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Abstract

Stød is a prosodic feature in Danish spoken language that is able to distinguish lexemes. This distinction

can also identify word class and has the potential to improve the performance of automatic speech recog-

nisers for Danish spoken language. Stød manifestation exhibits a large amount of variability and may be

perceptual in nature, because stød in some cases can be audibly perceived yet not be visible in a spectro-

gram. The variability is the primary reason there is currently no agreed upon acoustic or phonetic definition

of stød. The working definition of stød is “. . . a kind of creaky voice” (Grønnum, 2005) and “stød is not

just creak” (Hansen, 2015).

In the present work, we investigate whether stød can be exploited in automatic speech recognition. To

exploit stød without an acoustic or phonetic definition, we need to use a (almost) zero-knowledge data-

driven approach which is based on a number of assumptions that we investigate prior to conducting ASR

experimentation. We assume that stød can be detected in audio input, using acoustic features. To detect

stød, we need to identify features that signal stød, which requires annotated data. To select the right

features, the stød annotation must be reliable and accurate.

We therefore conduct a reliability study of stød annotation with inter-annotator agreement measures,

rank acoustic features for stød detection according to feature importance using a forest of randomised

decision trees and experiment with stød detection as a binary and multi-class classification task. The

experiments identify a set of features important or stød detection and confirms that we can detect stød in

audio.

Lastly, we model stød in automatic speech recognition and show that significant improvements in word

error rate can be gained simply by annotating stød in the phonetic dictionary at the expense of decoding

speed. Extending the acoustic feature vectors with pitch-related features and other features of voice quality

also give significant performance improvement on both read-aloud speech and spontaneous speech. Decoding

speed increases when we extend the acoustic feature vectors and actually improve decoding speed over the

baseline where stød is not modelled.



Resumé

Stød er en kontrastiv prosodi i dansk talesprog, som er betydningsadskillende. Af denne årsag an-

tages det, at automatisk genkendelse af dansk talesprog kan forbedres, hvis den kan tage højde for stød.

Stødrealisering udviser stor variabilitet i akustisk analyse og er derfor et svært definerbart fænomen. Stød

beskrives som regel som “. . . en art knirkestemme”(Grønnum, 2005) og “stød er ikke kun knirk” (Hansen,

2015).

I denne afhandling undersøges hvorvidt stød kan bruges til at forbedre automatisk talegenkendelse. Da

der ikke findes en dækkende fonetisk eller akustisk definition af stødet, vil vi bruge en data-dreven tilgang

til undesøgelsen, som baserer sig p̊a en række antagelser, der skal undersøges inden stødet kan integreres i

talegenkendelsessystemer. En antagelse er, at vi kan detektere stød i akustiske mål. For at detektere stød

skal vi identificere de akustiske mål, der signalerer stød, hvilket kræver at vi har adgang til data, der er

annoteret med stød. Annoteringen af stød skal være p̊alidelig, hvis analysen af akustiske mål skal være

retvisende.

Hvis disse antagelser viser sig at være korrekte, kan vi estimere statistiske modeller som detekterer stød

i akustisk input. Hvis modellerne kan forudsige stød med tiltrækkelig nøjagtighed, kan stødinformation

tilføjes til det akustiske input, dvs. vektorer af akustiske mål, der bruges som input til talegenkendelse, og

til talegenkenderens fonetiske ordbog.

For at undersøge vores antagelser om stødet foretager vi en p̊alideligheds-undersøgelse af stødannotering.

Derefter udtrækker vi 120 akustiske mål, som vi rangerer baseret p̊a deres evne til at signalere stød-

forekomst. Denne rangering anvender vi til at udvælge specifikke akustiske mål til at estimere statistiske

modeller, der detekterer stød i lyd. Vi identificerer 17 akustiske mål som signalerer stød og bekræfter at vi

kan detektere stød i akustiske mål.

Bevæbnet med denne viden integreres stød i talegenkendelse, og vi p̊aviser at man kan opn̊a signifikant

bedre talegenkendelse p̊a bekostning af genkendelseshastighed, hvis stød annoteres i den fonetiske ordbog.

Ved at tilføje akustiske mål for stemmekvalitet, som blev rangeret højt for deres evne til at signalere stød,

til talegenkendelsesinput opn̊as signifikant forbedret talegenkendelse af b̊ade oplæst tale og spontantale fra

tre forskellige datasæt, hvilket samtidig kompenserer for den nedsatte genkendelseshastighed.



Contribution

The specific contributions to the understanding of stød and its use in automatic speech recognition in

this thesis are listed below in bullet form:

1. Expert stød annotation is reliable

2. 18 features carry information that signal stød: the first four 4 MFCC and PLP features, Probability-

of-Voicing, Log-pitch, Peak Slope, Harmonic Richness Factor, and the phase features Phase Distortion

Mean 13-14 and Phase Distortion Deviation 10-13

3. Stød can be detected in acoustic features when stød is predicted jointly with the underlying segment

4. ASR systems that model stød can significantly outperform corresponding systems that do not, if the

ASR systems are trained on LDA-projected MFCC features

5. Extending MFCC feature vectors with Probability-of-Voicing, Log-pitch, and the Harmonic Richness

Factor or the Phase Distortion Mean features 13 & 14 and Phase Distortion Deviation 10-13 improve

both word error rate and decoding speed for ASR systems that model stød

6. The first freely available ASR system for Danish spoken language that includes methodology and data
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Chapter 1

Introduction

Automatic speech recognition (ASR) denotes the complicated process of translating spoken language to

written language. ASR in general performs at sub-human levels and ASR for Danish suffers from lack of

data and software tools which have resulted in a sparse amount of research in the area (Pedersen et al.,

2012). Speech has been a popular input modality for electronic devices for several years in a number of

domains and applications, from automated telephone customer services to legal and clinical documentation

and ASR performance becomes vital if speech is used to interface with more and more devices. If voice

control using Danish performs poorly, Danes will shift to English instead and accelerate anglicisation. The

future of Danish as a digital language looks brighter if Danish spoken language can be used to interface

with the multitude of electronic devices, such as wrist watches or glasses, which are being developed and

are too small to control using keyboard or mouse.

The purpose of the work conducted in this thesis is to improve, stimulate and advance research and

development of Danish ASR and is intended for researchers in linguistics, natural language processing (NLP),

and developers of speech technology. We hypothesise that recognition rates of Danish large-vocabulary ASR

can improve by modelling the Danish prosodic feature stød in ASR systems.

Danish stød was first described in Høysgaard (1743) and has been treated by many researchers in the

linguistic community. This has resulted in substantial number of scientific articles on Danish stød1 and stød

is known in phonetics around the globe (Bőhm, 2009; Jurgec, 2007; Frazier, 2013). Stød is interesting in

Danish spoken language for several reasons:

1. Stød is a distinctive distinctive feature. Stød can be the only feature that distinguishes lexical items.

1See Section 2.2.1 for references.
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2. Stød is a prosodic feature. Prosody affects the sounds or phones that are used to utter a word, but

stød is not a sound in itself.

3. Stød is a perceptual feature. When informants hear words that are minimal pairs where the distinctive

feature is stød, the subjects can identify the lexical item from the utterance with high accuracy, but

it is difficult to identify the acoustic marker signalling the presence of stød.

Because stød is distinctive, it is very useful to detect stød from acoustic input. Some words that are

distinguished by stød, e.g. viser (noun, EN: hand on a clock) vs. viser (verb, EN: to show) and maler (noun,

EN: a painter) vs. maler (verb, EN: to paint) are homographs, but many words pairs are not. Examples are

mand (noun, EN: a man) vs. man (pronoun, EN: you/one)Stød is considered a perceptual feature because

stød can be audibly heard by a listener, but be realised very differently by speakers or be hardly visible in

acoustic analysis (Hansen, 2015).

If stød detection from acoustic input is possible, the added annotation at the phonetic level will distin-

guish several minimal pairs. If word pairs that would otherwise be identical can be distinguished by stød,

a speech recogniser is more likely to recognise the correct word.

Currently, speech recognisers use syntax to choose the most likely word. Syntax is learned from tens or

hundreds of millions of running words and data sets of this size are available in some major languages such

as English, but not generally in Danish, especially for specialised domains such as medical dictation. There

are scenarios where stød is the only distinguishing feature and the lack of powerful syntax models can be

alleviated if the distinctive lexical function of stød can be recognised directly from the acoustic signal.

1.1 Potential

The largest consumer of large-vocabulary ASR in Denmark is the medical sector. A recent study found that

medical secretaries use an average of 7.8 hours per week on transcription (Implement, 2009). The clinical

documentation workflow itself will add to that figure (how much depends on the implementation), but

transcription itself accounts for approximately 1/5 of their workload. Reducing the transcription workload

using ASR can potentially free a significant amount of resources.

In the 1990s and 2000s, digital dictation systems became available for medical dictation and the Danish

government decided to digitise all medical records in one national electronic medical records system, which

is part of a large-scale effort to digitise administration in the Danish public sector. A national electronic

medical records system improves documentation, accessibility and performance measurement, and makes it

possible to access a medical record from multiple places at the same time, e.g. at a doctor’s conference, where

2



the treatment is discussed, and in the emergency room at a medical emergency happening simultaneously.

If a patient is admitted to a hospital, the patient record is immediately available and need not be retrieved

from his/her general practitioner, etc.

Working with both patient records and transcriptions on a computer provide an improved and more

efficient workflow and a scenario well-suited for ASR-augmentation. A report on the efficiency gains achiev-

able with digital dictation reports that 22.4% more dictations were processed per secretary each day. For a

clinic with 20 physicians and 10 medical secretaries, as much as 1963 staff hours per year could be gained

from increased efficiency due to digital dictation (Barsøe Management, 2008).

While a national electronic medical records system has not been fully implemented in Denmark due to

difference in documentation across regions, hospitals and specialisations, electronic medical records systems

have been implemented in all hospitals and many clinics today and use standardised exchange formats. The

challenges faced by hospitals today are (Gjørup, 2010):

1. Medical records are not available nor are they up-to-date for the physician responsible for patient care.

2. Clinical decisions can be based on incomplete, outdated or wrong information.

3. Some clinical decisions are postponed or not made.

4. Patient safety is compromised because the patient is sent to treatment before the medical record is

completed.

In other words, transcription is still slow. The missing or incomplete medical records may also lead

to a negative spiral with respect to time usage because secretaries and physicians take extra time to find

the information. Some hospitals have tried to use transcription agencies to manage the workload and free

resources, but external transcribers do not understand medical terminology and transcription accuracy

decreases due to misapprehension. Recent legislation also requires that medical records can be accessed

by the patient in question and that the attending physician approves the transcription before a diagnosis

or treatment is documented in the electronic patient record. This makes the use of external transcription

agencies problematic from a workflow perspective, because the attending physician will not be able to

approve the transcription. If a transcription is finished days or months after consultation or operation, the

physician will have no recollection of the specifics of the diagnosis. Even if the transcription is finished later

the same day, the physician will have conducted several patient consultations in the meantime and specifics,

such as whether an operating room should be booked or which medicine has been subscribed, may have

been forgotten.
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1.1.1 Medical dictation and speech recognition

To make transcription more efficient, a significant amount of work has been devoted to augment medical

dictation with ASR. Medical dictation is characterised by free text documentation which means that large

volumes of running text is produced every day and that full natural language is used in the documentation.

Speech-enabled interfaces have been are proven to be more effective than keyboard-and-mouse interfaces for

tasks where full natural language communication is useful or where keyboard and mouse are not appropri-

ate (Jurafsky & Martin, 2008). Medical dictation is also a natural area to apply ASR-augmentation because

dictation is intended to produce written text. The data usually used to train ASR systems is read-aloud

text because reliable transcriptions are available. Dictation is in a sense the reverse process of reading aloud.

Dictation is not as structured as read-aloud text, but has more structure than spontaneous speech.

Though there are an abundance of text in medical dictation that could be used for statistical language

modelling, it can be difficult to acquire in-domain training data due to the sensitive information contained

therein. It is therefore desirable to achieve the best possible speech recognition output by utilising informa-

tion in the speech signal and that makes stød an attractive feature to investigate from a commercial point

of view.

There are two scenarios in medical dictation where ASR can remove or alleviate the problems mentioned

above: Real-time ASR and ASR+post-editing.

Real-time automatic speech recognition

Speaking is faster than typing (Basapur et al., 2007). If the physician uses digital dictation augmented

with real-time ASR, the secretary is not a part of the documentation workflow and a resource is free for

other purposes. As a side-effect, the physician is the last eyes on the transcription and can approve or

correct a transcription immediately while the consultation is still fresh in memory. If integrated with an

electronic medical records system, the physician can even dictate directly into the patient record and the

clinical documentation will always be up-to-date with the most recent information.

Automatic speech recognition and post-editing

In the earliest efforts in NLP, ASR was expected to completely replace – rather than enhance – other input

modes. However, speech input achieves better performance in combination with other input modalities for

many tasks (Pausch & Leatherby, 1991). High accuracy, real-time ASR is necessary to realise the potential

efficiency gains sought by hospitals. If ASR accuracy is not high enough, the physician will spend time

post-editing the ASR output. While this still frees the secretary for other duties, it is counter-productive by
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requiring additional documentation time from the physician and having the physician manually post-edit

transcriptions is not cost-efficient.

In the post-editing scenario, a physician will dictate a diagnosis and transfer the recording to a server, like

digital dictation described above. The recording can then be sent to an ASR service, either automatically

or per the request of a medical secretary, and the secretary is presented a draft transcription to post-

edit. While this approach does not handle as many challenges as real-time ASR, research from human

and machine translation and translation dictation indicates that using draft output of either an ASR or

machine translation system results in efficiency gains and reduces the time spent translating or transcribing

a document.2

1.2 Contribution

The contribution of this thesis is a quantitative study of stød and an investigation of the technological

application of stød. Specifically, the academic work addresses

1. Reliability of stød annotation (Chapter 3)

2. Ranking of acoustic features for stød detection (Chapter 4, Section 4.2)

3. Stød detection from acoustic input (Chapter 4, Section 4.3)

4. The technological application of stød in ASR by explicit modelling (Chapter 5)

5. Implicit modelling of stød using salient acoustic features (Chapter 6)

Statistical analysis of stød requires annotated data and the analysis is only feasible if the annotation is

reliable. Inter-annotator agreement and annotator competence is analysed on a small phonetically-annotated

data set, which includes stød annotation. Based on reliable annotation, several voice quality measures known

to be predictive of acoustic events that can signal stød are analysed, and we identify 17 features which are

predictive of stød in two data sets. Using different voice quality feature sets, stød detection is studied and

the conclusion of the study is that stød detection is possible when formulated as a multi-class classification

task. This formulation facilitates stød modelling in ASR systems where adding stød annotation to the

entries in the phonetic dictionary improves large-vocabulary ASR performance. Finally, large-vocabulary

2See Zapata & Kirkedal (2015) for a description of translation dictation and similarities to medical dictation and the

references therein, e.g. Martinez et al. (2014), for background on efficiency gains using ASR or machine translation and

post-editing.
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ASR performance on three data sets is further improved using acoustic features which were discovered to

be salient for stød detection.

A baseline speech recogniser for Danish read-aloud speech was developed as part of the academic work

conducted in this thesis. In an effort to stimulate ASR research and development for Danish language and

in the interest of dissemination and reproducible research, the speech recogniser is made publicly available

under a permissive license. The intention is to lower the access barrier for NLP-interested students and

developers who wish to integrate ASR into products or services. Results reported in this thesis will also be

more easily reproduced and ASR improvements documented and disseminated. Due to the lack of prior work

and published results, we obtain state-of-the-art performance on each data set, but expect that commercially

available ASR systems will be able to achieve better performance.

Chapter Purpose Data set

Chapter 3 Analysis JHP sample

Feature selection Parole48+DanPASS-mono

Chapter 4 10-fold cross-validation Parole48+DanPASS-mono‡

Evaluation Parole48+DanPASS-mono‡, JHP sample

Flat start train 120kshort

Chapter 5
ASR training train†

Development/Tuning Stasjon03†

Evaluation Stasjon06†

Flat start train 120kshort

Chapter 6
ASR training train†

Evaluation Stasjon06†, Parole48, DanPASS-mono

Table 1.1: The data sets used in the present work and their purpose. A data set will be introduced when

it is first used, e.g. the JHP sample is introduced in Chapter 3. The symbol † denotes disjunct subsets of

the Spr̊akbanken corpus. The symbol ‡ denotes that these data sets are split into disjoint sets for different

purposes in the same experiment. train 120kshort is a true subset of train (not disjunct).

A number of corpora are used in this thesis for different purposes and some are used both for training and

testing. A summary of the data sets used and their purpose in a specific chapter is outlined below in Figure

1.1. We use corpora to evaluate annotation, train classifiers, analyse acoustic features, tune parameters and

evaluate performance and the different purposes have varying requirements to annotation, corpus size and

speech genre. For instance, speech recognisers need a lot of data to estimate good models and large speech

6



corpora often contain read-aloud speech, but the speech genres that we wish to recognise are dictation and

spontaneous speech and we want to investigate if an improvement to a model can generalise to other speech

genres because that gives us an indication that we are not overfitting to specific features of a data set.

1.3 Summary

Improved ASR systems for Danish can make it possible to use Danish voice control to interface with new

technology such as wearables where keyboard or mouse interaction is not possible or appropriate. ASR can

free resources and make medical dictation workflows more efficient while complying with relevant legislation.

Whether using online ASR or offline ASR and post-editing, high accuracy Danish ASR is necessary to realise

these efficiency gains and also important if Danish should continue to be a digital language. Stød detection

can improve large-vocabulary ASR for Danish by distinguishing otherwise phonetically-identical lexical

items. To assess whether stød can feasibly be detected from acoustic input, we first conduct a reliability

study of stød annotation. This is followed by an investigation of the capabilities of acoustic features to

predict stød as well as a series of experiments aimed at developing reliable stød detection. Lastly, we

present a baseline speech recogniser and model stød in ASR models.
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Chapter 2

Background

To understand stød and the models of stød which exist, Sections 2.1 and 2.1.1 will introduce phonetics,

prosody and other terms that are necessary to understand the nature of stød. The theory and terminology

is needed to understand the overview of previous stød-related research in Section 2.2 and technological

applications in Section 2.3. Similarly, an introduction to acoustic terminology and a number of acoustic

features is presented in Section 2.4. Because ASR is a complicated process and several theoretical and com-

putational aspects are relevant to incorporate stød, this chapter will introduce ASR background, including

acoustic, pronunciation and language models and decoders in Section 2.5.

Occurence of stød

Stød is a remnant of a tonal system, which still exists in Swedish and Norwegian. Several features are in

common between Swedish Tone-1 and Danish stød. An interesting dialectological fact is the absence of stød

in some Danish dialects. Figure 2.1 shows the boundary between dialects where stød occurs and where it is

absent.

On one side of the stød boundary, the information stød contributes to spoken communication is omitted.

In place of stød, the semantics of a word can be resolved based on lexical context1, e.g. articles or pronouns

can be used as cues to the meaning of words as in Jeg viser ham sølvtøjet vs. En viser p̊a et ur where jeg and

en indicate the reading of viser (EN: I show him the silverware/A hand on a clock). We conjecture that this

fact is the main reason stød has not been modelled utilised in technology. The distributional hypothesis is

the basis for most statistical NLP, e.g. language modelling, information retrieval, search engines, statistical

machine translation and many methods employed in ASR. However, there are cases where stød is the only

inter-sentential cue to the reading of a sentence, e.g. stød is the only cue that distinguishes de kendte folk

1The distributional hypothesis: “You shall know a word by the company it keeps” (Palmer, 1968).

9



Figure 2.1: South and east of the red line, stød is absent from the regional dialects. Image from http://

dialekt.ku.dk/dialekter/dialekttraek/stoed/, Dialectology Section, Department of Nordic Research,

Copenhagen University.

(EN: The famous people) and de kendte folk (EN: They knew people)2 in spoken Danish or Ingen elsker

bønner (EN: No one likes beans) vs. Ingen elsker bønder (EN: No one likes farmers).

2.1 Phonetics

Phonetics is the study of human speech with physical sounds as focus. To be able to describe physical

sounds to other linguists, a sound can be represented by a symbol. In phonetics, a sound is represented by

a specific symbol regardless of the linguistic content. A phonetic alphabet makes it possible to describe and

distinguish speech sounds.

Many phonetic alphabets have been proposed, but the International Phonetic Alphabet (IPA) (Interna-

tional Phonetic Association, 1999) is most prevalent. IPA was originally designed to be able to describe

the sounds of all languages and is widely used in Danish phonetics, especially due to the fact that it is

possible to describe Danish phonetics to phoneticians and linguists that are not Danish speakers. Easier

communication via IPA also facilitates publication in academia.

IPA can be described using unicode encoding and also has two standardised mappings into ASCII

encoding using either the (Extended) Speech Assement Methods Alphabet ((X-)SAMPA) (Wells, 1997) or

2An adverbial vs. verbal reading of kendte.
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Kirshenbaum IPA (ASCII-IPA) (Kirshenbaum, 2001). Both mappings predate the widespread use of unicode

encodings such as utf8 and utf16, but are still used in software programs and have been used to annotate

many speech corpora. For instance. the open source speech synthesis program eSpeak (Duddington, 2012)

uses ASCII-IPA and the multilingual EUROM1 corpus (Chan et al., 1995) is annotated in X-SAMPA. Table

2.1 illustrates some differences between the three alphabets. The alphabets share a large set of symbols

that represent the same sounds, which can make it difficult to identify which IPA mapping is used from

the alphabet itself, which is important because there is another subset of common symbols that do not

symbolise the same same sound.

Alphabet Transcription

IPA sImp@l

SAMPA sImp@l

ASCII-IPA sImp@L

Table 2.1: Simplified phonetic transcription of the word simple.

Irrespective of the alphabet used, the sounds in an audio recording are represented as a sequence of

symbols. This subbranch of phonetics is known as segmental phonetics and each symbol is called a segment.

Segments are theoretically discrete and are ordered in time.

In this context, a phone is a segment. In the transcription in Table 2.1, each letter is both a phone a

segment.

2.1.1 Prosody

A phone is the basic unit of speech. It describes vowels, consonants etc. A phone can be annotated

with a diacritical symbol which represents a suprasegmental feature. Suprasegmental features can overlap

segment boundaries (hence the name) and can overlap other suprasegmental features. Prominent examples

of suprasegmental features are stress and stød. Suprasegmental features are often properties of syllables

and are also known as prosodic features.

In Table 2.2, word stress is annotated as a suprasegmental feature using ["], [”] and [’], respectively. Each

phone is separated by a whitespace to better give an indication of the differences between the mappings. Note

that a segment annotated with prosody is also a phone, though the theoretical discreteness is compromised.

A phone can be denoted as a complex phone to make suprasegmental annotation explicit.

While this could be an adequate description for a human linguist, it is problematic in computational

terms. There is no annotation for the duration of a prosodic feature. Also, there is no notion of a syllable
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Alphabet Transcription

IPA d "I f @ k @ l t

SAMPA d I” f @ k @ l t

ASCII-IPA d ’I f I k @ L t

Table 2.2: Phonetic transcription of the word difficult.

in segmental phonetics. However, prosodic features are often considered a property of a syllable rather than

a phone. The linguist analysing a phonetic transcription must interpret on-the-fly. That phonetic resources

are created for human consumption without accounting for computational uses is often a barrier for using

phonetic resources in computer programs. An example of this is the difference between the annotation of

word stress, which is affixed both to the left and to the right of the vowel which forms the core or nucleus of

a syllable in Table 2.2. IPA annotation – or (X-)SAMPA annotation – does not imply a standard annotation

scheme. The phonetic annotation of corpus A may be different from corpus B even though they use the

same annotation alphabet. Mapping individual segments and suprasegments is inadequate and mapping

between complex phones is necessary. If the affixation of suprasegments is unordered, several thousand

complex phones need to be mapped. It is easy to spot the difference in the table, but discovering these

annotation differences in large amounts of data is a difficult task.

The different annotation of prosodic features are repeated for Danish stød. Stød is annotated as [?] in

SAMPA3, [?] in ASCII-IPA and [?] in IPA. They are used as shown in Table 2.3.

Alphabet Transcription

IPA tan?

SAMPA tan?

ASCII-IPA t?&n

Table 2.3: Phonetic transcription of the Danish word tand.

The irregular affixation of suprasegmental features is a symptom of the fact that phonetic annotation has

traditionally been created for human consumption and this is still the case in e.g. socio-linguistic studies.

In some corpora, suprasegmental features may even be practically annotated as separate phones.4

3But stød is annotated as [!] in the DK-Parole corpus.
4E.g. in the corpus used in Chapter 3.

12



For computational purposes, where different sounds are represented by phones such as ASR or speech

synthesis, the alignment between phone and sound is important. For some applications such as ASR, an

alignment can be induced using embedded training or forced alignment. The specifics of these methods are

explained in Chapter 5.

2.1.2 Acoustics

The subject of interest in acoust ics is sound waves. An oscillation is one cycle of repetitive variation in

time of a sound wave. If an acoustic signal is e.g. a musical note, there will be many oscillations per second.

The musical note A has a frequency of 440 Hz because the sound wave oscillates 440 times per second.

Frequency is the acoustic correlate of pitch. The pitch period is the duration of one oscillation. If no pitch

can be detected, there is little or no repetitive oscillation meaning the sound wave is not periodic.

Amplitude is a measure of the change in atmospheric pressure that is caused by sound waves. Amplitude

is the difference from the peak of an oscillation to the ‘centre’ of a sound wave. The mean amplitude over

a time window is called intensity.

The human voice produces complex signals. A periodic signal created by a human has a fundamental

frequency and component frequencies. The component frequencies are integer multiples of the fundamental

frequency and called a harmonic. If the fundamental frequency is 100 Hz, the 2nd harmonic is at 200 Hz,

the 3rd harmonic at 300 Hz etc.

The air flow through the glottis is called the glottal flow. Glottal analysis is a method to estimate glottal

flow parameters that characterise the voice source. Feature that describe voice quality can be extracted

from the voice source.

Figure 2.2: Illustration of the larynx where we can see the glottis as the opening between the vo-

cal folds. Image from http://roble.pntic.mec.es/~mfec0041/bachillerato/archivos/web phntks/

files/theory notes.htm.
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To analyse a complex acoustic signal, the signal must be decomposed. Several decomposition methods

exist. In ASR, Discrete Fourier Transformation is used, but other disciplines such as speech synthesis may

use the Continuous Wavelet Transform. In essence, the two methods decompose a complex signal into

component signals at different frequencies.

2.2 Acoustic investigations into stød

As mentioned in Chapter 1, stød is a perceptual feature. In a similar fashion, pitch is a perceptual feature

whose primary acoustic correlate is fundamental frequency (F0). Linguistic studies of stød, where the

acoustic realisation of stød has been the focus of the investigation, have found no single acoustic correlate

for stød (Hansen, 2015).

The most robust correlate is an abrupt decrease in intensity that is related to constriction of the glottal

flow. Another strong indicator is irregular vibration of the vocal folds which produces a creaky sound.

However, the correlation is not perfect, as stød can be perceived without the presence of creak or ir-

regular vibration (Hansen, 2015). Stød can also be audibly perceived yet not be visible in a waveform

signal (Riber Petersen, 1973; Grønnum & Basbøll, 2007)

The absence of a single correlate has given rise to a substantial literature on the subject and the de-

scription of stød is an active research area. Below is an outline of two descriptions of stød.

2.2.1 Stød description

The current description of stød stems from investigations in Fischer-Jørgensen (1989). Stød-bearing syllables

are divided into two phases with stød manifestation on the second phase. In the case of a long vowel with

stød, the two phases divide the long vowel in two temporally equal parts. In the case of a short vowel and

a sonorant consonant5, the boundary between the two phases coincide with the segment boundary. These

two alternative prerequisites – a long vowel or a short vowel and a subsequent sonorant – are collectively

known as stødbasis. If none of the prerequisites are present, stød cannot be manifested.

Danish stød has been studied in a series of publications by Nina Grønnum (Grønnum & Basbøll, 2001,

2002, 2003; Grønnum, 2006; Grønnum & Basbøll, 2007, 2012; Grønnum et al., 2013) together with Hans

Basbøll. The research is based on the concept of stødbasis and included in Grønnum (2005) which is a

Danish textbook on phonetics and phonology.

5A sonorant consonant is either a nasal, lateral or r-sound, e.g. [m], [l] or [R] (Grønnum, 2005). In practice, phonetic

annotators sometimes relax this constraint to any sonorant.
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A different account of stød stems from Hansen (2015). His description is based on Ladefoged’s phonation

types.

The stødbasis and phonation-based accounts of stød are outlined below.

2.2.1.1 Ballistic model

A syllable has the potential for stød if it has stødbasis. There can only be one stød per syllable and

polysyllabic words can have more than one stød. Grønnum (2005) describes the realisation of stød in two

acoustic events:

� glottal stop

� creaky voice

Glottal stop is an instant of glottal closure where the vocal folds are closed and prevent airflow through

the vocal tract. In colloquial English, a glottal stop can replace a [t] in words like mountain or metal . In

Danish, it can also signify the realisation of stød in extreme cases according to Grønnum & Basbøll (2007).

Creaky voice describes a type of phonation. The vocal folds of a human can be open and allow for

maximum airflow or be closed and prevent airflow. In either state, the vocal folds do not vibrate. In

between maximum and zero airflow are degrees of openness that determine the vibration of the vocal folds

when uttering sonorants. When the vocal folds constrict airflow and are relaxed, vocal fold vibration is not

completely harmonic. The slight disharmony on an otherwise harmonic acoustic signal sounds like a ‘creak’

and gives rise to the name creaky voice.

Grønnum & Basbøll (2007) describe stød phonetically as a ballistic gesture which minimally generates a

slightly compressed voice or maximally a distinct creaky voice and a glottal stop under emphasis, as aligned

with syllable onset and a property of the syllable rhyme. The ballistic gesture is a muscular response to a

neural command that, once executed, the speaker can no longer control.

2.2.1.2 Phonation-based model

A way to describe voice quality is to use phonation types. There is a continuum of the degree of openness

of the vocal folds that span from closed as is the case with the glottal stop, and most open, where the vocal

folds do not vibrate and airflow passes unhindered. The degrees of openness of the vocal folds are binned

into different phonation types:
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breathy modal creaky
��

Most open Most closed

Figure 2.3: Voice quality scale after Gordon & Ladefoged (2001).

Breathy voice is a type of phonation where the vocal folds are far apart, do not constrict airflow and

vibrate very little.

Modal voice is often described as the optimal degree of openness and vibration for sonorants.

This model describes stød as a correlation with voice quality at the scale between modal and creaky

voice. Realisation of stød as a glottal stop would be one extreme and modal voice would be the absence of

stød and the other extreme. Hansen formulates his hypothesis as:

“The hypothesis is that stød is expressed as a relatively short change in voice quality towards

a more compressed e.g. creaky voice quality and subsequently returns to less pressed voice

quality. Hence, stød is treated as a dynamic voice quality gesture. A well-formed stød is a

suitably large fluctuation in voice quality over a suitably (short) time frame. Whether creak

occurs in connection with stød or not depends on where on the voice quality scale the stød

fluctuation starts.”6

Creak is a term for a phonation type between creaky and modal voice, but also denotes a suprasegmental

feature. Unfortunately, Hansen must reject his theory after rigorous evaluation and the phonetic description

of stød remains unclear.

2.2.1.3 Ballistic vs. phonation model

The ballistic model describes how stød is produced and how stød manifestation can vary according to the

strength of a neural command. The phonation-based model is a dynamic voice quality gesture that accounts

for the manifestation of stød and explains why stød manifestations which are acoustically dissimilar are

perceived similarly. So the ballistic model accounts for articulation and production and the phonation-

based model also accounts for perception, but the two models are only mutually exclusive in the production

account, i.e. a ballistic gesture vs. a voice quality gesture.

6The author’s translation of the hypothesis in Hansen (2015) from Danish to English.
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The two explanations or descriptions are relevant to this study because we will be using data sets

annotated with stød that has been created manually and mainly annotated by students of Nina Grønnum.

We assume they have applied, or at least been influenced by, her theories. This may be beneficial if

annotators use the same method to annotate, but the annotation conventions that a theory or method

applies may be a source of error. As described above, stød manifestation coincides with the segment

boundary if stødbasis is a short vowel followed by a sonorant consonant. The convention is to annotate stød

on the sonorant consonant, but if the stød manifestation is not prototypical and stød is manifested on the

vowel, we do not know if the annotator follows convention or his/her aural perception.

While Hansen uses a very small data set from a single speaker, his work is the most thorough acoustic/-

phonetic research available. Hansen seeks a characterisation of stød and though he rejects his hypothesis,

his observations has guided the methodology chosen in Chapter 4.

2.3 Stød-related technological applications

There have been no major uses of stød in technological applications except in speech synthesis. It seems

reasonable to attribute this to the variable manifestation of stød. However, glottal information that indicates

the presence of creak in speech has been explored in ASR previously (Yoon et al., 2006; Riedhammer et al.,

2013). Detecting or exploiting creak in ASR is therefore the most similar technological application, because

it is one of the acoustic events used to describe stød.

Yoon et al. (2006) used the measure H1-H2 and mean autocorrelation ratio rx in a decision algorithm

for voice quality. The decision algorithm assigns one of three labels to 10 ms samples extracted from the

Switchboard corpus (Godfrey et al., 1992):

Voiceless All samples where no pitch could be detected

Creaky Samples where H1-H2 < −15 dB or (H1-H2 < 0 db and rx < 0.7)

Modal All other samples

Including voice quality in ASR experiments improved word recognition accuracy for American English.

Yoon and colleagues also investigated whether Perceptual Linear Prediction (PLP) coefficients are salient

for classifying creaky vs. non-creaky sonorants using a support vector machine classifier with a radial basis

function kernel. Many classifiers make use of a distance function to compute similarity between two samples

x and x′, i.e. a small distance measure signifies greater similarity. Kernels compute a similarity measure

with an upper bound of 1 where x = x′ and zero. The similarity measure of an radial basis function kernel

is calculated as
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K(x, x′) = exp(γ||x− x′||2) (2.1)

||x−x′|| is the euclidean distance between two vectors and γ is a free parameter that can be tuned using

grid search on a development set. Using no parameter tuning and 1v1 evaluation, the experiment showed

that PLP features alone contained information to distinguish between creaky and non-creaky versions of

sonorants.

Creakiness in American English does not signal lexical contrast as stød does, but is a marker for lexical,

syntactic and prosodic boundaries (Redi & Shattuck-Hufnagel, 2001). It does indicate that information

about glottalisation can inform ASR and, if stød can be predicted or detected with confidence, it could

improve Danish ASR because distinction can be made between stød-bearing and stød-less variants. As a

function of the syllable, the realisation of stød crosses segment boundaries but can also in extreme cases

cross word boundaries in colloquial speech due to elision of word endings and contraction of adjacent words

into a single phonetic word. A common example from Danish is the phrase der er which is merged to a

single phonetic word [dA:?R].

For the Austronesian language Tagalog, an investigation into recognition of the glottalisation phone [?]

was conducted (Riedhammer et al., 2013). The study showed that a 1-state model rather than the linear

3-state model7 was appropriate for modelling [?] because the duration of [?] is 10-40 ms and frequently

shorter than the minimum duration enforced by the 3-state models topology8. The study also showed that

deleting [?] or merging it with the subsequent phone led to an increase in word error rate (WER) and an

artificially large phone inventory.

The short glottalisation or creak in Tagalog is not consistent with Danish stød and because Danish stød

tends to cross segment boundaries and have a longer duration, a 1-state model is not a logical choice to

model stød.

2.4 Acoustics

From previous studies outlined above, the voice quality measures F0, intensity and H1-H2 have been shown

to correlate with stød to some degree. However, we do not know what stød is and therefore it is difficult to

choose an acoustic feature that describes it. We therefore intend to study a number of features in Chapter

4. These features are introduced in this section.

7See Chapter 5 for an explanation of the 3-state model.
8At least one 10 ms sample per state is necessary and 3 ∗ 10ms = 30ms.
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To analyse a speech signal and extract acoustic features, short-term acoustic analysis is used to de-

compose a continuous signal in time for computational processing. Recordings are divided into samples at

regular intervals. The regular interval is known as the sampling shift and in this thesis, 10 ms is chosen

because it is the standard shift used in ASR. The sampling is illustrated in Figure 2.4.

The time window in the illustration is 25 ms i.e., there is a substantial information overlap in the features

calculated. The window is larger than the shift because feature estimation algorithms sum or integrate over

the time window to estimate, e.g. energy, pitch or MFCC features. The window size is a trade-off because

a large window makes features more robust but too large a window makes the computation less sensitive to

small variations. Different acoustic measures also require different window sizes as explained for F0, phase

features and harmonics-to-noise ratio in Section 2.4 below.

window makes features more robust but too large a window makes the computation less sen

ariations. Different acoustic measures also require different window sizes as explained for F

s and harmonics-to-noise ratio in Section 2.4 below.

Figure 2.4: An illustration of the sampling frequency and the time window (25 ms). Sampling frequency

(10ms) is also known as the sampling shift.

2.4.1 Voice Quality features

The features investigated in Chapter 4 will be described in this section. First, two basic acoustic features

used in previous studies are outlined and followed by several features used to describe voice quality. Two

features extracted from the phase spectrum in the speech signal are described next and followed by a short

description of standard ASR features.
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Fundamental frequency

Pitch tracking is a non-trivial task. It is based on fundamental frequency (F0) which is the primary acoustic

correlate of pitch. Harmonics above F0 also have an impact on the perception of pitch but in practical terms,

pitch tracking or pitch detection is equivalent to F0 estimation (Gerhard, 2003).

F0 is the frequency of the vibration of the vocal folds. To find F0 and other harmonic frequencies,

the speech signal must be decomposed into frequency components. A short-time Fourier analysis (Allen &

Rabiner, 1977) or adaptive Harmonic Model (Degottex & Stylianou, 2013) can decompose a complex sound

wave into the component waves that compose the original signal.

F0 estimation requires a time window that is longer than 25 ms to extract robust features. For modal

phonation, speakers can generally be expected to produce F0 values above 62.5 Hz which can be captured

by a 25 ms window. In creaky phonation, F0 values can be as low as 10 Hz and that requires a longer time

window to capture at least 2 pitch periods (Kane & Gobl, 2011).

Harmonics-to-Noise ratio

Harmonics-to-noise ratio is used to estimate the level of noise in human voice signals. Harmonics-to-noise

ratio is the degree of periodicity in speech vs. the amount of noise on a logarithmic scale and is calculated

over six pitch periods (Boersma, 1993). The time window that is considered for the calculation of the

harmonics-to-noise ratio is also larger than 25 ms. Hansen (2015) uses the harmonics-to-noise ratio as a

confidence measure for F0 estimation and also as an estimate of irregular vibration in the vocal folds which

frequently occur in connection with stød.

H1-H2

H1-H2 is the difference between the amplitudes of the first two harmonics. H1-H2 is a spectral cue that

characterises creaky phonation when the amplitude of the second harmonic is higher than the amplitude of

the first harmonic (Yoon et al., 2006), i.e. when the differnce is negative. The first harmonic is practically

implemented as the harmonic peak closest to the estimated F0 and the estimation of H1-H2 therefore relies

heavily on F0 estimation. Note that there is a related measure - H1:H2 - which is a ratio between the first

and second harmonic and that both H1-H2 and H1:H2 is sometimes denoted H1H2 in the literature.

Quasi-Open Quotient

Quasi-Open Quotient describes the relative open time of the vocal folds. Quasi-open quotient is the duration

where the glottal flow is at least 50% above the minimum flow and normalised by the pitch period.
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Normalised Amplitude Quotient

Normalised Amplitude Quotient describes the glottal closing phase. It is a ratio between the maximal glottal

flow and the minimum of its derivative normalised by F0. It is a robust and efficient parameter to separate

phonation types as reported in Drugman & Dutoit (2010). Rd (See below) is described as “quasi-similar”

to the normalised amplitude quotient.

Rd

The basic shape parameter Rd is qualified as “the most effective parameter to describe voice qualities in a

single value” (Fant, 1995). A low Rd value is related to effective glottal closure and high Rd is associated

with abducted phonation, e.g. voiceless phones. The complete description of the parameter is beyond the

scope of the thesis and the reader is referred to the paper for an in-depth description.

Maxima Dispersion Quotient

Maxima Dispersion Quotient is a parameter designed to quantify the dispersion of the Maxima derived from

the wavelet decomposition of the glottal flow in relation to the glottal closure instants.

Parabolic Spectral Parameter

Parabolic Spectral Parameter quantifies the spectral decay of a glottal pulse in the frequency domain with a

parabolic function. The spectral decay of a glottal pulse is normalised with respect to a hypothetical maximal

spectral decay of the direct current flow9 of the same signal, which is dependant on F0. By normalising,

the parabolic spectral parameter can be used to compare glottal sources with respect to spectral decay,

even though the voices have different F0 and has been shown to correlate with phonation types (Fernandez,

2003).

Peak Slope

After applying an octave filter bank with filters centered at 8 kHz, 4 kHz, 2 kHz, etc. until 250 Hz, the

local amplitude maximum for each band is computed. Peak Slope is the slope of a straight regression line

fitted to the peaks of the speech segment. The slope of the regression line will differ depending on whether

the phonation type is breathy, modal, tense etc. In comparison, if the amplitude peaks were only H1 and

H2, the measure should be similar to H1-H2. H1-H2 computation depends on F0 estimation, which is not

the case for Peak Slope. Hence, Peak Slope should be better suited to non-modal speech segments (Kane

& Gobl, 2011).

9Direct current flow is the airflow before modulation by the glottis.
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Figure 2.5: Illustrates waves that are not in phase. The difference between s1 and s2 or s1 and s3 is called

phase shift, analogous to time shift in Figure 2.4.

2.4.2 Phase features

Phase information places a sound wave in time. The frequency components of a naturally occurring complex

sound wave are not completely in phase. Phase distortion is derived from the computation of relative phase

shift, which is the desynchronisation between the first harmonic h1 and harmonics at higher frequencies hn.

The phase distortion at instant i is calculated as

PDi,h = φi,h+1 − φi,h − φi,1 (2.2)

where φi,h is the instantaneous phase of harmonic h.10 The phase distortion or phase shift is illustrated

in Figure 2.5.

In the source-filter model of speech11, phase distortion represents the shape of the source. While this is

similar to the features in Section 2.4.1, phase distortion is independent of F0 and insensitive to the position

of the glottal pulse and hence the position of the analysis window (Degottex & Erro, 2014).

To create robust parameters from phase distortion in short-term acoustic analysis, PDM and PDD are

suggested in Degottex & Erro (2014) (see below). The data is assumed to be circular and obey a wrapped

normal distribution for the calculation of mean and variance:

10In practice, h is instead K frequency bins – similar to estimation of Peak Slope.
11See e.g. the textbook Jurafsky & Martin (2008), Section 7.4.6.
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PDM

Phase Distortion Mean must be estimated over a number of adjacent frames to be robust. Degottex & Erro

(2014) uses a 25 frame window to ensure six periods are covered in the computation. Several frames are

necessary to calculate mean values and a large context decreases sensitivity to noise in unvoiced segments

and separates smooth behaviour from randomness of the phase.

PDD

Phase Distortion Deviation is estimated over a shorter context than PDM. PDD is intended to model the

noise of the voice source and a wide window can cover the beginning of a voiced segment in addition to

be sensitive to a longer trend in the speech signal which is modelled by PDM. This would result in an

overestimated PDD. PDD is therefore estimated over 9 frames (roughly 2 periods) and the trend – modelled

as PDM over the same window – is subtracted from PD before estimating PDD.

2.4.3 Automatic speech recognition features

Standard ASR features include Mel-Feature Cepstral Coefficients (MFCC) and Perceptual Linear Prediction

(PLP) coefficients (Hermansky, 1990). Refer to Section 2.5 below for a description of the feature extraction

and a description of these features.

Probability-of-voicing

Probability-of-voicing is a feature that assigns a probability to each frame that indicates whether the frame

is voiced. Technically, probability-of-voicing is warped Normal Cross-Correlation Feature. Probability-of-

voicing is also a glottal flow parameter, but mentioned here because it is extracted using an ASR system

rather than software dedicated to speech analysis.

Pitch

The pitch feature is log-pitch with probability-of-voicing-weighted mean subtraction over a 1.5 s window.

ΔPitch

ΔPitch is the first derivative of the log-pitch without mean subtraction.
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2.5 Automatic speech recognition

Speech recognition has been an active research area for decades. Many statistical methods have been applied

to natural language for the first time in ASR and later found application in written language. Hidden Markov

Models (HMM), Expectation-Maximisation algorithm and alignment/translation models were introduced

in ASR as early as the 80s (Rabiner & Juang, 1986). The same methods later found application in machine

translation in the VerbMobil project and shifted the focus in NLP from rule-based machine translation to

statistical machine translation. Currently, the methods are used in many applications of NLP.

ASR systems perform a complex multi-step translation from sound waves to text that requires knowledge

of signal processing, phonetics, statistics and computer science. Based on the approach used in the Kaldi

toolkit, this background chapter will explain feature extraction in the frontend component, the acoustic

model (AM), pronunciation modelling with phonetic dictionaries and phonetic decision trees (PDT), and

syntax in language models (LM).

Figure 2.6 is a flowchart visualisation of how an ASR system is built. The necessary input resources is

are speech, parallel transcripts, a phonetic dictionary, additional text and a so-called HMM topology (the

green boxes in Figure 2.6). Red boxes are intermediate products and models that we convert to a Weighted

Finite State Transducer (WFST) representation that are visualised as blue circles. The arrows show what

resources are transformed or used to estimate a model or WFST. Arrows between WFSTs represent a

mapping known as finite state composition and the process and the WFST names will be explained in

Section 2.5.5.

If a box or circle has a border, the model of WFST is used in the ASR system.

Terminology

The terms used in speech technology and phonetics are similar yet different. While phonetic experts can

distinguish between phones, phonemes and prosody, the distinction has been blurry in academic literature

on speech technology. A historical lack of communication between the two research fields has given rise to

parallel terminology. This chapter will use ASR terminology, but attempt to give a translation to phonetics

if possible, either in the body of the text or in footnotes.

In ASR, the terms phones and phonemes have been used interchangeably. Arguments for using one or

the other can be made, but due to the inherent close relation to sound and the realisation of spoken language,

phones or phonetic symbols will be used to denote the symbols that make up a phonetic transcription, also

denoted a phonetic representation or a phone sequence.
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Figure 2.6: A flowchart that describes the necessary input resources, intermediate models and WFSTs

created when training a WFST-based ASR system. The green rectangles are input resources, the red

triangles are intermediate data representations and models estimated using the input resources and the blue

circles are WFSTs. Triangles and circles with a black border are used in the ASR system.

ASR systems are distinguished with respect to speakers into 3 categories: speaker-dependent, speaker-

independent and speaker-adapted. This categorisation was introduced in Woodland (2001) but different

definitions are used in the literature.

Speaker-dependent systems are trained using data from a single speaker for use by that specific speaker.

This type of system is not common because the accumulation of sufficient training data for the particular

speaker is costly and time-consuming. Speaker-dependent systems are still in use in respeaking scenarios

in the media industry. Accessibility requirements in public media such as TV requires subtitling of many

programmes. Re-speaking exploits a time delay between the recording (or playback) of a programme and the

actual broadcasting to viewers. In the delay, the speech in the programme is spoken aloud by a respeaker and

speaker-dependent ASR specifically tailored to the respeaker create subtitles. Speaker-dependent systems

usually achieve a high accuracy for the specific user but generalises poorly to other users.

Speaker-independent systems generally cannot achieve the same accuracy as speaker-dependent systems.

However, accumulating data from many speakers across age, gender, dialect, etc. is considerably easier than

for a single speaker and the resulting ASR system can be used by more than a single user and generally

perform better on users not in the training data.

Speaker-adapted systems are speaker-independent systems that are adapted to a specific user using only

a small amount of speaker-specific data. Practically, the user reads aloud a fixed set of sentences to create

a development set. This set is used to tune model parameters to maximise recognition for the users voice.
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Figure 2.7: Spectrogram for the Danish word cirkel (EN: circle). Time is on the X-axis and frequency on

the Y-axis. The spectrogram for vowel [i] can be seen left of the vertical dashed red line.

Speaker-adaptation will be relevant for stød. Supposing there are different strategies to realise stød, the

strategies may be specific to region, speaker or social demographics.

2.5.1 Feature extraction

Feature extraction is exemplified by Mel-feature cepstral coefficients (MFCC). The sampling is the same

short-term acoustic analysis illustrated in Figure 2.4.

For each sample, a frequency spectrum is computed by a discrete Fourier transform. The black col-

orations are called formants and the darkness indicate energy peaks in particular frequency bands. Figure

2.7 shows the spectrum of the vowel [i]. The lowest formant is F0.

A vertical cross section of the spectrogram shows a spectral profile for a given sound, see Figures 2.8 and

2.9. The energy distribution describes the sound uttered in a sample and can be used to classify samples

as phones. Mel filters extract log-energy coefficients computed over specified intervals according to the

Mel scale, which is linear below 1000Hz and exponential above. This models human hearing which is less

sensitive to changes in high frequency bands. A Mel-filterbank consists of 20-40 filters.

After passing through Mel filters, each coefficient is converted to a cepstrum using an inverse Fourier

transform or Discrete Cosine transform. The Discrete Cosine transform separates the contributions of the

source and the filter and the coefficients in the cepstrum describe the filter, i.e. the vocal tract.12 The

MFCC features are the first 12 coefficients – not including the 0th coefficient – and an energy coefficient.

12The features in Section 2.4.1 describe the source.
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Figure 2.8: Spectral profile of the vowel [i].

2.5.1.1 Feature transformation

Feature transformation is not explicitly stated in Figure 2.6, but represented by the arrow from Features

to AM. Theoretically, one sample is assumed to be independent of the next, which is an assumption that

is known to be false, but works well in practice. However, feature transformation of MFCC vectors can

account for context-sensitivity.

MFCC features are sensitive to coarticulation, which is the effect of the temporal left and right phonetic

context on the realisation of a speech sound. The pronunciation of [m] in similar is different from [m]

in summary . The configuration of the speech organs in the filter (vocal tract) when uttering [i] in similar

colours the pronunciation of [m] because the organs must move from one configuration to the next. The lips,

tongue, teeth etc. never achieves the ultimate placement for the pronunciation of [m] before the utterance

is finished, because 1) the place speech organs are moving from, and 2) the speech organs are anticipating

the next configuration for uttering [i] and already moving towards that configuration.

ΔMFCC and ΔΔMFCC derivatives are computed specifically to model the effect of context and coar-

ticulation or specifically, the speed and acceleration of speech organs such as tongue, lips, teeth, etc. The

ΔMFCC and ΔΔMFCC derivatives are usually computed over a sliding window and appended to the MFCC

features to create a 39-dimensional vector.

To model longer-range context than Δ+ΔΔ features, we can apply Linear Discriminant Analysis to a

spliced feature vector. Feature splicing concatenates feature vectors over a time window specified in samples,

e.g. +/- 3 samples which becomes a time window of 70 ms. ((3+1+3)×10ms = 70ms). Linear discriminant
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Figure 2.9: Spectral profile of the vowel [e].

analysis can perform dimensionality reduction to a new feature space and the features from this space is

then used insted of MFCC vectors.

2.5.2 Acoustic modelling

Recently, artificial neural network (NN) AMs have begun outperforming Gaussian Mixture model (GMM)

AMs (Hinton et al., 2012), but GMMs are still used to create the initial alignment from vectors to phones

and this description of acoustic modelling will be based on GMM+HMM AMs.

Creating an ASR system requires an alignment between speech and orthographic transcriptions as illus-

trated in Figure 2.6. In a first step, word sequences in the transcripts are mapped to phone sequences using

a phonetic dictionary. The dictionary must cover all the words in the training transcripts or have access to

a grapheme-to-phoneme converter. Phone sequences are aligned to feature vector sequences by assuming an

equidistant segmentation of feature vectors based on the sequence of phonetic symbols. This is known as

flat start. Based on this alignment, an AM is estimated. In Kaldi, Viterbi forced alignment13 assigns each

feature vector to a phone. After alignment, feature vectors are clustered by phones and an AM is estimated.

Using the AM, a new alignment is computed by re-classifying samples, which are then clustered, and this

clustering is used to estimate another AM. This iterative refinement can be repeated for a fixed number of

iterations or until convergence, i.e. the alignment does not change. At specified non-consecutive intervals,

the training data is resegmented based on the current AM.

13Baum-Welch estimation using the backward-forward algorithm can also been used, but Viterbi is less computation-intensive

and produces comparable results with sufficient data.
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Figure 2.10: HMM model for [l].

2.5.2.1 HMM states

Phones are modelled using HMMs and the HMM topology is necessary to estimate the AM. They are the

building blocks of the AM and the standard topology is illustrated in Figure 2.10. The figure is a 5-state

model, where the initial state and final state are illustrated using two circles. The three middle states are

denoted as B, I and E (For Begin, Internal and End) and are emitting states, where the initial and final

state are non-emitting. This 5-state topology is similar to a 3-state topology with only emitting states, but

we use a 5-state topology for illustrative purposes. The parameters of an HMM are transition probabilities

and output distributions (for emitting states). The HMM will output a continuous vector (if we are in

an emitting state) and randomly change state to the next state or the same state according to transition

probabilities at each time step.

Phones are trivially projected to HMM states before aligning feature vectors to phones sequences as

described above. The individual phone HMMs are concatenated to create a state sequence corresponding

to sound input. This alignment is used to estimate emission probabilities and transition probabilities. The

transition probabilities on arcs leaving a state should sum to 1 and emission probabilities are modelled with

a Gaussian or a GMM.

An AM may model a phone with several HMMs – one for each context a phone is observed in, i.e. one

or two phones to either side.14

The choice of HMM topology enforces a minimum duration on a phone. If the sampling interval is 10

ms, the minimum duration is 30 ms for HMMs with 3 emitting states and 50 ms for HMMs with 5 emitting

14See Section 2.5.3.1 for further explanation of phonetic context dependency.
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states. In Kaldi, phonetic symbols that are intended to model silence, background noise and other sounds

not related to speech are modelled using 5-state HMMs and non-silence phones use a 3-state topology.

The self-loops on B, I and E model the n-to-1 relation between samples and HMM states. It is not

possible a priori to know the duration of a phone and it will often be more than 3 samples. Implicit duration

modelling could be achieved by only adding a loop on I, but there is considerable variability between B,

I and E in plosives for instance, and if it is not possible to transition back in B and E states, the I state

must model substantial variability. Like the duration of L cannot be determined, the duration of each state

cannot be determined and therefore it must be possible to transition from B to B and from E to E.

2.5.3 Phonetic dictionaries

The phonetic dictionary is a mapping between words and their phonetic representation(s) and the set of

classes a vector can be classified as are represented in the phonetic transcriptions. The phonetic dictionary

is also known as the lexicon and sometimes the pronunciation model (PM), but may also entail phonetic

decision trees. In this thesis, we use the latter definition of PM, i.e. it is both the phonetic dictionary and

the phonetic decision tree because the phonetic decision tree models phonetic context.

2.5.3.1 Phonetic context

The phonetic symbols in the phonetic dictionary are context-independent and can be mapped to a context-

dependent (CD) phonetic representation. A monophone can be divided according to context. To model

long-range influence from context, monophones can be divided into word-position-dependent phones. Word-

initial and word-medial pronunciation of a phone is different than the word-final pronunciation (Liu et al.,

2011). A monophone [e] would be divided into word-initial [eB ], word-internal [eI ], word-final [eE ] and

singleton [eS ] phones.

Local CD clustering is known as triphone modelling. A monophone [i] in the word similar is divided into

two triphones: s−i+m ([i] preceded by [s] and followed by [m]) and m−i+l ([i] preceded by [m] followed

by [l]). This subdivision is carried out for all combinations of phones to create a set of triphones which

is a phone in a specific local phonetic context. The left and right context window can be increased and a

pentaphone uses two phone-context to cluster training data.

For word-position-dependent phones, if the sequence [lI aI iE ] occur in the training data, aI is mapped

to the triphone lI−aI+iE .

The triphone subdivision reduces the variability of the data and position-dependent phones can make

classification less robust if faced with data sparsity or make the number of classes explode and make
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classification intractable. To counter this problem, the states in triphone HMMs can share Gaussians across

triphones via state-tying.

State-tying

The phonetic difference between states in the triphones sB−iI+mI and sB−iI+nI might not be relevant for

recognition purposes and merging HMM states reduces the number of parameters that need to be estimated

during AM training. After merging, the phone models are called tied-state triphones.

State-tying is performed in 4 steps that ties into the AM and uses the phonetic dictionary (Young et al.,

1994):

1. Train a monophone AM where each HMM state is modelled by a single Gaussian.

2. Copy each monophone HMM for each phonetic context and re-estimate triphone models using the

trained monophone parameters for initialisation.

3. Cluster corresponding triphone states derived from the same monophone HMM based on phonetic

similarity into tied-states and choose one HMM state as prototype.

4. Increment the number of GMM components in each tied-state and retrain until a fixed number of

mixture components is reached or the log-likelihood improvement is below a threshold.

State-tying relies on merging phonetically similar states (step 3), but the notion of phonetic similarity

has yet to be defined. In the first step, the word-position-dependent, stress-dependent, tone-dependent

triphones and other CD variants of the same monophones or base phones are clustered in the root node

of a phonetic decision tree (PDT). The data represented by the phones in the root node is split by asking

yes/no questions about the phonetic context and grown into a binary PDT. The question that maximises

the log-likelihood of the data is chosen as splitting criterion, i.e. a greedy top-down algorithm chooses the

locally most optimal question under the assumption that the data in each child node is modelled by a single

Gaussian.

The PDTs are grown until the likelihood increase falls under a threshold S(o) or a minimum state

occupancy threshold is reached. It must be possible to accumulate enough statistics for all states in the

node after node splitting and hence the minimum state occupancy threshold is imposed.

In the final step, the decrease in likelihood by merging leaf nodes is calculated and all pairs of nodes for

which the decrease is below S(o) are merged. Subsequently, step 4 of the state-tying process can begin.

The questions that define phonetic similarity can be questions about the right and left symbolic phonetic

context. The left-most HMM state in the triphones mentioned above, sB−iI+mI and sB−iI+nI , are
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Two Gaussian distributions with different means and

variances.

A non-normal distribution.

Figure 2.11: Non-normal distribution approximated by the combination of two Gaussians.

examples of likely candidates for phonetic clustering because they are CD variants of the same context-

independent phone in identical left phonetic context and nearly similar right phonetic context.

Phones that share some phonetic similarity are clustered into sets and yes/no questions are represented

as set membership tests. Some questions are generated automatically, e.g. word-position-dependent phones

(Is the left phone in the set of word-initial phones?), and it is also possible to manually define linguistic

splitting criteria, e.g. “Is the left phone in the set of stressed phones?” or “Is the right phone in the set

that denotes stød-bearing phones?”. Restrictions on node splitting and merging can also be specified for

e.g. silence.

State-tying and phonetic clustering is dependent on the phonetic alphabet used in the phonetic dictionary.

Whether the phonetic alphabet is fine, semi-fine or coarse IPA, the number of diacritic symbols such as

stress, stød, syllabification or schwa-assimilation can have a significant impact on recognition accuracy

(Kirkedal, 2013) and phone classification as demonstrated in Section 4.3.4.1.

2.5.3.2 Descriptive power

The reason GMMs have been successfully applied to acoustic modelling is that the data in both tied and un-

tied HMM states cannot be assumed to be normally distributed. Parametric models such as support vector

machines and L1 and L2 regularisers assume that input data follows a normal distribution and data trans-

formation, scaling and normalisation is applied to make the input data more normally distributed. GMMs

can model non-normally distributed data by approximating a distribution with a mixture of Gaussians.

The ability of the AM to describe acoustic data is correlated with the number of Gaussians and states it

can use to model the data. A high number of Gaussians in each state means the AM can accurately model

the training data. A parallel can be drawn to using higher order polynomial features to estimate a more

complex decision surface in linear classifiers. The modeling of a non-normal distribution using a mixture of

Gaussian components is illustrated in Figure 2.11.
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Selecting the right number of Gaussians and states has an impact on performance. The descriptive

power of the AM is insufficient to model the data if too few states or Gaussians are estimated. Too many

Gaussians will result in overfitting, where Gaussians with nearly identical mean and variance model the

same data. Decoding will also slow down if the contribution of a large number of Gaussians has to be

estimated and combined by the AM. An excess amount of states can lead to data sparsity, but state-tying

can alleviate the problem.

2.5.3.3 Variation and confusability

If several pronunciations of the same words exist in a language due to e.g. dialectal variation, several

phonetic representations can be associated to a single word. Figure 2.4 shows an excerpt from a phonetic

dictionary. There are two pronunciation variants in the dictionary for the name Svend highlighted in blue.

Svend s v e n

Svend s w e n

ligger l E g @

lægger l E g @

p̊a p O

stranden s d R a n @ n

Table 2.4: A phonetic dictionary with pronunciation variants and homophones. For illustrative purposes,

no diacritics have been assigned to the transcriptions.

Adding pronunciation variants for all words in a dictionary can also decrease recognition accuracy if the

pronunciation variants increase the confusability of the model. The phonetic representations highlighted

in red are identical yet represent two different words.15 This adds confusability because it is a 1-to-many

mapping from phonetic symbol sequence to words rather than 1-to-1 and the number of word sequences the

LM has to evaluate at runtime increases. Reducing confusability in the phonetic dictionary to a minimum

is a way to reduce the set of word sequences the LM must evaluate.

Another challenge in the mapping from phone sequence to word sequence is the absence of word bound-

aries in spoken language input. The consequence of missing word boundaries is that all possible word

sequences are constructed from the recognised phone sequence. This is illustrated in Figure 2.12, where

one phonetic sequence can be translated into a least three different word sequences. This generalises to

compound words and sentence boundaries.

15Otherwise known as homophony.
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Figure 2.12: Many word sequences can be produced if [s] can be affixed to words both left and right.

If an utterance contains a word that is not in the pronunciation model, it is essentially impossible

to recognise. Out-of-vocabulary (OOV) words are frequent in languages with complex morphology such as

Latvian (Salimbajevs & Strigins, 2015) or languages with productive compounding like German and Danish.

2.5.4 Language Models

In ASR, a standard LM is a Markov model that associates a probability to a word sequence. An illustrative

example is to assign probabilities to a sentence such as Boil water for X and replace X with a word. If

coffee is inserted for X , the sentence makes semantic sense and should be assigned a high probability by

a LM. If guitar is inserted as X , the sentence is nonsensical. In a well-trained English LM, the inequality

P (Boil water for coffee) > P (Boil water for guitar) should hold and for this reason, statistical LMs are an

effective tool to model sequences in natural language.

The intuition behind statistical language modelling is that a word at position wi can be predicted from

the words at positions wi−1, wi−2 . . . w1. For long sentences, this is intractable to compute and in practice

only sequences of wi−1 − wi−N (known as n-grams) are used.16 Because the number of n-grams increase

exponentially with the size of N , N ≤ 4 is most common. The chain rule of probability is used to assign a

probability based on the probability of the words in the phrase.

N-gram LMs can be compactly represented as weighted finite state automata (Mohri et al., 2008). Given

a word sequence in the input tape, the weighted automata will return a probability of the sequence of the

words (if the sequence and the words are in the language the finite state automata accepts). A weighted

16The Markov assumption: The next word depends only on the current word.
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finite state automata can be converted to a weighted finite state transducer where the same word is on the

output tape as the input tape. Each transduction is weighted by the word sequence probability.

This trick makes it possible to perform speech decoding in a finite state transducer framework because

we can add a language model to a decoding graph or lattice using finite state composition.

2.5.5 Decoding graph construction

The models described so far has been set into a training context by Figure 2.6, but can also be understood in

a generative manner where the AM generates feature vectors, the phonetic dictionary generates phones and

the LM generates words. The generative view is useful because we can use it to decompose the search for

the most likely utterance Ŵ into two probability models, i.e. the acoustic model and the language model,

using Bayes theorem:

P (W |O) =
P (O|W )P (W )

P (O)
(2.3)

where the denominator P (O) is usually left out of the equation because it is a constant. The decom-

position is necessary because it is not possible to model P (W |O) directly because that entails assigning a

probability every possible W which is intractable. However, we now model the speech production mecha-

nism and how 0 is generated. When recognise unseen speech, the decoding process can be understood as a

series of translation tasks where each blue arrow in Figure 2.13 is a translation task. The last step may be

more adequately described as a reranking task than a translation task.

In practice, and because monotonic alignment can be assumed in speech, the LM, phonetic dictio-

nary, phonetic context-dependency and HMMs can be represented as weighted finite state transducers

(WFST) (Mohri et al., 2008) as shown in Figure 2.6. Each transducer can be combined to create a decoding

graph and the composition starts from the text side which makes it is possible to determinise and minimise

each transducer before computing the next composition.

A LM in Arpa format is converted to a weighted acceptor, which is a type of WFST where the same

symbols are on the input tape and the output tape. This WFST is denoted G17. G is composed with

the phonetic dictionary or lexicon WFST L using finite state composition. Before the composition oper-

ation, determinisation and minimisation are applied to G. In L, the output symbols are words and the

input symbols are phones. Determinisation and minisation remove redundant paths in the WFST graph,

which reduces the recognition time, the size of the graph and makes the composition more efficient. The

composition L ◦G produces the WFST LG.

17Stands for grammar due to historical reasons, but refers to a statistical LM.
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Figure 2.13: A simplified overview of the decoding process. Only a single sequence of context-independent

phones is shown to simplify the presentation, though it should have been a lattice with many phone se-

quences. In the generative view, the arrows are reversed.

Another WFST denoted C represents phonetic context-dependency and is constructed based on the

PDT. The output symbols are context-independent phones and the input tape contains CD phones. The

same method of composition, determinisation and minimisation is applied to C ◦ LG. This composition

prunes away impossible states created in the PDT stage (Allauzen et al., 2004).

The Kaldi decoding graph recipe also composes the H transducer. As in the conventional recipe, the H

output tape is CD phones and the input tape symbols are HMM states or tied states.

The decoding graph creation can be summed up as:

HCLG = asl(min(rds(det(H ′ ◦min(det(C ◦min(det(L ◦G)))))))) (2.4)

where the rds() operation stands for remove-disambiguation-symbols and asl() for add-self-loops. Dis-
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ambiguation symbols are added to the end of phone sequences in L if the sequence is also the prefix of

another phone sequence or if two words share the same phonetic representation. The disambiguation sym-

bols ensure that L ◦ G can be determinised. Self-loops refer to the arcs in Figure 2.10 on page 29, which

transitions from e.g. B to itself which are added in the final outer step of Eq. 2.4.

2.5.6 Decoding

Decoding is the process of finding the most likely word sequence that was spoken in an utterance. This is

modelled in the fundamental ASR equation which combines the probabilistic information from the LM and

AM to find Ŵ :

Ŵ = argmax
W∈LANG

P (O|W )P (W ) (2.5)

where LANG are the utterances in a language, W is a single word sequence (or utterance), P (O|W ) is

the probability assigned by the AM and P (W ) is the probability assigned to the word sequence by the LM.

The decoder that finds the most likely sequence is represented by the argmax operation.

Equation 2.5 can be extended with pronunciation model probabilities, term weights and log-likelihoods

to get the extended ASR equation:

Ŵ = argmax
W∈LANG

[
λ1 logP (O|W,P ) + λ2 logP (P |W ) + λ3 logP (W )

]
(2.6)

P (O|W,P ) can be reduced to P (O|P ) because phones are not dependent on words and E. 2.6 becomes:

Ŵ = argmax
W∈LANG

[
λ1 logP (O|P ) + λ2 logP (P |W ) + λ3 logP (W )

]
(2.7)

where λ1 is known as the acoustic scale weight and λ2 as the LM weight. Ŵ will depend on the relative

contributions of the terms in Eq. 2.7. Because the phonetic representation of short function words are

sub-sequences of longer words, it is necessary to constrain the influence of the AM on Ŵ relative to the

LM. Otherwise, Ŵ will mainly consist of short words. This constraint can be implemented by adding a

Word Insertion Penalty to Eq. 2.7, but the hypothesis generation can also be constrained by ensuring that

λ2 >> λ1.

The decoder chooses the most likely word sequence Ŵ from a set of word sequences. In practice, the

decoder traverses the decoding graph to find the most likely path. Exhaustive search of the decoding graph

is intractable and three parameters constrain the possible traversal of the decoding graph:

1. Decoding beam
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2. Lattice-beam

3. Max active states

To understand the point of these parameters and their interaction, imagine first that we traverse the

decoding graph with beam search to the end of an utterance. The beam parameter determines how we

traverse the graph to produce a lattice which is a compact representation of the n-best ASR hypotheses.

Subsequently, paths in the lattice are discarded if the cost of the paths are not within the lattice-beam of

the cost of the best path. Rather than decoding an utterance until the end and removing unlikely paths,

the lattice-beam is applied in periodical backward sweeps during decoding. The max-active-states threshold

limits the number of active states at each time frame such that only the most likely paths are explored. The

most likely paths or active states can be found using a histogram of likelihood scores and is also known as

histogram pruning. The motivation of the parameter is that only the most likely states at each step in the

decoding are likely to survive beam pruning in subsequent steps in the lattice. This type of pruning has the

benefit of defining a worst case processing time for decoding.

2.5.7 Medical dictation scenarios

The two medical dictation scenarios – real-time ASR, and ASR and post-editing – require two different

systems. Real-time ASR requires an online ASR system that decodes in real-time and output results

incrementally. Online ASR systems receive speech input from a microphone where offline ASR systems

take recordings as input. Incremental ASR systems output recognised words or phrases as an utterance

unfolds in time, whereas End pointing is when ASR systems output recognition results after the utterance

is finished. The ASR system in the ASR and post-editing scenario can therefore be a slower-than-real time,

end-pointing and offline ASR system.

The system type has an impact on the recognition rate. Online and offline systems work identically,

both can do end-pointing or incremental decoding and both can decode in real-time. If decoding is under

a real-time constraint, then the real-time factor (RTF) needs to be below 1. To obey RTF < 1 usually

means restricting the size of the lattice and narrowing search beams via the three decoder parameters from

Section 2.5.6. If the size of the beam and lattice is smaller, decoding speed increases but the likelihood that

a correct ASR hypothesis is found during decoding becomes smaller.

If recognition results are incrementally output, less lexical context in the LM can be used to traverse the

graph and it is less likely that the best path in the decoding graph is found. It is possible to use a larger

context if an ASR system uses end-pointing, but waiting until the end of a sentence to see the recognition

results is usually undesirable in interactive systems and transcription because of the delayed response. If
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a word is falsely recognised at the beginning of a sentence, a user would have to wait until the end of the

sentence before noticing the error and have to repeat the entire sentence, but with incremental output, the

user can stop after a few words.

2.6 Discussion

We do not know exactly what stød is in acoustic terms, i.e. there is no single acoustic measure that we can

extract as a good predictor of stød. There are a number of acoustic measures may that may correlate with

stød but the literature agrees on a few indicators such as

1. Disharmony (aperiodicity)

2. Decrease in intensity

3. Decrease in pitch

If stød can only occur where there is stødbasis, the same acoustic events that would signal stød on

one phone are meaningless when occurring on another phone. Based on these observations, it should

be questioned whether stød is an acoustic event that should be considered separately from segments or

whether e.g. [6] should be treated as different from [6?]. If treated separately, late integration of phonetics

and prosody would be required to take advantage of the lexical function of stød.

Detecting stød by itself is interesting from an academic point of view. The question whether stød is

in fact one or more different phenomena, as suggested in Hansen (2015), that signals the same lexical

distinction could be investigated and separating features which signal stød from the stød-bearing phone

will give insight into the nature of stød. Feature interactions could also provide new information that can

characterise stød phonetically.

If the task is to characterise stød, it is necessary to treat stød as separate from the stød-bearing segment.

Stød can cross segment boundaries and the acoustic events that signal the manifestation of stød can be

realised or not irrespective of a segment and realised differently if stød can be manifested in different ways

as Hansen suggests. If the task is to be able to discriminate between stød-bearing and stød-less segments,

stød detection using a classifier as an indicator function or to output a probability estimate as input feature

to a classifier would be one approach to handle this task. Such a feature could aid a phone classifier to

discriminate stød-bearing and stød-less phones.

Another approach is to jointly classify segment and stød. In place of a single binary or logprob feature

output by a stød classifier, the input features to the stød classifiers can be directly used to extend the feature
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vector used as input to the phone classifier. From an application point of view, the two approaches achieve

the same goal and either could be used as a step on the path to phonetic characterisation. Appropriate

interrogation of the classifier could give insights for further study or, if the phone classification error can be

minimised, the classifier can annotate data for phonetic investigation.

The application scenario is important for the choice of ASR system. If decoding speed is important

for the application, restrictions on the ASR system can potentially reduce ASR accuracy, but if the ASR

system can use end-pointing, large lexical context and traverse a larger part of the decoding graph, it is

more likely that a correct ASR hypothesis can be found. If we cannot model large lexical context because

we do not have access to data, the best way to improve ASR is to improve acoustic modelling, which makes

stød modelling in ASR a relevant and interesting research area.
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Chapter 3

Annotation study

This chapter is devoted to an investigation into the reliability of phonetic annotation by experts and we will

use the terminology introduced in Chapter 2 extensively. Annotated data is a prerequisite to conducting

quantitative investigations of stød. To be able to train statistical models to detect stød, the reliability of

the annotation of stød is vital. It is, however, not an easy task to annotate audio, and especially not stød –

especially because stød is not used by some speakers and it is perceptual in nature. While a layperson can

hear the difference between viser/viser (verb/noun) or bønner/bønder (EN: beans/farmers), contributing the

perceived difference to the realisation of stød requires training in phonetics. Annotators must be trained

to be able to create phonetic annotations and expertise is necessary to annotate prosodic features such as

stød, stress, etc.

3.1 Annotation reliability

As described above, stød is not a well defined phonetic unit from a computational linguistics point of view.

Corpora with stød annotation are primarily designed for human consumption and manual analysis. This

presents problems if the resources are to be used for computational experimentation. Because stød and

other suprasegmental features affect more than the phone they are annotated on, the phonetic annotation

requires additional interpretation by a linguist to estimate the time domain in which a suprasegmental

feature is realised. The interpretation varies highly with the perceptual capabilities of the annotator, the

interpretation of the labelling schema and other annotator characteristics and finally the difficulty of the

annotation task (Gut & Bayerl, 2004).

Therefore, if sufficient data for computational experimentation can be found, the question remains

whether this annotation is reliable. Because there are many nuances to consider (acoustic realisation, start
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or end of a sound or prosodic feature to name a few), the annotation of stød can be considered a difficult

task that can only be handled by trained phoneticians. Crowd sourcing e.g. via Amazon Mechanical Turk

is not appropriate for this task (Novotney & Callison-Burch, 2010).

3.1.1 Annotators

Even if stød is annotated by experts, can the annotation be relied upon? Phonetic and prosodic annotation

relies to a great extent on annotator experience, hearing and subjective evaluation. If expert annotation can

be found, whether an annotation guideline existed and whether it was followed can be difficult to ascertain.

3.1.2 Ground truth

Phonetic annotation lacks a gold standard or ground truth for comparison and evaluation. While canonical

phonetic or phonological transcriptions do exist in e.g. dictionaries, comparison to colloqial spoken language

is an inadequate solution. Participants can be asked to pronounce the same utterances, but inter-speaker

variability will make each pronunciation of the same utterance different. The particular pronunciation

of an informant will be influenced by dialect, sociolect, age, gender, time of recording, etc., and none of

these influences are taken into account in canonical transcription such as those in large general-purpose

dictionaries.

3.2 Experimental setup

In corpus linguistics, it is common to compare annotation by several annotators when evaluation against

a gold standard is not possible. Inter-annotator agreement can be used to give an indication of whether a

transcription or annotator is reliable.

Inter-annotator agreement compares label sequences between annotators and the intuition is that labels

which show a high degree of similarity are more likely to be correct. The label sequences need to use the

same label set1 e.g. word classes or phones to be comparable.

In the description of this experiment, key terms are label and item. Depending on the purpose of

a phonetic annotation, several linguistic levels can be mixed together in the same annotation. Thus an

annotation can contain segments, suprasegments, phones, tone or diacritic symbols in the same annotation

string. To collectively refer to all the symbols in an annotation, a transcription is referred to as a label

sequence and the term label is used to refer the symbols in that label sequence whether they are segments,

phones, diacritic symbols etc.

1At least, different label sets must be deterministically mapped to each other.
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The object denoted by a label is referred to as the item, so a phonetic symbol (the label) labels a speech

sound (the item).

3.2.1 Data

The data used for the reliability study is an interview with a high school student. There are two participants

in the recording (the interviewer and the interviewee), and their speech has been phonetically transcribed by

four expert phoneticians from University of Copenhagen. The phonetic transcriptions were manually aligned

with orthography and the four transcriptions were manually segmented to phone level. The recording is 98

seconds long with one minute of annotation starting 16.6 seconds into the recording. The corpus is designed

and created by Jan Heeg̊ard Petersen and will be referred to as the JHP sample.

One minute is a small sample and we use it because it is the only data we were able acquire with four

expert annotations. Phonetic annotation of spontaneous speech takes approximately a factor of 38 (Li et

al., 2000) times four (1 minute audio = 2.5 hours transcription) and subsequently the annotations need

to be aligned by another expert, i.e. a time-consuming, labour-intensive and costly process. To maintain

the high quality of the data, we decided to use the sample as is rather than acquiring more data from e.g.

student.

The corpus was annotated using Praat (Boersma, 2002) and contains only annotation for orthography

for both participants when presented to annotators. The annotators were asked to transcribe the sample

using semi-fine IPA (Grønnum, 2005). Praat uses Tier objects to manage label sequences. A tier contains

a sequence of Interval objects which contain a label such as phone. Interval objects are time-coded with

a start time and an end time that cannot overlap with other intervals in the same tier, so we know the

duration of a speech sound. All tiers are contained in a TextGrid which is illustrated in Figure 3.1.

The label sequences that we compare are denoted IPA1-segment, IPA2-segment, IPA3-segment and

IPA4-segment and IPA1, IPA2, IPA3 and IPA4 identify the four annotators. The experts disagree on stød

labelling at the end of the annotation sequences in Figure 3.1. IPA1 and IPA4 label stød on the same item,

while IPA2 assigns a stød label to the previous item. The disagreement could be a caused by stødbasis

because IPA2 uses a label with a long vowel ([æ:?]) unlike IPA1 and IPA4. Also, stress annotation (["] and

[]) is treated as a label rather than a suprasegmental feature and the use of diacritics produce labels in one

label sequence that may not appear in another sequence in similar fashion to [æG] only occurring in one

transcription of fremtrædent (IPA1-segment).
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Figure 3.1: Danish word fremtrædent (EN: prominent) in the JHP sample. Only tiers relevant to the

experiment are shown and e.g. phonological and parts-of-speech annotation have been removed from this

image.

3.2.2 Method

The simplest way to compare label sequences that are monotonically aligned is majority voting. Majority

is defined in terms of label agreement, i.e. how many annotators agree on a label and we sum the label

agreement for all labels.

In this study, different majority thresholds are investigated. The threshold might be decisive in the

inter-annotator comparison. We define three definitions of majority (Nagree) with 4 annotators:

All Nagree >= 4

Major Nagree >= 3

Tie Nagree >= 2

Any Nagree >= 1

Using these definitions, we compare the label sequences and their agreement. To give an indication of

the number of items that could potentially carry stød, Any is used as a baseline for comparison.

3.2.2.1 Label sets

The interpretation of semi-fine IPA is different from annotator to annotator. The difference is often demon-

strated in varying use of labels. The consequence is a substantial difference in the label sets used because

44



there are many possible combinations of diacritics and phones. Each annotator will use a subset of the

possible combinations and while each label set will overlap with other annotators, the size of each set will

differ. In this corpus, a total of 178 labels are observed, but any single annotator uses at most 107 labels.

All annotators have only 55 labels in common.

For statistical comparison, a set of equivalence classes or a mapping to a more coarse and commonly

used label set can alleviate the problem. Because the study is focused on the reliability of stød annotation,

a binary label set consisting of +/- stød is also compared.

Because reduction to a binary task can be too harsh an application of Occam’s razor, we compute more

advanced comparisons of the inter-annotator agreement. In addition to raw counts and frequency analysis,

Cohen’s κ (Cohen, 1960) is a widely used inter-annotator agreement statistic that is corrected against chance

agreement. The formula is:

κ =
Pr(a)− Pr(e)

1− Pr(e)
(3.1)

where Pr(a) is the relative observed agreement and Pr(e) is the probability of agreement by chance.

Pr(e) is calculated as
∑C

c P (c) where P (c) is the expected random agreement for label c and P (c) =∏A
a Pa(c) where Pa(c) is the probability of annotator a assigning label c to an item.

The final item in Figure 3.1 is an example of agreement by chance. The item is labelled [d] by IPA4,

but not labelled by any other annotator. In this case, 3 annotators agree, but only as a side-effect of the

alignment or by chance.

κ-scores above 0.6 represent adequate agreement, while 0.8 and above indicate almost perfect agreement.

Agreement worse than chance is indicated by 0 and 1 is perfect agreement. κ can become negative for cases

where there are systematic disagreement (Nowak & Rüger, 2010).

Cohen’s κ measures pairwise inter-annotator agreement between two annotators but can be averaged

over pairs of annotators. The result is a metric that can be interpreted similarly to standard κ, but for

multiple annotators.

For tasks with only few labels, e.g. binary classification, Cohen’s κ can be low though the raw agreement

is high, because κ overestimates P (e). This problem is referred to as the paradox of κ (Feinstein & Cicchetti,

1990). In agreement based statistics, two wrong, but identical label assignments result in agreement. This is

especially problematic for skewed data sets where prevalence is high for one class (Passonneau & Carpenter,

2014), which is the case for the JHP sample where 94% annotations are without stød.

To control for these effects, Multi-Annotator Competence Estimation (MACE) (Hovy et al., 2013) is

used to calculate annotator competence. MACE is designed to identify reliable annotators in adversarial

conditions. Adversarial conditions refer to cases where an annotation task is crowd-sourced e.g. via Amazon
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Mechanical Turk and a subset of annotators are not trying to create the correct label sequence. A small

payment is usually given for completed annotation and this has given rise to spammers that will annotate at

random or use the same label for all annotations. Reliable annotators can be identified by comparing label

sequences to a gold standard, but in the absence of a gold standard, different measures of inter-annotator

agreement are used. The intuition is that reliable annotators will correlate with each other, while spammers

will stand out because of their randomness.

MACE uses an item-response model to calculate annotator competence rather than an annotation metric.

The underlying model assumption is that the annotator will produce the correct label sequence if he tries

to. In this case with only expert annotators, the assumption should be valid. The key difference between κ

and item-response models is that the former has a focus on annotators while the latter has a focus on the

item. Using Pearson’s ρ, the authors show that the annotator competence metric has a higher correlation

with annotator proficiency than κ.

Annotator competence on both full and binary label set is computed. The competence estimate is

interesting in both tasks, but the statistic will be especially informative in the binary task together with

majority voting and κ (Hovy et al., 2013).

3.2.3 Analysis

Majority voting The definition of majority in the majority voting scheme has a large impact on the

agreement measure as can be seen in Table 3.1. Agreement on the amount of stød annotations fluctuate

between 78% (Nagree >= 2) and 55% (Nagree >= 4) out of 78 possible stød assignments (according to

Any-majority). More informative statistics are necessary to evaluate the quality of the transcriptions.

Majority Any Tie Majority All Total #labels

#stød 78 61 50 43 995

Table 3.1: Number of stød annotations using different majority definitions: Any=1 annotator annotates for

stød, Tie=2 annotators agree on stød, Majority=3 annotators agree, All=4 annotators agree.

Inter-annotator agreement Tables 3.2 and 3.3 are pairwise Cohen’s κ confusion matrices.

When evaluating on the full label set, there are 178 observed labels and 995 items. All pairwise com-

parisons as well as the per-annotator average κ are above the lower bound of 0.6 for adequate annotation.

The mean agreement2, 0.74, is also significantly above the lower bound. With a standard deviation of 0.02,

2Average of Avg. κ.
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IPA1 IPA2 IPA3 IPA4

labels 107 94 99 107

IPA1 1.00 0.69 0.74 0.74

IPA2 0.69 1.00 0.75 0.76

IPA3 0.74 0.75 1.00 0.78

IPA4 0.74 0.76 0.78 1.00

Avg. 0.72 0.74 0.76 0.76

Table 3.2: Inter-annotator agreement confusion matrix calculated with Cohen’s κ on the JHP sample. The

basis for this matrix is all observed labels. #labels=the number of labels used by that annotator.

only IPA1 is more than one standard deviation below the mean. This is high agreement considering that

any single annotator only uses at most 60% (107178 = 0.601) of the full label set and that annotators only have

55 labels in common.

The reason can be seen in Figure 3.2. The values on the x-axis are raw agreement counts per item. The

raw count is 0 if the annotator assigned a label none of the other annotators used for a given item and 3 if

all annotators assigned the same label. The bar plots are different from the confusion matrix in the respect

that they compare one annotator to all other annotators per item instead of making a global and a pairwise

agreement comparison.

The graphs suggest that there is a prevalence of a subset of labels and that the annotators agree on

these labels. In such a scenario, it is likely that the disagreements are few and not systemic. The plots for

IPA2, IPA3 and IPA4 all show a Zipfian tendency. We assume that the label distribution depends on word

distribution, i.e. the distribution of labels will change if word distribution changes, but it does not follow

that the label distribution should be Zipfian. It seems reasonable to attribute the difference to pronunciation

variation and inter-annotator disagreement.

The distribution for IPA1 is not Zipfian. IPA1 assign different labels than other annotators for approx-

imately 50 items. This is reflected in the κ statistics in Table 3.2 where IPA1 receives the lowest pairwise

and average agreement scores.

To investigate the assumption that annotators agree on a small subset of highly frequent labels, the label

frequency histogram is plotted in Figure 3.3a. Indeed, there is a small number of prevalent labels and as can

be seen from Figure 3.3b, the annotators agree to a high extent on this small subset. The only differences
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Figure 3.2: Pairwise label agreement by annotator.

between the plots in Figure 3.3 are the missing [a] from 3.3b and [n?] from 3.3a and the sequence of the

labels and label pairs.

Another result that can be extracted from the plots in Figure 3.3 is that the annotators only agree on

one or two labels containing stød. The raw agreement counts for stød in 3.3b is 36 and 29. Note that the

method of counting used here and in Table 3.1 is not directly comparable. Majority is defined using >=.

As a result, an item with 3 identical labels would count as 1 in majority voting using Nagree >= 2 but

as two agreement pairs because annotator A1 used that same label as A2 and the same label as A3. This

difference is important to not be deceived into believing that the two highly frequent pairs make up 90%

of the stød agreement in Table 3.1. Applying majority counting to the stød labels in Figure 3.3b gives an

agreement of 6 and 11.

Binary labelling While it is a positive indication that two labels containing stød are among the 30 most

frequently used, it is not a strong enough indicator that stød annotation is reliable. To further investigate

the reliability of stød annotation, the agreement of the binary label set, which only considers stød, is studied

next. This filtering is motivated by annotators disagreeing only on a segment, but not on stød annotation,

which is also the case in Figure 3.1.
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(a) Label frequency (b) Label pair agreement frequency

Figure 3.3: Histograms of raw label frequency (a) and raw label pair agreement frequency (b) across all

annotators. Two assignments of the same label to an item is one agreement pair. Histograms only display

the 30 most frequent labels.

The label sequences IPA1-segment, IPA2-segment, IPA3-segment and IPA4-segment are binarised, e.g.

[æ:?], [D?] [D:G?] and [?n] in Figure 3.1 become 1 and the remaining labels become 0.

A side-effect of this filtering is a skewed data set. The non-stød class represents 92%-96% of labels

assigned3 and would not produce meaningful statistics for the interpretation of reliability of stød annotation.

Again, the chance agreement correction of κ becomes important for the trustworthiness of the statistical

analysis.

The agreement scores for the binary label set in Table 3.3 are even higher than the κ-scores in Table 3.2.

This is expected as a labelling task with two labels is easier than a task with 178 (observed) labels, even

though prosodic annotation is a very difficult task. The average agreement is above 0.8 for all annotators

and the mean agreement is above 0.8 at 0.82. The standard deviation is 0.02 and again IPA1 is more than

one standard deviation below the mean.

Figure 3.4 illustrates the background for the κ-scores. To reduce skewness, the analysis ignores items

which have not been labelled with stød by any annotator. Agreement statistics for the remaining items

will only focus on the agreement of stød annotation. As expected from Table 3.1, the annotators agree

completely on 43 label assignments. There is a low number of midrange disagreements and 20-27 label

assignments per annotator where they do not agree with any other annotator.

Error analysis The high number of disagreements contradict the hypothesis that stød annotation as

reliable and warrants manual investigation. I discovered that off-by-one errors in the alignment are frequent.

In 10 cases, the assignment of stød labels are off-by-one. In Figure 3.1, an alignment error is visible in the

3By majority counting.
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IPA1 IPA2 IPA3 IPA4

#stød 53 58 62 59

IPA1 1.00 0.78 0.84 0.85

IPA2 0.78 1.00 0.75 0.88

IPA3 0.84 0.75 1.00 0.83

IPA4 0.85 0.88 0.83 1.00

Avg 0.82 0.80 0.81 0.85

Table 3.3: Inter-annotator agreement confusion matrix calculated with Cohen’s κ on the JHP sample. The

basis for this matrix is binary +/- stød labels. #stød=the number of stød annotations made by that

annotator.

labelling of the second to last interval in tier IPA3-segment ([?n
"
]). It is an error because stød is prefixed

to the phone [n
"
] rather than a suffix. This is not a phone or segment according to any definition of IPA

known to the author and not a well-formed label. As is reflected in the transcription of the entire word in

tier IPA3, stød should have been affixed to the previous phone.

Additional examples where stød labels are off-by-one can be seen in Figure 3.5. The discrepancy can be

caused by genuine disagreements or be due to the different interpretations of semi-fine IPA annotation. In

3.5a, the annotators disagree on whether to label the sound they heard as [æ:?] or [æI
“

?]. Similarly in 3.5b,

the annotators disagree on [o:?] vs. [o5
“

?]. In 3.5c, the disagreement also stems from whether to use [y:], the

long version of the vowel, vs. a combination of [y] and [5
“
]. While IPA1 and IPA3 most often uses two labels

Figure 3.4: Pairwise stød label agreement per item by annotator.
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with stød on the last sonorant instead of a long vowel, IPA2 and IPA4 prefers to assign a long vowel with

stød, though on one occasion, IPA2 opts for two labels.

(a) EN: High school (b) EN: Think that (c) EN: The board

Figure 3.5: Examples of off-by-one alignment errors.

As mentioned in Section 2.1.1, prosodic features do not only affect the segment they are affixed to, but

also the phonetic context. The scope of prosodic features are in fact syllables rather than segments and it

is possible that stød influences both segments. However for statistical purposes, a discrepancy such as this

will give misleading results and the notational variation must be addressed.

In all off-by-one examples found by the author, the reason for the discrepancy was either an alignment

error as in Figure 3.1 or due to the annotator label choice for the vowel in a syllable. Irrespective of the

label choice of the annotators, stød is annotated on the nucleus of the same syllable.

Correction We create a modified version of the stød annotation where alignment errors were corrected

and cases where stød was annotated on the same syllable, as in Figure 3.5, were aligned to each other.

These modifications entailed all 10 cases found during manual inspection. The corrected pairwise stød label

agreement is shown in Figure 3.6.

Correction produced a different picture than was painted by Figure 3.4. A significant reduction in

disagreements, i.e. where an annotator labelled an item with stød and no other annotators did, and an

expected increase in total agreement pairs is observed. There is a clear indication of reliability in stød

annotation.

Competence This is furthermore indicated by the annotator competence statistics in Table 3.4. It is also

clear that competence statistics for the original label set and the corrected stød labelling are correlated.
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Competence phone uses the observed phonetic annotation as labels and Competence stød refers to the binary

labelling corrected for alignment errors.

Annotator #labels Competence phone #stød Competence stød

IPA1 107 0.760 53 0.770

IPA2 99 0.813 58 0.840

IPA3 94 0.823 62 0.894

IPA4 107 0.833 59 0.856

Table 3.4: Annotator statistics on the JHP sample computed with item-response models trained with

MACE.

3.2.4 Chapter conclusions

Based on the analysis in Section 3.2.3, several conclusions on phonetic annotation and prosodic stød labelling

can be drawn.

Based on κ-scores and annotator competence statistics, we conclude that the phonetic annotation is

reliable. The reliability is challenged by the subjective nature of phonetic annotation tasks, different label

sets as a consequence of different interpretations of loosely defined annotation guidelines and a restricted

common label set. However, because annotators agree on highly frequent labels, they achieve high κ scores.

Based on manual error analysis of stød annotation, errors in the phonetic alignment become apparent

and the problem is caused by the different label sets used by the annotators, subjective interpretation of

acoustic events and the lack of a definition of syllables in segmental phonetics that can be interpreted

computationally.

Figure 3.6: Corrected pairwise stød label agreement per item by annotator.
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Correcting for alignment errors, κ-scores and annotator competence statistics indicate a high degree of

agreement and in turn points to stød annotation as a reliable source of information if annotated by experts.

Because at most 7.8% items are stød-bearing, the agreement and competence statistics are challenged by

the skewness of the data set. The chance agreement correction of κ and item-response model should correct

for this skewness and is supported by the raw agreement counts that only focus on the stød label.

Stød annotation by experts is reliable according to the findings in this chapter. Reliable annotation

is crucial for quantitative analysis of stød in Chapter 4 and because stød annotation is reliable, acoustic

features can be extracted from sound samples where stød is realised and used to train statistical models.

These statistical models can be used in classifiers to detect stød in unlabelled data if salient acoustic features

are extracted.
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Chapter 4

Stød detection

In Chapter 3, a focused study on the reliability of the prosodic annotation of stød concluded that stød

labelling is reliable if the annotation has been carried out by phonetic experts. The present chapter will

investigate how this knowledge can be used and audio recordings with aligned stød annotation will form the

basis of the study. Because stød annotation can be relied upon to be accurate when annotated by experts,

the phonetic transcription will indicate when stød is realised in a recording and make statistical analysis of

stød feasible. However, sound is a continuous and complex signal that must be decomposed before acoustic

features that describe stød can be extracted. Some acoustic features are known to be predictive of stød

such as voice quality features, but a broad investigation of stød-correlation has not been conducted. The

study performed in Hansen (2015) is thorough, but the data material is restricted to a single male speaker

and read-aloud text in lab conditions. Statistical analysis can estimate how salient individual features are

for stød detection and use this knowledge to select features to train classifiers to detect stød.

Stød is difficult to describe because it’s properties are not clearly defined. As previously mentioned, stød

is a prosodic and perceptual feature. The manifestation of one or more of the acoustic correlates of stød will

signal stød only when it occurs on a sonorant. This simple working definition of stød is inadequate to describe

the actual distribution of stød, but illustrates well a problem for stød detection: it is unknown whether it

is possible to detect only stød. The known acoustic events that signal stød can occur where stød is not

perceived and same cocktail of acoustic signals may not be realised every time a stød is annotated, especially

if more than one strategy to signal stød exists (Hansen, 2015). Much research has gone into characterising

stød and the working description in Fischer-Jørgensen (1989); Hansen (2015) and several papers by Grønnum

& Basbøll reduces to characterising stød as “creak, but more than creak”.1 An explorative investigation of

1The author’s own paraphrase.
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acoustic feature correlation with stød cannot provide an answer, but can indicate areas of research where

an answer to the ephemeral “. . .more than creak” can potentially be found.

If the statistical models are not able to describe stød, detection of stød might still be possible if stød

is detected jointly with the stød-bearing sonorant. Such a classifier does not solve the puzzle of “. . .more

than creak”, but can detect different classes of stød (stød-bearing phones) if sufficiently accurate. Such a

classifier could be applied to annotate larger corpora of spoken data and create a better basis for statistical

analysis in addition to being useful to downstream NLP applications.

The start of this chapter is devoted to a description of the data used to estimate statistical models

as well as the preprocessing steps, phonetic alignment and feature extraction process. The evaluation of

feature salience in Section 4.2 is formulated as a feature ranking experiment using decision tree classifiers

to analyse the features introduced in Section 2.4. Section 4.3 presents the stød detection experiments which

are formulated as a binary classification task in Section 4.3.3 and a multi-class classification task in Section

4.3.4.

The experiments use the machine learning library scikit-learn (Pedregosa et al., 2011) extensively. Scikit-

learn is implemented in Python and managed by researchers at INRIA, France. Machine learning algorithms

like Logistic Regression, Support Vector Machines (SVM), Naive Bayes (NB), Gaussian Mixture models

(GMM) and perceptron are implemented, as well as feature projections such a Linear Discriminant Analysis

and Principal Component Analysis (PCA). Feature ranking using tree classifiers and feature selection and

feature-space transformations are also possible as well as normalisation, scaling and preprocessing. Data

management is handled using a library named pandas (McKinney, 2012).

4.1 Data

The JHP sample from Chapter 3 is modified and reused in this chapter. The length of the JHP sample is 1

minute 38.54 seconds. The annotation starts 16.67 seconds into the recording and ends 91.95 seconds after

the start of the recording. In the annotation study, initial and final silence are counted as 2 items. When

audio is sampled at a 10 ms rate, initial and final silence add to the skewness of the test data. Based on

start and end times, unannotated parts of the JHP sample are discarded.

Stød support in the JHP sample, i.e. the number of 10 ms samples that are labelled with stød, ranges

from 339-554 (depending on the annotator) out of a total 7535 samples, if a 10 ms sampling frequency is

applied. Thus 4.5-7.4% of the data is labelled as stød-bearing. This is a very low number of samples and

because statistical analysis relies on the law of large numbers, more data is necessary to apply statistical

analyses to the acoustic features. Data from three corpora will be used in the experiments in this chapter.
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The JHP sample will serve as a test set, while data from DanPASS and DK-Parole will serve as training

data. The training data is chosen because it has been manually annotated by phonetic experts and it is the

only one of its kind available.

4.1.1 Danish Phonetically Annotated Spontaneous Speech corpus (DanPASS)

DanPASS (Grønnum, 2006, 2009) consists of monologues and dialogues of unscripted speech. Only the

monologues are used in this experiment and were collected during three separate tasks: two description

tasks and a map task.

The first task is a description task. The speaker is presented with a network of geometric shapes and

asked to describe the network. The task was designed to reveal whether the speakers look ahead and signal

utterance boundaries using prosodic information prior to the boundary.

The second task is a map task where the speaker guides the experimenter through 4 different routes on

a city map.

In the last task, the speaker is given a model of a house and the individual building blocks of the house.

The speaker describes how to assemble the blocks to resemble the house.

The monologues were recorded in 1996 using a Sennheiser Microphone ME64 in lab conditions and later

digitised with a 48 kHz sampling rate. The recorded speech is one-way communication with the experimenter

who offered no feedback once instructions were given.

The group of speakers consisted of 13 men and 5 women aged 20-68. They all originate from the Greater

Copenhagen area and had no known language deficiencies. The monologues total 2 hours and 51 minutes

of speech, 1075 word forms and 21170 running words.

The DanPASS annotation includes orthography, detailed and simplified parts-of-speech and semi-fine

IPA annotation at the word and syllable levels. Phonetic annotation was carried out by two annotators

separately using Praat and in all, 3 pairs of annotators have been involved. For each file and speaker, the

annotation was compared and in cases where the annotators disagreed, Grønnum served as arbiter.

An overall good agreement between annotators is cited as an indication of the validity of the phonetic

annotation. With regards to the reliabilty of stød annotation, there is an overlap between the annotators

used in DanPASS and the JHP sample.

Because only the monologues are used, the DanPASS sub-corpus will be referred to as DanPASS-mono

in subsequent chapters.
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4.1.2 DK-Parole

DK-Parole (Henrichsen, 2007) contains text from newspapers and recordings of read-aloud speech from a

single male speaker. Like DanPASS and JHP, Praat TextGrids contain all annotations. The annotation

uses time-coded X-SAMPA transcription and is not as fine-grained as the DanPASS annotation because the

granularity of the phonetic transcription is at the word level. The transcription is manual and there is an

overlap with the annotators from the JHP sample.

The audio was recorded in 2006 and 2008 at Copenhagen Business School. The speaker was situated in

a lab and the recordings are without noise. DK-Parole is much larger than DanPASS-mono, approximately

17 h. To balance the need for additional data and letting a single male speaker dominate the data, a sub

corpus of 48 min. was selected randomly from DK-Parole.

For simplicity, the 48 min DK-Parole sub-corpus will be referred to as Parole48 henceforth.

4.1.3 Phonetic alignment

All phonetic annotations are mapped into IPA and represented in utf-8 character encoding and a boolean

indicator variable is extracted from the phonetic annotation to indicate the presence of stød in a sam-

ple. Unlike the phonetic transcription in the JHP sample, stress is annotated as a diacritic on phones in

DanPASS-mono and Parole48. To make the phonetic symbols as comparable as possible, stress annotation

is removed from all phonetic annotations. DanPASS-mono and Parole48 also lack a phone level alignment

as shown in Figure 4.1. Creating a phone level alignment manually was not feasible and the transcription

in Parole48 and DanPASS-mono is automatically segmented.

In ASR, alignment between transcription and sound is computed using a two-step iterative machine

learning algorithm. The method is known as embedded training using the Expectation-Maximisation algo-

rithm and computes an alignment and a segmentation at the same time. In the first step, an equidistant

segmentation of the speech data is assumed for each recording and aligned to the transcription symbols.

From this alignment, a simple model for each annotation symbol is computed in the Expectation step and

using these models, a new segmentation is computed in the Maximisation step and aligned to the transcrip-

tion symbols. The algorithm continues until a fixed number of iterations have been computed or convergence

is reached, i.e. there is little or no difference in the segmentation/alignment between each iteration.

Embedded training is scale-dependent and the data in this study (3 h 39 min. in total) cannot be consid-

ered large scale and the representation of individual labels is very small. Instead, a heuristic segmentation

approach similar to the first step in embedded training was employed to segment and align the data. The

heuristic approach applied here uses the following steps:
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(a) Phonetic transcription of mulighederne from Parole48.

(b) Phonetic transcription of forneden from DanPASS-mono.

Figure 4.1: Phonetic transcription from DanPASS-mono and Parole48. The segmentation is above segment

level and also sometimes above syllable level, e.g. [heD!C].

1. Divide a transcription D, e.g. ["kElA:n
"
] (DA: kælderen, EN: basement) , into di phones, i.e. ["k E l A:

n
"
] (I = 5)

2. Detect whether di contains annotation for duration such as [A:]

3. Weight segments d1, d2, ...dI according to duration. w(di) = 2 for all phones unless the phone is

suffixed with [:] where w(di) = 3.

4. Divide the transcription duration DT by the sum of the segment weights:

DT
∑I

i w(di)
= dti. 2d

t
i is the duration of a segment, w(di) is the duration weight of the segment at index

i. 3dti is the duration of long vowels e.g. [A:].

If the pronunciation of our example, ["k E l A: n
"
], takes 650 ms., the duration of a phone is estimated to

be 2dti = 118.18ms and the duration of a long vowel is estimated to be 3dti = 177.27ms.

The heuristic relies on the existing time-coded transcription to extract the duration of words or syllables

and uses the syllable and word boundaries to guide segmentation. The quality depends on the manual

annotation of time-codes and the original annotation level, i.e. word-to-phone segmentation is likely to
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be less accurate than syllable-to-phone segmentation. We have applied the heuristic alignment to map

word-level and syllable-level alignment to a phonetic alignment.

4.1.4 Feature extraction

All features described here are extracted using short-term acoustic analysis (See Section 2.4). We use three

different software toolkits – Praat, Covarep and Kaldi – to extract the features described in Chapter 2,

because all features cannot be extracted using a single toolkit. We use a sample shift of 10 ms because the

application scenario is ASR where 10 ms seems to be a de facto standard2. The size of the context window

used depends on the feature.

Amplitude and harmonics-to-noise ratio are extracted using the To Harmonicity (cc) ... function in

Praat. The function outputs one measurement for amplitude and an n-best list for harmonics-to-noise ratio

measurements. The most likely hypothesis is chosen as harmonics-to-noise ratio for experimentation.

24 MFCC features, 8 glottal flow parameters and 383 phase features are extracted using Covarep. Co-

varep is a repository for speech analysis tools implemented in Matlab/Octave. Degottex et al. (2014) created

the repository to share implementations of complex methods for speech analysis such as phase processing,

glottal flow parametrisation and pitch tracking with other researchers and make it easier to reproduce

research results.

39 PLP, 3 probability-of-voicing, 3 Pitch and 3 ΔPitch4 features are extracted using Kaldi (Povey

et al., 2011). The aims of the Kaldi project is similar in many respects to Covarep. The Kaldi Pitch

Tracker (Ghahremani et al., 2014) implements a version of the Robust Algorithm for Pitch Tracking (Talkin,

1995)5. The main difference is that the algorithm does not make binary voicing decisions for a frame, but

assigns a probability and in unvoiced regions, interpolate pitch values from adjacent frames in a straight

line.

4.1.4.1 Feature preprocessing

As a first step, audio is band-filtered through a low-pass Hann filter. The band filter removes frequencies

above 1 kHz. The boundary was chosen manually by the author by listening to the DanPASS monologues,

so stød is maximally audible while removing high frequencies. Then all features mentioned in Section 2.4

are extracted from the band-filtered audio.

2See the CMU Sphinx FAQ: http://www.speech.cs.cmu.edu/sphinxman/FAQ.html. All English Kaldi recipes also use 10

ms sampling shift.
325 PDM and 13 PDD measurements.
4First and second order derivatives are included.
5Before calculating pitch values, the Kaldi Pitch tracker also low-pass filters audio at 1 kHz.
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Harmonics-to-noise ratio becomes undefined for non-harmonic regions of speech. Praat assigns a value

of −200 to these regions which is problematic for estimation of means and variances, which is necessary for

machine learning algorithms that assume a Gaussian distribution of the data. To alleviate the problem, we

compute the minimum harmonics-to-noise ratio value HNRmin on the harmonic regions of speech in the

training data, i.e. where HNR�=-200. HNRlowbound is then HNRmin rounded down to the nearest 10. The

equation is

HNRlowbound =

⌊
HNRmin

10

⌋
∗ 10 (4.1)

All samples with harmonics-to-noise ratio values of -200 are reset to HNRlowbound. Test data is nor-

malised using HNRlowbound calculated on training data. If resetting is not done, the subsequent scaling

will be meaningless as the value -200 is arbitrary and chosen by the developers of Praat.

Subsequently, the acoustic features are standardised. Standardising features is a prerequisite for many

machine learning classification methods such as GMM or SVM. A standard approach is to apply mean

subtraction or centering followed by feature scaling. In the first step, we subtract a mean value calculated

on the training data to ‘center’ the data. We then divide each feature by that features standard deviation

to scale the variance across features. By standardising the parameter scales, the information contribution

of a feature with a range of e.g. [-0.5, 0.5] (Peak Slope) is not overshadowed by a feature with a range of

[0, 440] (Pitch).

The aim is to make the data resemble a Gaussian with zero mean and unit variance, because classifiers

may not perform as expected unless data is properly standardised. However, mean and standard deviation

can be computed on different basis. The most common examples are per utterance, recording session,

speaker or corpus. In ASR, Cepstral Mean and Variance Normalisation subtracts a mean estimated per

utterance and is designed to reduce channel noise whereas Vocal Tract Length Normalisation estimates a

mean per speaker.

We experimented with speaker-, corpus- and gender-based means but did not observe any change in

performance. A simple global cross-corpus feature standardisation is computed on the training set and

applied to the acoustic features of both the training and test set.

4.2 Feature salience

Using all the extracted features from Section 2.4, each frame is represented by 120 features. Out of these

features, some are known correlates of stød and some are not guaranteed to be salient for stød detection.

Salient features have been discovered using mainly qualitative methods and a multi-speaker quantitative
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analysis has not been conducted. Salient features can be discovered and the salience of existing correlates

can be ranked using statistical analysis. The analysis results can also guide feature selection and elimination

and reveal novel correlates that can suggest new directions where an answer to “. . .more than creak” can

be found. It is also interesting to compare feature salience in training data to test data.

For dense features, 120 is a high dimensional space and it is unlikely that an ASR system will benefit from

this many features. The limited training data and the high number of features require that steps be taken

to avoid overfitting. Many of these features have been used to detect emotion or speech disorders (Degottex

et al., 2014) and a model could learn to detect other facts about the training data. As the size of the feature

vector increases, an ever higher number of samples are required to model the data accurately. This is the

well-known effect of the curse of dimensionality. This is one of the primary reasons for including more data

into the analysis and also a reason to investigate whether it is possible to reduce the feature space.

Reducing the number of features will give insight into the nature of stød by revealing the features which

provide the most relevant information for stød detection. For a subset of information-rich features, it would

be possible to create higher-order polynomial features for classification. Hard classification problems can

sometimes be solved using polynomial and interaction features, e.g. if a feature set is not sufficient to

separate the classes in the feature space. Especially, interaction features could give additional insight into

the nature of stød.

4.2.1 Feature ranking

We perform a feature ranking experiment using the extremely randomised trees algorithm (extra-trees)

which estimates an ensemble model or a forest of randomised decision trees. Each decision tree is fully

grown top-down by node splitting and before each split, a random subset Fr of all features F is chosen and

for each feature fi in Fr, a cut-point is chosen at random. The feature fi with cut-point ai which most

improves entropy after the split is used to split the data in the node. The reduction in entropy is calculated

as the entropy at the parent node p subtracted entropy at the child nodes (nleft and nright) and entropy is

weighted by sample size at the nodes (nnode):

reductionf,p = entropyp ∗ np − entropyleft ∗ nleft − entropyright ∗ nright (4.2)

In concrete terms, feature importance is the total reduction in entropy provided by a feature. Because

a feature can be used multiple times with different cut-points in a decision tree, we sum the relative

entropy reduction (
∑Pf

p reductionf,p) of a feature f across all parent nodes that branch on feature f (Pf )
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in the tree before normalising by the total number of samples (N) and by the sum of feature importances

(
∑F

f Importancef ):

ImportanceNormf =
1∑F

f Importancef
∗
∑Pf

p Reductionf,p

N
(4.3)

Decision trees are notoriously unstable because a different tree can be constructed to achieve the same

classification. If the structure is different, the feature ranking will change. By estimating a large forest of

trees where branching decisions are selected based on random cut-points and random feature subsets, we

can compute robust estimates of feature importances by averaging over trees in the forest, because the effect

of irrelevant features are reduced.

In other words, a feature can be ranked by the relative depth at which it is used to split a node in a

decision tree. The features used at nodes close to the root node of a decision tree are more discriminative

than features used near the leaf nodes of a tree. The motivation is that features used at the top of a

tree contribute information that can discriminate more samples in classes. The fraction of samples, that

a feature contributes to discriminate, is averaged over many trees and is used to rank features by relative

importance (Geurts et al., 2006).

4.2.2 Experiment setup

Using the extra-trees algorithm, we train a forest of decision trees on various subsets of the training data.

Bootstrapping, or sub-sampling with replacement, ensures that the same data can be used to train decision

trees which is necessary due to the under-representation of stød-bearing samples in the data. With limited

training data available, bootstrapping provides more robust estimates than reducing the samples in each

class will afford.

Each forest consists of 1024 decision trees, the classes have an equal weight and entropy is used as the

criterion to measure the quality of splitting a node. The minimum number of samples required to split a

node is 2 and there must be at least one sample in a leaf node.

Because node splitting is scale invariant, features are not preprocessed as in Section 4.1.4.1 and non-

normalised data is used for feature ranking. However, the amount of samples in each class is held equal, so

important features for stød detection are not drowned by features that classify non-stød classes, which is

over-represented in the data. Decision trees were chosen over parametric methods such as L1 regularisation-

based feature selection because Gaussian distribution of the data is not assumed. The motivation is to

make the feature ranking independent of implementation differences between Praat, Covarep and Kaldi and

standardisation.
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Figure 4.2: Feature importance for discriminating between [A:?] vs. [A:]: Train data.

Feature ranking reveals that out of 120 features, 116 are salient for stød discrimination in the training

data. The features that are not important for discrimination are PDD features 1-4 in the training data and

PDD 5-6 in the test data.

4.2.3 Stød-bearing vs. stød-less

A comparison of feature salience for discrimination between the phones [A:?] vs. [A:] can be seen in Figures

4.2 and 4.3.

In Figure 4.2, PDD and PDM occur frequently among the top 40 features. Pitch, energy, Peak Slope

(PS), Rd, quasi-open quotient (QOQ) and the parabolic spectral parameter (PSP) are also present in the

figure. Pitch and Rd are salient in the test data as well as the generally prevalent phase distortion means

(PDM). Also raw-log-pitch-delta and harmonics-to-noise ratio (HNR) are salient according to Figure 4.3.

Finally, a two-part ranking experiment that takes into account all annotations with stød and their stød-

less counter-parts have been conducted. The distribution of stød is unequal between training and test data

as well as within the data sets. The raw frequency can be seen in Appendix A.1.
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Figure 4.3: Feature importance for discriminating between [A:?] vs. [A:]: Test data.

Instead of filtering globally such that the amount of stød-bearing samples and stød-less samples have

the same size, the individual classes in each data set are filtered to have an equal number of samples in each

class. If no samples for a class are present in one of the data sets e.g. as is the case for DG?, all DG? and DG

samples in the data are excluded from the analysis.

All remaining phones were used to create the forest of decision trees. The resulting feature rankings can

be seen in Figures 4.4 and 4.5. The second part of the experiment entailed converting the phones into a

boolean value of +/- stød and repeating the experiment. The feature rankings can be seen in Figures 4.6

and 4.7.

To discriminate between stød-bearing and stød-less samples, Peak Slope, probability-of-voicing, energy

and Δenergy, intensity and quasi-open quotient are salient in Figure 4.4. Phase-related features also figure

in the top 40, but do not dominate as previously observed.
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Figure 4.4: Feature importance for discriminating between stød-bearing and stød-less samples in train data.

To discriminate phones in the test data, phase features, pitch, and Peak Slope are salient again, but

log-pitch figures as important in Figure 4.5 in contrast to 4.4.

To detect stød in training data across segments, i.e. in the binary case, probability-of-voicing, energy

and pitch features with Δ-derivatives, Peak Slope, normalised amplitude quotient, quasi-open quotient,

intensity, harmonics-to-noise ratio and H1-H2 are relevant features.

This is a very striking difference to the test data where phase features figure frequently as the most

salient features in addition to Peak Slope, energy and pitch information.

4.2.4 Analysis of feature ranking

The difference in salient features between training and test data indicate that feature selection may be

appropriate for detection experiments. Consistently, phase features, Peak Slope and to a lesser extent

HNR, probability-of-voicing and pitch-related features have figured among the most salient features. As

expected, the ASR-related MFCC and PLP features also add discriminative information, but their Δ and

ΔΔ-derivatives consistently figure as the least informative features.
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Figure 4.5: Feature importance for discriminating between stød-bearing and stød-less samples in test data.

That phase information is salient for stød detection is to my knowledge a novel insight. It is an interesting

discovery because PDM and PDD rank higher than many ASR-related features such as ΔPLP and ΔΔPLP-

derivatives and MFCC features. If this finding can be corroborated in the analysis of other corpora, phase

features might be useful information to add to acoustic models in ASR.

A common set of features that are salient for phone discrimination and stød detection emerges from

studying Figures 4.4 and 4.6. The X-axes suggest to select PDM features 1,2,4,7,8,9,10,13 and 14, PDD

10-13, MFCC and PLP features 1-6, Peak Slope, Rd and pitch for stød detection. The top 10 features would

be PLP 1-4, PDD 10-13, Peak Slope, probability-of-voicing and log-pitch.

If the classic ASR features MFCC and PLP are not included, the top 10 most salient features are PDD

10-13, PDM 13-14, Peak Slope, log-pitch, probability-of-voicing and Δprobability-of-voicing. The most

salient ASR features are PLP and MFCC 1-4. Thus, the ranking experiment indicates that stød detection

in ASR could benefit from adding the following features:

1. MFCC 1-4 if the system is based on PLP features and vice versa
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Figure 4.6: Feature importance for binary classification of stød in train data.

2. Peak slope, log-pitch, probability-of-voicing and Δprobability-of-voicing

3. PDD 10-13, PDM 13-14

Subsequently, the feature sets above will be referred to as speech recognition feature set, glottal feature

set and phase feature set. The set comprised by the combination of these features will be denoted select+.

Energy also ranks highly in the ranking experiments, but has not been selected as a salient feature. The

energy, Δenergy and ΔΔenergy features are part of both PLP and MFCC features where they replace the

zeroth coefficient and as such included in all ASR experiments by default.

The feature ranking does not take into account feature interaction. The high dimensional feature space

made it impossible to use polynomial features in the ranking experiments due to hardware, software and

time limitations. Calculating polynomial features on select+ only did not alleviate the limitations.

4.3 Detection experiments

The feature salience analysis Section 4.2.4 indicates a subset of features that are correlated with stød. In

this section, classifiers trained on select+ features are compared to classifiers trained on all 120 features.
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Figure 4.7: Feature importance for binary classification of stød in test data.

Additionally, PCA has been applied to project the full data set into 40-dimensional feature vectors which

will also be reported on. The motivation is that select+ includes the most salient features, but a large

number of features have been discarded including features that have previously been reported to be salient

for stød. Feature projection may be able to retain more information and outperform feature selection.

The problem of stød detection can be formulated in two ways: a binary and a multi-class classification

task.

The binary classification task is the most intuitive formulation. Classifiers are trained in an effort to

learn statistical models that predict the occurrence of stød. The classifier could add a binary or probabilistic

feature to the input vector of a downstream NLP application. If the downstream application is ASR, the

feature can inform discrimination between stød-bearing and stød-less sonorants.

In the multi-class formulation of stød detection, models that can discriminate between stød-bearing

phones and their stød-less counterparts are estimated. Instead of creating a classifier that classifies a

sample as stød-bearing or stød-less, we try to predict several stød classes, i.e. stød-bearing phones which is

analogous to mixing up in ASR. The model will not be able to untangle which features are used to detect
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stød and which are salient for a phone, but this discrimination is what stød detection would be useful for

in downstream NLP applications such as ASR.

4.3.1 Annotation transformation

According to stødbasis, stød is annotated on

1. A long vowel

2. The subsequent sonorant if the vowel is short

The stød detection experiments are repeated on data where stød annotation is extended to include the

short vowel in the case of 2.

4.3.2 Classifiers

NB classifiers provide good classification performance if the training data is biased. Large-margin classifiers

such as SVMs usually perform well on large collections of data and can find a better decision bound-

ary than NB classifiers. Scikit-learn wraps libsvm (Chang, Chih-Chung and Lin, Chih-Jen, 2011) and

liblinear (Fan et al., 2008) for training large margin classifiers. Also Logistic Regression (LogReg) and

GMM classifiers will be evaluated. Because of the high dimensionality of the data, Stochastic Gradient

Descent optimisation is used to minimise the objective function for LogReg and SVM.

The parameters of each algorithm are found by exhaustive grid search on a specified parameter space

and 10-fold cross validation on 90% of the training data and evaluated according to F1 on 10% held-out

data. The classifiers are sensitive to the regularisation parameter α and values ranging from 10 to 0.00001

have been searched.

Using the best performing SVM and LogReg classifiers, different sample weights will be used to re-

estimate the classification boundary and maximise F1. If the samples for the stød-bearing class(es) in the

data are noisy, a reduced sample weight for that class could improve the decision boundary by reducing

the amount of false positives and noise could have been introduced by both the manual annotation and

the heuristic alignment. Vice versa, if the number of false negatives is high, a higher sample weight for

the stød-bearing class could improve classification. Setting sample weight for all classes to 1 is equal to no

sample weight.

The GMM classifier was not trained using cross validation. Instead, grid search over the number of

expectation-maximisation iterations and covariance types6 was performed. GMM parameters (weights,

means and covariances) are initialised 50 times, and the best initial parameter set is kept.

6Spherical, tied or diagonal covariances.
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4.3.3 Binary classification experiment

In the binary stød detection experiments, performance of the classifiers will be evaluated on the development

set according to recall, precision and F1-score. Precision is measured as

Precision =
True positives

True positives+ False positives
(4.4)

For a perfect classifier, precision (and recall) becomes 1. As the proportion of False positives increases,

precision decreases. In the context of the experiments in this chapter, precision can be described as the

ability of a classifier to not classify samples that are stød-less as stød-bearing.

Recall is measured as

Recall =
True positives

True positives+ False negatives
(4.5)

Recall will decrease as the proportion of False negatives increase. Recall is interpreted as the ability of

a classifier to label all samples in the data annotated with stød as stød-bearing.

F1 is the harmonic mean of precision and recall where recall and precision both have equal weight. The

parameter set and sample weight that optimises F1 on the development set is used to train the classifier on

all the training data before evaluating on the test data.

Results

To distinguish the different data sets used, experiments using the original data set will be referred to as

raw while experiments using extended annotation will be denoted as extended. In addition, the feature set

names full, select+ and PCA will indicate the acoustic features used in the experiment.

The classification results on development data with classifiers trained on the full features set is displayed

in Table 4.1.

Grid search finds regularisation values from 0.001 and smaller (SVM and LogReg.) indicating that the

best performance is obtained with sparse statistical models. This is an indication that some parameters

are superfluous for the classification task, i.e. the coefficients for some features become zero and does not

inform the classification.

F1 is maximised using a sample weight of 0.3 for the stød-bearing class in the raw condition. When the

annotation is extended, we see an increase in F1 for all classifiers with the exception of GMM. The optimal

sample weight found in the extended condition for both classifiers is 0.4, which is higher than the sample

weight found in the raw condition.
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Raw Extended

Classifier Precision Recall F1 Precision Recall F1

NB 0.10 0.69 0.18 0.14 0.69 0.24

GMM 0.08 0.94 0.14 0.02 0.09 0.03

LogReg 0.13 0.79 0.22 0.17 0.76 0.28

LogReg+sw 0.24 0.40 0.30 0.22 0.61 0.32

SVM 0.13 0.80 0.22 0.17 0.78 0.28

SVM+sw 0.27 0.36 0.31 0.21 0.60 0.32

Table 4.1: Precision, Recall and F1 for classifiers trained on the full feature set. The best metrics in a

column is bold faced. LogReg and SVM was refit using sample weight 0.3/1 in the raw condition and 0.4/1

in the extended condition for stød-bearing/stød-less classes, respectively.

4.3.3.1 Classification with feature selection

The experiments are repeated using the select+ feature set and the results are reported in Table 4.2. Apart

from the feature set, the experimental setup is identical to the experiments in the section above.

Raw Extended

Classifier Precision Recall F1 Precision Recall F1

NB 0.12 0.31 0.17 0.16 0.32 0.21

GMM 0.12 0.76 0.21 0.12 0.76 0.21

LogReg 0.14 0.73 0.23 0.15 0.68 0.24

LogReg+sw 0.18 0.50 0.27 0.19 0.43 0.26

SVM 0.14 0.74 0.23 0.14 0.74 0.23

SVM+sw 0.18 0.51 0.27 0.20 0.39 0.27

Table 4.2: Precision, Recall and F1 for classifiers trained on select+ features. The best metrics in a column

is bold faced. LogReg and SVM was refit using sample weight 0.4/1 for stød-bearing/stød-less classes in

the raw condition and 0.5/1 in the extended condition.

Comparing the raw/select+ condition in Table 4.2 to the raw/full condition in Table 4.1, the GMM clas-

sifier performs better by 0.07 F1 absolute and NB, where recall is less than half of the previous experiment,

performs worse by 0.01 F1. F1 scores are higher using select+ features for LogReg and SVM, but only by
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0.01 F1 absolute and we see that an increase in precision counterbalances a lower recall. Sample weighting

reverses the comparison and the raw/full condition obtains higher F1. The effect of sample weighting is

to even out the imbalance between precision and recall but neither LogReg. nor SVM outperforms the

classifiers in Table 4.1.

Using the extended annotation, the NB classifier performance improves by 0.04 F1 absolute compared

to the raw condition in Table 4.2. GMM results are not influenced by the change in annotation and the

SVM classifier performs identically. As the only classifier, GMM performs better using select+ features in

both annotation conditions. Sample weighting improves F1 scores, but the classifiers do not reach the same

level of performance using select+ features.

4.3.3.2 Classification with feature projection

The performance of classifiers trained on the full feature set outperforms classifiers trained on select+

features. Linear dimensionality reduction using PCA may be able to reduce the number of features and

retain more information than feature selection. Due to hardware limitations, batch PCA could not be

applied to the full feature set and Incremental PCA is applied to learn a model to project the full feature

vectors to 40 dimensions. The results can be seen in Table 4.3.

Train Development

Classifier Precision Recall F1 Precision Recall F1

NB 0.14 0.31 0.19 0.14 0.31 0.19

GMM 0.03 0.24 0.06 0.03 0.24 0.06

LogReg. 0.10 0.74 0.18 0.10 0.74 0.18

SVM 0.10 0.76 0.18 0.10 0.77 0.18

Table 4.3: Precision, Recall and F1 for classifiers trained on 40-dimensional PCA projected training data.

This experiment only includes a raw/PCA condition. Using incremental PCA for stød detection reduces

precision compared to the select+ conditions, but does not lead to an increase in recall and results in

comparatively low F1 scores on both training and development data. Incremental PCA projection to 60,

80 and 100 features have also been performed to determine whether a 40-dimensional feature space was too

small to retain salient information, but PCA projection does not outperform feature selection.
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Exponential features

1st, 2nd and 3rd order exponential features were computed on select+. The best NB classifier obtained

0.18 F1 on both training and development data and the best SVM achieved 0.22 F1. Like incremental PCA

projection, exponential and interaction features did not improve performance over classifiers trained on full

or select+ features.

4.3.3.3 JHP evaluation

In this section, classifiers trained on raw/full, raw/select+, extended/full and extended/select+ conditions

are evaluated on the JHP data set. The annotation created by IPA3 will form the basis for evaluation.

IPA3 was chosen because the MACE evaluation ranked IPA3 as one of the two most competent annotators.

The evaluation of classifiers trained on raw annotations can be seen in Table 4.4. Compared to training

and development set evaluation, a decrease in all measures are observed in Table 4.4. The spontaneous

speech genre poses a difficult task for the classifiers trained on data extracted from elicited speech. Using

select+ features leads to generally higher precision while classifiers trained on full feature set favours recall.

It is however possible to achieve the same F1 score using both feature sets.

The effect of sample weights is a large decrease in F1 in the JHP evaluation. While sample weighted

classifiers achieve the best precision, recall is between 0.13 and 0.02.

Full Select+

Classifier Precision Recall F1 Precision Recall F1

NB 0.09 0.28 0.13 0.08 0.08 0.08

LogReg 0.11 0.45 0.17 0.12 0.29 0.17

LogReg+sw (0.3/0.4) 0.18 0.08 0.11 0.33 0.02 0.03

SVM 0.10 0.52 0.16 0.12 0.33 0.17

SVM+sw (0.3/0.4) 0.19 0.13 0.15 0.24 0.04 0.07

GMM 0.03 0.28 0.05 0.07 0.73 0.13

Table 4.4: Precision, Recall and F1 evaluation for binary classification on the JHP sample. The best metrics

in a column is bold face.

In the test condition with extended annotation, sample weighting leads to worse performance than using

equal sample weighting (No sample weights). SVM achieves a higher F1 score than other classifiers using

both select+ and full feature sets in Table 4.5. While extending the annotation has a tendency to decrease
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recall on training and development data, a general increase in recall is observed for the full feature set and

a slight reduction in precision. The same influence on performance for extended annotation can be seen in

the select+ conditions.

Full Select+

Classifier Precision Recall F1 Precision Recall F1

NB 0.08 0.31 0.13 0.08 0.08 0.08

LogReg 0.10 0.59 0.17 0.09 0.31 0.14

LogReg (0.3/0.5) 0.16 0.09 0.11 0.18 0.02 0.03

SVM 0.10 0.65 0.17 0.10 0.32 0.15

SVM (0.3/0.5) 0.14 0.13 0.13 0.19 0.09 0.12

GMM 0.07 0.72 0.13 0.07 0.73 0.13

Table 4.5: Precision, Recall and F1 evaluation for binary classification on the JHP sample with extended

annotation. The highest F1 scores are in bold face.

The effect of sample weight is stable across annotation and feature set conditions. Sample weights

optimised according to F1 on development data have an adverse effect on evaluation on JHP data.

4.3.4 Discrimination experiment

A slightly modified version of the experiment in Yoon et al. (2006) will be applied to classifying stød-bearing

and stød-less samples.

This experiment will also use a SVM classifier, but with a radial basis function kernel, to classify stød-

bearing and stød-less samples. Like Yoon et al., the same underlying implementation is used and the

parameters of the SVM are left unchanged and not optimised. To evaluate performance, classification

accuracy with three feature sets will be reported:

PLP PLP features extracted with Kaldi

All All features extracted with Covarep, Kaldi and Praat

Select+ The feature set used above with 17 salient features.

Following the methodology in the existing study, PLP features will be used as a baseline. Classification

accuracy using all and select+ features will give indication whether the difference between stød-bearing and

stød-less segments is reflected to a greater or lesser extent in features not commonly used in ASR.
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Because SVMs with a radial basis function kernel scale badly to large amounts of data, the evaluation

follows a One-vs-One setup rather than the classical One-vs-All used in binary stød detection. One-vs-One

evaluation is similar to the ranking experiment in Section 4.2.4. The evaluation is considered relevant because

this experiment seeks to discover whether the input features contain sufficient information to discriminate

stød-bearing and stød-less variants of the same phone.

Five-fold cross validation scores will be reported instead of performance on 10% held out data. Five folds

were chosen because some segments have very low representation in the training data (n=9 samples). In

addition, the performance on JHP data will be reported for those annotations that are in common between

training and test data.

Annotation granularity

Yoon et al. (2006) achieve an overall classification accuracy of 69.23% on 25 minimal phone pairsin One-

vs-One evaluation and indicates that voice quality is to some extent reflected in PLP features. In the

training and test data, annotation uses semi-fine IPA and distinction is made between long and short

vowels, syllabification and creak, which results in 40 phone pairs.

This is not a distinction that is usually observed in ASR, because temporal variation is modelled with

recursive transitions in HMMs, and we therefore map to a more coarse phonetic alphabet such that e.g.

[m
"
]→[m], [a:?]→[a?] and [5

“
]→[5], which creates conditions more similar to the previous study with 29 phone

pairs.

4.3.4.1 Results

A summary of the One-vs-One five-fold cross validation results can be seen in Table 4.6. A detailed output

of the evaluation can be seen in Appendix A.2 and A.3. Similar to Yoon et al. (2006), the results of the

evaluation show that PLP features contain information pertinent to distinguish between stød-bearing and

stød-less sonorants. In both annotation granularities, the accuracy is very high – especially compared to

the experiments in the previous chapter.

The classification accuracy improves with voice quality features and select+ achieves the highest accuracy

followed by the full feature set with semi-fine annotation. In the evaluation, the variance increases together

with accuracy and the difference cannot be considered significant as the mean accuracies are within the

variance of classifiers trained on other feature sets.
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Full PLP Select+

Alphabet Accuracy +/- Accuracy +/- Accuracy +/-

Semi-fine IPA 0.781 0.168 0.769 0.144 0.803 0.176

Coarse IPA 0.922 0.058 0.885 0.096 0.853 0.119

Table 4.6: Summary table for Five-fold One-vs-One evaluation on training data using different feature

sets and alphabets. The full tables can be seen in Appendix A.The best performance for each alphabet

granularity is in bold.

4.3.4.2 Coarse phone discrimination

Using coarse IPA7, the evaluation is slightly different. The classifiers trained in the full feature set now shows

a near-perfect classification accuracy and a very low variance. The difference in accuracy is significant over

the results of the evaluation of PLP and select+ feature sets. PLP is slightly more accurate than select+,

but not significantly.

Looking at the detailed output in Appendix A, classes with low representation, such as [a:?]/[a:], [5?

“
]/[5

“
]

and [m
"

?]/[m
"
], are merged into larger similar groups. The classes with small representations were classified

with high accuracy by the SVM trained on select+ features, while the classifiers trained on full and PLP

sets had low accuracy and high variance. The absence of small classes and the increased sample size for

large classes increase the mean accuracy for classifiers trained on full and PLP feature sets. Mean accuracy

for select+ does not improve as much due to the absence of these classes.

4.3.4.3 Evaluation on the JHP sample

Applying the trained classifiers to test data shows that discriminating stød-bearing and stød-less segments

is more challenging. In Table 4.7, the mean accuracy is slightly better than chance, but the variance is quite

high. The increased variance we observe for the full feature set and PLP features on the JHP sample indicate

that they overfit to the training data. While select+ features do not obtain the same mean classification

accuracy, the variance is similar and does not indicate overfitting.

7The term coarse IPA denotes that the symbol set used is smaller than fine IPA, not that the annotation follows the

guidelines for coarse IPA presented in Grønnum (2005).
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Phones Samples Full PLP Select+

l? l 26 0.788 0.788 0.588

m? m 5 0.700 0.900 0.600

n? n 58 0.638 0.664 0.569

N? N 7 0.500 0.714 0.571

6? 6 5 0.800 0.500 0.700

Mean accuracy 0.685 0.713 0.600

Std.dev. 0.220 0.266 0.104

Table 4.7: Stød occurrence and mean classification accuracy on the JHP sample for three feature sets.

4.3.5 Analysis

4.3.5.1 Annotation

Conducting the same experiment with raw and extended annotation shows that using extended annotation

gives higher precision and F1 scores than using the raw annotation. This is especially the case with NB

classifiers. Looking at SVM, LogReg. and NB classifiers, recall remains stable while precision increases

indicating that the proportion of false positives decrease or true positives increase. The improved evaluation

suggests that some samples from the preceding vowel are in fact stød-bearing, but not annotated as such.

Extending the annotation to include the preceding vowel of a stød-bearing sonorant is counter-acting the

annotation convention related to stødbasis explained in Section 2.2.1.

Sample weights improve the performance of both SVM and LogReg. on training and development

data. It is interesting that the sample weight for the positive class (stød-bearing class) is smaller than

the negative class. To optimise classification, the decision boundary is less influenced by training samples

from the positive class. That is an indication that the class is noisy and that there are samples in the

positive class that have been wrongly labelled. The annotation error could have occurred during alignment

or manual annotation.

4.3.5.2 Features

120 is a high number of dense features. Dimensionality reduction using linear PCA was performed as a

training preprocessing step. The motivation is that feature projection could preserve some of the discrimi-

native information contained in features not included in select+ and that a reduced feature set could reduce

the time spent estimating statistical models by learning a simpler model. The drawback is of course the
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interpretability of the projected features. Training and development set evaluation shows that the perfor-

mance of classifiers trained on the 40-dimensional projected features are not as good as those trained using

simple feature selection with 17 features. Using select+ features, an improvement can be observed only

for the NB classifier while the remaining classifiers perform similarly according to F1, yet with different

precision and recall scores.

The high number of features is also due to the (almost) zero-knowledge approach to stød detection.

That a number of features are irrelevant to stød detection is therefore not surprising, e.g. in the case of

ΔPLP, ΔΔPLP, ΔMFCC and ΔΔMFCC because these features are engineered to model the speed and

acceleration of speech organs that are not correlated with the glottis.

There is also the possibility of collinear features. Both non-salience and collinearity are supported by the

regularisation parameter α for LogReg. and SVM classifiers which are constantly below 1.0. For α < 1.0,

the classifiers learn a sparse model. In sparse models, a number of learned coefficients become zero, yielding

classification that relies on information from only a subset of features.

Though feature selection outperforms PCA, an average decrease in performance of 12.5% relative F1

(0.04 points absolute) compared to the full feature set is observed for classifiers trained on select+ features.

Considering that 85.8% of the full feature set is discarded and similar performance con be obtained on

the JHP sample, select+ retains most of the salient information for stød detection. Unweighted LogReg.

and SVM classifiers achieve the same F1 score (with different precision/recall balance) using both full and

select+ feature sets.

Although salient features have been discovered, the classes are not adequately separated in the feature

space for linear classification. This is especially clear when some of the most salient features are plotted

against each other in Figure 4.8.

While some samples are separated from each other and could be classified using a linear classifier, there

are many samples from both classes that are clustered together. The optimal sample weight found using F1

optimisation has consistently been lower than 1 for the stød-bearing class. This indicates noisy annotation

and is supported by the sample weight found when re-estimating a decision boundary using logistic regression

or SVM and by the scatter plots in Figure 4.8.

4.3.5.3 Class skewness

Due to the skewness of the distribution of stød, stød detection is a difficult classification task. Accounting

for skewness using an inverse prior improves the precision/recall balance and optimising F1 rather than
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(a) Pitch vs. energy (b) Δprobability-of-voicing vs. energy

(c) Peak slope vs. energy (d) Peak slope vs. Pitch

(e) Peak slope vs. Δprobability-of-voicing (f) Pitch vs. Δprobability-of-voicing

Figure 4.8: Training samples plotted by salient features according to feature selection. Stød-less samples

are blue and stød-bearing samples are purple.
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(a) Unnormalised detection counts for stød

detection.

(b) Normalised confusion matrix for stød detection.

Figure 4.9: Raw classification counts and confusion matrix normalised by class support for visual presen-

tation. The counts in 4.9a correspond to classes in 4.9b. Classified using unweighed linear SVM in the

extended annotation condition on JHP.

accuracy prevents the classifiers from learning a decision boundary that simply classifies all samples as stød-

less8. While the results are insufficient for practical application, the success of the classification is difficult

to determine because of the skewness.

A classifier with a low number of false positives could still be useful for downstream applications in both

academia and industry, i.e. a high precision classifier with low recall. The best performing classifier on

JHP data is the unweighted SVM trained in the raw/select+ condition. The success can be visualised using

confusion matrices. The raw development set classification counts and normalised confusion matrix can be

seen in Figure 4.9.

The matrix in Figure 4.9a shows the counts of true negatives, false positives9, false negatives and true

positives from top left to bottom right. Figure 4.9b illustrates the true negative rate, false positive rate,

false negative rate and true positive rate in the same order. Darker greens illustrate a higher rate after

normalisation by the number of true class samples.

In this case, the true positive rate is high and the false positive rate is low which is desired in a high

precision/low recall classifier. However, the proportion of false positives out of the total predicted positives

8Results in ca. 95% accuracy.
9Aka. false alarms.
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Figure 4.10: Reciever operating characteristic curves for different sample weights on development data.

(false discovery rate) is 0.9 and indicate that due to the low prevalence of stød, even the best classifier in

our experiments is not able to learn a good decision boundary.

The classifiers do exhibit some desirable properties. This is best illustrated using Receiver Operating

Characteristic curves. Figures 4.10 and 4.11 show graphs that plots true positive rate as a function of false

positive rate. The dashed line corresponds to random classification. This plot illustrates that the classifiers

predict stød better than chance on both development and test data.

4.3.5.4 Discrimination experiment

Unlike stød detection, phone discrimination experiments shows a high degree of accuracy. Like Yoon et al.

(2006), PLP features can to a certain degree discriminate between the stød-bearing and stød-less variants

of the same phone. Those features can be replaced by full and select+ features to obtain similar results.

If some distinctions maintained in semi-fine IPA are removed, the evaluation improves significantly which

indicates that the features included in select+ contain information that model distinctions that are not

directly related to the stød+phone discrimination task. Removing these distinctions also adds a significant

amount of training data, e.g. in the case of [O:?] which increases the number of training samples for [O?] by

1/3. Especially the PLP-based SVM gain significantly from the larger sample sizes.
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Figure 4.11: Reciever operating characteristic curves for all annotations on test data.

On the JHP sample, mean accuracy decreases while variance increases. The low variance in cross

validation indicates that the statistical model overfits the training data and is not able to generalise to

unseen data from a different speech genre. This is corroborated by the small variance for the classes from

Table 4.7 in Appendix A.3 and the significant increase in variance on test data. Similar effects were observed

in F1 evaluation in the binary classification experiments and feature ranking experiments.

The variance does not increase in the evaluation of the SVM trained on select+ features and while the

mean accuracy is lower, the model did not overfit to the training data and therefore perform similarly.

4.4 Discussion

4.4.1 Features

As the feature selection experiments demonstrated, not all features are important for stød detection. Using

a smaller feature set decreased performance for binary classification but increased the discriminative power

in multi-class classification and a very interesting insight is the discriminative information in PDM and

PDD features. To our knowledge, the correlation between phase features and stød has not been studied
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before. If PDD models noise in the voice source, it should be a salient feature for stød detection and this

has been verified by the feature ranking experiment.

Phase features seem to be more informative for discrimination between all phones than some Δ and ΔΔ-

derivatives of PLP features. Derivative features of MFCC or PLP coefficients are theoretically designed to

model the speed and acceleration of speech organs such as tongue, lips, teeth etc., which means they are

designed to model the filter in the source-filter model. Creak is produced in the vocal source and the features

should therefore not be very informative for stød detection as the evolution of the filter does not impact the

shape and movement of the source.

Select+ includes the first 4 MFCC and PLP coefficients because they correlate with stød to some extent

as shown in Section 4.2.4. A similar discovery was made in Yoon et al. (2006) where creak could be predicted

with standard PLP features and this effect has been replicated in the phone discrimination experiments in

Section 4.3.3. In like fashion, it should be possible to immediately implement stød in ASR by annotating

stød in the ASR dictionary.

To a large extent, select+ can replace standard PLP features in the phone discrimination experiment.

It could indicate that phase information can inform phone classifiers in ASR systems, especially for Danish

where stød detection can be important.

PDD is an estimate of the noise of the vocal source. Harmonics-to-noise ratio has been used in previous

studies of stød as an estimate of the same, but did not turn out to be salient in feature salience ranking. The

implementation of harmonics-to-noise ratio in Praat might be the cause of this difference. The arbitrary

choice of assigning -200 as harmonics-to-noise ratio value could be the reason why the feature is not salient.

Simple re-estimation a lower bound for harmonics-to-noise ratio did not make harmonics-to-noise ratio

salient, but should not be interpreted as evidence that the measure is irrelevant for stød, because the

implementation of the harmonics-to-noise ratio extraction rather may be the cause rather than the measure

itself.

With the exception of MFCC and PLP features, all features in select+ are sensitive to energy in higher

frequency bands and stød seems to correlate with energies in higher frequency bands. We cannot conclude

that energies at particular frequency bands indicate stød, but it is a commonality for the voice quality

feature in select+ which suggest that there is a relevant signal.

4.4.2 Stød detection

Viewing sample weight in connection with the varied annotation, the sample weight increases when optimised

on extended annotation. To verify the results, sample weight optimisation was repeated several times and

while sample weights varied by 0.1, but the difference, i.e. a larger sample weight when using extended vs.
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raw annotation held constant in all trials. Sample weight is a measure of how much information a single

sample should contribute to a model. Sample weights that are smaller than 1 indicate that a class annotation

is impure, i.e. training samples that are stød-less are labelled as stød-bearing. The larger sample weight for

extended annotation indicates that more samples included by the extension are stød-bearing, than stød-less.

Several potential sources of class impurity exist. The heuristic alignment is not perfect and relies on

the accuracy of the existing time-coded annotation. The impurity of the positive class can also be due

to annotation convention. Stødbasis and segmental phonetics requires stød to be annotated on a phone.

If an annotator hears stød that is smeared across phone boundaries, that annotator must make a choice

between the two phones. That stød manifestation happens on the second phase of a syllable and that the

second phase coincides with the last half of a long vowel or a sonorant following a short vowel was observed

in Fischer-Jørgensen (1989). The raison d’être is that a sufficient amount of voiced material needs to be

present for stød to manifest. Hansen (2015) argues that this condition should be viewed as a phonological

or phonotactic constraint rather than phonetic because stød is not elided in speech with high rate-of-speech

or whispered speech which precludes voiced segments. Hansen also cites Grønnum & Basbøll (2001):

“... stød in a long vowel may extend into a succeeding sonorant consonant. Stød in a sonorant

consonant may already begin during the last part of the preceding short vowel and may continue

into a succeeding voiced sound as well. Nor does the stød phase, the creaky voice, have a very

definite and fixed duration.”

The above observations by Hansen and Grønnum, the training and development set evaluation and

sample weight difference suggest that stød is realised earlier than the second phase of the preceding short

vowel. More samples in the preceding short vowel are stød-bearing than stød-less and therefore sample

weight increases. The graphs in Figure 4.10 do not corroborate this. The Area Under the Curve and F1

does increase, but the curves are almost completely overlapping. A potential source of error that all models

share is the phone alignment.

If this is the source of error, more refined segmentation of stød manifestation is necessary than the

heuristic alignment in Section 4.1.3 and the annotation extension in Section 4.3.1. Rule-based approaches

such as including the second half of a vowel preceding a stød-bearing consonant sonorant or including

parts of subsequent sonorants could be one approach. The training data would still be impure, but with a

sufficiently large amount of training data, robust statistical models could potentially be estimated.

Alternatively, an alignment could be statistically induced, but this would require more data. To the

author’s knowledge, the available manually-annotated data has been included in this study. When faced

with data sparsity problems, bootstrapping can be applied to iteratively generate additional annotated data
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for model estimation. Choosing a small amount of seed data where stød is present, and subsequently adding

samples that have been classified with a high degree of accuracy until convergence, is a much used approach

in absence of large volumes of training data. The attraction of such models would be to investigate further

the timing of stød manifestation in relation to underlying segments. The JHP data set is well equipped for

this task. High confidence stød samples can be extracted using simple majority voting. The challenge will

be 1) if there is enough data in JHP to seed a bootstrapping model, 2) if it will be possible to recognise stød

where the stød-bearing segment is not in the seed data. The problem in a bootstrapping approach remains

how to account for the impact of the underlying segment.

4.4.3 Stød detection by phone discrimination

The interesting application of stød detection is further insight into the nature of stød and the discrimination

of stød-bearing and stød-less phone, which is also the interesting application in ASR. Training statistical

models that jointly model phone and stød are very good at discriminating stød-bearing and stød-less samples

if the training data is from the same domain as the test data.

Cross validation shows high accuracy scores for both annotation variants. Applying the trained models

to JHP data results in slightly above-average evaluation taking variance into consideration. The results

are interesting because implementation into a speech recogniser in this form is fairly straightforward. A

proof-of-concept can be done by simply adding stød annotation to the pronunciation model and should this

experiment show positive results, training acoustic models with new features can be compared to a baseline

in a similar fashion to the discrimination experiment.

There are some important distinctions between the discrimination and detection experiments. Because

of the One-vs-One evaluation scheme, it was possible to estimate SVMs with a radial basis function kernel.

This kernel does not scale well to larger data sets and it was not possible to use a SVM with a radial basis

function kernel in binary classification with the hardware available.

In the stød detection experiments, mean subtraction based on speaker, corpus and gender was performed,

but none of the variants performed better than using a mean estimated globally across corpora. In future

studies, a phone or utterance-based mean subtraction experiment should be conducted. That stød can be

used to discriminate segments indicate, that useful information is contributed by stød, but the contribution

by the underlying phone in binary classification confounded the statistical models.

4.4.4 Computational modelling of stød

The results show that it is necessary to treat stød jointly with the underlying segment and we believe

the segmental distribution helps reduce the false discovery rate. The same cocktail of acoustic features
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that signal stød can occur where stød is not perceived and there is no lexical function to fulfill. The true

distribution of stød is not reflected in the binary classification experiments, but is present in the phonetic

symbols and the de facto factoristion of stød classes into stød-bearing phones in the multi-class classification

experiments are therefore beneficial.

We do not conclude that it is not possible to detect stød in audio and one avenue of research we can

identify is to normalise the acoustic features based on a mean and variance estimated for each phone, e.g.

estimate mean and variance on samples labelled [a] and use that to standardise features extracted for [a?] or

similar standardisation. This research is beyond the scope this thesis because we will not be able to apply

the standardisation in ASR without predicting the phone first.

The feature overlap between select+ and standard ASR features, the poor binary classification results

and the relatively good multi-class classification results suggest that the best way to integrate stød in ASR

is to extend the acoustic feature vector input rather than adding a specific feature for stød and jointly model

phone and stød.

4.5 Chapter conclusions

We have ranked a large number of acoustic features for salience to stød detection in both elicited (Parole48

and DanPASS-mono) and non-elicited (JHP) speech and have found a set of 17 features – select+ – that

signal stød manifestation particularly well. One of the interesting insights is the indication of phase features

as important for stød detection and phone classification which we belive to be novel.

In the binary classification experiments, we can obtain the same classification accuracy using select+ as

we can with all 120 features. However, reliable stød detection was not possible when formulated as a binary

classification task using the available training and test data. The classifiers were not able to estimate a

good model because the features do not sufficiently separate stød-bearing and stød-less classes in the feature

space. If we define stød detection as discriminating between stød-bearing and stød-less variants of the same

phone, i.e. a multi-class classification task, the detection of stød becomes possible and makes using stød in

downstream NLP systems feasible.

The discrimination experiments indicate that PLP features carry a signal that indicates he presence

of stød. This discovery faciliates prototyping speech recognition systems that model stød, because we can

add stød annotation to the phonetic dictionary and compare performance to a baseline. If we wish to add

voice quality features from select+ to the acoustic feature input, we will need to design a more advanced

experiment that aligns the features.
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Chapter 5

Modelling stød in automatic speech

recognition

The intended application for the stød detection experiments in Chapter 4 is automatic speech recognition

(ASR). Stød has a distinguishing lexical function and to implement and exploit this function in ASR is

the objective of the experiments reported in this chapter. In the previous chapters, we have confirmed our

assumptions on stød, namely that stød annotation is reliable, that we can use stød annotation to discover

features that signal the presence of stød and that we can detect stød from acoustic features. The last

assumption was only partially confirmed because it was necessary to predict phone and stød jointly.

ASR systems can model stød in the acoustic model (AM) only if the phone set includes stød-bearing

phones. The studies in Chapter 4 demonstrated that a support vector machine with a radial basis function

kernel trained on Perceptual Linear Perception (PLP) features can discriminate between stød-bearing and

stød-less phone variants. Using the select+ feature set improves classification accuracy on semi-fine IPA

annotation and using a coarser-grained set of classes, select+ performs well, but is outperformed by both

PLP features and the full feature set. The conclusion is that stød detection is possible using standard ASR

features, but can potentially be improved with voice quality features.

This chapter presents the development of a baseline ASR system as well as experiments where stød is

integrated into an ASR system. The purpose is to implement and exploit stød using conventional ASR tools

and techniques and the experiments entail adding stød annotation to the phonetic dictionary and extending

the feature input with pitch-related features. Extending the phone set should be sufficient because the

classifiers in Section 4.3.4 were able to discriminate stød-bearing and stød-less phones using standard ASR

features.
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There is little existing publicly-available research on or resources for Danish ASR. In a white paper on the

state of Danish language technology and NLP (Pedersen et al., 2012), the quality of speech technology was

not ranked due to disagreements between researchers and industry, and the availability of speech technology

is ranked as poor or fragmented. Danish speech corpora are ranked as medium quality, with low coverage

and maturity. The existing corpora we know of that can be used to train ASR systems are subject to access

barriers. DanPASS, DK-Parole and LANCHART are not publicly available, and EUROM1 and Aurora2-3

can be acquired for a fee. The white paper concludes that support for speech technology as a whole is

fragmentary.

Fortunately, ASR toolkits can be shared across natural languages and there are open and freely available

ASR toolkits such as Sphinx (Placeway et al., 1997), Kaldi (Povey et al., 2011), the Hidden Markov model

toolkit (Young, 1993) and RASR (Rybach et al., 2011) to name a few. The toolkits are based on machine

learning techniques and can therefore be trained as long as data is available and contain scoring software

to evaluate performance.

Though DK-Parole is a single speaker corpus and Aurora3 only contains spoken digits, ASR systems

have been trained on these corpora (Henrichsen & Kirkedal, 2011; Kirkedal, 2013; Rajnoha & Pollák, 2011).

These systems are academic systems for restricted domains (speaker-dependent ASR and spoken digits in

noise) and the Word Error Rate (WER) performance is summarised in Table 5.1.

Corpus Task %WER

DK-Parole (Henrichsen & Kirkedal, 2011) Single speaker 5.7

Aurora3 (Rajnoha & Pollák, 2011) Spoken digits 24.39

Table 5.1: Published ASR evaluations for spoken Danish.

The methodology or recipe for training these systems is unavailable and the results might not be re-

producible, which is necessary for meaningful comparison to the present work. To facilitate reproducible

research, we have added the recipe developed for the experiments in this chapter in Appendix B.2.1. To

develop the recipe, we first developed a Danish ASR system that does not model stød, which we use as a

baseline to evaluate the influence of adding stød.

We wish to experiment with both standard GMM-based ASR systems and systems that make use of

AMs based on neural networks. Of the ASR toolkits mentioned above, Kaldi is distributed as open source

under a permissive license, has the necessary code to train deep neural network (DNN) AMs and contain

several recipes describing methodologies for training ASR systems on English, Arabic, Czech etc. for a

variety of tasks. We use recipes for similar corpora as inspiration for the baseline system.
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To train ASR systems and especially DNN AMs, a large amount of data is required – more than is

available in DK-Parole and DanPASS (LANCHART is sufficiently large). It turns out that a large Danish

corpus that was not listed in Pedersen et al. (2012) exists. The Norwegian National Library Service hosts a

large public domain corpus of read-aloud speech that also contains a Danish part. The corpus – Spr̊akbanken

– is large enough that it is possible to train DNN AMs and because the speech genre is read-aloud speech,

it is easier to work with than LANCHART.

We describe the Spr̊akbanken corpus in Section 5.1 and the development of an open source Danish ASR

system using Kaldi and Spr̊akbanken in Section 5.2. The recipe described in this setup forms the basis for

all subsequent experiments. Baseline evaluation and experiments with stød modelling will be reported in

Section 5.3 and the results analysed in Section 5.3.5. Section 5.4 will discuss the insights from Section 5.3.5

on acoustic and language modelling as it relates to stød.

5.1 The Spr̊akbanken corpus

Nasjonalbiblioteket (The Norwegian National Library service) hosts a multilingual, multi-modal speech

corpus known as Spr̊akbanken1. The Danish part of the database contains read-aloud speech covering 7

regional dialects in Denmark as well as ages ranging from 18-70. The database was made available without

restrictions in 2011.

The data was acquired by Nasjonalbiblioteket through the liquidation of Nordisk Spr̊akteknologi (NST)

in 2003. The data has been validated by NST in collaboration with Centre for Language Technology at

Copenhagen University, but due to the liquidation and subsequent acquisition process, very little corpus

description is available and most of the information is contained in a short description and analysis of the

database. A considerable amount of manual work has been devoted to discover the actual structure of the

corpus and convert data to a format consumable by ASR toolkits. This was also the case for the Swedish

part of the Spr̊akbanken corpus in Vanhainen & Salvi (2014). In mid-2015, the corpus was republished2

by Nasjonalbiblioteket along with other linguistic resources under the name Spr̊akbankens ressurskatalog

(Spr̊akbanken’s resource catalogue) to make the resources easier accessible from the web, but the publication

did not include a thorough description or restructuring of the data. The corpus description is based on

Andersen (2008) and our own analysis of the corpus.

1Not to be confused with the text corpora and language resource centre at University of Gothenburg with the same name.
2Published using the CC0 description: https://creativecommons.org/choose/zero/
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5.1.1 Speech data

All parts of the Spr̊akbanken corpus consist of a database of 16 kHz recordings for ASR purposes, a 22 kHz

database for dictation3. For the baseline system, only the 16 kHz database was used and summary corpus

statistics can be seen in Table 5.2.

Purpose Speakers Recordings Hours

Training 560 174720 316

Test 56 55272 77

Table 5.2: Summary table for the Spr̊akbanken corpus.

The recordings were made in a closed office environment and are purportedly based on a phonetically-

balanced manuscript, though this concept is not further defined in the description. Each line in a manuscript

corresponds to a recording and each line can be a sentence, sequence of numbers, names, acronyms, single

words or letters (i.e. the spelling of a word). According to the description, there is a systematic naming

and structuring of the corpus. It was our experience that the description is not consistent with the actual

structure and some directories that should contain data were in fact empty and the naming convention

changes. The variation includes capitalisation and missing subdirectories.

Information about utterance, speaker, recording and manuscript identity was recoverable from a combi-

nation of file names, directory names and transcription files. The transcription files contain timed transcrip-

tions for all lines uttered by a single speaker. These files also contain microphone specification, recording

date and speaker information such as speaker id, full name, age, gender, region of youth, region of dialect,

but across recordings, age and gender information is not consistently present in the transcription files.

The sound files are reported to be raw, linear PCM encoded 16 bit/16 kHz stereo recordings and

prepended and appended with 100-200 ms silence. The files are actually NIST SPHERE files and 64 files

are corrupt. According to Andersen (2008), the quality control has been thorough and consistent, though

currently undocumented. Interestingly, Andersen notes that creaky voice can be audibly heard in the Danish

speech data, but is not explicitly annotated.

The 7 regions used in the corpus are listed in Table 5.3. The regional division diverges from common

regional dialect distinctions at the time of corpus creation, e.g. Eastern Danish as spoken in Scania and

Bornholm is not accounted for and this dialect is considerably different from Copenhagen and Zealand due

to influence from Swedish. Andersen comments that the division may have been commercially motivated.

3The 8kHz database disappeared in the 2015 republication.
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Region English translation

København-omr̊adet Copenhagen area

Sjælland utenom København Zealand outside of Copenhagen

Fyn Funen

Nord-Jylland Northern Jutland

Vest-Jylland Western Jutland

Øst-Jylland East Jutland

Sør-Jylland Southern Jutland

Table 5.3: Dialect regions in the Danish part of Spr̊akbanken.

5.1.2 Text data

Only orthographic transcriptions are contained in transcription files and no phonetic dictionary was avail-

able when the recipe was originally designed. In the 2015 launch of Spr̊akbankens ressurskatalog, a phonetic

dictionary and word n-gram frequency lists from NST were made available in the public domain. Un-

fortunately, it was not discovered in time to include the phonetic dictionary, although we where able to

experiment with the n-gram lists in Section 5.2.4.

5.2 Recipe

In Kaldi, a recipe is a Bash file with a number of commands that can be executed to train an ASR system

on a data set. The recipe described in this section is published in the Kaldi project under the recipe

sprakbanken. The recipe downloads the Danish 16 kHz part of the Spr̊akbanken corpus described in Section

5.1, a phonetic dictionary, a phone set specification and linguistic questions used to model pronunciation.

These resources are described below.

5.2.1 Textual preprocessing

The training transcripts are stripped of punctuation except at the end of words that are followed by an

uppercase letter. We preprocess numbers to spoken form e.g. 310 to TRE HUNDREDE OG TI and 12. to

TOLVTE. We try to discriminate between cardinal and ordinal numbers based on the final punctuation.

At the core of the method is a lexicon that maps numbers 0-100, 1000, 2000-2020, ordinals 1-30 and

splits numbers written as a single word, e.g. TREHUNDREDEOGTI to TRE HUNDREDE OG TI. The rule-based

normalisation detects Danish social security numbers (CPR numbers), numbers in the thousands, hundreds
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or tens and numbers with a leading zero (used in e.g. telephone and CPR numbers). The rules decompose

numbers left-to-right and apply the lexicon first to thousands, then to hundreds and finally tens. The proper

spoken connectives (either OG or ∅) are also added.

We convert all text to uppercase and expand abbreviations in the corpus using a dictionary plus rules

encoded as regular expressions. The remaining punctuation is used to split sentences. Annotation included

in the transcriptions are removed such as tabs or 4+ whitespace sequences between single letters (denotes

spelling). Dates and special characters like % and + are also converted to spoken form. Finally, the text is

converted to UTF-8 encoding.

5.2.1.1 Phonetic transcription

The training transcripts contain approximately 66000 unique words and since we did not have access to

the phonetic dictionary mentioned in Section 5.1.2, we instead used automatic transcription to generate

the phonetic dictionary. Automatic transcription is flexible and therefore it will be easy to extend the

phonetic dictionary with new entries and to experiment with stød annotation. Two systems were available:

eSpeak (Duddington, 2012) and Phonix (Henrichsen, 2014). eSpeak is a shallow system that primarily

uses an internal dictionary and letter-to-sound rules to generate a phonetic transcription using ASCII-IPA.

Phonix was used to transcribe LANCHART data and uses a fallback strategy where the first strategy is

a dictionary lookup, the second is compound splitting followed by another lookup in the same dictionary,

and finally letter-to-sound rules, i.e. a deeper linguistic analysis than used by eSpeak. Phonix models

phonological factors, e.g. that [p], [t] and [k] is pronounced as [b], [d] and [g] respectively if the consonants

are not word initial which eSpeak only does if the word is in the internal dictionary.

In Kirkedal (2014), we compared the two automatic transcribers on DK-Parole where the speech genre is

similar to Spr̊akbanken. The conclusion of the study is that eSpeak produces better phonetic transcriptions

for ASR dictionaries than Phonix. One reason why Phonix did not perform well is a fallback strategy that

generates a phonetic representation where the word is spelled out. This strategy caters to a text-to-speech

scenario but reduces performance in ASR because the fallback strategy is often triggered on long unknown

words (or compound words where compound splitting fails) where the number of symbols in the phonetic

transcription will be greatly different from the uttered phones. eSpeak does not have the same fallback

strategy but uses letter-to-sound rules. Based on these results, eSpeak is used in the experiments in Section

5.3.4.
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Preprocessing phonetic transcriptions

eSpeak transcribes words using phonetic symbols from ASCII-IPA and also performs language identification

at word level and if words are identified as e.g. French, the word is transcribed using the French transcriber.

In the recipe, the language ID and diacritic markers are stripped from the phonetic symbols before they are

tokenised.

Because of the language ID feature in eSpeak, some phones occur very rarely because they represents

sounds from a foreign language and do not occur in Danish. Very rare phones must be mapped to a similar

phone symbol from Danish with sufficient representation in the data and e.g the dark [L] phone in English

transcriptions are mapped to the normal [l] phone. After transcription, the words input to eSpeak are

uppercased.

We create a phone set specification with all the phonetic symbols used in the dictionary where variants

of a so-called base phone is mapped to each other, e.g. [e], [E] and [i] in Table 5.4 are base phones. This

terminology is motivated by implementation details rather than theoretical reasons, because the phone set

specification ensures that variants of a base phone share the root node of a phonetic decision tree (PDT).

Phones with low occurrence in the corpus and stress-dependent versions of base phones are on the same line

to cluster similar phones to each other. Table 5.4 shows 3 lines from the specification. The phone [I] occurs

less than 10 times in the training data, which is too infrequent to estimate a separate phone model and we

therefore map [I] to [i]. Similarly, stress-marked variants of base phones are mapped to their unstressed

variant.

Phone Phone alias

e e �e

E E �E

i i �i I �I

Table 5.4: Example from the prepared phone specification.

To be able to distinguish the phones in a root node, a suitable question must be available in the PDT

building process. The questions needed to distinguish the phones in Table 5.4 can be seen in Table 5.5. If

distinguishing between [�i] and [i] sufficiently increases the log-likelihood of the data under the assumption

that the data on each side of the split is modelled by a single Gaussian, the algorithm splits the data

accordingly.
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Question Phone set

Stressed? �E �e �i �I

Segment=I I �I

Segment=i i �i

Table 5.5: Example questions that makes it possible for the PDT algorithm to distinguish stressed variants

of the base phone during tree building.

The preprocessing of phonetic transcriptions is a time-consuming trial-and-error process that entails

mapping infrequent phones in the phone set specification, adding linguistic questions to the PDT algorithm

and transcribing and preprocessing the phonetic dictionary. We have compiled a dictionary, phone set

specification with phone mapping and linguistic questions in the public recipe so future users do not need

to devote time to develop these lexical resources.

The public recipe and the experiments in this chapter do not model stress in the phonetic dictionary.

Stress-annotated variants are included in the phone specification and the necessary question to distinguish

the phones is also added to facilitate extension with stressed phones as shown in the example in Table

5.4 and 5.5, but because stress is not in the phonetic dictionary, stressed variants will not be observed in

the data and the PDT clustering algorithm is prevented from splitting a node into stressed and unstressed

variants by a minimum-state occupancy threshold.

After preprocessing, the prerequisite resources are in a format consumable by Kaldi programs and can

be compiled into a finite state transducer (FST) representation.

5.2.2 Data sets

The Spr̊akbanken subcorpus Testing in Table 5.2 contains 3 subcorpora: Stasjon03, Stasjon05 and Stasjon06,

respectively containing approximately 16.5 hours, 51 hours and 9.5 hours. Compared to existing test sets

for Mandarin (Hwang et al., 2004) or English such as 2001 Hub5, Wall Street Journal (WSJ) test sets (Paul

& Baker, 1992) and the newer test sets created for the Librispeech corpus (Panayotov et al., 2015), the

Spr̊akbanken test sets are 15 times larger. While reserving approximately 20% of the available data for

testing purposes is standard in machine learning methodology, ASR test and development sets are frequently

5 hours long or shorter and the training data is much larger than the training section in Spr̊akbanken. We

therefore add Stasjon05 to the training data, while Stasjon03 and Stasjon06 are reserved for development

and testing purposes, respectively. The new partitioning of Spr̊akbanken can be seen in Table 5.6 including

the purpose of the data set, duration, type and token counts.
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Data set Purpose Hours Types Tokens

train training 367 65667 2366183

train 120kshort† flat start training 93 27103 591423

Stasjon03 development 16.5 7311 112062

Stasjon06 testing 9.5 5683 72987

Table 5.6: Word type and token counts for the data sets in the sprakbanken recipe. Note that the train set

is different from Train in Table 5.2. The symbol † denotes that train 120kshort is a subset of train.

The Stasjon03 and Stasjon06 data sets are still comparatively large and Stasjon03 is currently not a part

of the public recipe but was used in Sections 5.2.1.1, 5.2.4 and 5.3.3, and may in the future find other uses

such as discriminative training with Maximum Mutual Information or Minimum Phone Error rate.

When estimating an AM from a flat start, it is standard methodology to use the shortest utterances

from the training set4. While this reduces the amount of training data used to estimate the monophone

model, it is easier to induce an accurate alignment from a flat start if the utterances are short and the entire

training set can be used at a later stage to train triphone ASR systems. A training subset – train 120kshort

– containing the 120000 shortest recordings from train is created to induce a flat start alignment and a

monophone system.

5.2.3 Feature sets

Feature extraction follows the same procedure whether we extract MFCC or PLP features. We extract

feature vectors as described in Section 2.5.1 and discard feature vectors if the 25 ms context window exceeds

the end or beginning of a recording. Subsequently, we apply speaker-based cepstral mean and variance

normalisation to feature vectors. Cepstral mean and variance normalisation can degrade performance when

estimated per-utterance on short utterances because there is no distinction between noise, silence and speech

when the mean is estimated (Togneri et al., 2006) and there may not be sufficient data in a short utterance

to estimate a good long-term mean (Prasad & Umesh, 2013). We normalise per-speaker to avoid problems

of data sparsity and because if normalisation is applied per-utterance, speaker information will be lost and

the transformation used for speaker adaptation will be estimated on different off-sets.

4See e.g. the WSJ and Librispeech recipes.
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5.2.4 Language models

Because the genre is read-aloud speech, many occurrences of the same sentences are in the transcriptions.

For language modelling purposes, a set with unique sentences are compiled that are disjoint from Stasjon03

and Stasjon06, which we use for evaluation. We use the IRSTLM toolkit (Federico et al., 2008) to train a

trigram Arpa LM on the unique sentence transcripts.

We also estimated a trigram LM on the n-gram frequency lists mentioned in Section 5.1.2. We used

the SRILM toolkit (Stolcke, 2002) to generate the Arpa format LM on the frequency lists and normalised

n-grams using the approach described Section 5.2.1. We used SRILM because the toolkit has a built-in

function to estimate an LM from a mix of text and frequency lists and can automatically merge n-grams

that become identical after normalisation.

Arpa LMs are converted to weighted FST acceptors using the arpa2fst program distributed with Kaldi.

To determine which LM to use in our experiments, we evaluate the WER performance of four ASR systems

trained using LDA-projected MFCC features and speaker adaptive training: two GMM-based systems and

two DNN-based systems, that use either the frequency list LM estimated with SRILM or the transcript

LM estimated with IRSTLM. We use Witten-Bell smoothing (Witten & Bell, 1991) to smooth frequency

counts. Witten-Bell is a standard technique in ASR (Stolcke et al., 2000; Matějka et al., 2006), the default

in Kaldi and recommended for short texts because the smoothing works well in many conditions and is less

sensitive to the amount of data used to estimate the LM and the text type (Federico & De Mori, 1998).

The results in Table 5.7 indicate that while the unique transcript LM is estimated on a small amount of

data (approximately 1.3 million sentences), it is narrow in the sense that it very successfully models the text

domain. The n-gram frequency lists are estimated on a much larger newswire text corpus (approximately

290 million sentences), but does not match the data.

LM AM type %WER

Frequency list GMM 41.55

Frequency list DNN 30.01

Unique transcript GMM 20.71

Unique transcript DNN 15.78

Table 5.7: ASR performance on Stasjon03 data for systems using an LM estimated on NST n-gram frequency

lists and on unique transcripts. The results are not directly comparable with later results because a newer

version of Kaldi was used for this set of experiments.

98



This is counter to our expectation and we manually inspected the output. All data sets in Spr̊akbanken

contain utterances that can be categorised as follows:

1. Named entity utterance: Town names, street names, utterances with first name last name e.g.

ODENSE, TOMMY ANDERSEN, DELOITTE

2. Repetition utterance: The same word repeated three time, e.g. PAPIR PAPIR PAPIR

3. Spelling utterance: Spelling a word aloud

4. Number utterance: Dates or a string of number such as 3546 8917 200

5. Sentence utterance: Utterance that contain grammatical utterances and spoken punctuation

We observed more errors in the decoding output on utterances in categories 1-4 when we use a LM

estimated on the larger newswire corpus and we conjecture that newswire text does not match the domain

because these types of utterances are overrepresented in the Spr̊akbanken corpus as opposed to newswire

text.

Because we study stød in connection with acoustic and pronunciation modelling, we want a LM that fits

the domain well to ensure that we evaluate against a strong baseline. We will therefore use the transcript

LM in the following experiments. We will refer to the LM as 3g.

5.2.5 Training acoustic models

A bootstrapping process where several systems are estimated one after another is used. The WSJ and

Librispeech recipes in Kaldi have served as templates for this recipe and the upper bounds on the number

of Gaussians and leaves used in the recipe are reused here with the exception of the GMM-based tri4b and

DNN-based nnet5c systems, where we tuned the training parameters. We chose this approach because the

same parameters give state-of-the-art results on WSJ and are used for Librispeech too though it is many

times larger than WSJ.

5.2.5.1 GMM AMs and feature transforms

Initially, a flat start context-independent monophone AM – mono0a – is trained for 40 iterations on

train 120k using Viterbi aligment. We use 40 iterations as it is the standard in 24 out of 29 recipes

including TIMIT, Switchboard, WSJ, TEDLIUM, Librispeech and GlobalPhone, i.e. across different corpus

sizes and languages and the primary function of a monophone model is to generate an alignment that can be

used to train context-dependent AMs. 39-dimensional feature vectors with first and second order derivative
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features, 5-state HMM topology for silence phones and 3-state topology for ‘non’-silence phones (standard

in Kaldi) are used to model phones with at most 1000 Gaussians. Kaldi treats context-independent systems

as a special case of context-dependent systems where the phonetic context is 0 phones to the left and right

and modelled with a trivial decision tree with no splits. Because no states are tied, GMMs are mixed up

from the number of context-independent phones until we reach a total of 1000 Gaussians.

The Gaussians parameter is a total across all GMMs and is increased by mixing up Gaussians during

training. The number of Gaussians in a GMM is based on a data count γ that is raised to the power of

0.2 and if the alignment maps e.g. 5000 frames to a GMM, that particular GMM will have 5 Gaussian

components (γ0.2 = 50000.2 = 5.49 rounded) when training finishes. A schedule is computed so the total

number of Gaussians increase by a fraction each iteration, e.g. if we increase the number of Gaussians for

20 iterations from 2000 to 10000, then 10000−2000
20 = 400 extra Gaussians will be estimated each iteration by

splitting the Gaussians estimated in the previous iteration that have the highest occurrence count.

We follow standard methodology and use only the shortest training samples to train the monophone

alignment. There is little literature on the subject of audio length in flat start alignment estimation but

both the CMU Sphinx5 and the Kaldi recipe for the Wall Street Journal corpus6 use this methodology7.

The monophone AM is used to align and segment the entire training set. Based on this alignment, a

context-dependent triphone AM – tri1 – is trained on the full training data. The PDT is restricted to 2000

states and 10000 Gaussians. The states parameter ocrrespond to the number of leaves in the PDT or rather

the number of GMMs estimated.

Based on an alignment created by tri1, tri2a is trained using 2500 states and 15000 Gaussians.

tri2b is also based on an alignment created by tri1, but a LDA feature space transform is applied to the

feature vectors. Each feature vector is extended with the feature vectors in the left and right context. For

tri2b, a window of 11 frames are used resulting in 11 ∗ 13 = 143 dimensions which are projected into 40

dimensions using Maximum Linear Likelihood Transform (MLLT). Training differs slightly from previous

steps. First, a transformation matrix M that maps from the original 143-dimensional feature space to the

40-dimensional LDA space is estimated, then – at given intervals – we estimate a new MLLT matrix T

on a subset of training data and use T to update the model means and M. The system is trained for 35

iterations with the same restrictions on number of states and Gaussians as tri2a, and M is updated four

times during training.

5http://cmusphinx.sourceforge.net/wiki/tutorialam (Data preparation section)
6https://github.com/kaldi-asr/kaldi/blob/master/egs/wsj/s5/run.sh
7Discussions on the Kaldi help forum also states that this is helpful: http://kaldi-asr.org/forums.html?place=msg%

2Fkaldi-help%2FR0ao4x5qDZ0%2FFzybtcMYCAAJ(the link loads slowly).
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Figure 5.1: WER performance as a function of the total number of Gaussians in GMMs trained on LDA

speaker-adapted features derived from MFCC.

tri3b is based on a tri2b alignment and estimates an AM using speaker-adaptive training (SAT) which

normalises intra-speaker variability. Speaker-specific means and variances are computed using Constrained

Maximum Likelihood Linear Regression (cMLLR, also known as fMLLR) on top of LDA features computed

for tri2b. Four cMLLR updates are applied instead of MLLT, but otherwise settings are identical.

Two systems are trained on tri3b using speaker-adaptive training and with a larger threshold on PDT

clustering and state-tying. For tri4a, the number of states are increased to 4200 and number of Gaussians

to 40000. For tri4b, max number of states is 4800 and Gaussians 60000. In this toolkit, the PDT is grown

until the specified maximum number of leaves are obtained, and subsequently the states are clustered and

tied8. State-tying reduces the number of pdfs to 900 and 1100 for tri4a and tri4b respectively, which is

twice the reduction compared to tri2b and tri3b (450-500). 23% leaf states can be tied without reducing

the likelihood of the data significantly and we therefore do not increase the upper bound further.

To determine the number of Gaussians, we increased the total number of Gaussians from 40000 (tri4a)

to 65000 in steps of 5000 and all systems except tri4a use 4800 states. In Figure 5.1, we see a stagnation

8This is unlike Sphinx-3, where the tree is fully grown and then reduced to the specified number of leaves.
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in WER improvement on Stasjon03 above 60000, and stopped to prevent overfitting. The parameters and

feature types for the mentioned systems can be seen in Figure 5.8.

System Feature type #Leaf states #Gaussians

mono0a Δ and ΔΔ #Phones 1000

tri1 Δ and ΔΔ 2000 10000

tri2a Δ and ΔΔ 2500 15000

tri2b LDA-transformed 2500 15000

tri3b LDA and SAT-transformed 2500 15000

tri4a LDA and SAT-transformed 4200 40000

tri3b LDA and SAT-transformed 4800 60000

Table 5.8: AM parameters and feature types for GMM-based systems.

5.2.5.2 Neural network AMs

We use the built-in train_tanh_fast.sh script to train an DNN AM. The DNN has 5 hidden layers with

tanh nonlinearities and is computed based on an alignment by tri4b, i.e. the AM is trained on the same

40-dimensional features that have been transformed with LDA, MLLT and SAT. The hyperbolic tangent

(tanh) function is an S-formed function similar to the sigmoid function, that outputs values in the range

[-1,1] (sigmoid function output values in [0,1]). Because we need speaker-adapted and LDA transformed

features, it is necessary to reuse the cMLLR transform generated during decoding with tri4b when training

and decoding using the DNN. An illustration of the DNN can be seen in Figure 5.2.

The input layer Input consists of a SpliceComponent, where input features are spliced in a context window

of �4, i.e. the input vectors are 40 dimensional and the output vectors are 360-dimensional. The 360-

dimensional vectors are decorrelated or “whitened” using MLLT (Rath et al., 2013) in a second component

and expanded to 1024 dimensions. The last component in the first layer is known as a PreconditionOnline

component and has the same input and output dimensions, in this case 1024. The component is used to

estimate an input and an output matrix used by the special Natural Gradient - Stochastic Gradient Descent

algorithm (Povey et al., 2014). Rather than a scalar learning rate, the algorithm uses a matrix of learning

rates, one for each dimension that is estimated for each mini-batch. The motivation for different learning

rates in different dimensions is to control instability and prevent parameters from exploding or vanishing

during training. All hidden and visible layers have a preconditioning layer as the last component.
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H1 H2 H3 H4 H5 OutputInputLayer ID

1024 1024 1024 1024 1024 800040
Input

Dimensions

Features Output

Figure 5.2: Architecture of the neural network AM. The number of neurons in a layer only serves to show

relative layer size, i.e. the input layer is smaller than the hidden layers and H5 is largest. Note that the input

dimensions are specified in the bottom of the figure and they correspond to the layer size of the previous

layer The output dimension at the output layer depends on the phonetic dictionary and the phonetic decision

tree.

The five hidden layers H1 . . . H5 consist of a tanh component and a preconditioning component and all

take as input 1024 dimensional vectors and all except the last layer output 1024 dimensional vectors. H5

outputs 8000-dimensional vectors and is known as a mix-up layer analogous to mixing up in GMM-based

AMs. In the GMM-based setup, the data points used to estimate a Gaussian are split in two. The means

of the two Gaussians are perturbed in either direction and training continues. In DNN training, rows of

the weight matrix is split and perturbed to create virtual output targets that can be mapped to each leaf

in the decision tree.

The 8000-dimensional vectors are passed to the final layer to a Softmax component that uses an activation

function that converts input vectors to a value between 0 and 1 and a SumGroup component sums the correct

virtual targets to the targets that correspond to leaf nodes in the decision tree.

The number of layers and layer size is chosen based on the guidelines in Kaldi which specify layers
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based on training data size, e.g. 2 layers for 3 h and 4 layers for 100 h. Each hidden layer in nnet5c has

1024 nodes with tanh non-linearities. The DNN is trained for 20 epochs equalling 700 iterations and has

a total of 12768064 parameters. 30 CPUs running parallel training jobs on approximately 200000 samples

per iteration can estimate the DNN AM in 7-8 days.

We experimented with 4, 5 and 6 hidden layers and were forced to stop at 5 layers because training was

too slow on the available hardware. Similarly, we experimented with hidden layer sizes of 512, 1024 and

2048 and chose 1024 because we faced similar problems with larger layer sizes. Adding the fifth hidden layer

improved performance by 2-2.4 points absolute. The effect of mixing-up in the output of the final hidden

layer was in the magnitude of 0-0.1 WER absolute, but we chose to include it because not mixing-up could

have negative effects whereas mixing-up did not.

The training script uses an initial learning rate of 0.001 and reduce it to a final learning rate of 0.01.

We set this rate based on recommendation in the Kaldi scripts.

5.2.6 Comments on the Kaldi toolkit

An early version of the recipe presented above is included in the Kaldi repository on GitHub9 and the recipe

used for the experiments in this chapter is included in Appendix B.2.1. To repeat the experiments in this

chapter, replace the run.sh file in the sprakbanken setup in Kaldi with the commands in Appendix B.2.1.

When building the phonetic decision tree, it is possible to force phones to share a probability distribution

function (pdf) and this is by default the case for phones that model silence, but can also be applied to e.g.

stressed or tone-dependent phones (and stød-bearing phones). Because it is not always possible to uniquely

map between a phone and a pdf, the AM outputs a transition-id to the decoding graph instead of a pdf. A

transition-id can be mapped to a pair:

1. transition-state

2. transition-index

The transition-index identifies a transition out of a transition-state and can also encode the destination

state. The transition-state is mapped to a triple:

1. phone

2. HMM-state (0, 1 or 2 in a three-state HMM)

3. pdf

9The repository is at https://github.com/kaldi-asr/kaldi.
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The terminology can be quite confusing and the transition-state is the important concept to understand.

During training, the labels in the input sequence are transition-ids (one per vector) and via transition-states

they identify the correct pdf.

Therefore, the descriptive power of AMs is influenced by the number of transition states and transition-

ids as well as the number of Gaussians. Where a larger number of Gaussians increase the descriptive power

of a GMM AM10, more transition-ids and transition-states make the model more complex and harder to

train. An increase in transition-states mean a larger number of transitions to train and an increase in

transition-ids mean a larger input alphabet to the decoding graph, which will be the effect of annotating

stød-bearing phones in the phonetic dictionary.

5.3 Experiment

The conclusion in Chapter 4 is that stød can be detected, directly integrated into ASR via the phonetic

dictionary and standard ASR features can model the difference between stød-bearing and stød-less phones.

In this section, two experiments based on the recipe in Section 5.2 are reported. We train two baselines

following the described recipe on MFCC and PLP features, respectively. We add stød to the phonetic

transcriptions in the phonetic dictionary and we train corresponding systems in a MFCC+stød condition

and a PLP+stød condition.

Two additional experimental conditions – MFCC+stød+pitch and PLP+stød+pitch – add the pitch-

related probability-of-voicing, log-pitch and Δlog-pitch features to the acoustic feature input to see whether

pitch information improves evaluation as suggested by the feature ranking experiment in Chapter 4.

In the following sections, baseline systems use phonetic dictionaries that do not model stød, stød-informed

systems use dictionaries that model stød and stød+pitch systems are stød-informed systems that are trained

on PLP or MFCC features extended with pitch-related features.

5.3.1 Adding stød

The amount of training data needed to train an ASR system cannot feasibly be transcribed by phonetic ex-

perts and the standard methodology in ASR training is to use a phonetic dictionary to model pronunciation.

The transcription produced by eSpeak is less accurate than the manual transcription in DanPASS-mono,

Parole48 and the JHP sample, but due to the increased amount of data, forced Viterbi alignment should

perform well. However, the experimental setup does break with the approach used so far because we do not

make use of manually transcribed data.

10See Section 2.5.3.2 for an explanation of descriptive power.
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We change the post-processing of the phonetic transcriptions generated by eSpeak so the stød annotation

([?]) is not removed to generate two dictionaries that only differ with respect to stød annotation, i.e. the

phonetic dictionaries used in both experiments are of the same size and pronunciation variants are not

included.

The phone sets differ as a consequence of the added stød annotation which can be seen in the the phone

set specification. The difference is illustrated in Table 5.9.

Without stød annotation With stød annotation

e �e e ?e �e �?e

E �E E ?E ?�E �?E

i �i I �I i ?i ?�i�i I �I

Table 5.9: Phone list comparison. Each cell contains a base phone and all variants of the base phone that

occur in their respective phonetic dictionaries.

Stød-bearing phones are defined as variants of a base phone in the phone specification and must be

split when growing the PDT to have separate models estimated. The tree growing algorithm must split the

stød-bearing variant from the base phone for explicit stød modelling to have an impact, i.e. modelling stød

must give the largest likelihood increase at some point.

eSpeak is not consistent in the order of assigning diacritics to a phone and two variants of the same

phone can exist such as [?�E] and [�?E]. Instead of correcting this discrepancy, both versions are added to

the phone specification to maintain the possibility to easily extend the dictionary with new transcriptions

generated by eSpeak, but no questions to distinguish the two symbols are created and one model is used to

model both phones.

In Table 5.10, the questions added to the PDT building process are the same as in Table 5.5 with the

exception of the first question that distinguishes stød-bearing sonorants. As illustrated in the much larger

phone sets, adding stød annotation increases the number of word-position dependent phones (from 320 to

448). The theoretical number of context-dependent triphones becomes 4483 = 89, 915, 392 phones. However,

many word-position dependent phones and context-dependent triphones will not occur in the data11, which

is word-medial silence.) and will not be estimated due to the minimum state occupancy constraint in

the PDT or the determinisation operation applied between WFST compositions, which means the actual

number of triphones will be dramatically smaller.

11For instance, there are no occurences of [SIL I]
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Question Phone set

Stød-bearing?
?@- ?& ?&+ �?& �?&+ ?0 �?0 ?A �?A ?d ?e �?e ?E ?�E

�?E ?i ?�i ?m ?o �?o ?O �?O ?s ?u �?u ?V �?V ?W ?W+

Stressed?

�?W �?W+ ?y �?y

�?& �?&+ �@ �@- �& �&+ �0 �?0 �3 �a �A �?A �aI �e

�?e ?�E �?E ?�i �i �I �o �?o �O �?O �u �?u �U �V

�?V �W �?W �?W+ �W+ �y �?y �Y

I? I �I

i? i �i

Table 5.10: Examples of manually added linguistic questions for phonetic clustering. The phone sets only

contain observed phones.

Though the number of phones increas as a consequence of stød, the maximum number of leaves and the

maximum number of Gaussians are held constant between systems in different conditions. This does not

force the parameters in the experiments to be the same, but imposes an upper bound. An upper bound

is desirable because the descriptive power of a GMM AM is correlated with the number of Gaussians and

states it can use to model non-normal distributions.

Dictionary baseline stød difference

Entries 65667 65667 0

Unique transcriptions 64610 64951 341

4x 5 0 -5

3x 54 27 -27

2x 930 662 -268

Table 5.11: Statistics of explicit stød modelling. 2x denote the number of phonetic transcriptions that can

be mapped to two words, 3x denotes the number of phonetic transcriptions that can be mapped to three

words, etc. The third column is computed as stød− baseline = difference and show the impact on the

phonetic transcriptions in the dictionary.

Because the number of phones increases, several ambiguous phonetic representations are disambiguated.

A stød-less phonetic transcription such as [vEr] from eSpeak represents four words: hver (EN: every),

værd (EN: worth), vær (EN: be-imperative) and vejr (EN: weather). Adding stød partially resolves the

homophony such that [vEr] represents hver and vær while [v?Er] represents værd and vejr. Table 5.11
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shows the number of entries in the dictionaries, the number of unique phonetic representations, the degree

of polygraphy (i.e. a homophonic representation is enumerated in 4x if it is the phonetic transcription of

four different words, 3x if it represents three words, etc.). To show the utility of the disambiguation, the

proportion of tokens in DanPASS-mono, Parole48 and Stasjon06 affected by the phonetic disambiguation

is listed in Table 5.12 as well as the absolute difference.

341 homophonic transcriptions are resolved by adding stød, the most polygraphic phonetic representa-

tions (4x) are resolved, 3x is halved and 2x decreases by more than 28% even though polygraphy cascades

from 4x to 3x to 2x (as in the case of [vEr] and [v?Er], which removes a count in 4x but adds 2 counts in

2x).

Corpora baseline stød difference

DanPASS-mono tokens 8.9% 1.9% -7%

Parole48 tokens 36.2% 9.5% -26.7%

Stasjon06 tokens 36.7% 7.7% -27%

Table 5.12: Statistics of explicit stød modelling on three other corpora. The third column is computed as

stød -baseline=difference and show the number of tokens in the corpora that have an ambiguous phonetic

representation and the absolute reduction as a consequence of explicit stød modelling.

5.3.2 Evaluation

The systems are evaluated using the widely used Word Error Rate (WER). WER is calculated as

WER =
Deletions+ Insertions+ Substitutions

N
· 100% (5.1)

N is the number of words in the reference. If more words are present in the ASR hypothesis than in the

reference, WER can exceed 100% due to a high number of deletions. WER is a hard metric with a 0/1 loss

function, i.e. the word is either identical or not. There is no distinction between falsely recognising figs/fix

and figs/mountain – both count equally as an error.

WER is edit distance and a lower rate indicates a better result. Other metrics that are generalisations of

WER such as Sentence Error Rate, Character Error Rate or Phone Error Rate has been proposed. Phone

error rate has been successfully applied as the optimisation metric in Minimum Phone Error training.

To calculate the statistical significance of performance increase or decrease, we use the Matched Pairs

Sentence-Segment Word Error (MAPSSWE) implemented by the National Institute of Standards and Tech-

nology (NIST) in the software package sctk (Fiscus, 1998, 2007) – more specifically the program called
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I II III IV

REF: |den ensomme|unge mand var koncentreret|og|helt opslugt af|at|vende blade i en bog|punktum

| | | | | | |

SYSa:|DENNE SOM |unge mand var koncentreret|og|helt opslugt af|at|vende blade i en bog|

| | | | | | |

SYSb:|den ENSOM |unge mand var koncentreret|AF|helt opslugt af| |vende blade i en bog|punktum

Figure 5.3: Example of MAPSSWE error calculation: The four segments I, II, III and IV are errorful

segments and I counts as one error for both SYSa and SYSb, II and III count as errors in SYSb and IV

counts as an error in SYSa.

sc_stats. The two-tailed test assumes that errors are normally distributed and a sufficiently large number

of sentence segments are necessary for this assumption to hold (Gillick & Cox, 1989). We assume that

Stasjon06 and Stasjon03 are large enough data sets that the normality assumption is reasonable because

both data sets are larger than the NIST test sets the algorithm was designed for.

The illustration of the MAPSSWE method in Figure 5.3 show four errorful sentence segments. Segments

can be of variable length and are specific to the pair of systems being evaluated. Segments must be bounded

by at least two correctly recognised words in both systems, e.g. segment III is bounded on the left by opslugt

af and by vende blade i en bog on the right. We can then expect the independence assumption to hold because

the segment was recognised in the same linguistic and acoustic context. The number of words (two) is the

segment boundary length because the LM used during decoding is a trigram model and therefore uses a

two-word history to estimate the probability of the next word.

In most applications including medical dictation, translation dictation and respeaking, real-time ASR

with incremental output is desirable, and the decoder must be able to decode as fast (or faster) than the

speaker talks. A real-time factor (RTF ) below 1 indicates that decoding is faster than real-time, while

RTF >1 is slower than real-time. A wide beam parameter increases the number of hypotheses generated

during decoding and can slow down the recognition process, so RTF constraints effectively places an upper

bound on beam sizes and other parameters that increase the complexity of decoding. A desirable RTF leaves

a time buffer for potential network latency or similar and is therefore RTF < 1 rather than RTF = 1.

When comparing RTF, we use a single 32 core server with 64 GB that is exclusive to the test, i.e. the

server is reserved, and to control for hard disk performance, memory consumption and CPU availability,

only 7 parallel decoding processes (one per speaker) is running at the same time. We have also made sure

that Stasjon06 and Stasjon03 fit in memory to avoid I/O bottlenecks.
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5.3.2.1 Equivalence classes

Stød-bearing phones can be mapped to stød-less phones, such as the base phone, during training. State-tying

can cluster stød-bearing and stød-less phones if the decrease in the likelihood of the data is less than the

threshold S(o) (see Section 2.5.3.1 on page 30). If state-tying does not cluster training data for stød-bearing

and stød-less phones, it supports the relevance of stød modelling in ASR because a) stød was chosen as a

splitting criterion and b) state-tying did not merge the training data after growing the PDT.

The transition-states map between word-position dependent phones, HMM states and pdfs, i.e. which

states are tied, and by proxy, which phones are modelled by the same pdfs. We define phone identity

between two word-position-dependent phones as phones where the ordered set of pdfs is identical12 An

equivalence class is therefore a set of phones that share phone identity. An independent equivalence class is

defined as a set of phones where all phones in the set are stød-bearing. A mixed equivalence class contain

both stød-bearing and stød-less phones.

5.3.2.2 Out-of-vocabulary words

The phonetic dictionary must cover the words in the training data completely, but we do not know of any

ASR system with complete dictionary coverage with respect to input using standard word-based dictio-

naries and LMs. The vocabulary of languages constantly increases by adapting foreign words, generating

named entities referenced by nouns or verbs13, and language-internal evolution such as changed spelling or

normalisation of slang also add to vocabulary growth.

Table 5.13 shows the OOV statistics for Stasjon03 and Stasjon06. The coverage is the proportion of

unique words that occur in a test set and are represented in the ASR dictionary, i.e. 93.5% of the unique

words in the Stasjon03 transcripts have phonetic representations in the phonetic dictionary and 6.5% do

not. These words cannot be recognised and will decrease WER performance.

OOV Types Coverage OOV tokens Tokens OOV rate

Stasjon06 369 5683 93.5% 6995 79889 8.75%

Stasjon03 648 7311 91.1% 735 112062 0.66%

Table 5.13: OOV statistics for Stasjon03 and Stasjon06.

Based on the coverage, the OOV tokens in a test set can be counted and an OOV rate can be calculated

12The HMM states are implicitly modelled using an ordered set of pdf-ids.
13E.g. Google is a name, a brand, a noun and a verb, though the verb was commonly accepted at a later date.
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which is equal to a lower bound on WER for that system/test set pair.14 It is only a lower bound because

false recognition of a word could, especially in Danish, be recognised as two separate words and such an

error could cause other words to be falsely recognised.

5.3.3 Tuning

We have been using Stasjon03 as a development set throughout this chapter and we also use it to tune

the beam, lattice-beam and max-active-states decoder parameters by sweeping a range of parameter values.

When we sweep values of one parameter, the two other decoder parameters are fixed to a predefined value,

but because these three decoder parameters influence each other, we might not find the optimal parameter

settings without considering all parameters at the same time. Therefore, we use parameter sweeping to

identify smaller parameter spaces to explore exhaustively.

An example of parameter sweeping on Stasjon03 can be seen in Figure 5.4. To create the graphs, we

fixed the parameters at beam=15, max-active-states=8000 and lattice-beam=8 when they are not sweeped.

The blue graph and left y-axis indicates the RTF performance and the WER performance is plotted with

green.

The graphs indicate a smaller parameter space that can be searched more exhaustively. We then either

repeat parameter sweeping with better fixed parameters or use grid search. In this case, we used near-

optimal fixed values, but the max-active-states parameter was fixed at a sub-optimal value. We would

repeat that parameter sweep and then conduct grid search on the new smaller parameter space.

If we were to choose a restricted parameter space from the graphs in Figure 5.4, a reasonable space to

search would be e.g. beam=[13-15] because WER stops improving and max-active-states=[4000-7000] and

lattice-beam=[7-8] which are the ranges with the best WER and RTF performance.

For each evaluation, the decoder produces a lattice that we rescore with the same LM but with different

weights to arrive at an optimal LM weight at the same time. In Section 5.3.4, we reuse the LM weight and

decoder parameters to decode Stasjon06.

Table 5.14 shows the WER evaluation in all experimental conditions on Stasjon03. We increased the

beam width and lattice beam width until we achieved the best WER performance under the constraint that

RTF < 0.8. For many systems, the WER improvement plateaued before the RTF threshold was reached.

Consistently, stød+pitch systems based on a triphone GMM AM significantly outperform their baselines

and this is the case irrespective of whether the system is trained on MFCC or PLP features. There are no

significant performance differences for mono0a systems.

14Because WER is an error rate, it should be as low as possible and the OOV rate is a bound on how good the performance

in terms of WER can become.
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Figure 5.4: Parameter sweep on Stasjon03 for three decoder parameters. The x-axis in the bottom graph is

in thousands.

We also observe highly significant WER performance improvement in the MFCC+

stød condition for tri4a, tri4b and nnet5c systems and the MFCC+stød nnet5c system outperforms all

other systems in Table 5.14 including the MFCC+stød+pitch nnet5c system (p < 0.001). The performance

increase is however not significant compared to the PLP+stød+pitch nnet5c system.

Another observation is that there is little increase or decrease in performance when we compare the

WER of PLP and PLP+stød systems without pitch features. There is no discernible consistency to how

performance is impacted by stød annotation.

5.3.4 Results

Table 5.15 show the WER evaluation on Stasjon06 using the decoder parameters and LM weight tuned on

Stasjon03 for all systems in all conditions. In general, the WER performance of GMM-based stød+pitch

systems that are trained on MFCC features – or LDA features derived from MFCCs – are lower than the

performance of PLP+stød+pitch systems, but only significantly when we compare tri4b systems. When we
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PLP MFCC
1st

System Baseline Stød
Stød+

Baseline Stød
Stød+ vs.

pitch pitch 2nd

mono0a 54.04 54.06 53.66 52.99 52.81 52.57 ∼

tri1 29.50 29.47 28.02*** 28.90 29.12 27.96*** ∼

tri2a 27.37 27.35 25.88*** 27.03 26.93 25.89*** ∼

tri2b 26.06 26.18 25.47*** 26.06 25.83* 25.09*** ***

tri3b 23.55 23.63 22.78*** 23.78 23.51** 22.57*** *

tri4a 20.66 20.65 19.99*** 20.88 20.52*** 19.81*** *

tri4b 19.77 19.70 19.17*** 19.94 19.60*** 18.94*** **

nnet5c 15.89 15.81 15.48*** 15.50 15.36*** 15.69 ∼

Table 5.14: %WER comparison on Stasjon03 for baseline, stød-informed and stød+pitch systems. The

performance of the best performing system is in blue and bold-faced. Statistical significance over the

system in the column to the left is denoted by symbols: ∼ if p > 0.05, * if p < 0.05, ** if p < 0.01 and *** if

p < 0.001. For instance, the MFCC+stød+pitch tri3b system is significantly better than the MFCC+stød

tri3b system in the table. Blue asterisk denote significant performance increase to the next best system, e.g.

the MFCC+stød+pitch tri4a system outperforms the PLP+stød+pitch tri4a system at significance level *.

compare PLP+stød and MFCC+stød conditions, there is not a clear performance difference across systems,

sometimes the PLP+stød system performs better than corresponding MFCC+stød system and vice versa.

We will compare experimental conditions more in-depth below.

5.3.4.1 Baseline vs. explicit stød modelling

The monophone (mono0a) MFCC+stød system improves significantly over the baseline and outperforms

the PLP+stød mono0a system (p = 0.006). There is no significant difference between baselines or between

MFCC+stød and PLP+stød for tri1 and tri2a systems, but the MFCC+stød tri2b system performs signif-

icantly better than the baseline and PLP+stød (p = 0.016). We also see significant improvement over the

baseline for MFCC+stød tri3b and tri4b systems (p < 0.001 and p = 0.001) and for the PLP+stød tri4b

system (p = 0.024). The MFCC+stød nnet5c system significantly outperforms both the MFCC baseline at

p = 0.004 and the PLP+stød condition at p = 0.001.
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PLP MFCC
1st

System Baseline Stød
Stød+

Baseline Stød
Stød+ vs.

pitch pitch 2nd

mono0a 48.86 48.66 48.77 47.49 47.05** 47.30 ∼

tri1 26.13 26.12 24.61*** 25.77 25.85 24.38*** ∼

tri2a 24.01 23.85 22.66*** 23.95 23.99 22.48*** ∼

tri2b 23.20 23.06 22.22*** 22.72 22.42* 22.16 ∼

tri3b 20.05 19.94 19.29*** 20.37 19.95*** 19.22*** ∼

tri4a 17.61 17.55 17.07*** 17.72 17.54 16.88*** ∼

tri4b 16.85 16.64* 16.49 17.14 16.81** 16.17*** **

nnet5c 13.50 13.33 13.17 13.28 13.08** 13.38 ∼

Table 5.15: %WER comparison on Stasjon06 for baseline, stød-informed and stød+pitch systems. The

best performing system/experimental condition is in blue and bold-faced. Statistical significance over the

system in the column to the left is denoted by asterisk: ∼ if p ≥ 0.05, * if p < 0.05, ** if p < 0.01 and ***

if p < 0.001.

5.3.4.2 Explicit stød modeling and pitch-related features

The performance of the MFCC+stød mono0a system is significantly better than the PLP+stød+pitch

system, but not the MFCC+stød+pitch mono0a system, which scored second best in the evaluation.

The MFCC+stød+pitch and PLP+stød+pitch tri1 and tri2a systems perform similarly according to

WER and improve significantly over other experimental conditions (p < 0.001).

The PLP+stød+pitch tri2b system significantly outperform PLP+stød (p = 0.005) but the MFCC+stød+

pitch tri2b does not significantly outperform MFCC+stød.

We see highly significant performance improvements for the stød+pitch tri3b and stød+pitch tri4a

systems at p < 0.001 and the MFCC+stød+pitch tri4b also very significantly outperforms MFCC+stød as

well as all other conditions (p = 0.002). PLP+stød+pitch does not outperform the PLP+stød condition,

but does significantly improve over MFCC+stød.

While the MFCC+stød condition still outperforms other nnet5c systems, the performance increase is not

significant compared to PLP+stød+pitch, but is significant compared to MFCC+stød+pitch at p = 0.006.
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5.3.4.3 Real-time performance

To complete the system comparison, we show the average RTF in Table 5.16. The RTF is an average

of speaker-specific RTF averages. Many RTF averages are well under the 0.8 threshold, but the RTF

performance is not very different from the average RTF on Stasjon03.

PLP MFCC

System Baseline Stød
Stød+

Baseline Stød
Stød+

pitch pitch

mono0a 0.77623 0.811311 0.690785 0.782925 0.793596 0.663294

tri1 0.671715 0.703715 0.552723 0.67196 0.650815 0.535484

tri2a 0.678857 0.713236 0.535778 0.652732 0.666068 0.534091

tri2b 0.428707 0.470557 0.421551 0.382892 0.391363 0.39765

tri3b 0.317045 0.327989 0.316125 0.29037 0.315387 0.291656

tri4a 0.470596 0.484545 0.449796 0.436046 0.457284 0.420969

tri4b 0.541336 0.568017 0.521224 0.484218 0.51061 0.488485

nnet5c 0.784921 0.741404 0.695695 0.734551 0.718506 0.721416

Table 5.16: Average Real-Time Factor evaluation for decoding on Stasjon06. The best performance for a

system/experimental condition is in blue.

When comparing baseline MFCC vs. PLP and MFCC+stød vs. PLP+stød etc., MFCC-based systems

are faster than PLP-based systems. The only exceptions are the baseline tri1 systems and stød-informed

nnet5c systems.

To further measure RTF improvement, we perform a paired difference t-test on per-speaker average

RTF across all systems. For mono0a systems, there is a significant RTF improvement when adding pitch

information (at p = 0.019 for PLP+stød+pitch and at p = 0.001 for MFCC+stød+pitch) but no signif-

icant difference between the two stød+pitch conditions. It is the same for tri1, i.e. significant speed-up

over MFCC+stød and PLP+stød (p < 0.001 and p = 0.0019, respectively) and tri2a (p < 0.001 in both

conditions), but no significant difference between pitch-based systems.

For tri2b systems, there is no significant difference between MFCC-based systems. The difference be-

tween the PLP baseline and PLP+stød+pitch is not significant, but the PLP+stød system is significantly

slower (p = 0.0067) and PLP-based systems are generally slower than MFCC-based systems: the slowest

MFCC-based system is significantly faster than the fastest PLP-based system (p = 0.0038).
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The MFCC+stød tri3b system is significantly slower than other MFCC-based tri3b systems, but the

difference between the MFCC baseline and MFCC+stød+pitch is not significant.

The tri4a MFCC+stød+pitch systems is significantly faster than all other tri4a systems, with the ex-

ception of the MFCC baseline. The PLP+stød+pitch system is significantly faster than both baseline and

PLP+stød (p = 0.025).

There is no significant difference between MFCC-based tri4b systems and the tri4b PLP+stød+pitch

system is significantly faster than the MFCC+stød system, but not the PLP baseline.

The PLP+stød+pitch nnet5c system is significantly faster than other PLP-based nnet5c systems (p <

0.001) while there is no significant change betwen MFCC+pitch+

stød and MFCC+stød systems.

5.3.5 Analysis

5.3.5.1 Effects of stød modeling and pitch-related features

The results show that modelling stød in the phonetic dictionary gives significant improvement in WER

for systems based on LDA-transformed MFCC-features. The improvement in WER comes at the expense

of RTF performance for GMM-based systems as illustrated for PLP-based tri2b systems in Figure 5.5.

Generally, GMM-based systems that explicitly model stød have a higher RTF than the corresponding

baseline, while DNN-based systems achieve a lower RTF. Adding pitch-related features tend to compensate

for the increase in RTF or even speed up decoding and improve WER except in one case.

In WER evaluation, the MFCC+stød nnet5c system outperforms all other systems and experimental

conditions and only the PLP+stød+pitch system is faster. The most advanced GMM-based systems (tri4b)

perform significantly better than their respective baselines when stød is explicitly modelled (p = 0.001 and

p = 0.024 for MFCC+stød and PLP+stød, respectively).

The GMM-based systems that use LDA-projected features (tri2b, tri3b, tri4a and tri4b) all outperform

their baseline in terms of WER. The performance increase is significant for MFCC-based tri2b, tri3b and

tri4b systems at p ≤ 0.016 and significant for the PLP-based tri4b system (p = 0.24), but not for tri4a

system. LDA projection may be important because it is preceded by feature splicing, which concatenates

features such that they represent a longer time window before (See Section 2.5.1 for description of LDA.).

The three systems tri2a, tri2b and tri3b use the same number of Gaussians and tied states and differ

only in the feature type used – Δ+ΔΔ features, LDA-transformed features and LDA and SAT-transformed

features (See Table 5.8). For the PLP-based systems, we see no correlation between the feature type and the

significance of WER improvement over the baseline, but we see that the WER performance improvement

116



Figure 5.5: The impact of modelling stød in the phonetic dictionary and adding pitch-related features on

the real-time factor. Adding stød increases the factor, but adding pitch-related features compensates.

between the MFCC baseline and MFCC+stød conditions goes from not significant (tri2a) to significant

(tri2b) and to highly significant (tri3b) with the change in feature type.

The correlation between WER improvement can be observed in Tables 5.14 and 5.15 and suggests that

features which represent a wide acoustic context are better at modelling stød.

GMM AM complexity

Table 5.17 gives an indication of the change in the AM as a result of adding stød in tri4b systems.

When adding stød, the number of transition-states increase by approximately 10000 states and 22000-

25000 more transitions need to be trained, while the number of Gaussians remain almost the same. The

amount of estimated probability distribution functions (pdf) remains stable across baseline and stød-

informed systems and is not impacted by the increase in transition-states and transition-ids. So stød

increases the complexity of the AM and the number of transitions, but does not increase the descriptive

power of the AM in terms of estimated pdfs.

Though the model becomes more complex, the increase in performance from the MFCC baseline to

MFCC+stød is significant at p = 0.001. The increase from the PLP baseline to PLP+stød is significant at

p = 0.0241 and supports the conjecture that explicit stød modeling in the PM is beneficial in Danish ASR.
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tri4b Phones PDFs Transition-states Transition-ids Gaussians

PLP 325 3834 31965 63970 60102

MFCC 325 3834 31555 63150 60097

PLP+stød 453 3848 44182 88404 60088

MFCC+stød 453 3761 43039 86118 60113

Table 5.17: AM statistics for tri4b systems. When estimating the PDT, the maximum number of leaves was

specified as 4800 and max number of Gaussians was 60000. Phones refer to the number of word-position

dependent phones and include 5 silence phones.

Stød independence

We have now determined that stød has an impact on the AM, but whether the AM actually models stød-

bearing phones separately has not been confirmed. If the AM models stød-bearing phones separately, we

can observe this in system-specific equivalence classes.

For the tri4b MFCC+stød system, there are 165 equivalence classes of word-position dependent phones

out of which 59 contain stød-bearing phones. 43 are independent equivalence classes such as [’?e_B, ?e_B],

[’?y_I, ?y_I] or [?o_E, ’?o_E] which are word-position dependent phones that we have forced to become

phone aliases. Some independent equivalence classes contain phones from different word positions such as

[’?y_B, ’?y_S, ?y_S, ?y_B] and [?A_E, ?A_I, ’?A_I,

’?A_E, ?A_S, ’?A_S]. Table 5.18 shows the statistics of all stød-informed systems and the independent

and mixed equivalence classes can be seen in Appendix B.4.

Experimental condition Classes Independent Mixed

PLP+stød 167 45 15

MFCC+stød 165 43 16

PLP+stød+pitch 151 34 24

MFCC+stød+pitch 171 43 19

Table 5.18: Stød equivalence classes for tri4b systems. Independent classes contain only stød-bearing phones

and mixed classes contain both stød-less and stød-bearing phones. All phones are word-position dependent

and silence phones are not included.

Irrespective of the experimental condition, the number of independent equivalence classes outnumber

the mixed classes. The PLP+stød+pitch system has fewer independent classes and more mixed classes out
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of fewer total classes, but also features much larger equivalence classes, e.g. [?W+_S, ?W_E, ’?W_S, ?W+_E,

’?W_E, ’?W+_S, ’?W+_E, ?W_S]. Appendix B.4 also shows the equivalence classes for nnet5c systems where

only the MFCC+stød nnet5c system differs by having an extra mixed class ([?m_E, m_E]).

Because independent classes contain phones from different word positions, merging word-position de-

pendent phones decrease the likelihood of the data less than merging stød-bearing and stød-less phones

in some cases which indicates that the distinction between stød-bearing and stød-less phones is sometimes

more important than word-position.

5.3.5.2 Recognition Errors

The top 10 confusion pairs, substitutions, deletions and insertions for MFCC+stød and MFCC+stød+pitch

nnet5c systems evaluated on Stasjon06 are displayed in Appendix B.5. For both systems, the common

recognition errors are small function words which is common in large-vocabulary ASR systems. The top 6

confusion pairs are phonetically similar such as [de/di], [u/o], [i/e] and [Ob@-n/Obn].

The most common recognition error is deletion, insertion or substitution of the word punktum (EN:

period). punktum is not part of any frequent confusion pair, but is included in 337 low-frequent confusion

pairs which are displayed in Appendix B.5.3. The words often confused with punktum bear no phonetic

resemblance to punktum or each other and can be both noun, verb, function word, named entity etc. No

pattern is discernible from the confusion pairs, but manual investigation of the alignment suggests the

problem is inconsistent transcription in the training and test data.

The text preprocessing converts sentence final punctuation to spoken form because punctuation is usually

dictated, however the dictation turns out to be inconsistent, i.e. there is a period at the end of a sentence

whether it is spoken aloud or not, and frequently recognition errors such as the one in Figure 5.6 can be

seen in the evaluation.

id: (46-r6110007-379)

Scores: (#C #S #D #I) 6 0 1 0

REF: arrangér alle markerede afsnit efter længde PUNKTUM

HYP: arrangér alle markerede afsnit efter længde *******

Eval: D

Figure 5.6: Recognition error report from sctk featuring punktum (EN: Sort all high-lighted paragraphs by

length). Capitalised words are erroneous and the error type D stands for deletion.

The ASR output (HYP) does not end in punktum because it is not spoken in the audio. Unfortunately, the

reference contains the word and a deletion is counted towards the final WER. This would explain the high
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number of errors, the inconsistent pattern in the confusion pairs in Appendix B.5.3 and the error occurring

across ASR systems with different feature and stød combinations.

The reason for the large number of insertions seems to occur primarily when the ASR system tries to

decode named entities or repetition utterances. Named entities are e.g. names of towns or first name and

surname without utterance-final period and repetition utterances are the same word repeated three times.

If the decoding fails as in the second and fourth example in Appendix B.5.3.2, the LM frequently inserts

punktum before predicting the end of the utterance. We conjecture that many occurrences of sentence-final

punktum in the LM training data leads to over-generation.

This problem seems to be specific to the data set. We use the transcripts from the training data to

estimate the language model rather than a much larger newswire corpus because it fits the domain which

includes utterances that consist only of repetitions and named entities. However, the transcription does not

always faithfully reflect the utterance and the text preprocessing cannot take this into account.

5.4 Discussion

The presented results show that modelling stød improves WER performance in most pairwise system com-

parisons. If we compare the WER performance of the PLP baseline and PLP+stød conditions and the

PLP+stød to PLP+stød+pitch conditions in Table 5.15 system by system, there is a consistent improve-

ment in WER.

If we compare the MFCC baseline to MFCC+stød and MFCC+stød to MFCC+

stød+pitch system by system, the improvement is less consistent, but many MFCC-based systems outper-

form PLP-based systems. The experiments indicate that WER improvement can be gained by explicitly

modelling stød without increasing the number of Gaussians, but also that acoustic features which correlate

with stød can further exploit stød annotation.

When we compare nnet5c systems, there is consistent WER improvement between the PLP baseline

and PLP+stød, and PLP+stød and PLP+stød+pitch and a significant improvement from the PLP baseline

to PLP+stød+pitch (p = 0.002). MFCC+stød significantly outperform all other DNN systems except

PLP+stød+pitch.

5.4.1 Stød annotation

The analyses above indicate that explicit modeling of stød in the phonetic dictionary is relevant and is

robust in the sense that data-driven methods do not cluster stød-bearing phones with stød-less phones. The

decision tree algorithm uses the manually generated splitting criteria to separate stød-less and stød-bearing
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variants of the same phone, i.e. the likelihood of the data increases, when we model stød. State-tying can

cluster stød-bearing and stød-less phones, but the analysis shows that this happens only in some cases and

that the likelihood of the data decreases less if word-position dependent-phones are clustered than stød-

bearing and stød-less phones. Also several stød-bearing word-position dependent phones are not clustered

with another phone.

The observations above hold across all experimental conditions for the most advanced GMM-based

systems (tri4b) and DNN-based systems (nnet5c) and suggest that stød is sometimes more important than

word-position and robust to clustering.

For this fairly simple task (compared to (semi-)spontaneous speech in medical dictation), automatic

phonetic transcription has proven sufficient for pronunciation modelling. A phonetic dictionary specifically

designed for Spr̊akbanken was made available in 2015, but it was not possible to incorporate the new data

into the experiments in the thesis. eSpeak is rule-based and while the generated dictionary provide good

results, there are no descriptions of the principles and theory used, the affixation of diacritic symbols is

unordered and some transcriptions are likely to be of questionable quality. The liquidated company from

which all the Spr̊akbanken speech data comes, Nordisk Spr̊akteknologi, reportedly placed substantial time

and effort into validation and quality assurance of their linguistic data (Andersen, 2008), but this claim

is challenged by the inconsistent transcriptions and corrupted data found during the development of this

recipe. Despite this, it is important that the dictionary is incorporated into the sprakbanken recipe at

some point because it is a high quality manually created phonetic dictionary with stød annotation that can

potentially give significant improvements in performance.

Stress is not modelled in the ASR systems presented in this chapter. In his enumeration of significant

conditions for stød, Hansen (2015) notes that stød primarily (with few exceptions) occur on syllables with

primary or secondary stress. He also notes that this distribution of stød is phonologically-based and the

co-occurrence is not necessarily maintained in (semi-)spontaneous spoken language or the transcriptions

produced by eSpeak. Hansen’s own observation support the co-occurrence, but whether his observation is

general or primarily pertains to his own data set is unknown. The impact from adding stress annotation

and stød might not be complimentary if they primarily occur together.

5.4.2 Language model

The IRSTLM toolkit was used to estimate the LM. It is possible that a different LM toolkit or recurrent

neural network LM rescoring can lead to significant performance improvements, but it is beyond the scope

of this thesis. The LM is trained on transcripts from the training data and models general read-aloud speech

but also include commands, number series and spelling which are specific to the test set.
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We do not believe that high WER performance on the Stasjon06 (or Stasjon03) indicate how well the ASR

system can be used for e.g. medical dictation because of the high proportion of repetition utterances, single

named entity utterances and spelling aloud utterances which do not reflect the dictation task. Dictation

as a speech genre is spoken language intended for written documentation and to have a more accurate

indication, a different test set should be used for evaluation or only sentence-like utterances from Stasjon06

should be used for evaluation. Repetition, spelling and single named entity utterances can be used to

evaluate according to e.g. phone error rate to give an intrinsic measure of the AM performance.

5.4.2.1 Dictionary size

The LM and phonetic dictionary must correspond because it is not possible to recognise a word in the LM

if it is not in the dictionary, so the dictionary size and coverage is important for performance. A 65000

word dictionary is considered large vocabulary in English (Adda-Decker & Adda, 2000)15, but for languages

like German and Danish with productive compounding, dictionaries need to cover a larger vocabulary

to achieve similar word coverage. Adda-Decker & Adda (2000) compare lexical coverage across English,

Japanese, Italian, French and German. The comparison can be seen in Table 5.19 where we have added a

similar analysis for Danish based on the unigram frequency list from the NST n-gram frequency lists we

used in Section 5.2.4. To achieve an OOV rate of 1%, a vocabulary size of ca. 290000 of the most frequent

words is required which is 4.46 times larger than vocabularies for corpora in English, Italian, French and

Japanese.

Language German English Italian French Japanese Danish

Corpus Frankfurter WSJ Sole24 LeMonde Nikkei Spr̊akbanken

Rundschau

Tokens 36M 37.2M 25.7M 37.7M 180M 290M

Types 650K 165K 200K 280K 623K 2.8M

5k coverage% 82.9 90.6 88.3 85.2 88.0 80.58

20k coverage% 90.0 97.5 96.3 94.7 96.2 90.45

65k coverage% 95.1 99.6 99.0 98.3 99.2 95.78

65k-OOV% 4.9 0.4 1.0 1.7 0.8 4.22

Table 5.19: Cross-lingual comparison of lexical coverage. The analysis of Danish lexical coverage is based

on the NST unigram frequency list and the remaining numbers are from Adda-Decker & Adda (2000). 5k

coverage% of 82.9 means the most frequent 5000 types cover 82.9% of all tokens in a corpus.

15This may have increased in recent years as it is a moving target.

122



The phonetic dictionary used in sprakbanken contains 65667 entries and model all unigrams in the

training data and cover most of Stasjon03. Considering that 91.25% (8.75% OOV rate) is a low dictionary

coverage compared to the coverage in Table 5.19, the evaluation does not suggest that the LM is poorly

estimated on too little data. The LM performs well on text genres that are similar to the training data

such as Stasjon06 and Stasjon03, but we expect that it will perform worse on e.g. Parole48 or DanPASS-

mono, where Parole48 will contain many OOVs words and the syntactic structure of spontaneous speech in

DanPASS-mono is different from written text.

There are different strategies to handle poor generalisation, such as increasing the dictionary size by

adding more data. We could add the unigrams from the NST n-gram database, the unused transcripts

in DK-Parole, the DanPASS dialogues or Danish Wikipedia to adapt the vocabulary (and LM) to other

domains and reduce OOV rate.

The OOV rate can also be reduced by modelling compounds. Figure 5.7 shows how compounds can

be wrongly recognised as two or more words. This not an infrequent problem but does not figure high in

recognition errors, because different compounds are part of the recognition errors. Compound-boundary

annotation is available in the phonetic dictionary from NST and another reason the additional NST resources

should be added to the recogniser.

id: (46-r6110007-206)

Scores: (#C #S #D #I) 4 2 0 1

REF: ********* ARRANGER UNDERDOKUMENTER til dette dokument punktum

HYP: ARRANGERE UNDER DOKUMENTER til dette dokument punktum

Eval: I S S

Figure 5.7: Recognition error of compound: underdokumenter/under dokumenter (EN: sub-documents/under

documents). Capitalised words are erroneous.

5.4.2.2 Lexical context vs. acoustic modelling

A critical point in the assessment of stød in ASR is whether an improvement attributed to improved acoustic

modelling can be achieved using a larger language model and is a parallel to the dilemma in Chapter 1:

stød is not present in some Danish dialects which are still understandable by other Danes, because lexical

context is sufficient for Danish spoken language understanding.

There are several phrases and words where intersentential lexical and semantic context cannot disam-

biguate a particular meaning, e.g. Ingen elsker bønner vs. Ingen elsker bønder. Only stød can disambiguate

the semantics of these sentences bar discourse context or world knowledge.
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These examples may not occur frequently but there are cases where stød modelling can provide important

information that may not be modelled in a word n-gram LM. The results in this chapter indicate that

modelling stød is not only relevant in border cases, but provide significant performance improvement and

we believe this indicates that the information in lexical context and stød is complementary. Several models

contribute to the accuracy of ASR and more accurate acoustic modelling can cause a shift in probability

mass in the AM that in turn influences the probabilities evaluated by the decoder. The influence from stød

may be decreased with a different language model, but modelling stød will have a positive effect.

5.4.3 Acoustic model

The constraint on PDT leaves and Gaussians are identical at each step in the bootstrapping process across

all systems in the evaluation. The descriptive power of an AM is highly correlated to these parameters and

increasing the threshold improves performance. We have shown that modelling stød explicitly and with

pitch-related features significantly increase performance in most cases across 8 different system configura-

tions and 4 experimental conditions (not including baseline).

Adding pitch-related features in ASR is not a novel idea, but has demonstrated valuable performance

gains in other languages and now also for Danish. It remains to be seen whether adding features that

correlate specifically with stød can be added to AMs without compromising overall performance. Features

such as PDD and PDM which seem to improve phone discrimination show promise, but acoustic features

which correlate well with stød might degrade the classification of stød-less phones.

Online ASR systems have not been evaluated. RTF has been reported to see if stød modelling decreases

decoding speed so real-time medical dictation is not possible. As Table 5.16 indicates, online decoding is not

compromised and we have controlled as well as possible the decoding from outside influences that could slow

disk I/O, memory consumption or CPUs. The surprising observation is that while stød-informed systems

have a higher RTF than baseline systems, pitch-related features compensate for the decreased speed. Adding

stød adds to the number of transitions in the AM that needs to be evaluated in decoding (See Table 5.17)

and we conjecture that this causes the decrease in RTF that we see in Table 5.16. Based on this, we further

conjecture that a shift in probability mass caused by adding pitch-related features makes it easier for the

decoder to choose a path through the lattice which improves RTF performance.

5.4.4 Application to stød detection

The current ASR can detect stød as a forced aligner and an interesting application is to increase the size of

the data used in Chapter 4, but to do so it is necessary to model the inconsistency in stød manifestation.

As mentioned in Chapter 2, stød is absent in some Danish dialects and stød can be omitted or dropped for
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various reasons. Before we force align data to create more labelled data to create training data for stød

detection experiments, we must model the fact that stød sometimes does not occur, i.e. lexical entries whose

phonetic representation contain stød annotation should also have a stød-less phonetic representation, e.g.

bønder should have two pronunciation variants: [b?WnV] and [bWnV]. If the variation in stød manifestation

is not modelled, the newly labelled data will not be suitable for the task.

Additionally, the phone set should be considered. So far, automatically generated transcriptions have

been sufficient, but frame-level experiments such as the feature selection and detection requires a high

accuracy annotation that eSpeak cannot provide or may require yet more pronunciation variants. This will

however increase confusability in the phonetic dictionary. Pronunciation variants does not always translate

into improvement in WER performance.

Pronunciation variants will however improve pronunciation modelling and we conjecture that a phonetic

dictionary with pronunciation variants can be used to improve training. The first task in ASR training

is forced alignment where the algorithm creates a WFST where the most likely path is used to align the

data (Lu et al., 2013). The estimated alignment will be more accurate and a phonetic dictionary without

pronunciation variants can be used in decoding.

5.4.5 Application to medical dictation

A data set containing medical dictation was made available by Mirsk. We intended to use the data for

training purposes and extracted all recordings that were shorter than two minutes and their associated

transcriptions – about 12 h. Unfortunately, the data set was inconsistent and in many cases, the transcripts

did not belong to the aligned audio or the audio was shorter than the aligned transcript and vice versa. The

audio files were in a variety of encodings and sample rates and we were not able to convert a large part of

them to the required format because of a low sample rate. We tried to convert the sound into 8 kHz WAV

format, but the audio files became corrupted or unintelligible because the header information information

often did not specify the correct sample rate.

The transcripts contained many non-standardised abbreviations. A particular non-standard abbreviation

variant was in a few cases specific to a transcriber, but we also observed intra-transcriber variation which

make it difficult to handle in computer programs. A particular severe problem was the abbreviation for

Pulmonary stethoscopic exam/Cardiac stethoscopic exam which is abbreviated steth. p et c according to

Schroeder et al. (2003) but was written as stet p et c, stet p og c, stet c et p, stet c stet p and st pc etc.

The abbreviation used does not reflect the pronunciation which also showed great variability and reduction

because it is a standing phrase in the medical domain.
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Ultimately, the data was too unstructured and noisy that we decided to discard it. Manually transcribing

select data would take time from the experiments presented in this chapter and Chapter 6 which we believe

are of more academic value. Instead, we will evaluate performance on the DanPASS-mono and Parole48

data sets to evaluate whether stød modelling can generalise to unseen data in Chapter 6. The two data sets

pose problems that we would also encounter in medical dictation, e.g. spontaneous speech (DanPASS-mono),

low dictionary coverage (Parole48) and different text domains.

5.4.6 The relation between pitch and stød

According to the statistical significance test, the performance increase from pitch-related features is more

significant and consistent across GMM-based systems and feature types than the performance increase

gained by modelling stød in the phonetic dictionary. Only the MFCC+stød+pitch nnet5c system is outper-

formed by the corresponding MFCC+stød system. The results do not directly indicate whether we could

obtain better performance with a MFCC+pitch system, i.e. a system that does not annotate stød in the

phonetic dictionary. We do not expect a MFCC+pitch tri4b or nnet5c system to reach the same level of

performance as a corresponding MFCC+stød+pitch system, but we lack the experimental results to confirm

the conjecture and that is a weakness of this study.

5.4.7 Chapter conclusions

The purpose of this chapter has been the development of baseline systems and implementation of stød-

informed and stød+pitch systems to discover how stød can improve ASR using conventional ASR methods

and feature sets. Conventionally in ASR experiments, the performance of the most advanced systems such as

tri4b or nnet5c are reported. The ‘over-reporting’ across different feature types and AMs serve to document

that performance improvement is consistent in stød-informed systems and serves to guide researchers who

wish to reproduce the results in this chapter.

Repeating the experiments requires access to the same resources, tools and methodology. The sprak-

banken setup is based on publicly available tools and resources and while the installation of the Kaldi

toolkit is not trivial and considerable computing resources are necessary to train large scale ASR systems,

the system can be used as a reference for further development and be used for both teaching purposes and

hypothesis testing. Previously, such a system has not been available for Danish and our hope is that the

availability can improve the state of speech technology research and education, which was ranked undesirably

low in Pedersen et al. (2012).

The WER evaluations show a significant improvements when stød is modelled in the phonetic dictionary

and AM in MFCC+stød systems. Adding pitch-related features consistently improve WER across PLP and
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MFCC systems, and also compensate for an increase in RTF caused by a more complex AM. This is positive

confirmation in support of the theory that stød as important for automatic speech recognition of Danish

spoken language. It is also a positive result that adding features revealed to be salient for stød detection

in Section 4.2.4 does not degrade WER or RTF. Performing additional experiments with acoustic features

e.g. phase features and Peak Slope is a logical step in further research on stød modelling in ASR.

The Spr̊akbanken repository includes similar, larger data collections for Swedish and Norwegian. These

resources should also be made available as a recipe in Kaldi and a methodology already exist for Swedish,

which will facilitate the development (Vanhainen & Salvi, 2014). While the language-specific data sets are

quite substantial, the existence of several recipes will make it possible to combine systems across languages,

share models and potentially research acoustic language identification. Crucially, experiments with DNN

AMs and LMs, which are scale-dependent and require huge amounts of data to be trained appropriately,

can be conducted.

A number of potential areas for future research based on the open recipe has been presented including:

� Modelling stress and other prosodic features

� LM experiments such as neural LMs, compound splitting and domain adaptation

� Multilingual and inter-lingual (Scandinavian?) speech recognition and model sharing

Compounding, model sharing and language ID ties in well with the current focus on ASR and NLP

for closely-related languages in the last couple of years. The possibility to share methods, models and

technology between languages and has been the focus of three workshops, i.e. LT4CloseLang and VarDial

in 2014 and LT4VarDial in 2015. Accordingly to the Meta-Net whitepaper series, this research could be of

interest to all Scandinavian countries (Pedersen et al., 2012).
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Chapter 6

Augmenting stød-informed ASR with

stød-related acoustic features

Explicitly modelling stød in the phonetic dictionary can lead to significant performance improvements. The

experiments in Chapter 5 show a general improvement in word error rate (WER) while online decoding is

still possible and indicate that stød carries valuable acoustic information that can be used to resolve lexical

ambiguities.

The stability and persistence of independent equivalence classes in the acoustic model (AM) confirm

that modelling stød improves the likelihood of the training data sufficiently that state-tying does not cluster

stød-bearing phones with stød-less phones.

We also extended the MFCC and PLP feature vectors with pitch-related features and showed that WER

performance could increase further and that the increased real time factor (RTF) in stød-informed systems

was to some extent compensated when pitch-related features were added.

Given the above observaitions, a natural extension is to include the acoustic features that were found to

correlate with stød in Chapter 4. To continue this line of research, we train GMM (tri4b) and DNN-based

(nnet5c) ASR systems on MFCC vectors that are extended with voice quality features and evaluate these

systems against ASR systems developed in the previous chapter.

6.1 Acoustic stød modelling

Log-pitch, probability-of-voicing and Δlog-pitch were appended to the ASR features used in Chapter 5

to improve acoustic modelling and this showed significant improvement in several cases. Adding pitch-

related features to an ASR system is not novel, the feature extraction was already implemented in the
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toolkit, and the experiment has been conducted several times in the literature on other languages than

Danish (Ghahremani et al., 2014; Riedhammer et al., 2013). Adding features that specifically correlate with

stød is not guaranteed to improve performance, because stød is not very frequent and since it can be difficult

to exploit voice quality features to improve ASR performance outside of a low-resource context (Fernandez

et al., 2014). The Spr̊akbanken data is limited in the terms of speech genre, but not limited not in terms of

data size. We therefore expect it to be difficult to improve upon the MFCC+stød and MFCC+stød+pitch

tri4b and nnet5c systems in Chapter 5.

Fernandez et al. (2014) conducted a series of experiments on Zulu and Lao where many of the features

explored in Chapter 4 are included. The performance for Zulu and Lao are state-of-the art and included a

feature not previously explored in this thesis. The Harmonic Richness Factor (HRF) will be included in the

experiments in this chapter, so the feature sets we investigate are:

1. MFCC+log-pitch, probability-of-voicing and Δlog-pitch

2. MFCC+log-pitch, probability-of-voicing and Δlog-pitch, and Peak slope

3. MFCC+log-pitch, probability-of-voicing and Δlog-pitch, PDD 10-13 and PDM 13-14

4. MFCC+log-pitch, probability-of-voicing and Δlog-pitch and HRF

where PDM and PDD are abbreviations for Phase Distortion Mean and Phase Distortion Deviation.

We extend MFCC feature vectors because the best tri4b and nnet5c systems from Chapter 5 are based

on LDA features derived from MFCCs. We use pitch-related features because they improve performance

significantly for tri4b systems and HRF is a pitch synchronous feature.

Fernandez et al. (2014) use different late integration approaches, but enumerate early integration and

integration in GMM AMs in their discussion of future research and we therefore append voice quality

features to MFCC+pitch vectors before MLLT/LDA projection.

6.1.1 Harmonic Richness Factor

The Harmonic Richness Factor (HRF) describes the amount of harmonic information (periodicity) in the

speech signal. The computation of HRF bears resemblance to H1-H2. H1-H2 is the difference between the

first two harmonics H1 and H2. To estimate HRF, compute

HRF =

K∑
i=2

Hi

H1
, Hi ∈ f, i = 1...K (6.1)
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where Hi is the amplitude of the ith harmonic and K is the number of harmonic peaks in the frequency

range f .

H1 is the peak closest to F0, i.e. defined identically to the formulation of H1-H2. Though HRF

bears resemblance to H1-H2, both HRF and harmonics-to-noise ratio are measures of harmonic information

vs. noise in speech where H1-H2 measures the relationship between the first and second harmonic only.

In the experiments in Chapter 4, harmonics-to-noise ratio was not a salient feature and we believe the

normalisation, where the undefined regions assigned a value of -200 by Praat are redefined as HNRlowbound

(Eq. 4.1), may be a significant reason why the harmonics-to-noise ratio was not found to contribute salient

information. We investigate HRF because it does not require similar normalisation as the harmonics-to-noise

ratio and the feature can be extracted with Covarep, which extracted several salient features in Chapter 4.

Unlike the harmonics-to-noise ratio, HRF is a pitch-related feature, i.e. we must find F0 before we can

estimate HRF, and this could be problematic if F0 is irregular. However, the experiments in Chapter 5

show that pitch-related features can have a positive influence on performance.

If HRF also turns out to be salient in the following experiments, it suggests that some periodicity is

present to track F0 and that energies in high frequency bands contain information related to stød. Low F0

and relatively high H2 has been observed for stød-bearing phones in the literature (Hansen, 2015; Fischer-

Jørgensen, 1989) and Fischer-Jørgensen (1989) also finds stronger harmonics in higher frequency bands.

According to Keating et al. (2014), creaky voice can be categorised according to several properties such

as low F0, irregular F0, glottal constriction, the presence of subharmonics and noise levels, but none of the

categories mention relatively stronger harmonic peaks. The changes at high frequency bands suggest that

this is where we may find a more accurate phonetic description of stød than ‘stød is more than creak ’.

6.2 Method

On the entire Spr̊akbanken corpus, we extract HRF, Peak Slope, PDM and PDD using feature extraction

settings that are identical to those used in Chapter 4, (See Appendix B.3). We extend MFCC+pitch

feature vectors with these features (only PDM 13-14 and PDD 10-13, not all 38 phase features), normalise

the extended vector using mean subtraction and variance normalisation in Kaldi and train AMs using

the methodology described in Chapter 5. We use early integration and add the new features before LDA

projection, just as we did with pitch-related featues.

Performance is evaluated on Stasjon06, DanPASS-mono and Parole48 data sets and OOV statistics for

DanPASS-mono and Parole48 can be seen in Table 6.1
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OOV Types Coverage OOV tokens Tokens OOV rate

Parole48 459 2473 81.4% 1012 6935 14.6%

DanPASS-mono 172 1141 84.9% 5232 21418 24.4%

Stasjon06 369 5683 93.5% 6995 79889 8.75%

Table 6.1: OOV statistics for DanPASS-mono, Parole48 and Stasjon06.

The OOV rate is much higher in Parole48 and DanPASS-mono than in Stasjon06 and we expect to

observe degraded performance on Parole48 and DanPASS-mono because of the OOV rate and the shift in

text genre. The DK-Parole corpus is based on articles from newspapers and periodicals which regularly

introduce new vocabulary when describing recent events, foreign places or persons, inventions and other

named entities. The articles describe different topics and therefore the phonetic dictionary has the lowest

coverage on Parole48, but because a specific OOV word does not occur frequently, the OOV rate is relatively

low compared to DanPASS-mono. The DanPASS corpus also contain several named entities that are not

in Spr̊akbanken, such as places in the map or shapes in the geometric network and house described in

DanPASS-mono. The phonetic dictionary has higher coverage, but the same named entities are described

by all speakers and because they are high-frequent, the OOV rate is higher in DanPASS-mono than Parole48.

The syntax will also change because neither DanPASS-mono or Parole48 contain spoken commands,

repetitions, spellings or name utterances, but are closer in structure to the text genre used in medical

dictation.

6.2.1 Evaluation

We use the same training parameters as in Chapter 5 to train ASR systems on extended acoustic fea-

ture vectors. However, because we wish to discover if additional acoustic features can improve ASR,

we optimise the LM weight, beam width, lattice-beam and max-active-states decoder parameters of us-

ing MFCC+stød+pitch systems for performance on Stasjon06, Parole48 and DanPASS-mono under the

RTF < 1 constraint. We then use these parameters to decode the same test sets with tri4b and nnet5c

systems trained on extended features vectors.

The motivation is that it is difficult to achieve a performance increase with novel acoustic features

outside of limited-resource context and because we use Spr̊akbanken for training, we are not limited by

data resources. If we observe improved performance using novel acoustic features over a baseline that is

optimised for our test sets, we believe it is the best indication of the utility of the novel features.
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We use WER as the main performance metric and calculate statistical significance to compare system

performance with MAPSSWE, similar to Section 5.3.2. We also report RTF performance and analyse the

impact of the extended feature sets on performance using beam sweeps in Section 6.4.1.

We include the best tri4b and nnet5c system according to WER performance from Chapter 5 as baselines

in the evaluation, i.e. the MFCC+stød+pitch tri4b system and MFCC+stød nnet5c system. Because the

systems in this chapter all use a phonetic dictionary with stød annotation, we drop the ‘stød’ identifier and

denote the two systems as the MFCC+pitch tri4b system and the MFCC nnet5c system.

In terms of hardware, we use a reserved server identical to the one used in the previous chapter to train

the ASR systems on extended feature vectors and conduct the experiments.

6.3 Results

For each test set, the decoder parameters are tuned for performance with MFCC+pitch features and the

best performance under the RTF < 1 constraint is chosen to evaluate the systems. The evaluation in Table

6.2 compares tri4b systems trained on MFCC+pitch+phase, MFCC+pitch+HRF and MFCC+pitch+Peak

Slope to MFCC+

pitch features.

Test set Metric
Stasjon06 Parole48 DanPASS-mono

(16-7-8000) (15-8-8000) (12-5-6000)

MFCC+pitch
WER 16.12 33.53 56.41

RTF 0.633 0.727 0.880

MFCC+pitch+phase
WER 16.25 33.68 55.96

RTF 0.576 0.772 0.676

MFCC+pitch+Peak Slope
WER 16.73 33.83 57.38

RTF 0.523 0.696 0.638

MFCC+pitch+HRF
WER 16.21 33.08 56.58

RTF 0.523 0.708 0.637

Table 6.2: WER and RTF on Stasjon06, DanPASS-mono and Parole48 for all tri4b systems when decoder

parameters are tuned for WER performance with MFCC+pitch features. The best WER performance for a

test set/feature set is in blue , the best RTF performance is in red and both are bold-faced. No statistically

significant performance improvements were measured using MAPSSWE.

On Stasjon06, the performance of MFCC+pitch+Peak Slope is significantly worse than all other systems
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at (p < 0.001), but there is no statistically significant difference in performance between MFCC+pitch,

MFCC+pitch+HRF and MFCC+pitch+phase. No system achieves significant improvements in WER

on Parole48, but the WER performance on DanPASS-mono of the MFCC+pitch+Peak Slope system is

again significantly worse than the other systems at p < 0.001 for MFCC+pitch+phase and p ≤ 0.042 for

MFCC+pitch and MFCC+pitch+HRF).

The MFCC+pitch tri4b system outperforms other systems on Stasjon06, but is outperformed by MFCC+

pitch+phase on DanPASS-mono and by MFCC+pitch+HRF on Parole48. Also, the MFCC+pitch+Peak

Slope and MFCC+pitch+HRF systems are faster as indicated by the lower RTF.

The same procedure is applied to evaluate nnet5c systems. We select MFCC+pitch, MFCC+pitch+HRF

and MFCC+pitch+phase feature sets based on WER performance from Table 6.2 and train two nnet5c

systems on MFCC+pitch+HRF and MFCC+pitch+phase feature sets. The evaluation is reported in Table

6.3.

Test set Metric
Stasjon06 Parole48 DanPASS-mono

(12-6-6000) (14-7-5000) (12-5-6000)

MFCC
WER 12.94 29.78 53.83

RTF 0.704 1.035 0.871

MFCC+pitch
WER 13.10 30.38 54.73

RTF 0.718 0.929 0.801

MFCC+pitch+phase
WER 12.16*** 30.05 49.02*

RTF 0.498 0.775 0.662

MFCC+pitch+HRF
WER 12.58*** 30.38 51.06

RTF 0.692 0.780 0.692

Table 6.3: WER and RTF on Stasjon06, DanPASS-mono and Parole48 for all nnet5c systems when decoder

parameters are tuned for WER performance with MFCC+pitch features. The best WER performance for

a test set/feature set is in blue, the best RTF performance is in red and both are bold-faced. Statistically

significant WER improvement over the MFCC system is denoted by symbols: ∼ if p > 0.05, * if p < 0.05,

** if p < 0.01 and *** if p < 0.001.

The MFCC+pitch+phase system significantly outperforms other systems on Stasjon06 (p < 0.001) and

DanPASS-mono (p = 0.016). The MFCC system achieves the best WER performance on Parole48, but

this is not a significant improvement. The systems trained on extended acoustic features have lower RTF

performance than systems trained on MFCC and MFCC+pitch features.
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6.4 Analysis

6.4.1 Performance

In terms of tri4b performance, no clear picture emerges from the system evaluation in Table 6.2. Only

the MFCC+pitch+phase tri4b system is significantly better than the MFCC+pitch+HRF tri4b system

on DanPASS-mono, but otherwise different systems perform better on different test sets and none of the

differences are significant. We do observe in all but one case that extended feature sets improve RTF perfor-

mance. While increased speed in decoding is not the focus of these experiments, a potential improvement

in WER performance may be indirectly achieved because the decoder parameters can be increased without

compromising real-time capabilities.

The MFCC+pitch, MFCC+pitch+HRF and MFCC+pitch+phase tri4b systems significantly outper-

form the MFCC+pitch+Peak Slope tri4b system on Stasjon06 and DanPASS-mono, and based on this

performance we train nnet5c systems on MFCC+pitch+HRF and MFCC+pitch+phase features sets. In

the nnet5c evaluation in Table 6.3, the MFCC+pitch+phase nnet5c system significantly outperforms all

other systems on DanPASS-mono and also on Stasjon06 in addition to having the lowest RTF across all

evaluations. In terms of relative reduction, the MFCC nnet5c system achieves the best performance on

Parole48 with a 2% reduction compared to the MFCC+pitch nnet5c system, MFCC+pitch+phase achieves

more than 10% reduction on DanPASS-mono, and also 7.1% reduction on DanPASS-mono and Stasjon06.

To analyse the relationship between WER performance and RTF for the MFCC, MFCC+pitch, MFCC+

pitch+HRF and MFCC+pitch+phase feature sets, we sweep the beam size of the nnet5c systems in Table

6.3 and plot WER and RTF on Stasjon06, Parole48 and DanPASS-mono to see if an additional performance

increase can be gained. In Figures 6.1, 6.2 and 6.3, we abbreviate the feature set names as follows:

Abbreviation Full description

M MFCC

MP MFCC+pitch

MPH MFCC+pitch+HRF

MPP MFCC+pitch+phase

Table 6.4: Abbreviation table for legends in Figures 6.1, 6.2 and 6.3.

The MFCC+pitch+phase and MFCC+pitch+HRF nnet5c systems are consistently faster by almost 0.18

RTF than the MFCC and MFCC+pitch nnet5c systems. The MFCC+pitch+phase system also consistently

achieves a lower WER performance for all beam values in the parameter sweep. The MFCC+pitch+HRF
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system also shows a constant improvement though at a smaller factor and the difference in WER performance

of MFCC+pitch+phase over MFCC+pitch+HRF is significant at p < 0.001, which is visually apparent in

Figure 6.1.

Figure 6.1: Beam parameter sweep on Stasjon06 for all feature sets. The best performance is achieved by

MFCC+pitch+phase (MPP) with a beam size around 12.

The RTF performance gap between the MFCC and MFCC+pitch systems, and MFCC+pitch+HRF and

MFCC+pitch+phase systems hold on the Parole48 test set in Figure 6.2. The MFCC+pitch system RTF

does not degrade together with the MFCC system as in Figure 6.1 and this is the reason the MFCC system in

Table 6.3 is slower than real-time. We also see that if we set the beam size to 14 for the MFCC+pitch+phase

and MFCC+pitch+HRF systems, they can achieve 30.05% and 30.38% WER performance respectively and

still decode in real-time1. The increased decoding speed can thus be translated into a WER improvement

that closes the performance gap between MFCC+pitch and MFCC+pitch+HRF.

We also observe lower RTF for the MFCC+pitch+HRF and MFCC+pitch+phase systems in Figure 6.3,

but the gap is smaller than on Parole48 and DanPASS-mono. The graph does not have a steep incline

between beam sizes of 14 and 15 as in Figures 6.1 and 6.2, but shows a smooth trend where we can observe

that the MFCC+pitch+HRF and MFCC+pitch+phase systems can use wider beam sizes than the MFCC

and MFCC+pitch systems and still adhere to the RTF < 1 constraint.

To sum up the observations from Figures 6.1, 6.2 and 6.3, the WER performance for each feature

set/test set with RTF < 1 is reported in Table 6.5. There is no change in WER performance on Stasjon06

because we already achieve best performance with beam size 12. The performance of the MFCC baseline

on Parole48 decreases because we need to narrow the beam to obtain 0.950 RTF, but this does not lead

1If the beam is set to 15, then RTF ≤ 1.018.
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Figure 6.2: Beam parameter sweep on Parole48 for all feature sets. The best performance is achieved by

the MFCC baseline (M) with beam size 12.

Figure 6.3: Beam parameter sweep on DanPASS-mono for all feature sets. The best performance is achieved

by MFCC+pitch+phase (MPP) with a bea size of 12.

to significant change in WER and the baseline still achieves the best performance. The WER performance

of the MFCC+pitch+HRF and MFCC+pitch+phase systems improve on DanPASS-mono, but only the

MFCC+pitch+phase system improve significantly over Table 6.3.
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Test set Metric Stasjon06 Parole48 DanPASS-mono

MFCC
WER 12.94 29.89 53.83

RTF 0.704 0.940 0.871

MFCC+pitch
WER 13.10 30.38 54.73

RTF 0.718 0.923 0.801

MFCC+pitch+phase
WER 12.16*** 30.05 48.79*(**)

RTF 0.498 0.780 0.918

MFCC+pitch+HRF
WER 12.58*** 30.38 50.46

RTF 0.692 0.775 0.968

Table 6.5: WER and RTF on Stasjon06, DanPASS-mono and Parole48 for all nnet5c systems with the

widest beam under RTF < 1. The best performance for a test set/feature set is in blue. Statistically

significant WER improvement over the MFCC baseline is denoted by symbols: ∼ if p > 0.05, * if p < 0.05,

** if p < 0.01 and *** if p < 0.001. Asterisk in parenthesis denote improvement over the same feature

set/test set in Table 6.3.

6.4.2 Stød independence

The independent and mixed equivalence classes that are clustered in state-tying during the training of the

MFCC+pitch+phase and MFCC+pitch+HRF nnet5c systems can be seen in Appendix B.4 and Table 6.6

show the equivalence class statistics of all nnet5c systems used in Section 6.3.

Three observations about the shared equivalence classes:

1. All independent equivalence classes cluster phones by word position and stød

2. Two mixed classes likely contain errors

3. 8 out of 10 mixed classes cluster phones by word position

The two erroneous equivalence classes are [’d_B’, ’?d_B’] and [’d_E’, ’d_I’, ’?d_S’, ’d_S’,

’?d_E’, ’?d_I’] because [d] is a consonant and should by definition not be stød-bearing irrespective of

whether it is a plosive or a stop and it turns out that the source of this error is in the the word akkord (EN:

chord). Because this is an error, it is a positive outcome that state-tying consistently clusters the erroneous

stød-bearing phones with their stød-less variants.

We can also see that all the shared independent equivalence classes exclusively contain stød-bearing

vowels, that the alveolar fricatives [s] and [z] and the nasal [m] cluster by word position and that all the

variants of [0] are in one cluster. When we inspect the phonetic dictionary, we count 413 word-internal
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occurences of [?0] and [0] and two occurrences of word-initial [0], i.e. because only three variants are

observed in the data, the unobserved and low-frequent variants are clustered with frequent variants. We

conjecture that [?0] and [0] are clustered because the distinction does not increase the likelihood of the data

sufficiently to resist state-tying.

Feature set Total Independent Mixed

MFCC 165 43 16

MFCC+pitch 171 43 19

MFCC+pitch+phase 158 37 18

MFCC+pitch+HRF 166 45 13

Shared 38 28 10

Table 6.6: Equivalence class statistics for nnet5c systems and the number of mixed and independent equiv-

alence classes that are identical across the nnet5c systems. Independent classes contain only stød-bearing

phones and mixed classes contain both stød-less and stød-bearing phones. Note the large proportion of

independent classes. All phones are word-position dependent and silence phones are not included.

6.5 Discussion

6.5.1 Extended feature sets

HRF and phase features show promise in Danish ASR and capture information in speech that improves accu-

racy and decoding speed. Adding Peak Slope to standard ASR features significantly degraded performance

in tri4b system evaluation and we did not include it in the nnet5c systems evaluation.

The performance degradation we observe when we add the Peak Slope parameter is unexpected because

the feature is ranked as salient in Chapter 4 and had a positive influence on WER performance in Fernandez

et al. (2014). To learn why, we decoded Stajon06 with tri1, tri2a, tri2b, tri3b and tri4a systems trained on

MFCC+pitch+phase, MFCC+pitch+HRF and MFCC+pitch+Peak Slope and plotted the performance of

these systems in Figure 6.4. We also add the MFCC+stød and MFCC+stød+pitch systems from Chapter

5 in the comparison.

We clearly see that the MFCC+pitch+Peak Slope ASR systems do not improve at the same rate

as systems that are extended with HRF or phase features when we apply LDA transformation. Phase

features improve by 6% WER absolute which is nearly 3 times more improvement than we observe for
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Figure 6.4: The impact of LDA projection on %WER performance in GMM-based ASR. The names identify

the voice quality features that are appended to the MFCC+pitch feature vectors. The MFCC+stød and

MFCC+stød+pitch systems refer to the systems in Table 5.15.

MFCC+pitch+HRF and MFCC+stød and 19 times ( 6.080.31 ) more than MFCC+pitch+Peak Slope (0.31 ab-

solute improvement). We conjecture that a degradation was not observed in Fernandez et al. (2014) because

1) they extend PLP features with 10 features that include Peak Slope, HRF, H1-H2 etc. and 2) they use

late integration and extend feature vectors after LDA projection.

The performance degradation we observe is therefore not an indication that Peak Slope is not a salient

feature for the detection of stød, but suggests that Peak Slope is not suited for early integration.

6.5.2 Feature extraction speed

The phase feature extraction method used here is slower than real-time. The harmonics of the speech

signal is computed using an adaptive harmonic model, which is an accurate, but slow estimation method.

A faster estimation method such as peak picking could reduce the computation time of the harmonic

analysis to approximately 10% at the expense of precision (Degottex & Stylianou, 2013). Matlab’s mex

functionality can speed up interpolation and compile programs, which should also speed up harmonic analysis

by approximately 35%. Acceleration using either option makes real-time feature extraction possible.2

2Notes in the Covarep source code. We have not tested this claim.
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The feature ranking experiment in Chapter 4 suggest that phase features are not only salient for stød

detection, but for general phone discrimination as well. We do not know if the real-time/lower precision

extraction method is sufficient to predict stød, but faster extraction is necessary if we want to use phase

features in ASR. If real-time ASR is not required, e.g. in a post-editing scenario, phase features can still be

used to improve ASR accuracy.

HRF can be estimated in real-time, but is sensitive to the quality of F0 estimation and pitch is difficult

to estimate in noisy speech. HRF does not provide the same reduction in WER or RTF as phase features

do, but is more straightforward to exploit because the estimation is fast and we consider HRF as a salient

feature for the detection of stød and an addition to the features in select+.

6.5.3 Robustness

All corpora used in this thesis have been recorded in noiseless conditions or an office environment. We do

not know how beneficial phase and HRF features are to performance at different levels of signal-to-noise

ratios or reverberant noise. If the input is too noisy, the information contributed by HRF and phase features

could become unreliable, especially in the case of HRF if the F0 estimate becomes less reliable.

Robustness in speech recognition is a very active research field that for instance use methods to add noise

to sound files to simulate noisy environments. Using additive noise and room-impulse response, training

and test data with different signal-to-noise ratios can be generated to test robustness of features and ASR

systems. As future work, we propose a similar test to investigate the robustness of HRF and phase features

because additive noise will have an impact on F0 estimation (Gerhard, 2003) and room-impulse responses

can corrupt the estimation of the shape of the glottal pulse, which is correlated with phase features (Degottex

& Erro, 2014).

6.5.4 Relevance to medical dictation

As demonstrated, modelling stød explicitly in the phonetic dictionary and using HRF and phase features

increase performance when we use a narrow LM that fits the domain, which indicates that the performance

increase is complementary to syntactic information. In medical dictation, it is difficult to obtain text data

to estimate LMs, because medical data contains sensitive information and the ASR systems are forced to

rely less on textual context. Exploiting stød is therefore of special interest in this and similar contexts

because significant performance improvements can potentially be gained. Because of the slow phase feature

extraction algorithm, HRF is more suited to augment the feature input to ASR systems, though it remains

to be seen whether HRF is robust in noisy environments.
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6.6 Chapter conclusions

On clean recordings in two different speech genres and three different data sets, the ASR systems augmented

with phase features or HRF either achieve similar results or outperform the previously described stød-

informed systems trained on MFCC or MFCC+pitch features. Though Peak Slope is an informative feature

according to the experiments in Chapter 4, experiments show that the feature degrades performance in

GMM-based ASR systems when we extend the acoustic feature vector prior to LDA projection.

A useful contribution from the added features is an increase in decoding speed, which makes it possible

to traverse a larger part of the lattice. Although the best WER and RTF performance is gained using

phase features, the slow feature extraction algorithm makes them impractical to implement and use in their

current form. This can potentially be mitigated using faster algorithms for phase extraction that are based

on peak picking, if the estimated features are shown to be sufficiently accurate.

On the basis of the results in this chapter, we consider HRF to be another feature that is salient to stød

detection which supports the conjecture that stød is correlated with information in higher frequency bands.
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Chapter 7

Summary and future work

The working definition of stød in this thesis is “stød is more than just creak”. The present work does not

attempt to answer what stød is in phonetic or acoustic terms, but investigates the assumption that stød

is useful in Danish ASR. Our findings can be implemented in other speech recognisers by simply adding

stød annotation to the phonetic dictionary and re-training the ASR system. The experiments in Chapter 5

demonstrate that significant improvements can be gained by explicitly modelling stød despite the increased

phonetic alphabet. The analysis of equivalence classes confirm that stød is modelled separately and not

re-clustered during state-tying.

Adding voice quality features such as phase features or HRF will require some development because HRF

relies on F0 estimation and phase feature extraction is slower than real-time. The extraction algorithms must

also align all the extracted features with MFCC or PLP features. We performed the alignment manually.

Because of variables concerning implementation, workflow choice (real-time ASR or ASR and post-

editing), IT architecture etc., we cannot translate the improved WER performance to a theoretically or

practically obtainable reduction in transcription time for a medical secretary. There is also no baseline

study that we can base the calculation on. A user study could provide such an estimate, but is beyond the

scope of this thesis and is left to industry or other researchers. However, the results in Chapters 5 and 6,

and the research that led up to it have provided insights on the nature of stød.

7.1 Summary of experimental results

The experiments in the chapters of this thesis build on the research and conclusions in previous chapters

and we summarise the findings of each chapter below.
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7.1.1 Stød annotation

The study found that annotator agreement stemmed from agreement on a small set of highly frequent

labels and because stød accounted for approximately 5% of the assigned labels, we focused the study

on stød labels. The reliability study investigated both binary stød annotation and stød-bearing phones.

Annotator agreement was challenged by the interpretation of the stød-bearing segment, which annotators

could interpret as two vowels or as a long vowel, and the difference in interpretation created artificial

disagreement in κ-scores. Correcting for this discrepancy and obvious errors resulted in high inter-annotator

agreement and high annotator competence scores.

Based on the high agreement, we concluded that stød annotation is reliable when annotated by expert

phoneticians and can form the basis for quantitative analysis, provided sufficient data can be obtained.

7.1.2 Stød detection

Based on the conclusions in Chapter 3 and additional stød-annotated data from the DanPASS and DK-

Parole corpora, we estimate a number of statistical models to detect stød in Chapter 4. We extract 120

acoustic features and use a forest of randomised decision tree classifiers to rank the importance of the

features for stød detection and ultimately choose 17 salient features.

The highest F1 score obtained by a classifier in binary stød detection was 0.17 on spontaneous speech

and 0.32 on lab-recorded speech, and we find that stød detection is not possible when formulated as a binary

classification task using the presented methods and data sets.

The conclusion is that identical performance can be achieved with logistic regression or linear support

vector machine classifiers using less than 15% of the original 120 features and that the feature selection

successfully identifies acoustic features that are that are salient for the detection of stød.

To investigate other methods to detect stød, we redefine stød detection as pairwise discrimination of

stød-less and stød-bearing variants of the same phone. The average classification accuracy across all pairs

ranges from near-perfect (0.92) in five-fold cross-validation to above average on unseen spontaneous speech

(0.713, but with 0.266 variance). It is possible to detect stød if we reformulate the detection problem as

pairwise discrimination.

We conclude that voice quality features such as Peak Slope, PDD and PDM are salient for stød de-

tection, as well as pitch-related and standard ASR features. As far we have been able to ascertain, the

correlation between phase features and stød is novel. The mentioned voice quality features are also sensitive

to energy at higher frequency bands, whereas the features most commonly associated with stød such as
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H1-H2 and harmonics-to-noise are not, which suggests that there is additional information to be found at

higher frequencies that signals stød.

7.1.3 Stød in automatic speech recognition

The discrimination experiment show that information in PLP features can be used to discriminate between

stød-bearing and stød-less samples, so stød can be implemented in ASR simply by annotating stød in the

phonetic dictionary. We therefore want to study of how stød can be exploited in ASR using existing tools

and methods.

There are two caveats: 1) the amount of training data needed to train ASR systems cannot be annotated

for stød by experts, and 2) phonetic decision tree growth and state-tying can map stød-bearing phones to

their stød-less counterparts essentially making one an alias of the other. Despite these differences to the

experiments and data used in Chapters 3 and 4, we obtain significant improvements in WER performance

in Chapter 5 for MFCC-based ASR systems, when stød is added to the phonetic dictionary in ASR systems.

We observe additional highly significant WER improvements when we add pitch-related features, but not

consistently in DNN AM-based systems.

Based on an analysis of the most advanced speaker-adapated GMM-based ASR systems trained on

LDA-transformed features (tri4b), we confirm that only adding stød annotation to the phonetic dictionary

increases the complexity of the acoustic model without increasing the descriptive power in terms of total

number of Gaussians and probability density functions (pdf). The analysis of phonetic equivalence classes

also show that stød is sufficiently informative that stød-bearing phones are modelled when the phonetic

decision tree is trained and that states that represent stød-bearing phones in many cases resist state-tying

or that states are tied around stød. The increased RTF is caused by the increased complexity of the AM,

but adding pitch-related features compensate for the increased RTF.

We therefore conclude that stød improves Danish ASR when modelled explicitly in the phonetic dic-

tionary and when modelled acoustically with pitch-related features, leading to significant improvement for

both MFCC and PLP-based ASR systems.

7.1.4 Stød and voice quality features in Danish speech recognition

We combine the findings in Chapter 4 on the salience of particular acoustic features for stød detection with

the findings in Chapter 5 on modelling stød in ASR to improve WER performance. In the experiments,

we consider Peak Slope and phase features in addition to a new feature: Harmonic Richness Factor (HRF).

In the first study using speaker-adapted GMM-based ASR systems trained on LDA-projected features, the

ASR system trained on MFCC features extended with the Peak Slope feature shows degrades performance,
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while no significant difference is found for the remaining systems. However, the DNN-based systems based

on HRF and phase features achieve the significant improvements WER performance. A surprising increase

in decoding speed provide yet more WER improvements because the decoder can traverse a larger part of

the lattice.

7.2 Danish ASR

A part of the stated objective of this thesis is to provide tools, resources and methodology that can stimulate

ASR research and development in Denmark and for Danish language. The sprakbanken setup is based on

publicly available tools and resources and the system can be used as a reference for further development

and teaching purposes. An open source ASR system with open domain data and published methodology

has not previously been available for Danish and the hope is that the availability can improve the state of

speech technology research and education.

7.3 Future work

The work in this thesis does not provide a specific answer to the ephemeral “. . .more than creak”, but

points to several acoustic measures such as HRF and phase features as promising research areas that can

provide more insight into the nature of stød and improve our understanding of the phenomenon. Below we

enumerate the research we believe to be able to further the characterisation of stød and can improve ASR

for Danish spoken language in general:

1. Segment-based normalisation of features in stød detection to remove the impact of the segment on

stød prediction

2. The correlation between stød and phase features

3. Speed and quality of phase feature estimation in ASR

4. Modelling stress in ASR dictionaries to determine the impact on stød modelling

5. Modelling pronuciation variation in ASR dictionaries to determine the impact on ASR performance

and stød modelling

6. The impact LDA transformation has on Peak Slope

7. Noise robustness of voice quality features and stød modelling
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8. Incorporating the remaining data developed by Nordisk Spr̊akteknologi in the sprakbanken recipe

9. Modelling compounding in ASR to reduce the size of the dictionary

10. Multi-lingual or inter-Scandinavian ASR

Because stød can distinguish lexemes and especially word classes, parsing, named entity recognition

and disambiguation and other NLP systems used in spoken language understanding can potentially benefit

from the added information. It remains to be determined whether this is possible for ASR systems with

pronunciation variants.

With respect to the sprakbanken setup, it is important that more resources from the Spr̊akbanken corpus

is exploited. This includes the 8 kHz and 22 kHz data in the Danish part and also the Swedish and Norwegian

parts of the corpus. A recipe that uses the Swedish part of Spr̊akbanken is currently under development

at KTH, Sweden. The impact of using the oft-mentioned phonetic dictionary created together with the

Spr̊akbanken corpus needs to be evaluated against the eSpeak-generated dictionary. We also believe that a

different stratification of the test data will make sense from an application and academic point of view.

7.4 Final conclusions

We have shown that it is possible to use the distinguishing function of stød to improve Danish automatic

speech recognition. To reach this conclusion, we have

1. determined that stød annotation is reliable

2. identified 18 acoustic features that carry important information which signal stød

3. confirmed that stød can be detected in acoustic features when stød is detected jointly with the under-

lying segment

4. demonstrated that GMM-based and DNN-based ASR systems that model stød outperform similar

systems that do not, if the ASR systems are trained on LDA-projected MFCC features

5. combined stød-informed ASR with stød-related acoustic features to show additional performance im-

provement

This is the first data-driven acoustic investigation of stød and the zero-knowledge approach has opened

new avenues of research by showing correlation between stød and phase features. A large by-product of the

present work is a free and open source automatic speech recogniser for Danish that we hope will be used by

others to further teaching and research.
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Segment Train set Test set Segment Train set Test set

e: 2049 14 D
"

G 0 14

e:? 2780 14 D
"

G? 0 14

l 31862 159 N 3623 20

l? 2341 26 N? 2158 7

m 23470 232 œ: 0 4

m? 2463 5 œ:? 0 6

n 50547 155 5
“

7649 49

n? 10194 58 5
“

? 2557 51

o: 1894 28 A: 3067 83

o:? 1292 23 A:? 653 40

y: 608 6 6 12707 6

y:? 425 8 6? 1409 5

æ: 5409 7 6: 2594 14

æ:? 0 44 6:? 15 30

DG 0 50 O: 1545 31

DG? 0 15 O:? 1030 25

Table A.1: Minimal pairs with respect to stød distribution.
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Phones Features sets

Full PLP Select+

Classes Samples Accuracy +/- Accuracy +/- Accuracy +/-

a? a 119 0.736 0.09 0.790 0.10 0.737 0.23

a:? a: 11 0.850 0.40 0.950 0.20 1.000 0.00

c:? c: 602 0.784 0.15 0.788 0.07 0.814 0.10

e? e 3977 0.727 0.06 0.752 0.04 0.734 0.05

e:? e: 2780 0.865 0.02 0.788 0.03 0.881 0.04

i? i 2281 0.767 0.04 0.786 0.05 0.756 0.06

i:? i: 1292 0.855 0.05 0.807 0.02 0.867 0.04

j? j 1539 0.876 0.03 0.888 0.03 0.867 0.04

l? l 2341 0.722 0.21 0.749 0.12 0.720 0.18

m? m 2463 0.743 0.06 0.739 0.05 0.735 0.07

m
"

? m
"

9 1.000 0.00 0.750 0.32 1.000 0.00

n? n 10194 0.754 0.22 0.723 0.19 0.742 0.23

o? o 1931 0.837 0.04 0.854 0.07 0.862 0.08

o:? o: 1292 0.890 0.05 0.815 0.08 0.897 0.07

q:? q: 478 0.805 0.02 0.692 0.05 0.794 0.10

u? u 3133 0.763 0.07 0.745 0.08 0.768 0.04

u:? u: 354 0.788 0.14 0.829 0.03 0.818 0.10

w? w 2332 0.678 0.11 0.661 0.09 0.674 0.12

x:? x: 21 0.850 0.19 0.800 0.41 0.815 0.27

y? y 92 0.738 0.12 0.733 0.21 0.739 0.18

y:? y: 425 0.708 0.16 0.678 0.09 0.758 0.21

z:? z: 2168 0.770 0.06 0.703 0.04 0.810 0.03

æ? æ 3268 0.728 0.05 0.728 0.06 0.719 0.07

D? D 5336 0.726 0.26 0.664 0.23 0.711 0.27

ø? ø 190 0.771 0.10 0.803 0.05 0.789 0.15

N? N 2158 0.744 0.14 0.702 0.16 0.729 0.16

œ? œ 177 0.876 0.08 0.896 0.10 0.907 0.01

5? 5 11 0.600 0.51 0.700 0.37 0.917 0.21

5
“

? 5
“

2557 0.740 0.07 0.706 0.07 0.744 0.08

A? A 2925 0.756 0.06 0.754 0.04 0.743 0.07

A:? A: 653 0.860 0.04 0.822 0.07 0.839 0.08

6? 6 1409 0.740 0.06 0.770 0.09 0.734 0.09

6:? 6: 15 0.733 0.54 0.767 0.27 0.867 0.39

O? O 1912 0.791 0.06 0.798 0.06 0.778 0.10

O:? O: 1030 0.754 0.10 0.706 0.12 0.765 0.11

E? E 177 0.647 0.23 0.653 0.22 0.718 0.15

E:? E: 296 0.750 0.12 0.725 0.16 0.784 0.24

ñ? ñ 392 0.702 0.10 0.728 0.15 0.684 0.15

Œ? Œ 314 0.616 0.04 0.758 0.09 0.664 0.14

K? K 1575 0.925 0.02 0.899 0.03 0.922 0.02

2? 2 13 0.867 0.33 0.767 0.12 0.917 0.21

Mean classification accuracy 0.781 0.168 0.769 0.144 0.803 0.176

Table A.2: 5-fold One-vs-One evaluation on training data using different feature sets.
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Phones Features sets

Full PLP Select+

Classes Samples Accuracy +/- Accuracy +/- Accuracy +/-

a? a 130 0.946 0.05 0.908 0.05 0.873 0.05

c? c 602 0.906 0.02 0.874 0.05 0.836 0.02

e? e 6757 0.868 0.02 0.814 0.01 0.766 0.01

i? i 3573 0.885 0.03 0.841 0.02 0.788 0.03

j? j 1539 0.972 0.02 0.955 0.03 0.933 0.02

l? l 2341 0.910 0.02 0.877 0.02 0.837 0.01

m? m 2472 0.923 0.01 0.891 0.02 0.855 0.01

n? n 10194 0.920 0.01 0.885 0.01 0.844 0.01

o? o 3223 0.939 0.01 0.900 0.01 0.843 0.02

q? q 478 0.903 0.02 0.801 0.07 0.807 0.05

u? u 3487 0.906 0.01 0.867 0.02 0.806 0.03

w? w 2332 0.938 0.02 0.873 0.02 0.838 0.02

x? x 21 0.950 0.12 0.975 0.10 0.950 0.12

y? y 517 0.896 0.04 0.831 0.08 0.830 0.04

z? z 2168 0.930 0.02 0.868 0.02 0.824 0.02

æ? æ 3268 0.915 0.01 0.867 0.03 0.802 0.03

D? D 5336 0.917 0.01 0.869 0.01 0.797 0.02

ø? ø 190 0.953 0.09 0.900 0.13 0.918 0.09

N? N 2158 0.950 0.01 0.919 0.01 0.883 0.01

œ? œ 177 0.980 0.02 0.957 0.04 0.929 0.05

5? 5 2568 0.897 0.01 0.846 0.01 0.774 0.02

A? A 3578 0.901 0.01 0.855 0.02 0.818 0.02

6? 6 1424 0.889 0.03 0.839 0.03 0.808 0.03

O? O 2942 0.911 0.01 0.863 0.03 0.837 0.02

E? E 473 0.921 0.06 0.857 0.06 0.831 0.07

ñ? ñ 392 0.944 0.04 0.852 0.06 0.835 0.03

Œ? Œ 314 0.865 0.07 0.857 0.09 0.809 0.05

K? K 1575 0.956 0.02 0.939 0.02 0.942 0.02

2? 2 13 0.967 0.13 0.967 0.13 0.967 0.13

Mean classification accuracy 0.922 0.058 0.885 0.096 0.853 0.119

Table A.3: 5-fold One-vs-One evaluation on training data using different feature sets and coarser annotation.
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Appendix B

ASR resources

B.1 Software and scripts

The scripts used to extract features and annotation using Praat is available on GitHub at https://github

.com/dresen/praat. The software used for the classification experiments can be installed by following the

instructions here: http://scikit-learn.org/stable/install.html

B.2 Kaldi

The Kaldi ASR setup can be downloaded from GitHub at https://github.com/kaldi-asr/kaldi and the

setup itself can be viewed here https://github.com/kaldi-asr/kaldi/tree/master/egs/sprakbanken.

The installation of the Kaldi toolkit can be difficult and I recommend reserving some time for it, especially if

you do not have super user privileges while installing. For Kaldi to work, CPU throttling must be disabled.

The training recipe is included here for reference and because the recipe is under continuous development

by the Kaldi community. The current sprakbanken recipe diverges somewhat from the recipe in Section

B.2.1 because it does not use voice quality feature augmentation. Be aware that the parallellisation settings

are hard-coded for the server used in the experiments. To choose feature type, pass it as an argument on

the command line, e.g. ./run.sh plp_pitch.
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B.2.1 ASR training script

Listing B.1: ASR training script

1 #!/bin/bash

2

3 . ./cmd.sh ## You ’ll want to change cmd.sh to something that will work on your system.

4 ## This relates to the queue.

5 . ./path.sh # so python3 is on the path if not on the system (we made a link to utils/).a

6

7 # This is a shell script , but it’s recommended that you run the commands one by

8 # one by copying and pasting into the shell.

9

10

11 # Download the corpus and prepare parallel lists of sound files and text files

12 # Divide the corpus into train , dev and test sets

13 local/sprak_data_prep.sh || exit 1;

14

15 # Perform text normalisation , prepare dict folder and LM data transcriptions

16 # This setup uses previsously prepared data. eSpeak must be installed and in PATH to use dict_prep.sh

17 #local/dict_prep.sh || exit 1;

18 local/copy_dict.sh || exit 1;

19

20

21 utils/prepare_lang.sh data/local/dict "<UNK >" data/local/lang_tmp data/lang || exit 1;

22

23 # Declares the type of feature vectors (MFCC or PLP +/- pitch)

24 subexp=�1

25

26

27 # Extract feature vectors

28 # p was added to the rspecifier (scp ,p:�logdir/wav.JOB.scp) in make_mfcc.sh because some

29 # wave files are corrupt

30 # Will return a warning message because of the corrupt audio files , but compute them anyway

31 # If this step fails and prints a partial diff , rerun from sprak_data_prep.sh

32

33 steps/make_�subexp.sh --nj 10 --cmd �train_cmd data/�subexp/test exp/�subexp/make_�subexp/test �subexp &

34 steps/make_�subexp.sh --nj 10 --cmd �train_cmd data/�subexp/dev exp/�subexp/make_�subexp/dev �subexp &

35 steps/make_�subexp.sh --nj 10 --cmd �train_cmd data/�subexp/train exp/�subexp/make_�subexp/train �subexp

|| exit 1;

36 wait

37

38 # Compute cepstral mean and variance normalisation

39 steps/compute_cmvn_stats.sh data/�subexp/test exp/�subexp/make_�subexp/test �subexp &

40 steps/compute_cmvn_stats.sh data/�subexp/dev exp/�subexp/make_�subexp/dev �subexp &

41 steps/compute_cmvn_stats.sh data/�subexp/train exp/�subexp/make_�subexp/train �subexp

42

43 wait

44

45 # Repair data set (remove corrupt data points with corrupt audio)

46

47 utils/fix_data_dir.sh data/�subexp/test &

48 utils/fix_data_dir.sh data/�subexp/dev &

49 utils/fix_data_dir.sh data/�subexp/train

50 wait

51
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52 # Train LM with CMUCLMTK

53 # This setup uses IRSTLM

54 #local/sprak_train_lm.sh &> data/�subexp/local/cmuclmtk/lm.log

55

56 # Train LM with irstlm

57 local/train_irstlm.sh data/local/transcript_lm/transcripts.uniq 3 "�{subexp }3g" data/lang data/local/�{

subexp }3_lm &> data/local /3g.log &

58

59 # Now make subset of the training data with the shortest 120k utterances.

60 utils/subset_data_dir.sh --shortest data/�subexp/train 120000 data/�subexp/train_120kshort || exit 1;

61

62 # Train monophone model on short utterances

63 steps/train_mono.sh --nj 30 --cmd "�train_cmd" \

64 data/�subexp/train_120kshort data/lang exp/�subexp/mono0a || exit 1;

65

66 # Ensure that LMs are created

67 wait

68

69 utils/mkgraph.sh --mono data/lang_test_�{subexp }3g exp/�subexp/mono0a exp/�subexp/mono0a/graph_3g &

70

71 # Ensure that all graphs are constructed

72 wait

73

74 steps/decode.sh --nj 7 --cmd "�decode_cmd" \

75 exp/�subexp/mono0a/graph_3g data/�subexp/test exp/�subexp/mono0a/decode_3g_test

76

77

78 steps/align_si.sh --nj 30 --cmd "�train_cmd" \

79 data/�subexp/train data/lang exp/�subexp/mono0a exp/�subexp/mono0a_ali || exit 1;

80

81 steps/train_deltas.sh --cmd "�train_cmd" \

82 2000 10000 data/�subexp/train data/lang exp/�subexp/mono0a_ali exp/�subexp/tri1 || exit 1;

83

84 wait

85

86

87 utils/mkgraph.sh data/lang_test_�{subexp }3g exp/�subexp/tri1 exp/�subexp/tri1/graph_3g &

88

89 steps/decode.sh --nj 7 --cmd "�decode_cmd" \

90 exp/�subexp/tri1/graph_3g data/�subexp/test exp/�subexp/tri1/decode_3g_test || exit 1;

91

92 wait

93

94 steps/align_si.sh --nj 30 --cmd "�train_cmd" \

95 data/�subexp/train data/lang exp/�subexp/tri1 exp/�subexp/tri1_ali || exit 1;

96

97

98 # Train tri2a , which is deltas + delta -deltas.

99 steps/train_deltas.sh --cmd "�train_cmd" \

100 2500 15000 data/�subexp/train data/lang exp/�subexp/tri1_ali exp/�subexp/tri2a || exit 1;

101

102 utils/mkgraph.sh data/lang_test_�{subexp }3g exp/�subexp/tri2a exp/�subexp/tri2a/graph_3g || exit 1;

103

104 steps/decode.sh --nj 7 --cmd "�decode_cmd" \

105 exp/�subexp/tri2a/graph_3g data/�subexp/test exp/�subexp/tri2a/decode_3g_test || exit 1;

106
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107

108 steps/train_lda_mllt.sh --cmd "�train_cmd" \

109 --splice -opts "--left -context =5�--right -context =5" \

110 2500 15000 data/�subexp/train data/lang exp/�subexp/tri1_ali exp/�subexp/tri2b || exit 1;

111

112 utils/mkgraph.sh data/lang_test_�{subexp }3g exp/�subexp/tri2b exp/�subexp/tri2b/graph_3g || exit 1;

113 steps/decode.sh --nj 7 --cmd "�decode_cmd" \

114 exp/�subexp/tri2b/graph_3g data/�subexp/test exp/�subexp/tri2b/decode_3g_test || exit 1;

115

116

117 steps/align_si.sh --nj 30 --cmd "�train_cmd" \

118 --use -graphs true data/�subexp/train data/lang exp/�subexp/tri2b exp/�subexp/tri2b_ali || exit 1;

119

120

121 # From 2b system , train 3b which is LDA + MLLT + SAT.

122 steps/train_sat.sh --cmd "�train_cmd" \

123 2500 15000 data/�subexp/train data/lang exp/�subexp/tri2b_ali exp/�subexp/tri3b || exit 1;

124 utils/mkgraph.sh data/lang_test_�{subexp }3g exp/�subexp/tri3b exp/�subexp/tri3b/graph_3g || exit 1;

125 steps/decode_fmllr.sh --nj 7 --cmd "�decode_cmd" \

126 exp/�subexp/tri3b/graph_3g data/�subexp/test exp/�subexp/tri3b/decode_3g_test || exit 1;

127

128

129 # From 3b system

130 steps/align_fmllr.sh --nj 30 --cmd "�train_cmd" \

131 data/�subexp/train data/lang exp/�subexp/tri3b exp/�subexp/tri3b_ali || exit 1;

132

133 # From 3b system , train another SAT system (tri4a) with all the si284 data.

134

135 steps/train_sat.sh --cmd "�train_cmd" \

136 4200 40000 data/�subexp/train data/lang exp/�subexp/tri3b_ali exp/�subexp/tri4a || exit 1;

137

138 utils/mkgraph.sh data/lang_test_�{subexp }3g exp/�subexp/tri4a exp/�subexp/tri4a/graph_3g || exit 1;

139 steps/decode_fmllr.sh --nj 7 --cmd "�decode_cmd" \

140 exp/�subexp/tri4a/graph_3g data/�subexp/test exp/�subexp/tri4a/decode_3g_test || exit 1;

141

142

143 steps/train_sat.sh --cmd "�train_cmd" \

144 4800 60000 data/�subexp/train data/lang exp/�subexp/tri3b_ali exp/�subexp/tri4b || exit 1;

145

146 utils/mkgraph.sh data/lang_test_�{subexp }3g exp/�subexp/tri4b exp/�subexp/tri4b/graph_3g || exit 1;

147 steps/decode_fmllr.sh --nj 7 --cmd "�decode_cmd" \

148 exp/�subexp/tri4b/graph_3g data/�subexp/test exp/�subexp/tri4b/decode_3g_test || exit 1;

149

150

151 # alignment used to train nnets and sgmms

152 steps/align_fmllr.sh --nj 30 --cmd "�train_cmd" \

153 data/�subexp/train data/lang exp/�subexp/tri4b exp/�subexp/tri4b_ali || exit 1;

154

155

156 ## Train here , instead of separate script

157 steps/nnet2/train_tanh_fast.sh --initial -learning -rate 0.01 --final -learning -rate 0.001 --num -hidden -

layers 5 --hidden -layer -dim 1024 --num_jobs_nnet 16 --cmd "�train_cmd" data/�subexp/train data/lang

exp/�subexp/tri4b_ali/ �{subexp}_nnet5c || exit 1;

158

159 ## Decode here
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160 steps/nnet2/decode.sh --cmd utils/run.pl --nj 7 --transform -dir exp/�subexp/tri4b/decode_3g_test exp/

�subexp/tri4b/graph_3g/ data/�subexp/test/ �{subexp}_nnet5c/decode_3g_test || exit 1;

161

162

163 # Getting results [see RESULTS file]

164 for x in exp/�subexp /*/ decode *; do [ -d �x ] && grep WER �x/wer_* | utils/best_wer.sh; done >

RESULTS_�subexp
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B.3 Covarep feature extraction script

Covarep is available at https://github.com/covarep/covarep. The feature extraction used in the ex-

periments diverge slightly in the settings and the output among other things. The lower threshold on FO

range was set to 20 Hz to account for non-modal speech which is expected during the pronunciation of

stød-bearing phones.

Listing B.2: Covarep feature extraction script

1 % General COVAREP feature extraction script

2 %

3 % Description

4 % This script extracts features to do with glottal source and spectral

5 % envelope available with the COVAREP repository. For each .wav file in

6 % the inputted directory path , .mat files are produced containing

7 %

8 % Input

9 % in_dir [directory path] : Path to directory containing wav files to be analysed

10 % sample_rate [seconds] : feature sampling rate in seconds (optional)

11 %

12 % Output

13 % : No arguments are outputted with this script , though .mat files

14 % are saved corresponding to each .wav file. .mat files contain the

15 % feature matrix: features [number of frames X 35] and names:

16 % containing the feature name correspond to each column of the

17 % feature matrix

18 % Example

19 % in_dir =’//home/john/Desktop/test_dir ’; % Specify directory of wavs

20 % sample_rate =0.01; % State feature sampling rate

21 % COVAREP_feature_extraction(in_dir ,sample_rate); % Launch feature extraction

22 %

23 % Copyright (c) 2013 Trinity College Dublin - Phonetics & Speech Lab

24 %

25 % License

26 % This file is under the LGPL license , you can

27 % redistribute it and/or modify it under the terms of the GNU Lesser General

28 % Public License as published by the Free Software Foundation , either version 3

29 % of the License , or (at your option) any later version. This file is

30 % distributed in the hope that it will be useful , but WITHOUT ANY WARRANTY;

31 % without even the implied warranty of MERCHANTABILITY or FITNESS FOR A

32 % PARTICULAR PURPOSE. See the GNU Lesser General Public License for more

33 % details.

34 %

35 % Note

36 % This function has been developed and tested on speech signals sampled

37 % at 16 kHz. Though the analysis should be sampling frequency independent

38 % we cannot guarantee optimal performance on non -16 kHz signals

39 %

40 % This function is part of the Covarep project: http :// covarep.github.io/covarep

41 %

42 % Author

43 % John Kane <kanejo@.tcd.ie>

44

45
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46 function ASR_feature_extraction(in_dir ,sample_rate ,names)

47

48 % F0 settings

49 F0min = 20; % Minimum F0 set to 50 Hz

50 F0max = 400; % Maximum F0 set to 500 Hz

51

52 % IAIF settings

53 hpfilt = 1;

54 d = 0.99;

55

56 % LP settings

57 LP_winLen =0.025;

58 LP_winShift =0.005;

59

60 % Rd MSP settings

61 opt = sin_analysis ();

62 opt.fharmonic = true;

63 opt.use_ls = false;

64 opt.debug = 0;

65

66 % Envelope settings

67 opt.use_ls = false; % Use Peak Picking

68 opt.dftlen = 4096; % Force the DFT length

69 opt.frames_keepspec = true; % Keep the computed spectra in the frames structure

70

71 % Analysis settings

72 fileList=dir([ in_dir filesep ’*.wav’]);

73 N=length(fileList);

74

75 if N==0

76 disp(’No�wav�files�in�inputted�directory !!!’)

77 end

78

79 %% Do processing

80 for n=1:N

81

82 basename=regexp(fileList(n).name ,’\.wav’,’split ’);

83 basename=char(basename (1));

84 str=sprintf(’Analysing�file:�%s’,basename);

85 disp(str)

86 try

87 % Load file and set sample locations

88 [x,fs]= wavread ([ in_dir filesep basename ’.wav’]);

89 feature_sampling=round (( sample_rate /2)*fs):round(sample_rate*fs):length(x);

90

91 % Check if signal is mono or stereo

92 if(size(x, 2) ~= 1)

93 warning(sprintf(’file:�%s�is�not�a�mono�signal.�processing�only�first�channel.’, basename));

94 x = x(:,1);

95 end

96

97 % Polarity detection

98 polarity = polarity_reskew(x,fs);

99 x=polarity*x; % Correct polarity if necessary

100

101 % F0/GCI detection
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102 [srh_f0 ,srh_vuv ,~,srh_time] = pitch_srh(x,fs,F0min ,F0max , ...

103 sample_rate *1000);

104 F0med=median(srh_f0(srh_f0 >F0min&srh_f0 <F0max&srh_vuv ==1));

105 VUV_int = interp1(round(srh_time*fs),srh_vuv ,1: length(x));

106 VUV_int(isnan(VUV_int)==1) =0;

107

108 GCI = gci_sedreams(x,fs ,F0med ,1); % SEDREAMS GCI detection

109 GCI=round(GCI*fs); GCI(GCI <1| isnan(GCI)==1| isinf(GCI)==1) =[];

110 GCI(VUV_int(GCI) <.5)=[]; % Remove GCIs in detected unvoiced regions

111 GCI=unique(GCI); % Remove possible duplications

112

113 % Iterative and adaptive inverse filtering (IAIF) & LP inverse

114 % filtering

115 p_gl = 2*round(fs /4000);

116 p_vt = 2*round(fs /2000) +4;

117 [g_iaif ,gd_iaif] = iaif_gci(x,fs ,GCI/fs,p_vt ,p_gl ,d,hpfilt);

118

119 % Glottal source parameterisation

120 [NAQ ,QOQ ,H1H2 ,HRF ,PSP] = get_vq_params(g_iaif ,gd_iaif ,fs ,GCI/fs); % Estimate conventional

glottal parameters

121

122 % Wavelet -based parameters

123 PS = peakslope(x,fs); % peakSlope extraction

124 PS=interp1(PS(:,1)*fs,PS(:,2),feature_sampling);

125

126 % Rd parameter estimation of the LF glottal model using Mean Squared

127 % Phase (MSP)

128 srh_f0(srh_f0 ==0) = 100;

129 frames = sin_analysis(x, fs, [srh_time (:),srh_f0 (:)], opt);

130

131 % Interpolate features to feature sampling rate

132 NAQ=interp1(NAQ(:,1)*fs,NAQ(:,2),feature_sampling);

133 QOQ=interp1(QOQ(:,1)*fs,QOQ(:,2),feature_sampling);

134 H1H2=interp1(H1H2 (:,1)*fs ,H1H2 (:,2),feature_sampling);

135 PSP=interp1(PSP(:,1)*fs,PSP(:,2),feature_sampling);

136 HRF=interp1(HRF(:,1)*fs,HRF(:,2),feature_sampling);

137

138 % Add PDM and PDD

139 hmpdopt = hmpd_analysis ();

140 hmpdopt.debug = 0;

141 hmpdopt.usemex = false;

142 hmpdopt.amp_enc_method =2; hmpdopt.amp_log=true; hmpdopt.amp_order =39;

143 hmpdopt.pdd_log=true; hmpdopt.pdd_order =12;% MFCC -like phase variance

144 hmpdopt.pdm_log=true; hmpdopt.pdm_order =24;% Number of log -Harmonic coefs

145 [hmpdf0s , dummy , HMPDM , HMPDD] = hmpd_analysis_features(frames , fs, hmpdopt);

146 HMPDM = irregsampling2uniformsampling(hmpdf0s (:,1), HMPDM , (feature_sampling -1)/fs , @unwrap ,

@wrap , ’linear ’, 0, hmpdopt.usemex);

147 HMPDD = irregsampling2uniformsampling(hmpdf0s (:,1), HMPDD , (feature_sampling -1)/fs , [], [], ’

linear ’, 0, hmpdopt.usemex);

148

149 % Create feature matrix and save

150 features =[NAQ(:) QOQ(:) H1H2 (:) PSP(:) HRF (:) PS(:) HMPDM HMPDD ];

151 features(isnan(features))=0;

152 save([ in_dir filesep basename ’.mat’],’features ’,’names ’)

153 clear features

154
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155 str=sprintf(’............. DONE !!!’);

156 disp(str)

157 catch

158 str=sprintf(’............. ERROR�NOT�ANALYSED !!!’);

159 disp(str)

160 end

161

162 end
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B.4 Stød equivalence classes

This section contains the independent and mixed equivalence classes from tri4b systems that explictly model

stød in the phonetic dictionary. The analysis is output by a script written in python which means the phones

in an equivalence class are enclosed in quotation marks. If a phone is marked for stress ([’]), the phone is

enclosed in double quotation marks (["]), otherwise the phone is enclosed in [’].

B.4.1 MFCC+stød

B.4.1.1 tri4b

True [’?O_S’, "’?O_S"]

False [’?u_I’, ’u_I’, "’u_I", "’?u_I"]

False [’?0_I’, ’0_I’, ’0_S’, ’?0_S’, "’0_E", ’?0_B’, "’0_B", "’0_I", ’0_B’,

"’?0_E", "’?0_B", "’?0_S", ’0_E’, "’0_S", ’?0_E’, "’?0_I"]

True ["’?V_I", ’?V_I’]

False [’s_S’, ’?s_S’, ’z_S’]

True ["?’i_S", ’?i_S’]

False [’m_S’, ’?m_S’, ’m_B’, ’?m_B’]

False [’z_E’, ’s_E’, ’?s_E’]

True ["?’i_I", ’?i_I’]

False [’m_I’, ’?m_I’]

False [’?@-_E’, ’@-_E’, "’@-_E"]

True ["’?o_B", ’?o_B’]

True [’?O_I’, "’?O_I"]

True [’?A_B’, "’?A_B"]

True ["?’E_E", "’?E_E", ’?E_E’]

True ["’?e_I", ’?e_I’]

False [’s_I’, ’z_I’, ’?s_I’]

True ["’?V_S", ’?V_S’]

True ["’?&+_S", ’?&+_S’]

True [’?&+_I’, "’?&+_I"]

True ["’?W_B", ’?W_B’]

True ["?’i_E", ’?i_E’]

True ["’?W+_B", ’?W+_B’]

True ["?’E_I", "’?E_I", ’?E_I’]

True ["’?W_I", ’?W_I’]

True ["’?E_B", "?’E_B", ’?E_B’]

True [’?A_E’, "’?A_E"]

True [’?&_E’, "’?&_E"]

True [’?o_S’, "’?o_S"]

True ["’?&_B", ’?&_B’]

True [’?W_E’, "’?W_S", "’?W_E", ’?W_S’]

True [’?W+_S’, ’?W+_E’, "’?W+_S", "’?W+_E"]

True [’?V_B’, "’?V_B"]

True [’?&_S’, "’?&_S"]
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False [’?d_B’, ’d_B’]

False [’z_B’, ’?s_B’, ’s_B’]

True ["’?e_B", ’?e_B’]

True ["’?e_E", ’?e_E’]

True [’?V_E’, "’?V_E"]

True [’?A_I’, "’?A_I", ’?A_S’, "’?A_S"]

True [’?O_E’, "’?O_E"]

True [’?W+_I’, "’?W+_I"]

False ["’?u_B", ’?u_B’, ’u_B’, "’u_B"]

False [’u_E’, ’?u_E’, "’?u_E", "’u_E"]

True ["’?&_I", ’?&_I’]

False [’?@-_I’, "’@-_B", ’?@-_B’, ’?@-_S’, "’@-_S", ’@-_I’, ’@-_S’, ’@-_B’, "’@-_I"]

False [’?d_S’, ’d_E’, ’d_I’, ’?d_I’, ’?d_E’, ’d_S’]

True ["’?E_S", ’?E_S’, "?’E_S"]

True [’?e_S’, "’?e_S"]

True ["’?y_I", ’?y_I’]

True [’?O_B’, "’?O_B"]

True ["’?&+_E", ’?&+_E’]

True [’?i_B’, "?’i_B"]

True [’?o_E’, "’?o_E"]

True ["’?o_I", ’?o_I’]

False [’?u_S’, "’?u_S", ’u_S’, "’u_S"]

True ["’?y_E", "’?y_B", ’?y_E’, "’?y_S", ’?y_S’, ’?y_B’]

True [’?&+_B’, "’?&+_B"]

B.4.1.2 nnet5c

False [’?m_E’, ’m_E’]

True [’?O_S’, "’?O_S"]

False [’?u_I’, ’u_I’, "’u_I", "’?u_I"]

False [’?0_I’, ’0_I’, ’0_S’, ’?0_S’, "’0_E", ’?0_B’, "’0_B", "’0_I", ’0_B’,

"’?0_E", "’?0_B", "’?0_S", ’0_E’, "’0_S", ’?0_E’, "’?0_I"]

True ["’?V_I", ’?V_I’]

False [’s_S’, ’?s_S’, ’z_S’]

True ["?’i_S", ’?i_S’]

False [’m_S’, ’?m_S’, ’m_B’, ’?m_B’]

False [’z_E’, ’s_E’, ’?s_E’]

True ["?’i_I", ’?i_I’]

False [’m_I’, ’?m_I’]

False [’?@-_E’, ’@-_E’, "’@-_E"]

True ["’?o_B", ’?o_B’]

True [’?O_I’, "’?O_I"]

True [’?A_B’, "’?A_B"]

True ["?’E_E", "’?E_E", ’?E_E’]

True ["’?e_I", ’?e_I’]

False [’s_I’, ’z_I’, ’?s_I’]

True ["’?V_S", ’?V_S’]

True ["’?&+_S", ’?&+_S’]
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True [’?&+_I’, "’?&+_I"]

True ["’?W_B", ’?W_B’]

True ["?’i_E", ’?i_E’]

True ["’?W+_B", ’?W+_B’]

True ["?’E_I", "’?E_I", ’?E_I’]

True ["’?W_I", ’?W_I’]

True ["’?E_B", "?’E_B", ’?E_B’]

True [’?A_E’, "’?A_E"]

True [’?&_E’, "’?&_E"]

True [’?o_S’, "’?o_S"]

True ["’?&_B", ’?&_B’]

True [’?W_E’, "’?W_S", "’?W_E", ’?W_S’]

True [’?W+_S’, ’?W+_E’, "’?W+_S", "’?W+_E"]

True [’?V_B’, "’?V_B"]

True [’?&_S’, "’?&_S"]

False [’?d_B’, ’d_B’]

False [’z_B’, ’?s_B’, ’s_B’]

True ["’?e_B", ’?e_B’]

True ["’?e_E", ’?e_E’]

True [’?V_E’, "’?V_E"]

True [’?A_I’, "’?A_I", ’?A_S’, "’?A_S"]

True [’?O_E’, "’?O_E"]

True [’?W+_I’, "’?W+_I"]

False ["’?u_B", ’?u_B’, ’u_B’, "’u_B"]

False [’u_E’, ’?u_E’, "’?u_E", "’u_E"]

True ["’?&_I", ’?&_I’]

False [’?@-_I’, "’@-_B", ’?@-_B’, ’?@-_S’, "’@-_S", ’@-_I’, ’@-_S’, ’@-_B’, "’@-_I"]

False [’?d_S’, ’d_E’, ’d_I’, ’?d_I’, ’?d_E’, ’d_S’]

True ["’?E_S", ’?E_S’, "?’E_S"]

True [’?e_S’, "’?e_S"]

True ["’?y_I", ’?y_I’]

True [’?O_B’, "’?O_B"]

True ["’?&+_E", ’?&+_E’]

True [’?i_B’, "?’i_B"]

True [’?o_E’, "’?o_E"]

True ["’?o_I", ’?o_I’]

False [’?u_S’, "’?u_S", ’u_S’, "’u_S"]

True ["’?y_E", "’?y_B", ’?y_E’, "’?y_S", ’?y_S’, ’?y_B’]

True [’?&+_B’, "’?&+_B"]

B.4.2 PLP+stød

B.4.2.1 tri4b

True [’?V_E’, "’?V_E"]

True [’?V_B’, "’?V_B"]

True [’?u_S’, "’?u_S"]

True ["’?y_E", "’?y_B", ’?y_E’, "’?y_S", ’?y_S’, ’?y_B’]
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False [’m_B’, ’?m_B’]

True [’?A_E’, "’?A_E"]

True ["’?o_I", ’?o_I’]

True ["’?W_I", ’?W_I’]

True [’?W+_S’, ’?W+_E’, "’?W+_S", "’?W+_E"]

True [’?&_E’, "’?&_E"]

True ["’?y_I", ’?y_I’]

True ["?’i_E", ’?i_E’]

True [’?W_E’, "’?W_S", "’?W_E", ’?W_S’]

True ["’?V_I", ’?V_I’]

True [’?&+_I’, "’?&+_I"]

True [’?i_B’, "?’i_B"]

True [’?O_I’, "’?O_I"]

True [’?W+_I’, "’?W+_I"]

True [’?O_E’, "’?O_E"]

True [’?e_S’, "’?e_S"]

True ["’?&_I", ’?&_I’]

True ["’?W+_B", ’?W+_B’]

True ["’?u_B", ’?u_B’]

True [’?O_B’, "’?O_B"]

True ["’?E_B", "?’E_B", ’?E_B’]

False [’z_E’, ’s_E’, ’?s_E’]

False [’?d_S’, ’d_E’, ’d_I’, ’?d_I’, ’?d_E’, ’d_S’]

False [’z_B’, ’?s_B’, ’s_B’]

True [’?O_S’, "’?O_S"]

True ["?’E_I", "’?E_I", ’?E_I’]

True ["’?e_I", ’?e_I’]

False [’&_S’, "’&_S", ’?&_S’, "’?&_S"]

True [’?A_I’, "’?A_I", ’?A_S’, "’?A_S"]

True ["?’i_S", ’?i_S’]

True ["’?o_B", ’?o_B’]

False [’?d_B’, ’d_B’]

True ["’?V_S", ’?V_S’]

True [’?&+_B’, "’?&+_B"]

True [’?u_I’, "’?u_I"]

True ["’?W_B", ’?W_B’]

True [’?A_B’, "’?A_B"]

True ["?’i_I", ’?i_I’]

False [’?@-_I’, "’@-_B", ’?@-_B’, ’?@-_S’, "’@-_S", ’@-_I’, ’@-_S’, ’@-_B’, "’@-_I"]

False [’?m_E’, ’m_E’]

True [’?u_E’, "’?u_E"]

False [’m_I’, ’?m_I’]

False [’?0_I’, ’0_I’, ’0_S’, ’?0_S’, "’0_E", ’?0_B’, "’0_B", "’0_I", ’0_B’, "’?0_E",

"’?0_B", "’?0_S", ’0_E’, "’0_S", ’?0_E’, "’?0_I"]

False ["’?&+_S", ’?&+_S’, "’&+_S", ’&+_S’]

True [’?o_S’, "’?o_S"]

True ["’?E_S", ’?E_S’, "?’E_S"]

True [’?o_E’, "’?o_E"]
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True ["’?e_B", ’?e_B’]

True ["’?e_E", ’?e_E’]

True ["?’E_E", "’?E_E", ’?E_E’]

False [’?@-_E’, ’@-_E’, "’@-_E"]

False [’s_I’, ’z_I’, ’?s_I’]

False [’s_S’, ’?s_S’, ’z_S’]

True ["’?&+_E", ’?&+_E’]

True ["’?&_B", ’?&_B’]

False [’m_S’, ’?m_S’]

B.4.2.2 nnet5c

True [’?V_E’, "’?V_E"]

True [’?V_B’, "’?V_B"]

True [’?u_S’, "’?u_S"]

True ["’?y_E", "’?y_B", ’?y_E’, "’?y_S", ’?y_S’, ’?y_B’]

False [’m_B’, ’?m_B’]

True [’?A_E’, "’?A_E"]

True ["’?o_I", ’?o_I’]

True ["’?W_I", ’?W_I’]

True [’?W+_S’, ’?W+_E’, "’?W+_S", "’?W+_E"]

True [’?&_E’, "’?&_E"]

True ["’?y_I", ’?y_I’]

True ["?’i_E", ’?i_E’]

True [’?W_E’, "’?W_S", "’?W_E", ’?W_S’]

True ["’?V_I", ’?V_I’]

True [’?&+_I’, "’?&+_I"]

True [’?i_B’, "?’i_B"]

True [’?O_I’, "’?O_I"]

True [’?W+_I’, "’?W+_I"]

True [’?O_E’, "’?O_E"]

True [’?e_S’, "’?e_S"]

True ["’?&_I", ’?&_I’]

True ["’?W+_B", ’?W+_B’]

True ["’?u_B", ’?u_B’]

True [’?O_B’, "’?O_B"]

True ["’?E_B", "?’E_B", ’?E_B’]

False [’z_E’, ’s_E’, ’?s_E’]

False [’?d_S’, ’d_E’, ’d_I’, ’?d_I’, ’?d_E’, ’d_S’]

False [’z_B’, ’?s_B’, ’s_B’]

True [’?O_S’, "’?O_S"]

True ["?’E_I", "’?E_I", ’?E_I’]

True ["’?e_I", ’?e_I’]

False [’&_S’, "’&_S", ’?&_S’, "’?&_S"]

True [’?A_I’, "’?A_I", ’?A_S’, "’?A_S"]

True ["?’i_S", ’?i_S’]

True ["’?o_B", ’?o_B’]

False [’?d_B’, ’d_B’]
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True ["’?V_S", ’?V_S’]

True [’?&+_B’, "’?&+_B"]

True [’?u_I’, "’?u_I"]

True ["’?W_B", ’?W_B’]

True [’?A_B’, "’?A_B"]

True ["?’i_I", ’?i_I’]

False [’?@-_I’, "’@-_B", ’?@-_B’, ’?@-_S’, "’@-_S", ’@-_I’, ’@-_S’, ’@-_B’, "’@-_I"]

False [’?m_E’, ’m_E’]

True [’?u_E’, "’?u_E"]

False [’m_I’, ’?m_I’]

False [’?0_I’, ’0_I’, ’0_S’, ’?0_S’, "’0_E", ’?0_B’, "’0_B", "’0_I", ’0_B’, "’?0_E", "’?0_B",

"’?0_S", ’0_E’, "’0_S", ’?0_E’, "’?0_I"]

False ["’?&+_S", ’?&+_S’, "’&+_S", ’&+_S’]

True [’?o_S’, "’?o_S"]

True ["’?E_S", ’?E_S’, "?’E_S"]

True [’?o_E’, "’?o_E"]

True ["’?e_B", ’?e_B’]

True ["’?e_E", ’?e_E’]

True ["?’E_E", "’?E_E", ’?E_E’]

False [’?@-_E’, ’@-_E’, "’@-_E"]

False [’s_I’, ’z_I’, ’?s_I’]

False [’s_S’, ’?s_S’, ’z_S’]

True ["’?&+_E", ’?&+_E’]

True ["’?&_B", ’?&_B’]

False [’m_S’, ’?m_S’]

B.4.3 MFCC+stød+pitch

B.4.3.1 nnet5c

False [’m_B’, ’?m_B’]

False [’?u_I’, ’u_I’, "’u_I", "’?u_I"]

True ["’?o_I", ’?o_I’]

True [’?O_S’, "’?O_S"]

True [’?A_E’, ’?A_I’, "’?A_I", "’?A_E", ’?A_S’, "’?A_S"]

False [’s_S’, ’?s_S’, ’z_S’]

True ["’?V_I", ’?V_I’]

True [’?O_E’, "’?O_E"]

True ["’?e_I", ’?e_I’]

True ["’?V_S", ’?V_S’]

False ["’?&+_S", ’?&+_S’, "’&+_S", ’&+_S’]

True [’?V_E’, "’?V_E"]

True [’?&_E’, "’?&_E"]

True ["’?y_B", "’?y_S", ’?y_S’, ’?y_B’]

False [’?@-_E’, ’@-_E’, "’@-_E"]

True [’?o_E’, "’?o_E"]

True ["?’i_E", ’?i_E’]
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True ["’?o_B", ’?o_B’]

False [’?0_I’, ’0_I’, ’0_S’, ’?0_S’, "’0_E", ’?0_B’, "’0_B", "’0_I", ’0_B’, "’?0_E",

"’?0_B", "’?0_S", ’0_E’, "’0_S", ’?0_E’, "’?0_I"]

True ["’?W_I", ’?W_I’]

False [’s_I’, ’z_I’, ’?s_I’]

True [’?&+_I’, "’?&+_I"]

True ["’?y_E", ’?y_E’]

True ["?’i_I", ’?i_I’]

False [’?m_E’, ’m_E’]

True [’?o_S’, "’?o_S"]

True [’?&_S’, "’?&_S"]

True ["’?W_B", ’?W_B’]

True ["’?y_I", ’?y_I’]

True ["’?&_I", ’?&_I’]

True [’?W_E’, "’?W_E"]

True [’?W+_I’, "’?W+_I"]

True ["’?e_B", ’?e_B’]

False ["’?u_B", ’?u_B’, ’u_B’, "’u_B"]

True [’?W+_S’, "’?W+_S"]

True ["’?&+_E", ’?&+_E’]

True ["’?W+_B", ’?W+_B’]

False [’m_I’, ’?m_I’]

True ["?’E_I", "’?E_I", ’?E_I’]

True [’?V_B’, "’?V_B"]

True [’?e_S’, "’?e_S"]

False [’z_B’, ’?s_B’, ’s_B’]

True ["’?E_S", ’?E_S’, "?’E_S"]

True ["’?E_B", "?’E_B", ’?E_B’]

True [’?W+_E’, "’?W+_E"]

True ["’?e_E", ’?e_E’]

False [’?u_S’, "’?u_S", ’u_S’, "’u_S"]

True [’?O_I’, "’?O_I"]

True ["?’E_E", "’?E_E", ’?E_E’]

False [’?@-_I’, "’@-_B", ’?@-_B’, ’?@-_S’, "’@-_S", ’@-_I’, ’@-_S’, ’@-_B’, "’@-_I"]

False [’u_E’, ’?u_E’, "’?u_E", "’u_E"]

False [’?d_B’, ’d_B’]

False [’?d_S’, ’d_E’, ’d_I’, ’?d_I’, ’?d_E’, ’d_S’]

False [’m_S’, ’?m_S’]

True ["?’i_S", ’?i_S’]

False [’z_E’, ’s_E’, ’?s_E’]

True ["’?&_B", ’?&_B’]

True [’?&+_B’, "’?&+_B"]

True ["’?W_S", ’?W_S’]

True [’?i_B’, "?’i_B"]

False [’?A_B’, "’?A_B", ’A_B’, "’A_B"]

True [’?O_B’, "’?O_B"]
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B.4.3.2 tri4b

False [’m_B’, ’?m_B’]

False [’?u_I’, ’u_I’, "’u_I", "’?u_I"]

True ["’?o_I", ’?o_I’]

True [’?O_S’, "’?O_S"]

True [’?A_E’, ’?A_I’, "’?A_I", "’?A_E", ’?A_S’, "’?A_S"]

False [’s_S’, ’?s_S’, ’z_S’]

True ["’?V_I", ’?V_I’]

True [’?O_E’, "’?O_E"]

True ["’?e_I", ’?e_I’]

True ["’?V_S", ’?V_S’]

False ["’?&+_S", ’?&+_S’, "’&+_S", ’&+_S’]

True [’?V_E’, "’?V_E"]

True [’?&_E’, "’?&_E"]

True ["’?y_B", "’?y_S", ’?y_S’, ’?y_B’]

False [’?@-_E’, ’@-_E’, "’@-_E"]

True [’?o_E’, "’?o_E"]

True ["?’i_E", ’?i_E’]

True ["’?o_B", ’?o_B’]

False [’?0_I’, ’0_I’, ’0_S’, ’?0_S’, "’0_E", ’?0_B’, "’0_B", "’0_I", ’0_B’, "’?0_E",

"’?0_B", "’?0_S", ’0_E’, "’0_S", ’?0_E’, "’?0_I"]

True ["’?W_I", ’?W_I’]

False [’s_I’, ’z_I’, ’?s_I’]

True [’?&+_I’, "’?&+_I"]

True ["’?y_E", ’?y_E’]

True ["?’i_I", ’?i_I’]

False [’?m_E’, ’m_E’]

True [’?o_S’, "’?o_S"]

True [’?&_S’, "’?&_S"]

True ["’?W_B", ’?W_B’]

True ["’?y_I", ’?y_I’]

True ["’?&_I", ’?&_I’]

True [’?W_E’, "’?W_E"]

True [’?W+_I’, "’?W+_I"]

True ["’?e_B", ’?e_B’]

False ["’?u_B", ’?u_B’, ’u_B’, "’u_B"]

True [’?W+_S’, "’?W+_S"]

True ["’?&+_E", ’?&+_E’]

True ["’?W+_B", ’?W+_B’]

False [’m_I’, ’?m_I’]

True ["?’E_I", "’?E_I", ’?E_I’]

True [’?V_B’, "’?V_B"]

True [’?e_S’, "’?e_S"]

False [’z_B’, ’?s_B’, ’s_B’]

True ["’?E_S", ’?E_S’, "?’E_S"]

True ["’?E_B", "?’E_B", ’?E_B’]

True [’?W+_E’, "’?W+_E"]
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True ["’?e_E", ’?e_E’]

False [’?u_S’, "’?u_S", ’u_S’, "’u_S"]

True [’?O_I’, "’?O_I"]

True ["?’E_E", "’?E_E", ’?E_E’]

False [’?@-_I’, "’@-_B", ’?@-_B’, ’?@-_S’, "’@-_S", ’@-_I’, ’@-_S’, ’@-_B’, "’@-_I"]

False [’u_E’, ’?u_E’, "’?u_E", "’u_E"]

False [’?d_B’, ’d_B’]

False [’?d_S’, ’d_E’, ’d_I’, ’?d_I’, ’?d_E’, ’d_S’]

False [’m_S’, ’?m_S’]

True ["?’i_S", ’?i_S’]

False [’z_E’, ’s_E’, ’?s_E’]

True ["’?&_B", ’?&_B’]

True [’?&+_B’, "’?&+_B"]

True ["’?W_S", ’?W_S’]

True [’?i_B’, "?’i_B"]

False [’?A_B’, "’?A_B", ’A_B’, "’A_B"]

True [’?O_B’, "’?O_B"]

B.4.4 PLP+stød+pitch

B.4.4.1 tri4b

True ["?’i_E", ’?i_E’]

False [’?A_E’, "’?A_E", ’A_E’, "’A_E"]

False [’?o_S’, "’?o_S", "’o_S", ’o_S’]

False [’?d_S’, ’d_E’, ’?d_E’, ’d_S’]

True ["’?y_I", ’?y_I’]

True [’?O_S’, "’?O_S"]

True [’?i_B’, "?’i_B"]

True ["’?e_B", ’?e_B’]

False [’?m_E’, ’m_E’]

True ["’?e_I", ’?e_I’]

True ["?’i_I", ’?i_I’]

True ["’?&_B", ’?&_B’]

True ["?’i_S", ’?i_S’]

True ["’?&+_E", ’?&+_E’]

True [’?&+_I’, "’?&+_I"]

True ["?’E_I", "’?E_I", ’?E_I’]

True [’?O_B’, "’?O_B"]

False [’m_I’, ’m_S’, ’?m_S’, ’?m_I’]

True ["’?E_B", "?’E_B", ’?E_B’]

False ["’o_E", ’o_E’, ’?o_E’, "’?o_E"]

True [’?&_E’, "’?&_E"]

False [’s_I’, ’z_I’, ’?s_I’]

False [’z_B’, ’?s_B’, ’s_B’]

True ["’?e_E", ’?e_E’]

False [’?A_B’, "’?A_B", ’A_B’, "’A_B"]

False [’s_S’, ’?s_S’, ’z_S’]
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False [’m_B’, ’?m_B’]

True ["’?V_S", ’?V_S’]

True [’?W+_I’, "’?W+_I", "’?W_I", ’?W_I’]

True ["’?E_S", ’?E_S’, "?’E_E", "’?E_E", ’?E_E’, "?’E_S"]

False [’?u_S’, "’?u_S", ’u_S’, "’u_S"]

False [’z_E’, ’s_E’, ’?s_E’]

True ["’?y_E", "’?y_B", ’?y_E’, "’?y_S", ’?y_S’, ’?y_B’]

True ["’?V_I", ’?V_I’]

True [’?V_E’, "’?V_E"]

False [’?@-_E’, ’@-_E’, "’@-_E"]

False [’u_E’, ’?u_E’, "’?u_E", "’u_E"]

True ["’?&+_S", ’?&+_S’]

True ["’?W_B", ’?W_B’]

False [’?@-_I’, "’@-_B", ’?@-_B’, ’?@-_S’, "’@-_S", ’@-_I’, ’@-_S’, ’@-_B’, "’@-_I"]

False [’?u_I’, ’u_I’, "’u_I", "’?u_I"]

False [’?0_I’, ’0_I’, ’0_S’, ’?0_S’, "’0_E", ’?0_B’, "’0_B", "’0_I", ’0_B’, "’?0_E",

"’?0_B", "’?0_S", ’0_E’, "’0_S", ’?0_E’, "’?0_I"]

False [’?d_B’, ’d_B’]

True [’?W+_S’, ’?W_E’, "’?W_S", ’?W+_E’, "’?W_E", "’?W+_S", "’?W+_E", ’?W_S’]

False [’d_I’, ’?d_I’]

True [’?e_S’, "’?e_S"]

True ["’?&_I", ’?&_I’]

True ["’?W+_B", ’?W+_B’]

True [’?&_S’, "’?&_S"]

True [’?O_E’, "’?O_E"]

True [’?&+_B’, "’?&+_B"]

False [’?A_I’, "’?A_I", ’A_I’, "’A_I"]

True ["’?o_I", ’?o_I’]

False ["’?o_B", ’o_B’, ’?o_B’, "’o_B"]

False ["’?u_B", ’?u_B’, ’u_B’, "’u_B"]

True [’?V_B’, "’?V_B"]

False [’A_S’, ’?A_S’, "’A_S", "’?A_S"]

True [’?O_I’, "’?O_I"]

B.4.4.2 nnet5c

True ["?’i_E", ’?i_E’]

False [’?A_E’, "’?A_E", ’A_E’, "’A_E"]

False [’?o_S’, "’?o_S", "’o_S", ’o_S’]

False [’?d_S’, ’d_E’, ’?d_E’, ’d_S’]

True ["’?y_I", ’?y_I’]

True [’?O_S’, "’?O_S"]

True [’?i_B’, "?’i_B"]

True ["’?e_B", ’?e_B’]

False [’?m_E’, ’m_E’]

True ["’?e_I", ’?e_I’]

True ["?’i_I", ’?i_I’]
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True ["’?&_B", ’?&_B’]

True ["?’i_S", ’?i_S’]

True ["’?&+_E", ’?&+_E’]

True [’?&+_I’, "’?&+_I"]

True ["?’E_I", "’?E_I", ’?E_I’]

True [’?O_B’, "’?O_B"]

False [’m_I’, ’m_S’, ’?m_S’, ’?m_I’]

True ["’?E_B", "?’E_B", ’?E_B’]

False ["’o_E", ’o_E’, ’?o_E’, "’?o_E"]

True [’?&_E’, "’?&_E"]

False [’s_I’, ’z_I’, ’?s_I’]

False [’z_B’, ’?s_B’, ’s_B’]

True ["’?e_E", ’?e_E’]

False [’?A_B’, "’?A_B", ’A_B’, "’A_B"]

False [’s_S’, ’?s_S’, ’z_S’]

False [’m_B’, ’?m_B’]

True ["’?V_S", ’?V_S’]

True [’?W+_I’, "’?W+_I", "’?W_I", ’?W_I’]

True ["’?E_S", ’?E_S’, "?’E_E", "’?E_E", ’?E_E’, "?’E_S"]

False [’?u_S’, "’?u_S", ’u_S’, "’u_S"]

False [’z_E’, ’s_E’, ’?s_E’]

True ["’?y_E", "’?y_B", ’?y_E’, "’?y_S", ’?y_S’, ’?y_B’]

True ["’?V_I", ’?V_I’]

True [’?V_E’, "’?V_E"]

False [’?@-_E’, ’@-_E’, "’@-_E"]

False [’u_E’, ’?u_E’, "’?u_E", "’u_E"]

True ["’?&+_S", ’?&+_S’]

True ["’?W_B", ’?W_B’]

False [’?@-_I’, "’@-_B", ’?@-_B’, ’?@-_S’, "’@-_S", ’@-_I’, ’@-_S’, ’@-_B’, "’@-_I"]

False [’?u_I’, ’u_I’, "’u_I", "’?u_I"]

False [’?0_I’, ’0_I’, ’0_S’, ’?0_S’, "’0_E", ’?0_B’, "’0_B", "’0_I", ’0_B’, "’?0_E", "’?0_B",

"’?0_S", ’0_E’, "’0_S", ’?0_E’, "’?0_I"]

False [’?d_B’, ’d_B’]

True [’?W+_S’, ’?W_E’, "’?W_S", ’?W+_E’, "’?W_E", "’?W+_S", "’?W+_E", ’?W_S’]

False [’d_I’, ’?d_I’]

True [’?e_S’, "’?e_S"]

True ["’?&_I", ’?&_I’]

True ["’?W+_B", ’?W+_B’]

True [’?&_S’, "’?&_S"]

True [’?O_E’, "’?O_E"]

True [’?&+_B’, "’?&+_B"]

False [’?A_I’, "’?A_I", ’A_I’, "’A_I"]

True ["’?o_I", ’?o_I’]

False ["’?o_B", ’o_B’, ’?o_B’, "’o_B"]

False ["’?u_B", ’?u_B’, ’u_B’, "’u_B"]

True [’?V_B’, "’?V_B"]

False [’A_S’, ’?A_S’, "’A_S", "’?A_S"]

True [’?O_I’, "’?O_I"]
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B.4.5 Extended feature sets

This section contain equivalence classes from the nnet5c systems trained in Chapter 6. The equivalence

classes that are in common between nnet5c systems used in Chapter 6 are in Section B.4.5.3.

B.4.5.1 MFCC+pitch+HRF

False [’?m_I’, ’m_I’]

True [’?u_I’, "’?u_I"]

True [’?i_S’, "?’i_S"]

True [’?y_B’, "’?y_B"]

True ["’?y_I", ’?y_I’]

False [’z_S’, ’s_S’, ’?s_S’]

False [’?s_B’, ’s_B’, ’z_B’]

True ["’?E_S", "?’E_S", ’?E_S’]

True ["’?u_B", ’?u_B’]

False [’m_S’, ’?m_B’, ’?m_S’, ’m_B’]

True ["’?e_I", ’?e_I’]

True [’?&_S’, "’?&+_S", ’?&+_S’, "’?&_S"]

True [’?o_E’, "’?o_E"]

True ["’?W_B", ’?W_B’]

False [’@_B’, "’@-_I", ’@-_S’, ’?@-_S’, "’@-_S", ’@_I’, ’@-_I’, "’@_B", "’@_S",

’?@-_B’, ’?@-_I’, ’@_S’, "’@-_B", "’@_I", ’@-_B’]

True [’?e_B’, "’?e_B"]

True [’?&+_I’, "’?&+_I"]

False [’d_B’, ’?d_B’]

True ["’?&_I", ’?&_I’]

False [’?s_E’, ’s_E’, ’z_E’]

True [’?u_E’, "’?u_E"]

True [’?o_I’, "’?o_I"]

True [’?o_B’, "’?o_B"]

True ["’?e_E", ’?e_E’]

True ["?’E_E", ’?E_E’, "’?E_E"]

True ["’?O_S", ’?O_S’]

True ["?’i_E", ’?i_E’]

True [’?&_B’, "’?&_B"]

True ["’?o_S", ’?o_S’]

True [’?i_B’, "?’i_B"]

True [’?O_I’, "’?O_I"]

True ["’?W+_S", "’?W_E", "’?W+_E", ’?W_S’, ’?W_E’, ’?W+_S’, ’?W+_E’, "’?W_S"]

False [’?@-_E’, ’@-_E’, "’@-_E"]

True [’?i_I’, "?’i_I"]

True ["?’E_I", ’?E_I’, "’?E_I"]

True [’?V_I’, "’?V_I"]

True ["’?O_E", ’?O_E’]
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False [’z_I’, ’s_I’, ’?s_I’]

False ["’?0_E", ’0_E’, ’0_S’, "’?0_B", ’?0_B’, "’0_I", "’0_B", "’0_E", ’0_B’,

"’0_S", ’?0_I’, "’?0_S", ’?0_E’, ’0_I’, ’?0_S’, "’?0_I"]

True ["’?y_E", ’?y_E’]

True ["’?V_B", ’?V_B’]

True [’?&+_B’, "’?&+_B"]

True ["’?e_S", ’?e_S’]

True ["’?E_B", ’?E_B’, "?’E_B"]

True ["’?V_E", ’?V_E’]

True ["’?A_E", ’?A_S’, ’?A_I’, ’?A_E’, "’?A_I", "’?A_S"]

True [’?y_S’, "’?y_S"]

True ["’?u_S", ’?u_S’]

True ["’?W_I", ’?W_I’]

True [’?&_E’, "’?&_E"]

True [’?W+_B’, "’?W+_B"]

False [’m_E’, ’?m_E’]

True [’?V_S’, "’?V_S"]

True ["’?W+_I", ’?W+_I’]

True [’?&+_E’, "’?&+_E"]

False [’A_B’, "’A_B", ’?A_B’, "’?A_B"]

True [’?O_B’, "’?O_B"]

False [’d_E’, ’d_I’, ’?d_S’, ’d_S’, ’?d_E’, ’?d_I’]

B.4.5.2 MFCC+pitch+phase

True ["’?V_E", ’?V_E’]

True [’?i_I’, "?’i_I"]

True ["’?W_I", ’?W_I’]

True [’?e_B’, "’?e_B"]

False [’m_S’, ’?m_S’]

False [’d_B’, ’?d_B’]

True ["’?O_E", ’?O_E’]

False ["’&+_E", ’&+_E’, "’&_E", ’&_E’, ’?&+_E’, ’?&_E’, "’?&_E", "’?&+_E"]

True [’?O_I’, "’?O_I"]

True [’?o_I’, "’?o_I"]

True ["’?E_S", "?’E_S", ’?E_S’]

False [’?m_I’, ’m_I’]

True ["’?W+_S", "’?W+_E", ’?W+_S’, ’?W+_E’]

True ["’?e_I", ’?e_I’]

False [’?s_E’, ’s_E’, ’z_E’]

True [’?u_E’, "’?u_E"]

False ["’?0_E", ’0_E’, ’0_S’, "’?0_B", ’?0_B’, "’0_I", "’0_B", "’0_E", ’0_B’,

"’0_S", ’?0_I’, "’?0_S", ’?0_E’, ’0_I’, ’?0_S’, "’?0_I"]

True ["’?O_S", ’?O_S’]

True ["’?e_E", ’?e_E’]

False [’?@-_E’, ’@-_E’, "’@-_E"]

True ["’?V_B", ’?V_B’]

True ["’?u_B", ’?u_B’]
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True ["’?W_B", ’?W_B’]

False [’m_E’, ’?m_E’]

False [’d_E’, ’d_I’, ’?d_S’, ’d_S’, ’?d_E’, ’?d_I’]

True ["’?u_S", ’?u_S’]

True ["?’i_E", ’?i_E’]

False ["’@-_I", ’@-_S’, ’?@-_S’, "’@-_S", ’@-_I’, ’?@-_B’, ’?@-_I’, "’@-_B", ’@-_B’]

True ["’?W_E", ’?W_S’, ’?W_E’, "’?W_S"]

False [’z_I’, ’s_I’, ’?s_I’]

True [’?V_I’, "’?V_I"]

True [’?u_I’, "’?u_I"]

False [’z_S’, ’s_S’, ’?s_S’]

True ["’?W+_I", ’?W+_I’]

True ["’?e_S", ’?e_S’]

True [’?W+_B’, "’?W+_B"]

True [’?V_S’, "’?V_S"]

True ["’?E_B", ’?E_B’, "?’E_B"]

True ["?’E_I", ’?E_I’, "’?E_I"]

True ["’?y_I", ’?y_I’]

False ["’?A_E", ’A_E’, ’?A_E’, "’A_E"]

True [’?y_B’, "’?y_B", ’?y_S’, "’?y_S", "’?y_E", ’?y_E’]

True [’?o_E’, "’?o_E"]

False [’A_I’, ’?A_S’, "’A_I", ’?A_I’, "’A_S", "’?A_I", "’?A_S", ’A_S’]

False [’o_B’, "’o_B", ’?o_B’, "’?o_B"]

False [’?s_B’, ’s_B’, ’z_B’]

True ["’?o_S", ’?o_S’]

True [’?&+_I’, "’?&+_I", "’?&_I", ’?&_I’]

False [’A_B’, "’A_B", ’?A_B’, "’?A_B"]

True [’?i_S’, "?’i_S"]

False [’?m_B’, ’m_B’]

True [’?O_B’, "’?O_B"]

True [’?i_B’, "?’i_B"]

True ["?’E_E", ’?E_E’, "’?E_E"]

True [’?&_S’, "’?&+_S", ’?&_B’, "’?&_B", ’?&+_S’, ’?&+_B’, "’?&_S", "’?&+_B"]

B.4.5.3 Common equivalence classes

False ["’?0_E", ’0_E’, ’0_S’, "’?0_B", ’?0_B’, "’0_I", "’0_B", "’0_E", ’0_B’, "’0_S", ’?0_I’, "’?0_S", ’?0_E’, ’0_I’, ’?0

False [’d_B’, ’?d_B’]

False [’d_E’, ’d_I’, ’?d_S’, ’d_S’, ’?d_E’, ’?d_I’]

False [’?@-_E’, ’@-_E’, "’@-_E"]

False [’m_E’, ’?m_E’]

False [’?m_I’, ’m_I’]

False [’?s_B’, ’s_B’, ’z_B’]

False [’?s_E’, ’s_E’, ’z_E’]

False [’z_I’, ’s_I’, ’?s_I’]

False [’z_S’, ’s_S’, ’?s_S’]

True [’?e_B’, "’?e_B"]

True ["’?E_B", ’?E_B’, "?’E_B"]
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True ["’?e_E", ’?e_E’]

True ["?’E_E", ’?E_E’, "’?E_E"]

True ["’?e_I", ’?e_I’]

True ["?’E_I", ’?E_I’, "’?E_I"]

True ["’?e_S", ’?e_S’]

True ["’?E_S", "?’E_S", ’?E_S’]

True [’?i_B’, "?’i_B"]

True ["?’i_E", ’?i_E’]

True [’?i_I’, "?’i_I"]

True [’?i_S’, "?’i_S"]

True [’?O_B’, "’?O_B"]

True [’?o_E’, "’?o_E"]

True ["’?O_E", ’?O_E’]

True [’?o_I’, "’?o_I"]

True [’?O_I’, "’?O_I"]

True ["’?o_S", ’?o_S’]

True ["’?O_S", ’?O_S’]

True ["’?V_B", ’?V_B’]

True ["’?V_E", ’?V_E’]

True [’?V_I’, "’?V_I"]

True [’?V_S’, "’?V_S"]

True [’?W+_B’, "’?W+_B"]

True ["’?W_B", ’?W_B’]

True ["’?W_I", ’?W_I’]

True ["’?W+_I", ’?W+_I’]

True ["’?y_I", ’?y_I’]
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B.5 Recognition Errors in Stasjon06

B.5.1 MFCC+stød

CONFUSION PAIRS Total (3207)

With >= 1 occurances (3207)

1: 36 -> a/s ==> s

2: 32 -> o ==> u

3: 31 -> det ==> de

4: 30 -> af ==> er

5: 24 -> i ==> e

6: 23 -> fÅr ==> for

7: 21 -> er ==> af

8: 19 -> Åbn ==> Åben

9: 18 -> af ==> at

10: 18 -> gÅ ==> gÅr

INSERTIONS Total (869)

With >= 1 occurances (869)

1: 502 -> punktum

2: 70 -> i

3: 54 -> og

4: 44 -> e

5: 44 -> en

6: 34 -> at

7: 32 -> til

8: 29 -> n

9: 28 -> er

10: 24 -> for
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DELETIONS Total (261)

With >= 1 occurances (261)

1: 519 -> punktum

2: 109 -> i

3: 103 -> er

4: 66 -> og

5: 56 -> at

6: 41 -> et

7: 32 -> af

8: 28 -> det

9: 25 -> der

10: 23 -> har

SUBSTITUTIONS Total (1942)

With >= 1 occurances (1942)

1: 88 -> af

2: 87 -> er

3: 83 -> punktum

4: 79 -> og

5: 74 -> i

6: 64 -> det

7: 49 -> a/s

8: 44 -> en

9: 40 -> at

10: 39 -> et
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B.5.2 MFCC+stød+pitch

CONFUSION PAIRS Total (3207)

With >= 1 occurances (3207)

1: 36 -> a/s ==> s

2: 32 -> o ==> u

3: 31 -> det ==> de

4: 30 -> af ==> er

5: 24 -> i ==> e

6: 23 -> fÅr ==> for

7: 21 -> er ==> af

8: 19 -> Åbn ==> Åben

9: 18 -> af ==> at

10: 18 -> gÅ ==> gÅr

INSERTIONS Total (869)

With >= 1 occurances (869)

1: 502 -> punktum

2: 70 -> i

3: 54 -> og

4: 44 -> e

5: 44 -> en

6: 34 -> at

7: 32 -> til

8: 29 -> n

9: 28 -> er

10: 24 -> for

DELETIONS Total (261)
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With >= 1 occurances (261)

1: 519 -> punktum

2: 109 -> i

3: 103 -> er

4: 66 -> og

5: 56 -> at

6: 41 -> et

7: 32 -> af

8: 28 -> det

9: 25 -> der

10: 23 -> har

SUBSTITUTIONS Total (1942)

With >= 1 occurances (1942)

1: 88 -> af

2: 87 -> er

3: 83 -> punktum

4: 79 -> og

5: 74 -> i

6: 64 -> det

7: 49 -> a/s

8: 44 -> en

9: 40 -> at

10: 39 -> et
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B.5.3 CASE: punktum

B.5.3.1 Confusion pairs

27: 11 -> e ==> punktum

28: 10 -> a/s ==> punktum

42: 8 -> brevenstre ==> punktum

133: 6 -> modregning ==> punktum

135: 6 -> naturlige ==> punktum

163: 5 -> baggrundsfarvenstre ==> punktum

164: 5 -> billiardkuglen ==> punktum

196: 5 -> negativenstre ==> punktum

265: 4 -> punktum ==> ville

351: 3 -> ind ==> punktum

354: 3 -> jer ==> punktum

370: 3 -> punktum ==> bakken

371: 3 -> punktum ==> forelskelse

372: 3 -> punktum ==> gymnastik

373: 3 -> punktum ==> skal

374: 3 -> r ==> punktum

420: 2 -> akhtar ==> punktum

431: 2 -> bachmann ==> punktum

432: 2 -> bag ==> punktum

456: 2 -> dag ==> punktum

467: 2 -> den ==> punktum

471: 2 -> der ==> punktum

538: 2 -> hØjlyng ==> punktum

579: 2 -> mejer ==> punktum

580: 2 -> midtgaard ==> punktum

586: 2 -> mosegaard ==> punktum

614: 2 -> punktum ==> format

615: 2 -> punktum ==> multimedier

616: 2 -> punktum ==> mÅde

617: 2 -> punktum ==> mÆnd
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640: 2 -> store ==> punktum

650: 2 -> sÅ ==> punktum

663: 2 -> valentin ==> punktum

669: 2 -> vestermark ==> punktum

670: 2 -> vi ==> punktum

760: 1 -> allingÅlyst ==> punktum

765: 1 -> alofi ==> punktum

766: 1 -> alsace ==> punktum

775: 1 -> amazon ==> punktum

777: 1 -> amstrup ==> punktum

778: 1 -> amtskommune ==> punktum

779: 1 -> amtssygehus ==> punktum

783: 1 -> anden ==> punktum

789: 1 -> andet ==> punktum

797: 1 -> annapurne ==> punktum

799: 1 -> antonio ==> punktum

804: 1 -> aps ==> punktum

863: 1 -> bak ==> punktum

865: 1 -> ballerina ==> punktum

867: 1 -> bangladesh ==> punktum

874: 1 -> basse ==> punktum

875: 1 -> bastemose ==> punktum

884: 1 -> belastning ==> punktum

888: 1 -> bengtson ==> punktum

889: 1 -> beringshavet ==> punktum

893: 1 -> bertram ==> punktum

894: 1 -> besaturation ==> punktum

907: 1 -> bi ==> punktum

908: 1 -> bigum ==> punktum

910: 1 -> bilde ==> punktum

915: 1 -> billede ==> punktum

927: 1 -> bjerreby ==> punktum

928: 1 -> bjerring ==> punktum
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936: 1 -> blivenstre ==> punktum

939: 1 -> bliver ==> punktum

945: 1 -> boel ==> punktum

956: 1 -> bredlÆnge ==> punktum

960: 1 -> broch ==> punktum

964: 1 -> broender ==> punktum

973: 1 -> bruge ==> punktum

976: 1 -> bruus ==> punktum

979: 1 -> brÅby ==> punktum

981: 1 -> brØdsgaard ==> punktum

982: 1 -> brØgger ==> punktum

987: 1 -> byskov ==> punktum

991: 1 -> bÆrentsen ==> punktum

996: 1 -> calella ==> punktum

998: 1 -> castries ==> punktum

999: 1 -> cateringudstyr ==> punktum

1018: 1 -> cognacen ==> punktum

1027: 1 -> d ==> punktum

1036: 1 -> da ==> punktum

1056: 1 -> dansbjerg ==> punktum

1074: 1 -> de ==> punktum

1078: 1 -> deleuran ==> punktum

1138: 1 -> dig ==> punktum

1153: 1 -> domfÆldelser ==> punktum

1155: 1 -> drachmann ==> punktum

1164: 1 -> drewsen ==> punktum

1167: 1 -> drÅbydalen ==> punktum

1175: 1 -> dÆmningen ==> punktum

1176: 1 -> dØrup ==> punktum

1217: 1 -> emborg ==> punktum

1258: 1 -> engang ==> punktum

1259: 1 -> enge ==> punktum

1264: 1 -> enghaveskolen ==> punktum
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1268: 1 -> enorme ==> punktum

1298: 1 -> eritrea ==> punktum

1300: 1 -> ertebjergskov ==> punktum

1325: 1 -> factory ==> punktum

1328: 1 -> faksinge ==> punktum

1336: 1 -> farup ==> punktum

1339: 1 -> fastemose ==> punktum

1394: 1 -> fordi ==> punktum

1406: 1 -> forliget ==> punktum

1424: 1 -> fortsatte ==> punktum

1453: 1 -> fyldt ==> punktum

1461: 1 -> fÆrdigudfØrt ==> punktum

1475: 1 -> galapagosØerne ==> punktum

1476: 1 -> galway ==> punktum

1477: 1 -> gammelmark ==> punktum

1494: 1 -> georgetown ==> punktum

1495: 1 -> georgia ==> punktum

1514: 1 -> glemslens ==> punktum

1526: 1 -> gormsen ==> punktum

1531: 1 -> gravgaard ==> punktum

1535: 1 -> grØnkjÆr ==> punktum

1537: 1 -> grØnlØkke ==> punktum

1540: 1 -> guldager ==> punktum

1544: 1 -> gustavsen ==> punktum

1551: 1 -> gÅrde ==> punktum

1553: 1 -> gÅrdstedgÅrd ==> punktum

1554: 1 -> gÅrsdal ==> punktum

1559: 1 -> hahn ==> punktum

1560: 1 -> halkjÆr ==> punktum

1561: 1 -> hallum ==> punktum

1562: 1 -> halvorsen ==> punktum

1571: 1 -> handi ==> punktum

1583: 1 -> hartvig ==> punktum

192



1596: 1 -> hav ==> punktum

1597: 1 -> havbro ==> punktum

1607: 1 -> hebron ==> punktum

1610: 1 -> hellevad ==> punktum

1632: 1 -> hesbjerg ==> punktum

1643: 1 -> hildebrandt ==> punktum

1655: 1 -> hobet ==> punktum

1659: 1 -> holdning ==> punktum

1662: 1 -> holskovbÆk ==> punktum

1667: 1 -> houmann ==> punktum

1682: 1 -> hussein ==> punktum

1701: 1 -> hvordan ==> punktum

1713: 1 -> hØegh ==> punktum

1714: 1 -> hØeghsgÅrd ==> punktum

1715: 1 -> hØier ==> punktum

1720: 1 -> hØjtved ==> punktum

1746: 1 -> ibsgÅrde ==> punktum

1803: 1 -> ismail ==> punktum

1805: 1 -> israel ==> punktum

1826: 1 -> jernhatten ==> punktum

1841: 1 -> juryen ==> punktum

1855: 1 -> karlebjerg ==> punktum

1857: 1 -> karrierejob ==> punktum

1864: 1 -> katedralskole ==> punktum

1866: 1 -> kelleklinte ==> punktum

1873: 1 -> kioga ==> punktum

1876: 1 -> kirgizistan ==> punktum

1878: 1 -> kjeldhØjgÅrd ==> punktum

1898: 1 -> kolding ==> punktum

1924: 1 -> korea ==> punktum

1930: 1 -> kostrÆde ==> punktum

1933: 1 -> krampagtigt ==> punktum

1937: 1 -> kregme ==> punktum
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1944: 1 -> kromutter ==> punktum

1963: 1 -> kyed ==> punktum

1970: 1 -> kØ ==> punktum

2000: 1 -> lentz ==> punktum

2018: 1 -> lillenor ==> punktum

2019: 1 -> linde ==> punktum

2020: 1 -> lindgren ==> punktum

2027: 1 -> loft ==> punktum

2029: 1 -> lomholt ==> punktum

2034: 1 -> lucia ==> punktum

2038: 1 -> lundgreen ==> punktum

2054: 1 -> lyttesholm ==> punktum

2059: 1 -> lÆrer ==> punktum

2080: 1 -> malabo ==> punktum

2082: 1 -> malling ==> punktum

2083: 1 -> malta ==> punktum

2091: 1 -> manaslu ==> punktum

2099: 1 -> marcher ==> punktum

2138: 1 -> mekong ==> punktum

2142: 1 -> men ==> punktum

2183: 1 -> monopolstilling ==> punktum

2184: 1 -> monterrey ==> punktum

2188: 1 -> moukÆr ==> punktum

2197: 1 -> mÅ ==> punktum

2205: 1 -> mØgelsig ==> punktum

2207: 1 -> mØrup ==> punktum

2208: 1 -> mØsthuse ==> punktum

2228: 1 -> nevershuse ==> punktum

2229: 1 -> nevis ==> punktum

2232: 1 -> niemann ==> punktum

2233: 1 -> nigeria ==> punktum

2235: 1 -> nilen ==> punktum

2238: 1 -> noget ==> punktum
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2260: 1 -> nÆvenstre ==> punktum

2323: 1 -> opgavenstre ==> punktum

2348: 1 -> os ==> punktum

2353: 1 -> osman ==> punktum

2358: 1 -> otto ==> punktum

2359: 1 -> outzen ==> punktum

2365: 1 -> overmotiverede ==> punktum

2380: 1 -> pehrson ==> punktum

2386: 1 -> personellet ==> punktum

2399: 1 -> plagede ==> punktum

2403: 1 -> poetisk ==> punktum

2411: 1 -> positiv ==> punktum

2412: 1 -> post ==> punktum

2421: 1 -> private ==> punktum

2441: 1 -> punktum ==> anelse

2442: 1 -> punktum ==> atten

2443: 1 -> punktum ==> autoresume

2444: 1 -> punktum ==> autorisation

2445: 1 -> punktum ==> beherskelse

2446: 1 -> punktum ==> bibliotek

2447: 1 -> punktum ==> boks

2448: 1 -> punktum ==> broen

2449: 1 -> punktum ==> conny

2450: 1 -> punktum ==> datomÆrkningen

2451: 1 -> punktum ==> debat

2452: 1 -> punktum ==> det

2453: 1 -> punktum ==> dokument

2454: 1 -> punktum ==> fil

2455: 1 -> punktum ==> filer

2456: 1 -> punktum ==> flettet

2457: 1 -> punktum ==> flytte

2458: 1 -> punktum ==> fredet

2459: 1 -> punktum ==> glÆden
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2460: 1 -> punktum ==> handlingen

2461: 1 -> punktum ==> hjÆlpefunktion

2462: 1 -> punktum ==> hold

2463: 1 -> punktum ==> hovedet

2464: 1 -> punktum ==> huse

2465: 1 -> punktum ==> hver

2466: 1 -> punktum ==> interesse

2467: 1 -> punktum ==> kegler

2468: 1 -> punktum ==> kravene

2469: 1 -> punktum ==> krydse

2470: 1 -> punktum ==> lukke

2471: 1 -> punktum ==> man

2472: 1 -> punktum ==> mange

2473: 1 -> punktum ==> meldes

2474: 1 -> punktum ==> menu

2475: 1 -> punktum ==> mig

2476: 1 -> punktum ==> militÆr

2477: 1 -> punktum ==> modtageren

2478: 1 -> punktum ==> muligt

2479: 1 -> punktum ==> naboen

2480: 1 -> punktum ==> ny

2481: 1 -> punktum ==> nÆvn

2482: 1 -> punktum ==> plakaten

2483: 1 -> punktum ==> r

2484: 1 -> punktum ==> rom

2485: 1 -> punktum ==> se

2486: 1 -> punktum ==> set

2487: 1 -> punktum ==> show

2488: 1 -> punktum ==> sted

2489: 1 -> punktum ==> stikke

2490: 1 -> punktum ==> stjerne

2491: 1 -> punktum ==> styrt

2492: 1 -> punktum ==> sÆsonen
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2493: 1 -> punktum ==> sÆtningen

2494: 1 -> punktum ==> tidlØshed

2495: 1 -> punktum ==> tilstrÆkkelige

2496: 1 -> punktum ==> tilstrÆkkeligt

2497: 1 -> punktum ==> vÆrd

2498: 1 -> punktum ==> wc-kummer

2499: 1 -> punktum ==> Ørsted

2510: 1 -> pÆdagogikum ==> punktum

2522: 1 -> rakte ==> punktum

2533: 1 -> reerslev ==> punktum

2557: 1 -> ringgaard ==> punktum

2574: 1 -> rØnnebÆk ==> punktum

2600: 1 -> se ==> punktum

2601: 1 -> secher ==> punktum

2604: 1 -> sejlstrup ==> punktum

2625: 1 -> seychellerne ==> punktum

2626: 1 -> sicilien ==> punktum

2636: 1 -> sikret ==> punktum

2638: 1 -> sildekule ==> punktum

2642: 1 -> sjuskes ==> punktum

2646: 1 -> skaaning ==> punktum

2659: 1 -> skjØd ==> punktum

2661: 1 -> skole ==> punktum

2665: 1 -> skovmark ==> punktum

2678: 1 -> skÅrupgÅrd ==> punktum

2695: 1 -> slovenien ==> punktum

2704: 1 -> socialrÅdgiverforening ==> punktum

2707: 1 -> solbjerggÅrd ==> punktum

2714: 1 -> sortenshave ==> punktum

2733: 1 -> spØrger ==> punktum

2735: 1 -> stadilby ==> punktum

2759: 1 -> storehØj ==> punktum

2764: 1 -> straarup ==> punktum
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2767: 1 -> strand ==> punktum

2768: 1 -> stryhn ==> punktum

2787: 1 -> sydpolen ==> punktum

2811: 1 -> sØnderup ==> punktum

2828: 1 -> tegnefilmsregi ==> punktum

2830: 1 -> tekstbehandlingsprogrammet ==> punktum

2888: 1 -> timeshare ==> punktum

2896: 1 -> tofte ==> punktum

2899: 1 -> tomÉ ==> punktum

2924: 1 -> trolle ==> punktum

2925: 1 -> truede ==> punktum

2927: 1 -> trunbro ==> punktum

2946: 1 -> tÅgeskov ==> punktum

2953: 1 -> tØnding ==> punktum

2968: 1 -> udgavenstre ==> punktum

2986: 1 -> ulrich ==> punktum

2989: 1 -> underst ==> punktum

3007: 1 -> vagtbureauet ==> punktum

3038: 1 -> ved ==> punktum

3045: 1 -> vejret ==> punktum

3059: 1 -> veste ==> punktum

3060: 1 -> vesterkÆr ==> punktum

3068: 1 -> vichy ==> punktum

3073: 1 -> vidste ==> punktum

3075: 1 -> vientiane ==> punktum

3085: 1 -> ville ==> punktum

3089: 1 -> villet ==> punktum

3100: 1 -> virginia ==> punktum

3132: 1 -> vÆret ==> punktum

3138: 1 -> vÆth ==> punktum

3142: 1 -> weinreich ==> punktum

3147: 1 -> west ==> punktum

3149: 1 -> willemstad ==> punktum
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3150: 1 -> wimbledon ==> punktum

3153: 1 -> yamagata ==> punktum

3157: 1 -> yildiz ==> punktum

3169: 1 -> Åbnet ==> punktum

3172: 1 -> Åker ==> punktum

3186: 1 -> Ægypten ==> punktum

3194: 1 -> ØbakkegÅrd ==> punktum

3197: 1 -> ØhlenschlÆger ==> punktum

3205: 1 -> Østerskoven ==> punktum

3206: 1 -> ØsterÅgÅrd ==> punktum
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B.5.3.2 Insertions

id: (46-r6110007-138)

Scores: (#C #S #D #I) 9 0 0 1

REF: ******* nul to en tre nitten fem hundrede og halvtreds

HYP: PUNKTUM nul to en tre nitten fem hundrede og halvtreds

Eval: I

--

id: (46-r6110007-179)

Scores: (#C #S #D #I) 0 2 0 1

REF: **** RENÉ TROLLE

HYP: RENE TROLDE PUNKTUM

Eval: I S S

--

id: (46-r6110007-180)

Scores: (#C #S #D #I) 1 1 0 1

REF: PRIMA havnen *******

HYP: PRIMÆRE havnen PUNKTUM

Eval: S I

--

id: (46-r6110007-181)

Scores: (#C #S #D #I) 0 2 0 4

REF: **** *** ** ***** ALBERT HALKJÆR

HYP: ALLE PÅ ET HALVT GIVER PUNKTUM

Eval: I I I I S S

--

id: (46-r6110007-198)

Scores: (#C #S #D #I) 0 1 0 2

REF: ***** **** FASTEMOSE

HYP: FASTE MUSE PUNKTUM

Eval: I I S

--

id: (46-r6110007-200)
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Scores: (#C #S #D #I) 0 1 0 1

REF: *********** GÅRSDAL

HYP: GÅRSDAGENS PUNKTUM

Eval: I S

--

id: (46-r6110007-201)

Scores: (#C #S #D #I) 0 1 0 2

REF: **** ***** STADILBY

HYP: STAT VEDBY PUNKTUM

Eval: I I S

--

id: (46-r6110007-218)

Scores: (#C #S #D #I) 2 1 0 1

REF: de de *** DE

HYP: de de DET PUNKTUM

Eval: I S

--

id: (46-r6110007-220)

Scores: (#C #S #D #I) 2 1 0 1

REF: kØ kØ **** KØ

HYP: kØ kØ KØB PUNKTUM

Eval: I S

--

id: (46-r6110007-221)

Scores: (#C #S #D #I) 3 0 0 3

REF: dag * dag * dag *******

HYP: dag I dag I dag PUNKTUM

Eval: I I I

--

id: (46-r6110007-222)

Scores: (#C #S #D #I) 3 0 0 1

REF: tog tog tog *******

HYP: tog tog tog PUNKTUM
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Eval: I

--

id: (46-r6110007-23)

Scores: (#C #S #D #I) 3 0 0 2

REF: der der ** der *******

HYP: der der ER der PUNKTUM

Eval: I I

--

id: (46-r6110007-233)

Scores: (#C #S #D #I) 20 0 0 1

REF-1: de bragte blot bomberne til eksplosion i havet hvor trykket

HYP-1: de bragte blot bomberne til eksplosion i havet hvor trykket

Eval:

REF-2: drÆbte fiskene i hobetal sÅ de var til at samle *******

HYP-2: drÆbte fiskene i hobetal sÅ de var til at samle PUNKTUM

Eval: I

--

id: (46-r6110007-235)

Scores: (#C #S #D #I) 4 3 0 1

REF: det skrev JEG OGSÅ ned i *** NATURLIGE

HYP: det skrev I OS ned i NAT PUNKTUM

Eval: S S I S

--

id: (46-r6110007-238)

Scores: (#C #S #D #I) 0 3 0 6

REF-1: ***** ***** **** ********* ******** *********

HYP-1: TEGNE FILMS REGI TEGNEFILM TRODSIGE TEGNEFILM

Eval: I I I I I I

REF-2: TEGNEFILMSREGI TEGNEFILMSREGI TEGNEFILMSREGI

HYP-2: TRES I PUNKTUM

Eval: S S S

--

id: (46-r6110007-24)
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Scores: (#C #S #D #I) 3 0 0 1

REF: bÅde bÅde bÅde *******

HYP: bÅde bÅde bÅde PUNKTUM

Eval: I

--

id: (46-r6110007-241)

Scores: (#C #S #D #I) 3 0 0 1

REF: nitten nitten nitten *******

HYP: nitten nitten nitten PUNKTUM

Eval: I

--

id: (46-r6110007-242)

Scores: (#C #S #D #I) 3 0 0 1

REF: fleste fleste fleste *******

HYP: fleste fleste fleste PUNKTUM

Eval: I

--

id: (46-r6110007-25)

Scores: (#C #S #D #I) 3 0 0 1

REF: mÅl mÅl mÅl *******

HYP: mÅl mÅl mÅl PUNKTUM

Eval: I

--

id: (46-r6110007-250)

Scores: (#C #S #D #I) 6 0 1 1

REF: kan man leve af ET lille galleri *******

HYP: kan man leve af ** lille galleri PUNKTUM

Eval: D I

--

id: (46-r6110007-26)

Scores: (#C #S #D #I) 3 0 0 1

REF: syn syn syn *******

HYP: syn syn syn PUNKTUM
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