0.000 -0.000∗∗∗ -0.000∗∗∗ -0.000∗∗∗
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... table 3.9 continued

(2004) (2007) (2009) (2010) (2013)

log wage log wage log wage log wage log wage

b/se b/se b/se b/se b/se

(0.000) (0.000) (0.000) (0.000) (0.000)

manufactoring -0.002∗∗∗ -0.001∗∗∗ 0.000 0.000 -0.000∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)

energy 0.001∗∗∗ 0.000∗∗ -0.000 -0.000 0.000∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)

construction -0.004∗∗∗ -0.005∗∗∗ -0.001∗∗∗ -0.002∗∗∗ -0.000

(0.000) (0.000) (0.000) (0.000) (0.000)

trade -0.000∗∗ -0.000 0.001∗∗∗ 0.001∗∗∗ -0.000

(0.000) (0.000) (0.000) (0.000) (0.000)

transport -0.003∗∗∗ -0.001 -0.000 0.000 -0.000

(0.001) (0.001) (0.000) (0.001) (0.001)

finance_etc -0.016∗∗∗ -0.018∗∗∗ -0.003∗∗∗ -0.004∗∗∗ -0.004∗∗∗

(0.002) (0.001) (0.000) (0.000) (0.000)

personal_service 0.001∗∗∗ 0.001∗∗∗ -0.001∗ 0.001∗∗ 0.000

(0.000) (0.000) (0.000) (0.000) (0.000)

Unexplained)

lgage -0.188 0.192 -0.097 -0.173∗ -0.447∗∗∗

(0.144) (0.139) (0.095) (0.100) (0.126)

basic_edu 0.050 0.149∗∗∗ 0.151∗∗∗ -0.011 0.148∗∗∗

(0.088) (0.022) (0.029) (0.012) (0.052)

vocational_edu 0.043 0.083∗∗∗ 0.090∗∗∗ 0.021∗∗∗ 0.087∗∗∗

(0.040) (0.009) (0.013) (0.006) (0.021)

higher_edu 0.031 0.050∗∗∗ 0.059∗∗∗ 0.020∗∗∗ 0.067∗∗∗

(0.019) (0.005) (0.008) (0.003) (0.014)

Married -0.008 -0.013 -0.003 0.002 0.011∗

(0.009) (0.008) (0.006) (0.006) (0.007)

children_0_6_yrs 0.037∗∗∗ 0.018∗∗∗ 0.012∗∗∗ 0.004 -0.011∗∗∗
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... table 3.9 continued

(2004) (2007) (2009) (2010) (2013)

log wage log wage log wage log wage log wage

b/se b/se b/se b/se b/se

(0.006) (0.005) (0.003) (0.003) (0.003)

Copenhagen 0.002 -0.002 0.004 0.003 0.009∗∗

(0.005) (0.004) (0.003) (0.003) (0.004)

lgexp 0.023∗∗ 0.053∗∗∗ 0.072∗∗∗ 0.092∗∗∗ 0.149∗∗∗

(0.010) (0.014) (0.009) (0.010) (0.013)

Union -0.100∗∗∗ -0.078∗∗∗ -0.087∗∗∗ -0.051∗∗∗ -0.057∗∗∗

(0.023) (0.017) (0.013) (0.012) (0.012)

lnemployee -0.065∗∗ -0.127∗∗∗ -0.086∗∗∗ -0.127∗∗∗ -0.151∗∗∗

(0.026) (0.022) (0.014) (0.014) (0.014)

argricuture -0.002 0.001 0.002∗∗ 0.002∗∗ -0.002∗∗∗

(0.002) (0.002) (0.001) (0.001) (0.001)

manufactoring 0.003 0.011∗∗ -0.003 -0.002 -0.021∗∗∗

(0.005) (0.005) (0.003) (0.003) (0.003)

energy -0.000 0.004 0.003∗∗∗ 0.003∗∗∗ -0.003∗∗∗

(0.004) (0.003) (0.001) (0.001) (0.001)

construction 0.002 0.007∗∗∗ 0.008∗∗∗ 0.001 -0.027∗∗∗

(0.003) (0.003) (0.003) (0.003) (0.003)

trade -0.006 0.003 0.014∗∗∗ 0.012∗∗∗ -0.007∗∗∗

(0.007) (0.005) (0.003) (0.003) (0.002)

transport 0.005 0.007∗∗ -0.005∗∗ -0.002 -0.015∗∗∗

(0.004) (0.003) (0.002) (0.002) (0.002)

finance_etc 0.000 0.002 -0.001 0.000 -0.014∗∗∗

(0.007) (0.006) (0.002) (0.002) (0.002)

personal_service 0.004 0.003 0.007∗ 0.011∗∗∗ -0.022∗∗∗

(0.003) (0.002) (0.004) (0.004) (0.003)

Constant 0.094 -0.478∗∗∗ -0.235∗∗ 0.094 0.189

(0.207) (0.151) (0.114) (0.100) (0.154)
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... table 3.9 continued

(2004) (2007) (2009) (2010) (2013)

log wage log wage log wage log wage log wage

b/se b/se b/se b/se b/se

N 240537 245712 566100 556698 588927
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Table 3.10: Full results from Oaxaca-Blinder decompostion for Native-EU12 wage gap

(2004) (2007) (2009) (2010) (2013)

log wage log wage log wage log wage log wage

b/se b/se b/se b/se b/se

explained 0.080∗∗∗ 0.182∗∗∗ 0.195∗∗∗ 0.210∗∗∗ 0.236∗∗∗

(0.012) (0.007) (0.003) (0.003) (0.003)

unexplained 0.034∗ -0.045∗∗∗ -0.058∗∗∗ -0.034∗∗∗ -0.013∗∗∗

(0.020) (0.012) (0.006) (0.005) (0.004)

Explained)

lgage 0.037∗∗∗ 0.039∗∗∗ 0.052∗∗∗ 0.057∗∗∗ 0.053∗∗∗

(0.004) (0.002) (0.001) (0.001) (0.001)

basic_edu 0.014∗∗∗ 0.010∗∗∗ -0.008∗∗ 0.038∗∗∗ -0.031∗∗∗

(0.003) (0.004) (0.004) (0.001) (0.005)

vocational_edu 0.041∗∗∗ 0.068∗∗∗ 0.082∗∗∗ 0.034∗∗∗ 0.116∗∗∗

(0.004) (0.004) (0.004) (0.001) (0.005)

higher_edu -0.023∗∗∗ -0.002 0.001 0.001 0.010∗∗∗

(0.005) (0.002) (0.001) (0.001) (0.001)

Married -0.001 0.006∗∗∗ 0.006∗∗∗ 0.005∗∗∗ 0.004∗∗∗

(0.002) (0.001) (0.001) (0.001) (0.000)

children_0_6_yrs 0.006∗∗ 0.009∗∗∗ 0.005∗∗∗ 0.003∗∗∗ 0.001∗∗∗

(0.002) (0.001) (0.001) (0.001) (0.000)

Copenhagen -0.002∗∗∗ -0.003∗∗∗ -0.000∗∗∗ -0.000 -0.000∗∗∗

(0.001) (0.001) (0.000) (0.000) (0.000)

lgexp 0.016∗∗∗ 0.054∗∗∗ 0.051∗∗∗ 0.062∗∗∗ 0.078∗∗∗

(0.002) (0.002) (0.001) (0.001) (0.001)

Union 0.001∗∗∗ -0.002∗∗∗ 0.002∗∗∗ 0.003∗∗∗ -0.001∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)

lnemployee -0.004∗ 0.002∗ -0.005∗∗∗ -0.004∗∗∗ 0.003∗∗∗

(0.002) (0.001) (0.001) (0.001) (0.000)

argricuture 0.000 -0.000 0.004∗∗∗ 0.006∗∗∗ 0.001∗∗∗
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... table 3.10 continued

(2004) (2007) (2009) (2010) (2013)

log wage log wage log wage log wage log wage

b/se b/se b/se b/se b/se

(0.000) (0.000) (0.001) (0.001) (0.000)

manufactoring 0.000 0.001∗∗∗ -0.000 0.000∗ -0.000∗∗

(0.001) (0.000) (0.000) (0.000) (0.000)

energy 0.000 -0.001∗∗ -0.000 -0.000 0.000∗∗∗

(0.001) (0.000) (0.000) (0.000) (0.000)

construction -0.003∗∗∗ 0.001 -0.001∗∗∗ -0.002∗∗∗ -0.000∗∗

(0.001) (0.001) (0.000) (0.000) (0.000)

trade -0.000 0.000∗∗ 0.000∗∗∗ 0.000∗∗ 0.000

(0.000) (0.000) (0.000) (0.000) (0.000)

transport 0.005∗∗∗ 0.005∗∗∗ 0.009∗∗∗ 0.011∗∗∗ 0.011∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.000)

finance_etc -0.007∗ -0.003 0.001∗∗∗ 0.002∗∗∗ 0.002∗∗∗

(0.004) (0.002) (0.000) (0.000) (0.000)

personal_service -0.000 -0.003∗∗∗ -0.005∗∗∗ -0.007∗∗∗ -0.010∗∗∗

(0.000) (0.000) (0.001) (0.001) (0.000)

Unexplained)

lgage 0.292 0.187 0.310∗∗∗ 0.558∗∗∗ 0.185∗∗∗

(0.299) (0.174) (0.085) (0.088) (0.070)

basic_edu -0.065 0.036 0.303∗∗∗ -0.083∗∗∗ 0.334∗∗∗

(0.048) (0.025) (0.026) (0.014) (0.021)

vocational_edu -0.010 0.029∗∗∗ 0.052∗∗∗ -0.005∗∗ 0.043∗∗∗

(0.031) (0.003) (0.005) (0.002) (0.003)

higher_edu 0.012 0.019∗∗∗ 0.021∗∗∗ -0.009∗∗∗ 0.026∗∗∗

(0.011) (0.004) (0.001) (0.002) (0.001)

Married 0.035 -0.003 0.008 0.008 0.027∗∗∗

(0.024) (0.010) (0.006) (0.006) (0.005)

children_0_6_yrs 0.003 0.005 0.007∗∗ 0.005∗ 0.001
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... table 3.10 continued

(2004) (2007) (2009) (2010) (2013)

log wage log wage log wage log wage log wage

b/se b/se b/se b/se b/se

(0.008) (0.004) (0.003) (0.003) (0.002)

Copenhagen -0.009 0.004 0.003 0.001 0.006∗∗

(0.009) (0.005) (0.002) (0.002) (0.003)

lgexp -0.037 0.012 0.017∗∗∗ 0.014∗∗ 0.056∗∗∗

(0.023) (0.012) (0.005) (0.006) (0.005)

Union -0.099∗∗ 0.007 -0.002 0.004 0.011

(0.044) (0.035) (0.026) (0.024) (0.015)

lnemployee -0.100∗ -0.156∗∗∗ -0.107∗∗∗ -0.130∗∗∗ -0.129∗∗∗

(0.060) (0.047) (0.019) (0.019) (0.015)

argricuture 0.000 -0.011∗∗∗ -0.021∗∗∗ -0.009∗ -0.035∗∗∗

(0.004) (0.003) (0.006) (0.005) (0.003)

manufactoring 0.009 -0.012 -0.009∗∗∗ -0.012∗∗∗ -0.020∗∗∗

(0.021) (0.011) (0.003) (0.003) (0.002)

energy 0.005 -0.001 -0.001 0.000 -0.003∗∗∗

(0.008) (0.003) (0.001) (0.001) (0.001)

construction 0.004 -0.027∗∗∗ -0.004 -0.002 -0.011∗∗∗

(0.011) (0.009) (0.004) (0.003) (0.003)

trade 0.017 -0.003 0.002 0.002 -0.005∗∗∗

(0.015) (0.006) (0.002) (0.002) (0.002)

transport 0.009 0.003 -0.007∗∗∗ -0.002 -0.003∗∗∗

(0.006) (0.003) (0.002) (0.002) (0.001)

finance_etc 0.001 -0.008 -0.000 0.001 0.001

(0.012) (0.007) (0.001) (0.001) (0.001)

personal_service 0.004 -0.002 -0.022∗∗∗ -0.020∗∗∗ -0.017∗∗∗

(0.005) (0.002) (0.004) (0.003) (0.002)

Constant -0.038 -0.125 -0.607∗∗∗ -0.353∗∗∗ -0.482∗∗∗

(0.311) (0.182) (0.100) (0.092) (0.077)
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... table 3.10 continued

(2004) (2007) (2009) (2010) (2013)

log wage log wage log wage log wage log wage

b/se b/se b/se b/se b/se

N 238442 243413 561615 552407 586254
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Table 3.11: Full results from Oaxaca-Blinder decompostion for Native-RDI wage gap

(2004) (2007) (2009) (2010) (2013)

log wage log wage log wage log wage log wage

b/se b/se b/se b/se b/se

explained -0.056∗∗∗ 0.004 0.025∗∗∗ 0.035∗∗∗ 0.044∗∗∗

(0.010) (0.008) (0.005) (0.005) (0.005)

unexplained -0.042∗∗ -0.095∗∗∗ -0.094∗∗∗ -0.089∗∗∗ -0.114∗∗∗

(0.017) (0.016) (0.011) (0.011) (0.012)

Explained)

lgage 0.014∗∗∗ 0.011∗∗∗ 0.014∗∗∗ 0.013∗∗∗ 0.009∗∗∗

(0.002) (0.002) (0.001) (0.001) (0.001)

basic_edu 0.009∗∗∗ 0.007∗∗∗ -0.004∗∗ 0.022∗∗∗ -0.017∗∗∗

(0.002) (0.003) (0.002) (0.001) (0.003)

vocational_edu 0.039∗∗∗ 0.056∗∗∗ 0.057∗∗∗ 0.024∗∗∗ 0.082∗∗∗

(0.004) (0.004) (0.003) (0.001) (0.004)

higher_edu -0.046∗∗∗ -0.024∗∗∗ -0.031∗∗∗ -0.021∗∗∗ -0.033∗∗∗

(0.005) (0.004) (0.003) (0.002) (0.003)

Married -0.010∗∗∗ -0.007∗∗∗ -0.004∗∗∗ -0.005∗∗∗ -0.006∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001)

children_0_6_yrs -0.022∗∗∗ -0.020∗∗∗ -0.009∗∗∗ -0.009∗∗∗ -0.007∗∗∗

(0.002) (0.002) (0.001) (0.001) (0.001)

Copenhagen -0.007∗∗∗ -0.008∗∗∗ -0.005∗∗∗ -0.007∗∗∗ -0.008∗∗∗

(0.001) (0.001) (0.000) (0.001) (0.001)

lgexp 0.015∗∗∗ 0.034∗∗∗ 0.025∗∗∗ 0.031∗∗∗ 0.040∗∗∗

(0.001) (0.002) (0.001) (0.001) (0.001)

Union 0.001∗∗∗ -0.001∗∗∗ 0.002∗∗∗ 0.002∗∗∗ -0.001∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)

lnemployee -0.008∗∗∗ -0.009∗∗∗ -0.010∗∗∗ -0.009∗∗∗ -0.013∗∗∗

(0.002) (0.002) (0.001) (0.001) (0.001)

argricuture 0.000 0.000 -0.000∗∗∗ -0.001∗∗∗ -0.000∗∗∗
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... table 3.11 continued

(2004) (2007) (2009) (2010) (2013)

log wage log wage log wage log wage log wage

b/se b/se b/se b/se b/se

(0.000) (0.000) (0.000) (0.000) (0.000)

manufactoring -0.003∗∗∗ -0.002∗∗∗ 0.000 0.000 -0.000

(0.001) (0.000) (0.000) (0.000) (0.000)

energy 0.000 0.000 -0.000 -0.000∗ 0.000

(0.000) (0.000) (0.000) (0.000) (0.000)

construction -0.005∗∗∗ -0.005∗∗∗ -0.001∗∗∗ -0.003∗∗∗ -0.001∗∗∗

(0.001) (0.001) (0.000) (0.000) (0.000)

trade 0.000 0.000 0.001∗∗∗ 0.000∗∗∗ 0.000

(0.000) (0.000) (0.000) (0.000) (0.000)

transport -0.002 0.001 -0.002∗∗ -0.000 0.000

(0.002) (0.001) (0.001) (0.001) (0.001)

finance_etc -0.034∗∗∗ -0.031∗∗∗ -0.005∗∗∗ -0.005∗∗∗ -0.005∗∗∗

(0.004) (0.003) (0.001) (0.001) (0.001)

personal_service 0.001∗∗ 0.003∗∗∗ -0.000 0.002∗∗ 0.002∗∗

(0.000) (0.001) (0.001) (0.001) (0.001)

Unexplained)

lgage -0.059 -0.479 -0.325 -0.501∗∗ -0.237

(0.349) (0.304) (0.223) (0.241) (0.271)

basic_edu 0.059 0.144∗∗∗ 0.169∗∗∗ -0.014 -0.010

(0.050) (0.038) (0.025) (0.024) (0.015)

vocational_edu 0.079∗∗ 0.108∗∗∗ 0.134∗∗∗ 0.027∗∗ 0.053∗∗∗

(0.037) (0.018) (0.013) (0.013) (0.003)

higher_edu 0.065∗∗∗ 0.064∗∗∗ 0.089∗∗∗ 0.035∗∗∗ 0.052∗∗∗

(0.021) (0.011) (0.009) (0.008) (0.006)

Married 0.066∗∗ 0.041∗ 0.020 0.019 0.020

(0.029) (0.022) (0.017) (0.016) (0.018)

children_0_6_yrs 0.031∗∗ 0.029∗∗ 0.005 0.013∗ 0.003

Continued on next page...
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... table 3.11 continued

(2004) (2007) (2009) (2010) (2013)

log wage log wage log wage log wage log wage

b/se b/se b/se b/se b/se

(0.014) (0.012) (0.007) (0.007) (0.007)

Copenhagen 0.006 -0.019∗ -0.002 0.004 0.012

(0.011) (0.010) (0.007) (0.008) (0.010)

lgexp -0.033 0.059∗∗∗ 0.072∗∗∗ 0.112∗∗∗ 0.134∗∗∗

(0.021) (0.022) (0.020) (0.021) (0.028)

Union -0.089∗∗∗ -0.127∗∗∗ -0.088∗∗∗ -0.106∗∗∗ -0.079∗∗∗

(0.033) (0.034) (0.023) (0.023) (0.024)

lnemployee -0.069 -0.074 -0.109∗∗∗ -0.115∗∗∗ -0.157∗∗∗

(0.056) (0.047) (0.030) (0.030) (0.030)

argricuture 0.001 -0.002 0.001 0.003 -0.001

(0.004) (0.003) (0.002) (0.002) (0.001)

manufactoring 0.015 -0.012 -0.008 -0.009∗ -0.026∗∗∗

(0.010) (0.010) (0.008) (0.005) (0.005)

energy 0.006 -0.009 0.002 0.000 -0.005∗∗

(0.007) (0.007) (0.002) (0.002) (0.002)

construction 0.006 -0.005 0.005 0.000 -0.010∗

(0.004) (0.005) (0.007) (0.005) (0.005)

trade 0.004 -0.018 0.007 0.002 -0.013∗∗

(0.013) (0.011) (0.007) (0.006) (0.005)

transport 0.004 -0.003 -0.012∗ -0.012∗∗ -0.019∗∗∗

(0.009) (0.006) (0.007) (0.005) (0.005)

finance_etc -0.012 -0.032∗ -0.004 -0.010∗∗ -0.016∗∗∗

(0.020) (0.018) (0.007) (0.005) (0.005)

personal_service 0.001 -0.003 0.015 0.006 -0.023∗∗∗

(0.007) (0.006) (0.011) (0.009) (0.008)

Constant -0.124 0.241 -0.067 0.458∗ 0.206

(0.387) (0.372) (0.244) (0.237) (0.265)

Continued on next page...
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... table 3.11 continued

(2004) (2007) (2009) (2010) (2013)

log wage log wage log wage log wage log wage

b/se b/se b/se b/se b/se

N 238666 243336 559786 550222 581104
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Table 3.12: Full results from Oaxaca-Blinder decompostion for Native-LDI wage gap

(2004) (2007) (2009) (2010) (2013)

log wage log wage log wage log wage log wage

b/se b/se b/se b/se b/se

explained 0.086∗∗∗ 0.092∗∗∗ 0.087∗∗∗ 0.090∗∗∗ 0.089∗∗∗

(0.003) (0.002) (0.001) (0.002) (0.002)

unexplained 0.095∗∗∗ 0.077∗∗∗ 0.065∗∗∗ 0.069∗∗∗ 0.057∗∗∗

(0.005) (0.004) (0.003) (0.003) (0.003)

Explained)

lgage 0.034∗∗∗ 0.027∗∗∗ 0.029∗∗∗ 0.031∗∗∗ 0.027∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001)

basic_edu 0.022∗∗∗ 0.008∗∗ -0.006∗∗ 0.024∗∗∗ -0.018∗∗∗

(0.003) (0.003) (0.003) (0.001) (0.003)

vocational_edu 0.050∗∗∗ 0.057∗∗∗ 0.056∗∗∗ 0.023∗∗∗ 0.069∗∗∗

(0.003) (0.003) (0.003) (0.001) (0.003)

higher_edu -0.005∗∗∗ -0.001 -0.001 0.000 -0.007∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001)

Married -0.008∗∗∗ -0.006∗∗∗ -0.004∗∗∗ -0.005∗∗∗ -0.006∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)

children_0_6_yrs -0.019∗∗∗ -0.016∗∗∗ -0.010∗∗∗ -0.010∗∗∗ -0.009∗∗∗

(0.001) (0.001) (0.000) (0.000) (0.000)

Copenhagen -0.004∗∗∗ -0.003∗∗∗ -0.003∗∗∗ -0.004∗∗∗ -0.004∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)

lgexp 0.022∗∗∗ 0.038∗∗∗ 0.025∗∗∗ 0.029∗∗∗ 0.039∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001)

Union 0.001∗∗∗ -0.001∗∗∗ 0.001∗∗∗ 0.002∗∗∗ -0.001∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)

lnemployee -0.004∗∗∗ -0.006∗∗∗ -0.007∗∗∗ -0.008∗∗∗ -0.007∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)

argricuture -0.000∗∗∗ -0.000 0.001∗∗∗ 0.001∗∗∗ 0.000∗∗∗

Continued on next page...
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... table 3.12 continued

(2004) (2007) (2009) (2010) (2013)

log wage log wage log wage log wage log wage

b/se b/se b/se b/se b/se

(0.000) (0.000) (0.000) (0.000) (0.000)

manufactoring 0.002∗∗∗ 0.002∗∗∗ 0.000 0.000∗ -0.000∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)

energy 0.001∗∗∗ 0.001∗∗∗ -0.000 -0.000∗∗ 0.000∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)

construction -0.005∗∗∗ -0.005∗∗∗ -0.000∗∗∗ -0.000∗∗ -0.000∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)

trade 0.000 0.000∗ 0.000∗∗∗ 0.000∗∗∗ 0.000

(0.000) (0.000) (0.000) (0.000) (0.000)

transport -0.000 -0.001∗∗∗ 0.006∗∗∗ 0.007∗∗∗ 0.006∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)

finance_etc -0.001 0.000 0.001∗∗∗ 0.001∗∗∗ 0.000∗

(0.001) (0.001) (0.000) (0.000) (0.000)

personal_service -0.000∗∗∗ -0.002∗∗∗ -0.001∗∗ -0.000 -0.002∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)

Unexplained)

lgage 0.399∗∗∗ 0.372∗∗∗ 0.350∗∗∗ 0.410∗∗∗ 0.479∗∗∗

(0.074) (0.064) (0.045) (0.046) (0.045)

basic_edu 0.271∗∗∗ 0.062∗∗∗ 0.210∗∗∗ -0.037∗∗∗ 0.155∗∗∗

(0.016) (0.008) (0.011) (0.006) (0.008)

vocational_edu 0.110∗∗∗ 0.040∗∗∗ 0.118∗∗∗ -0.001 0.116∗∗∗

(0.006) (0.002) (0.005) (0.003) (0.005)

higher_edu 0.030∗∗∗ 0.015∗∗∗ 0.030∗∗∗ 0.002∗ 0.043∗∗∗

(0.002) (0.001) (0.002) (0.001) (0.001)

Married 0.023∗∗∗ 0.029∗∗∗ 0.030∗∗∗ 0.036∗∗∗ 0.030∗∗∗

(0.007) (0.006) (0.004) (0.004) (0.004)

children_0_6_yrs 0.026∗∗∗ 0.026∗∗∗ 0.020∗∗∗ 0.018∗∗∗ 0.012∗∗∗

Continued on next page...
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... table 3.12 continued

(2004) (2007) (2009) (2010) (2013)

log wage log wage log wage log wage log wage

b/se b/se b/se b/se b/se

(0.004) (0.003) (0.002) (0.002) (0.002)

Copenhagen -0.002 -0.003 0.003∗ 0.004∗∗∗ 0.008∗∗∗

(0.002) (0.002) (0.001) (0.001) (0.002)

lgexp -0.025∗∗∗ -0.009 0.025∗∗∗ 0.045∗∗∗ 0.054∗∗∗

(0.004) (0.005) (0.005) (0.005) (0.006)

Union -0.003 -0.004 0.000 -0.004 -0.027∗∗∗

(0.011) (0.009) (0.006) (0.005) (0.005)

lnemployee -0.045∗∗∗ -0.054∗∗∗ -0.028∗∗∗ -0.030∗∗∗ -0.096∗∗∗

(0.015) (0.013) (0.009) (0.009) (0.009)

argricuture -0.003∗∗ -0.001 -0.004∗∗∗ -0.004∗∗∗ -0.003∗∗∗

(0.002) (0.001) (0.001) (0.001) (0.001)

manufactoring -0.013∗ -0.017∗∗∗ -0.007∗∗∗ -0.007∗∗∗ -0.004∗∗∗

(0.008) (0.005) (0.002) (0.002) (0.001)

energy -0.003 -0.004∗ -0.002∗∗∗ -0.000 -0.000

(0.003) (0.002) (0.001) (0.000) (0.000)

construction -0.001 -0.000 0.006∗∗ 0.006∗∗ 0.009∗∗∗

(0.002) (0.002) (0.002) (0.003) (0.002)

trade 0.008∗ 0.007∗∗ 0.001 0.002∗∗ 0.004∗∗∗

(0.004) (0.003) (0.001) (0.001) (0.001)

transport -0.001 -0.004∗ -0.002∗∗ -0.001 -0.002∗∗

(0.003) (0.002) (0.001) (0.001) (0.001)

finance_etc 0.007∗∗ 0.003 -0.002∗∗∗ 0.000 -0.001

(0.003) (0.002) (0.001) (0.001) (0.001)

personal_service 0.000 -0.001 -0.015∗∗∗ -0.015∗∗∗ -0.010∗∗∗

(0.001) (0.001) (0.002) (0.002) (0.002)

Constant -0.680∗∗∗ -0.379∗∗∗ -0.669∗∗∗ -0.355∗∗∗ -0.710∗∗∗

(0.091) (0.066) (0.054) (0.047) (0.046)

Continued on next page...
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... table 3.12 continued

(2004) (2007) (2009) (2010) (2013)

log wage log wage log wage log wage log wage

b/se b/se b/se b/se b/se

N 243607 249575 574104 564698 598052
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Appendix C: Statistical inference for estimations in Melly(2005) approach

in Section 3.6.2

Appendix C.1: Statistical inference for Figure 3.8 (native-total immigrants wage gap)

2004 2007 2009

2010 2013

Figure 3.15: Statistical inference for native-total immigrants wage gap decomposition in all

skill levels 2004-2013
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Appendix C.2: Statistical inference for Figure 3.9 and Figure 3.10 (native-immigrants wage

gap under different skill levels)

Low-skilled 2004 Medium-skilled 2004 High-skilled 2004

Low-skilled 2007 Medium-skilled 2007 High-skilled 2007

Low-skilled 2009 Medium-skilled 2009 High-skilled 2009

Figure 3.16: Statistical inference of native-immigrants wage gap decomposition in different

skill levels 2004-2009
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Low-skilled 2010 Medium-skilled 2010 High-skilled 2010

Low-skilled 2013 Medium-skilled 2013 High-skilled 2013

Figure 3.17: Statistical inference of native-immigrants wage gap decomposition in different

skill levels 2010-2013
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Appendix C.3: Statistical inference for Figure 3.12 and Figure 3.13(native-immigrants wage

gap under different groups of countries of origin)

219



EU15 2004 New EU12 2004 LD 2004

EU15 2007 New EU12 2007 LD 2007

EU15 2009 New EU12 2009 LD 2009

Figure 3.18: Statistical inference of native-immigrants wage gap decomposition in all skill

levels under each immigrant group (EU12 New EU12 and Less Developed countries (LD))

2004-2009
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EU15 2010 New EU12 2010 LD 2010

EU15 2013 New EU12 2013 LD 2013

Figure 3.19: Statistical inference of native-immigrants wage gap decomposition in all skill

levels under each immigrant group (EU12 New EU12 and Less Developed countries (LD))

2010-2013
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Appendix D: Full results (beta-estimates and bootstrapped standard er-

rors) for decomposition results from Melly (2005) approach-From STATA

log files

Appendix D.0: Cumulative density function of wage(log) for the empirical analysis in Section

3.6.

Figure 3.20: Cumulative density function of wage (log) 2004-2013
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Appendix D.1: Full results for Figure 3.8(native-total immigrants wage gap)
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***Quantile regression estimation results and bootstrapped standard errors

**Native-total immigrants for all skilled levels

**Year 2004
.   rqdeco wage `X' if YEAR==2004, by(native) qlow(.05) qhigh(.95) qste(.15) vce(boot) 
Fitting base model
(bootstrapping ..................................................)

Decomposition of differences in distribution using quantile regression
         Total number of observations                  246910
           Number of observations in group 0             8796
           Number of observations in group 1           238114

         Number of quantile regressions estimated         100

The variance has been estimated by bootstraping the results 50 times

-----------------------------------------------------------------------------
        Component|   Effects  Std. Err.     t     P>|t|  [95% Conf. Interval] 
-----------------+-----------------------------------------------------------
Quantile .05     |
   Raw difference|   .075853   .009276   8.18     0.000    .057673    .094033
  Characteristics|   .049143   .009447   5.20     0.000    .030628    .067658
     Coefficients|    .02671     .0136   1.96     0.050    .000054    .053366
-----------------+-----------------------------------------------------------
Quantile .2      |
   Raw difference|   .095188   .004279   22.25    0.000    .086802    .103575
  Characteristics|    .06132   .005204   11.78    0.000     .05112     .07152
     Coefficients|   .033869   .006306   5.37     0.000     .02151    .046227
-----------------+-----------------------------------------------------------
Quantile .35     |
   Raw difference|    .10195    .00324   31.46    0.000    .095599    .108301
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  Characteristics|   .062947   .004399   14.31    0.000    .054325    .071569
     Coefficients|   .039003   .005072   7.69     0.000    .029063    .048944
-----------------+-----------------------------------------------------------
Quantile .5      |
   Raw difference|   .104849   .003052   34.35    0.000    .098867    .110831
  Characteristics|   .061533   .004274   14.40    0.000    .053155     .06991
     Coefficients|   .043316   .004962   8.73     0.000    .033592    .053041
-----------------+-----------------------------------------------------------
Quantile .65     |
   Raw difference|   .108445   .003698   29.32    0.000    .101197    .115694
  Characteristics|   .056448   .004952   11.40    0.000    .046743    .066154
     Coefficients|   .051997   .005483   9.48     0.000     .04125    .062744
-----------------+-----------------------------------------------------------
Quantile .8      |
   Raw difference|   .111653   .005631   19.83    0.000    .100617    .122688
  Characteristics|   .046055   .006984   6.59     0.000    .032367    .059743
     Coefficients|   .065598   .007382   8.89     0.000    .051129    .080066
-----------------+-----------------------------------------------------------
Quantile .95     |
   Raw difference|   .066998   .013697   4.89     0.000    .040153    .093843
  Characteristics|   .014168   .017202   0.82     0.496   -.019547    .047883
     Coefficients|    .05283   .020821   2.54     0.011    .012021    .093639
-----------------------------------------------------------------------------

.  ***  Year 2007

.  rqdeco wage `X' if YEAR==2007, by(native) qlow(.05) qhigh(.95) qste(.15) vce(boot) 
Fitting base model
(bootstrapping ..................................................)

Decomposition of differences in distribution using quantile regression
         Total number of observations                  254158
           Number of observations in group 0            11532
           Number of observations in group 1           242626
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         Number of quantile regressions estimated         100

The variance has been estimated by bootstraping the results 50 times

-----------------------------------------------------------------------------
        Component|   Effects  Std. Err.     t     P>|t|  [95% Conf. Interval] 
-----------------+-----------------------------------------------------------
Quantile .05     |
   Raw difference|   .069246   .008636   8.02     0.000     .05232    .086173
  Characteristics|    .05765   .008599   6.70     0.000    .040796    .074505
     Coefficients|   .011596   .011333   1.02     0.306   -.010617    .033809
-----------------+-----------------------------------------------------------
Quantile .2      |
   Raw difference|   .091203    .00411   22.19    0.000    .083148    .099258
  Characteristics|   .061237   .004428   13.83    0.000    .052558    .069916
     Coefficients|   .029966   .005314   5.64     0.000    .019551    .040381
-----------------+-----------------------------------------------------------
Quantile .35     |
   Raw difference|   .095754   .003755   25.50    0.000    .088394    .103114
  Characteristics|   .058057   .003653   15.89    0.000    .050897    .065217
     Coefficients|   .037697   .004723   7.98     0.000    .028441    .046953
-----------------+-----------------------------------------------------------
Quantile .5      |
   Raw difference|   .094099    .00389   24.19    0.000    .086475    .101723
  Characteristics|   .051591   .003646   14.15    0.000    .044446    .058737
     Coefficients|   .042508   .004737   8.97     0.000    .033224    .051792
-----------------+-----------------------------------------------------------
Quantile .65     |
   Raw difference|   .093455   .004345   21.51    0.000    .084939    .101971
  Characteristics|   .043368   .004212   10.30    0.000    .035112    .051624
     Coefficients|   .050087   .005176   9.68     0.000    .039943    .060231
-----------------+-----------------------------------------------------------
Quantile .8      |
   Raw difference|   .094153   .005321   17.70    0.000    .083725    .104581
  Characteristics|   .030319   .005236   5.79     0.000    .020055    .040582
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     Coefficients|   .063835   .005859   10.90    0.000    .052352    .075317
-----------------+-----------------------------------------------------------
Quantile .95     |
   Raw difference|   .068535   .011184   6.13     0.000    .046614    .090456
  Characteristics|  -.003009   .010616   -0.28    0.840   -.023817    .017798
     Coefficients|   .071544   .014933   4.79     0.000    .042275    .100813
-----------------------------------------------------------------------------

.  **2009

. 

.  

. 

.  rqdeco wage `X' if YEAR==2009, by(native) qlow(.05) qhigh(.95) qste(.15) vce(boot) 
Fitting base model
(bootstrapping ..................................................)

Decomposition of differences in distribution using quantile regression
Total number of observations 587218
Number of observations in group 0 29089
Number of observations in group 1 558129

Number of quantile regressions estimated 100

The variance has been estimated by bootstraping the results 50 times

-----------------------------------------------------------------------------
Component|   Effects  Std. Err.     t     P>|t|  [95% Conf. Interval] 

-----------------+-----------------------------------------------------------
Quantile .05     |
   Raw difference|   .057348    .00464   12.36    0.000    .048253    .066444
  Characteristics|   .059522   .005504   10.81    0.000    .048735     .07031
     Coefficients|  -.002174   .006444   -0.34    0.736   -.014804    .010456
-----------------+-----------------------------------------------------------
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Quantile .2      |
   Raw difference|    .08942   .001965   45.50    0.000    .085568    .093272
  Characteristics|   .039814   .002588   15.39    0.000    .034742    .044886
     Coefficients|   .049606   .002856   17.37    0.000    .044008    .055203
-----------------+-----------------------------------------------------------
Quantile .35     |
   Raw difference|   .098446   .001781   55.27    0.000    .094955    .101937
  Characteristics|   .036567    .00222   16.47    0.000    .032216    .040918
     Coefficients|   .061879   .002601   23.79    0.000    .056782    .066976
-----------------+-----------------------------------------------------------
Quantile .5      |
   Raw difference|   .099908   .001935   51.62    0.000    .096115    .103702
  Characteristics|   .035517   .002278   15.59    0.000    .031053    .039981
     Coefficients|   .064391   .002865   22.47    0.000    .058776    .070007
-----------------+-----------------------------------------------------------
Quantile .65     |
   Raw difference|   .100427   .002455   40.91    0.000    .095616    .105238
  Characteristics|   .034697   .002607   13.31    0.000    .029587    .039807
     Coefficients|    .06573   .003448   19.06    0.000    .058972    .072489
-----------------+-----------------------------------------------------------
Quantile .8      |
   Raw difference|   .099802   .003737   26.71    0.000    .092478    .107125
  Characteristics|   .029605   .003813   7.76     0.000    .022132    .037078
     Coefficients|   .070197   .004729   14.84    0.000    .060929    .079465
-----------------+-----------------------------------------------------------
Quantile .95     |
   Raw difference|   .055948   .009049   6.18     0.000    .038212    .073684
  Characteristics|   .004066   .008284   0.49     0.693   -.012171    .020302
     Coefficients|   .051883    .01029   5.04     0.000    .031715    .072051
-----------------------------------------------------------------------------

.  **2010

. 

.  
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. 

.   rqdeco wage `X' if YEAR==2010, by(native) qlow(.05) qhigh(.95) qste(.15) vce(boot) 
Fitting base model
(bootstrapping ..................................................)

Decomposition of differences in distribution using quantile regression
         Total number of observations                  578504
           Number of observations in group 0            29997
           Number of observations in group 1           548507

         Number of quantile regressions estimated         100

The variance has been estimated by bootstraping the results 50 times

-----------------------------------------------------------------------------
        Component|   Effects  Std. Err.     t     P>|t|  [95% Conf. Interval] 
-----------------+-----------------------------------------------------------
Quantile .05     |
   Raw difference|    .06022   .004983   12.09    0.000    .050453    .069986
  Characteristics|   .067323   .005582   12.06    0.000    .056382    .078263
     Coefficients|  -.007103   .006118   -1.16    0.246   -.019095    .004889
-----------------+-----------------------------------------------------------
Quantile .2      |
   Raw difference|   .091282   .001983   46.02    0.000    .087394    .095169
  Characteristics|    .04055   .002587   15.67    0.000    .035479    .045621
     Coefficients|   .050732   .003492   14.53    0.000    .043888    .057575
-----------------+-----------------------------------------------------------
Quantile .35     |
   Raw difference|   .102899   .001997   51.53    0.000    .098986    .106812
  Characteristics|   .034701   .002155   16.10    0.000    .030478    .038925
     Coefficients|   .068198   .003018   22.60    0.000    .062283    .074112
-----------------+-----------------------------------------------------------
Quantile .5      |
   Raw difference|   .108024    .00212   50.94    0.000    .103868     .11218
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  Characteristics|   .031863   .002087   15.26    0.000    .027772    .035954
     Coefficients|   .076161   .002863   26.61    0.000    .070551    .081772
-----------------+-----------------------------------------------------------
Quantile .65     |
   Raw difference|   .111317   .002328   47.82    0.000    .106754    .115879
  Characteristics|   .029222   .002344   12.47    0.000    .024628    .033816
     Coefficients|   .082094   .003231   25.41    0.000    .075762    .088427
-----------------+-----------------------------------------------------------
Quantile .8      |
   Raw difference|   .107955   .003404   31.72    0.000    .101284    .114626
  Characteristics|   .024414   .003146   7.76     0.000    .018248     .03058
     Coefficients|   .083541    .00434   19.25    0.000    .075034    .092048
-----------------+-----------------------------------------------------------
Quantile .95     |
   Raw difference|   .061123   .007968   7.67     0.000    .045506     .07674
  Characteristics|   .006459   .007291   0.89     0.497   -.007832     .02075
     Coefficients|   .054664   .009504   5.75     0.000    .036036    .073292
-----------------------------------------------------------------------------

.  **2013

. 

.    rqdeco wage `X' if YEAR==2013, by(native) qlow(.05) qhigh(.95) qste(.15) vce(boot) 
Fitting base model
(bootstrapping ..................................................)

Decomposition of differences in distribution using quantile regression
         Total number of observations                  617376
           Number of observations in group 0            38389
           Number of observations in group 1           578987

         Number of quantile regressions estimated         100

The variance has been estimated by bootstraping the results 50 times
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-----------------------------------------------------------------------------
        Component|   Effects  Std. Err.     t     P>|t|  [95% Conf. Interval] 
-----------------+-----------------------------------------------------------
Quantile .05     |
   Raw difference|   .064687    .00476   13.59    0.000    .055358    .074016
  Characteristics|   .068029   .004908   13.86    0.000     .05841    .077647
     Coefficients|  -.003342   .005999   -0.56    0.578     -.0151    .008417
-----------------+-----------------------------------------------------------
Quantile .2      |
   Raw difference|    .09552   .001878   50.87    0.000    .091839      .0992
  Characteristics|   .043787   .002092   20.93    0.000    .039688    .047887
     Coefficients|   .051732   .002607   19.84    0.000    .046622    .056843
-----------------+-----------------------------------------------------------
Quantile .35     |
   Raw difference|   .103882   .001659   62.63    0.000    .100631    .107133
  Characteristics|   .035134   .001592   22.07    0.000    .032014    .038254
     Coefficients|   .068748   .002211   31.10    0.000    .064415     .07308
-----------------+-----------------------------------------------------------
Quantile .5      |
   Raw difference|   .104277   .001886   55.29    0.000     .10058    .107974
  Characteristics|   .029652   .001573   18.86    0.000     .02657    .032734
     Coefficients|   .074625   .002286   32.64    0.000    .070144    .079106
-----------------+-----------------------------------------------------------
Quantile .65     |
   Raw difference|   .103328   .002382   43.37    0.000    .098658    .107997
  Characteristics|   .025103   .001883   13.33    0.000    .021413    .028794
     Coefficients|   .078225   .002778   28.16    0.000     .07278    .083669
-----------------+-----------------------------------------------------------
Quantile .8      |
   Raw difference|   .096989    .00365   26.57    0.000    .089835    .104143
  Characteristics|   .017648   .002829   6.24     0.000    .012103    .023194
     Coefficients|   .079341    .00389   20.40    0.000    .071716    .086965
-----------------+-----------------------------------------------------------
Quantile .95     |
   Raw difference|   .055899   .008466   6.60     0.000    .039306    .072493
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  Characteristics|  -.018097   .006365   -2.84    0.051   -.030572   -.005623
     Coefficients|   .073997   .009272   7.98     0.000    .055824    .092169
-----------------------------------------------------------------------------

. 
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Appendix D.2: Full results for Figure 3.9(native-immigrants wage gap under different

skill levels)
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***Quantile regression estimation results and bootstrapped standard errors

**Native-total immigrants in low-skilled group

.  *2004

. 

.  rqdeco wage `X' if YEAR==2004&basic_edu==1, by(native) qlow(.05) qhigh(.95) qste(.15) vce(boot) 
Fitting base model
(bootstrapping ..................................................)

Decomposition of differences in distribution using quantile regression
         Total number of observations                   76103
           Number of observations in group 0             5787
           Number of observations in group 1            70316

         Number of quantile regressions estimated         100

The variance has been estimated by bootstraping the results 50 times

-----------------------------------------------------------------------------
        Component|   Effects  Std. Err.     t     P>|t|  [95% Conf. Interval] 
-----------------+-----------------------------------------------------------
Quantile .05     |
   Raw difference|  -.143252   .014457   -9.91    0.000   -.171588   -.114916
  Characteristics|  -.011964   .007858   -1.52    0.481   -.027365    .003437
     Coefficients|  -.131288   .016972   -7.74    0.000   -.164552   -.098023
-----------------+-----------------------------------------------------------
Quantile .2      |
   Raw difference|  -.039921   .006365   -6.27    0.000   -.052397   -.027445
  Characteristics|    .01964   .005892   3.33     0.016    .008092    .031187
     Coefficients|   -.05956   .008137   -7.32    0.000   -.075508   -.043613
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-----------------+-----------------------------------------------------------
Quantile .35     |
   Raw difference|   .004824   .004152   1.16     0.245   -.003315    .012962
  Characteristics|   .027344   .004789   5.71     0.000    .017959     .03673
     Coefficients|  -.022521   .005997   -3.76    0.000   -.034275   -.010766
-----------------+-----------------------------------------------------------
Quantile .5      |
   Raw difference|    .03207   .003773   8.50     0.000    .024675    .039466
  Characteristics|   .029544     .0047   6.29     0.000    .020333    .038756
     Coefficients|   .002526   .006076   0.42     0.678   -.009382    .014435
-----------------+-----------------------------------------------------------
Quantile .65     |
   Raw difference|   .046821   .004736   9.89     0.000    .037538    .056105
  Characteristics|   .029705   .005134   5.79     0.000    .019643    .039768
     Coefficients|   .017116   .007688   2.23     0.026    .002048    .032184
-----------------+-----------------------------------------------------------
Quantile .8      |
   Raw difference|   .052776   .007459   7.08     0.000    .038157    .067394
  Characteristics|   .031503   .006576   4.79     0.005    .018615    .044392
     Coefficients|   .021273    .01129   1.88     0.060   -.000856    .043401
-----------------+-----------------------------------------------------------
Quantile .95     |
   Raw difference|   .000989   .018152   0.05     0.957   -.034588    .036566
  Characteristics|   .035324   .016956   2.08     0.173     .00209    .068558
     Coefficients|  -.034335   .025912   -1.33    0.185   -.085123    .016452
-----------------------------------------------------------------------------

. *2009 

. 

. rqdeco wage `X' if YEAR==2009&basic_edu==1, by(native) qlow(.05) qhigh(.95) qste(.15) vce(boot) 
Fitting base model
(bootstrapping ..................................................)
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Decomposition of differences in distribution using quantile regression
Total number of observations 155737
Number of observations in group 0 18511
Number of observations in group 1 137226

Number of quantile regressions estimated 100

The variance has been estimated by bootstraping the results 50 times

-----------------------------------------------------------------------------
Component|   Effects  Std. Err.     t     P>|t|  [95% Conf. Interval] 

-----------------+-----------------------------------------------------------
Quantile .05     |
   Raw difference|  -.125832   .008501   -14.80   0.000   -.142492   -.109171
  Characteristics|     .0057   .004534   1.26     0.545   -.003186    .014586
     Coefficients|  -.131532   .009424   -13.96   0.000   -.150003    -.11306
-----------------+-----------------------------------------------------------
Quantile .2      |
   Raw difference|  -.026231   .002446   -10.72   0.000   -.031026   -.021437
  Characteristics|  -.002065   .002196   -0.94    0.542   -.006369    .002238
     Coefficients|  -.024166   .003387   -7.14    0.000   -.030804   -.017528
-----------------+-----------------------------------------------------------
Quantile .35     |
   Raw difference|   .007571   .002067   3.66     0.000    .003521    .011621
  Characteristics|  -.005525   .001983   -2.79    0.046   -.009412   -.001638
     Coefficients|   .013096   .002775   4.72     0.000    .007657    .018535
-----------------+-----------------------------------------------------------
Quantile .5      |
   Raw difference|   .020542   .002389   8.60     0.000    .015859    .025225
  Characteristics|   -.00717   .002115   -3.39    0.020   -.011315   -.003024
     Coefficients|   .027712   .003072   9.02     0.000    .021691    .033732
-----------------+-----------------------------------------------------------
Quantile .65     |
   Raw difference|   .025713   .002729   9.42     0.000    .020364    .031062
  Characteristics|  -.007433   .002612   -2.85    0.051   -.012552   -.002313
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     Coefficients|   .033146   .003816   8.68     0.000    .025665    .040626
-----------------+-----------------------------------------------------------
Quantile .8      |
   Raw difference|   .030239   .004137   7.31     0.000    .022131    .038348
  Characteristics|  -.004915   .003567   -1.38    0.401   -.011906    .002076
     Coefficients|   .035154    .00585   6.01     0.000    .023688    .046621
-----------------+-----------------------------------------------------------
Quantile .95     |
   Raw difference|  -.033182   .011537   -2.88    0.004   -.055795   -.010569
  Characteristics|  -.015465   .007268   -2.13    0.231    -.02971   -.001219
     Coefficients|  -.017718   .012915   -1.37    0.170   -.043031    .007596
-----------------------------------------------------------------------------

.  *2010

. 

. rqdeco wage `X' if YEAR==2010&basic_edu==1, by(native) qlow(.05) qhigh(.95) qste(.15) vce(boot) 
Fitting base model
(bootstrapping ..................................................)

Decomposition of differences in distribution using quantile regression
         Total number of observations                  136180
           Number of observations in group 0            16680
           Number of observations in group 1           119500

         Number of quantile regressions estimated         100

The variance has been estimated by bootstraping the results 50 times

-----------------------------------------------------------------------------
        Component|   Effects  Std. Err.     t     P>|t|  [95% Conf. Interval] 
-----------------+-----------------------------------------------------------
Quantile .05     |
   Raw difference|  -.127849   .006981   -18.31   0.000   -.141531   -.114166

237



  Characteristics|   .017461    .00476   3.67     0.023    .008132    .026789
     Coefficients|   -.14531   .007668   -18.95   0.000   -.160338   -.130281
-----------------+-----------------------------------------------------------
Quantile .2      |
   Raw difference|  -.022979   .003059   -7.51    0.000   -.028975   -.016983
  Characteristics|   -.00071   .002853   -0.25    0.849   -.006302    .004883
     Coefficients|  -.022269    .00373   -5.97    0.000    -.02958   -.014959
-----------------+-----------------------------------------------------------
Quantile .35     |
   Raw difference|   .009868   .002748   3.59     0.000    .004483    .015254
  Characteristics|  -.008167   .002513   -3.25    0.018   -.013093   -.003241
     Coefficients|   .018035    .00344   5.24     0.000    .011292    .024778
-----------------+-----------------------------------------------------------
Quantile .5      |
   Raw difference|   .022611   .002633   8.59     0.000    .017451    .027771
  Characteristics|  -.011319   .002461   -4.60    0.002   -.016142   -.006496
     Coefficients|    .03393   .003711   9.14     0.000    .026657    .041203
-----------------+-----------------------------------------------------------
Quantile .65     |
   Raw difference|   .028702   .002852   10.06    0.000    .023113    .034292
  Characteristics|  -.009756   .003078   -3.17    0.028   -.015789   -.003723
     Coefficients|   .038458   .004444   8.65     0.000    .029747     .04717
-----------------+-----------------------------------------------------------
Quantile .8      |
   Raw difference|   .032522   .004401   7.39     0.000    .023897    .041147
  Characteristics|  -.003358   .004535   -0.74    0.603   -.012246     .00553
     Coefficients|    .03588   .006453   5.56     0.000    .023233    .048527
-----------------+-----------------------------------------------------------
Quantile .95     |
   Raw difference|  -.010643   .011751   -0.91    0.365   -.033675     .01239
  Characteristics|   .001961    .00998   0.20     0.897   -.017599     .02152
     Coefficients|  -.012603   .015175   -0.83    0.406   -.042346    .017139
-----------------------------------------------------------------------------

. *2013
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. 

. rqdeco wage `X' if YEAR==2013&basic_edu==1, by(native) qlow(.05) qhigh(.95) qste(.15) vce(boot) 
Fitting base model
(bootstrapping ..................................................)

Decomposition of differences in distribution using quantile regression
Total number of observations 161311
Number of observations in group 0 24133
Number of observations in group 1 137178

Number of quantile regressions estimated 100

The variance has been estimated by bootstraping the results 50 times

-----------------------------------------------------------------------------
Component|   Effects  Std. Err.     t     P>|t|  [95% Conf. Interval] 

-----------------+-----------------------------------------------------------
Quantile .05     |
   Raw difference|  -.151615    .00624   -24.30   0.000   -.163844   -.139385
  Characteristics|   -.00336   .004229   -0.79    0.590    -.01165    .004929
     Coefficients|  -.148255   .006243   -23.75   0.000    -.16049   -.136019
-----------------+-----------------------------------------------------------
Quantile .2      |
   Raw difference|  -.031869   .002634   -12.10   0.000   -.037032   -.026706
  Characteristics|  -.012579   .001985   -6.34    0.000   -.016469    -.00869
     Coefficients|   -.01929   .003057   -6.31    0.000   -.025281   -.013298
-----------------+-----------------------------------------------------------
Quantile .35     |
   Raw difference|  -.005064   .002262   -2.24    0.025   -.009497   -.000631
  Characteristics|  -.021558   .001713   -12.58   0.000   -.024916     -.0182
     Coefficients|   .016494   .002294   7.19     0.000    .011999     .02099
-----------------+-----------------------------------------------------------
Quantile .5      |
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   Raw difference|  -.000946   .002326   -0.41    0.684   -.005506    .003613
  Characteristics|  -.028417   .001807   -15.73   0.000   -.031957   -.024876
     Coefficients|    .02747   .002216   12.40    0.000    .023128    .031813
-----------------+-----------------------------------------------------------
Quantile .65     |
   Raw difference|  -.009529   .002756   -3.46    0.001    -.01493   -.004127
  Characteristics|  -.032893   .002132   -15.43   0.000   -.037071   -.028715
     Coefficients|   .023364    .00294   7.95     0.000    .017601    .029127
-----------------+-----------------------------------------------------------
Quantile .8      |
   Raw difference|  -.023436    .00425   -5.51    0.000   -.031765   -.015107
  Characteristics|  -.035733   .003106   -11.50   0.000    -.04182   -.029645
     Coefficients|   .012297   .004853   2.53     0.011    .002784     .02181
-----------------+-----------------------------------------------------------
Quantile .95     |
   Raw difference|  -.103544   .010667   -9.71    0.000    -.12445   -.082637
  Characteristics|  -.058827   .007597   -7.74    0.000   -.073717   -.043938
     Coefficients|  -.044717   .012513   -3.57    0.000   -.069242   -.020191
-----------------------------------------------------------------------------
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***Quantile regression estimation results and bootstrapped standard errors

**Native-total immigrants in medium-skilled

. **medium
 
. *2004

. 

. rqdeco wage `X' if YEAR==2004&vocational_edu==1, by(native) qlow(.05) qhigh(.95) qste(.15) vce(boot) 
Fitting base model
(bootstrapping ..................................................)

Decomposition of differences in distribution using quantile regression
         Total number of observations                  160233
           Number of observations in group 0             2287
           Number of observations in group 1           157946

         Number of quantile regressions estimated         100

The variance has been estimated by bootstraping the results 50 times

-----------------------------------------------------------------------------
        Component|   Effects  Std. Err.     t     P>|t|  [95% Conf. Interval] 
-----------------+-----------------------------------------------------------
Quantile .05     |
   Raw difference|   .136908   .019801   6.91     0.000    .098098    .175717
  Characteristics|   .033959   .012902   2.63     0.081    .008671    .059247
     Coefficients|   .102949   .019454   5.29     0.000    .064819    .141078
-----------------+-----------------------------------------------------------
Quantile .2      |
   Raw difference|   .087611   .007556   11.59    0.000    .072802    .102421
  Characteristics|   .023221   .006809   3.41     0.009    .009876    .036567
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     Coefficients|    .06439   .008892   7.24     0.000    .046963    .081817
-----------------+-----------------------------------------------------------
Quantile .35     |
   Raw difference|   .067861   .007318   9.27     0.000    .053519    .082203
  Characteristics|   .010923   .006985   1.56     0.242   -.002767    .024614
     Coefficients|   .056938   .009342   6.09     0.000    .038628    .075248
-----------------+-----------------------------------------------------------
Quantile .5      |
   Raw difference|   .058674   .007712   7.61     0.000    .043558     .07379
  Characteristics|   -.00241   .007574   -0.32    0.810   -.017256    .012435
     Coefficients|   .061084    .01001   6.10     0.000    .041465    .080704
-----------------+-----------------------------------------------------------
Quantile .65     |
   Raw difference|   .055617   .007957   6.99     0.000    .040022    .071212
  Characteristics|  -.021535    .00867   -2.48    0.057   -.038527   -.004542
     Coefficients|   .077151   .011321   6.81     0.000    .054962     .09934
-----------------+-----------------------------------------------------------
Quantile .8      |
   Raw difference|   .057314   .009496   6.04     0.000    .038702    .075927
  Characteristics|  -.044637   .010258   -4.35    0.000   -.064741   -.024533
     Coefficients|   .101952   .012681   8.04     0.000    .077097    .126806
-----------------+-----------------------------------------------------------
Quantile .95     |
   Raw difference|   .022943   .024361   0.94     0.346   -.024803     .07069
  Characteristics|  -.080882   .019841   -4.08    0.005   -.119768   -.041995
     Coefficients|   .103825   .028944   3.59     0.000    .047096    .160554
-----------------------------------------------------------------------------

. *2007

. 

. rqdeco wage `X' if YEAR==2007&vocational_edu==1, by(native) qlow(.05) qhigh(.95) qste(.15) vce(boot) 
Fitting base model
(bootstrapping ..................................................)
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Decomposition of differences in distribution using quantile regression
Total number of observations 161781
Number of observations in group 0 2950
Number of observations in group 1 158831

Number of quantile regressions estimated 100

The variance has been estimated by bootstraping the results 50 times

-----------------------------------------------------------------------------
Component|   Effects  Std. Err.     t     P>|t|  [95% Conf. Interval] 

-----------------+-----------------------------------------------------------
Quantile .05     |
   Raw difference|   .103491    .01515   6.83     0.000    .073797    .133185
  Characteristics|   .021323    .01046   2.04     0.220    .000821    .041825
     Coefficients|   .082168   .017367   4.73     0.000     .04813    .116207
-----------------+-----------------------------------------------------------
Quantile .2      |
   Raw difference|   .078865   .006065   13.00    0.000    .066977    .090753
  Characteristics|   .010239   .005633   1.82     0.171   -.000801    .021278
     Coefficients|   .068626   .007474   9.18     0.000    .053977    .083276
-----------------+-----------------------------------------------------------
Quantile .35     |
   Raw difference|   .064216   .005663   11.34    0.000    .053117    .075316
  Characteristics|   .003976   .004891   0.81     0.522   -.005611    .013562
     Coefficients|   .060241   .006208   9.70     0.000    .048072    .072409
-----------------+-----------------------------------------------------------
Quantile .5      |
   Raw difference|   .054548   .005843   9.34     0.000    .043096 .066
  Characteristics|  -.001104   .005207   -0.21    0.869    -.01131    .009102
     Coefficients|   .055652   .006677   8.33     0.000    .042565    .068738
-----------------+-----------------------------------------------------------
Quantile .65     |
   Raw difference|   .052555   .006022   8.73     0.000    .040752    .064357
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  Characteristics|  -.005772   .006378   -0.91    0.467   -.018272    .006728
     Coefficients|   .058327   .007933   7.35     0.000    .042778    .073875
-----------------+-----------------------------------------------------------
Quantile .8      |
   Raw difference|   .062886   .007674   8.19     0.000    .047845    .077926
  Characteristics|  -.013913    .00806   -1.73    0.188    -.02971    .001883
     Coefficients|   .076799   .010557   7.27     0.000    .056108     .09749
-----------------+-----------------------------------------------------------
Quantile .95     |
   Raw difference|   .099481   .017823   5.58     0.000    .064548    .134413
  Characteristics|  -.011074   .014965   -0.74    0.648   -.040405    .018258
     Coefficients|   .110554    .02429   4.55     0.000    .062947    .158161
-----------------------------------------------------------------------------

.  *2009

. 

. rqdeco wage `X' if YEAR==2009&vocational_edu==1, by(native) qlow(.05) qhigh(.95) qste(.15) vce(boot) 
Fitting base model
(bootstrapping ..................................................)

Decomposition of differences in distribution using quantile regression
         Total number of observations                  385936
           Number of observations in group 0             7767
           Number of observations in group 1           378169

         Number of quantile regressions estimated         100

The variance has been estimated by bootstraping the results 50 times

-----------------------------------------------------------------------------
        Component|   Effects  Std. Err.     t     P>|t|  [95% Conf. Interval] 
-----------------+-----------------------------------------------------------
Quantile .05     |
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   Raw difference|   .080948   .008444   9.59     0.000    .064399    .097498
  Characteristics|   .030704   .005728   5.36     0.000    .019477     .04193
     Coefficients|   .050245   .008511   5.90     0.000    .033563    .066926
-----------------+-----------------------------------------------------------
Quantile .2      |
   Raw difference|   .086079   .003839   22.42    0.000    .078554    .093604
  Characteristics|   .017461   .003195   5.46     0.000    .011198    .023723
     Coefficients|   .068618   .004558   15.05    0.000    .059684    .077552
-----------------+-----------------------------------------------------------
Quantile .35     |
   Raw difference|   .081956   .003302   24.82    0.000    .075484    .088429
  Characteristics|   .016953   .002873   5.90     0.000    .011323    .022584
     Coefficients|   .065003   .004278   15.20    0.000    .056619    .073387
-----------------+-----------------------------------------------------------
Quantile .5      |
   Raw difference|   .077604   .004068   19.08    0.000    .069631    .085577
  Characteristics|   .017826   .003268   5.46     0.001    .011421    .024231
     Coefficients|   .059778    .00524   11.41    0.000    .049507    .070049
-----------------+-----------------------------------------------------------
Quantile .65     |
   Raw difference|   .078993   .004896   16.14    0.000    .069397    .088588
  Characteristics|   .020346   .003759   5.41     0.001    .012978    .027714
     Coefficients|   .058647   .005951   9.86     0.000    .046984     .07031
-----------------+-----------------------------------------------------------
Quantile .8      |
   Raw difference|   .088755   .006323   14.04    0.000    .076362    .101147
  Characteristics|   .026885   .004852   5.54     0.001    .017376    .036394
     Coefficients|    .06187   .007813   7.92     0.000    .046556    .077184
-----------------+-----------------------------------------------------------
Quantile .95     |
   Raw difference|   .100691   .012877   7.82     0.000    .075453    .125929
  Characteristics|   .049715   .010965   4.53     0.006    .028224    .071207
     Coefficients|   .050976    .01817   2.81     0.005    .015363    .086589
-----------------------------------------------------------------------------
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. *2010

. 

. rqdeco wage `X' if YEAR==2010&vocational_edu==1, by(native) qlow(.05) qhigh(.95) qste(.15) vce(boot) 
Fitting base model
(bootstrapping ..................................................)

Decomposition of differences in distribution using quantile regression
Total number of observations 365009
Number of observations in group 0 7509
Number of observations in group 1 357500

Number of quantile regressions estimated 100

The variance has been estimated by bootstraping the results 50 times

-----------------------------------------------------------------------------
Component|   Effects  Std. Err.     t     P>|t|  [95% Conf. Interval] 

-----------------+-----------------------------------------------------------
Quantile .05     |
   Raw difference|   .071134   .006997   10.17    0.000     .05742    .084848
  Characteristics|   .024733   .004121   6.00     0.001    .016656    .032811
     Coefficients|     .0464   .007342   6.32     0.000     .03201    .060791
-----------------+-----------------------------------------------------------
Quantile .2      |
   Raw difference|   .082496   .003335   24.73    0.000    .075959    .089033
  Characteristics|   .015908   .002803   5.68     0.000    .010414    .021402
     Coefficients|   .066588    .00397   16.77    0.000    .058807    .074369
-----------------+-----------------------------------------------------------
Quantile .35     |
   Raw difference|   .080171   .003463   23.15    0.000    .073383    .086958
  Characteristics|   .017428    .00258   6.75     0.000    .012371    .022486
     Coefficients|   .062742   .004085   15.36    0.000    .054736    .070749
-----------------+-----------------------------------------------------------
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Quantile .5      |
   Raw difference|   .083473   .003598   23.20    0.000    .076421    .090526
  Characteristics|   .019811   .002813   7.04     0.000    .014297    .025325
     Coefficients|   .063663   .004432   14.36    0.000    .054976    .072349
-----------------+-----------------------------------------------------------
Quantile .65     |
   Raw difference|   .094785   .004312   21.98    0.000    .086332    .103237
  Characteristics|   .023442    .00308   7.61     0.000    .017406    .029478
     Coefficients|   .071343   .005273   13.53    0.000    .061008    .081677
-----------------+-----------------------------------------------------------
Quantile .8      |
   Raw difference|   .110462   .005979   18.48    0.000    .098744    .122181
  Characteristics|   .032869   .004244   7.75     0.000    .024551    .041186
     Coefficients|   .077594   .007833   9.91     0.000    .062242    .092945
-----------------+-----------------------------------------------------------
Quantile .95     |
   Raw difference|   .126699   .015046   8.42     0.000    .097209    .156189
  Characteristics|   .048148   .008977   5.36     0.011    .030554    .065742
     Coefficients|   .078551   .018868   4.16     0.000     .04157    .115532
-----------------------------------------------------------------------------

.  *2013

. 

. rqdeco wage `X' if YEAR==2013&vocational_edu==1, by(native) qlow(.05) qhigh(.95) qste(.15) vce(boot) 
Fitting base model
(bootstrapping ..................................................)

Decomposition of differences in distribution using quantile regression
         Total number of observations                  397490
           Number of observations in group 0             9860
           Number of observations in group 1           387630

         Number of quantile regressions estimated         100
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The variance has been estimated by bootstraping the results 50 times

-----------------------------------------------------------------------------
        Component|   Effects  Std. Err.     t     P>|t|  [95% Conf. Interval] 
-----------------+-----------------------------------------------------------
Quantile .05     |
   Raw difference|   .084162   .007203   11.68    0.000    .070044     .09828
  Characteristics|   .033167   .004447   7.46     0.000    .024451    .041882
     Coefficients|   .050995   .007739   6.59     0.000    .035827    .066164
-----------------+-----------------------------------------------------------
Quantile .2      |
   Raw difference|   .080817   .003384   23.88    0.000    .074185    .087449
  Characteristics|   .018791   .002486   7.56     0.000    .013918    .023663
     Coefficients|   .062026   .003366   18.43    0.000     .05543    .068623
-----------------+-----------------------------------------------------------
Quantile .35     |
   Raw difference|   .080939   .003092   26.17    0.000    .074878       .087
  Characteristics|   .015507   .002408   6.44     0.000    .010788    .020227
     Coefficients|   .065432   .003282   19.94    0.000       .059    .071864
-----------------+-----------------------------------------------------------
Quantile .5      |
   Raw difference|   .082891   .003376   24.56    0.000    .076276    .089507
  Characteristics|   .015612    .00258   6.05     0.000    .010556    .020668
     Coefficients|   .067279   .003928   17.13    0.000    .059581    .074978
-----------------+-----------------------------------------------------------
Quantile .65     |
   Raw difference|   .093352   .004485   20.81    0.000    .084561    .102143
  Characteristics|    .01709   .002814   6.07     0.001    .011575    .022606
     Coefficients|   .076262   .004924   15.49    0.000    .066612    .085912
-----------------+-----------------------------------------------------------
Quantile .8      |
   Raw difference|   .113666   .006459   17.60    0.000    .101006    .126325
  Characteristics|   .020797    .00324   6.42     0.002    .014446    .027147
     Coefficients|   .092869   .006598   14.08    0.000    .079938      .1058
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-----------------+-----------------------------------------------------------
Quantile .95     |
   Raw difference|   .168675   .011625   14.51    0.000     .14589    .191459
  Characteristics|   .027349   .005989   4.57     0.041     .01561    .039089
     Coefficients|   .141325   .013364   10.57    0.000    .115131    .167519
-----------------------------------------------------------------------------
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***Quantile regression estimation results and bootstrapped standard errors

**Native-total immigrants in high-skilled group

. **High-Skilled******* 

. 

. *2004

. 

.  rqdeco wage `X' if YEAR==2004&higher_edu==1, by(native) qlow(.05) qhigh(.95) qste(.15) vce(boot) 
Fitting base model
(bootstrapping ..................................................)

Decomposition of differences in distribution using quantile regression
Total number of observations 8118
Number of observations in group 0 712
Number of observations in group 1 7406

Number of quantile regressions estimated 100

The variance has been estimated by bootstraping the results 50 times

-----------------------------------------------------------------------------
Component|   Effects  Std. Err.     t     P>|t|  [95% Conf. Interval] 

-----------------+-----------------------------------------------------------
Quantile .05     |
   Raw difference|   .254181    .02614   9.72     0.000    .202948    .305414
  Characteristics|   .052548   .027706   1.90     0.153   -.001754     .10685
     Coefficients|   .201633   .036813   5.48     0.000    .129481    .273785
-----------------+-----------------------------------------------------------
Quantile .2      |
   Raw difference|   .265256   .020703   12.81    0.000    .224678    .305834
  Characteristics|   .085167    .01641   5.19     0.000    .053003    .117331
     Coefficients|   .180089   .021941   8.21     0.000    .137086    .223092
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-----------------+-----------------------------------------------------------
Quantile .35     |
   Raw difference|   .237855   .023642   10.06    0.000    .191518    .284192
  Characteristics|   .083419   .017601   4.74     0.000    .048922    .117915
     Coefficients|   .154436   .019172   8.06     0.000     .11686    .192013
-----------------+-----------------------------------------------------------
Quantile .5      |
   Raw difference|   .203002   .024417   8.31     0.000    .155147    .250858
  Characteristics|   .063008   .019827   3.18     0.001    .024148    .101867
     Coefficients|   .139995    .01889   7.41     0.000    .102972    .177018
-----------------+-----------------------------------------------------------
Quantile .65     |
   Raw difference|   .179575    .02335   7.69     0.000    .133809     .22534
  Characteristics|   .045803    .02162   2.12     0.057    .003429    .088178
     Coefficients|   .133771     .0241   5.55     0.000    .086537    .181006
-----------------+-----------------------------------------------------------
Quantile .8      |
   Raw difference|   .163273   .027694   5.90     0.000    .108994    .217552
  Characteristics|   .028885   .024422   1.18     0.378   -.018982    .076751
     Coefficients|   .134388    .03279   4.10     0.000     .07012    .198656
-----------------+-----------------------------------------------------------
Quantile .95     |
   Raw difference|   .098252   .048669   2.02     0.044    .002862    .193642
  Characteristics|  -.001026   .034187   -0.03    0.984   -.068032    .065979
     Coefficients|   .099278   .051815   1.92     0.055   -.002278    .200835
-----------------------------------------------------------------------------

. *2007

. 

. rqdeco wage `X' if YEAR==2007&higher_edu==1, by(native) qlow(.05) qhigh(.95) qste(.15) vce(boot) 
Fitting base model
(bootstrapping ..................................................)
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Decomposition of differences in distribution using quantile regression
Total number of observations 12763
Number of observations in group 0 857
Number of observations in group 1 11906

Number of quantile regressions estimated 100

The variance has been estimated by bootstraping the results 50 times

-----------------------------------------------------------------------------
Component|   Effects  Std. Err.     t     P>|t|  [95% Conf. Interval] 

-----------------+-----------------------------------------------------------
Quantile .05     |
   Raw difference|   .218691   .022033   9.93     0.000    .175507    .261876
  Characteristics|   .089964   .027624   3.26     0.003    .035822    .144106
     Coefficients|   .128728   .029782   4.32     0.000    .070356      .1871
-----------------+-----------------------------------------------------------
Quantile .2      |
   Raw difference|   .202193   .013683   14.78    0.000    .175375     .22901
  Characteristics|   .078574   .014808   5.31     0.000    .049551    .107598
     Coefficients|   .123618   .017735   6.97     0.000    .088859    .158378
-----------------+-----------------------------------------------------------
Quantile .35     |
   Raw difference|   .169444   .014046   12.06    0.000    .141915    .196973
  Characteristics|   .060718   .012931   4.70     0.000    .035374    .086061
     Coefficients|   .108727   .016231   6.70     0.000    .076914    .140539
-----------------+-----------------------------------------------------------
Quantile .5      |
   Raw difference|   .152434   .013947   10.93    0.000    .125098    .179769
  Characteristics|   .050255   .013279   3.78     0.001    .024228    .076282
     Coefficients|   .102179   .015828   6.46     0.000    .071157      .1332
-----------------+-----------------------------------------------------------
Quantile .65     |
   Raw difference|   .141584   .015211   9.31     0.000    .111772    .171396
  Characteristics|   .034103     .0138   2.47     0.041    .007054    .061151
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     Coefficients|   .107481   .016657   6.45     0.000    .074834    .140128
-----------------+-----------------------------------------------------------
Quantile .8      |
   Raw difference|   .136467   .019686   6.93     0.000    .097884     .17505
  Characteristics|   .011528   .015314   0.75     0.573   -.018486    .041542
     Coefficients|   .124939   .020477   6.10     0.000    .084804    .165074
-----------------+-----------------------------------------------------------
Quantile .95     |
   Raw difference|   .128429   .034265   3.75     0.000    .061271    .195586
  Characteristics|    .01052   .029143   0.36     0.801   -.046599     .06764
     Coefficients|   .117908   .041643   2.83     0.005    .036289    .199527
-----------------------------------------------------------------------------

. *2009

. 

. rqdeco wage `X' if YEAR==2009&higher_edu==1, by(native) qlow(.05) qhigh(.95) qste(.15) vce(boot) 
Fitting base model
(bootstrapping ..................................................)

Decomposition of differences in distribution using quantile regression
Total number of observations 41764
Number of observations in group 0 2805
Number of observations in group 1 38959

Number of quantile regressions estimated 100

The variance has been estimated by bootstraping the results 50 times

-----------------------------------------------------------------------------
Component|   Effects  Std. Err.     t     P>|t|  [95% Conf. Interval] 

-----------------+-----------------------------------------------------------
Quantile .05     |
   Raw difference|   .108804   .012969   8.39     0.000    .083386    .134222
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  Characteristics|   .021715   .009342   2.32     0.159    .003406    .040025
     Coefficients|   .087089   .015416   5.65     0.000    .056873    .117304
-----------------+-----------------------------------------------------------
Quantile .2      |
   Raw difference|   .083372   .008553   9.75     0.000     .06661    .100135
  Characteristics|   .016729   .006221   2.69     0.059    .004536    .028923
     Coefficients|   .066643   .008857   7.52     0.000    .049283    .084002
-----------------+-----------------------------------------------------------
Quantile .35     |
   Raw difference|    .05628    .00732   7.69     0.000    .041933    .070627
  Characteristics|   .008586   .005937   1.45     0.299   -.003051    .020223
     Coefficients|   .047694   .008264   5.77     0.000    .031498    .063891
-----------------+-----------------------------------------------------------
Quantile .5      |
   Raw difference|   .036419   .007066   5.15     0.000    .022569    .050269
  Characteristics|   .001579   .005844   0.27     0.849   -.009874    .013033
     Coefficients|    .03484   .008307   4.19     0.000    .018558    .051121
-----------------+-----------------------------------------------------------
Quantile .65     |
   Raw difference|   .028417   .008154   3.48     0.000    .012435      .0444
  Characteristics|  -.001974   .006228   -0.32    0.835   -.014181    .010234
     Coefficients|   .030391   .009446   3.22     0.001    .011876    .048905
-----------------+-----------------------------------------------------------
Quantile .8      |
   Raw difference|   .034182   .010406   3.28     0.001    .013787    .054578
  Characteristics|  -.009053   .007945   -1.14    0.431   -.024625    .006518
     Coefficients|   .043236   .011492   3.76     0.000    .020712    .065759
-----------------+-----------------------------------------------------------
Quantile .95     |
   Raw difference|   .054857   .020271   2.71     0.007    .015126    .094588
  Characteristics|  -.030234   .015495   -1.95    0.213   -.060603    .000135
     Coefficients|   .085091     .0243   3.50     0.000    .037465    .132718
-----------------------------------------------------------------------------

. *2010
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. 

. rqdeco wage `X' if YEAR==2010&higher_edu==1, by(native) qlow(.05) qhigh(.95) qste(.15) vce(boot) 
Fitting base model
(bootstrapping ..................................................)

Decomposition of differences in distribution using quantile regression
         Total number of observations                   42018
           Number of observations in group 0             2823
           Number of observations in group 1            39195

         Number of quantile regressions estimated         100

The variance has been estimated by bootstraping the results 50 times

-----------------------------------------------------------------------------
        Component|   Effects  Std. Err.     t     P>|t|  [95% Conf. Interval] 
-----------------+-----------------------------------------------------------
Quantile .05     |
   Raw difference|   .146798   .012568   11.68    0.000    .122165     .17143
  Characteristics|   .034963   .008038   4.35     0.007    .019209    .050718
     Coefficients|   .111834   .012856   8.70     0.000    .086636    .137032
-----------------+-----------------------------------------------------------
Quantile .2      |
   Raw difference|   .097377   .007971   12.22    0.000    .081754    .112999
  Characteristics|   .022164   .006738   3.29     0.013    .008958    .035371
     Coefficients|   .075213   .008924   8.43     0.000    .057722    .092703
-----------------+-----------------------------------------------------------
Quantile .35     |
   Raw difference|   .068234   .006942   9.83     0.000    .054627    .081841
  Characteristics|   .008792   .005748   1.53     0.350   -.002474    .020057
     Coefficients|   .059442   .009403   6.32     0.000    .041012    .077873
-----------------+-----------------------------------------------------------
Quantile .5      |
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   Raw difference|    .04855   .007503   6.47     0.000    .033844    .063256
  Characteristics|  -.002017   .006049   -0.33    0.842   -.013874    .009839
     Coefficients|   .050568   .010092   5.01     0.000    .030788    .070348
-----------------+-----------------------------------------------------------
Quantile .65     |
   Raw difference|   .037944   .009658   3.93     0.000    .019014    .056874
  Characteristics|  -.010136   .007828   -1.29    0.396   -.025478    .005207
     Coefficients|    .04808   .011943   4.03     0.000    .024672    .071488
-----------------+-----------------------------------------------------------
Quantile .8      |
   Raw difference|   .039179   .013705   2.86     0.004    .012317    .066041
  Characteristics|  -.016208   .010277   -1.58    0.293    -.03635    .003935
     Coefficients|   .055387   .015427   3.59     0.000     .02515    .085624
-----------------+-----------------------------------------------------------
Quantile .95     |
   Raw difference|    .05076   .027485   1.85     0.065   -.003111     .10463
  Characteristics|   -.01964   .016447   -1.19    0.530   -.051874    .012595
     Coefficients|   .070399   .031265   2.25     0.024    .009121    .131678
-----------------------------------------------------------------------------

. *2013

. 

. rqdeco wage `X' if YEAR==2013&higher_edu==1, by(native) qlow(.05) qhigh(.95) qste(.15) vce(boot) 
Fitting base model
(bootstrapping ..................................................)

Decomposition of differences in distribution using quantile regression
         Total number of observations                   55622
           Number of observations in group 0             4393
           Number of observations in group 1            51229

         Number of quantile regressions estimated         100
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The variance has been estimated by bootstraping the results 50 times

-----------------------------------------------------------------------------
        Component|   Effects  Std. Err.     t     P>|t|  [95% Conf. Interval] 
-----------------+-----------------------------------------------------------
Quantile .05     |
   Raw difference|   .157499   .011972   13.16    0.000    .134035    .180963
  Characteristics|   .029514   .008425   3.50     0.017    .013002    .046026
     Coefficients|   .127985   .012417   10.31    0.000    .103649    .152322
-----------------+-----------------------------------------------------------
Quantile .2      |
   Raw difference|   .131923   .006492   20.32    0.000      .1192    .144647
  Characteristics|   .033374   .005535   6.03     0.000    .022526    .044222
     Coefficients|   .098549   .006653   14.81    0.000    .085509    .111589
-----------------+-----------------------------------------------------------
Quantile .35     |
   Raw difference|   .110065   .006129   17.96    0.000    .098052    .122077
  Characteristics|   .032262    .00489   6.60     0.000    .022677    .041847
     Coefficients|   .077803   .006273   12.40    0.000    .065508    .090097
-----------------+-----------------------------------------------------------
Quantile .5      |
   Raw difference|   .087452   .006748   12.96    0.000    .074227    .100677
  Characteristics|   .031732   .005363   5.92     0.000     .02122    .042243
     Coefficients|    .05572   .007124   7.82     0.000    .041757    .069684
-----------------+-----------------------------------------------------------
Quantile .65     |
   Raw difference|   .066844   .008214   8.14     0.000    .050744    .082943
  Characteristics|   .030684   .006383   4.81     0.001    .018175    .043194
     Coefficients|   .036159   .008868   4.08     0.000    .018778     .05354
-----------------+-----------------------------------------------------------
Quantile .8      |
   Raw difference|   .054782   .010024   5.47     0.000    .035135    .074428
  Characteristics|   .030381   .008402   3.62     0.012    .013912    .046849
     Coefficients|   .024401    .01206   2.02     0.043    .000763    .048039
-----------------+-----------------------------------------------------------
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Quantile .95     |
   Raw difference|   .065824   .016343   4.03     0.000    .033792    .097855
  Characteristics|   .046157   .014887   3.10     0.047    .016979    .075335
     Coefficients|   .019667   .023289   0.84     0.398   -.025979    .065312
-----------------------------------------------------------------------------
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Appendix D.3: Full results for Figure 3.12(native-immigrants wage gap under different

groups of countries of origin)
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***Quantile regression estimation results and bootstrapped standard errors for native-immigrant wage gap 
decomposition under different groups of countries of origin.

**Native-EU15

.   rqdeco wage `X' if YEAR==2004, by(native) qlow(.05) qhigh(.95) qste(.15) vce(boot) 
Fitting base model
(bootstrapping ..................................................)

Decomposition of differences in distribution using quantile regression
         Total number of observations                  240517
           Number of observations in group 0             2420
           Number of observations in group 1           238097

         Number of quantile regressions estimated         100

The variance has been estimated by bootstraping the results 50 times

-----------------------------------------------------------------------------
        Component|   Effects  Std. Err.     t     P>|t|  [95% Conf. Interval] 
-----------------+-----------------------------------------------------------
Quantile .05     |
   Raw difference|  -.064525   .014266   -4.52    0.000   -.092487   -.036564
  Characteristics|  -.034482   .031192   -1.11    0.342   -.095618    .026654
     Coefficients|  -.030043   .036303   -0.83    0.408   -.101196    .041109
-----------------+-----------------------------------------------------------
Quantile .2      |
   Raw difference|   -.01918   .007996   -2.40    0.016   -.034852   -.003507
  Characteristics|   .012456   .011546   1.08     0.399   -.010174    .035085
     Coefficients|  -.031636   .014784   -2.14    0.032   -.060611    -.00266
-----------------+-----------------------------------------------------------
Quantile .35     |
   Raw difference|  -.014194   .007999   -1.77    0.076   -.029872    .001484
  Characteristics|   .017293   .011292   1.53     0.226   -.004839    .039425
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     Coefficients|  -.031487   .014281   -2.20    0.027   -.059477   -.003497
-----------------+-----------------------------------------------------------
Quantile .5      |
   Raw difference|  -.028198    .00839   -3.36    0.001   -.044643   -.011754
  Characteristics|   .013435   .011839   1.13     0.385   -.009769    .036639
     Coefficients|  -.041633   .015451   -2.69    0.007   -.071918   -.011349
-----------------+-----------------------------------------------------------
Quantile .65     |
   Raw difference|  -.053459   .010008   -5.34    0.000   -.073074   -.033844
  Characteristics|  -.000361   .012267   -0.03    0.983   -.024403    .023681
     Coefficients|  -.053098    .01703   -3.12    0.002   -.086476   -.019721
-----------------+-----------------------------------------------------------
Quantile .8      |
   Raw difference|  -.088898   .013624   -6.52    0.000   -.115601   -.062195
  Characteristics|  -.023686    .01474   -1.61    0.256   -.052575    .005204
     Coefficients|  -.065213   .020865   -3.13    0.002   -.106107   -.024319
-----------------+-----------------------------------------------------------
Quantile .95     |
   Raw difference|  -.184986   .026564   -6.96    0.000   -.237051   -.132921
  Characteristics|  -.053709   .029904   -1.80    0.181    -.11232    .004902
     Coefficients|  -.131276   .040163   -3.27    0.001   -.209994   -.052559
-----------------------------------------------------------------------------

 ***2007

. 

.  

. 

.  rqdeco wage `X' if YEAR==2007, by(native) qlow(.05) qhigh(.95) qste(.15) vce(boot) 
Fitting base model
(bootstrapping ..................................................)

Decomposition of differences in distribution using quantile regression
         Total number of observations                  245710

261



           Number of observations in group 0             3086
           Number of observations in group 1           242624

         Number of quantile regressions estimated         100

The variance has been estimated by bootstraping the results 50 times

-----------------------------------------------------------------------------
        Component|   Effects  Std. Err.     t     P>|t|  [95% Conf. Interval] 
-----------------+-----------------------------------------------------------
Quantile .05     |
   Raw difference|  -.083901   .017414   -4.82    0.000   -.118033    -.04977
  Characteristics|   .032971    .01542   2.14     0.112    .002748    .063194
     Coefficients|  -.116873   .020732   -5.64    0.000   -.157507   -.076238
-----------------+-----------------------------------------------------------
Quantile .2      |
   Raw difference|  -.032244   .007865   -4.10    0.000   -.047658   -.016829
  Characteristics|   .015233   .007518   2.03     0.120    .000497    .029968
     Coefficients|  -.047476   .009796   -4.85    0.000   -.066675   -.028277
-----------------+-----------------------------------------------------------
Quantile .35     |
   Raw difference|  -.024217   .006118   -3.96    0.000   -.036208   -.012226
  Characteristics|   .009978   .007073   1.41     0.182   -.003885     .02384
     Coefficients|  -.034195   .007484   -4.57    0.000   -.048863   -.019527
-----------------+-----------------------------------------------------------
Quantile .5      |
   Raw difference|  -.037415    .00672   -5.57    0.000   -.050585   -.024244
  Characteristics|   .000036   .007901   0.00     0.996    -.01545    .015523
     Coefficients|  -.037451   .007898   -4.74    0.000   -.052931    -.02197
-----------------+-----------------------------------------------------------
Quantile .65     |
   Raw difference|  -.062568   .009829   -6.37    0.000   -.081833   -.043303
  Characteristics|    -.0098   .009797   -1.00    0.352   -.029002    .009403
     Coefficients|  -.052768   .010524   -5.01    0.000   -.073395   -.032141
-----------------+-----------------------------------------------------------
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Quantile .8      |
   Raw difference|  -.110472   .015466   -7.14    0.000   -.140784    -.08016
  Characteristics|   -.02104   .013234   -1.59    0.203   -.046979    .004898
     Coefficients|  -.089432   .016533   -5.41    0.000   -.121835   -.057028
-----------------+-----------------------------------------------------------
Quantile .95     |
   Raw difference|  -.212099   .022365   -9.48    0.000   -.255934   -.168264
  Characteristics|  -.000317   .023457   -0.01    0.992   -.046292    .045657
     Coefficients|  -.211781   .030303   -6.99    0.000   -.271174   -.152388
-----------------------------------------------------------------------------

.  **2009

. 

.  

. 

.  rqdeco wage `X' if YEAR==2009, by(native) qlow(.05) qhigh(.95) qste(.15) vce(boot) 
Fitting base model
(bootstrapping ..................................................)

Decomposition of differences in distribution using quantile regression
         Total number of observations                  566100
           Number of observations in group 0             7971
           Number of observations in group 1           558129

         Number of quantile regressions estimated         100

The variance has been estimated by bootstraping the results 50 times

-----------------------------------------------------------------------------
        Component|   Effects  Std. Err.     t     P>|t|  [95% Conf. Interval] 
-----------------+-----------------------------------------------------------
Quantile .05     |
   Raw difference|  -.030218   .009845   -3.07    0.002   -.049514   -.010922
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  Characteristics|   .051437   .008104   6.35     0.000    .035554    .067319
     Coefficients|  -.081655    .01324   -6.17    0.000   -.107604   -.055705
-----------------+-----------------------------------------------------------
Quantile .2      |
   Raw difference|   .003226   .004251   0.76     0.448   -.005106    .011557
  Characteristics|    .02428   .005181   4.69     0.001    .014125    .034435
     Coefficients|  -.021054   .007009   -3.00    0.003   -.034793   -.007316
-----------------+-----------------------------------------------------------
Quantile .35     |
   Raw difference|  -.002875   .003728   -0.77    0.441   -.010181    .004431
  Characteristics|   .015601   .004625   3.37     0.015    .006536    .024666
     Coefficients|  -.018476   .006382   -2.90    0.004   -.030984   -.005968
-----------------+-----------------------------------------------------------
Quantile .5      |
   Raw difference|  -.018458   .004193   -4.40    0.000   -.026677    -.01024
  Characteristics|   .010424    .00513   2.03     0.129    .000369     .02048
     Coefficients|  -.028883   .006876   -4.20    0.000   -.042358   -.015407
-----------------+-----------------------------------------------------------
Quantile .65     |
   Raw difference|   -.03964    .00513   -7.73    0.000   -.049695   -.029584
  Characteristics|   .005663   .006096   0.93     0.467   -.006286    .017611
     Coefficients|  -.045302   .007794   -5.81    0.000   -.060577   -.030027
-----------------+-----------------------------------------------------------
Quantile .8      |
   Raw difference|  -.074417   .007753   -9.60    0.000   -.089614   -.059221
  Characteristics|   .001194   .007874   0.15     0.909   -.014239    .016627
     Coefficients|  -.075611   .010396   -7.27    0.000   -.095987   -.055236
-----------------+-----------------------------------------------------------
Quantile .95     |
   Raw difference|  -.171591   .013189   -13.01   0.000   -.197441   -.145741
  Characteristics|   .015159   .017753   0.85     0.532   -.019636    .049954
     Coefficients|   -.18675   .024229   -7.71    0.000   -.234238   -.139262
-----------------------------------------------------------------------------

. 
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*2010
rqdeco wage `X' if YEAR==2010, by(native) qlow(.05) qhigh(.95) qste(.15) vce(boot) 
Fitting base model
(bootstrapping ..................................................)

Decomposition of differences in distribution using quantile regression
         Total number of observations                  556698
           Number of observations in group 0             8191
           Number of observations in group 1           548507

         Number of quantile regressions estimated         100

The variance has been estimated by bootstraping the results 50 times

-----------------------------------------------------------------------------
        Component|   Effects  Std. Err.     t     P>|t|  [95% Conf. Interval] 
-----------------+-----------------------------------------------------------
Quantile .05     |
   Raw difference|  -.034217   .006521   -5.25    0.000   -.046997   -.021437
  Characteristics|   .035837   .008873   4.04     0.001    .018446    .053228
     Coefficients|  -.070055   .011157   -6.28    0.000   -.091921   -.048188
-----------------+-----------------------------------------------------------
Quantile .2      |
   Raw difference|   .001489   .003919   0.38     0.704   -.006193     .00917
  Characteristics|   .006375   .006508   0.98     0.411    -.00638    .019131
     Coefficients|  -.004887   .007762   -0.63    0.529     -.0201    .010326
-----------------+-----------------------------------------------------------
Quantile .35     |
   Raw difference|   -.00503   .004047   -1.24    0.214   -.012963    .002903
  Characteristics|  -.007468   .005562   -1.34    0.255    -.01837    .003435
     Coefficients|   .002438   .006566   0.37     0.710   -.010432    .015307
-----------------+-----------------------------------------------------------
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Quantile .5      |
   Raw difference|  -.022318   .004671   -4.78    0.000   -.031472   -.013164
  Characteristics|  -.019142   .005651   -3.39    0.004   -.030217   -.008067
     Coefficients|  -.003177   .006572   -0.48    0.629   -.016058    .009705
-----------------+-----------------------------------------------------------
Quantile .65     |
   Raw difference|  -.044868   .005512   -8.14    0.000   -.055671   -.034065
  Characteristics|  -.028152   .005764   -4.88    0.000   -.039449   -.016854
     Coefficients|  -.016716   .007311   -2.29    0.022   -.031045   -.002387
-----------------+-----------------------------------------------------------
Quantile .8      |
   Raw difference|   -.08096   .006961   -11.63   0.000   -.094604   -.067316
  Characteristics|  -.037179   .006471   -5.75    0.000   -.049862   -.024497
     Coefficients|   -.04378   .009049   -4.84    0.000   -.061517   -.026044
-----------------+-----------------------------------------------------------
Quantile .95     |
   Raw difference|  -.175758   .012135   -14.48   0.000   -.199542   -.151973
  Characteristics|   -.05117   .012965   -3.95    0.001    -.07658   -.025759
     Coefficients|  -.124588    .01608   -7.75    0.000   -.156104   -.093072
-----------------------------------------------------------------------------

.  **2013

. 

.    rqdeco wage `X' if YEAR==2013, by(native) qlow(.05) qhigh(.95) qste(.15) vce(boot) 
Fitting base model
(bootstrapping ..................................................)

Decomposition of differences in distribution using quantile regression
         Total number of observations                  588927
           Number of observations in group 0             9940
           Number of observations in group 1           578987

         Number of quantile regressions estimated         100
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The variance has been estimated by bootstraping the results 50 times

-----------------------------------------------------------------------------
        Component|   Effects  Std. Err.     t     P>|t|  [95% Conf. Interval] 
-----------------+-----------------------------------------------------------
Quantile .05     |
   Raw difference|  -.019001   .010261   -1.85    0.064   -.039112    .001109
  Characteristics|   .040895   .010691   3.83     0.000    .019942    .061848
     Coefficients|  -.059896   .011719   -5.11    0.000   -.082864   -.036928
-----------------+-----------------------------------------------------------
Quantile .2      |
   Raw difference|   -.01691   .003897   -4.34    0.000   -.024548   -.009271
  Characteristics|    .00993   .006318   1.57     0.158   -.002454    .022313
     Coefficients|  -.026839   .007027   -3.82    0.000   -.040613   -.013066
-----------------+-----------------------------------------------------------
Quantile .35     |
   Raw difference|  -.025696   .003238   -7.93    0.000   -.032043   -.019348
  Characteristics|     .0025   .005265   0.47     0.680    -.00782    .012819
     Coefficients|  -.028195   .006054   -4.66    0.000    -.04006    -.01633
-----------------+-----------------------------------------------------------
Quantile .5      |
   Raw difference|  -.043661   .003605   -12.11   0.000   -.050726   -.036596
  Characteristics|  -.003984    .00504   -0.79    0.484   -.013863    .005894
     Coefficients|  -.039677   .005688   -6.98    0.000   -.050825   -.028528
-----------------+-----------------------------------------------------------
Quantile .65     |
   Raw difference|  -.069542   .004873   -14.27   0.000   -.079092   -.059991
  Characteristics|  -.011508   .005626   -2.05    0.065   -.022535    -.00048
     Coefficients|  -.058034   .006243   -9.30    0.000   -.070269   -.045799
-----------------+-----------------------------------------------------------
Quantile .8      |
   Raw difference|   -.11469   .007187   -15.96   0.000   -.128777   -.100603
  Characteristics|  -.021784    .00719   -3.03    0.013   -.035876   -.007693
     Coefficients|  -.092906   .008748   -10.62   0.000   -.110051    -.07576
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-----------------+-----------------------------------------------------------
Quantile .95     |
   Raw difference|  -.199738   .011076   -18.03   0.000   -.221448   -.178029
  Characteristics|  -.037558   .012243   -3.07    0.017   -.061553   -.013562
     Coefficients|  -.162181   .015694   -10.33   0.000   -.192941   -.131421
-----------------------------------------------------------------------------

***Quantile regression estimation results and bootstrapped standard errors

**Native-EU12

****2004
.   rqdeco wage `X' if YEAR==2004, by(native) qlow(.05) qhigh(.95) qste(.15) vce(boot) 
Fitting base model
(bootstrapping ..................................................)

Decomposition of differences in distribution using quantile regression
         Total number of observations                  238424
           Number of observations in group 0              327
           Number of observations in group 1           238097

         Number of quantile regressions estimated         100

The variance has been estimated by bootstraping the results 50 times

-----------------------------------------------------------------------------
        Component|   Effects  Std. Err.     t     P>|t|  [95% Conf. Interval] 
-----------------+-----------------------------------------------------------
Quantile .05     |
   Raw difference|   .201716    .07715   2.61     0.009    .050505    .352927
  Characteristics|  -.011094   .062407   -0.18    0.893   -.133409    .111221
     Coefficients|    .21281   .082442   2.58     0.010    .051226    .374394
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-----------------+-----------------------------------------------------------
Quantile .2      |
   Raw difference|   .109189   .027655   3.95     0.000    .054987    .163391
  Characteristics|   .034298   .041281   0.83     0.441   -.046611    .115207
     Coefficients|   .074891   .044551   1.68     0.093   -.012429     .16221
-----------------+-----------------------------------------------------------
Quantile .35     |
   Raw difference|   .096056   .023554   4.08     0.000    .049892    .142221
  Characteristics|   .040152   .038184   1.05     0.269   -.034688    .114991
     Coefficients|   .055905   .036305   1.54     0.124   -.015251    .127061
-----------------+-----------------------------------------------------------
Quantile .5      |
   Raw difference|   .084628    .02213   3.82     0.000    .041254    .128003
  Characteristics|   .023024    .03493   0.66     0.495   -.045437    .091485
     Coefficients|   .061604   .033717   1.83     0.068    -.00448    .127688
-----------------+-----------------------------------------------------------
Quantile .65     |
   Raw difference|   .089546   .024551   3.65     0.000    .041427    .137665
  Characteristics|   .007598   .034683   0.22     0.830    -.06038    .075575
     Coefficients|   .081949   .035389   2.32     0.021    .012588    .151309
-----------------+-----------------------------------------------------------
Quantile .8      |
   Raw difference|   .116516   .029455   3.96     0.000    .058786    .174246
  Characteristics|  -.008785   .039364   -0.22    0.832   -.085936    .068367
     Coefficients|     .1253   .041528   3.02     0.003    .043907    .206694
-----------------+-----------------------------------------------------------
Quantile .95     |
   Raw difference|   .135809   .063613   2.13     0.033    .011129    .260489
  Characteristics|   -.05468    .05208   -1.05    0.465   -.156755    .047394
     Coefficients|   .190489    .07491   2.54     0.011    .043669     .33731
-----------------------------------------------------------------------------

.  ***2007
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. 

.  

. 

.  rqdeco wage `X' if YEAR==2007, by(native) qlow(.05) qhigh(.95) qste(.15) vce(boot) 
Fitting base model
(bootstrapping ..................................................)

Decomposition of differences in distribution using quantile regression
         Total number of observations                  243411
           Number of observations in group 0              787
           Number of observations in group 1           242624

         Number of quantile regressions estimated         100

The variance has been estimated by bootstraping the results 50 times

-----------------------------------------------------------------------------
        Component|   Effects  Std. Err.     t     P>|t|  [95% Conf. Interval] 
-----------------+-----------------------------------------------------------
Quantile .05     |
   Raw difference|    .09232   .033133   2.79     0.005    .027381    .157259
  Characteristics|   .129648   .033941   3.82     0.001    .063124    .196171
     Coefficients|  -.037328    .03848   -0.97    0.332   -.112748    .038092
-----------------+-----------------------------------------------------------
Quantile .2      |
   Raw difference|   .103298   .013184   7.84     0.000    .077457    .129138
  Characteristics|   .101732   .025629   3.97     0.000    .051501    .151964
     Coefficients|   .001565   .024756   0.06     0.950   -.046955    .050085
-----------------+-----------------------------------------------------------
Quantile .35     |
   Raw difference|   .107989   .010907   9.90     0.000    .086612    .129366
  Characteristics|   .090666   .020947   4.33     0.000    .049611    .131722
     Coefficients|   .017323   .021199   0.82     0.414   -.024227    .058872
-----------------+-----------------------------------------------------------
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Quantile .5      |
   Raw difference|   .110755   .009802   11.30    0.000    .091543    .129968
  Characteristics|   .084646   .019611   4.32     0.000    .046209    .123082
     Coefficients|    .02611   .019662   1.33     0.184   -.012427    .064646
-----------------+-----------------------------------------------------------
Quantile .65     |
   Raw difference|   .124976   .008623   14.49    0.000    .108075    .141876
  Characteristics|    .08237   .023294   3.54     0.001    .036715    .128025
     Coefficients|   .042606   .023834   1.79     0.074   -.004109     .08932
-----------------+-----------------------------------------------------------
Quantile .8      |
   Raw difference|   .166029   .011918   13.93    0.000     .14267    .189389
  Characteristics|   .090137   .029461   3.06     0.007    .032393     .14788
     Coefficients|   .075892   .033643   2.26     0.024    .009954    .141831
-----------------+-----------------------------------------------------------
Quantile .95     |
   Raw difference|    .27061   .029393   9.21     0.000    .213001     .32822
  Characteristics|   .095511   .039961   2.39     0.072    .017188    .173833
     Coefficients|     .1751   .053033   3.30     0.001    .071156    .279043
-----------------------------------------------------------------------------

.  **2009

. 

.  

. 

.  rqdeco wage `X' if YEAR==2009, by(native) qlow(.05) qhigh(.95) qste(.15) vce(boot) 
Fitting base model
(bootstrapping ..................................................)

Decomposition of differences in distribution using quantile regression
         Total number of observations                  561615
           Number of observations in group 0             3486
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           Number of observations in group 1           558129

         Number of quantile regressions estimated         100

The variance has been estimated by bootstraping the results 50 times

-----------------------------------------------------------------------------
        Component|   Effects  Std. Err.     t     P>|t|  [95% Conf. Interval] 
-----------------+-----------------------------------------------------------
Quantile .05     |
   Raw difference|   .048199   .012546   3.84     0.000     .02361    .072788
  Characteristics|   .092328   .024029   3.84     0.000    .045231    .139424
     Coefficients|  -.044129    .02521   -1.75    0.080    -.09354    .005283
-----------------+-----------------------------------------------------------
Quantile .2      |
   Raw difference|    .11923     .0048   24.84    0.000    .109822    .128638
  Characteristics|   .077308    .01272   6.08     0.000    .052377    .102239
     Coefficients|   .041922   .012641   3.32     0.001    .017146    .066699
-----------------+-----------------------------------------------------------
Quantile .35     |
   Raw difference|   .133777   .004907   27.26    0.000     .12416    .143394
  Characteristics|   .077129   .009887   7.80     0.000    .057752    .096507
     Coefficients|   .056647   .009917   5.71     0.000     .03721    .076084
-----------------+-----------------------------------------------------------
Quantile .5      |
   Raw difference|   .141618   .004756   29.77    0.000    .132296     .15094
  Characteristics|   .081959   .009704   8.45     0.000    .062939    .100979
     Coefficients|   .059659   .009546   6.25     0.000     .04095    .078368
-----------------+-----------------------------------------------------------
Quantile .65     |
   Raw difference|    .15432   .005127   30.10    0.000    .144272    .164368
  Characteristics|   .090831   .010596   8.57     0.000    .070063      .1116
     Coefficients|   .063488   .010504   6.04     0.000    .042901    .084076
-----------------+-----------------------------------------------------------
Quantile .8      |
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   Raw difference|   .187171   .006436   29.08    0.000    .174556    .199786
  Characteristics|   .109723   .013541   8.10     0.000    .083183    .136263
     Coefficients|   .077448   .014521   5.33     0.000    .048988    .105908
-----------------+-----------------------------------------------------------
Quantile .95     |
   Raw difference|   .207373   .023521   8.82     0.000    .161273    .253473
  Characteristics|   .169178   .036334   4.66     0.000    .097965    .240391
     Coefficients|   .038194   .041475   0.92     0.357   -.043095    .119484
-----------------------------------------------------------------------------

***2010
.   rqdeco wage `X' if YEAR==2010, by(native) qlow(.05) qhigh(.95) qste(.15) vce(boot) 
Fitting base model
(bootstrapping ..................................................)

Decomposition of differences in distribution using quantile regression
Total number of observations 552407
Number of observations in group 0 3900
Number of observations in group 1 548507

Number of quantile regressions estimated 100

The variance has been estimated by bootstraping the results 50 times

-----------------------------------------------------------------------------
Component|   Effects  Std. Err.     t     P>|t|  [95% Conf. Interval] 

-----------------+-----------------------------------------------------------
Quantile .05     |
   Raw difference|   .109186   .013457   8.11     0.000    .082811    .135561
  Characteristics|   .114612   .023888   4.80     0.000    .067793    .161431
     Coefficients|  -.005426    .02633   -0.21    0.837   -.057032    .046181
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-----------------+-----------------------------------------------------------
Quantile .2      |
   Raw difference|   .140143   .005993   23.39    0.000    .128397    .151888
  Characteristics|     .0964   .012525   7.70     0.000    .071853    .120948
     Coefficients|   .043742   .013962   3.13     0.002    .016378    .071107
-----------------+-----------------------------------------------------------
Quantile .35     |
   Raw difference|   .154298   .005152   29.95    0.000      .1442    .164395
  Characteristics|   .091709   .012127   7.56     0.000     .06794    .115479
     Coefficients|   .062588   .013243   4.73     0.000    .036632    .088545
-----------------+-----------------------------------------------------------
Quantile .5      |
   Raw difference|   .165872   .005474   30.30    0.000    .155143    .176601
  Characteristics|   .094155   .012754   7.38     0.000    .069157    .119153
     Coefficients|   .071717   .013928   5.15     0.000    .044419    .099014
-----------------+-----------------------------------------------------------
Quantile .65     |
   Raw difference|   .187345   .006124   30.59    0.000    .175343    .199347
  Characteristics|   .107684   .014357   7.50     0.000    .079545    .135823
     Coefficients|    .07966   .016161   4.93     0.000    .047985    .111336
-----------------+-----------------------------------------------------------
Quantile .8      |
   Raw difference|   .229012   .007867   29.11    0.000    .213594    .244431
  Characteristics|   .142956   .018386   7.78     0.000     .10692    .178992
     Coefficients|   .086056   .021137   4.07     0.000    .044628    .127484
-----------------+-----------------------------------------------------------
Quantile .95     |
   Raw difference|   .255652   .023367   10.94    0.000    .209853     .30145
  Characteristics|   .162406    .02917   5.57     0.000    .105234    .219579
     Coefficients|   .093245   .028809   3.24     0.001    .036781    .149709
-----------------------------------------------------------------------------

.  **2013
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. 

.    rqdeco wage `X' if YEAR==2013, by(native) qlow(.05) qhigh(.95) qste(.15) vce(boot) 
Fitting base model
(bootstrapping ..................................................)

Decomposition of differences in distribution using quantile regression
         Total number of observations                  586254
           Number of observations in group 0             7267
           Number of observations in group 1           578987

         Number of quantile regressions estimated         100

The variance has been estimated by bootstraping the results 50 times

-----------------------------------------------------------------------------
        Component|   Effects  Std. Err.     t     P>|t|  [95% Conf. Interval] 
-----------------+-----------------------------------------------------------
Quantile .05     |
   Raw difference|   .144269   .010104   14.28    0.000    .124465    .164072
  Characteristics|   .105567   .015474   6.82     0.000    .075238    .135896
     Coefficients|   .038702   .018116   2.14     0.033    .003194    .074209
-----------------+-----------------------------------------------------------
Quantile .2      |
   Raw difference|   .184959    .00438   42.23    0.000    .176375    .193544
  Characteristics|   .100466   .010007   10.04    0.000    .080853    .120079
     Coefficients|   .084493   .011061   7.64     0.000    .062814    .106173
-----------------+-----------------------------------------------------------
Quantile .35     |
   Raw difference|   .197907   .004228   46.81    0.000    .189621    .206193
  Characteristics|    .10469    .00823   12.72    0.000     .08856    .120821
     Coefficients|   .093217   .009162   10.17    0.000    .075259    .111175
-----------------+-----------------------------------------------------------
Quantile .5      |
   Raw difference|   .203472   .004237   48.02    0.000    .195166    .211777
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  Characteristics|   .108431   .007736   14.02    0.000    .093269    .123593
     Coefficients|    .09504   .008572   11.09    0.000    .078239    .111842
-----------------+-----------------------------------------------------------
Quantile .65     |
   Raw difference|   .216517   .004385   49.38    0.000    .207923     .22511
  Characteristics|   .112336   .008285   13.56    0.000    .096098    .128575
     Coefficients|    .10418   .009301   11.20    0.000    .085951    .122409
-----------------+-----------------------------------------------------------
Quantile .8      |
   Raw difference|   .256171   .004737   54.08    0.000    .246886    .265456
  Characteristics|   .126757    .01037   12.22    0.000    .106432    .147081
     Coefficients|   .129414   .011776   10.99    0.000    .106334    .152495
-----------------+-----------------------------------------------------------
Quantile .95     |
   Raw difference|     .3338   .013817   24.16    0.000    .306719    .360882
  Characteristics|   .160374   .024596   6.52     0.000    .112167     .20858
     Coefficients|   .173427   .029546   5.87     0.000    .115518    .231336
-----------------------------------------------------------------------------

***Quantile regression estimation results and bootstrapped standard errors

**Native-LDI:

.   rqdeco wage `X' if YEAR==2004, by(native) qlow(.05) qhigh(.95) qste(.15) vce(boot) 
Fitting base model
(bootstrapping ..................................................)

Decomposition of differences in distribution using quantile regression
Total number of observations 243590
Number of observations in group 0 5493
Number of observations in group 1 238097

Number of quantile regressions estimated 100
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The variance has been estimated by bootstraping the results 50 times

-----------------------------------------------------------------------------
Component|   Effects  Std. Err.     t     P>|t|  [95% Conf. Interval] 

-----------------+-----------------------------------------------------------
Quantile .05     |
   Raw difference|   .126441   .013457   9.40     0.000    .100066    .152816
  Characteristics|   .017398   .015282   1.14     0.318   -.012555     .04735
     Coefficients|   .109043   .017438   6.25     0.000    .074865    .143222
-----------------+-----------------------------------------------------------
Quantile .2      |
   Raw difference|   .136652   .005289   25.84    0.000    .126287    .147018
  Characteristics|    .03694    .00833   4.43     0.000    .020614    .053267
     Coefficients|   .099712   .008634   11.55    0.000     .08279    .116634
-----------------+-----------------------------------------------------------
Quantile .35     |
   Raw difference|   .149994   .003494   42.93    0.000    .143146    .156841
  Characteristics|   .049732   .006876   7.23     0.000    .036255    .063209
     Coefficients|   .100262   .006773   14.80    0.000    .086987    .113537
-----------------+-----------------------------------------------------------
Quantile .5      |
   Raw difference|   .165382   .003063   53.99    0.000    .159377    .171386
  Characteristics|   .057878   .006672   8.67     0.000      .0448    .070955
     Coefficients|   .107504   .006734   15.96    0.000    .094306    .120702
-----------------+-----------------------------------------------------------
Quantile .65     |
   Raw difference|   .187857   .003478   54.02    0.000    .181041    .194674
  Characteristics|   .062908   .007366   8.54     0.000    .048471    .077344
     Coefficients|    .12495   .007804   16.01    0.000    .109654    .140246
-----------------+-----------------------------------------------------------
Quantile .8      |
   Raw difference|   .225515   .004669   48.30    0.000    .216364    .234666
  Characteristics|    .06844   .009324   7.34     0.000    .050166    .086714
     Coefficients|   .157075   .009459   16.61    0.000    .138535    .175615
-----------------+-----------------------------------------------------------
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Quantile .95     |
   Raw difference|   .304798   .011971   25.46    0.000    .281335    .328261
  Characteristics|   .089695   .020643   4.34     0.000    .049235    .130156
     Coefficients|   .215102   .024281   8.86     0.000    .167513    .262692
-----------------------------------------------------------------------------

 rqdeco wage `X' if YEAR==2007, by(native) qlow(.05) qhigh(.95) qste(.15) vce(boot) 
Fitting base model
(bootstrapping ..................................................)

Decomposition of differences in distribution using quantile regression
Total number of observations 249573
Number of observations in group 0 6949
Number of observations in group 1 242624

Number of quantile regressions estimated 100

The variance has been estimated by bootstraping the results 50 times

-----------------------------------------------------------------------------
Component|   Effects  Std. Err.     t     P>|t|  [95% Conf. Interval] 

-----------------+-----------------------------------------------------------
Quantile .05     |
   Raw difference|    .12394   .011456   10.82    0.000    .101487    .146393
  Characteristics|     .0246   .013388   1.84     0.109   -.001641     .05084
     Coefficients|   .099341   .015364   6.47     0.000    .069228    .129453
-----------------+-----------------------------------------------------------
Quantile .2      |
   Raw difference|   .138719   .004732   29.32    0.000    .129444    .147993
  Characteristics|   .043156   .007252   5.95     0.000    .028943     .05737
     Coefficients|   .095562   .008208   11.64    0.000    .079475    .111649
-----------------+-----------------------------------------------------------
Quantile .35     |
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   Raw difference|   .149176   .004031   37.01    0.000    .141275    .157077
  Characteristics|   .058377   .005996   9.74     0.000    .046625    .070129
     Coefficients|   .090799   .007203   12.61    0.000    .076682    .104916
-----------------+-----------------------------------------------------------
Quantile .5      |
   Raw difference|    .15584   .004175   37.33    0.000    .147658    .164022
  Characteristics|   .065761   .005572   11.80    0.000    .054841    .076682
     Coefficients|   .090079   .007172   12.56    0.000    .076023    .104135
-----------------+-----------------------------------------------------------
Quantile .65     |
   Raw difference|   .167017   .004777   34.96    0.000    .157654    .176379
  Characteristics|   .068572   .005922   11.58    0.000    .056965    .080178
     Coefficients|   .098445   .007621   12.92    0.000    .083507    .113383
-----------------+-----------------------------------------------------------
Quantile .8      |
   Raw difference|   .193115   .006255   30.87    0.000    .180855    .205375
  Characteristics|    .07043   .006478   10.87    0.000    .057734    .083127
     Coefficients|   .122685   .008567   14.32    0.000    .105894    .139476
-----------------+-----------------------------------------------------------
Quantile .95     |
   Raw difference|   .286476   .010372   27.62    0.000    .266146    .306805
  Characteristics|   .071315    .01153   6.19     0.000    .048717    .093913
     Coefficients|   .215161    .01651   13.03    0.000    .182802     .24752
-----------------------------------------------------------------------------

  **2009

. 

.  

. 

.  rqdeco wage `X' if YEAR==2009, by(native) qlow(.05) qhigh(.95) qste(.15) vce(boot) 
Fitting base model
(bootstrapping ..................................................)
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Decomposition of differences in distribution using quantile regression
         Total number of observations                  574104
           Number of observations in group 0            15975
           Number of observations in group 1           558129

         Number of quantile regressions estimated         100

The variance has been estimated by bootstraping the results 50 times

-----------------------------------------------------------------------------
        Component|   Effects  Std. Err.     t     P>|t|  [95% Conf. Interval] 
-----------------+-----------------------------------------------------------
Quantile .05     |
   Raw difference|   .100041   .007592   13.18    0.000    .085161     .11492
  Characteristics|   .069723   .006863   10.16    0.000    .056272    .083173
     Coefficients|   .030318   .009475   3.20     0.001    .011748    .048888
-----------------+-----------------------------------------------------------
Quantile .2      |
   Raw difference|   .122412    .00276   44.35    0.000    .117003    .127821
  Characteristics|   .053896   .003406   15.82    0.000    .047221    .060572
     Coefficients|   .068516   .004391   15.60    0.000    .059909    .077122
-----------------+-----------------------------------------------------------
Quantile .35     |
   Raw difference|   .138555   .002297   60.33    0.000    .134053    .143056
  Characteristics|   .055734   .002559   21.78    0.000    .050718     .06075
     Coefficients|   .082821   .003603   22.99    0.000    .075759    .089883
-----------------+-----------------------------------------------------------
Quantile .5      |
   Raw difference|   .150295   .002721   55.23    0.000    .144961    .155628
  Characteristics|   .057868   .002534   22.84    0.000    .052901    .062834
     Coefficients|   .092427   .003655   25.29    0.000    .085264     .09959
-----------------+-----------------------------------------------------------
Quantile .65     |
   Raw difference|   .166892   .003348   49.85    0.000    .160331    .173454
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  Characteristics|   .061512   .002978   20.66    0.000    .055676    .067348
     Coefficients|    .10538   .004537   23.23    0.000    .096489    .114272
-----------------+-----------------------------------------------------------
Quantile .8      |
   Raw difference|   .194952   .004533   43.01    0.000    .186067    .203837
  Characteristics|   .067351   .004291   15.70    0.000    .058941    .075761
     Coefficients|   .127601    .00654   19.51    0.000    .114782     .14042
-----------------+-----------------------------------------------------------
Quantile .95     |
   Raw difference|   .244092   .011037   22.12    0.000     .22246    .265724
  Characteristics|   .079995   .007947   10.07    0.000     .06442     .09557
     Coefficients|   .164097    .01464   11.21    0.000    .135402    .192791
-----------------------------------------------------------------------------

 rqdeco wage `X' if YEAR==2010, by(native) qlow(.05) qhigh(.95) qste(.15) vce(boot) 
Fitting base model
(bootstrapping ..................................................)

Decomposition of differences in distribution using quantile regression
         Total number of observations                  564698
           Number of observations in group 0            16191
           Number of observations in group 1           548507

         Number of quantile regressions estimated         100

The variance has been estimated by bootstraping the results 50 times

-----------------------------------------------------------------------------
        Component|   Effects  Std. Err.     t     P>|t|  [95% Conf. Interval] 
-----------------+-----------------------------------------------------------
Quantile .05     |
   Raw difference|   .092173    .00644   14.31    0.000    .079551    .104795
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  Characteristics|   .070452   .005044   13.97    0.000    .060566    .080337
     Coefficients|   .021721   .007467   2.91     0.004    .007086    .036357
-----------------+-----------------------------------------------------------
Quantile .2      |
   Raw difference|   .119552   .002733   43.74    0.000    .114195    .124909
  Characteristics|   .047882   .003191   15.01    0.000    .041628    .054136
     Coefficients|    .07167   .003506   20.44    0.000    .064798    .078542
-----------------+-----------------------------------------------------------
Quantile .35     |
   Raw difference|   .139643   .002309   60.47    0.000    .135117    .144169
  Characteristics|   .043936   .003465   12.68    0.000    .037144    .050727
     Coefficients|   .095708   .003807   25.14    0.000    .088246    .103169
-----------------+-----------------------------------------------------------
Quantile .5      |
   Raw difference|   .157193   .002249   69.91    0.000    .152786      .1616
  Characteristics|   .044071   .003471   12.70    0.000    .037267    .050875
     Coefficients|   .113122   .003844   29.43    0.000    .105588    .120657
-----------------+-----------------------------------------------------------
Quantile .65     |
   Raw difference|   .178534   .002401   74.36    0.000    .173828     .18324
  Characteristics|    .04513   .003683   12.25    0.000     .03791    .052349
     Coefficients|   .133404   .004304   30.99    0.000    .124968    .141841
-----------------+-----------------------------------------------------------
Quantile .8      |
   Raw difference|   .207797    .00386   53.84    0.000    .200232    .215362
  Characteristics|     .0458   .004759   9.62     0.000    .036473    .055127
     Coefficients|   .161997   .006304   25.70    0.000    .149642    .174352
-----------------+-----------------------------------------------------------
Quantile .95     |
   Raw difference|   .239761   .009223   26.00    0.000    .221685    .257837
  Characteristics|   .036684   .009441   3.89     0.005     .01818    .055187
     Coefficients|   .203077   .012986   15.64    0.000    .177625     .22853
-----------------------------------------------------------------------------

 **2013
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. 

.    rqdeco wage `X' if YEAR==2013, by(native) qlow(.05) qhigh(.95) qste(.15) vce(boot) 
Fitting base model
(bootstrapping ..................................................)

Decomposition of differences in distribution using quantile regression
         Total number of observations                  598052
           Number of observations in group 0            19065
           Number of observations in group 1           578987

         Number of quantile regressions estimated         100

The variance has been estimated by bootstraping the results 50 times

-----------------------------------------------------------------------------
        Component|   Effects  Std. Err.     t     P>|t|  [95% Conf. Interval] 
-----------------+-----------------------------------------------------------
Quantile .05     |
   Raw difference|   .064602   .005734   11.27    0.000    .053363    .075841
  Characteristics|   .068405     .0052   13.16    0.000    .058214    .078597
     Coefficients|  -.003803   .006598   -0.58    0.564   -.016735    .009128
-----------------+-----------------------------------------------------------
Quantile .2      |
   Raw difference|   .108598   .002555   42.51    0.000     .10359    .113605
  Characteristics|   .053167   .002601   20.44    0.000    .048069    .058265
     Coefficients|   .055431   .003238   17.12    0.000    .049085    .061777
-----------------+-----------------------------------------------------------
Quantile .35     |
   Raw difference|   .130367   .002408   54.14    0.000    .125648    .135086
  Characteristics|   .050423   .002335   21.59    0.000    .045846       .055
     Coefficients|   .079944   .003208   24.92    0.000    .073656    .086231
-----------------+-----------------------------------------------------------
Quantile .5      |
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   Raw difference|   .145255   .002772   52.40    0.000    .139822    .150688
  Characteristics|   .050131   .002437   20.57    0.000    .045355    .054908
     Coefficients|   .095123   .003737   25.46    0.000      .0878    .102447
-----------------+-----------------------------------------------------------
Quantile .65     |
   Raw difference|   .161484   .003186   50.68    0.000    .155239     .16773
  Characteristics|   .052366   .002958   17.71    0.000    .046569    .058162
     Coefficients|   .109119   .004516   24.16    0.000    .100268     .11797
-----------------+-----------------------------------------------------------
Quantile .8      |
   Raw difference|   .183406   .004084   44.91    0.000    .175402    .191409
  Characteristics|   .057764   .004195   13.77    0.000    .049542    .065985
     Coefficients|   .125642   .005942   21.15    0.000    .113997    .137287
-----------------+-----------------------------------------------------------
Quantile .95     |
   Raw difference|   .221972   .007687   28.88    0.000    .206905    .237038
  Characteristics|    .05292    .00824   6.42     0.000    .036769    .069071
     Coefficients|   .169052   .010518   16.07    0.000    .148437    .189666
-----------------------------------------------------------------------------
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Appendix E: Additional results from Oaxaca-Blinder decompositions

Appendix E.1: Mean predictions by native and immigrant males workers of different

skilled groups

Table 3.13: Mean predictions by native and immigrant males workers of different skilled groups

(2004) (2007) (2009) (2010) (2013)

log wage log wage log wage log wage log wage

b/se b/se b/se b/se b/se

All skilled group)

Native 5.244∗∗∗ 5.364∗∗∗ 5.324∗∗∗ 5.352∗∗∗ 5.395∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001)

Immigrant Total 5.150∗∗∗ 5.278∗∗∗ 5.239∗∗∗ 5.257∗∗∗ 5.297∗∗∗

(0.004) (0.004) (0.002) (0.002) (0.002)

EU15 5.306∗∗∗ 5.438∗∗∗ 5.364∗∗∗ 5.393∗∗∗ 5.445∗∗∗

(0.009) (0.008) (0.005) (0.005) (0.005)

EU12 5.130∗∗∗ 5.228∗∗∗ 5.188∗∗∗ 5.175∗∗∗ 5.172∗∗∗

(0.022) (0.012) (0.006) (0.006) (0.005)

RD 5.343∗∗∗ 5.456∗∗∗ 5.393∗∗∗ 5.405∗∗∗ 5.465∗∗∗

(0.018) (0.016) (0.011) (0.011) (0.011)

LD 5.063∗∗∗ 5.195∗∗∗ 5.172∗∗∗ 5.192∗∗∗ 5.249∗∗∗

(0.005) (0.004) (0.003) (0.003) (0.003)

Low-skilled

Native 5.086∗∗∗ 5.195∗∗∗ 5.175∗∗∗ 5.205∗∗∗ 5.210∗∗∗

(0.002) (0.002) (0.001) (0.001) (0.001)

Immigrant Total 5.088∗∗∗ 5.232∗∗∗ 5.184∗∗∗ 5.210∗∗∗ 5.240∗∗∗

(0.005) (0.005) (0.003) (0.003) (0.003)

EU15 5.237∗∗∗ 5.400∗∗∗ 5.308∗∗∗ 5.345∗∗∗ 5.404∗∗∗

(0.010) (0.010) (0.007) (0.007) (0.007)

EU12 5.077∗∗∗ 5.193∗∗∗ 5.142∗∗∗ 5.140∗∗∗ 5.131∗∗∗

(0.030) (0.014) (0.006) (0.006) (0.005)

Continued on next page...
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... table 3.13 continued

(2004) (2007) (2009) (2010) (2013)

log wage log wage log wage log wage log wage

b/se b/se b/se b/se b/se

RD 5.254∗∗∗ 5.416∗∗∗ 5.372∗∗∗ 5.379∗∗∗ 5.465∗∗∗

(0.028) (0.023) (0.016) (0.016) (0.017)

LD 5.022∗∗∗ 5.149∗∗∗ 5.121∗∗∗ 5.148∗∗∗ 5.186∗∗∗

(0.005) (0.005) (0.003) (0.004) (0.004)

Medium-skilled

Native 5.300∗∗∗ 5.422∗∗∗ 5.357∗∗∗ 5.386∗∗∗ 5.431∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001)

Immigrant Total 5.234∗∗∗ 5.350∗∗∗ 5.277∗∗∗ 5.295∗∗∗ 5.329∗∗∗

(0.008) (0.007) (0.004) (0.004) (0.004)

EU15 5.365∗∗∗ 5.478∗∗∗ 5.387∗∗∗ 5.408∗∗∗ 5.445∗∗∗

(0.016) (0.015) (0.009) (0.009) (0.009)

EU12 5.161∗∗∗ 5.338∗∗∗ 5.257∗∗∗ 5.264∗∗∗ 5.251∗∗∗

(0.034) (0.028) (0.015) (0.016) (0.013)

RD 5.366∗∗∗ 5.474∗∗∗ 5.365∗∗∗ 5.394∗∗∗ 5.412∗∗∗

(0.029) (0.027) (0.018) (0.018) (0.018)

LD 5.157∗∗∗ 5.287∗∗∗ 5.222∗∗∗ 5.240∗∗∗ 5.288∗∗∗

(0.009) (0.008) (0.005) (0.005) (0.004)

High-skilled

Native 5.573∗∗∗ 5.609∗∗∗ 5.544∗∗∗ 5.587∗∗∗ 5.637∗∗∗

(0.005) (0.004) (0.002) (0.002) (0.002)

Immigrant Total 5.379∗∗∗ 5.450∗∗∗ 5.494∗∗∗ 5.520∗∗∗ 5.537∗∗∗

(0.017) (0.014) (0.008) (0.008) (0.007)

EU15 5.508∗∗∗ 5.573∗∗∗ 5.547∗∗∗ 5.575∗∗∗ 5.601∗∗∗

(0.026) (0.022) (0.013) (0.012) (0.011)

EU12 5.315∗∗∗ 5.305∗∗∗ 5.641∗∗∗ 5.633∗∗∗ 5.593∗∗∗

(0.059) (0.053) (0.032) (0.031) (0.024)

RD 5.520∗∗∗ 5.582∗∗∗ 5.511∗∗∗ 5.510∗∗∗ 5.548∗∗∗

Continued on next page...
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... table 3.13 continued

(2004) (2007) (2009) (2010) (2013)

log wage log wage log wage log wage log wage

b/se b/se b/se b/se b/se

(0.040) (0.038) (0.022) (0.021) (0.023)

LD 5.185∗∗∗ 5.317∗∗∗ 5.407∗∗∗ 5.441∗∗∗ 5.471∗∗∗

(0.025) (0.020) (0.012) (0.013) (0.010)

Appendix E.2: Additional Oaxaca-Blinder decompositions on sub-samples

Table 3.14: Oaxaca-Blinder decomposition results for males of different skilled groups:Native-

EU15 Immigrants

(2004) (2007) (2009) (2010) (2013)

log wage log wage log wage log wage log wage

b/se b/se b/se b/se b/se

All Skilled groups

difference -0.062∗∗∗ -0.074∗∗∗ -0.039∗∗∗ -0.042∗∗∗ -0.049∗∗∗

(0.009) (0.008) (0.005) (0.005) (0.005)

explained 0.016∗∗∗ 0.041∗∗∗ 0.055∗∗∗ 0.059∗∗∗ 0.068∗∗∗

(0.004) (0.004) (0.002) (0.002) (0.002)

unexplained -0.077∗∗∗ -0.115∗∗∗ -0.094∗∗∗ -0.100∗∗∗ -0.117∗∗∗

(0.008) (0.007) (0.005) (0.005) (0.005)

Low-skilled

-0.151∗∗∗ -0.205∗∗∗ -0.133∗∗∗ -0.140∗∗∗ -0.194∗∗∗

(0.011) (0.010) (0.007) (0.007) (0.007)

explained -0.034∗∗∗ -0.039∗∗∗ 0.011∗∗∗ 0.015∗∗∗ -0.014∗∗∗

(0.005) (0.004) (0.003) (0.003) (0.003)

Continued on next page...
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... table 3.14 continued

(2004) (2007) (2009) (2010) (2013)

log wage log wage log wage log wage log wage

b/se b/se b/se b/se b/se

unexplained -0.117∗∗∗ -0.166∗∗∗ -0.144∗∗∗ -0.155∗∗∗ -0.180∗∗∗

(0.010) (0.010) (0.007) (0.007) (0.007)

Medium-skilled

difference -0.065∗∗∗ -0.057∗∗∗ -0.030∗∗∗ -0.021∗∗ -0.014

(0.016) (0.015) (0.009) (0.009) (0.009)

explained -0.036∗∗∗ -0.023∗∗∗ 0.001 0.002 0.004

(0.005) (0.005) (0.003) (0.003) (0.003)

unexplained -0.029∗ -0.034∗∗ -0.031∗∗∗ -0.024∗∗∗ -0.018∗∗

(0.015) (0.013) (0.009) (0.008) (0.009)

High-skilled

difference 0.065∗∗ 0.036 -0.003 0.012 0.035∗∗∗

(0.026) (0.022) (0.013) (0.012) (0.011)

explained -0.013 -0.046∗∗∗ 0.001 -0.003 0.029∗∗∗

(0.011) (0.010) (0.005) (0.005) (0.005)

unexplained 0.078∗∗∗ 0.082∗∗∗ -0.004 0.015 0.007

(0.025) (0.021) (0.012) (0.011) (0.010)

Table 3.15: Oaxaca-Blinder decomposition results for males of different skilled groups:Native-

New EU12 Immigrants

(2004) (2007) (2009) (2010) (2013)

log wage log wage log wage log wage log wage

b/se b/se b/se b/se b/se

All Skilled groups

difference 0.114∗∗∗ 0.137∗∗∗ 0.136∗∗∗ 0.176∗∗∗ 0.223∗∗∗
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... table 3.15 continued

(2004) (2007) (2009) (2010) (2013)

log wage log wage log wage log wage log wage

b/se b/se b/se b/se b/se

(0.022) (0.012) (0.006) (0.006) (0.005)

explained 0.080∗∗∗ 0.182∗∗∗ 0.195∗∗∗ 0.210∗∗∗ 0.236∗∗∗

(0.012) (0.007) (0.003) (0.003) (0.003)

unexplained 0.034∗ -0.045∗∗∗ -0.058∗∗∗ -0.034∗∗∗ -0.013∗∗∗

Low-skilled

difference 0.009 0.001 0.033∗∗∗ 0.065∗∗∗ 0.078∗∗∗

(0.030) (0.014) (0.006) (0.006) (0.005)

explained 0.058∗∗∗ 0.110∗∗∗ 0.119∗∗∗ 0.136∗∗∗ 0.099∗∗∗

(0.015) (0.007) (0.003) (0.003) (0.003)

unexplained -0.049∗ -0.109∗∗∗ -0.086∗∗∗ -0.071∗∗∗ -0.021∗∗∗

(0.027) (0.013) (0.006) (0.006) (0.005)

Medium-skilled

difference 0.139∗∗∗ 0.084∗∗∗ 0.100∗∗∗ 0.123∗∗∗ 0.180∗∗∗

(0.034) (0.028) (0.015) (0.016) (0.013)

explained 0.031∗∗ 0.020∗∗ 0.050∗∗∗ 0.066∗∗∗ 0.088∗∗∗

(0.012) (0.010) (0.006) (0.007) (0.006)

unexplained 0.107∗∗∗ 0.063∗∗ 0.050∗∗∗ 0.057∗∗∗ 0.092∗∗∗

(0.032) (0.026) (0.014) (0.014) (0.012)

High-skilled

0.258∗∗∗ 0.304∗∗∗ -0.097∗∗∗ -0.046 0.044∗

(0.059) (0.053) (0.032) (0.031) (0.024)

explained -0.043 -0.010 0.016 0.046∗∗∗ 0.070∗∗∗

(0.031) (0.029) (0.010) (0.011) (0.009)

unexplained 0.301∗∗∗ 0.313∗∗∗ -0.113∗∗∗ -0.092∗∗∗ -0.026

(0.074) (0.054) (0.030) (0.029) (0.021)
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Table 3.16: Oaxaca-Blinder decomposition results for males of different skilled groups:Native-

Immigrants from remaining developed countries

(2004) (2007) (2009) (2010) (2013)

log wage log wage log wage log wage log wage

b/se b/se b/se b/se b/se

All Skilled groups

difference -0.098∗∗∗ -0.091∗∗∗ -0.069∗∗∗ -0.053∗∗∗ -0.070∗∗∗

(0.019) (0.016) (0.011) (0.011) (0.012)

explained -0.056∗∗∗ 0.004 0.025∗∗∗ 0.035∗∗∗ 0.044∗∗∗

(0.010) (0.008) (0.005) (0.005) (0.005)

unexplained -0.042∗∗ -0.095∗∗∗ -0.094∗∗∗ -0.089∗∗∗ -0.114∗∗∗

(0.017) (0.016) (0.011) (0.011) (0.012)

Low-skilled

difference -0.168∗∗∗ -0.222∗∗∗ -0.197∗∗∗ -0.174∗∗∗ -0.256∗∗∗

(0.028) (0.023) (0.016) (0.016) (0.017)

explained -0.067∗∗∗ -0.048∗∗∗ -0.008 0.002 -0.017∗∗∗

(0.012) (0.010) (0.005) (0.006) (0.005)

unexplained -0.101∗∗∗ -0.173∗∗∗ -0.189∗∗∗ -0.176∗∗∗ -0.239∗∗∗

(0.026) (0.022) (0.015) (0.016) (0.017)

Medium-skilled

difference -0.066∗∗ -0.053∗ -0.008 -0.008 0.019

(0.029) (0.027) (0.018) (0.018) (0.018)

explained -0.067∗∗∗ -0.069∗∗∗ -0.014∗∗∗ -0.012∗ -0.015∗∗∗

(0.010) (0.011) (0.005) (0.006) (0.006)

unexplained 0.001 0.017 0.006 0.004 0.033∗∗

(0.027) (0.025) (0.017) (0.017) (0.017)

High-skilled

difference 0.052 0.026 0.032 0.077∗∗∗ 0.088∗∗∗

(0.041) (0.039) (0.022) (0.021) (0.023)

explained -0.032∗ -0.030∗ -0.018∗ -0.019∗ -0.018∗∗
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... table 3.16 continued

(2004) (2007) (2009) (2010) (2013)

log wage log wage log wage log wage log wage

b/se b/se b/se b/se b/se

(0.017) (0.018) (0.009) (0.011) (0.009)

unexplained 0.085∗∗ 0.057∗ 0.051∗∗ 0.096∗∗∗ 0.107∗∗∗

(0.039) (0.034) (0.021) (0.020) (0.022)

Table 3.17: Oaxaca-Blinder decomposition results for males of different skilled groups:Native-

Immigrants from less developed countries

(2004) (2007) (2009) (2010) (2013)

log wage log wage log wage log wage log wage

b/se b/se b/se b/se b/se

All Skilled groups

difference 0.181∗∗∗ 0.170∗∗∗ 0.153∗∗∗ 0.160∗∗∗ 0.146∗∗∗

(0.005) (0.004) (0.003) (0.003) (0.003)

explained 0.086∗∗∗ 0.092∗∗∗ 0.087∗∗∗ 0.090∗∗∗ 0.089∗∗∗

(0.003) (0.002) (0.001) (0.002) (0.002)

unexplained 0.095∗∗∗ 0.077∗∗∗ 0.065∗∗∗ 0.069∗∗∗ 0.057∗∗∗

(0.005) (0.004) (0.003) (0.003) (0.003)

Low-skilled

difference 0.064∗∗∗ 0.046∗∗∗ 0.054∗∗∗ 0.057∗∗∗ 0.023∗∗∗

(0.006) (0.005) (0.004) (0.004) (0.004)

explained 0.013∗∗∗ 0.004 0.020∗∗∗ 0.024∗∗∗ 0.001

(0.003) (0.003) (0.002) (0.002) (0.002)

unexplained 0.051∗∗∗ 0.042∗∗∗ 0.034∗∗∗ 0.033∗∗∗ 0.023∗∗∗

(0.006) (0.005) (0.004) (0.004) (0.004)

Medium-skilled

Continued on next page...
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... table 3.17 continued

(2004) (2007) (2009) (2010) (2013)

log wage log wage log wage log wage log wage

b/se b/se b/se b/se b/se

difference 0.142∗∗∗ 0.135∗∗∗ 0.135∗∗∗ 0.146∗∗∗ 0.143∗∗∗

(0.009) (0.008) (0.005) (0.005) (0.004)

explained -0.009∗∗∗ 0.004 0.021∗∗∗ 0.027∗∗∗ 0.033∗∗∗

(0.003) (0.003) (0.002) (0.002) (0.002)

unexplained 0.151∗∗∗ 0.131∗∗∗ 0.114∗∗∗ 0.120∗∗∗ 0.110∗∗∗

(0.009) (0.007) (0.005) (0.005) (0.004)

High-skilled

difference 0.388∗∗∗ 0.292∗∗∗ 0.136∗∗∗ 0.146∗∗∗ 0.166∗∗∗

(0.026) (0.020) (0.012) (0.013) (0.010)

explained -0.011 -0.001 0.008 0.001 0.050∗∗∗

(0.012) (0.010) (0.005) (0.005) (0.005)

unexplained 0.399∗∗∗ 0.293∗∗∗ 0.129∗∗∗ 0.145∗∗∗ 0.116∗∗∗

(0.028) (0.021) (0.012) (0.013) (0.009)
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Appendix F: Additional sensitivity analysis on the choice of explanatory

variables (Based on Oaxaca-Blender decompostions)

Appendix F.1: Use the variables "Tenure and " and "Experience"
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**Regression results before education correction for total immigrants in all skill groups.
**Use the variables "experience and tenure" (Shown as "exp" and "Tenure" in the table) instead of "Years 
since migration".

*Note:
*Group 1: immigrant = 0                         
*Group 2: immigrant = 1 

.  esttab male_2004 male_2005 male_2006 male_2007 male_2008,se star(* 0.10 ** 0.05 *** 0.01)

--------------------------------------------------------------------------------------------
                     2004            2005            2006            2007            2008   
                     wage            wage            wage            wage            wage   
--------------------------------------------------------------------------------------------
overall                                                                                     
group_1             5.232***        5.269***        5.303***        5.350***        5.281***
               (0.000827)      (0.000849)      (0.000807)      (0.000837)      (0.000524)   

group_2             5.174***        5.203***        5.240***        5.289***        5.205***
                (0.00339)       (0.00347)       (0.00326)       (0.00317)       (0.00204)   

difference         0.0580***       0.0655***       0.0634***       0.0614***       0.0760***
                (0.00349)       (0.00357)       (0.00336)       (0.00328)       (0.00210)   

explained         -0.0621***      -0.0588***      -0.0514***      -0.0428***      -0.0239***
                (0.00190)       (0.00197)       (0.00190)       (0.00201)       (0.00126)   

unexplained         0.120***        0.124***        0.115***        0.104***       0.0999***
                (0.00336)       (0.00345)       (0.00323)       (0.00322)       (0.00218)   
--------------------------------------------------------------------------------------------
explained                                                                                   
ind             -0.000971**      -0.00143***    -0.000224        0.000565*      -0.000608***
               (0.000463)      (0.000408)      (0.000339)      (0.000323)     (0.0000607)   
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exp                0.0298***       0.0455***       0.0502***       0.0586***       0.0532***
                (0.00103)       (0.00240)       (0.00183)       (0.00184)       (0.00110)   

Tenure             -0.129***     -0.00231         0.00229**       0.00276***     0.000156   
                (0.00308)       (0.00170)       (0.00110)      (0.000926)      (0.000423)   

Union           -0.000195       -0.000731***     -0.00118***     -0.00115***    -0.000200*  
               (0.000170)      (0.000176)      (0.000169)      (0.000175)      (0.000112)   

Age_18_24         0.00559***      0.00570***      0.00360***      0.00280***     0.000385   
                (0.00105)      (0.000937)      (0.000978)      (0.000936)      (0.000308)   

Age_25_29        -0.00855***     -0.00664***     -0.00997***      -0.0113***      -0.0119***
                (0.00211)       (0.00188)       (0.00182)       (0.00172)      (0.000750)   

Age_30_39         -0.0417***      -0.0364***      -0.0347***      -0.0338***      -0.0238***
                (0.00351)       (0.00321)       (0.00308)       (0.00288)       (0.00129)   

Age_40_49         -0.0233***      -0.0316***      -0.0298***      -0.0289***      -0.0134***
                (0.00338)       (0.00322)       (0.00312)       (0.00296)       (0.00135)   

Age_50_59          0.0488***       0.0472***       0.0461***       0.0432***       0.0336***
                (0.00261)       (0.00241)       (0.00234)       (0.00219)       (0.00117)   

Age_60_65         0.00585***      0.00747***       0.0115***       0.0143***       0.0125***
                (0.00112)       (0.00103)       (0.00101)      (0.000955)      (0.000532)   

basic_edu         -0.0197***      -0.0176***      -0.0218***      -0.0258***      -0.0219***
                (0.00134)       (0.00143)       (0.00130)       (0.00124)      (0.000740)   

vocational~u     -0.00321***     -0.00331***     -0.00111***    0.0000326       -0.000594** 
               (0.000479)      (0.000481)      (0.000267)     (0.0000494)      (0.000275)   

higher_edu       -0.00848***     -0.00922***     -0.00592***     -0.00277***     -0.00405***
               (0.000602)      (0.000625)      (0.000465)      (0.000315)      (0.000271)   
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Married -0.0105*** -0.0100*** -0.00837*** -0.00745*** -0.00472***
(0.000391)      (0.000395)      (0.000355)      (0.000364)      (0.000206)   

children_0~s     -0.00379*** -0.00358*** -0.00365*** -0.00298*** -0.00223***
(0.000248)      (0.000242)      (0.000231)      (0.000209)      (0.000119)   

Copenhagen -0.00513*** -0.00565*** -0.00789*** -0.00556*** -0.00151*
(0.00133) (0.00148) (0.00137) (0.00126)      (0.000781)   

large_city -0.00217*** -0.00144** -0.00236***     0.000445 -0.000431*
(0.000812)      (0.000734)      (0.000693)      (0.000451)      (0.000252)

small_city 0.00133 -0.000162 0.00279 0.000802 -0.000455
(0.00209) (0.00216) (0.00198)      (0.000760)      (0.000504)

lnemployee -0.00716*** -0.00687*** -0.00603*** -0.00711*** -0.00503***
(0.000402)      (0.000392)      (0.000380)      (0.000383)      (0.000188)   

--------------------------------------------------------------------------------------------
unexplained                                                                                 
ind               -0.0273***      -0.0379***      -0.0268***      -0.0275***      -0.0338***

(0.00947) (0.00969) (0.00886) (0.00837) (0.00452)   

exp -0.0524*** -0.0671*** -0.0571*** -0.0557*** -0.0384***
(0.00931) (0.0248) (0.0170) (0.0157) (0.00898)   

Tenure -0.145*** -0.0170* -0.0126** -0.00978** -0.00674***
(0.00301) (0.0102) (0.00612) (0.00482) (0.00212)

Union -0.0229*** -0.0179*** -0.0231*** -0.0235*** -0.00886**
(0.00645) (0.00642) (0.00592) (0.00587) (0.00377)

Age_18_24 0.0152* 0.0168***      0.00521 0.0113** 0.0216***
(0.00818) (0.00629) (0.00635) (0.00503) (0.00344)   
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Age_25_29 0.0343** 0.0361*** 0.0129 0.0244*** 0.0463***
(0.0139) (0.00984) (0.00926) (0.00703) (0.00589)   

Age_30_39 0.112*** 0.121*** 0.0489* 0.0772*** 0.129***
(0.0411) (0.0297) (0.0273) (0.0204) (0.0159)   

Age_40_49 0.0992*** 0.119*** 0.0583** 0.0909*** 0.148***
(0.0337) (0.0268) (0.0260) (0.0202) (0.0161)   

Age_50_59 0.0425** 0.0504*** 0.0220 0.0415*** 0.0786***
(0.0185) (0.0138) (0.0134) (0.0105) (0.00926)   

Age_60_65 0.00628* 0.00873***      0.00241 0.00612*** 0.0135***
(0.00329) (0.00258) (0.00238) (0.00200) (0.00192)   

basic_edu 0.00409 0.00953*** 0.0192*** 0.0258*** 0.0283***
(0.00267) (0.00282) (0.00271) (0.00270) (0.00181)   

vocational~u 0.0556*** 0.0756*** 0.0935*** 0.108*** 0.114***
(0.00970) (0.0101) (0.00890) (0.00809) (0.00575)   

higher_edu 0.00662***      0.00796***      0.00980*** 0.0102*** 0.0108***
(0.00122) (0.00126) (0.00115) (0.00111)      (0.000928)   

Married 0.0437*** 0.0446*** 0.0372*** 0.0401*** 0.0379***
(0.00507) (0.00504) (0.00445) (0.00435) (0.00292)   

children_0~s      0.00905*** 0.0113*** 0.0126***      0.00695***      0.00654***
(0.00239) (0.00229) (0.00213) (0.00206) (0.00138)   

Copenhagen 0.00346 0.00197 0.00556 -0.00464 0.00642   
(0.00703) (0.00659) (0.00739) (0.00643) (0.00444)   

large_city 0.00567 0.00430 0.0103 -0.00540 0.00527   
(0.0133) (0.0123) (0.0136) (0.0183) (0.0121)   
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small_city 0.00311 -0.000325 0.0136 -0.00729 0.00895   
(0.0222) (0.0214) (0.0243) (0.0136) (0.00818)   

lnemployee -0.0513*** -0.0763*** -0.0847*** -0.0722*** -0.0531***
(0.00982) (0.0103) (0.00962) (0.00936) (0.00645)   

_cons -0.182 -0.208** -0.0683 -0.170** -0.445***
(0.127) (0.0989) (0.0982) (0.0776) (0.0592)   

--------------------------------------------------------------------------------------------
N                  254278          256008          271069 261812 631497   
--------------------------------------------------------------------------------------------
Standard errors in parentheses
* p<0.10, ** p<0.05, *** p<0.01

. 

. 

. 

.  esttab male_2009 male_2010 male_2011 male_2012 male_2013,se star(* 0.10 ** 0.05 *** 0.01)

--------------------------------------------------------------------------------------------
2009 2010 2011 2012 2013   
wage wage wage wage wage   

--------------------------------------------------------------------------------------------
overall                                                                                     
group_1 5.319*** 5.347*** 5.338*** 5.358*** 5.390***

(0.000544)      (0.000540)      (0.000542)      (0.000544)      (0.000546)   

group_2 5.245*** 5.264*** 5.265*** 5.274*** 5.304***
(0.00201) (0.00203) (0.00196) (0.00205) (0.00206)   

difference 0.0736*** 0.0823*** 0.0728*** 0.0847*** 0.0858***
(0.00209) (0.00210) (0.00203) (0.00212) (0.00213)   

explained -0.0194*** 0.0617***      -0.0179*** -0.0104*** -0.00744***
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                (0.00127)       (0.00114)       (0.00145)       (0.00154)       (0.00159)   

unexplained        0.0930***       0.0206***       0.0907***       0.0951***       0.0932***
                (0.00215)       (0.00209)       (0.00211)       (0.00221)       (0.00224)   
--------------------------------------------------------------------------------------------
explained                                                                                   
ind             -0.000314***    -0.000489***    -0.000676***    -0.000959***     -0.00101***
              (0.0000437)     (0.0000987)     (0.0000733)     (0.0000796)     (0.0000781)   

exp                0.0539***       0.0735***       0.0887***       0.0997***        0.107***
                (0.00117)       (0.00127)       (0.00133)       (0.00139)       (0.00145)   

Tenure           0.000964**       0.00432***      0.00284***      0.00178***      0.00288***
               (0.000483)      (0.000420)      (0.000324)      (0.000309)      (0.000299)   

Union           -0.000332**      0.000809***   -0.0000918        0.000372***    -0.000224   
               (0.000132)      (0.000134)      (0.000138)      (0.000143)      (0.000149)   

Age_18_24        0.000777         0.00145***     0.000234**     -0.000650***     -0.00108***
               (0.000579)      (0.000195)      (0.000107)      (0.000117)      (0.000126)   

Age_25_29         -0.0304***      -0.0174***      -0.0107***     -0.00798***     -0.00543***
                (0.00121)      (0.000737)      (0.000475)      (0.000414)      (0.000356)   

Age_30_39         -0.0349***      -0.0203***      -0.0143***      -0.0147***      -0.0148***
                (0.00184)       (0.00111)      (0.000699)      (0.000625)      (0.000616)   

Age_40_49         -0.0100***     -0.00685***     -0.00453***    -0.000368         0.00202***
                (0.00193)       (0.00119)      (0.000742)      (0.000602)      (0.000520)   

Age_50_59          0.0549***       0.0317***       0.0191***       0.0165***       0.0138***
                (0.00161)       (0.00108)      (0.000673)      (0.000590)      (0.000535)   

Age_60_65          0.0192***       0.0115***      0.00865***      0.00688***      0.00576***
               (0.000782)      (0.000498)      (0.000337)      (0.000284)      (0.000254)   
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basic_edu         -0.0206***       0.0267***      -0.0278***      -0.0275***      -0.0288***
               (0.000727)      (0.000505)      (0.000725)      (0.000745)      (0.000718)   

vocational~u    -0.000646**        0.0112***     -0.00437***     -0.00443***     -0.00627***
               (0.000275)      (0.000290)      (0.000502)      (0.000633)      (0.000703)   

higher_edu       -0.00386***      0.00694***     -0.00342***     -0.00444***     -0.00371***
               (0.000276)      (0.000192)      (0.000266)      (0.000287)      (0.000271)   

Married          -0.00342***     -0.00427***     -0.00460***     -0.00413***     -0.00422***
               (0.000190)      (0.000219)      (0.000232)      (0.000218)      (0.000220)   

children_0~s     -0.00192***     -0.00125***     -0.00152***     -0.00164***     -0.00159***
               (0.000111)     (0.0000904)     (0.0000946)     (0.0000957)     (0.0000946)   

Copenhagen       -0.00159*      -0.000742        -0.00374***     -0.00310***     -0.00260***
               (0.000814)      (0.000810)      (0.000797)      (0.000878)      (0.000891)   

large_city      -0.000481       -0.000669**     -0.000216       -0.000174       -0.000821*  
               (0.000318)      (0.000311)      (0.000330)      (0.000381)      (0.000427)   

small_city      -0.000337       -0.000615      -0.0000968      -0.0000563       -0.000673   
               (0.000481)      (0.000487)      (0.000451)      (0.000478)      (0.000451)   

lnemployee       -0.00629***     -0.00723***     -0.00698***     -0.00703***     -0.00613***
               (0.000213)      (0.000232)      (0.000232)      (0.000228)      (0.000227)   
--------------------------------------------------------------------------------------------
unexplained                                                                                 
ind               -0.0288***      -0.0362***      -0.0236***      -0.0148***     -0.00880** 
                (0.00452)       (0.00460)       (0.00376)       (0.00403)       (0.00406)   

exp               -0.0416***       0.0638***       0.0160*       -0.00621         0.00892   
                (0.00908)       (0.00915)       (0.00863)       (0.00890)       (0.00921)   
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Tenure             0.0122**       0.00219         0.00562          0.0315***       0.0199***
                (0.00478)       (0.00455)       (0.00376)       (0.00375)       (0.00372)   

Union             -0.0101**       -0.0347***      -0.0193***      -0.0180***      -0.0235***
                (0.00391)       (0.00386)       (0.00376)       (0.00388)       (0.00400)   

Age_18_24        -0.00314          0.0125***      0.00894***      0.00990***       0.0102***
                (0.00596)       (0.00328)       (0.00195)       (0.00192)       (0.00188)   

Age_25_29         0.00577          0.0362***       0.0270***       0.0284***       0.0279***
                 (0.0123)       (0.00795)       (0.00447)       (0.00469)       (0.00461)   

Age_30_39          0.0163          0.0799***       0.0553***       0.0588***       0.0580***
                 (0.0295)        (0.0187)       (0.00992)        (0.0103)        (0.0106)   

Age_40_49          0.0341          0.0983***       0.0685***       0.0660***       0.0620***
                 (0.0292)        (0.0187)       (0.00963)       (0.00946)       (0.00940)   

Age_50_59          0.0128          0.0511***       0.0346***       0.0364***       0.0380***
                 (0.0168)        (0.0109)       (0.00550)       (0.00559)       (0.00585)   

Age_60_65         0.00112         0.00914***      0.00627***      0.00605***      0.00620***
                (0.00373)       (0.00234)       (0.00133)       (0.00138)       (0.00141)   

basic_edu          0.0355***      0.01000***       0.0377***       0.0412***       0.0427***
                (0.00178)      (0.000783)       (0.00199)       (0.00211)       (0.00206)   

vocational~u        0.140***      0.00358***        0.136***        0.150***        0.153***
                (0.00603)      (0.000548)       (0.00612)       (0.00650)       (0.00636)   

higher_edu         0.0110***      0.00297***       0.0139***       0.0198***       0.0200***
               (0.000968)      (0.000371)       (0.00106)       (0.00116)       (0.00115)   

Married            0.0360***       0.0425***       0.0464***       0.0488***       0.0479***
                (0.00282)       (0.00286)       (0.00259)       (0.00276)       (0.00277)   
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children_0~s      0.00413***      0.00141 0.00281**      -0.00253** -0.00283**
(0.00131) (0.00131) (0.00126) (0.00125) (0.00125)

Copenhagen 0.00663 0.00245 0.00367 0.0160*** 0.0131*  
(0.00437) (0.00547) (0.00450) (0.00598) (0.00692)   

large_city 0.00558 0.000165 -0.00133 0.0128 0.00808   
(0.0111) (0.0137) (0.0110) (0.0139) (0.0158)   

small_city 0.00515 0.00226 0.00314 0.0113 0.0118   
(0.00758) (0.00939) (0.00759) (0.00967) (0.0112)   

lnemployee -0.0546*** -0.0702*** -0.105*** -0.0990*** -0.123***
(0.00605) (0.00619) (0.00612) (0.00611) (0.00600)   

_cons -0.111 -0.237*** -0.224*** -0.299*** -0.275***
(0.100) (0.0684) (0.0414) (0.0457) (0.0495)   

--------------------------------------------------------------------------------------------
N 599315 591553 647327 645573 635822   
--------------------------------------------------------------------------------------------
Standard errors in parentheses
* p<0.10, ** p<0.05, *** p<0.01
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Appendix F.2: Use the variables "Years since migration" only
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**Regression results before education correction for total immigrants in high-skilled group.
**Use the variable "Year since migration" (Shown as "YSM" in the table) instead of working history 
variables (experience and tenure).

*Note:
*Group 1: immigrant = 0                         
*Group 2: immigrant = 1 

.  esttab male_2004 male_2005 male_2006 male_2007 male_2008,se star(* 0.10 ** 0.05 *** 0.01)

--------------------------------------------------------------------------------------------
                     2004            2005            2006            2007            2008   
                     wage            wage            wage            wage            wage   
--------------------------------------------------------------------------------------------
overall                                                                                     
group_1             5.232***        5.269***        5.303***        5.350***        5.281***
               (0.000827)      (0.000849)      (0.000807)      (0.000837)      (0.000524)   

group_2             5.145***        5.178***        5.218***        5.273***        5.194***
                (0.00423)       (0.00423)       (0.00391)       (0.00372)       (0.00239)   

difference         0.0867***       0.0907***       0.0855***       0.0771***       0.0876***
                (0.00431)       (0.00431)       (0.00399)       (0.00381)       (0.00245)   

explained         -0.0181**       -0.0121        -0.00232          0.0334***       0.0597***
                (0.00753)       (0.00752)       (0.00689)       (0.00680)       (0.00465)   

unexplained         0.105***        0.103***       0.0879***       0.0438***       0.0278***
                (0.00885)       (0.00880)       (0.00803)       (0.00771)       (0.00527)   
--------------------------------------------------------------------------------------------
explained                                                                                   
Age_18_24        -0.00551***     -0.00380***     -0.00702***     -0.00704***     -0.00454***
                (0.00146)       (0.00128)       (0.00133)       (0.00126)      (0.000452)   

Age_25_29         -0.0365***      -0.0285***      -0.0304***      -0.0305***      -0.0259***
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                (0.00292)       (0.00256)       (0.00243)       (0.00228)       (0.00108)   

Age_30_39          -0.103***      -0.0919***      -0.0872***      -0.0811***      -0.0584***
                (0.00458)       (0.00420)       (0.00398)       (0.00373)       (0.00186)   

Age_40_49        -0.00397         -0.0162***      -0.0168***      -0.0207***      -0.0139***
                (0.00401)       (0.00383)       (0.00372)       (0.00356)       (0.00170)   

Age_50_59           0.121***        0.110***        0.108***        0.100***       0.0810***
                (0.00268)       (0.00257)       (0.00245)       (0.00237)       (0.00166)   

Age_60_65          0.0221***       0.0227***       0.0268***       0.0302***       0.0270***
               (0.000758)      (0.000750)      (0.000748)      (0.000758)      (0.000583)   

basic_edu         -0.0224***      -0.0197***      -0.0231***      -0.0235***      -0.0175***
                (0.00166)       (0.00174)       (0.00155)       (0.00145)      (0.000911)   

vocational~u     -0.00474***     -0.00464***     -0.00194***     0.000148         0.00257***
               (0.000732)      (0.000697)      (0.000399)      (0.000182)      (0.000403)   

higher_edu        -0.0116***      -0.0120***     -0.00807***     -0.00388***     -0.00568***
               (0.000811)      (0.000820)      (0.000613)      (0.000426)      (0.000378)   

Married          -0.00779***     -0.00756***     -0.00572***     -0.00433***     -0.00206***
               (0.000429)      (0.000439)      (0.000396)      (0.000413)      (0.000240)   

children_0~s     -0.00595***     -0.00571***     -0.00588***     -0.00480***     -0.00385***
               (0.000354)      (0.000342)      (0.000326)      (0.000295)      (0.000177)   

YSM                0.0384***       0.0446***       0.0487***       0.0751***       0.0824***
                (0.00713)       (0.00711)       (0.00638)       (0.00604)       (0.00393)   

Copenhagen       -0.00525***     -0.00535***     -0.00833***     -0.00558***     -0.00137*  
                (0.00146)       (0.00160)       (0.00147)       (0.00140)      (0.000830)   
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large_city -0.00179** -0.00109* -0.00216***     0.000457 -0.000384
(0.000714)      (0.000649)      (0.000628)      (0.000456)      (0.000238)

small_city 0.00113 -0.000713 0.00320 0.000961 -0.000420
(0.00211) (0.00218) (0.00200)      (0.000890)      (0.000566)

ind -0.000334 -0.00127***     0.000297 0.00117***    -0.000959***
(0.000549)      (0.000477)      (0.000390)      (0.000365)     (0.0000776)   

Union -0.000668** -0.00181*** -0.00264*** -0.00260*** -0.00106***
(0.000285)      (0.000291)      (0.000271)      (0.000272)      (0.000176)   

lnemployee -0.00515*** -0.00585*** -0.00525*** -0.00643*** -0.00490***
(0.000450)      (0.000443)      (0.000429)      (0.000429)      (0.000215)   

--------------------------------------------------------------------------------------------
unexplained                                                                                 
Age_18_24        -0.00700         0.00269        -0.00755 -0.000979 0.00613   

(0.0109) (0.00816) (0.00786) (0.00608) (0.00520)   

Age_25_29 0.00317 0.0197 -0.000317 0.0116 0.0226***
(0.0183) (0.0125) (0.0110) (0.00828) (0.00873)   

Age_30_39 0.0211 0.0684* 0.0128 0.0422* 0.0638***
(0.0499) (0.0355) (0.0309) (0.0229) (0.0224)   

Age_40_49 0.0176 0.0535** 0.0175 0.0443** 0.0653***
(0.0312) (0.0250) (0.0233) (0.0185) (0.0191)   

Age_50_59 0.00164 0.00910 0.00115 0.0100* 0.0166***
(0.00790) (0.00660) (0.00653) (0.00552) (0.00610)   

Age_60_65 -0.000682 0.000908 -0.000401 0.000477 0.00116   
(0.000820)      (0.000723)      (0.000666)      (0.000574)      (0.000709)   

basic_edu 0.00948*** 0.0129*** 0.0215*** 0.0213*** 0.0186***
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(0.00288) (0.00301) (0.00280) (0.00271) (0.00175)   

vocational~u 0.0752*** 0.105*** 0.111*** 0.104*** 0.102***
(0.0129) (0.0129) (0.0105) (0.00904) (0.00616)   

higher_edu 0.00907*** 0.0111*** 0.0111***      0.00982*** 0.0104***
(0.00178) (0.00174) (0.00145) (0.00133) (0.00107)   

Married 0.0525*** 0.0472*** 0.0403*** 0.0437*** 0.0371***
(0.00583) (0.00579) (0.00494) (0.00466) (0.00323)   

children_0~s      0.00531* 0.00868*** 0.0118***      0.00610** 0.00538***
(0.00318) (0.00297) (0.00274) (0.00259) (0.00174)   

YSM -0.000536 0.00558 -0.0122*** -0.0284*** -0.0346***
(0.00407) (0.00437) (0.00411) (0.00436) (0.00294)   

Copenhagen 0.00111 0.00310 0.000586 -0.00927 0.00459   
(0.00850) (0.00760) (0.00822) (0.00804) (0.00532)   

large_city 0.00378 0.00782 0.000959 -0.0142 0.00848   
(0.0149) (0.0133) (0.0142) (0.0216) (0.0140)   

small_city 0.00962 0.0166 0.00516 -0.00911 0.0122   
(0.0252) (0.0234) (0.0256) (0.0157) (0.00923)   

ind -0.0242** -0.0317*** -0.0238** -0.0336*** -0.0256***
(0.0114) (0.0117) (0.0103) (0.00943) (0.00516)   

Union -0.0315*** -0.0218** -0.0274*** -0.0167**      0.000381   
(0.00969) (0.00958) (0.00842) (0.00814) (0.00530)   

lnemployee -0.0973*** -0.112*** -0.105*** -0.103*** -0.0736***
(0.0125) (0.0124) (0.0114) (0.0108) (0.00746)   
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_cons 0.101 -0.0498 0.0753 0.00595 -0.187***
(0.131) (0.102) (0.0964) (0.0794) (0.0693)   

--------------------------------------------------------------------------------------------
N 250379 252282 267213 258022 622279   
--------------------------------------------------------------------------------------------
Standard errors in parentheses
* p<0.10, ** p<0.05, *** p<0.01

. 

. 

. 

.  esttab male_2009 male_2010 male_2011 male_2012 male_2013,se star(* 0.10 ** 0.05 *** 0.01)

--------------------------------------------------------------------------------------------
2009 2010 2011 2012 2013   
wage wage wage wage wage   

--------------------------------------------------------------------------------------------
overall                                                                                     
group_1 5.319*** 5.347*** 5.338*** 5.358*** 5.390***

(0.000544)      (0.000540)      (0.000542)      (0.000544)      (0.000546)   

group_2 5.237*** 5.255*** 5.255*** 5.263*** 5.294***
(0.00232) (0.00231) (0.00221) (0.00230) (0.00229)   

difference 0.0823*** 0.0922*** 0.0829*** 0.0958*** 0.0958***
(0.00239) (0.00237) (0.00227) (0.00237) (0.00235)   

explained 0.0643*** 0.150*** 0.0732*** 0.0629*** 0.0733***
(0.00425) (0.00338) (0.00461) (0.00480) (0.00479)   

unexplained        0.0180***      -0.0577***      0.00970* 0.0329*** 0.0225***
(0.00489)       (0.00423) (0.00511) (0.00538) (0.00535)   

--------------------------------------------------------------------------------------------
explained                                                                                   
Age_18_24        -0.00686***    -0.000476**    -0.0000458       -0.000543***    -0.000932***
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               (0.000761)      (0.000216)     (0.0000327)      (0.000104)      (0.000148)   

Age_25_29         -0.0525***      -0.0284***      -0.0160***      -0.0111***     -0.00677***
                (0.00160)       (0.00103)      (0.000670)      (0.000586)      (0.000505)   

Age_30_39         -0.0791***      -0.0457***      -0.0297***      -0.0270***      -0.0251***
                (0.00238)       (0.00157)       (0.00102)      (0.000915)      (0.000897)   

Age_40_49        -0.00966***     -0.00841***     -0.00632***     -0.00176**       0.00117*  
                (0.00233)       (0.00149)      (0.000956)      (0.000787)      (0.000682)   

Age_50_59           0.118***       0.0693***       0.0416***       0.0346***       0.0287***
                (0.00186)       (0.00153)      (0.000998)      (0.000889)      (0.000821)   

Age_60_65          0.0402***       0.0245***       0.0181***       0.0149***       0.0124***
               (0.000704)      (0.000569)      (0.000436)      (0.000397)      (0.000376)   

basic_edu         -0.0127***       0.0303***      -0.0171***      -0.0174***      -0.0167***
               (0.000865)      (0.000543)      (0.000889)      (0.000934)      (0.000898)   

vocational~u      0.00486***       0.0145***      0.00752***      0.00951***       0.0121***
               (0.000491)      (0.000319)      (0.000789)      (0.000967)       (0.00105)   

higher_edu       -0.00562***      0.00850***     -0.00500***     -0.00690***     -0.00606***
               (0.000402)      (0.000205)      (0.000407)      (0.000427)      (0.000424)   

Married         -0.000884***     -0.00173***     -0.00200***     -0.00176***     -0.00207***
               (0.000219)      (0.000256)      (0.000273)      (0.000255)      (0.000257)   

children_0~s     -0.00331***     -0.00232***     -0.00260***     -0.00270***     -0.00257***
               (0.000160)      (0.000137)      (0.000137)      (0.000132)      (0.000130)   

YSM                0.0769***       0.0879***       0.0835***       0.0690***       0.0739***
                (0.00345)       (0.00313)       (0.00345)       (0.00349)       (0.00342)   

309



Copenhagen       -0.00144*      -0.000185        -0.00329***     -0.00258***     -0.00231** 
               (0.000872)      (0.000867)      (0.000856)      (0.000942)      (0.000934)   

large_city      -0.000469       -0.000729**     -0.000309       -0.000218       -0.000755*  
               (0.000309)      (0.000311)      (0.000355)      (0.000394)      (0.000426)   

small_city      -0.000364       -0.000764       -0.000150      -0.0000488       -0.000575   
               (0.000551)      (0.000544)      (0.000483)      (0.000531)      (0.000493)   

ind             -0.000521***    -0.000927***    -0.000887***     -0.00117***     -0.00108***
              (0.0000572)      (0.000109)     (0.0000794)     (0.0000845)     (0.0000796)   

Union            -0.00114***     0.000549***    -0.000799***   -0.0000841       -0.000913***
               (0.000192)      (0.000190)      (0.000195)      (0.000195)      (0.000198)   

lnemployee       -0.00634***     -0.00753***     -0.00708***     -0.00727***     -0.00634***
               (0.000240)      (0.000263)      (0.000262)      (0.000257)      (0.000256)   
--------------------------------------------------------------------------------------------
unexplained                                                                                 
Age_18_24         -0.0126*       -0.00419        -0.00246        -0.00799*       -0.00336   
                (0.00730)       (0.00683)       (0.00434)       (0.00450)       (0.00469)   

Age_25_29        -0.00888         0.00231         0.00369         -0.0141        -0.00299   
                 (0.0147)        (0.0165)        (0.0102)        (0.0115)        (0.0120)   

Age_30_39         -0.0159         0.00438         0.00893         -0.0275        -0.00702   
                 (0.0336)        (0.0370)        (0.0218)        (0.0245)        (0.0270)   

Age_40_49        0.000144          0.0116          0.0175         -0.0143         0.00228   
                 (0.0282)        (0.0321)        (0.0187)        (0.0203)        (0.0216)   

Age_50_59        -0.00476        -0.00172         0.00237        -0.00871       -0.000975   
                (0.00945)        (0.0117)       (0.00698)       (0.00822)       (0.00965)   

Age_60_65        -0.00114       -0.000683      -0.0000676        -0.00177       -0.000543   
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                (0.00129)       (0.00147)      (0.000902)       (0.00108)       (0.00124)   

basic_edu          0.0216***      0.00885***       0.0199***       0.0262***       0.0258***
                (0.00171)      (0.000817)       (0.00188)       (0.00201)       (0.00197)   

vocational~u        0.110***    -0.000672          0.0989***        0.119***        0.116***
                (0.00614)      (0.000550)       (0.00611)       (0.00653)       (0.00639)   

higher_edu        0.00830***      0.00159***       0.0110***       0.0184***       0.0174***
                (0.00106)      (0.000375)       (0.00113)       (0.00125)       (0.00123)   

Married            0.0357***       0.0421***       0.0477***       0.0503***       0.0496***
                (0.00307)       (0.00308)       (0.00278)       (0.00297)       (0.00297)   

children_0~s      0.00239        -0.00203         0.00123        -0.00491***     -0.00597***
                (0.00162)       (0.00157)       (0.00150)       (0.00146)       (0.00145)   

YSM               -0.0364***     -0.00820***      -0.0397***      -0.0483***      -0.0506***
                (0.00264)       (0.00224)       (0.00277)       (0.00289)       (0.00285)   

Copenhagen        0.00289       -0.000913       -0.000720          0.0154**       0.00705   
                (0.00500)       (0.00657)       (0.00507)       (0.00713)       (0.00735)   

large_city        0.00308         0.00117        -0.00532          0.0150        0.000355   
                 (0.0122)        (0.0159)        (0.0120)        (0.0159)        (0.0163)   

small_city        0.00404         0.00457        0.000959          0.0135         0.00633   
                (0.00810)        (0.0106)       (0.00818)        (0.0109)        (0.0113)   

ind               -0.0272***      -0.0335***      -0.0163***     -0.00475         0.00325   
                (0.00508)       (0.00505)       (0.00414)       (0.00447)       (0.00449)   

Union            -0.00306         -0.0138***      -0.0143***      -0.0192***      -0.0300***
                (0.00538)       (0.00521)       (0.00498)       (0.00493)       (0.00502)   
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lnemployee        -0.0718***      -0.0765***       -0.119***       -0.116***       -0.137***
                (0.00687)       (0.00691)       (0.00678)       (0.00673)       (0.00660)   

_cons              0.0328          0.0293          0.0102          0.0459          0.0341   
                 (0.0986)         (0.110)        (0.0685)        (0.0781)        (0.0847)   
--------------------------------------------------------------------------------------------
N                  591124          583878          639509          638098          628873   
--------------------------------------------------------------------------------------------
Standard errors in parentheses
* p<0.10, ** p<0.05, *** p<0.01
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Conclusion

This PhD thesis compared and applied various econometric frameworks on important topics

within the field of labour economics. The empirical studies were based on individual-level

administrative labour market data from Germany and Denmark. Each of the three chapters in

this thesis has made a unique and novel contribution within their perspective fields.

Chapter 1, "On Omitted Variables, Proxies and Unobserved Effects in Analysis of Administra-

tive Labour Market Data", provided a unified framework that nests various approaches aiming

at reducing omitted variable bias in linear regression analysis. Two empirical applications–

wage regression and a linear probability model on labour market transition–were conducted

using the linked German administrative data. Evidence of sizable omitted variable bias for a

number of variables was found in the wage regression, while only a small number of coeffi-

cients was systematically affected in the transition analysis. Additional survey variables only

contribute to the wage model, but the use of work history variables and panel models could

result in changes in coefficients in the two models. Empirical evidence obtained suggested

that panel analysis was expected to capture more relevant unobservable components than an

expanded regressor set at one point of time. Our results can also be used as a guide for both

researchers and data providers on the choice of variables in the data application.
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Chapter 2, "Impact of Immigration on the Wages of Native Workers in Denmark", have investi-

gated on the case where an increase in the number of immigrants, especially the high-skilled

workers, were found in the local labour market in Denmark. Based on the hypothesised mech-

anisms, I argued that the positive wage effects of low-skilled immigrants could be due to wage

efficiency theory and the occupation upgrading behaviour of natives. Then, the increase in

medium-skilled natives and immigrants generates even fiercer competition in this market as

the share of medium-skilled immigrants increases; the outcome is reduced wages for natives.

For high-skilled groups, hiring standards and wage levels both rise due to high-wage firms’

motivation to reduce costs associated with labour replacement and to hire more productive

workers. OLS, FE, FE-IV and quantile regression models were presented for the empirical ap-

plication. I tested the impact of immigrants on the wages of natives using Danish register data

on the full population in Denmark for the period from 2004 to 2013. The evidence obtained

confirmed the prediction of wage efficiency theory that there is a positive impact from high-

skilled immigrants on the wages of natives, especially high-wage earners, while a positive

impact from low-skilled immigrant was presented in low and medium wage quantiles. Finally,

a negative impact from medium-skilled immigrants on the wages of natives was shown by the

results. Chapter 2 implemented the existing knowledge on the impact of immigration on the

wages of native workers in Denmark, during the period (2004-2013) and provided empirical

evidence within both various wage quantiles and different skill levels.

Chapter 3, "Analysis on Native-Immigrant Wage Gap in Denmark", explored the native-

immigrant wage gap for male immigrants in different wage quantiles for the labour market

in Denmark, using Danish register data covering the same period as in Chapter 2. I started

the analysis by assessing changes in the population distributions and wage distributions of

the native and immigrant groups. I then applied the Oaxaca-Blinder and Melly (2005) de-

composition approaches to gain empirical insights from the native-immigrant wage gap. I also

examined the existence of possible wage discrimination8 against immigrants in the labour mar-

8When I use the term "discrimination" in this chapter, I refer to the remaining component after I have controlled
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ket in Denmark from 2004 to 2013. It was found that for low-wage earners in the low-skilled

and high-skilled groups, the wage gap and potential discrimination level were larger than for

other wage quantiles within the same skill category. The medium-skilled group, however, pre-

sented a higher wage gap and potential discrimination among the high-wage population. The

absolute value of possible discrimination component increased with the skill level. Moreover,

stronger potential discrimination also occurred for the upper wage quantiles in each group of

origin. Immigrants from less developed countries, most of which were non-EU countries were

empirically found to experience the strongest and most positive wage penalties and potential

discrimination.

Overall, this thesis discussed various econometrics frameworks and compared the empirical

evidence obtained from them. Each chapter contributed to our understanding of critical is-

sues within the topics of labour economics. Large-scale individual-level administrative labour

market data is used for the empirical studies in this paper, and the results obtained provide

fruitful insights into widely discussed research questions in the field of labour economics and

applied econometrics. In the future, based on such rich and high-quality data, it could be

interesting to examine the impact from additional factors, e.g. policy or assimilation effects,

on topics such as wage and immigration in labour market, applying or extending existing em-

pirical framework.

for all available possible factors in the wage model I can obtain. This term is not the same as the general political

definition in practical.
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