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Abstract. Longitudinal experiments allow one to evaluate the temporal stability of
latent preferences, but raise concerns about sample selection and attrition that may
confound inferences about temporal stability. We evaluate the hypothesis of
temporal stability in risk preferences using a remarkable data set that combines
socio-demographic information from the Danish Civil Registry with information on
risk attitudes from a longitudinal field experiment. Our experimental design builds in
explicit randomization on the incentives for participation. The results show that the
use of different participation incentives can affect sample response rates and help
identify the effects of selection. Correcting for endogenous sample selection and
panel attrition changes inferences about risk preferences in an economically and
statistically significant manner. Estimates of risk preferences change with these
corrections. In general we find evidence consistent with temporal stability of risk
preferences when one corrects for selection and attrition.
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1. Introduction

Any longitudinal survey or experimental design raises concerns about sample selection and

attrition, and response rates may vary dramatically depending on the nature of the study and

incentives provided in the design. Controlling for endogenous effects of sample selection requires

some background information on subjects who did not select into the survey or experiment, so that

one can estimate a latent selection process and its correlation with the primary outcome of interest.

This information is often missing, and most longitudinal studies are concerned just with attrition

effects. For non-participants, attrition outcomes are also missing, and strictly speaking one cannot

control for attrition effects without addressing endogenous selection first. Without controlling for

selection effects, the estimates of a latent attrition process may be subject to selection bias even

when there is no effect of selection on the primary outcome in the initial wave of the study.    

Using a structural model of risky choices which allows for endogenous sample selection and

panel attrition, we analyze data from a longitudinal field experiment with a stratified sample of the

adult Danish population. The data are linked to administrative data from the Civil Registry in

Denmark, allowing us to observe background information on non-participants. We illustrate the

importance of controlling for within-wave and between-wave effects of sample selection in the

evaluation of individual risk attitudes at different points in time.  

Temporal stability of risk preferences is a common assumption in evaluations of economic

behavior.1 When the potential benefits of any social insurance policy are evaluated, for example, one

must know the risk preferences of the beneficiaries of the policy in order to calculate expected

individual welfare (Harrison and Ng [2016]). If preferences are unstable, then what might be a

socially attractive policy today could become an unattractive policy in the future. When “nudges” or

“boosts” are provided to improve decision-making over risky portfolios, to take another example,

1 The term stability can mean unconditional stability or it can mean stable preferences conditional on
a given set of covariates. In the latter case the question is whether preferences are a stable (and known)
function of those covariates (Andersen, Harrison, Lau and Rutström [2008b; §2]). We consider both forms of
stability.
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one must also condition these on knowledge of the risk preferences of the target population in order

to ensure that they are welfare-enhancing (Harrison and Ross [2018]). If those preferences are

unstable over time, what might seem like a welfare-enhancing nudge today could again become a

welfare-reducing nudge in the future. Behavioral welfare economics requires that we not only

identify risk preferences, but check their stability over time as policies that are contingent on those

preferences take effect.

Testing the assumption of temporal stability of risk preferences with the same individuals

requires, of course, that one address problems of sample selection and attrition. We design and

evaluate a longitudinal field experiment with a nationally representative sample of Danish adults

between 19 and 75 years of age to address this question. The sample is randomly drawn from the

Civil Registry and stratified with respect to population size in each county. Our design builds in

explicit randomization on the incentives for participation, an idea suggested by the theoretical

literature on sample selection models and easy to implement in the sampling process and subsequent

experiment. 

The classic problem of sample selection refers to possible recruitment biases, such that

individuals with certain types of characteristics are more likely to be in the observed sample. The

statistical problem is that there may be some unobserved characteristics which simultaneously affects

someone’s chance of being in the sample as well as affecting other outcomes that the analyst is

interested in. In any longitudinal study, there is also an inherent scope for post-recruitment selection

bias due to panel attrition, which occurs as some subjects may leave the panel.2 We build on the

direct likelihood approach of Heckman [1976], Hausman and Wise [1979] and Diggle and Kenward

[1994] and use maximum simulated likelihood to estimate unique probit-kernel models that consider

the full longitudinal design of the experiment. Our models control for the effects of selection and

2 The attrition problem is not the same as the dropout problem. As stressed by Heckman, Smith and
Taber [1998], the latter refers to subjects that leave some randomized program or intervention, but that
remain in the sample. The attrition problem concerns subjects that completely drop out of the sample.
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attrition on risk preferences inferred from both waves of the experiment, as well as addressing

unobserved heterogeneity in risk preferences of the underlying population.

We consider a structural analysis of two theories of decision making under risk, Expected

Utility Theory (EUT) and Rank Dependent Utility (RDU), where the latter is a highly influential

alternative to EUT that relaxes the independence axiom under EUT.3 Each theory has a set of

structural parameters that characterize risk preferences. Previous analyses of temporal stability do

not control for recruitment bias, and focus either on population averages of the structural

parameters or on individual-level estimates which have no structural link to the population

distribution of risk preferences. In contrast, our analysis controls for endogenous sample selection

and attrition, and captures unobserved heterogeneity around the population averages by modeling all

structural parameters as individual-level random coefficients that follow a population distribution.

We allow the population distribution to vary over time, and the random coefficients to be correlated

with the error terms in the selection and attrition equations. 

This estimation approach allows us to consider temporal stability of risk attitudes at two

different levels, with and without controls for endogenous sample selection and attrition: (i) the

population level, by comparing the population distributions of structural parameters over time, and

(ii) the individual level, by considering the correlation between individual-specific random

coefficients over time. Our direct likelihood approach is inspired by the trivariate probit model of

Capellari and Jenkins [2004], which includes two different types of selection equations, but their

primary outcome equation is the linear index probit model and their selection equations do not

address selection bias in the sense of recruitment bias.4 We are not aware of past statistical models

3 There is considerable experimental evidence that points to violations of the independence axiom
under EUT, at least for some individuals. Several earlier alternatives to EUT relaxed the independence axiom
in ways that maintained the linearity of indifference curves in the Marschak-Machina triangle representation,
but experimental evidence quickly rejected those alternatives in favour of models that had non-linear
indifference curves. RDU has emerged as the most popular alternative in the literature that allows for these
types of violations of the independence axiom in the gain domain. Starmer [2000] provides an excellent
review of these developments.

4 Capellari and Jenkins [2004] analyze the transition of poverty states in the UK using a first-order
Markov model. The primary outcome equation describes the present poverty state, and features parameters

-3-



that capture unobserved heterogeneity in latent structural parameters with controls for recruitment

bias and/or attrition bias in longitudinal studies, or empirical studies that use the “panel

correlations” of preference parameters to measure individual temporal stability.

No existing studies test temporal stability of risk attitudes in the context of a model that

addresses unobserved preference heterogeneity across the population. Glöckner and Pachur [2012] and

Zeisberger, Vrecko and Langer [2012] are so far the only studies that test temporal stability of risk

preferences at the individual level. But they do not consider temporal stability at the population level

and do not control for sample selection or attrition bias.5 

Existing studies on temporal stability of risk attitudes do not control for selection bias or

attrition bias.6 In fact, most studies do not even make a passing reference to “sample selection” and,

perhaps more remarkably, “attrition” or “retention.”7 Dasgupta, Gangadharan, Maitra and Mani

[2017] reports a significant difference in the sample average risk attitudes of the attrited and the

retained, but does not undertake statistical correction for attrition bias based on unobservables, and

does not mention selection bias.

that depend on the initial poverty state. The two types of selection equations correct for endogenous
selection into the initial poverty state and endogenous panel attrition.  

5 Glöckner and Pachur [2012] and Zeisberger, Vrecko and Langer [2012] estimate one set of
structural parameters for Cumulative Prospect Theory for each individual subject, and compare the point
estimates over one-week and one-month time periods, respectively. Their statistical tests of temporal stability,
however, do not fully account for random sampling variations in the estimates. Hey and Orme [1994] were
the first to consider individual level estimation of latent risk attitudes, which requires a sufficiently large
number of observations per subject; they had a sample of 80 subjects with 100 observations per subject.
Later applications of individual level estimation of latent preferences also consider individual discount rates
(Andersen, Harrison, Lau and Rutström [2014]), risk preferences (Harrison and Ng [2016]), and
intertemporal correlation aversion (Andersen, Harrison, Lau and Rutström [2018]). To control for
endogenous sample selection and/or attrition bias and study temporal stability at the population level one
must pool observations over all subjects and estimate the population distributions of individual level
coefficients, which we do. 

6 Andersen, Harrison, Lau and Rutström [2008b] is a hybrid. They view the sample in their first wave
as the population that is the selected into four later waves, and model the sample selection into later waves.

7 Smidt [1997], Goldstein, Johnson and Sharpe [2008], Baucellis and Villasís [2010], Glöckner and
Pachur [2012] and Zeisberger, Vrecko and Langer [2012].
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We draw several conclusions from our statistical analysis. First, we find evidence that the use

of different fixed recruitment fees can affect the decision to participate in our experiment.8 When we used a

relatively substantial recruitment fee of 500 kroner, which is about 100 US dollars, 24.1% of invitees

accepted the invitation to the initial wave of our experiment. The initial acceptance rate fell to 18.1%

when we instead used 300 kroner. Of course, this is just a “law of demand” effect from paying more

money for people to participate, but demonstrates that there are indeed deliberate decisions being

made about participation. The second wave of our experiment paid the same recruitment fee of 300

kroner to every person, and there was no significant difference in the retention rates of subjects who

were initially recruited with the high fee (48.4%) and subjects who were initially recruited with the

low fee (54.7%).

Second, we find evidence that correcting for endogenous sample selection and panel attrition changes our

inferences about risk preferences in an economically and statistically significant manner. The results suggest that

one should not discount the potential effects of selection and attrition a priori, even when a self-

selected sample and an underlying population of interest look more or less similar in terms of

observed characteristics. Subjects participating in each wave of our experiments have demographic

characteristics that are comparable to the adult population in Denmark, but without correcting for

endogenous selection and attrition our EUT specification would have overestimated the average

Dane’s relative risk aversion in the first wave by a factor of about 2.9 Under RDU, non-linear

probability weighting, capturing pessimism or optimism in relation to objective probabilities, may

generate a positive or negative risk premium even when the individual has a linear utility function.

8 Paying no fixed recruitment fee is not a panacea for the sample selection issues we consider: it just
masks it, and makes it impossible to evaluate since there is no variation in those fees. There are other sensible
reasons why one should avoid zero show-up fees, since that could generate altogether different, and nasty,
biases in sample selection documented by Kagel, Battalio and Walker [1979] and Eckel and Grossman [2000].

9 Andersen, Harrison, Lau and Rutström [2008b] analyzed the stability of risk preferences in the
same population, but with a different sample, between June 2003 and November 2004. They find evidence of
stable risk preferences. Harrison, Lau and Rutström [2005] focussed on the analysis of the first experiment in
June 2003, and found that the average Dane was risk averse. However, neither study randomized incentives
for participation, and neither study undertook corrections for endogenous selection into the initial
experiment. Nor did they consider unobserved preference heterogeneity and the possibility of probability
weighting under RDU.
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Without correction for endogenous selection and attrition, our RDU specification would have

substantially underestimated the population share of individuals who have an “inverse-S” probability

weighting function that captures optimism for small probabilities and pessimism for large

probabilities.

Finally, we draw several conclusions on temporal stability of risk preferences that depend on which aspect of

temporal stability one is interested in. The range of results reflect the strengths of our empirical

specifications that allow us to define and test temporal stability in several ways. For example,

consider risk aversion in the EUT sense of a concave utility function. Under both EUT and RDU,

we find that the average Dane is risk averse in this sense, and this conclusion is robust over time.

But we still find some instability in the population distribution of risk aversion under RDU as there

is a decline in the extent of unobserved preference heterogeneity around the average. When focusing

on the within-individual autocorrelation of risk aversion, we find estimates of 0.36 under EUT and

0.69 under RDU, which lie between the two extreme cases of completely unrelated and completely

stable preferences. Of course, under RDU risk preferences are also characterized by the probability

weighting function. We find more evidence on the stability of the probability weighting function

than for the utility function, both at the population and individual levels. Overall, we find evidence

consistent with temporal stability under EUT and RDU at the aggregate population level.

Our use of exogenously varied recruitment fees demonstrates how one can constructively

design features of a survey or experiment to facilitate empirical identification of sample selection

effects. Building on Heckman [1976][1979], the emphasis in the literature has been on the discovery

of some “exclusion restrictions,” referring to variables that affect the probability of selection but do

not affect the primary outcome of interest.10 The collection of these variables could be designed by

10 Without such “exclusion restrictions,” identification of sample selection models has to rely on the
validity of functional form assumptions alone, such as the bivariate normality of the error terms in the
maximum likelihood estimation of the standard Heckman model. Identification in this instance is formally
achieved, but is known to be “weak” (Meng and Schmidt [1985] and Keane [1992]). Exclusion restrictions are
formally required for identification when semi-parametric specifications are used (Lee [1995]).
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the surveyor or experimenter, but often were not.11 In most cases analysts simply have to live with

the existing set of variables in a survey or experiment, and search for exclusion restrictions on an a

priori basis. The later theoretical literature, typified by Das, Newey and Vella [2003], stresses the

value of direct controls over the probability of selection, rather than relying on some variables

selected on an a priori basis.

2. Data

A. Field Sampling Procedures

Between September 28 and October 22, 2009 we conducted an artefactual field experiment12

with 413 Danes.13 The sample was drawn to be representative of the adult population as of January

1, 2009, using sampling procedures that are virtually identical to those documented in Andersen,

Harrison, Lau and Rutström [2008a]. We received a random sample of the population aged between

18 and 75, inclusive, from the Danish Civil Registration Office, stratified the sample by geographic

area, and sent out 1,996 invitations. We drew this sample of 1,996 invitees from a random sample of

50,000 adult Danes obtained from the Danish Civil Registration Office, which includes information

on sex, age, residential location, marital status, and whether the individual is an immigrant. Thus we

are in the fortunate, and rare, position of knowing some basic demographic characteristics of the

individuals that do not agree to participate in our experiment.14

11 We know of only two applications of the constructive approach to building exclusion restrictions
into the experimental design. Appendix B (available online) provides a review of the related studies. It is
folklore in survey research that information is often retained on how many calls were made to a subject, how
hard they were to contact in other ways, or which interviewer conducted the survey. Although not the object
of randomization, information of this kind might be used as an instrument to model the probability of
selection.    

12 An artefactual field experiment is defined by Harrison and List [2004] as involving the use of
artefactual instructions, task and environment with a field subject pool.

13 The negative effects of the global financial crisis of 2007 and 2008 were largely in place by the time
of our experiments, between September 2009 and October 2010. On the other hand, the European sovereign
debt crisis was just starting to manifest when our experiments began, and Denmark was about to begin a
fiscal budgetary crisis in 2010 that persisted for several years. A detailed account of Denmark’s responses to
these crises is provided by Kickert [2013].

14 It is possible to extend this list of characteristics by taking our experimental data to Statistics
Denmark, which stores the same data that we obtained from the Civil Registration Office, and merging it

-7-



At a broad level our final sample is representative of the population: the sample of 50,000

subjects had an average age of 49.8, 50.1% of them were married, and 50.7% were female; our final

sample of 413 subjects had an average age of 48.7, 56.5% of them were married, and 48.2% were

female. We stress this comparison because it is often made to assuage concerns about sample

selection: check if the final sample is similar to the population for a few observed characteristics, and

then assume it is representative in all characteristics, including those that are latent and unobserved.

In the absence of the type of data we have access to in Denmark, this may appear to be a reasonable

“second best” procedure, but our results show that it may be an inadequate check on endogenous

sample selection effects.

The initial recruitment letter for the experiment explained the purpose and that it was being

conducted by Copenhagen Business School. The letter clearly identified that there would be fixed

and stochastic earnings from participating in the survey. In translation, the uncertainty was explained

as follows:

You can win a significant amount
To cover travel costs, you will receive 500 kroner at the end of the meeting.
Moreover, each participant will have a 10 percent chance of receiving an amount
between 50 and 4,500 kroner in one part of the survey. In another part of the survey,
each participant will have a 10 percent chance of receiving at least 1,500 kroner.
Some of these amounts will also be paid out at the end of the meeting, and some
amounts will be paid out in the future. A random choice will decide who wins the
money in the different parts of the survey.

The fixed amount is 500 kroner in the treatment that this text comes from, and 300 kroner in

another treatment. Subjects were randomly assigned to one of these two recruitment treatments.

The stochastic earnings referred to in the recruitment letter were for a risk aversion task and a

separate task eliciting individual discount rates.15 Thus the subjects should have anticipated the use

of randomization in the experiment.

with the entire set of data that is available on all of the invited subjects. One can then undertake the same
statistical analyses but with a larger set of covariates to explain sample selection.

15 Results from the discounting task are reported in Andersen, Harrison, Lau and Rutström
[2013][2014], and results from the correlation aversion task are reported in Andersen, Harrison, Lau and
Rutström [2018].
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The experiments were conducted in hotel meeting rooms around Denmark, so that travel

logistics for the invited sample would be minimized. The average home-to-hotel distance was

slightly larger for the 1583 non-participants than the 413 participants (10.2 miles vs 8.1 miles),

suggesting that distance might have had some influence on their participation decisions.16 Various

times of day were also offered to subjects, to facilitate a broad mix of attendance. The largest session

had 15 subjects, but most had fewer. The procedures were standard: Appendix A (available online)

documents an English translation of the instructions, and shows a typical screen display for the risk

aversion task. Subjects were given written instructions which were read out and then made choices

in a trainer task for small non-monetary rewards. The trainer task was “played out” and illustrated

the procedures in the experiment. All decisions were made on computers. After all choices had been

made the subject was asked a series of standard socio-demographic questions.

There were 40 risk attitude choices and 40 discounting choices, and each subject had a 10%

chance of being paid for one choice in each block of 40 choices.17 The risk attitude choices preceded

the discounting choices in one treatment, and vice versa in another treatment. Average payments for

the risk attitude choices were 242 kroner, and average payments for the discounting choices were

201 kroner (although some were for deferred receipt), for a combined average of 443 kroner. The

exchange rate at the time was close to 5 kroner per U.S. dollar, so expected earnings from these

tasks combined were $91. The subjects were also paid a 300 kroner or 500 kroner fixed show-up fee,

plus earnings from subsequent tasks.18

16 The 2.1-mile difference, albeit small, is statistically significant with a two-sided p-value < 0.001. To
derive distances, we downloaded geographical coordinates of relevant locations from Google Maps and
applied a user-written Stata command, due to Picard [2010], that measures the length of the shortest curve
between two locations over an estimated surface of the earth.        

17 The number of subjects in each session varied between 3 and 15, which is independent of the 10%
probability of being paid for one of the 40 risk attitude choices. Harrison, Lau and Williams [2002] randomly
selected one subject in each session of their Danish field experiment to actually play out their discounting
choices, and find a small positive, but statistically insignificant, effect of group size on elicited discount rates.

18 An extra show-up fee of 200 kroner was paid to 24 subjects who had received invitations stating
300 kroner, but then received a final reminder that accidentally stated 500 kroner. The additional tasks earned
subjects an average of 659 kroner, so total earnings from choices made in the session averaged 1102 kroner,
or roughly $221, in addition to the fixed fee of $60 or $100. These 24 subjects were treated in the analysis as
if they were 300 kroner subjects, since that was the incentive in the original invitation. Treating them as 500
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Between April 2010 and October 2010 we repeated the risk aversion and discounting tasks

with 182 of the 413 subjects who participated in the first experiment.19 Each subject was interviewed

in private in the new experiment, and the meeting was conducted at a convenient location for them

(e.g., their private residence or the hotel where the first experiment took place). All subjects were

paid a fixed fee of 300 kroner for their participation in the second experiment.20

Table 1 provides the sample response in each panel wave, and definitions of the explanatory

variables used in the statistical analysis and summary statistics. We observe a significant difference in

sample response with the high recruitment fee compared to the low recruitment fee. The drop from

24.1% to 18.1% in the first wave is statistically significant according to a Fisher Exact test, with a p-

value less than 0.001. After participating in the first wave, the sample response to recruitment into

the second wave was slightly lower for those recruited into the first wave with the high recruitment

fee compared to those recruited with the low fee. The sample response rates were 48.4% and 54.7%

in the second wave, and are not statistically different according to a Fisher Exact test with a two-

sided p-value of 0.24. One might infer from these statistics that the effects of attrition on elicited risk

attitudes are not significant, but of course that depends on who responded, which can only be

assessed with an appropriate statistical model.

kroner subjects does not change the results.
19 There were four steps in the construction of this sub-sample. First, we divided the country into

five regions, and each region was divided into sub-regions. Each sub-region was assigned 1 or 2 numbers, in
rough proportionality to the population of the sub-region. In total we assigned 24 numbers. Second, although
Denmark is a relatively small country, it was necessary to consider logistical constraints, and we randomly
picked 12 of the 24 numbers for the experiment in April 2010 and the remaining 12 numbers for the
experiment in October 2010. Third, we picked the first 50% of the randomly sorted records within each sub-
region. This provided a sub-sample of 100 subjects for each experiment. Fourth, we contacted subjects by
phone and invited them to participate again in the experiments.

20 We did not vary the recruitment fee in the second experiment because we offered to interview the
subjects at home or the hotel where the first experiment was conducted. The experiments were time
consuming and expensive to conduct and we paid subjects the low recruitment fee of 300 kroner in the
second experiments to keep costs down, although we see the value in varying recruitment fees in the second
stage as well. 
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B. Experiments to Infer Risk Attitudes

Risk attitudes were evaluated from data in which subjects made a series of binary lottery

choices. For example, lottery A might give the individual a 50-50 chance of receiving 1600 kroner or

2000 kroner to be paid today, and lottery B might have a 50-50 chance of receiving 3850 kroner or

100 kroner today. The subject picks A or B. We used the procedures of Hey and Orme [1994], and

presented each binary choice to the subject as a “pie chart” showing prizes and probabilities.21 We

gave each subject the same set of 40 choices, in four sets of 10 choices with the same prizes. The

prize sets employed are: [A1: 2000 and 1600; B1: 3850 and 100], [A2: 1125 and 750; B2: 2000 and

250], [A3: 1000 and 875; B3: 2000 and 75] and [A4: 2250 and 1000; B4: 4500 and 50]. The order of

these four prize sets was randomized for each subject, with the probabilities varying within each set

of 10 choices.22 We refer to the first and last of these four prize sets as the “high stakes” lotteries

compared to the “low stakes lotteries” in the second and third set.23 These four treatments with

different prize sets were administered within subjects. 

We asked each subject to respond to all 40 risk aversion tasks and then randomly decided

which one to play out using numbered dice. The large incentives and budget constraints precluded

us from paying all subjects, so each subject was given a 10% chance to actually receive the payment

associated with his decision. The typical findings from lottery choice experiments of this kind are

21 The use of “pie charts” is common in experimental elicitation of risk preferences, but should not
be viewed as the only way that one might present lottery choices. Arguably it provides more information on
probabilities than prizes, since one is shown as a pie slice as well as displayed numerically, whereas the other
is only displayed numerically. Harrison and Rutström [2008; Appendix A] review alternative ways of
presenting lotteries in the literature, none of which has emerged as obviously superior for all purposes.

22 Within each prize set the 10 choices were presented one at a time in an ordered manner, with the
probability of the high prize starting at 0.1 and increasing by 0.1 until the last choice is between two certain
amounts of money. 

23 We use large monetary incentives compared to most other experiments on individual choice under
risk. For example, the prizes in our two high stakes treatments are roughly twice as high as those paid by Holt
and Laury [2002] in their 90x treatment, which paid 90 times the low payoff level in their experimental
design. The prizes in our two small stakes treatments are scaled down by 50% compared to the prizes in the
two high stakes treatments, which in nominal terms is a difference of 2,500 kroner if one compares the
highest prize (4,500 kroner) in the fourth prize set with the highest prize (2,000 kroner) in the second and
third prize set. Although the scaling of prizes between the high and low stakes treatments may seem low in
relative terms, these are substantial differences in absolute terms to most Danes. 
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that individuals are generally averse to risk, and that there is considerable heterogeneity in risk

attitudes across subjects: see Harrison and Rutström [2008] for an extensive review.

3. Identification of Risk Preferences

We first write out a structural model to estimate risk attitudes assuming EUT, to focus on

essentials. We then discuss how the likelihood function changes to account for sample selection and

attrition, and then finally discuss the extension from EUT to the more general RDU model.

A. Baseline EUT Specification

Consider the estimation of risk preferences in the simplest possible model of decision-

making under risk, EUT, without worrying about sample selection or attrition. In our experiment,

each decision task presented a choice between two lotteries, and each lottery had two potential

outcomes. Let Mij be the jth outcome of lottery i, where i=A,B and j=1,2. Assume that the utility of

an outcome is given by the constant relative risk aversion (CRRA) specification

U(Mij) = Mij
(1!r)/(1!r) (1)

for r�1, where r is the CRRA coefficient. Then, under EUT, r=0 denotes risk neutral behavior, r>0

denotes risk aversion, and r<0 denotes risk loving behavior. 

EUT predicts that the observed choice is lottery B when it gives the larger expected utility

(EU) than lottery A and vice versa. Probabilities for each outcome, p(Mij), are those that are induced

by the experimenter, so the EU of lottery i is simply the probability weighted average of its outcome

utilities,

EUi = p(Mi1) × U(Mi1) + p(Mi2) × U(Mi2), (2)

where p(Mi2) = 1 - p(Mi1). Let y denote a binary indicator of whether the observed choice is lottery B

(y = 1) or lottery A (y = 0). Using the indicator function I[.], the observed choice under EUT can be

compactly written as y = I[(EUB - EUA) > 0].
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To allow observed choices to deviate from deterministic theoretical predictions, the EUT

model is combined with a stochastic behavioral error term. Specifically, assume that the choice

depends not only on the EU difference, but also on a random error term g such that y = I[(EUB -

EUA) + õ × g > 0]24 where õ is a positive scale factor that we will parameterize shortly. Assume

further that g is normally distributed with the standard deviation of ì, g ~ N(0, ì2). The choice

probability of lottery B is then Ö(LEU) where Ö(.) is the standard normal cumulative density

function (CDF), and the index LEU is given by

LEU = [EUB ! EUA)/õ]/ì. (3)

It follows that the likelihood function for each choice observation takes the form

P(r, ì) = Ö(LEU)y × (1 - Ö(LEU))(1-y) . (4)

As the noise parameter ì approaches 0, this stochastic EUT specification collapses to the

deterministic EUT model; conversely, as ì gets arbitrarily large, it converges to an uninformative

model which predicts a 50:50 chance regardless of the underlying EU difference.

We complete the behavioral error specification by adopting the contextual utility model of

Wilcox [2011]: õ is set to (Umax - Umin), where Umax and Umin are the maximum and minimum of the

four potential outcome utilities, U(MA1), U(MA2), U(MB1) and U(MB2). Supposing that lottery B is

riskier than lottery A, it is arguably desirable to have a statistical model that predicts a smaller

probability of choosing B for a more risk averse person with a larger r. The traditional Fechner error

model (õ = 1) leads to choice probabilities that do not vary monotonically with r in this manner, an

issue identified by Wilcox [2011] and reiterated by Apesteguia and Ballester [2018].25 The contextual

utility model addresses this potential drawback.   

To clarify our econometric methods, more notation is needed than one would typically see

in the context of non-linear models for panel data. We subscript the choice-level likelihood function

in (4) as Pntw(rnw, ì) henceforth, to emphasize that it describes subject n’s choice in decision task t of

24 Or, equivalently, y = I[(EUB - EUA)/õ + g > 0].
25 In Appendix E (available online), we re-estimate our main models assuming the Fechner error

specification.
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panel wave w.26 The CRRA coefficient rnw is indexed by subject n and wave w for two reasons. First,

to capture unobserved preference heterogeneity across individuals, we model the CRRA coefficient

as an individual-specific random coefficient drawn from a population distribution of risk

preferences. Second, to test temporal stability, we allow the underlying population distribution, as

well as the CRRA coefficient drawn from it, to vary freely across waves. We use f(rn1, rn2; è) to

denote the joint density function for the random CRRA coefficients, where è is a set of parameters

that characterize their joint distribution. 

It is possible to estimate the set of parameters è directly and draw inferences about the

population distribution of risk preferences, once the joint density f(rn1, rn2; è) is fully specified.

Assume that rn1 and rn2 are jointly normal so that è = (2r1, 2r2, ór1, ór2, ór1r2), where 2rw and órw are the

population mean and standard deviation of the CRRA coefficient rnw, and ór1r2 is the covariance

between rn1 and rn2. Conditional on a particular pair of CRRA coefficient draws, the likelihood of

observing a series of 40 or 80 choices made by subject n can be specified as 

CLn(rn1, rn2, ì) = (tPnt1(rn1, ì)                          if sn2 = 0 (5)

                       = (tPnt1(rn1, ì) × (tPnt2(rn2, ì)   if sn2 = 1

where sn2 is an indicator of whether subject n participated in only the first panel wave (sn2 = 0) or

both panel waves (sn2 = 1). Since rn1 and rn2 are modeled as random coefficients, the “unconditional”

(Train [2009, p.146]) or actual likelihood of subject n’s choices is then obtained by taking the

expected value of CLn(rn1, rn2, ì) over the joint density f(rn1, rn2; è)

Ln(2r1, 2r2, ór1, ór2, ór1r2, ì) = Ln(è, ì) = **CLn(rn1, rn2, ì)f(rn1, rn2; è)drn1drn2. (6)

Unobserved heterogeneity is similarly integrated out from many textbook models for panel data,

such as random effects probit (Wooldridge [2010, p.613]).27 Our application is distinctive because

26 We repeated the same set of experiments across two panel waves, and within each wave the
subject completed a series of decision tasks over 40 lottery pairs. The outcomes and probabilities associated
with lottery pairs vary from task to task, and the same subject may make different choices across tasks and
waves. Each lottery outcome and its probability are then Mijntw and p(Mijntw), leading to the expected utilities
EUintw and the index function LEUntw. The indicator yntw is 1 (0) if subject n chooses lottery B (lottery A) in
decision task t of the experiment in wave w. 

27 Much as one finds with a random effect probit model, our random coefficient model allows for
panel correlation across repeated observations on the same individual. Although (5) is a product formula akin
to the pooled probit model, it is only one building block for the actual likelihood function in (6) that
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unobserved heterogeneity enters the index function LEUntw non-linearly via the CRRA coefficient,

and varies across two wave-specific blocks of observations instead of being time-invariant.28 The

unconditional likelihood function Ln(è, ì) does not have a closed-form expression, but can be

approximated using simulation methods (Train [2009, p.144-145]). We compute maximum simulated

likelihood (MSL) estimates of risk preference parameters è and the behavioral noise parameter ì by

maximizing a simulated analogue to the sample log-likelihood function 'nln(Ln(è, ì)). The

estimation sample is 413 subjects who participated in the first experiment or both experiments.

Our modeling framework offers several ways to define and analyze temporal stability of risk

attitudes. One can test if the entire population distribution of risk preferences is stable, which can be

expressed as a joint hypothesis H0: 2r1 = 2r2 and ór1 = ór2. Alternatively, one can test the temporal

stability of the average person’s risk attitude (H0: 2r1 = 2r2), or test the temporal stability of unobserved

preference heterogeneity (H0: ór1 = ór2). We can also accommodate observed heterogeneity by

writing 2r1 and 2r2 as linear functions of the subject’s characteristics, such as age, gender and income.29

It is then possible to consider the question of which demographic groups tend to be more risk

averse, and examine if the answer to that question is temporally stable. 

The questions so far pertain to temporal stability at the population level, but the analysis can

focus on temporal stability at the individual level as well. By normalizing the scale of covariance ór1r2,

one can derive a coefficient ñr1r2 = ór1r2 / (ór1 × ór2) that directly measures the within-individual

correlation of the CRRA coefficient over time. Andersen, Harrison, Lau and Rutström [2008b] elicit

risk preferences using multiple price list formats popularized by Holt and Laury [2002], and compute

this type of correlation based on the midpoints of CRRA intervals that predict observed behavior

integrates such formulas. The log of this likelihood function does not simplify into a sum of observation-
level log-likelihood functions, so our statistical approach does not rely on the independence of choice
observations within individuals.

28 Methods for estimating non-linear random coefficients models of risk aversion were developed by
Andersen, Harrison, Hole, Lau and Rutström [2012], building on the linear random coefficients software
developed by Hole [2007]. Neither considered the implications for selection and attrition in panel data.

29 For illustration, we analyze a model that features male-female differences in risk attitudes in
Appendix C (available online). 
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under EUT. The approach we take here is far more general because it allows for behavioral errors

and can be applied with any elicitation format, as long as the statistical model incorporates a random

coefficient specification similar to ours. Moreover, as reported below, one can estimate the within-

individual correlations of structural parameters in an analogous manner after correcting for selection

and attrition biases, as well as in the context of RDU models.

 

B. EUT Specification with Endogenous Sample Selection and Panel Attrition

The experimental design allows us to correct for sample selection into both panel waves of

the experiment.30 Estimates of risk aversion could be sensitive to the sample selection and attrition

process in any longitudinal setting, and the estimated coefficients in the behavioral model may be

significantly biased if subjects condition their participation on unobservable characteristics that

correlate with their latent risk preferences. It is not obvious a priori that individuals with stable

preferences are more likely to self-select into the early or later stages of our experiment. Since the

decision to participate in the experiment may be correlated with individual risk preferences, it is

appropriate to account for possible sample selection and attrition effects in the statistical model.31 

30 Vella [1998] surveys alternative specifications for modelling sample selection, including semi-
parametric methods.

31 Harrison, Lau and Rutström [2007][2009] use data from a single panel of a previous Danish field
experiment that was conducted in June 2003 and correct for sample selection in the analysis of risk attitudes.
They only consider EUT specifications of risk preferences, and combine linear, interval regression models of
chosen CRRA intervals with probit selection models. Invitations to participate in the field experiment were
sent out to 664 randomly selected adult Danes across the country, and all subjects were informed that they
would be paid 500 kroner to participate in the experiment and could earn an additional sum of money. The
results show that the recruited sample of 253 subjects is significantly more risk averse than the general
population, but the estimated marginal effects of individual characteristics are similar with and without
correction for sample selection. Harrison, Lau and  Rutström [2009] use data from two additional Danish lab
experiments with similar decision tasks as those in the field experiment. The first lab experiment was
conducted in October 2003 with a sample of 90 subjects recruited from the University of Copenhagen and
Copenhagen Business School. Each subject was paid 250 kroner to participate in the experiment. The second
lab experiment was conducted in November 2006 with a new sample of 35 students. Subjects were randomly
divided across two recruitment treatments: compared to the control group in the first lab experiment, one
treatment reduced the recruitment fee to 100 kroner, and the other treatment scaled all prizes in the
experiment down by 50%. The analysis does not control for endogenous sample selection bias and is again
based on a linear, interval regression model with chosen CRRA intervals modeled as a function of the
recruitment treatments and other experimental treatments. The results show that treatments with higher
recruitment fees lead to samples with more risk averse subjects than otherwise. Our present approach
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To control for sample selection bias, we take the initial pool of 1,996 invited subjects as a

random sample from the population, and model the initial selection process that lead to 413 subjects

in the first experiment. From this sample of 413, 354 subjects were invited to the second

experiment. To control for panel attrition bias, we take those 354 subjects as a random sample from

the sub-population that self-selected into the first experiment, and model the attrition process that

led to 182 subjects in the second experiment. This general strategy is consistent with our

experimental design, under which the experimenter exogenously determines whether someone is

invited to the first experiment, and which subjects in the first experiment get invited to the second

experiment.

We first describe a system of binary response models that describes sample selection and

attrition. Let snw be an indicator of whether subject n accepted the invitation to the experiment in

wave w (snw = 1) or not (snw = 0). For those who were not invited to the second experiment, we set

sn2 = -1. Assume that each observed outcome snw is determined by a latent propensity Snw, such that

sn1 = I[Sn1 > 0], and sn2 = I[Sn1 > 0 1 Sn2 > 0] if subject n was invited to the second experiment. The

latent propensities are specified as

Sn1 = Xn1â1 + un1 = Xn1â1 + (an1 + en1) (7)

Sn2 = Xn2â2 + un2 = Xn2â2 + (an2 + en2) (8)

where Xnw is a vector of explanatory variables including a constant, âw is a conformable vector of

coefficients to estimate, and unw is a random disturbance. We decompose unw further into anw and

enw, which are orthogonal to each other. The term anw captures unobserved characteristics which are

potentially correlated with risk attitudes, and across selection and attrition processes. In contrast, enw

captures purely idiosyncratic errors. 

Assume that the correlated components an1 and an2 are bivariate normal, and that each

idiosyncratic error enw is independently standard normal. Under this assumption, the composite

considers RDU as well as EUT, explicitly models the latent non-linear structural model rather than the
“CRRA interval reduced form” choices, allows for unobserved preference heterogeneity, allows for
endogenous sample selection, and allows for endogenous attrition.
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errors un1 and un2 are also bivariate normal. When viewed in isolation from the random coefficient

EUT model, the system of equations (7) and (8) is analogous to the probit model with sample

selection (Van de Ven and Van Praag [1981]) which views the sample retention indicator sn2 as the

primary outcome of interest.32 It is common to normalize this type of model by setting Var(un1) =

Var(un2) = 1, and identify â1, â2 and ñs1s2 = Corr(un1, un2) = Corr(an1, an2). We could follow the same

convention, but prefer to normalize the system by setting Var(un1) = 2 and Var(un2) = 2 + Cov(an1,

an2), and identify â1, â2 and ós1s2 = Cov(un1, un2) = Cov(an1, an2). This scheme allows us to assume

Var(an1) = Var(en1) = Var(en2) = 1 and Var(an2) = 1 + ós1s2 without loss of generality; then, (7) and (8)

can more easily be combined with the random coefficient EUT model by attaching probit

probabilities to (5), as shown below.  

Let g(an1, an2, rn1, rn2; È) denote a density function for the joint distribution of risk attitudes

and relevant selection/attrition errors, which is characterized by parameters in È. Let ós1rw and ós2rw

denote Cov(an1, rnw) and Cov(an2, rnw) respectively. We allow for the full set of correlations amongst

the four random components. Given the earlier assumptions, g(.; È) is then multivariate normal and

È = (è, G), where è = (2r1, 2r2, ór1, ór1, ór1r2) characterizes the population distribution of the CRRA

coefficients and G = (ós1s2, ós1r1, ós1r2, ós2r1, ós2r2) collects covariance parameters that may induce

selection and attrition biases. For example, a positive ós1r1 means that those with relatively large

CRRA coefficients in wave 1 are more likely to participate in the first experiment, and a positive ós2r1

means that such subjects with high CRRA coefficients in wave 1 are also more likely to participate in

the second experiment. Without correction for selection and attrition, one would overestimate the

initial degree of risk aversion in the population. While ós1s2 does not address risk attitudes directly,

this parameter corrects the attrition process for initial selection bias, since the attrition outcomes are

only observed for the self-selected sample of participants in the first experiment. If ós1s2 is falsely

constrained to 0, the resulting correction for attrition bias becomes invalid.  

32 The first formal statement of the probit model with sample selection considered the case in which
the latent index was the difference in expected utility from two outcomes, which we denote by LEU: see Van
de Ven and Van Praag [1981; p.235, equation (8)].  
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We now turn to a likelihood function which augments the baseline EUT specification with

controls for selection and attrition biases. Conditional on a particular set of an1, an2, rn1 and rn2, the

joint likelihood of subject n’s selection/attrition outcomes and risky choices can be specified as 

          CLn(an1, an2, rn1, rn2, ì) = 1 - Ö(ôn1)                                                          if sn1 = 0 (9)

        = Ö(ôn1) × (tPnt1(rn1, ì)                                        if sn1 = 1, sn2 = -1 

                                    = Ö(ôn1) × (1 - Ö(ôn2)) × (tPnt1(rn1, ì)                   if sn1 = 1, sn2 = 0 

                                     = Ö(ôn1) × Ö(ôn2) × (tPnt1(rn1, ì) ×  (tPnt2(rn2, ì)  if sn1 = 1, sn2 = 1 

where ônw = Xnwâw + anw, Ö(.) is the standard normal CDF and Pntw(.) is the choice-level likelihood

under the baseline EUT model. The exact form of the conditional likelihood function thus varies for

those who rejected the first invitation (sn1 = 0), those who participated in the first experiment but

did not receive the second invitation (sn1 = 1, sn2 = -1), those who participated in the first

experiment but rejected the second invitation (sn1 = 1, sn2 = 0), and finally those who participated in

both experiments (sn1 = sn2 = 1). The unconditional likelihood function for subject n can be

obtained by taking the expected value of CLn(an1, an2, rn1, rn2, ì) over the joint distribution of the four

random components 

Ln(È, ì) = ****CLn(an1, an2, rn1, rn2, ì)g(an1, an2, rn1, rn2; È)dan1dan2drn1drn2. (10)

where È = (2r1, 2r2, ór1, ór2, ór1r2, ós1s2, ós1r1, ós1r2, ós2r1, ós2r2) in full. Since (10) does not have a closed

form expression, we compute the MSL estimates of È and ì by maximizing a simulated analogue to

the sample log-likelihood function 'nln(Ln(È, ì)). The estimation sample is all 1,996 subjects who

were invited to the first experiment.   

Parametric models with selection and attrition such as ours are theoretically identified

without the aid of cross-equation exclusion restrictions. Nevertheless, our experimental design

provides natural candidates for such restrictions that we use to assist empirical identification. The

initial invitation letter randomized subjects to different recruitment fees, and the longitudinal design

allows us to observe each subject’s additional earnings from the first experiment.33 Before coming to

33 Since the recruitment fee is an observed characteristic and the model is theoretically identified
without utilizing this as an exclusion restriction, it is possible to test whether the use of different recruitment
fees results in recruitment of subjects with systematically different risk attitudes. For instance, as shown in
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the first experiment, subjects did not know anything about the 40 lottery pairs used and, during the

first experiment, everyone faced the same set of 40 lottery pairs. We assume that the recruitment

fees affect the initial decision to accept the first invitation, but do not affect the decision to accept

the second invitation once we control for additional earnings from the first experiment.34 We

maintain the usual hypothesis that the recruitment fees and prior earnings do not affect the subject’s

evaluation of lottery pairs directly. Finally, subjects had to travel to hotel meeting rooms to

participate in the first experiment, whereas each subject chose their own preferred venue for the

second experiment. 

The preceding discussion motivates us to include the recruitment fees only in Xn1 for the

selection equation, the actual earnings from the first experiment only in Xn2 for the attrition

equation, and the lottery payoffs and probabilities only in LEUnjt for the structural model of risky

choices. In addition, we augment Xn1 with each subject’s home-to-hotel distance (in miles) and its

square.35 Both Xn1 and Xn2 also include the subject’s age and gender, and Xn2 additionally includes

self-reported income that is only available for those who participated in the first experiment.           

To see the flexibility of our extended specification, one may compare it with several special

cases. Consider first a “naïve” approach, in which each panel wave is evaluated separately, using (7)

to correct for selection into the first wave and (8) to correct for selection into the second wave. This

approach is naïve in the sense that it fails to recognize the longitudinal nature of the experiments,

Table D3 and Table D4 of Appendix D (available online), we can condition the mean of each structural
parameter (rn1 and rn2 under EUT, and rn1, rn2, ön1, and ön2 under RDU that we will describe shortly) on the
recruitment fee indicator and study whether the estimated coefficient on that indicator is significant. The
results support our intended use of the recruitment fee as an exclusion restriction to assist empirical
identification. The recruitment fee has an insignificant effect on the mean of rn1 and rn2 under EUT with p-
values of 0.173 and 0.447, and under RDU with p-values of 0.191 and 0.246. Similarly the recruitment fee has
an insignificant effect on the mean of ön1, and ön2 under RDU, with p-values of 0.997 and 0.295.    

34 Additional earnings in the first experiment include payments for choices in three sets of decision
tasks which elicit individual risk attitudes, discount rates and correlation aversion, respectively. 

35 How closely the home-to-hotel distance approximates the actual inconvenience involved in
travelling is an open question. The validity of our statistical corrections for endogenous selection and attrition
does not rely on any precise interpretation that one might place on the distance variable. As usual, the
selection equation in our framework is a reduced-form index model and its coefficients need not have any
causal interpretation.   
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and requires ós1s2 = ós1r2 = ós2r1 = 0. However, even when these restrictions are valid, the approach

cannot identify ór1r2 and hence ñr1r2 that measures the temporal stability of risk preferences within

individuals. Two special cases arise if both waves are analyzed jointly, but they correct for only

selection bias or attrition bias. With correction for selection bias only, one can estimate all structural

parameters consistently when ós2r1 = ós2r2 = 0. The other special case ignores selection bias and

requires ós1s2 = ós1r1 = ós1r2 = 0. The latter case is perhaps more interesting, considering that it

resembles what one would do in typical longitudinal studies that observe no information on those

who did not participate in the first wave. 

Our modeling strategy provides a general framework for the structural estimation of risk

preferences with correction for endogenous selection and attrition. While we parameterize the

statistical model using multivariate normal densities and probit kernels, with a few notational

changes the likelihood functions above can incorporate other joint distributions of {an1, an2, rn1, rn2}

and kernel CDFs. We focus on the multivariate normal-probit kernel specification primarily to reach

a wider audience; the workhorse sample selection models in the empirical literature assume either

the bivariate normality of selection and structural errors in a maximum likelihood framework, or the

marginal normality of selection errors in Heckman’s two-step procedure. In many longitudinal

studies, the researcher may apply correction for panel attrition but not for initial selection due to the

lack of information on non-participants. Our econometric approach can be adapted to such settings

to specify a structural model with endogenous attrition, by omitting the selection equation and

re-normalizing the standard deviation of the attrition error.36 As usual, the resulting correction for

attrition bias would be a second-best solution that presumes the absence of selection bias. 

36 The conditional likelihood function under this endogenous attrition model is algebraically
equivalent to the special case of (9) that assumes sn1 = 1 and Ö(ôn1) = 1 for every n. Since the covariance
between the selection and attrition errors is no longer identified, the scale of the attrition error should be re-
normalized, for example by setting Var(un2) = 2.
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C. Rank Dependent Utility Theory Specifications

RDU is a popular generalization of EUT, due to Quiggin [1982], that allows the decision-

maker to transform the objective probabilities presented in lotteries and use these weighted

probabilities to determine decision weights when evaluating lotteries. If w(p) is the probability

weighting function assumed, and each lottery has only two prizes such that Mi1 > Mi2, then we have 

RDEUi = [ w(p(Mi1)) × U(Mi1) ] + [ (1-w(p(Mi1))) × U(Mi2) ], (2N)

where RDEUi refers to rank dependent expected utility of lottery i, and the remaining notation is as

defined in the context of (2). 

 The logic behind our econometric specifications extends naturally to RDU, once we replace

EUi with RDEUi. Of course, one has to specify the functional form for w(p) and estimate additional

parameters. Prelec [1998] offers a two-parameter probability weighting function that exhibits

considerable flexibility. This function is

w(p) = exp{-ç(-ln p)ö}, (12)

and is defined for 0<p<1, ç>0 and ö>0. We use its one-parameter special case that assumes ç = 1,

and model ö as a log-normally distributed random coefficient önw that varies across individuals and

panel waves. The resulting one-parameter function exhibits inverse-S probability weighting

(optimism for small p, and pessimism for large p) for ö < 1, S-shaped probability weighting

(pessimism for small p, and optimism for large p) for ö > 1, and linear probability weighting that

reduces RDU to EUT when ö = 1.37 It rules out the cases of globally concave (optimism for all p) or

globally convex (pessimism for all p) probability weighting a priori, and also implies that the fixed

point where w(p) = p occurs at p = 0.368 for any value of ö. The two-parameter function can admit

37 The one-parameter Prelec function is similar to another one-parameter function popularized by
Tversky and Kahneman [1992]: w(p) = pã /( pã + (1-p)ã )1/ã, which is inverse-S (ã < 1) or S-shaped (ã > 1).
When ö=1 and ç is a free parameter instead, (12) collapses to the power function w(p) = pç; this function can
capture either probability optimism (ç < 1) or pessimism (ç > 1), but not both at the same time. There are
several versions of the Prelec [1998] function, since several were specified in his Proposition 1 (p.503). We do
not use his versions (A) or (B) that constrain ö to be in the unit interval, since that constraint rules out “S-
shaped” probability weighting a priori, which we view as an unattractive restriction. The one-parameter
function we use is a special case of version (C) in his Proposition 1.
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concave and convex cases, and also inverse-S or S-shaped probability weighting with other fixed

points. But allowing for the unrestricted joint distribution of random coefficients and

selection/attrition errors leads to several extra parameters, making the use of the two-parameter

function less practical for our purposes.38

One implication of the RDU model is that risk preferences are characterized by more than

the concavity of the utility function. The risk premium is a complex function of all of the parameters

that define the utility function as well as the probability weighting function. Indeed, a concave utility

function might be mitigated by probability “optimism” such that the net effect is risk neutrality or

even risk loving. We simply have to examine all parameters to characterize risk preferences in the

case of RDU: r and ö.39

4. Results

We are interested in testing several hypotheses. First, is the distribution of risk attitudes in

the general adult Danish population temporally stable over the one-year period we consider in the

experiment? Second, are risk attitudes temporally stable at the individual level? Third, does the

38 Allowing for the full set of correlations amongst two CRRA coefficients, two probability weighting
coefficients, the selection error and the attrition error mean that the RDU specification with the one-
parameter Prelec [1998] function already involves at least 13 more parameters to estimate than the EUT
specification. The variance-covariance matrix of random parameters rn1, rn2, nn1, nn2, an1 and an2 is a 6-by-6
matrix with 15 distinct covariance parameters and 4 identified variance parameters. In comparison, the EUT
specification involves 6 covariance parameters and 2 identified variance parameters. One should also estimate
the population mean parameters for nn1 and nn2, and those of rn1 and rn2.. Of course, the number of extra
parameters increases even further when the mean parameters for the probability weighting function are
conditioned on observed characteristics. We have also estimated the RDU model with the two-parameter
Prelec specification and the results are available upon request. However, under this specification, one cannot
easily define temporal stability of the probability weighting function. For example, one cannot identify the
average or median person. While it is straightforward to identify the mean and median of each parameter
separately, a person with a mean or median value of ç does not necessarily have a mean or median value of n. 

39 The EUT model retains some descriptive value, however. The EUT and RDU models assume the
same overall risk premium, even if they explain it differently. It is sometimes useful to focus on the parameter
r in the EUT model as a summary statistic on the overall risk premium, even if the RDU model may provide
the correct structural decomposition into aversion to outcome variability (the r parameter) and probability
weighting (the n parameter).
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possibility of non-random sample selection and attrition change our inferences about the temporal

stability of risk attitudes?

We use MSL to estimate the full statistical model that captures unobserved preference

heterogeneity, endogenous selection into the first experiment, and endogenous panel attrition

between the two experiments. Train [2009] provides details on MSL estimation of heterogeneous

preference models without selection. Cappellari and Jenkins [2004] show how one can control for

endogenous selection and attrition using MSL in the context of models without unobserved

preference heterogeneity. By modeling the joint likelihood of observing the entire series of

responses by each subject, and adjusting standard errors for clustering at the subject level, our

statistical specification allows for “clustered” responses by the same subject. Panel-robust Wald

statistics are used to test various hypotheses with respect to the estimated coefficients. The statistical

model also allows for heteroscedasticity in the behavioral error term, by conditioning the noise

parameter on binary variables for each treatment in the experimental design; one variable captures

the order of risk aversion and discounting tasks, and the other variable captures our use of high and

low stakes in the risk aversion tasks. We also condition the population mean coefficients of latent

risk preference parameters on these two treatment variables.

We transform several estimates into alternative forms that are easier to interpret, and report

correlation coefficients instead of covariance parameters. For the log-normal random coefficient ö

in the RDU model, all results are for ö itself instead of ln(ö).40 Finally, we divide selection and

attrition equation coefficients by the normalized standard deviation of each equation so that they

can be interpreted in the same manner as familiar probit coefficients.             

40 Specifically, we report the mean and median of ö for the base group (constant), along with the
marginal effect of each observed characteristic on the mean and median of ö for the base group. The
standard deviation of ö is evaluated at the sample average characteristics. The within-individual correlation of
ö is computed by applying the usual formula for the correlation coefficient of bivariate log-normal random
variables. Other correlations involving ö present cases where we compute the correlation between a log-
normal random variable and a normal random variable. Garvey, Book and Covert [2015, p. 443, Theorem
B.1] provide a closed-form formula that can be applied to these cases.     
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A. Temporal Stability of Risk Attitudes

We find evidence of temporal stability for inferred risk attitudes under EUT when the model

fully corrects for endogenous sample selection and attrition bias. Table 2 contains these results,

including single hypothesis tests that the mean CRRA parameter 2rw for each treatment group is the

same over time. For example, the estimated mean coefficient of relative risk aversion for the

baseline case of our econometric model (when RAfirst = RAhigh = 0) is equal to 0.413 in wave 1,

and equal to 0.594 in wave 2; the estimated difference in the two mean population coefficients is

equal to 0.180, which is not significantly different from 0 with a p-value of 0.236.41 The estimated

population mean coefficient is also larger in wave 2 relative to wave 1 when we control for the high

stakes treatment; the estimated difference between the two coefficients is 0.151, which is

insignificant with a p-value of 0.294. We also find that the estimated population standard deviation

of relative risk aversion is temporally stable; the estimated standard deviation of the r parameter, ór,

drops from 0.856 in wave 1 to 0.787 in wave 2, and the estimated difference between the two

coefficients is not significantly different (p-value of 0.637). A joint test of estimated mean population

coefficients and standard deviation coefficients across the two waves allows us to evaluate whether

the entire population distribution is temporally stable. The ÷2(4) test statistic has a p-value of 0.480,

so we cannot reject the hypothesis of temporal stability.42 Although the estimated population mean

is higher in wave 2 compared to wave 1 for low and high stakes treatments, we find statistical

evidence of temporal stability for the entire population distribution of relative risk aversion.

41 Our risk aversion experiment was part of a larger experiment that involved a discounting choice
tasks and a correlation aversion task. The order of risk aversion and discounting tasks was randomized on a
between-subject basis; half of the subjects faced risk aversion tasks first (RAfirst = 1) and the remaining half
faced discounting tasks first (RAfirst = 0). The correlation aversion task always followed the risk and
discounting tasks. In each wave, each subject completed 20 risk aversion tasks that we classify as low stake
(RAhigh = 0) and 20 decision tasks that we classify as high stake (RAhigh = 1). Our model allows for
systematic variations in risk preferences across the order and stake treatments. To avoid potential clutter, our
figures focus on comparisons across the stake treatments, since the order treatment effect is not statistically
significant at the 5% level in any of our estimation results.

42 Since the mean of the r parameter has been conditioned on two treatment variables, in each wave
there are 3 estimates associated with the mean (constant, RAfirst, RAhigh). Temporal stability of the
population distribution therefore entails 4 between-wave equality restrictions, comprising 3 restrictions on
the mean and 1 restriction on the standard deviation.
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The upper panel in Figure 1 shows the estimated population distributions of relative risk

aversion across the two waves and two monetary treatments, with controls for non-random

selection and attrition bias. The population distributions of relative risk aversion for both monetary

treatments shift to the right in wave 2 compared to wave 1, but the apparent increase in risk

aversion is not statistically significant, as noted above.43 The marginal effect of the high stakes

treatment on the estimated population mean is positive and the population distribution shifts to the

right in both waves. The estimated coefficient of the high stakes treatment is equal to 0.088 with a p-

value of 0.017 in wave 1, and equal to 0.059 with a p-value of 0.260 in wave 2. We thus observe a

significant effect of the high stakes treatment on relative risk aversion in wave 1 and an insignificant

effect in wave 2. 

We next consider temporal stability at the individual level. The estimated correlation

coefficient between relative risk aversion in wave 1 and 2, ñr1r2, is equal to 0.360, which is

significantly different from 0 (p-value < 0.001). The significant positive correlation suggests that risk

preferences are temporally stable at the individual level, in the sense that someone with an above-

average r parameter in wave 1 also tends to have an above-average r parameter in wave 2, and thus

we reject the hypothesis that the two population distributions are independent. 

Turning to the results for RDU in Table 3, we draw mixed conclusions that depend on

which aspect of temporal stability that one is interested in. Under RDU, risk preferences are

characterized by the r parameter as well as the weighting parameter, ö, which is log-normally

distributed. The entire population distribution of risk preferences may be said to be stable when the

joint distribution of r and ö is stable. More formally, this joint hypothesis requires stability in the

estimated population means of the r and ö parameters, the estimated population standard deviations

43 Figure 1 is generated from the point estimates of the population mean and population standard
deviation of the relative risk aversion parameter. It does not reflect the standard errors around those point
estimates, nor the covariance between them. Our statistical tests do take these into account.
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of r and ö, and the estimated correlation between r and ö. We cannot reject this type of temporal

stability; the associated ÷2(9) test statistic has a p-value of 0.303.44 

Figure 2 displays the estimated population distributions of relative risk aversion for each

wave and monetary treatment. The estimated distributions in the upper panel control for selection

and attrition bias, and we observe that the estimated population means of the r parameter are almost

identical across the two waves. The estimated between-wave difference in the population mean is

0.031 for the low stake treatment and 0.022 for the high stake treatment, and neither estimate is

statistically significant. We also observe that the population distributions in wave 2 have a smaller

standard deviation than the distributions in wave 1; the estimated standard deviation is 0.955 in wave

1 and 0.763 in wave 2, and we reject the null hypothesis that the estimated difference in the two

coefficients is equal to 0 at the 5% significance level (p-value of 0.042). Hence, we find temporal

stability with respect to population mean and temporal instability with respect to the standard deviation

of the r parameter.  The estimated correlation coefficient between the population distributions of

the r parameter over time, ñr1r2, is equal to 0.689, which is somewhat higher than the estimated

coefficient under EUT, and we reject the hypothesis that the two population distributions are

independent.

The estimated population distributions of the probability weighting parameter ö are

displayed in Figure 3. The distributions in the upper panel control for selection and attrition bias,

and we observe insignificant differences in the estimated population distributions of the ö parameter

between the two waves. We cannot reject the hypothesis that the population distribution of the ö

parameter is temporally stable; the ÷2(4) test statistic has a p-value of 0.306. The estimated difference

in the population mean between the two waves is statistically insignificant across each monetary

treatment, and we also find that the standard deviation of the population distribution is temporally

44 The stable marginal distribution of the r parameter entails 4 restrictions. Similarly, the stable
marginal distribution of the ö parameter entails another set of 4 restrictions. In total, temporal stability in the
joint distribution of r and ö parameters entails 9 between-wave equality restrictions: 8 restrictions on the
marginal distributions and 1 restriction on the correlation coefficient between the two parameters.
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stable. The estimated standard deviation is higher in wave 2 compared to wave 1, but the estimated

difference in the standard deviation is statistically insignificant (p-value = 0.326). Finally, we find that

the estimated between-wave correlation of the ö parameter is 0.662 with a standard error of 0.159,

which suggests that there is a strong degree of temporal stability at the individual level. 

To the best of our knowledge, our study is the first to parameterize within-individual

correlation in risk attitudes over time as part of a structural model, and also the first study to control

for the effects of selection and attrition on the associated inferences. The magnitudes of our

estimates appear plausible considering what previous studies found using alternative approaches.

Based on a review by Chuang and Schechter [2015, p.153, Table 1], we can identify four

experimental studies with real incentives that reported within-individual correlation in risk attitudes

over time. Levin, Hart, Weller and Harshman [2007] and Lönnqvist, Verkasalo, Walkowitz and

Witchardt [2015] used the raw count of safe choices from pairwise comparisons to measure risk

aversion, and found correlation ranging from 0.20 to 0.38. Andersen, Harrison, Lau and Rutström

[2008b] assumed EUT with CRRA utility to derive each subject’s r parameters from their responses

to multiple price list tasks, and found correlation in the derived r parameters ranging from 0.34 to

0.58 (compared to our estimate of 0.36). Finally, Wölbert and Riedl [2013] applied a two-step

approach of estimating a RDU model separately for each subject and wave, and using the resulting

point estimates as data points in subsequent statistical analyses.45 They assumed CRRA utility and

one-parameter Prelec probability weighting functions, and computed correlation of 0.77 in the r

parameters and 0.73 in the ö parameters (compared to our estimates of 0.69 and 0.66, respectively). 

In summary, we contribute to the literature by modeling risk preferences in a non-linear,

structural manner, allowing for unobserved heterogeneity across the population and endogenous

selection and attrition. The use of panel correlations in structural parameters to test individual-level

stability is also a unique feature of our analysis. The ability to analyze temporal stability at both the

45 In general point estimates should not be used as data in statistical analyses, since estimates are
random variables.
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population and individual level in a single econometric model demonstrates the coherency and

flexibility of our econometric modeling approach. 

B. Effects of Sample Selection and Attrition on Risk Attitudes under EUT

We observe significant evidence of exogenous and endogenous selection and attrition effects

on the estimated coefficients reported in Table 2. We find a positive and significant effect of the

higher recruitment fee on the propensity to self-select into the first wave of our experiment. In

effect, the law of demand applies to participation in the experiments, and response rates increase

significantly when the recruitment fee is raised from 300 kroner to 500 kroner for participation in

wave 1. We also find a statistically significant and U-shaped association between the self-selection

index and the home-to-hotel distance, suggesting that there is a negative and diminishing marginal

effect of the distance up to a turning point at 34.22 miles. In other words, as one may expect, people

who live farther away from the session venues are less likely to participate, and people who live

closer are more sensitive to a small increase in the distance. Of course the sign of the marginal effect

changes after the turning point, but this is more or less an artefact of the quadratic specification that

is of limited economic significance, since only six out of the 1996 invitees lived outside a 34.22-mile

radius from a venue.46 Looking at observable characteristics, middle aged and older subjects are

more likely to select into the first wave compared to omitted age group. It is generally difficult to

explain panel retention rates in terms of observed characteristics, although the results do suggest

that young and high-income subjects are less likely to select into the second wave than otherwise.

Turning to endogenous effects of sample selection and attrition, we find enough statistical

evidence to reject the hypothesis of no selection and attrition bias, respectively. The hypothesis of

no endogenous sample selection bias is evaluated using the joint test of H0: ñs1s2 = ñs1r1 = ñs1r2 = 0.

This hypothesis is rejected, with a p-value less than 0.001. The hypothesis of no endogenous attrition

46 Indeed, all but one of the 1996 invitees lived within a 36.2-mile radius from a venue. The
exceptional case was one subject that lived in central Copenhagen but participated in the experiment in
central Århus. 
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bias can be tested by H0: ñs2r1 = ñs2r2 = 0, which again is rejected, with a p-value less than 0.001. The

estimated correlation coefficient between the error terms in the selection and attrition equations,

ñs1s2, is equal to -0.340 with a standard error of 0.125, which means that one cannot take the naïve

approach of correcting for each source of sampling bias separately.

We can see the overall effects of controlling for selection and attrition bias on the estimated

population distributions of relative risk aversion in Figure 1. The lower panel shows the estimated

distributions with no correction for sample selection and attrition bias. Despite the significant

statistical evidence of sample selection and attrition bias, we draw qualitatively similar conclusions

about temporal stability. We observe that the population mean increases over time and the

population distribution becomes tighter around the mean.47 Although the estimated population

mean is higher in wave 2 compared to wave 1 for both monetary treatments, there is statistically

significant evidence of temporal stability with respect to relative risk aversion at the population level.

We also find temporal stability at the individual level. The estimated correlation coefficient between

relative risk aversion in wave 1 and 2 is equal to 0.537, which is significantly different from 0 (p-

value < 0.001).

In general it is easier to correct for endogenous attrition than it is to correct for endogenous

selection, since in the case of attrition one potentially knows a lot about the subject that did not

attend later waves from their participation in the very first wave. It would then be tempting to at

least correct for attrition bias and ignore selection bias.48 Unfortunately this would lead to incorrect

inferences. Under EUT this approach would lead one to reject the hypothesis that the population

mean and standard deviation of relative risk aversion was temporally stable, with a p-value of 0.007.49

This is sharply different than the conclusion when one corrected for both selection and attrition.

47 Table D1 in Appendix D (available online) reports the estimated parameters for the EUT model
with no correction for selection and attrition bias. 

48 As in Andersen, Harrison, Lau and Rutström [2008b]. 
49 Table D5 in Appendix D (available online) reports the estimated parameters for this EUT model

with corrections for attrition bias and no corrections for selection bias. 
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C. Effects of Sample Selection and Attrition on Risk Attitudes under RDU

We continue to observe significant selection and attrition bias under RDU. The hypothesis

test of no sample selection bias now involves the correlation coefficients between the error term in

the selection equation and the five other random components (the error term in the attrition

equation, two r parameters, and two ö parameters). This hypothesis is rejected at all conventional

levels, since the p-value is less than 0.001. The hypothesis test of no attrition bias involves the

correlation coefficients between the error term in the attrition equation and four structural

parameters (two r parameters, and two ö parameters) and we again reject the null hypothesis of no

attrition bias (p-value < 0.001). The estimated correlation coefficient between the error terms in the

selection and attrition equations, ñs1s2, is equal to -0.416 with a standard error of 0.162, so we can

again reject the naïve approach of correcting for each source of sampling bias separately. 

Figure 3 displays the overall effects of controlling for selection and attrition bias on the

estimated population distributions of the probability weighting parameter. The lower panel shows

the estimated distributions with no correction for sample selection and attrition bias, and here we

find statistical evidence of temporal stability.50 More specifically, without corrections for non-

random selection and attrition bias, we cannot reject the null hypothesis that the population

distribution of the ö parameter is temporally stable (the ÷2(4) test statistic has a p-value of 0.304).

Viewed another way, the uncorrected estimates of the probability weighting parameter seem

relatively stable around biased base levels. We also observe that the shape of the population

distribution for the weighting parameter changes when we correct for selection and attrition bias.

Figure 3 shows that the population distribution of the ö parameter is more skewed to the right in the

upper panel with corrections compared to the lower panel without corrections. A larger fraction of

subjects can be classified by an inverse-S shaped probability weighting function when we correct for

selection and attrition bias compared to the non-corrected estimates. 

50 The estimated parameters are reported in Table D2 in Appendix D.
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We can look closer at the effect of adding controls for sample selection and attrition on risk

attitudes under RDU. The effects on the mean of the r parameter are modest: estimates of concavity

slightly decline in both wave 1 and wave 2 when we control for selection and attrition bias, so the

risk premium derived from utility concavity, ceteris paribus, is lower. The effects on the mean of the ö

parameter are shown in Figure 4. The top (bottom) panel refers to the first (second) wave, and the

left (right) panel refers to the low (high) stakes treatment. There are two outcomes in each lottery,

and the probability weighting functions displayed in Figure 4 are identical to the implied decision

weights on the highest outcome. Based on Figure 4 we can infer the effect of probability weighting

on risk attitudes evaluated at the mean of ö. The S-shape of the probability weighting function leads

to a negative (positive) risk premium for lotteries with a relatively high (low) probability of the

highest outcome, ceteris paribus.  We see similar S-shaped probability weighting across the two waves.

While corrections for selection and attrition bias do not change our qualitative inferences regarding

the shapes of the probability weighting functions, they lead to smaller mean estimates in both waves

making the extent of probability distortion less pronounced. This finding on S-shaped probability

weighting at mean values does not contradict the upper panel of Figure 3 that classifies a large

fraction of the population as inverse-S instead: ö follows a right-skewed distribution, and the mean is

sensitive to a long right tail.

We can again assess the potential error in assuming away selection bias and just correcting

for attrition bias. As with EUT, this “second best” approach again leads to incorrect inferences.51

Under RDU this approach would lead one to reject the hypothesis that the population mean and

standard deviation of r and ö was temporally stable, with a two-sided p-value of 0.07.52 This is again

sharply different than the conclusion when correcting for both selection and attrition.

51 Table D6 in Appendix D (available online) reports the estimated parameters for the RDU model
with corrections for attrition bias and no corrections for selection bias.

52 Under EUT (RDU) the instability comes from the estimated mean (standard deviation) of the
population parameter r.
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We can derive certainty equivalents for each lottery in Option A and Option B of the 40

decision tasks, and then evaluate the risk premia associated with different prize sets. Figure 5

displays the estimated risk premium in percent as a function of the probability of the highest

outcome in lottery A with 2250 kroner and 1000 kroner and lottery B with 4500 kroner and 50

kroner. Lottery pairs like these were presented in decision tasks that involved the largest stake within

our experiment. The solid line is based on the estimated parameter values for r and ç with

corrections for selection and attrition bias, and the dashed line is based the model without correction

for endogenous selection and attrition. The results show that endogenous selection and attrition bias can

have a substantive effect on the estimated risk premium. For example, the upper right panel shows that the

risk premium for lottery B with a 50-50 chance of 4500 kroner and 50 kroner is 1.7 percent of the

expected value in the model with corrections for endogenous selection and attrition bias and is equal

to 34.6 percent in the model with no control for selection and attrition bias. 

5. Conclusions

Heckman and Smith [1995; p.99] noted that, “Surprisingly, little is known about the

empirical importance of randomization bias.” Aggregate data on participation rates from job training

experiments by Hotz [1992] and clinical trials by Kramer and Shapiro [1984] suggest that the bias

due to endogenous participation decisions might be significant, but we know of no study that

directly evaluates the hypothesis.53 We do not a priori know the direction of randomization bias in

economics experiments, and whether the use of recruitment fees mitigates the effects of

randomization bias on elicited risk attitudes. Given the importance of randomized control trials in

policy experiments in economics, and concerns with inferences drawn from such designs (Harrison

53 Many other hypotheses about the effects of sample selection and attrition in longitudinal studies
have been evaluated, of course. In the case of clinical trials, for instance, Beunckens, Molenberghs and
Kenward [2005] compare the effects of obvious ad hoc methods (such as assuming that the last observed case
for some subject who does not participate in later sessions is the observation that the subject would have
provided, or only using sub-samples that participate in all sessions), methods based on imputation and
corrections for the imprecision of the imputation, and “direct-likelihood” methods such as those used here.
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[2011a][2011b][2013]), there is surely some urgency to understand if randomization per se affects the

latent characteristics of subjects.

We find evidence of temporal stability for inferred risk attitudes under EUT when the model

fully corrects for endogenous sample selection and attrition bias. A joint test of the estimated mean

population coefficients for relative risk aversion and standard deviation coefficients for relative risk

aversion, across the two waves, allows us to demonstrate that the entire population distribution of

relative risk aversion is temporally stable. Furthermore, the estimated mean and estimated standard

deviation of the population relative risk aversion are each temporally stable. Finally, the correlation of

the population distribution of relative risk aversion is positive and statistically significant between

waves, consistent with temporal stability at the individual level.

We obtain similar aggregate results for temporal stability under RDU, but with one

difference. Again, EUT and RDU agree on the risk premium: all they do is decompose it differently.

Under RDU the risk premium depends on utility curvature and probability weighting. When we

consider the joint distribution of all parameters characterizing utility curvature and probability

weighting, we cannot reject the hypothesis of temporal stability. This is what one would expect from

the EUT results, since the two must agree in terms of the aggregate risk premium. But we find that

there is temporal stability of the mean of the utility curvature parameter and temporal instability of the

standard deviation of the utility curvature parameter. The parameter characterizing probability

weighting demonstrates temporal stability. We again observe correlations between parameters over

time, consistent with individual-level temporal stability.

These results are encouraging, in the sense that temporal stability allows policy-makers to

have some sense of confidence when designing policies that affect risky outcomes over time, such as

social insurance. But the results are particularly striking because we also find statistically significant evidence

of endogenous sample selection and attrition. One might find temporal stability without making a correction

for selection and attrition because the “raw data” is literally the same from wave to wave, or even

the inferred risk preferences are literally the same from wave to wave. We conclude that one must
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make that correction, and that it results in changes in the averages and standard deviations of risk

preference parameters: compare the top and bottom panels of Figure 1 under EUT and Figure 2 

under RDU, and the two sets of probability weights in each panel in Figure 3 under RDU. These

changes in risk preferences translates into economically significant changes in risk premia, as shown

in Figure 5. Although we find evidence consistent with temporal stability with no corrections for

selection and attrition, this is temporal stability with respect to biased estimates of risk preferences.

The effects of selection and attrition also accord with intuition. For example, we find a

positive and significant effect of the higher recruitment fee on the propensity to self-select into the

first wave of our experiment. And people who live farther away from the session venues are less

likely to participate, and people who live closer are more sensitive to a small increase in the distance.

Our results therefore show that randomization bias can have significant effects on inferences

about risk attitudes. Neglecting endogenous sample selection and attrition could lead one to draw

erroneous conclusions about risk attitudes at a point in time (e.g. the average Dane’s relative risk

aversion now), as well as stability in risk attitudes over time (e.g. whether the average Dane’s relative

risk aversion has changed over time). In fact, we find that neglecting selection and attrition leads to

the first type of erroneous conclusion but not, in general, to the second type of erroneous

conclusion. These results hold whether one uses an EUT or RDU characterization of risk attitudes,

although the way in which sample selection and attrition affects the analysis is different across the

two decision theories as well as alternative measures of temporal stability that one may consider.

These effects of randomization bias on risk attitudes are clear in our design because of the

exogenous variation in recruitment fees. We do not claim that our findings generalize beyond the

adult Danish population, the specific recruitment fees we employed, or the battery of lotteries we

employed. On the other hand, our sample is wide and representative of the adult Danish population,

and our recruitment fees and lottery parameters fall well within common practice in field

experiments. The constructive implication for future experimental design is to exogenously vary

show-up fees and evaluate the effects on a case-by-case basis. 

-35-



The need for corrections to mitigate randomization bias is “bad news” from our results,

because it requires renewed attention to ex ante sample design and/or ex post statistical corrections. It

also raises deep concerns with experimental designs that rely on randomization to infer causal

effects, and that only check for consistency of observables over time. However, the “good news” is

that even after making such corrections there are still many quantitative and qualitative aspects of

risk attitudes that remain temporally stable, at least for this population and the time frame evaluated

in our experiments.

Why is it that we observe such stability of risk preferences in Denmark, during a period in

which all major industrialized countries experienced various macroeconomic disruptions? One

hypothesis might be that the extensive social network of consumer protections in Denmark

mitigated the effect of changes in these “background risks” on the “foreground” risk aversion our

experiments measured. There is also evidence that Danes view the foreground risks of experiments

as distinct from their extra-experimental wealth (Andersen, Cox, Harrison, Lau, Rutström and

Sadiraj [2018]). The methodology we develop can be applied to different populations, to evaluate the

extent to which they exhibit the same temporal stability of risk preferences.
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Table 1: Sample Sizes and Descriptive Statistics

A. Sample Sizes

Recruitment Variable Wave 1 Wave 2 All

High Fixed Fee Invited 865 184 1049
Accepted 208 89 297
Percent Accept 24.1% 48.4% 28.3%

Low Fixed Fee Invited 1131 170 1301
Accepted 205 93 298
Percent Accept 18.1% 54.7% 22.9%

B. Descriptive Statistics for Participants

Variable Definition Mean Wave 1 Mean Wave 2

female Female 0.48 0.45
young Aged less than 30 0.16 0.13
middle Aged between 40 and 50 0.23 0.21
old Aged over 50 0.49 0.53
IncLow Lower level income 0.22 0.23
IncHigh Higher level income 0.47 0.45

Number of subjects 413 182

Notes: Most variables have self-evident definitions. The omitted age group is 30-39. Lower income is defined in variable
“IncLow” by a household income in 2008 below 300,000 kroner. Higher incomes are defined in variable “IncHigh” by a
household income of 500,000 kroner or more. 
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Table 2: Estimates of EUT Parameters 
with Full Controls for Sample Selection and Attrition

(Log-simulated likelihood = -11910 for 25,555 observations on 413 subjects and 1,583 rejecters in
wave 1 and 182 subjects and 172 rejecters in wave 2 using 100 Halton draws.)

Standard
Variable Estimate Error p-value 95% Confidence Interval

Selection equation: â1/%Var(un1)

female -0.086 0.064 0.176 -0.211  0.039
young  0.177 0.119 0.138 -0.057  0.440
middle  0.259 0.111 0.020  0.041  0.477
old  0.315 0.100 0.002  0.119  0.511
high_fee  0.165 0.065 0.011  0.038  0.292
dist -0.032 0.006 0.000 -0.044 -0.020
dist2  0.0005 0.0001 0.001  0.0002  0.0007
constant -0.853 0.106 0.000 -1.061 -0.644

Attrition equation: â2/%Var(un2)

female -0.132 0.116 0.256 -0.359  0.096
young -0.367 0.213 0.085 -0.785  0.051
middle -0.069 0.193 0.719 -0.448  0.309
old  0.042 0.172 0.807 -0.294  0.378
IncLow -0.240 0.157 0.126 -0.547  0.067
IncHigh -0.274 0.138 0.047 -0.545 -0.004
earnings  0.035 0.035 0.321 -0.034  0.104
constant  0.737 0.234 0.002  0.279  1.196

Mean of r parameter in wave 1

RAfirst  0.087 0.107 0.417 -0.123  0.298
RAhigh  0.088 0.037 0.017  0.016  0.160
constant  0.413 0.092 0.000  0.232  0.594

Mean of r parameter in wave 2

RAfirst -0.077 0.127 0.543 -0.327  0.172
RAhigh  0.059 0.052 0.260 -0.043  0.160
constant  0.594 0.150 0.000  0.300  0.887

-38-



Standard deviations and correlation coefficient of r parameters in wave 1 and wave 2

ór1  0.856 0.089 0.000  0.682  1.030
ór2  0.787 0.137 0.000  0.518  1.056
ñr1r2  0.360 0.099 0.000  0.166  0.554

Other correlation coefficients

ñs1s2 -0.340 0.125 0.006 -0.585 -0.096

ñs1r1  0.080 0.060 0.183 -0.038  0.199
ñs1r2 -0.288 0.117 0.014 -0.517 -0.059

ñs2r1 -0.133 0.103 0.195 -0.335  0.068
ñs2r2  0.665 0.067 0.000  0.534  0.796

Test for temporal stability of predicted group means for r parameter

ªBase   0.180 0.152 0.236 -0.118  0.478
ªRAhigh  0.151 0.144 0.294 -0.131  0.433
ªRAfirst  0.016 0.171 0.928 -0.320  0.352

Notes: Group means are predicted using the estimated mean function for r parameter. ªBase tests whether the between-
wave difference in constant is significant. ªRAhigh (ªRAfirst) tests whether the between-wave difference in constant +

RAhigh (RAfirst) is significant.     
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Table 3: Estimates of the RDU Parameters
with Full Controls for Sample Selection and Attrition

(Log-simulated likelihood = -10972 for for 25,555 observations on 413 subjects and 1,583 rejecters
in wave 1 and 182 subjects and 172 rejecters in wave 2 using 100 Halton draws.)

Standard
Variable Estimate Error p-value 95% Confidence Interval

Selection equation: â1/%Var(un1)

female -0.067 0.063 0.290 -0.191  0.057
young  0.144 0.113 0.202 -0.077  0.364
middle  0.279 0.108 0.010  0.066  0.491
old  0.399 0.098 0.000  0.207  0.591
high_fee  0.165 0.063 0.009  0.041  0.289
dist -0.031 0.006 0.000 -0.044 -0.018
dist2  0.0005 0.0001 0.001  0.0002  0.0007
constant -0.895 0.097 0.000 -1.085 -0.704

Attrition equation: â2/%Var(un2)

female -0.093 0.142 0.513 -0.371  0.185
young -0.445 0.239 0.063 -0.914  0.024
middle -0.110 0.247 0.657 -0.594  0.375
old -0.159 0.244 0.515 -0.638  0.320
IncLow -0.134 0.173 0.440 -0.473  0.206
IncHigh -0.177 0.178 0.320 -0.525  0.172
earnings  0.064 0.058 0.273 -0.050  0.177
constant  0.862 0.303 0.004  0.268  1.456

Mean of r parameter in wave 1

RAfirst  0.106 0.090 0.242 -0.071  0.283
RAhigh  0.050 0.045 0.271 -0.039  0.138
constant  0.574 0.095 0.000  0.389  0.760

Mean of r parameter in wave 2

RAfirst  0.018 0.104 0.864 -0.187  0.222
RAhigh -0.003 0.066 0.916 -0.132  0.125
constant  0.606 0.091 0.000  0.426  0.785

-41-



Standard deviations and correlation coefficient of r parameters in wave 1 and wave 2

ór1  0.955 0.113 0.000  0.733  1.176
ór2  0.763 0.102 0.000  0.564  0.962
ñr1r2  0.689 0.072 0.000  0.549  0.829

Mean of ö parameter in wave 1

RAfirst -0.337 0.197 0.086 -0.722  0.048
RAhigh -0.049 0.085 0.562 -0.216  0.118
constant  1.731 0.245 0.000  1.251  2.210

Mean of ö parameter in wave 2

RAfirst  0.519 0.332 0.119 -1.170  0.133
RAhigh  0.325 0.162 0.045 -0.642 -0.008
constant  2.272 0.438 0.000  1.414  3.130

Median of ö parameter in wave 1

RAfirst -0.165 0.097 0.088 -0.354  0.025
RAhigh -0.024 0.041 0.563 -0.106  0.058
constant  0.847 0.165 0.000  0.523  1.170

Median of ö parameter in wave 2

RAfirst  -0.219 0.125 0.081 -0.464  0.027
RAhigh  -0.137 0.062 0.027 -0.259 -0.015
constant   0.959 0.113 0.000  0.738  1.179

Standard deviations and correlation coefficient of ö parameters in wave 1 and wave 2

óö1  2.697 0.494 0.000  1.729  3.665
óö2  3.915 1.268 0.002  1.431  6.399
ñn1n2  0.662 0.159 0.000  0.351  0.973

Other correlation coefficients

ñs1s2 -0.416 0.162 0.010 -0.733 -0.098

ñs1r1  0.120 0.090 0.185 -0.057  0.297
ñs1r2  0.246 0.054 0.000  0.141  0.351

ñs1n1  0.402 0.042 0.000  0.319  0.485
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ñs1n2  0.252 0.057 0.000  0.140  0.364

ñs2r1 -0.277 0.130 0.034 -0.533 -0.022
ñs2r2 -0.114 0.171 0.505 -0.450  0.222

ñs2n1 -0.187 0.077 0.015 -0.337 -0.037
ñs2n2 -0.015 0.104 0.883 -0.219  0.188

ñr1n1 -0.104 0.086 0.228 -0.272  0.065
ñr1n2 -0.034 0.088 0.698 -0.206  0.138

ñr2n1  0.127 0.089 0.155 -0.048  0.303
ñr2n2 -0.002 0.091 0.982 -0.180  0.176

Test for temporal stability of predicted group means for r parameter

ªBase   0.031 0.109 0.775 -0.182  0.245
ªRAhigh  0.022 0.097 0.824 -0.212  0.169
ªRAfirst -0.057 0.103 0.582 -0.258  0.169

Test for temporal stability of predicted group means for ö parameter

ªBase  0.541 0.377 0.151 -0.197  1.280
ªRAhigh  0.266 0.306 0.385 -0.334  0.866
ªRAfirst  0.360 0.235 0.126 -0.102  0.821

Test for temporal stability of predicted group medians for ö parameter

ªBase  0.112 0.163 0.493 -0.208  0.432
ªRAhigh -0.001 0.156 0.995 -0.307  0.305
ªRAfirst  0.058 0.102 0.572 -0.143  0.258

Notes: Group means are predicted using the estimated mean function for each parameter. ªBase tests whether the
between-wave difference in constant is significant. ªRAhigh (ªRAfirst) tests whether the between-wave difference in

constant + RAhigh (RAfirst) is significant.     
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Appendix A: Instructions (WORKING PAPER)

We document the instructions for the risk aversion task that were given in hard copy to the
subjects and a typical screen shot of the decision task. The original Danish version of the manuscript
is available on request. The instructions were in 14-point font, printed on A4 paper, and handed out
in laminated form.

Task L

In this task you will make a number of choices between two options labeled “A” and “B”.
An example of your task is shown on the right. You will make all decisions on a computer.

All decisions have the same format. In the example on the right Option A pays 60 kroner if
the outcome of a roll of a ten-sided die is 1, and it pays 40 kroner if the outcome is 2-10. Option B
pays 90 kroner if the outcome of the roll of the die is 1 and 10 kroner if the outcome is 2-10. All
payments in this task are made today at the end of the experiment.

We will present you with 40 such decisions. The only difference between them is that the
probabilities and amounts in Option A and B will differ.

You have a 1-in-10 chance of being paid for one of these decisions. The selection is made
with a 10-sided die. If the roll of the die gives the number 1 you will be paid for one of the 40
decisions, but if the roll gives any other number you will not be paid. If you are paid for one of these
40 decisions, then we will further select one of these decisions by rolling a 4-sided and a 10-sided
die. A third die roll with a 10-sided die determines the payment for your choice of Option A or B.
When you make your choices you will not know which decision is selected for payment. You should
therefore treat each decision as if it might actually count for payment.

If you are being paid for one of the decisions, we will pay you according to your choice in
the selected decision. You will then receive the money at the end of the experiment. 

Before making your choices you will have a chance to practice so that you better understand
the consequences of your choices. Please proceed on the computer to the practice task. You will be
paid in caramels for this practice task. 
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Typical screen shot
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Appendix B: Exclusion Criteria and Experimental Design (WORKING PAPER)

We know of only two applications of the constructive approach to building exclusion
restrictions into the experimental design.54 Each example made an important methodological step by
operationalizing a controlled basis for inferring selection bias or attrition bias. Nevertheless, neither
example had access to information on non-participants that we have, nor considered the interaction
between sample selection and panel attrition as we do.

The first example is the Survey Supply Experiment, undertaken as a module of the Index of
Hospital Quality survey. Philipson [2001] analyzed data from this experiment, in which 23% of
potential participants were randomized to the treatment group that would receive 50 US dollars for
returning the survey questionnaire, whereas the control group faced no such incentive. The financial
incentive resulted in a higher response rate of 59.3% for the treatment group of 121 randomly
selected physicians, in comparison with a response rate of 50% for the control group of 298
physicians. The estimated mean income of the physicians in the sample became 50% larger after
correcting for selection bias. The missing information on non-participants, however, meant that the
effects of selection were identified by some strong ad hoc assumptions about the effects of the
financial incentive and survey response rates on the uncorrected mean income.55

The second example is the follow-up for the Longitudinal Movement to Opportunity
(MTO) field experiment, in which 30% of the sample was randomly assigned to more intensive
follow-up: see Orr et al. [2003; Exhibit B, §B1.3] and DiNardo, McCrary and Sanbonmatsu [2006].
This randomized follow-up was in addition to the primary randomization to treatment: (i) a housing
voucher with some strings attached and some counseling, (ii) a housing voucher with no strings
attached and no counseling, and (iii) a control group. This additional randomization to more
intensive follow-up had virtually no effect on results, however, since the effective response rates for
the long-term MTO follow-up were around 90% and similar across primary treatments
(Sanbonmatsu et al. [2011; p. 259]).56 

A key feature of the inferential problem considered in our experiment is that the “outcome
variable” of interest is a latent characteristic: risk aversion. The context is fundamentally different

54 One may find more examples when focussing on conceptual plans instead of actual applications.
For instance, in evaluating the serious effects of attrition on psychotherapy, Leon et al. [2006; p. 1004] noted
in passing that a “... very simple, yet overlooked, strategy for dealing with the inevitable problem of dropout
is to collect data that can help predict attrition.” What they had in mind, following Demirtas and Schafer
[2003], was to ask subjects how likely it was that they would show up again, but they also raised the possibility
of offsetting transportation or logistical costs (p. 1004), which is related to our design with differential
financial incentives for participation. 

55 Specifically, it was assumed that the uncorrected mean income was an increasing function of the
financial incentive (Philipson [2001, p. 1101]) and was linear in survey response rates (Philipson [2001, p.
1109]).

56 In many respects a similar methodological approach is employed by Behaghel, Crépon, Gurgand
and Le Barbanchon [2009]. They evaluate two independent surveys of virtually the same population of job
seekers in France: one survey involved a long telephone survey and had a 50% response rate, and the other
survey involved a short telephone survey, augmented by administrative data, and had a higher 80% response
rate. Using non-parametric methods from Horowitz and Manski [2000] and Lee [2009], they show that the
two surveys lead to dramatically different estimates of the effects of career counseling programs on job
search outcomes, arguing that the first survey suffers from severe selection bias.
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from the cases that Philipson [1997][2001] considered, initially in a thought experiment (Philipson
[1997, §3]) and later in an empirical analysis (Philipson [2001]), where one could use randomized
recruitment fees to remove selection bias from the estimated mean of an observable characteristic.
This also means that we cannot replace data from subjects exhibiting non-response with
administrative data, as many studies have done to assess the seriousness of sample selection and
attrition (e.g., Grasdal [2001], Behaghel et al. [2009] and Ludwig et al. [2013]). 

There is some evidence from clinical drug trials that persuading patients to participate in
randomized studies is much harder than persuading them to participate in non-randomized studies
(e..g., Kramer and Shapiro [1984; p.2742ff.]). The same problem applies to social experiments, as
evidenced by the difficulties that can be encountered when recruiting decentralized bureaucracies to
administer random treatments (e.g., Hotz [1992]). For example, Heckman and Robb [1985] note that
the refusal rate in one randomized job training program was over 90%. With the renewed popularity
of randomized control trials in social sciences, evaluation of the potential effects of “randomization
bias” is urgent.57 Our methods of controlling for endogenous sample selection and attrition have
broader applications to randomized control trials that consider causal effects of treatments on latent
variables of interest in economic policy, such as welfare effects (Harrison [2011a][2011b][2013]).
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Appendix C: Incorporating Observed Heterogeneity (WORKING PAPER)

We have estimated the population distributions of structural parameters to account for
interpersonal heterogeneity in risk preferences. An alternative way to capture preference
heterogeneity is to generalize representative agent models by allowing structural parameters to vary
with observed personal characteristics. This type of observed heterogeneity can be incorporated into
our analysis by conditioning the population mean of each parameter on the decision maker’s
characteristics, in the same manner as we have conditioned the mean of each parameter on the
treatment variables. 

To illustrate the approach, we replace the two treatment variables with a female dummy and
estimate models that focus on the overall male-female differences in risk preferences. Despite the
common assertion that women are more risk averse than men, the supporting evidence is not
ubiquitous and previous studies in Denmark do not find significant male-female differences in risk
attitudes (Harrison, Lau and Rutström [2007; p.361]). Figure C1 displays the estimated population
distributions of the r and ö parameters under the RDU model with correction for selection and
attrition biases. We observe that women are more risk averse than men with a significant male-
female difference in the mean of the r parameter in wave 1, and an insignificant difference in relative
risk aversion in wave 2. However, there is no significant male-female difference in either the mean
or the median of the ö parameter.58 We also draw different conclusions about temporal stability for
men and women in terms of relative risk aversion: there is a significant between-wave change in the
mean of the r parameter for women (p-value = 0.008) but an insignificant between-wave difference
for men (p-value = 0.900). There is no significant between-wave difference in the mean and median
of the ö parameter for both men and women, however, and the probability weighting function is
temporally stable for both representative agents. The hypotheses of no selection bias and no
attrition bias are rejected at the 1% level. Without correction for selection and attrition biases, our
conclusion on temporal stability in the r parameter would have been reversed; we would have found
that there is a significant between-wave change in the mean of the r parameter for men but not for
women (p-values of 0.006 and 0.673).59

58 The male-female difference in the mean of the r parameter is 0.527 (p-value < 0.001) in wave 1 and
0.280 (p-value = 0.063) in wave 2. The difference in the mean of the n parameter is -0.329 (p-value = 0.144)
in wave 1 and -0.260 (p-value = 0.581) in wave 2. Finally, the difference in the median of the n parameter is -
0.159 (p-value = 0.106) in wave 1 and -0.106 (p-value = 0.188) in wave 2. 

59 Table C2 in the present appendix reports detailed estimation results for the preceding discussion. 
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Table C1: Estimates of EUT Parameters with Male-Female Differences and
Full Controls for Sample Selection and Attrition

(Log-simulated likelihood = -11937 for 25,555 observations on 413 subjects and 1,583 rejecters in
wave 1 and 182 subjects and 172 rejecters in wave 2 using 100 Halton draws.)

Standard
Variable Estimate Error p-value 95% Confidence Interval

Selection equation: â1/%Var(un1)

female -0.076 0.067 0.259 -0.208  0.056
young  0.184 0.120 0.125 -0.051  0.418
middle  0.277 0.112 0.013  0.058  0.496
old  0.353 0.101 0.000  0.154  0.551
high_fee  0.174 0.066 0.008  0.045  0.304
dist -0.032 0.007 0.000 -0.045 -0.018
dist2  0.0005 0.0001 0.002  0.0002  0.0007
constant -0.881 0.107 0.000 -1.090 -0.671

Attrition equation: â2/%Var(un2)

female -0.179 0.146 0.221 -0.464  0.107
young -0.439 0.258 0.089 -0.944  0.067
middle -0.088 0.240 0.715 -0.558  0.382
old  0.043 0.229 0.850 -0.491  0.405
IncLow -0.154 0.187 0.408 -0.520  0.211
IncHigh -0.273 0.166 0.100 -0.599  0.053
earnings  0.059 0.051 0.248 -0.041  0.158
constant  0.781 0.393 0.047  0.011  1.552

Mean of r parameter in wave 1

female  0.358 0.127 0.005  0.109  0.606
constant  0.411 0.132 0.002  0.152  0.669

Mean of r parameter in wave 2

female  0.147 0.157 0.350 -0.161  0.455
constant  0.660 0.252 0.009  0.166  1.154
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Standard deviations and correlation coefficient of r parameters in wave 1 and wave 2

ór1  0.822 0.080 0.000  0.665  0.980
ór2  0.672 0.103 0.000  0.470  0.874
ñr1r2  0.493 0.090 0.000  0.317  0.669

Other correlation coefficients

ñs1s2 -0.315 0.271 0.246 -0.847  0.217

ñs1r1  0.012 0.115 0.920 -0.214  0.237
ñs1r2 -0.130 0.284 0.648 -0.687  0.427

ñs2r1 -0.181 0.100 0.072 -0.377  0.016
ñs2r2  0.117 0.154 0.447 -0.184  0.418

Test for temporal stability of predicted group means for r parameter

ªBase   0.250 0.238 0.293 -0.216  0.716
ªfemale  0.039 0.208 0.852 -0.370  0.448

Notes: Group means are predicted using the estimated mean function for r parameter. ªBase tests whether the between-
wave difference in constant is significant. ªfemale tests whether the between-wave difference in constant + female is
significant.
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Table C2: Estimates of the RDU Parameters with Male-Female Differences and
Full Controls for Sample Selection and Attrition

(Log-simulated likelihood = -10965 for for 25,555 observations on 413 subjects and 1,583 rejecters
in wave 1 and 182 subjects and 172 rejecters in wave 2 using 100 Halton draws.)

Standard
Variable Estimate Error p-value 95% Confidence Interval

Selection equation: â1/%Var(un1)

female -0.074 0.066 0.256 -0.203  0.054
young  0.097 0.112 0.389 -0.123  0.316
middle  0.264 0.107 0.014  0.054  0.474
old  0.398 0.097 0.000  0.207  0.589
high_fee  0.133 0.062 0.033  0.011  0.255
dist -0.032 0.006 0.000 -0.044 -0.019
dist2  0.0005 0.0001 0.000  0.0002  0.0007
constant -0.856 0.103 0.000 -1.058 -0.655

Attrition equation: â2/%Var(un2)

female -0.206 0.140 0.140 -0.481  0.068
young -0.146 0.217 0.500 -0.571  0.278
middle  0.006 0.195 0.974 -0.375  0.388
old -0.200 0.163 0.220 -0.521  0.120
IncLow -0.135 0.154 0.381 -0.437  0.167
IncHigh -0.096 0.142 0.499 -0.374  0.182
earnings  0.073 0.053 0.165 -0.030  0.176
constant  0.965 0.186 0.000  0.601  1.329

Mean of r parameter in wave 1

female  0.527 0.090 0.000  0.350  0.703
constant  0.441 0.059 0.000  0.325  0.556

Mean of r parameter in wave 2

female  0.280 0.150 0.063 -0.015  0.574
constant  0.456 0.112 0.000  0.237  0.675
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Standard deviations and correlation coefficient of r parameters in wave 1 and wave 2

ór1  0.907 0.089 0.000  0.733  1.080
ór2  0.912 0.120 0.000  0.677  1.147
ñr1r2  0.542 0.078 0.000  0.388  0.695

Mean of ö parameter in wave 1

female -0.329 0.226 0.144 -0.772  0.113
constant  1.972 0.365 0.000  1.257  2.687

Mean of ö parameter in wave 2

female -0.260 0.471 0.581 -1.184  0.664
constant  2.370 0.635 0.000  1.126  3.615

Median of ö parameter in wave 1

female -0.159 0.106 0.133 -0.367  0.049
constant  0.952 0.160 0.000  0.639  1.265

Median of ö parameter in wave 2

female  -0.106 0.188 0.571 -0.474  0.261
constant   0.968 0.175 0.000  0.625  1.311

Standard deviations and correlation coefficient of ö parameters in wave 1 and wave 2

óö1  3.276 0.807 0.000  1.694  4.859
óö2  5.010 2.296 0.029  0.510  9.510
ñn1n2  0.694 0.089 0.000  0.520  0.868

Other correlation coefficients

ñs1s2 -0.529 0.046 0.000 -0.619 -0.438

ñs1r1  0.077 0.027 0.005  0.024  0.131
ñs1r2  0.588 0.035 0.000  0.519  0.657

ñs1n1  0.327 0.045 0.000  0.238  0.415
ñs1n2  0.123 0.085 0.148 -0.044  0.289

ñs2r1 -0.239 0.041 0.000 -0.320 -0.157
ñs2r2 -0.830 0.047 0.000 -0.921 -0.738

ñs2n1 -0.193 0.072 0.008 -0.334 -0.051
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ñs2n2  0.077 0.091 0.400 -0.102  0.255

ñr1n1 -0.087 0.051 0.086 -0.187  0.012
ñr1n2 -0.005 0.080 0.955 -0.161  0.152

ñr2n1  0.219 0.075 0.004  0.072  0.367
ñr2n2 -0.023 0.101 0.818 -0.220  0.174

Test for temporal stability of predicted group means for r parameter

ªBase   0.016 0.125 0.900 -0.229  0.260
ªfemale  0.232 0.087 0.008 -0.402 -0.062

Test for temporal stability of predicted group means for ö parameter

ªBase  0.398 0.447 0.373 -0.477  1.273
ªfemale  0.467 0.442 0.290 -0.399  1.333

Test for temporal stability of predicted group medians for ö parameter

ªBase  0.016 0.140 0.909 -0.258  0.290
ªfemale -0.069 0.173 0.691 -0.270  0.408

Notes: Group means are predicted using the estimated mean function for each parameter. ªBase tests whether the
between-wave difference in constant is significant. ªfemale tests whether the between-wave difference in constant +
female is significant. 
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Appendix D: Additional Estimations with Contextual Utility (WORKING PAPER)

Table D1: Estimates of EUT Parameters 
with No Controls for Sample Selection and Attrition

(Log-simulated likelihood = -10675 for for 25,555 observations on 413 subjects in wave 1 and 182
subjects in wave 2 using 100 Halton draws.)

Standard
Variable Estimate Error p-value 95% Confidence Interval

Mean of r parameter in wave 1

RAfirst  0.093 0.099 0.349 -0.102  0.288
RAhigh  0.089 0.037 0.016  0.017  0.160
constant  0.491 0.080 0.000  0.334  0.648

Mean of r parameter in wave 2

RAfirst  0.041 0.127 0.745 -0.208  0.291
RAhigh  0.057 0.052 0.273 -0.045  0.159
constant  0.622 0.109 0.000  0.407  0.836

Standard deviations and correlation coefficient of r parameters in wave 1 and wave 2

ór1  0.831 0.082 0.000  0.671  0.991
ór2  0.701 0.090 0.000  0.525  0.877
ñr1r2  0.537 0.109 0.000  0.324  0.750

Test for stability of predicted group means for r parameter

ÎBase   0.131 0.103 0.203 -0.071  0.332
ªRAhigh  0.099 0.097 0.309 -0.092  0.290
ªRAfirst  0.079 0.093 0.394 -0.103  0.261

Notes: Group means are predicted using the estimated mean function for r parameter. ªBase tests whether the between-
wave difference in constant is significant. ªRAhigh (ªRAfirst) tests whether the between-wave difference in constant +
RAhigh (constant + RAfirst) is significant.     
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Table D2: Estimates of the RDU Parameters
with No Controls for Sample Selection and Attrition

(Log-simulated likelihood = -9745 for for 25,555 observations on 413 subjects in wave 1 and 182
subjects in wave 2 using 100 Halton draws.)

Standard
Variable Estimate Error p-value 95% Confidence Interval

Mean of r parameter in wave 1

RAfirst  0.151 0.173 0.382 -0.188  0.491
RAhigh  0.046 0.048 0.335 -0.047  0.139
constant  0.605 0.103 0.000  0.403  0.808

Mean of r parameter in wave 2

RAfirst  0.006 0.147 0.967 -0.282  0.295
RAhigh  0.002 0.064 0.970 -0.123  0.128
constant  0.839 0.101 0.000  0.641  1.038

Standard deviations and correlation coefficient of r parameters in wave 1 and wave 2

ór1  0.920 0.121 0.000  0.684  1.157
ór2  0.736 0.133 0.000  0.475  0.997
ñr1r2  0.533 0.106 0.000  0.326  0.741

Mean of ö parameter in wave 1

RAfirst -0.429 0.530 0.418 -1.468  0.610
RAhigh -0.179 0.171 0.295 -0.513  0.156
constant  3.293 0.467 0.000  2.377  4.209

Mean of ö parameter in wave 2

RAfirst -0.179 0.744 0.810 -1.626  1.279
RAhigh -0.495 0.235 0.035 -0.955 -0.035
constant  3.505 0.869 0.000  1.803  5.207

Median of ö parameter in wave 1

RAfirst -0.236 0.295 0.424 -0.815  0.343
RAhigh -0.098 0.093 0.293 -0.282  0.085
constant  1.813 0.253 0.000  1.317  2.308
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Median of ö parameter in wave 2

RAfirst -0.082 0.334 0.807 -0.737  0.574
RAhigh -0.227 0.094 0.015 -0.410 -0.043
constant  1.606 0.220 0.000  1.175  2.037

Standard deviations and correlation coefficient of ö parameters in wave 1 and wave 2

ón1  4.495 0.879 0.000  2.771  6.218
ón2  6.121 2.151 0.004  1.905             10.336
ñn1n2   0.728 0.089 0.000  0.554  0.901

Other correlation coefficients

ñr1n1 -0.038 0.099 0.705 -0.232  0.157
ñr1n2  0.112 0.068 0.100 -0.022  0.246

ñr2n1  0.145 0.103 0.158 -0.056  0.347
ñr2n2  0.043 0.072 0.551 -0.099  0.185

Test for stability of predicted group means for r parameter

ÎBase   0.243 0.112 0.036  0.016  0.453
ÎRAhigh  0.191 0.097 0.050 -0.000  0.382
ÎRAfirst  0.089 0.107 0.405 -0.121  0.299

Test for stability of predicted group means for ö parameter

ÎBase   0.212 0.701 0.762 -1.161  1.585
ÎRAhigh -0.104 0.592 0.860 -1.264  1.005
ÎRAfirst  0.463 0.443 0.297 -0.406  1.331

Test for stability of predicted group medians for ö parameter

ÎBase  -0.207 0.238 0.385 -0.673  0.259
ÎRAhigh -0.335 0.210 0.110 -0.746  0.076
ÎRAfirst -0.052 0.184 0.775 -0.412  0.307

Notes: Group means are predicted using the estimated mean function for each parameter. ªBase tests whether the
between-wave difference in constant is significant. ªRAhigh (ªRAfirst) tests whether the between-wave difference in
constant + RAhigh (constant + RAfirst) is significant.
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Table D3: Estimates of EUT Parameters with Unrestricted Effects of 
Participation Fee and Full Controls for Sample Selection and Attrition

(Log-simulated likelihood = -11905 for 25,555 observations on 413 subjects and 1,583 rejecters in
wave 1 and 182 subjects and 172 rejecters in wave 2 using 100 Halton draws.)

Standard
Variable Estimate Error p-value 95% Confidence Interval

Selection equation: â1/%Var(un1)

female -0.078 0.072 0.275 -0.219  0.062
young  0.178 0.120 0.136 -0.056  0.413
middle  0.292 0.113 0.010  0.070  0.514
old  0.344 0.111 0.002  0.128  0.561
high_fee  0.167 0.065 0.010  0.039  0.294
dist -0.033 0.006 0.000 -0.045 -0.021
dist2  0.0005 0.0001 0.001  0.0002  0.0008
constant -0.878 0.116 0.000 -1.105 -0.652

Attrition equation: â2/%Var(un2)

female -0.179 0.125 0.151 -0.423  0.065
young -0.384 0.238 0.106 -0.851  0.082
middle -0.092 0.212 0.665 -0.509  0.324
old -0.016 0.197 0.936 -0.401  0.369
IncLow -0.265 0.166 0.110 -0.589  0.060
IncHigh -0.299 0.146 0.041 -0.586 -0.012
earnings  0.029 0.037 0.435 -0.043  0.101
high_fee -0.168 0.145 0.247 -0.451  0.116
constant  0.672 0.378 0.075 -0.068  1.413

Mean of r parameter in wave 1

RAfirst  0.104 0.178 0.558 -0.245  0.454
RAhigh  0.088 0.036 0.016  0.016  0.159
high_fee  0.209 0.154 0.173 -0.092  0.510
constant  0.344 0.208 0.099 -0.064  0.752

Mean of r parameter in wave 2

RAfirst  0.130 0.223 0.559 -0.308  0.568
RAhigh  0.060 0.051 0.246 -0.041  0.160
high_fee  0.139 0.183 0.447 -0.219  0.497
constant  0.184 0.508 0.718 -0.813  1.180
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Standard deviations and correlation coefficient of r parameters in wave 1 and wave 2

ór1  0.831 0.083 0.000  0.668  0.994
ór2  0.739 0.090 0.000  0.563  0.916
ñr1r2  0.455 0.167 0.006  0.129  0.782

Other correlation coefficients

ñs1s2 -0.153 0.219 0.484 -0.583  0.276

ñs1r1  0.059 0.092 0.524 -0.122  0.239
ñs1r2 -0.020 0.339 0.954 -0.685  0.645

ñs2r1 -0.019 0.128 0.881 -0.270  0.232
ñs2r2  0.618 0.072 0.000  0.476  0.760

Test for temporal stability of predicted group means for r parameter

ªBase  -0.160 0.462 0.729 -1.066  0.746
ªRAhigh -0.188 0.467 0.687 -1.102  0.727
ªRAfirst -0.134 0.401 0.738 -0.919  0.652
ªhigh_fee -0.230 0.574 0.689 -1.356  0.896

Notes: Group means are predicted using the estimated mean function for r parameter. ªBase tests whether the between-
wave difference in constant is significant. ªRAhigh, ªRAfirst, and ªhigh_fee test whether the between-wave differences
in constant + RAhigh, constant + RAfirst and  constant + high_fee are significant, respectively.
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Table D4: Estimates of the RDU Parameters with Unrestricted Effects of 
Participation Fee and Full Controls for Sample Selection and Attrition

(Log-simulated likelihood = -10956 for for 25,555 observations on 413 subjects and 1,583 rejecters
in wave 1 and 182 subjects and 172 rejecters in wave 2 using 100 Halton draws.)

Standard
Variable Estimate Error p-value 95% Confidence Interval

Selection equation: â1/%Var(un1)

female -0.084 0.062 0.174 -0.206  0.037
young  0.125 0.111 0.262 -0.093  0.343
middle  0.248 0.106 0.019  0.040  0.455
old  0.385 0.097 0.000  0.196  0.574
high_fee  0.171 0.066 0.010  0.041  0.301
dist -0.030 0.006 0.000 -0.043 -0.018
dist2  0.0005 0.0001 0.000  0.0002  0.0007
constant -0.888 0.101 0.000 -1.086 -0.690

Attrition equation: â2/%Var(un2)

female -0.129 0.139 0.352 -0.401  0.143
young -0.179 0.226 0.429 -0.623  0.264
middle -0.012 0.209 0.955 -0.398  0.421
old -0.254 0.175 0.146 -0.597  0.088
IncLow -0.109 0.160 0.496 -0.422  0.204
IncHigh -0.073 0.136 0.588 -0.339  0.192
earnings  0.041 0.047 0.382 -0.051  0.132
high_fee -0.068 0.127 0.592 -0.316  0.180
constant  0.890 0.228 0.000  0.443  1.337

Mean of r parameter in wave 1

RAfirst  0.084 0.122 0.489 -0.154  0.323
RAhigh  0.048 0.048 0.319 -0.047  0.143
high_fee  0.284 0.217 0.191 -0.142  0.709
constant  0.398 0.182 0.029  0.041  0.755

Mean of r parameter in wave 2

RAfirst -0.161 0.151 0.287 -0.457  0.135
RAhigh -0.009 0.067 0.890 -0.140  0.121
high_fee  0.199 0.171 0.246 -0.137  0.534
constant  0.613 0.119 0.000  0.380  0.845
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Standard deviations and correlation coefficient of r parameters in wave 1 and wave 2

ór1  0.888 0.095 0.000  0.701  1.075
ór2  0.865 0.182 0.000  0.509  1.221
ñr1r2  0.485 0.072 0.000  0.344  0.625

Mean of ö parameter in wave 1

RAfirst -0.040 0.274 0.883 -0.577  0.496
RAhigh -0.073 0.093 0.433 -0.254  0.109
high_fee -0.001 0.244 0.997 -0.479  0.477
constant  1.687 0.330 0.000  1.041  2.333

Mean of ö parameter in wave 2

RAfirst  0.234 0.334 0.484 -0.420  0.888
RAhigh -0.251 0.121 0.038 -0.487 -0.014
high_fee -0.402 0.383 0.295 -0.349  1.152
constant  1.735 0.330 0.000  1.088  2.382

Median of ö parameter in wave 1

RAfirst -0.019 0.126 0.882 -0.266  0.229
RAhigh -0.034 0.043 0.434 -0.118  0.051
high_fee -0.0004 0.113 0.997 -0.222  0.221
constant  0.781 0.144 0.000  0.499  1.062

Median of ö parameter in wave 2

RAfirst  0.096 0.140 0.492 -0.179  0.371
RAhigh -0.103 0.048 0.031 -0.197 -0.010
high_fee  0.166 0.145 0.252 -0.118  0.449
constant  0.716 0.153 0.000  0.417  1.015

Standard deviations and correlation coefficient of ö parameters in wave 1 and wave 2

óö1  3.118 0.753 0.000  1.643  4.594
óö2  4.220 1.366 0.002  1.542  6.898
ñn1n2  0.697 0.095 0.000  0.510  0.883

Other correlation coefficients

ñs1s2 -0.453 0.101 0.000 -0.650 -0.255

ñs1r1  0.187 0.083 0.024 -0.025  0.349
ñs1r2  0.600 0.034 0.000  0.533  0.666
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ñs1n1  0.333 0.043 0.000  0.248  0.418
ñs1n2  0.167 0.035 0.000  0.099  0.236

ñs2r1 -0.063 0.086 0.465 -0.233  0.106
ñs2r2 -0.753 0.087 0.000 -0.923 -0.583

ñs2n1 -0.276 0.062 0.000 -0.397 -0.154
ñs2n2 -0.073 0.055 0.181 -0.181  0.034

ñr1n1 -0.003 0.076 0.965 -0.152  0.146
ñr1n2  0.094 0.054 0.081 -0.012  0.199

ñr2n1  0.318 0.042 0.000  0.235  0.401
ñr2n2  0.147 0.045 0.001  0.060  0.235

Test for temporal stability of predicted group means for r parameter

ªBase   0.214 0.147 0.145 -0.074  0.503
ªRAhigh  0.157 0.130 0.227 -0.098  0.412
ªRAfirst -0.030 0.126 0.809 -0.278  0.217
ªhigh_fee  0.129 0.118 0.272 -0.102  0.360

Test for temporal stability of predicted group means for ö parameter

ªBase  0.048 0.305 0.875 -0.550  0.646
ªRAhigh -0.130 0.268 0.628 -0.655  0.395
ªRAfirst  0.322 0.303 0.287 -0.271  0.916
ªhigh_fee  0.451 0.372 0.226 -0.279  1.180

Test for temporal stability of predicted group medians for ö parameter

ªBase -0.065 0.156 0.679 -0.371  0.242
ªRAhigh  0.050 0.165 0.760 -0.273  0.374
ªRAfirst -0.134 0.146 0.358 -0.421  0.152
ªhigh_fee  0.101 0.132 0.443 -0.157  0.360

Notes: Group means (medians) are predicted using the estimated mean (median) function for each parameter. ªBase tests
whether the between-wave difference in constant is significant. ªRAhigh, ªRAfirst, and ªhigh_fee test whether the
between-wave differences in constant + RAhigh, constant + RAfirst and  constant + high_fee are significant,
respectively.     
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Table D5: Estimates of EUT Parameters with Controls for Attrition Only
(Log-simulated likelihood = -10907 for 23,972 observations on 413 subjects in wave 1 and 182

subjects and 172 rejecters in wave 2 using 100 Halton draws.)

Standard
Variable Estimate Error p-value 95% Confidence Interval

Attrition equation: â2/%Var(un2)

female -0.122 0.125 0.324 -0.367  0.121
young -0.387 0.236 0.102 -0.850  0.076
middle -0.107 0.218 0.624 -0.533  0.320
old -0.048 0.192 0.804 -0.329  0.424
IncLow -0.213 0.166 0.200 -0.539  0.113
IncHigh -0.288 0.144 0.045 -0.570 -0.006
earnings  0.034 0.036 0.347 -0.037  0.106
constant  0.328 0.206 0.112 -0.076  0.733

Mean of r parameter in wave 1

RAfirst  0.060 0.116 0.605 -0.167  0.286
RAhigh  0.086 0.036 0.018  0.015  0.157
constant  0.532 0.077 0.000  0.382  0.682

Mean of r parameter in wave 2

RAfirst -0.042 0.125 0.734 -0.287  0.203
RAhigh  0.056 0.052 0.282 -0.046  0.157
constant  0.381 0.079 0.000 -0.227  0.535

Standard deviations and correlation coefficient of r parameters in wave 1 and wave 2

ór1  0.799 0.078 0.000  0.645  0.952
ór2  0.740 0.086 0.000  0.572  0.908
ñr1r2  0.379 0.151 0.012  0.083  0.675

Other correlation coefficients

ñs2r1 -0.165 0.134 0.218 -0.427  0.097
ñs2r2  0.572 0.028 0.000  0.517  0.627

Test for temporal stability of predicted group means for r parameter

ªBase  -0.151 0.093 0.102 -0.333  0.030
ªRAhigh -0.182 0.079 0.022 -0.337 -0.027
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ªRAfirst -0.253 0.100 0.011 -0.449 -0.058

Notes: Group means are predicted using the estimated mean function for r parameter. ªBase tests whether the between-
wave difference in constant is significant. ªRAhigh, ªRAfirst, and ªhigh_fee test whether the between-wave differences
in constant + RAhigh, constant + RAfirst and  constant + high_fee are significant, respectively.
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Table D6: Estimates of the RDU Parameters with Controls for Attrition Only
(Log-simulated likelihood = -9991 for for 23,972 observations on 413 subjects in wave 1 and 182

subjects and 172 rejecters in wave 2 using 100 Halton draws.)

Standard
Variable Estimate Error p-value 95% Confidence Interval

Attrition equation: â2/%Var(un2)

female -0.070 0.136 0.604 -0.336  0.195
young -0.477 0.253 0.060 -0.974  0.020
middle -0.072 0.238 0.763 -0.538  0.394
old -0.117 0.211 0.578 -0.530  0.296
IncLow -0.076 0.192 0.695 -0.453  0.302
IncHigh -0.270 0.178 0.130 -0.619  0.080
earnings  0.064 0.046 0.170 -0.027  0.155
constant  0.366 0.225 0.104 -0.075  0.807

Mean of r parameter in wave 1

RAfirst  0.146 0.152 0.339 -0.153  0.444
RAhigh  0.050 0.047 0.286 -0.042  0.141
constant  0.618 0.141 0.000  0.342  0.894

Mean of r parameter in wave 2

RAfirst -0.107 0.313 0.732 -0.720  0.505
RAhigh  0.003 0.068 0.963 -0.130  0.137
constant  0.820 0.287 0.004  0.257  1.382
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Standard deviations and correlation coefficient of r parameters in wave 1 and wave 2

ór1  0.898 0.099 0.000  0.704  1.092
ór2  0.672 0.136 0.000  0.406  0.939
ñr1r2  0.366 0.150 0.015  0.072  0.661

Mean of ö parameter in wave 1

RAfirst -0.674 1.281 0.599 -3.185  1.837
RAhigh -0.159 0.176 0.367 -0.505  0.186
constant  3.503 1.135 0.002  1.279  5.728

Mean of ö parameter in wave 2

RAfirst -0.254 1.747 0.884 -3.677  3.169
RAhigh -0.426 0.241 0.077 -0.900  0.047
constant  3.157 1.350 0.019  0.512  5.802

Median of ö parameter in wave 1

RAfirst -0.361 0.685 0.598 -1.704  0.982
RAhigh -0.085 0.094 0.364 -0.269  0.099
constant  1.877 0.587 0.001  0.727  3.028

Median of ö parameter in wave 2

RAfirst -0.121 0.828 0.884 -1.743  1.502
RAhigh -0.203 0.107 0.059 -0.412  0.007
constant  1.500 0.592 0.011  0.340  2.660

Standard deviations and correlation coefficient of ö parameters in wave 1 and wave 2

óö1  4.790 1.114 0.000  2.608  6.973
óö2  5.191 1.591 0.001  2.073  8.309
ñn1n2  0.780 0.119 0.000  0.546  1.013

Other correlation coefficients

ñs2r1 -0.030 0.098 0.760 -0.222  0.162
ñs2r2  0.227 0.187 0.223 -0.139  0.593

ñs2n1 -0.054 0.167 0.744 -0.383  0.272
ñs2n2  0.018 0.103 0.861 -0.184  0.220

ñr1n1 -0.034 0.049 0.487 -0.131  0.062
ñr1n2  0.131 0.054 0.014 -0.026  0.236
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ñr2n1  0.132 0.131 0.313 -0.125  0.390
ñr2n2  0.011 0.166 0.945 -0.313  0.336

Test for temporal stability of predicted group means for r parameter

ªBase   0.202 0.376 0.592 -0.535  0.938
ªRAhigh  0.155 0.383 0.686 -0.596  0.906
ªRAfirst -0.052 0.115 0.655 -0.278  0.174

Test for temporal stability of predicted group means for ö parameter

ªBase -0.346 0.642 0.590 -1.604  0.912
ªRAhigh  0.613 0.540 0.256 -1.673  0.446
ªRAfirst  0.073 0.529 0.890 -0.963  1.110

Test for temporal stability of predicted group medians for ö parameter

ªBase -0.377 0.246 0.125 -0.860  0.105
ªRAhigh -0.495 0.229 0.031 -0.943 -0.047
ªRAfirst -0.137 0.239 0.565 -0.605  0.330

Notes: Group means (medians) are predicted using the estimated mean (median) function for each parameter. ªBase tests
whether the between-wave difference in constant is significant. ªRAhigh, ªRAfirst, and ªhigh_fee test whether the
between-wave differences in constant + RAhigh, constant + RAfirst and  constant + high_fee are significant,
respectively.     
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Appendix E: Additional Estimations with Fechner Error Term (WORKING PAPER)

Table E1: Estimates of EUT Parameters with Fechner Error Specification
and Full Controls for Sample Selection and Attrition

(Log-simulated likelihood = -10794 for 25,555 observations on 413 subjects and 1,583 rejecters in
wave 1 and 182 subjects and 172 rejecters in wave 2 using 100 Halton draws.)

Standard
Variable Estimate Error p-value 95% Confidence Interval

Selection equation: â1/%Var(un1)

female -0.095 0.063 0.135 -0.219  0.030
young  0.197 0.119 0.097 -0.036  0.430
middle  0.264 0.109 0.016  0.050  0.479
old  0.328 0.098 0.001  0.136  0.521
high_fee  0.167 0.068 0.015  0.033  0.301
dist -0.031 0.007 0.000 -0.044 -0.017
dist2  0.0004 0.0001 0.004  0.0001  0.0007
constant -0.862 0.106 0.000 -1.070 -0.655

Attrition equation: â2/%Var(un2)

female -0.122 0.119 0.304 -0.356  0.111
young -0.420 0.212 0.048 -0.836  0.004
middle -0.067 0.188 0.722 -0.435  0.301
old  0.014 0.169 0.932 -0.317  0.346
IncLow -0.179 0.156 0.250 -0.484  0.126
IncHigh -0.289 0.132 0.029 -0.548 -0.029
earnings  0.027 0.035 0.443 -0.041  0.094
constant  0.824 0.256 0.001  0.323  1.325

Mean of r parameter in wave 1

RAfirst  0.111 0.183 0.187 -0.054  0.274
RAhigh  0.066 0.025 0.008  0.018  0.115
constant  0.406 0.076 0.000  0.257  0.556

Mean of r parameter in wave 2

RAfirst  0.042 0.093 0.652 -0.140  0.223
RAhigh  0.045 0.035 0.198 -0.024  0.114
constant  0.603 0.144 0.000  0.321  0.885
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Standard deviations and correlation coefficient of r parameters in wave 1 and wave 2

ór1  0.714 0.061 0.000  0.594  0.834
ór2  0.651 0.068 0.000  0.518  0.784
ñr1r2  0.445 0.095 0.000  0.258  0.632

Other correlation coefficients

ñs1s2 -0.387 0.145 0.008 -0.672 -0.102

ñs1r1  0.048 0.044 0.267 -0.037  0.134
ñs1r2 -0.409 0.132 0.002 -0.668 -0.150

ñs2r1 -0.100 0.052 0.056 -0.203  0.003
ñs2r2  0.670 0.070 0.000  0.521  0.819

Test for temporal stability of predicted group means for r parameter

ªBase   0.196 0.195 0.313 -0.185  0.578
ªRAhigh  0.175 0.188 0.352 -0.194  0.544
ªRAfirst  0.128 0.224 0.568 -0.311  0.567

Notes: Group means are predicted using the estimated mean function for r parameter. ªBase tests whether the between-
wave difference in constant is significant. ªRAhigh (ªRAfirst) tests whether the between-wave difference in constant +

RAhigh (RAfirst) is significant.     
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Table E2: Estimates of the RDU Parameters with Fechner Error Specification
and Full Controls for Sample Selection and Attrition

(Log-simulated likelihood = -9728 for for 25,555 observations on 413 subjects and 1,583 rejecters in
wave 1 and 182 subjects and 172 rejecters in wave 2 using 100 Halton draws.)

Standard
Variable Estimate Error p-value 95% Confidence Interval

Selection equation: â1/%Var(un1)

female -0.037 0.063 0.554 -0.161  0.086
young  0.097 0.115 0.398 -0.129  0.324
middle  0.247 0.109 0.023  0.034  0.459
old  0.348 0.100 0.000  0.152  0.544
high_fee  0.169 0.064 0.008  0.044  0.293
dist -0.031 0.006 0.000 -0.043 -0.019
dist2  0.0005 0.0001 0.000  0.0002  0.0008
constant -0.847 0.103 0.000 -1.049 -0.646

Attrition equation: â2/%Var(un2)

female -0.230 0.130 0.078 -0.485  0.026
young -0.461 0.264 0.080 -0.977  0.056
middle -0.156 0.231 0.499 -0.610  0.297
old -0.106 0.209 0.610 -0.515  0.306
IncLow -0.220 0.180 0.222 -0.573  0.133
IncHigh -0.230 0.160 0.151 -0.544  0.084
earnings  0.062 0.039 0.114 -0.015  0.139
constant  0.592 0.249 0.017  0.104  1.080

Mean of r parameter in wave 1

RAfirst  0.173 0.120 0.148 -0.062  0.408
RAhigh  0.058 0.034 0.090 -0.009  0.125
constant  0.456 0.112 0.000  0.236  0.676

Mean of r parameter in wave 2

RAfirst -0.032 0.073 0.660 -0.174  0.110
RAhigh -0.032 0.044 0.463 -0.054  0.119
constant  0.478 0.100 0.000  0.282  0.674
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Standard deviations and correlation coefficient of r parameters in wave 1 and wave 2

ór1  0.650 0.058 0.000  0.536  0.764
ór2  0.561 0.043 0.000  0.477  0.645
ñr1r2  0.616 0.053 0.000  0.511  0.720

Mean of ö parameter in wave 1

RAfirst  0.162 0.190 0.396 -0.212  0.535
RAhigh  0.076 0.068 0.263 -0.057  0.210
constant  1.117 0.172 0.000  0.779  1.455

Mean of ö parameter in wave 2

RAfirst -0.025 0.249 0.922 -0.513  0.464
RAhigh  0.029 0.113 0.796 -0.192  0.250
constant  1.574 0.291 0.000  1.003  2.145

Median of ö parameter in wave 1

RAfirst  0.069 0.082 0.395 -0.091  0.229
RAhigh  0.033 0.029 0.252 -0.023  0.089
constant  0.480 0.079 0.000  0.325  0.634

Median of ö parameter in wave 2

RAfirst -0.008 0.083 0.922 -0.171  0.155
RAhigh  0.010 0.038 0.796 -0.064  0.083
constant  0.525 0.095 0.000  0.339  0.711

Standard deviations and correlation coefficient of ö parameters in wave 1 and wave 2

óö1  2.618 0.570 0.000  1.500  3.737
óö2  4.452 0.982 0.000  2.526  6.377
ñn1n2  0.551 0.082 0.000  0.389  0.713

Other correlation coefficients

ñs1s2 -0.127 0.123 0.304 -0.368  0.115

ñs1r1  0.004 0.105 0.968 -0.202  0.210
ñs1r2  0.223 0.056 0.000  0.114  0.332

ñs1n1  0.264 0.028 0.000  0.210  0.318
ñs1n2  0.054 0.028 0.053 -0.001  0.108
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ñs2r1  0.163 0.047 0.001  0.070  0.256
ñs2r2  0.232 0.083 0.005  0.069  0.394

ñs2n1 -0.137 0.064 0.033 -0.262 -0.011
ñs2n2  0.067 0.030 0.026  0.008  0.127

ñr1n1  0.258 0.039 0.000  0.181  0.334
ñr1n2  0.176 0.029 0.000  0.120  0.233

ñr2n1  0.358 0.043 0.000  0.274  0.441
ñr2n2  0.265 0.027 0.000  0.213  0.318

Test for temporal stability of predicted group means for r parameter

ªBase   0.022 0.160 0.889 -0.292  0.337
ªRAhigh  0.003 0.147 0.983 -0.290  0.284
ªRAfirst -0.183 0.109 0.093 -0.396  0.031

Test for temporal stability of predicted group means for ö parameter

ªBase  0.457 0.296 0.089 -0.070  0.985
ªRAhigh  0.410 0.251 0.102 -0.081  0.901
ªRAfirst  0.271 0.192 0.157 -0.104  0.647

Test for temporal stability of predicted group medians for ö parameter

ªBase  0.046 0.110 0.678 -0.170  0.261
ªRAhigh  0.023 0.103 0.827 -0.179  0.225
ªRAfirst -0.032 0.077 0.678 -0.183  0.119

Notes: Group means are predicted using the estimated mean function for each parameter. ªBase tests whether the
between-wave difference in constant is significant. ªRAhigh (ªRAfirst) tests whether the between-wave difference in

constant + RAhigh (RAfirst) is significant.     

-A30-



Table E3: Estimates of EUT Parameters with Fechner Error Specification
and No Controls for Sample Selection and Attrition

(Log-simulated likelihood = -9556 for for 25,555 observations on 413 subjects in wave 1 and 182
subjects in wave 2 using 100 Halton draws.)

Standard
Variable Estimate Error p-value 95% Confidence Interval

Mean of r parameter in wave 1

RAfirst -0.014 0.066 0.829 -0.143  0.115
RAhigh  0.066 0.025 0.009  0.017  0.115
constant  0.537 0.058 0.000  0.424  0.650

Mean of r parameter in wave 2

RAfirst -0.101 0.128 0.428 -0.352  0.149
RAhigh  0.047 0.035 0.185 -0.022  0.116
constant  0.660 0.152 0.000  0.362  0.957

Standard deviations and correlation coefficient of r parameters in wave 1 and wave 2

ór1  0.698 0.056 0.000  0.587  0.808
ór2  0.549 0.049 0.000  0.453  0.646
ñr1r2  0.575 0.079 0.000  0.419  0.730

Test for stability of predicted group means for r parameter

ÎBase   0.128 0.126 0.331 -0.125  0.370
ªRAhigh  0.104 0.123 0.396 -0.136  0.345
ªRAfirst  0.036 0.058 0.542 -0.079  0.150

Notes: Group means are predicted using the estimated mean function for r parameter. ªBase tests whether the between-
wave difference in constant is significant. ªRAhigh (ªRAfirst) tests whether the between-wave difference in constant +
RAhigh (constant + RAfirst) is significant.     
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Table E4: Estimates of the RDU Parameters with Fechner Error Specification
and No Controls for Sample Selection and Attrition

(Log-simulated likelihood = -8490 for for 25,555 observations on 413 subjects in wave 1 and 182
subjects in wave 2 using 100 Halton draws.)

Standard
Variable Estimate Error p-value 95% Confidence Interval

Mean of r parameter in wave 1

RAfirst  0.065 0.055 0.233 -0.042  0.173
RAhigh  0.055 0.034 0.105 -0.012  0.122
constant  0.553 0.049 0.000  0.457  0.648

Mean of r parameter in wave 2

RAfirst -0.054 0.059 0.356 -0.170  0.061
RAhigh  0.035 0.045 0.446 -0.054  0.123
constant  0.698 0.054 0.000  0.591  0.804

Standard deviations and correlation coefficient of r parameters in wave 1 and wave 2

ór1  0.603 0.042 0.000  0.521  0.684
ór2  0.567 0.045 0.000  0.479  0.655
ñr1r2  0.562 0.035 0.000  0.492  0.631

Mean of ö parameter in wave 1

RAfirst  0.424 0.268 0.114 -0.101  0.949
RAhigh  0.130 0.141 0.356 -0.146  0.407
constant  2.401 0.288 0.000  1.837  2.965

Mean of ö parameter in wave 2

RAfirst  1.417 0.804 0.078 -0.158  2.992
RAhigh  0.119 0.315 0.707 -0.499  0.736
constant  4.150 0.825 0.000  2.533  5.766

Median of ö parameter in wave 1

RAfirst  0.163 0.101 0.107 -0.035  0.362
RAhigh  0.050 0.054 0.349 -0.055  0.155
constant  0.925 0.077 0.000  0.774  1.076
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Median of ö parameter in wave 2

RAfirst  0.319 0.157 0.042  0.012  0.627
RAhigh  0.027 0.071 0.705 -0.112  0.165
constant  0.935 0.101 0.000  0.738  1.132

Standard deviations and correlation coefficient of ö parameters in wave 1 and wave 2

ón1  6.461 1.428 0.000  3.662  9.260
ón2             21.418 8.977 0.017  3.823             39.013
ñn1n2   0.753 0.039 0.000  0.676  0.829

Other correlation coefficients

ñr1n1  0.273 0.022 0.000  0.230  0.316
ñr1n2  0.159 0.024 0.000  0.112  0.206

ñr2n1  0.447 0.032 0.000  0.384  0.510
ñr2n2  0.252 0.037 0.000  0.180  0.325

Test for stability of predicted group means for r parameter

ÎBase   0.145 0.064 0.024  0.019  0.271
ÎRAhigh  0.124 0.051 0.014  0.025  0.223
ÎRAfirst  0.025 0.064 0.694 -0.100  0.150

Test for stability of predicted group means for ö parameter

ÎBase   1.749 0.780 0.025  0.220  3.277
ÎRAhigh  1.737 0.797 0.029  0.175  3.300
ÎRAfirst  2.742 1.253 0.029  0.286  5.198

Test for stability of predicted group medians for ö parameter

ÎBase   0.010 0.121 0.935 -0.227  0.247
ÎRAhigh -0.014 0.118 0.909 -0.246  0.219
ÎRAfirst  0.166 0.127 0.193 -0.084  0.415

Notes: Group means are predicted using the estimated mean function for each parameter. ªBase tests whether the
between-wave difference in constant is significant. ªRAhigh (ªRAfirst) tests whether the between-wave difference in
constant + RAhigh (constant + RAfirst) is significant.     
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