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Abstract. Longitudinal experiments allow one to evaluate the temporal stability of
latent preferences, but raise concerns about sample selection and attrition that may
confound inferences about temporal stability. We evaluate the hypothesis of
temporal stability in risk preferences using a remarkable data set that combines
socio-demographic information from the Danish Civil Registry with information on
risk attitudes from a longitudinal field experiment. Our experimental design builds in
explicit randomization on the incentives for participation. The results show that the
use of different participation incentives can affect sample response rates and help
identify the effects of selection. Correcting for endogenous sample selection and
panel attrition changes inferences about risk preferences in an economically and
statistically significant manner. Estimates of risk preferences change with these
corrections. In general we find evidence consistent with temporal stability of risk
preferences when one corrects for selection and attrition.
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1. Introduction

Any longitudinal survey or experimental design raises concerns about sample selection and
attrition, and response rates may vary dramatically depending on the nature of the study and
incentives provided in the design. Controlling for endogenous effects of sample selection requires
some background information on subjects who did not select into the survey or experiment, so that
one can estimate a latent selection process and its correlation with the primary outcome of interest.
This information is often missing, and most longitudinal studies are concerned just with attrition
effects. For non-participants, attrition outcomes are also missing, and strictly speaking one cannot
control for attrition effects without addressing endogenous selection first. Without controlling for
selection effects, the estimates of a latent attrition process may be subject to selection bias even
when there is no effect of selection on the primary outcome in the initial wave of the study.

Using a structural model of risky choices which allows for endogenous sample selection and
panel attrition, we analyze data from a longitudinal field experiment with a stratified sample of the
adult Danish population. The data are linked to administrative data from the Civil Registry in
Denmark, allowing us to observe background information on non-participants. We illustrate the
importance of controlling for within-wave and between-wave effects of sample selection in the
evaluation of individual risk attitudes at different points in time.

Temporal stability of risk preferences is a common assumption in evaluations of economic
behavior.! When the potential benefits of any social insurance policy are evaluated, for example, one
must know the risk preferences of the beneficiaries of the policy in order to calculate expected
individual welfare (Harrison and Ng [20106]). If preferences are unstable, then what might be a
socially attractive policy today could become an unattractive policy in the future. When “nudges” or

“boosts” are provided to improve decision-making over risky portfolios, to take another example,

! The term stability can mean unconditional stability or it can mean stable preferences conditional on
a given set of covariates. In the latter case the question is whether preferences are a stable (and known)
function of those covariates (Andersen, Harrison, Lau and Rutstrém [2008b; §2]). We consider both forms of
stability.

1-



one must also condition these on knowledge of the risk preferences of the target population in order
to ensure that they are welfare-enhancing (Harrison and Ross [2018]). If those preferences are
unstable over time, what might seem like a welfare-enhancing nudge today could again become a
welfare-reducing nudge in the future. Behavioral welfare economics requires that we not only
identify risk preferences, but check their stability over time as policies that are contingent on those
preferences take effect.

Testing the assumption of temporal stability of risk preferences with the same individuals
requires, of course, that one address problems of sample selection and attrition. We design and
evaluate a longitudinal field experiment with a nationally representative sample of Danish adults
between 19 and 75 years of age to address this question. The sample is randomly drawn from the
Civil Registry and stratified with respect to population size in each county. Our design builds in
explicit randomization on the incentives for participation, an idea suggested by the theoretical
literature on sample selection models and easy to implement in the sampling process and subsequent
experiment.

The classic problem of sample selection refers to possible recruitment biases, such that
individuals with certain types of characteristics are more likely to be in the observed sample. The
statistical problem is that there may be some unobserved characteristics which simultaneously affects
someone’s chance of being in the sample as well as affecting other outcomes that the analyst is
interested in. In any longitudinal study, there is also an inherent scope for post-recruitment selection
bias due to panel attrition, which occurs as some subjects may leave the panel.”? We build on the
direct likelihood approach of Heckman [1976], Hausman and Wise [1979] and Diggle and Kenward
[1994] and use maximum simulated likelihood to estimate unique probit-kernel models that consider

the full longitudinal design of the experiment. Our models control for the effects of selection and

* The attrition problem is not the same as the dropout problem. As stressed by Heckman, Smith and
Taber [1998], the latter refers to subjects that leave some randomized program or intervention, but that
remain in the sample. The attrition problem concerns subjects that completely drop out of the sample.
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attrition on risk preferences inferred from both waves of the experiment, as well as addressing
unobserved heterogeneity in risk preferences of the underlying population.

We consider a structural analysis of two theories of decision making under risk, Expected
Utility Theory (EUT) and Rank Dependent Utility (RDU), where the latter is a highly influential
alternative to EUT that relaxes the independence axiom under EUT.” Each theory has a set of
structural parameters that characterize risk preferences. Previous analyses of temporal stability do
not control for recruitment bias, and focus either on population averages of the structural
parameters or on individual-level estimates which have no structural link to the population
distribution of risk preferences. In contrast, our analysis controls for endogenous sample selection
and attrition, and captures unobserved heterogeneity around the population averages by modeling all
structural parameters as individual-level random coefficients that follow a population distribution.
We allow the population distribution to vary over time, and the random coefficients to be correlated
with the error terms in the selection and attrition equations.

This estimation approach allows us to consider temporal stability of risk attitudes at two
different levels, with and without controls for endogenous sample selection and attrition: (i) the
population level, by comparing the population distributions of structural parameters over time, and
(ii) the individual level, by considering the correlation between individual-specific random
coefficients over time. Our direct likelihood approach is inspired by the trivariate probit model of
Capellari and Jenkins [2004], which includes two different types of selection equations, but their
primary outcome equation is the linear index probit model and their selection equations do not

address selection bias in the sense of recruitment bias.* We are not aware of past statistical models

? There is considerable experimental evidence that points to violations of the independence axiom
under EUT, at least for some individuals. Several eatlier alternatives to EUT relaxed the independence axiom
in ways that maintained the linearity of indifference curves in the Marschak-Machina triangle representation,
but experimental evidence quickly rejected those alternatives in favour of models that had non-linear
indifference curves. RDU has emerged as the most popular alternative in the literature that allows for these
types of violations of the independence axiom in the gain domain. Starmer [2000] provides an excellent
review of these developments.

* Capellari and Jenkins [2004] analyze the transition of poverty states in the UK using a first-order
Markov model. The primary outcome equation describes the present poverty state, and features parameters
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that capture unobserved heterogeneity in latent structural parameters with controls for recruitment
bias and/or attrition bias in longitudinal studies, or empirical studies that use the “panel
correlations” of preference parameters to measure individual temporal stability.

No existing studies test temporal stability of risk attitudes in the context of a model that
addresses unobserved preference heterogeneity across the population. Gléckner and Pachur [2012] and
Zeisberger, Vrecko and Langer [2012] are so far the only studies that test temporal stability of risk
preferences at the individual level. But they do not consider temporal stability at the population level
and do not control for sample selection or attrition bias.”

Existing studies on temporal stability of risk attitudes do not control for selection bias or
attrition bias.” In fact, most studies do not even make a passing reference to “sample selection” and,
perhaps more remarkably, “attrition” or “retention.”” Dasgupta, Gangadharan, Maitra and Mani
[2017] reports a significant difference in the sample average risk attitudes of the attrited and the
retained, but does not undertake statistical correction for attrition bias based on #nobservables, and

does not mention selection bias.

that depend on the initial poverty state. The two types of selection equations correct for endogenous
selection into the initial poverty state and endogenous panel attrition.

> Gléckner and Pachur [2012] and Zeisberger, Vrecko and Langer [2012] estimate one set of
structural parameters for Cumulative Prospect Theory for each individual subject, and compare the point
estimates over one-week and one-month time periods, respectively. Their statistical tests of temporal stability,
however, do not fully account for random sampling variations in the estimates. Hey and Orme [1994] were
the first to consider individual level estimation of latent risk attitudes, which requires a sufficiently large
number of observations per subject; they had a sample of 80 subjects with 100 observations per subject.
Later applications of individual level estimation of latent preferences also consider individual discount rates
(Andersen, Harrison, Lau and Rutstrém [2014]), risk preferences (Harrison and Ng [2010]), and
intertemporal correlation aversion (Andersen, Harrison, Lau and Rutstrém [2018]). To control for
endogenous sample selection and/or attrition bias and study temporal stability at the population level one
must pool observations over all subjects and estimate the population distributions of individual level
coefficients, which we do.

% Andersen, Harrison, Lau and Rutstrém [2008b] is a hybrid. They view the sample in their first wave
as the population that is the selected into four later waves, and model the sample selection into later waves.

7 Smidt [1997], Goldstein, Johnson and Sharpe [2008], Baucellis and Villasis [2010], Gléckner and
Pachur [2012] and Zeisberger, Vrecko and Langer [2012].
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We draw several conclusions from our statistical analysis. First, we find evidence that #he use
of different fixced recruitment fees can affect the decision to participate in our experiment.®* When we used a
relatively substantial recruitment fee of 500 kroner, which is about 100 US dollars, 24.1% of invitees
accepted the invitation to the initial wave of our experiment. The initial acceptance rate fell to 18.1%
when we instead used 300 kroner. Of course, this is just a “law of demand” effect from paying more
money for people to participate, but demonstrates that there are indeed deliberate decisions being
made about participation. The second wave of our experiment paid the same recruitment fee of 300
kroner to every person, and there was no significant difference in the retention rates of subjects who
were initially recruited with the high fee (48.4%) and subjects who were initially recruited with the
low fee (54.7%).

Second, we find evidence that correcting for endogenons sample selection and panel attrition changes onr
inferences about risk preferences in an economically and statistically significant manner. The results suggest that
one should not discount the potential effects of selection and attrition @ priori, even when a self-
selected sample and an underlying population of interest look more or less similar in terms of
observed characteristics. Subjects participating in each wave of our experiments have demographic
characteristics that are comparable to the adult population in Denmark, but without correcting for
endogenous selection and attrition our EUT specification would have overestimated the average
Dane’s relative risk aversion in the first wave by a factor of about 2.” Under RDU, non-linear
probability weighting, capturing pessimism or optimism in relation to objective probabilities, may

generate a positive or negative risk premium even when the individual has a linear utility function.

¥ Paying no fixed recruitment fee is not a panacea for the sample selection issues we consider: it just
masks it, and makes it impossible to evaluate since there is no variation in those fees. There are other sensible
reasons why one should avoid zero show-up fees, since that could generate altogether different, and nasty,
biases in sample selection documented by Kagel, Battalio and Walker [1979] and Eckel and Grossman [2000].

? Andersen, Harrison, Lau and Rutstrém [2008b] analyzed the stability of risk preferences in the
same population, but with a different sample, between June 2003 and November 2004. They find evidence of
stable risk preferences. Harrison, Lau and Rutstrém [2005] focussed on the analysis of the first experiment in
June 2003, and found that the average Dane was risk averse. However, neither study randomized incentives
for participation, and neither study undertook corrections for endogenous selection into the initial
experiment. Nor did they consider unobserved preference heterogeneity and the possibility of probability
weighting under RDU.
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Without correction for endogenous selection and attrition, our RDU specification would have
substantially underestimated the population share of individuals who have an “inverse-S” probability
weighting function that captures optimism for small probabilities and pessimism for large
probabilities.

Finally, we draw several conclusions on temporal stability of risk preferences that depend on which aspect of
temporal stability one is interested in. The range of results reflect the strengths of our empirical
specifications that allow us to define and test temporal stability in several ways. For example,
consider risk aversion in the EUT sense of a concave utility function. Under both EUT and RDU,
we find that the average Dane is risk averse in this sense, and this conclusion is robust over time.
But we still find some instability in the population distribution of risk aversion under RDU as there
is a decline in the extent of unobserved preference heterogeneity around the average. When focusing
on the within-individual autocorrelation of risk aversion, we find estimates of 0.36 under EUT and
0.69 under RDU, which lie between the two extreme cases of completely unrelated and completely
stable preferences. Of course, under RDU risk preferences are also characterized by the probability
weighting function. We find more evidence on the stability of the probability weighting function
than for the utility function, both at the population and individual levels. Overall, we find evidence
consistent with temporal stability under EUT and RDU at the aggregate population level.

Our use of exogenously varied recruitment fees demonstrates how one can constructively
design features of a survey or experiment to facilitate empirical identification of sample selection
effects. Building on Heckman [1976][1979], the emphasis in the literature has been on the discovery
of some “exclusion restrictions,” referring to variables that affect the probability of selection but do

not affect the primary outcome of interest."’ The collection of these variables could be designed by

' Without such “exclusion restrictions,” identification of sample selection models has to rely on the
validity of functional form assumptions alone, such as the bivariate normality of the error terms in the
maximum likelihood estimation of the standard Heckman model. Identification in this instance is formally
achieved, but is known to be “weak” (Meng and Schmidt [1985] and Keane [1992]). Exclusion restrictions ate
formally required for identification when semi-parametric specifications are used (Lee [1995]).
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the surveyor or expetimenter, but often were not.'' In most cases analysts simply have to live with
the existing set of variables in a survey or experiment, and search for exclusion restrictions on an a
priori basis. The later theoretical literature, typified by Das, Newey and Vella [2003], stresses the
value of direct controls over the probability of selection, rather than relying on some variables

selected on an a priori basis.

2. Data

A. Field Sampling Procedures

Between September 28 and October 22, 2009 we conducted an artefactual field experiment'
with 413 Danes."” The sample was drawn to be representative of the adult population as of January
1, 2009, using sampling procedures that are virtually identical to those documented in Andersen,
Harrison, Lau and Rutstrom [2008a]. We received a random sample of the population aged between
18 and 75, inclusive, from the Danish Civil Registration Office, stratified the sample by geographic
area, and sent out 1,996 invitations. We drew this sample of 1,996 invitees from a random sample of
50,000 adult Danes obtained from the Danish Civil Registration Office, which includes information
on sex, age, residential location, marital status, and whether the individual is an immigrant. Thus we
are in the fortunate, and rare, position of knowing some basic demographic characteristics of the

individuals that do 7ot agtee to patticipate in our experiment.'

""'We know of only two applications of the constructive approach to building exclusion restrictions
into the experimental design. Appendix B (available online) provides a review of the related studies. It is
folklore in survey research that information is often retained on how many calls were made to a subject, how
hard they were to contact in other ways, or which interviewer conducted the survey. Although not the object
of randomization, information of this kind might be used as an instrument to model the probability of
selection.

"2 An artefactual field experiment is defined by Harrison and List [2004] as involving the use of
artefactual instructions, task and environment with a field subject pool.

" The negative effects of the global financial crisis of 2007 and 2008 were largely in place by the time
of our experiments, between September 2009 and October 2010. On the other hand, the European sovereign
debt crisis was just starting to manifest when our experiments began, and Denmark was about to begin a
fiscal budgetary crisis in 2010 that persisted for several years. A detailed account of Denmark’s responses to
these crises is provided by Kickert [2013].

" It is possible to extend this list of characteristics by taking our experimental data to Statistics
Denmark, which stores the same data that we obtained from the Civil Registration Office, and merging it

_7-



At a broad level our final sample is representative of the population: the sample of 50,000
subjects had an average age of 49.8, 50.1% of them were married, and 50.7% were female; our final
sample of 413 subjects had an average age of 48.7, 56.5% of them were married, and 48.2% were
female. We stress this comparison because it is often made to assuage concerns about sample
selection: check if the final sample is similar to the population for a few observed characteristics, and
then assume it is representative in all characteristics, including those that are latent and unobserved.
In the absence of the type of data we have access to in Denmark, this may appear to be a reasonable
“second best” procedure, but our results show that it may be an inadequate check on endogenous
sample selection effects.

The initial recruitment letter for the experiment explained the purpose and that it was being
conducted by Copenhagen Business School. The letter clearly identified that there would be fixed
and stochastic earnings from participating in the survey. In translation, the uncertainty was explained
as follows:

You can win a significant amount

To cover travel costs, you will receive 500 kroner at the end of the meeting.
Moreover, each participant will have a 10 percent chance of receiving an amount
between 50 and 4,500 kroner in one part of the survey. In another part of the survey,
each participant will have a 10 percent chance of receiving at least 1,500 kroner.
Some of these amounts will also be paid out at the end of the meeting, and some
amounts will be paid out in the future. A random choice will decide who wins the
money in the different parts of the survey.

The fixed amount is 500 kroner in the treatment that this text comes from, and 300 kroner in
another treatment. Subjects were randomly assigned to one of these two recruitment treatments.
The stochastic earnings referred to in the recruitment letter were for a risk aversion task and a
separate task eliciting individual discount rates.” Thus the subjects should have anticipated the use

of randomization in the experiment.

with the entire set of data that is available on all of the invited subjects. One can then undertake the same
statistical analyses but with a larger set of covariates to explain sample selection.
5 Results from the discounting task are reported in Andersen, Harrison, Lau and Rutstrém

[2013]|2014], and results from the correlation aversion task are reported in Andersen, Harrison, Lau and
Rutstrom [2018].
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The experiments were conducted in hotel meeting rooms around Denmark, so that travel
logistics for the invited sample would be minimized. The average home-to-hotel distance was
slightly larger for the 1583 non-participants than the 413 participants (10.2 miles vs 8.1 miles),
suggesting that distance might have had some influence on their patticipation decisions.'® Various
times of day were also offered to subjects, to facilitate a broad mix of attendance. The largest session
had 15 subjects, but most had fewer. The procedures were standard: Appendix A (available online)
documents an English translation of the instructions, and shows a typical screen display for the risk
aversion task. Subjects were given written instructions which were read out and then made choices
in a trainer task for small non-monetary rewards. The trainer task was “played out” and illustrated
the procedures in the experiment. All decisions were made on computers. After all choices had been
made the subject was asked a series of standard socio-demographic questions.

There were 40 risk attitude choices and 40 discounting choices, and each subject had a 10%
chance of being paid for one choice in each block of 40 choices.'” The risk attitude choices preceded
the discounting choices in one treatment, and vice versa in another treatment. Average payments for
the risk attitude choices were 242 kroner, and average payments for the discounting choices were
201 kroner (although some were for deferred receipt), for a combined average of 443 kroner. The
exchange rate at the time was close to 5 kroner per U.S. dollar, so expected earnings from these
tasks combined were $91. The subjects were also paid a 300 kroner or 500 kroner fixed show-up fee,

plus earnings from subsequent tasks.'

' The 2.1-mile difference, albeit small, is statistically significant with a two-sided p-value < 0.001. To
derive distances, we downloaded geographical coordinates of relevant locations from Google Maps and
applied a user-written S7afa command, due to Picard [2010], that measures the length of the shortest curve
between two locations over an estimated surface of the earth.

" The number of subjects in each session varied between 3 and 15, which is independent of the 10%
probability of being paid for one of the 40 risk attitude choices. Harrison, Lau and Williams [2002] randomly
selected one subject in each session of their Danish field experiment to actually play out their discounting
choices, and find a small positive, but statistically insignificant, effect of group size on elicited discount rates.

' An extra show-up fee of 200 kroner was paid to 24 subjects who had received invitations stating
300 kroner, but then received a final reminder that accidentally stated 500 kroner. The additional tasks earned
subjects an average of 659 kroner, so total earnings from choices made in the session averaged 1102 kroner,
or roughly $221, in addition to the fixed fee of $60 or $100. These 24 subjects were treated in the analysis as
if they were 300 kroner subjects, since that was the incentive in the original invitation. Treating them as 500

9.



Between April 2010 and October 2010 we repeated the risk aversion and discounting tasks
with 182 of the 413 subjects who participated in the first experiment."” Each subject was interviewed
in private in the new experiment, and the meeting was conducted at a convenient location for them
(e.g., their private residence or the hotel where the first experiment took place). All subjects were
paid a fixed fee of 300 kroner for their participation in the second experiment.”

Table 1 provides the sample response in each panel wave, and definitions of the explanatory
variables used in the statistical analysis and summary statistics. We observe a significant difference in
sample response with the high recruitment fee compared to the low recruitment fee. The drop from
24.1% to 18.1% in the first wave is statistically significant according to a Fisher Exact test, with a p-
value less than 0.001. After participating in the first wave, the sample response to recruitment into
the second wave was slightly lower for those recruited into the first wave with the high recruitment
fee compared to those recruited with the low fee. The sample response rates were 48.4% and 54.7%
in the second wave, and are not statistically different according to a Fisher Exact test with a two-
sided p-value of 0.24. One might infer from these statistics that the effects of attrition on elicited risk
attitudes are not significant, but of course that depends on who responded, which can only be

assessed with an appropriate statistical model.

kroner subjects does not change the results.

' There were four steps in the construction of this sub-sample. First, we divided the country into
five regions, and each region was divided into sub-regions. Each sub-region was assigned 1 or 2 numbers, in
rough proportionality to the population of the sub-region. In total we assigned 24 numbers. Second, although
Denmark is a relatively small country, it was necessary to consider logistical constraints, and we randomly
picked 12 of the 24 numbers for the experiment in April 2010 and the remaining 12 numbers for the
experiment in October 2010. Third, we picked the first 50% of the randomly sorted records within each sub-
region. This provided a sub-sample of 100 subjects for each experiment. Fourth, we contacted subjects by
phone and invited them to participate again in the experiments.

*’ We did not vary the recruitment fee in the second experiment because we offered to interview the
subjects at home or the hotel where the first experiment was conducted. The experiments were time
consuming and expensive to conduct and we paid subjects the low recruitment fee of 300 kroner in the
second experiments to keep costs down, although we see the value in varying recruitment fees in the second
stage as well.

10-



B. Experiments to Infer Risk Attitudes

Risk attitudes were evaluated from data in which subjects made a series of binary lottery
choices. For example, lottery A might give the individual a 50-50 chance of receiving 1600 kroner or
2000 kroner to be paid today, and lottery B might have a 50-50 chance of receiving 3850 kroner or
100 kroner today. The subject picks A or B. We used the procedures of Hey and Orme [1994], and
presented each binary choice to the subject as a “pie chart” showing prizes and probabilities.”’ We
gave each subject the same set of 40 choices, in four sets of 10 choices with the same prizes. The
prize sets employed are: [A1: 2000 and 1600; B1: 3850 and 100], [A2: 1125 and 750; B2: 2000 and
250], [A3: 1000 and 875; B3: 2000 and 75] and [A4: 2250 and 1000; B4: 4500 and 50]. The order of
these four prize sets was randomized for each subject, with the probabilities varying within each set
of 10 choices.” We refer to the first and last of these four prize sets as the “high stakes” lotteries
compared to the “low stakes lotteries” in the second and third set.”> These four treatments with
different prize sets were administered within subjects.

We asked each subject to respond to all 40 risk aversion tasks and then randomly decided
which one to play out using numbered dice. The large incentives and budget constraints precluded
us from paying all subjects, so each subject was given a 10% chance to actually receive the payment

associated with his decision. The typical findings from lottery choice experiments of this kind are

*! The use of “pie charts” is common in experimental elicitation of risk preferences, but should not
be viewed as the only way that one might present lottery choices. Arguably it provides more information on
probabilities than prizes, since one is shown as a pie slice as well as displayed numerically, whereas the other
is only displayed numerically. Harrison and Rutstrém [2008; Appendix A] review alternative ways of
presenting lotteries in the literature, none of which has emerged as obviously superior for all purposes.

2 Within each prize set the 10 choices were presented one at a time in an ordered manner, with the
probability of the high prize starting at 0.1 and increasing by 0.1 until the last choice is between two certain
amounts of money.

» We use large monetary incentives compared to most other experiments on individual choice under
risk. For example, the prizes in our two high stakes treatments are roughly twice as high as those paid by Holt
and Laury [2002] in their 90x treatment, which paid 90 times the low payoff level in their experimental
design. The prizes in our two small stakes treatments are scaled down by 50% compared to the prizes in the
two high stakes treatments, which in nominal terms is a difference of 2,500 kroner if one compares the
highest prize (4,500 kroner) in the fourth prize set with the highest prize (2,000 kroner) in the second and
third prize set. Although the scaling of prizes between the high and low stakes treatments may seem low in
relative terms, these are substantial differences in absolute terms to most Danes.
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that individuals are generally averse to risk, and that there is considerable heterogeneity in risk

attitudes across subjects: see Harrison and Rutstrom [2008] for an extensive review.

3. Identification of Risk Preferences
We first write out a structural model to estimate risk attitudes assuming EUT, to focus on
essentials. We then discuss how the likelihood function changes to account for sample selection and

attrition, and then finally discuss the extension from EUT to the more general RDU model.

A. Baseline EUT Specification
Consider the estimation of risk preferences in the simplest possible model of decision-
making under risk, EUT, without worrying about sample selection or attrition. In our experiment,
each decision task presented a choice between two lotteries, and each lottery had two potential
outcomes. Let M;; be the | outcome of lottery i, where i=A,B and j=1,2. Assume that the utility of
an outcome is given by the constant relative risk aversion (CRRA) specification
UM = M7/ (1-1) 1)
for r#1, where r is the CRRA coefficient. Then, under EUT, +=0 denotes risk neutral behavior, >0
denotes risk aversion, and r<0 denotes risk loving behavior.
EUT predicts that the observed choice is lottery B when it gives the larger expected utility
(EU) than lottery A and vice versa. Probabilities for each outcome, p(M;), are those that are induced
by the experimenter, so the EU of lottery i is simply the probability weighted average of its outcome
utilities,
EU; = pM;)) X UM;)) + p(My) X UM,,), 2
where p(M;,) = 1 - p(M;,). Let y denote a binary indicator of whether the observed choice is lottery B
(v = 1) or lottery A (y = 0). Using the indicator function I[.], the observed choice under EUT can be

compactly written as y = I[(EUg - EU,) > 0].
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To allow observed choices to deviate from deterministic theoretical predictions, the EUT
model is combined with a stochastic behavioral error term. Specifically, assume that the choice
depends not only on the EU difference, but also on a random error term € such that y = I|(EUj -
EU,) + v X & > 0]* where v is a positive scale factor that we will parameterize shortly. Assume
further that € is normally distributed with the standard deviation of u, € ~ N(0, u*). The choice
probability of lottery B is then ®(VEU) where @()) is the standard normal cumulative density
function (CDF), and the index VEU is given by

VEU = [EU; - EU,)/v]/p. 3)
It follows that the likelihood function for each choice observation takes the form
P(r, ) = @(VEU) X (1 - ©(VEU))"¥. “
As the noise parameter p approaches 0, this stochastic EUT specification collapses to the
deterministic EUT model; conversely, as p gets arbitrarily large, it converges to an uninformative
model which predicts a 50:50 chance regardless of the underlying EU difference.
We complete the behavioral error specification by adopting the contextual utility model of

Wilcox [2011]: v is set to (U, - U,;.), where U and U_; are the maximum and minimum of the

four potential outcome utilities, UM, ), UM,,), UMj,) and U(My,). Supposing that lottery B is
riskier than lottery A, it is arguably desirable to have a statistical model that predicts a smaller
probability of choosing B for a more risk averse person with a larger r. The traditional Fechner error
model (b = 1) leads to choice probabilities that do not vary monotonically with r in this manner, an
issue identified by Wilcox [2011] and reiterated by Apesteguia and Ballester [2018].> The contextual
utility model addresses this potential drawback.

To clarify our econometric methods, more notation is needed than one would typically see

in the context of non-linear models for panel data. We subscript the choice-level likelihood function

in (4) as P (r,,, ) henceforth, to emphasize that it describes subject n’s choice in decision task t of

** Or, equivalently, y = I[(EUy - EU,)/v + € > 0].
* In Appendix E (available online), we re-estimate our main models assuming the Fechner error
specification.
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panel wave w.” The CRRA coefficient r, is indexed by subject n and wave w for two reasons. First,
to capture unobserved preference heterogeneity across individuals, we model the CRRA coefficient
as an individual-specific random coefficient drawn from a population distribution of risk
preferences. Second, to test temporal stability, we allow the underlying population distribution, as
well as the CRRA coefficient drawn from it, to vary freely across waves. We use f(r,;, 1.,; 0) to
denote the joint density function for the random CRRA coefficients, where 6 is a set of parameters
that characterize their joint distribution.

It is possible to estimate the set of parameters 0 directly and draw inferences about the
population distribution of risk preferences, once the joint density f(r,,, r.,; 0) is fully specified.
Assume that r,, and r,, are jointly normal so that 6 = (r, 1,, 6,;, 6,, 0,,,), Where r and o, are the

population mean and standard deviation of the CRRA coefficient r_, and o,,,, is the covariance

nws

between r,, and r,, Conditional on a particular pair of CRRA coefficient draws, the likelihood of

observing a series of 40 or 80 choices made by subject n can be specified as

CLn<rnla rnZ) P‘) = Htpntl (rnla }'L) 1f Su2 = O (5)
= Htpml (rnla H) X HtPntZ(rnZ’ H) lf SnZ = 1

where s, is an indicator of whether subject n participated in only the first panel wave (s,, = 0) or
both panel waves (s,, = 1). Since r_; and r,, are modeled as random coefficients, the “unconditional”
(Train [2009, p.146]) or actual likelihood of subject n’s choices is then obtained by taking the
expected value of CL,(r,,, .,, i) over the joint density f(r,;, ,,; 6)

L,(ty, 2, Op, O Orii W) = Ly(0, ) = HCL, (01, £ WE(E,, 1,5 0)dr, dr,, (©)
Unobserved heterogeneity is similarly integrated out from many textbook models for panel data,

such as random effects probit (Wooldridge [2010, p.613]).”” Our application is distinctive because

%0 We repeated the same set of experiments across two panel waves, and within each wave the
subject completed a series of decision tasks over 40 lottery pairs. The outcomes and probabilities associated
with lottery pairs vary from task to task, and the same subject may make different choices across tasks and
waves. Each lottery outcome and its probability are then My, and p(Mj,,), leading to the expected utilities
EU,,. and the index function VEU, . The indicator y, is 1 (0) if subject n chooses lottery B (lottery A) in
decision task t of the experiment in wave w.

" Much as one finds with a random effect probit model, our random coefficient model allows for
panel correlation across repeated observations on the same individual. Although (5) is a product formula akin

to the pooled probit model, it is only one building block for the actual likelihood function in (6) that
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unobserved heterogeneity enters the index function VEU,, non-linearly via the CRRA coefficient,

and vaties across two wave-specific blocks of obsetvations instead of being time-invariant.” The
unconditional likelithood function L, (0, i) does not have a closed-form expression, but can be
approximated using simulation methods (Train [2009, p.144-145]). We compute maximum simulated
likelihood (MSL) estimates of risk preference parameters 6 and the behavioral noise parameter u by
maximizing a simulated analogue to the sample log-likelihood function X In(L, (6, w)). The
estimation sample is 413 subjects who participated in the first experiment or both experiments.

Our modeling framework offers several ways to define and analyze temporal stability of risk
attitudes. One can test if the entire population distribution of risk preferences is stable, which can be
expressed as a joint hypothesis Hy: 1, = r, and o,, = o,,. Alternatively, one can test the temporal
stability of the average person’s risk attitude (H: r, = 1,), or test the temporal stability of unobserved
preference heterogeneity (H: o,, = 0,,). We can also accommodate observed heterogeneity by
writing t, and ¥, as linear functions of the subject’s characteristics, such as age, gender and income.”
It is then possible to consider the question of which demographic groups tend to be more risk
averse, and examine if the answer to that question is temporally stable.

The questions so far pertain to temporal stability at the population level, but the analysis can
focus on temporal stability at the individual level as well. By normalizing the scale of covariance o,,,,,
one can derive a coefficient ,;,, = 6,1, / (0,1 X 0,,) that directly measures the within-individual
correlation of the CRRA coefficient over time. Andersen, Harrison, Lau and Rutstrém [2008b] elicit
risk preferences using multiple price list formats popularized by Holt and Laury [2002], and compute

this type of correlation based on the midpoints of CRRA intervals that predict observed behavior

integrates such formulas. The log of this likelihood function does not simplify into a sum of observation-
level log-likelihood functions, so our statistical approach does not rely on the independence of choice
observations within individuals.

% Methods for estimating non-linear random coefficients models of risk aversion were developed by
Andersen, Harrison, Hole, Lau and Rutstrém [2012], building on the linear random coefficients software
developed by Hole [2007]. Neither considered the implications for selection and attrition in panel data.

* For illustration, we analyze a model that features male-female differences in risk attitudes in
Appendix C (available online).
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under EUT. The approach we take here is far more general because it allows for behavioral errors
and can be applied with any elicitation format, as long as the statistical model incorporates a random
coefficient specification similar to ours. Moreover, as reported below, one can estimate the within-
individual correlations of structural parameters in an analogous manner after correcting for selection

and attrition biases, as well as in the context of RDU models.

B. EUT Specification with Endogenons Sample Selection and Panel Attrition

The experimental design allows us to correct for sample selection into both panel waves of
the experiment.”’ Estimates of risk aversion could be sensitive to the sample selection and attrition
process in any longitudinal setting, and the estimated coefficients in the behavioral model may be
significantly biased if subjects condition their participation on unobservable characteristics that
correlate with their latent risk preferences. It is not obvious a priori that individuals with stable
preferences are more likely to self-select into the early or later stages of our experiment. Since the
decision to participate in the experiment may be correlated with individual risk preferences, it is

approptiate to account for possible sample selection and attrition effects in the statistical model.”

% Vella [1998] surveys alternative specifications for modelling sample selection, including semi-
parametric methods.

! Harrison, Lau and Rutstrém [2007][2009] use data from a single panel of a previous Danish field
experiment that was conducted in June 2003 and correct for sample selection in the analysis of risk attitudes.
They only consider EUT specifications of risk preferences, and combine linear, interval regression models of
chosen CRRA intervals with probit selection models. Invitations to participate in the field experiment were
sent out to 664 randomly selected adult Danes across the country, and all subjects were informed that they
would be paid 500 kroner to participate in the experiment and could earn an additional sum of money. The
results show that the recruited sample of 253 subjects is significantly more risk averse than the general
population, but the estimated marginal effects of individual characteristics are similar with and without
correction for sample selection. Harrison, Lau and Rutstrém [2009] use data from two additional Danish lab
experiments with similar decision tasks as those in the field experiment. The first lab experiment was
conducted in October 2003 with a sample of 90 subjects recruited from the University of Copenhagen and
Copenhagen Business School. Each subject was paid 250 kroner to participate in the experiment. The second
lab experiment was conducted in November 2006 with a new sample of 35 students. Subjects were randomly
divided across two recruitment treatments: compared to the control group in the first lab experiment, one
treatment reduced the recruitment fee to 100 kroner, and the other treatment scaled all prizes in the
experiment down by 50%. The analysis does not control for endogenous sample selection bias and is again
based on a linear, interval regression model with chosen CRRA intervals modeled as a function of the
recruitment treatments and other experimental treatments. The results show that treatments with higher
recruitment fees lead to samples with more risk averse subjects than otherwise. Our present approach
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To control for sample selection bias, we take the initial pool of 1,996 invited subjects as a
random sample from the population, and model the initial selection process that lead to 413 subjects
in the first experiment. From this sample of 413, 354 subjects were invited to the second
experiment. To control for panel attrition bias, we take those 354 subjects as a random sample from
the sub-population that self-selected into the first experiment, and model the attrition process that
led to 182 subjects in the second experiment. This general strategy is consistent with our
experimental design, under which the experimenter exogenously determines whether someone is
invited to the first experiment, and which subjects in the first experiment get invited to the second
experiment.

We first describe a system of binary response models that describes sample selection and
attrition. Let s, be an indicator of whether subject n accepted the invitation to the experiment in

wave w (s, = 1) or not (s,, = 0). For those who were not invited to the second experiment, we set

nw

such that

nw>

S, = -1. Assume that each observed outcome s, is determined by a latent propensity S

s I[S,; > 0],and s, =I[S,, > 0N S, > 0] if subject n was invited to the second experiment. The

nl

latent propensities are specified as

Snl = anBl + Uy = anﬁl + (anl + enl) (7)

Sn2 = XnZBZ + Uy = XnZBZ + (anZ + enZ) (8)
where X is a vector of explanatory variables including a constant, 3 is a conformable vector of
coefficients to estimate, and u,, is a random disturbance. We decompose u,, further into a_, and

nw

e,.» Which are orthogonal to each other. The term a,, captures unobserved characteristics which are

nw
potentially correlated with risk attitudes, and across selection and attrition processes. In contrast, e,
captures purely idiosyncratic errors.

Assume that the correlated components a , and a,, are bivariate normal, and that each

idiosyncratic error e, is independently standard normal. Under this assumption, the composite

considers RDU as well as EUT, explicitly models the latent non-linear structural model rather than the
“CRRA interval reduced form” choices, allows for unobserved preference heterogeneity, allows for
endogenous sample selection, and allows for endogenous attrition.
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errors u,; and u,, are also bivariate normal. When viewed in isolation from the random coefficient
EUT model, the system of equations (7) and (8) is analogous to the probit model with sample
selection (Van de Ven and Van Praag [1981]) which views the sample retention indicator s, as the
primary outcome of interest.”” It is common to normalize this type of model by setting Var(u,,) =
Var(u,,) = 1, and identify B,, 8, and g, = Corrt(u,,, u,,) = Corr(a,,, a,,). We could follow the same
convention, but prefer to normalize the system by setting Var(u,,) = 2 and Var(u,,) = 2 + Cov(a

nl>

a,,), and identify 8, 8, and o,;,, = Cov(u,, u,,) = Cov(a,y, a,,). This scheme allows us to assume

nl>
Var(a,,) = Var(e,,) = Var(e,,) = 1 and Var(a,,) = 1 + o, without loss of generality; then, (7) and (8)
can more easily be combined with the random coefficient EUT model by attaching probit
probabilities to (5), as shown below.

Let g(a,;, a,, 1,4, 1,,; ©) denote a density function for the joint distribution of risk attitudes
and relevant selection/attrition errors, which is charactetized by parameters in ®. Let o, and o,
denote Cov(a,y, t,,) and Cov(a,,, t,,) respectively. We allow for the full set of correlations amongst
the four random components. Given the earlier assumptions, g(.; ®) is then multivariate normal and
® = (0, X), where 0 = (r, T,, 0,4, 0, 0,,,) characterizes the population distribution of the CRRA
coefficients and X = (04, Oq1,1, Og112 Ouar1> Osar) COllects covariance parameters that may induce
selection and attrition biases. For example, a positive o,;,, means that those with relatively large
CRRA coefficients in wave 1 are more likely to participate in the first experiment, and a positive o,,,
means that such subjects with high CRRA coefficients in wave 1 are also more likely to participate in
the second experiment. Without correction for selection and attrition, one would overestimate the
initial degree of risk aversion in the population. While o,;,, does not address risk attitudes directly,
this parameter corrects the attrition process for initial selection bias, since the attrition outcomes are

only observed for the self-selected sample of participants in the first experiment. If o,, is falsely

sls!

constrained to 0, the resulting correction for attrition bias becomes invalid.

%2 The first formal statement of the probit model with sample selection considered the case in which
the latent index was the difference in expected utility from two outcomes, which we denote by VEU: see Van
de Ven and Van Praag [1981; p.235, equation (8)].
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We now turn to a likelihood function which augments the baseline EUT specification with

controls for selection and attrition biases. Conditional on a particular set of a,, a,,, r,; and r,,, the

nls

joint likelihood of subject n’s selection/attrition outcomes and risky choices can be specified as

CLn(anl, anZ’ rnl) rnZ, p’) = 1 - CD(Tnl) 1f Snl — O (9)
= q)(rnl) X Htpntl(rnla lJ’) if Sa1 — 1) S = -1
= (D(Tnl) X (1 - CD(THZ)) X HtPntl(rrﬂ’ P') lf Snl = 13 Sn2 = O

= q)(Tnl) X q)(TnZ) X Htpntl (rnl, H) X HtpntZ(rnZ) p’) 1f Snl = 13 Sn2 = 1

where 1, = X .By T 2,,, @) is the standard normal CDF and P, (.) is the choice-level likelihood

nw
under the baseline EUT model. The exact form of the conditional likelihood function thus varies for
those who rejected the first invitation (s,; = 0), those who participated in the first experiment but
did not receive the second invitation (s, = 1, s, = -1), those who participated in the first
experiment but rejected the second invitation (s, = 1, s, = 0), and finally those who participated in
both experiments (s,, = s,, = 1). The unconditional likelihood function for subject n can be
obtained by taking the expected value of CL (a,;, a,,, 1., I,,, &) over the joint distribution of the four
random components

L.(©, 1) = IICL (a1, 202, Tuts Loy WE(@a1> Ao Tty T O)da, da,dr,dr,, (10)
where ® = (1, 1y, Gy, G5 Oyi125 Oc12> Osisn, Osirz» Osart> Osap) 1 full. Since (10) does not have a closed
form expression, we compute the MSL estimates of ® and u by maximizing a simulated analogue to
the sample log-likelihood function X In(L,(®, w)). The estimation sample is all 1,996 subjects who
were invited to the first experiment.

Parametric models with selection and attrition such as ours are theoretically identified
without the aid of cross-equation exclusion restrictions. Nevertheless, our experimental design
provides natural candidates for such restrictions that we use to assist empirical identification. The
initial invitation letter randomized subjects to different recruitment fees, and the longitudinal design

allows us to observe each subject’s additional earnings from the first experiment.” Before coming to

% Since the recruitment fee is an observed characteristic and the model is theoretically identified
without utilizing this as an exclusion restriction, it is possible to test whether the use of different recruitment
fees results in recruitment of subjects with systematically different risk attitudes. For instance, as shown in
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the first experiment, subjects did not know anything about the 40 lottery pairs used and, during the
first experiment, everyone faced the same set of 40 lottery pairs. We assume that the recruitment
fees affect the initial decision to accept the first invitation, but do not affect the decision to accept
the second invitation once we control for additional earnings from the first experiment.’* We
maintain the usual hypothesis that the recruitment fees and prior earnings do not affect the subject’s
evaluation of lottery pairs directly. Finally, subjects had to travel to hotel meeting rooms to
participate in the first experiment, whereas each subject chose their own preferred venue for the
second experiment.

The preceding discussion motivates us to include the recruitment fees only in X, for the
selection equation, the actual earnings from the first experiment only in X, for the attrition
equation, and the lottery payoffs and probabilities only in VEU,; for the structural model of risky
choices. In addition, we augment X, ; with each subject’s home-to-hotel distance (in miles) and its
square.” Both X, and X, also include the subject’s age and gender, and X, additionally includes
self-reported income that is only available for those who participated in the first experiment.

To see the flexibility of our extended specification, one may compare it with several special
cases. Consider first a “naive” approach, in which each panel wave is evaluated separately, using (7)
to correct for selection into the first wave and (8) to correct for selection into the second wave. This

approach is naive in the sense that it fails to recognize the longitudinal nature of the experiments,

Table D3 and Table D4 of Appendix D (available online), we can condition the mean of each structural
parameter (r,; and r,, under EUT, and r,;, 1,5, ¢,;, and ¢, under RDU that we will describe shortly) on the
recruitment fee indicator and study whether the estimated coefficient on that indicator is significant. The
results support our intended use of the recruitment fee as an exclusion restriction to assist empirical
identification. The recruitment fee has an insignificant effect on the mean of r,; and r,, under EUT with p-
values of 0.173 and 0.447, and under RDU with p-values of 0.191 and 0.246. Similatly the recruitment fee has
an insignificant effect on the mean of ¢, and ¢, under RDU, with p-values of 0.997 and 0.295.

** Additional earnings in the first experiment include payments for choices in three sets of decision
tasks which elicit individual risk attitudes, discount rates and correlation aversion, respectively.

% How closely the home-to-hotel distance approximates the actual inconvenience involved in
travelling is an open question. The validity of our statistical corrections for endogenous selection and attrition
does not rely on any precise interpretation that one might place on the distance variable. As usual, the
selection equation in our framework is a reduced-form index model and its coefficients need not have any
causal interpretation.
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and requires o, = 0,,,, = 0y, = 0. However, even when these restrictions are valid, the approach

cannot identify o,,,, and hence p,,,, that measures the temporal stability of risk preferences within

1l
individuals. Two special cases arise if both waves are analyzed jointly, but they correct for only
selection bias or attrition bias. With correction for selection bias only, one can estimate all structural
parameters consistently when o,,, = o,,, = 0. The other special case ignores selection bias and
requires o, = O,y = Oy, = 0. The latter case is perhaps more interesting, considering that it
resembles what one would do in typical longitudinal studies that observe no information on those
who did not participate in the first wave.

Our modeling strategy provides a general framework for the structural estimation of risk
preferences with correction for endogenous selection and attrition. While we parameterize the
statistical model using multivariate normal densities and probit kernels, with a few notational
changes the likelihood functions above can incorporate other joint distributions of {a,;, a,,, £.;, £,,}
and kernel CDFs. We focus on the multivariate normal-probit kernel specification primarily to reach
a wider audience; the workhorse sample selection models in the empirical literature assume either
the bivariate normality of selection and structural errors in a maximum likelihood framework, or the
marginal normality of selection errors in Heckman’s two-step procedure. In many longitudinal
studies, the researcher may apply correction for panel attrition but not for initial selection due to the
lack of information on non-participants. Our econometric approach can be adapted to such settings
to specify a structural model with endogenous attrition, by omitting the selection equation and

re-normalizing the standard deviation of the attrition error.”® As usual, the resulting correction for

attrition bias would be a second-best solution that presumes the absence of selection bias.

% The conditional likelihood function under this endogenous attrition model is algebraically
equivalent to the special case of (9) that assumes s,; = 1 and D(t,,) = 1 for every n. Since the covariance
between the selection and attrition errors is no longer identified, the scale of the attrition error should be re-
normalized, for example by setting Var(u,,) = 2.
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C. Rank Dependent Utility Theory Specifications
RDU is a popular generalization of EUT, due to Quiggin [1982], that allows the decision-
maker to transform the objective probabilities presented in lotteries and use these weighted
probabilities to determine decision weights when evaluating lotteries. If w(p) is the probability
weighting function assumed, and each lottery has only two prizes such that M;; > M,,, then we have
RDEU; = [w(p(M;)) X UM;) | + [ (1-w(pM;)) X UMy) ], 2
where RDEU, refers to rank dependent expected utility of lottery i, and the remaining notation is as
defined in the context of (2).
The logic behind our econometric specifications extends naturally to RDU, once we replace
EU; with RDEU,. Of course, one has to specify the functional form for w(p) and estimate additional
parameters. Prelec [1998] offers a two-parameter probability weighting function that exhibits
considerable flexibility. This function is
w(p) = exp{(ln p)7}, (12)
and is defined for 0<p<1, n>0 and ¢>0. We use its one-parameter special case that assumes 1 = 1,
and model ¢ as a log-normally distributed random coefficient g, that varies across individuals and
panel waves. The resulting one-parameter function exhibits inverse-S probability weighting
(optimism for small p, and pessimism for large p) for ¢ < 1, S-shaped probability weighting
(pessimism for small p, and optimism for large p) for ¢ > 1, and linear probability weighting that
reduces RDU to EUT when ¢ = 1. It rules out the cases of globally concave (optimism for all p) or
globally convex (pessimism for all p) probability weighting @ priori, and also implies that the fixed

point where w(p) = p occurs at p = 0.368 for any value of ¢. The two-parameter function can admit

%" The one-parameter Prelec function is similar to another one-parameter function popularized by
Tversky and Kahneman [1992]: w(p) = p* /(p' + (1-p)")/Y, which is inverse-S (y < 1) or S-shaped (y > 1).
When =1 and 7 is a free parameter instead, (12) collapses to the power function w(p) = p; this function can
capture either probability optimism (1 < 1) or pessimism (1 > 1), but not both at the same time. There are
several versions of the Prelec [1998] function, since several were specified in his Proposition 1 (p.503). We do
not use his versions (A) or (B) that constrain ¢ to be in the unit interval, since that constraint rules out “S-
shaped” probability weighting « priorz, which we view as an unattractive restriction. The one-parameter
function we use is a special case of version (C) in his Proposition 1.
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concave and convex cases, and also inverse-S or S-shaped probability weighting with other fixed
points. But allowing for the unrestricted joint distribution of random coefficients and
selection/attrition errors leads to several extra parameters, making the use of the two-parameter
function less practical for our purposes.™

One implication of the RDU model is that risk preferences are characterized by more than
the concavity of the utility function. The risk premium is a complex function of all of the parameters
that define the utility function as well as the probability weighting function. Indeed, a concave utility
function might be mitigated by probability “optimism” such that the net effect is risk neutrality or
even risk loving. We simply have to examine all parameters to characterize risk preferences in the

case of RDU: r and ¢.”

4. Results

We are interested in testing several hypotheses. First, is the distribution of risk attitudes in
the general adult Danish population temporally stable over the one-year period we consider in the

experiment? Second, are risk attitudes temporally stable at the individual level? Third, does the

% Allowing for the full set of correlations amongst two CRRA coefficients, two probability weighting
coefficients, the selection error and the attrition error mean that the RDU specification with the one-
parameter Prelec [1998] function already involves at least 13 more parameters to estimate than the EUT
specification. The variance-covariance matrix of random parameters ., .5, @1, @, 4y and a,,is a 6-by-6
matrix with 15 distinct covariance parameters and 4 identified variance parameters. In comparison, the EUT
specification involves 6 covariance parameters and 2 identified variance parameters. One should also estimate
the population mean parameters for @ ; and @,,, and those of t,; and r,,. Of course, the number of extra
parameters increases even further when the mean parameters for the probability weighting function are
conditioned on observed characteristics. We have also estimated the RDU model with the two-parameter
Prelec specification and the results are available upon request. However, under this specification, one cannot
casily define temporal stability of the probability weighting function. For example, one cannot identify the
average or median person. While it is straightforward to identify the mean and median of each parameter
separately, a person with a mean or median value of 7 does not necessarily have a mean or median value of @.

* The EUT model retains some descriptive value, however. The EUT and RDU models assume the
same overall risk premium, even if they explain it differently. It is sometimes useful to focus on the parameter
rin the EUT model as a summary statistic on the overall risk premium, even if the RDU model may provide
the correct structural decomposition into aversion to outcome variability (the r parameter) and probability
weighting (the @ parameter).
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possibility of non-random sample selection and attrition change our inferences about the temporal
stability of risk attitudes?

We use MSL to estimate the full statistical model that captures unobserved preference
heterogeneity, endogenous selection into the first experiment, and endogenous panel attrition
between the two experiments. Train [2009] provides details on MSL estimation of heterogeneous
preference models without selection. Cappellari and Jenkins [2004] show how one can control for
endogenous selection and attrition using MSL in the context of models without unobserved
preference heterogeneity. By modeling the joint likelihood of observing the entire series of
responses by each subject, and adjusting standard errors for clustering at the subject level, our
statistical specification allows for “clustered” responses by the same subject. Panel-robust Wald
statistics are used to test various hypotheses with respect to the estimated coefficients. The statistical
model also allows for heteroscedasticity in the behavioral error term, by conditioning the noise
parameter on binary variables for each treatment in the experimental design; one variable captures
the order of risk aversion and discounting tasks, and the other variable captures our use of high and
low stakes in the risk aversion tasks. We also condition the population mean coefficients of latent
risk preference parameters on these two treatment variables.

We transform several estimates into alternative forms that are easier to interpret, and report
correlation coefficients instead of covariance parameters. For the log-normal random coefficient ¢

in the RDU model, all results are for ¢ itself instead of In(yp)."

Finally, we divide selection and
attrition equation coefficients by the normalized standard deviation of each equation so that they

can be interpreted in the same manner as familiar probit coefficients.

0 Specifically, we report the mean and median of ¢ for the base group (constant), along with the
marginal effect of each observed characteristic on the mean and median of ¢ for the base group. The
standard deviation of ¢ is evaluated at the sample average characteristics. The within-individual correlation of
¢ is computed by applying the usual formula for the correlation coefficient of bivariate log-normal random
variables. Other correlations involving ¢ present cases where we compute the correlation between a log-
normal random variable and a normal random vatiable. Garvey, Book and Covert [2015, p. 443, Theorem
B.1] provide a closed-form formula that can be applied to these cases.
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A. Temporal Stability of Risk Attitudes

We find evidence of temporal stability for inferred risk attitudes under EUT when the model
fully corrects for endogenous sample selection and attrition bias. Table 2 contains these results,
including single hypothesis tests that the mean CRRA parameter r, for each treatment group is the
same over time. For example, the estimated mean coefficient of relative risk aversion for the
baseline case of our econometric model (when RAfirst = RAhigh = 0) is equal to 0.413 in wave 1,
and equal to 0.594 in wave 2; the estimated difference in the two mean population coefficients is
equal to 0.180, which is not significantly different from 0 with a p-value of 0.236.*" The estimated
population mean coefficient is also larger in wave 2 relative to wave 1 when we control for the high
stakes treatment; the estimated difference between the two coefficients is 0.151, which is
insignificant with a p-value of 0.294. We also find that the estimated population standard deviation
of relative risk aversion is temporally stable; the estimated standard deviation of the r parameter, o,,
drops from 0.856 in wave 1 to 0.787 in wave 2, and the estimated difference between the two
coefficients is not significantly different (p-value of 0.637). A joint test of estimated mean population
coefficients and standard deviation coefficients across the two waves allows us to evaluate whether
the entire population distribution is temporally stable. The y*(4) test statistic has a p-value of 0.480,
so we cannot reject the hypothesis of temporal stability.** Although the estimated population mean
is higher in wave 2 compared to wave 1 for low and high stakes treatments, we find statistical

evidence of temporal stability for the entire population distribution of relative risk aversion.

! Our risk aversion experiment was part of a larger experiment that involved a discounting choice
tasks and a correlation aversion task. The order of risk aversion and discounting tasks was randomized on a
between-subject basis; half of the subjects faced risk aversion tasks first (RAfirst = 1) and the remaining half
faced discounting tasks first (RAfirst = 0). The correlation aversion task always followed the risk and
discounting tasks. In each wave, each subject completed 20 risk aversion tasks that we classify as low stake
(RAhigh = 0) and 20 decision tasks that we classify as high stake (RAhigh = 1). Our model allows for
systematic variations in risk preferences across the order and stake treatments. To avoid potential clutter, our
figures focus on comparisons across the stake treatments, since the order treatment effect is not statistically
significant at the 5% level in any of our estimation results.

* Since the mean of the r parameter has been conditioned on two treatment variables, in each wave
there are 3 estimates associated with the mean (constant, RAfirst, RAhigh). Temporal stability of the
population distribution therefore entails 4 between-wave equality restrictions, comprising 3 restrictions on
the mean and 1 restriction on the standard deviation.
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The upper panel in Figure 1 shows the estimated population distributions of relative risk
aversion across the two waves and two monetary treatments, with controls for non-random
selection and attrition bias. The population distributions of relative risk aversion for both monetary
treatments shift to the right in wave 2 compared to wave 1, but the apparent increase in risk
aversion is not statistically significant, as noted above.* The marginal effect of the high stakes
treatment on the estimated population mean is positive and the population distribution shifts to the
right in both waves. The estimated coefficient of the high stakes treatment is equal to 0.088 with a p-
value of 0.017 in wave 1, and equal to 0.059 with a p-value of 0.260 in wave 2. We thus observe a
significant effect of the high stakes treatment on relative risk aversion in wave 1 and an insignificant
effect in wave 2.

We next consider temporal stability at the individual level. The estimated correlation
coefficient between relative risk aversion in wave 1 and 2, g,;,,, is equal to 0.360, which is
significantly different from 0 (p-value < 0.001). The significant positive correlation suggests that risk
preferences are temporally stable at the individual level, in the sense that someone with an above-
average r parameter in wave 1 also tends to have an above-average r parameter in wave 2, and thus
we reject the hypothesis that the two population distributions are independent.

Turning to the results for RDU in Table 3, we draw mixed conclusions that depend on
which aspect of temporal stability that one is interested in. Under RDU, risk preferences are
characterized by the r parameter as well as the weighting parameter, ¢, which is log-normally
distributed. The entire population distribution of risk preferences may be said to be stable when the
joint distribution of r and ¢ is stable. More formally, this joint hypothesis requires stability in the

estimated population means of the r and ¢ parameters, the estimated population standard deviations

* Figure 1 is generated from the point estimates of the population mean and population standard
deviation of the relative risk aversion parameter. It does not reflect the standard errors around those point
estimates, nor the covariance between them. Our statistical tests do take these into account.
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of r and ¢, and the estimated correlation between r and ¢. We cannot reject this type of temporal
stability; the associated ¥*(9) test statistic has a p-value of 0.303.*

Figure 2 displays the estimated population distributions of relative risk aversion for each
wave and monetary treatment. The estimated distributions in the upper panel control for selection
and attrition bias, and we observe that the estimated population means of the r parameter are almost
identical across the two waves. The estimated between-wave difference in the population mean is
0.031 for the low stake treatment and 0.022 for the high stake treatment, and neither estimate is
statistically significant. We also observe that the population distributions in wave 2 have a smaller
standard deviation than the distributions in wave 1; the estimated standard deviation is 0.955 in wave
1 and 0.763 in wave 2, and we reject the null hypothesis that the estimated difference in the two
coefficients is equal to 0 at the 5% significance level (p-value of 0.042). Hence, we find femporal
stability with respect to population mean and femporal instability with respect to the standard deviation
of the r parameter. The estimated correlation coefficient between the population distributions of
the r parameter over time, Q,,,, s equal to 0.689, which is somewhat higher than the estimated
coefficient under EUT, and we reject the hypothesis that the two population distributions are
independent.

The estimated population distributions of the probability weighting parameter ¢ are
displayed in Figure 3. The distributions in the upper panel control for selection and attrition bias,
and we observe insignificant differences in the estimated population distributions of the ¢ parameter
between the two waves. We cannot reject the hypothesis that the population distribution of the ¢
parameter is temporally stable; the y*(4) test statistic has a p-value of 0.306. The estimated difference
in the population mean between the two waves is statistically insignificant across each monetary

treatment, and we also find that the standard deviation of the population distribution is temporally

* The stable marginal distribution of the r parameter entails 4 restrictions. Similarly, the stable
marginal distribution of the ¢ parameter entails another set of 4 restrictions. In total, temporal stability in the
joint distribution of r and ¢ parameters entails 9 between-wave equality restrictions: 8 restrictions on the
marginal distributions and 1 restriction on the correlation coefficient between the two parameters.

27



stable. The estimated standard deviation is higher in wave 2 compared to wave 1, but the estimated
difference in the standard deviation is statistically insignificant (p-value = 0.326). Finally, we find that
the estimated between-wave correlation of the ¢ parameter is 0.662 with a standard error of 0.159,
which suggests that there is a strong degree of temporal stability at the individual level.

To the best of our knowledge, our study is the first to parameterize within-individual
correlation in risk attitudes over time as part of a structural model, and also the first study to control
for the effects of selection and attrition on the associated inferences. The magnitudes of our
estimates appear plausible considering what previous studies found using alternative approaches.
Based on a review by Chuang and Schechter [2015, p.153, Table 1], we can identify four
experimental studies with real incentives that reported within-individual correlation in risk attitudes
over time. Levin, Hart, Weller and Harshman [2007] and Lonnqvist, Verkasalo, Walkowitz and
Witchardt [2015] used the raw count of safe choices from pairwise comparisons to measure risk
aversion, and found correlation ranging from 0.20 to 0.38. Andersen, Harrison, Lau and Rutstrom
[2008b] assumed EUT with CRRA utility to derive each subject’s r parameters from their responses
to multiple price list tasks, and found correlation in the derived r parameters ranging from 0.34 to
0.58 (compared to our estimate of 0.36). Finally, Wélbert and Riedl [2013] applied a two-step
approach of estimating a RDU model separately for each subject and wave, and using the resulting
point estimates as data points in subsequent statistical analyses.” They assumed CRRA utility and
one-parameter Prelec probability weighting functions, and computed correlation of 0.77 in the r
parameters and 0.73 in the ¢ parameters (compared to our estimates of 0.69 and 0.60, respectively).

In summary, we contribute to the literature by modeling risk preferences in a non-linear,
structural manner, allowing for unobserved heterogeneity across the population and endogenous
selection and attrition. The use of panel correlations in structural parameters to test individual-level

stability is also a unique feature of our analysis. The ability to analyze temporal stability at both the

* In general point estimates should not be used as data in statistical analyses, since estimates are
random variables.
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population and individual level in a single econometric model demonstrates the coherency and

flexibility of our econometric modeling approach.

B. Effects of Sample Selection and Attrition on Risk Attitudes under EUT

We observe significant evidence of exogenous and endogenous selection and attrition effects
on the estimated coefficients reported in Table 2. We find a positive and significant effect of the
higher recruitment fee on the propensity to self-select into the first wave of our experiment. In
effect, the law of demand applies to participation in the experiments, and response rates increase
significantly when the recruitment fee is raised from 300 kroner to 500 kroner for participation in
wave 1. We also find a statistically significant and U-shaped association between the self-selection
index and the home-to-hotel distance, suggesting that there is a negative and diminishing marginal
effect of the distance up to a turning point at 34.22 miles. In other words, as one may expect, people
who live farther away from the session venues are less likely to participate, and people who live
closer are more sensitive to a small increase in the distance. Of course the sign of the marginal effect
changes after the turning point, but this is more or less an artefact of the quadratic specification that
is of limited economic significance, since only six out of the 1996 invitees lived outside a 34.22-mile
radius from a venue.* Looking at observable characteristics, middle aged and older subjects are
more likely to select into the first wave compared to omitted age group. It is generally difficult to
explain panel retention rates in terms of observed characteristics, although the results do suggest
that young and high-income subjects are less likely to select into the second wave than otherwise.

Turning to endogenous effects of sample selection and attrition, we find enough statistical
evidence to reject the hypothesis of no selection and attrition bias, respectively. The hypothesis of
no endogenous sample selection bias is evaluated using the joint test of Hy: 01, = 0411 = Q412 = 0.

This hypothesis is rejected, with a p-value less than 0.001. The hypothesis of no endogenous attrition

* Indeed, all but one of the 1996 invitees lived within a 36.2-mile radius from a venue. The
exceptional case was one subject that lived in central Copenhagen but participated in the experiment in
central Arhus.
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bias can be tested by H: 0,1 = 04 = 0, which again is rejected, with a p-value less than 0.001. The
estimated correlation coefficient between the error terms in the selection and attrition equations,
0,152, 18 equal to -0.340 with a standard error of 0.125, which means that one cannot take the naive
approach of correcting for each source of sampling bias separately.

We can see the overall effects of controlling for selection and attrition bias on the estimated
population distributions of relative risk aversion in Figure 1. The lower panel shows the estimated
distributions with no correction for sample selection and attrition bias. Despite the significant
statistical evidence of sample selection and attrition bias, we draw qualitatively similar conclusions
about temporal stability. We observe that the population mean increases over time and the
population distribution becomes tighter around the mean.*” Although the estimated population
mean is higher in wave 2 compared to wave 1 for both monetary treatments, there is statistically
significant evidence of temporal stability with respect to relative risk aversion at the population level.
We also find temporal stability at the individual level. The estimated correlation coefficient between
relative risk aversion in wave 1 and 2 is equal to 0.537, which is significantly different from 0 (p-
value < 0.001).

In general it is easier to correct for endogenous attrition than it is to correct for endogenous
selection, since in the case of attrition one potentially knows a lot about the subject that did not
attend later waves from their participation in the very first wave. It would then be tempting to at
least correct for attrition bias and ignore selection bias.* Unfortunately this would lead to incorrect
inferences. Under EUT this approach would lead one to rgect the hypothesis that the population
mean and standard deviation of relative risk aversion was temporally stable, with a p-value of 0.007.*

This is sharply different than the conclusion when one corrected for both selection and attrition.

*"Table D1 in Appendix D (available online) reports the estimated parameters for the EUT model
with no correction for selection and attrition bias.

* As in Andersen, Harrison, Lau and Rutstrém [2008b].

* Table D5 in Appendix D (available online) reports the estimated parameters for this EUT model
with corrections for attrition bias and no corrections for selection bias.
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C. Effects of Sample Selection and Attrition on Risk Attitudes under RDU

We continue to observe significant selection and attrition bias under RDU. The hypothesis
test of no sample selection bias now involves the correlation coefficients between the error term in
the selection equation and the five other random components (the error term in the attrition
equation, two r parameters, and two ¢ parameters). This hypothesis is rejected at all conventional
levels, since the p-value is less than 0.001. The hypothesis test of no attrition bias involves the
correlation coefficients between the error term in the attrition equation and four structural
parameters (two r parameters, and two ¢ parameters) and we again reject the null hypothesis of no
attrition bias (p-value < 0.001). The estimated correlation coefficient between the error terms in the
selection and attrition equations, @, is equal to -0.416 with a standard error of 0.162, so we can
again reject the naive approach of correcting for each source of sampling bias separately.

Figure 3 displays the overall effects of controlling for selection and attrition bias on the
estimated population distributions of the probability weighting parameter. The lower panel shows
the estimated distributions with no correction for sample selection and attrition bias, and here we
find statistical evidence of temporal stability.”” More specifically, without corrections for non-
random selection and attrition bias, we cannot reject the null hypothesis that the population
distribution of the ¢ parameter is temporally stable (the y*(4) test statistic has a p-value of 0.304).
Viewed another way, the uncorrected estimates of the probability weighting parameter seem
relatively stable around biased base levels. We also observe that the shape of the population
distribution for the weighting parameter changes when we correct for selection and attrition bias.
Figure 3 shows that the population distribution of the ¢ parameter is more skewed to the right in the
upper panel with corrections compared to the lower panel without corrections. A larger fraction of
subjects can be classified by an inverse-S shaped probability weighting function when we correct for

selection and attrition bias compared to the non-corrected estimates.

*" The estimated parameters are reported in Table D2 in Appendix D.
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We can look closer at the effect of adding controls for sample selection and attrition on risk
attitudes under RDU. The effects on the mean of the r parameter are modest: estimates of concavity
slightly decline in both wave 1 and wave 2 when we control for selection and attrition bias, so the
risk premium derived from utility concavity, ceferis paribus, is lower. The effects on the mean of the ¢
parameter are shown in Figure 4. The top (bottom) panel refers to the first (second) wave, and the
left (right) panel refers to the low (high) stakes treatment. There are two outcomes in each lottery,
and the probability weighting functions displayed in Figure 4 are identical to the implied decision
weights on the highest outcome. Based on Figure 4 we can infer the effect of probability weighting
on risk attitudes evaluated at the mean of ¢. The S-shape of the probability weighting function leads
to a negative (positive) risk premium for lotteries with a relatively high (low) probability of the
highest outcome, ceteris paribus. We see similar S-shaped probability weighting across the two waves.
While corrections for selection and attrition bias do not change our qualitative inferences regarding
the shapes of the probability weighting functions, they lead to smaller mean estimates in both waves
making the extent of probability distortion less pronounced. This finding on S-shaped probability
weighting at mean values does not contradict the upper panel of Figure 3 that classifies a large
fraction of the population as inverse-S instead: ¢ follows a right-skewed distribution, and the mean is
sensitive to a long right tail.

We can again assess the potential error in assuming away selection bias and just correcting
for attrition bias. As with EUT, this “second best” approach again leads to incotrect inferences.”
Under RDU this approach would lead one to rgect the hypothesis that the population mean and
standard deviation of r and ¢ was temporally stable, with a two-sided p-value of 0.07.” This is again

sharply different than the conclusion when correcting for both selection and attrition.

> Table D6 in Appendix D (available online) reports the estimated parameters for the RDU model
with corrections for attrition bias and no corrections for selection bias.

> Under EUT (RDU) the instability comes from the estimated mean (standard deviation) of the
population parameter r.
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We can derive certainty equivalents for each lottery in Option A and Option B of the 40
decision tasks, and then evaluate the risk premia associated with different prize sets. Figure 5
displays the estimated risk premium in percent as a function of the probability of the highest
outcome in lottery A with 2250 kroner and 1000 kroner and lottery B with 4500 kroner and 50
kroner. Lottery pairs like these were presented in decision tasks that involved the largest stake within
our experiment. The solid line is based on the estimated parameter values for r and 7 with
corrections for selection and attrition bias, and the dashed line is based the model without correction
for endogenous selection and attrition. The results show that endogenous selection and attrition bias can
have a substantive effect on the estimated risk premium. For example, the upper right panel shows that the
risk premium for lottery B with a 50-50 chance of 4500 kroner and 50 kroner is 1.7 percent of the
expected value in the model with corrections for endogenous selection and attrition bias and is equal

to 34.6 percent in the model with no control for selection and attrition bias.

5. Conclusions

Heckman and Smith [1995; p.99] noted that, “Surprisingly, little is known about the
empirical importance of randomization bias.” Aggregate data on participation rates from job training
experiments by Hotz [1992] and clinical trials by Kramer and Shapiro [1984] suggest that the bias
due to endogenous participation decisions might be significant, but we know of no study that
directly evaluates the hypothesis.” We do not @ priori know the direction of randomization bias in
economics experiments, and whether the use of recruitment fees mitigates the effects of
randomization bias on elicited risk attitudes. Given the importance of randomized control trials in

policy experiments in economics, and concerns with inferences drawn from such designs (Harrison

> Many other hypotheses about the effects of sample selection and attrition in longitudinal studies
have been evaluated, of course. In the case of clinical trials, for instance, Beunckens, Molenberghs and
Kenward [2005] compare the effects of obvious ad hoc methods (such as assuming that the last observed case
for some subject who does not participate in later sessions is the observation that the subject would have
provided, or only using sub-samples that participate in all sessions), methods based on imputation and
corrections for the imprecision of the imputation, and “direct-likelihood” methods such as those used here.

332



[2011a][2011b][2013]), there is surely some urgency to understand if randomization per se affects the
latent characteristics of subjects.

We find evidence of temporal stability for inferred risk attitudes under EUT when the model
fully corrects for endogenous sample selection and attrition bias. A joint test of the estimated mean
population coefficients for relative risk aversion and standard deviation coefficients for relative risk
aversion, across the two waves, allows us to demonstrate that the entire population distribution of
relative risk aversion is temporally stable. Furthermore, the estimated mean and estimated standard
deviation of the population relative risk aversion are each temporally stable. Finally, the correlation of
the population distribution of relative risk aversion is positive and statistically significant between
waves, consistent with temporal stability at the individual level.

We obtain similar aggregate results for temporal stability under RDU, but with one
difference. Again, EUT and RDU agree on the risk premium: all they do is decompose it differently.
Under RDU the risk premium depends on utility curvature and probability weighting. When we
consider the joint distribution of all parameters characterizing utility curvature and probability
weighting, we cannot reject the hypothesis of temporal stability. This is what one would expect from
the EUT results, since the two must agree in terms of the aggregate risk premium. But we find that
there is temporal stability of the mean of the utility curvature parameter and Zemporal instability of the
standard deviation of the utility curvature parameter. The parameter characterizing probability
weighting demonstrates temporal stability. We again observe correlations between parameters over
time, consistent with individual-level temporal stability.

These results are encouraging, in the sense that temporal stability allows policy-makers to
have some sense of confidence when designing policies that affect risky outcomes over time, such as
social insurance. But the results are particularly striking because we also find statistically significant evidence
of endogenous sample selection and attrition. One might find temporal stability without making a correction
for selection and attrition because the “raw data” is literally the same from wave to wave, or even

the inferred risk preferences are literally the same from wave to wave. We conclude that one must
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make that correction, and that it results in changes in the averages and standard deviations of risk
preference parameters: compare the top and bottom panels of Figure 1 under EUT and Figure 2
under RDU, and the two sets of probability weights in each panel in Figure 3 under RDU. These
changes in risk preferences translates into economically significant changes in risk premia, as shown
in Figure 5. Although we find evidence consistent with temporal stability with no corrections for
selection and attrition, this is Zemporal stability with respect to biased estimates of risk preferences.

The effects of selection and attrition also accord with intuition. For example, we find a
positive and significant effect of the higher recruitment fee on the propensity to self-select into the
first wave of our experiment. And people who live farther away from the session venues are less
likely to participate, and people who live closer are more sensitive to a small increase in the distance.

Our results therefore show that randomization bias can have significant effects on inferences
about risk attitudes. Neglecting endogenous sample selection and attrition cou/d lead one to draw
erroneous conclusions about risk attitudes at a point in time (e.g. the average Dane’s relative risk
aversion now), as well as stability in risk attitudes over time (e.g. whether the average Dane’s relative
risk aversion has changed over time). In fact, we find that neglecting selection and attrition leads to
the first type of erroneous conclusion but not, in general, to the second type of erroneous
conclusion. These results hold whether one uses an EUT or RDU characterization of risk attitudes,
although the way in which sample selection and attrition affects the analysis is different across the
two decision theories as well as alternative measures of temporal stability that one may consider.

These effects of randomization bias on risk attitudes are clear in our design because of the
exogenous variation in recruitment fees. We do not claim that our findings generalize beyond the
adult Danish population, the specific recruitment fees we employed, or the battery of lotteries we
employed. On the other hand, our sample is wide and representative of the adult Danish population,
and our recruitment fees and lottery parameters fall well within common practice in field
experiments. The constructive implication for future experimental design is to exogenously vary

show-up fees and evaluate the effects on a case-by-case basis.
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The need for corrections to mitigate randomization bias is “bad news” from our results,
because it requires renewed attention to ex ante sample design and/or ex post statistical corrections. It
also raises deep concerns with experimental designs that rely on randomization to infer causal
effects, and that only check for consistency of observables over time. However, the “good news” is
that even after making such corrections there are still many quantitative and qualitative aspects of
risk attitudes that remain temporally stable, at least for this population and the time frame evaluated
in our experiments.

Why is it that we observe such stability of risk preferences in Denmark, during a period in
which all major industrialized countries experienced various macroeconomic disruptions? One
hypothesis might be that the extensive social network of consumer protections in Denmark
mitigated the effect of changes in these “background risks” on the “foreground” risk aversion our
experiments measured. There is also evidence that Danes view the foreground risks of experiments
as distinct from their extra-experimental wealth (Andersen, Cox, Harrison, Lau, Rutstrém and
Sadiraj [2018]). The methodology we develop can be applied to different populations, to evaluate the

extent to which they exhibit the same temporal stability of risk preferences.
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Table 1: Sample Sizes and Descriptive Statistics

A. Sample Sizes

Recruitment Variable Wave 1 Wave 2 All

High Fixed Fee Invited 865 184 1049
Accepted 208 89 297
Percent Accept 241% 48.4% 28.3%

Low Fixed Fee Invited 1131 170 1301
Accepted 205 93 298
Percent Accept 18.1% 54.7% 22.9%

B. Descriptive Statistics for Participants

Variable Definition Mean Wave 1 Mean Wave 2
female Female 0.48 0.45
young Aged less than 30 0.16 0.13
middle Aged between 40 and 50 0.23 0.21
old Aged over 50 0.49 0.53
IncLow Lower level income 0.22 0.23
IncHigh Higher level income 0.47 0.45
Number of subjects 413 182

Notes: Most variables have self-evident definitions. The omitted age group is 30-39. Lower income is defined in variable
“IncLow” by a household income in 2008 below 300,000 kroner. Higher incomes are defined in variable “IncHigh” by a
household income of 500,000 kroner or more.
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Table 2: Estimates of EUT Parameters
with Full Controls for Sample Selection and Attrition
(Log-simulated likelihood = -11910 for 25,555 observations on 413 subjects and 1,583 rejecters in
wave 1 and 182 subjects and 172 rejecters in wave 2 using 100 Halton draws.)

Standard
Variable Estimate Error p-value 95% Confidence Interval

Selection equation: B,/V'V ar(u,;)

female -0.086 0.064 0.176 -0.211 0.039
young 0.177 0.119 0.138 -0.057 0.440
middle 0.259 0.111 0.020 0.041 0.477
old 0.315 0.100 0.002 0.119 0.511
high_fee 0.165 0.065 0.011 0.038 0.292
dist -0.032 0.006 0.000 -0.044 -0.020
dist® 0.0005 0.0001 0.001 0.0002 0.0007
constant -0.853 0.106 0.000 -1.061 -0.644

Alttrition equation: Bo/N'V ar(n,y)

female -0.132 0.116 0.256 -0.359 0.096
young -0.367 0.213 0.085 -0.785 0.051
middle -0.069 0.193 0.719 -0.448 0.309
old 0.042 0.172 0.807 -0.294 0.378
IncLow -0.240 0.157 0.126 -0.547 0.067
IncHigh -0.274 0.138 0.047 -0.545 -0.004
earnings 0.035 0.035 0.321 -0.034 0.104
constant 0.737 0.234 0.002 0.279 1.196

Mean of r parameter in wave 1

RAfirst 0.087 0.107 0.417 -0.123 0.298
RAhigh 0.088 0.037 0.017 0.016 0.160
constant 0.413 0.092 0.000 0.232 0.594

Mean of r parameter in wave 2

RAfirst -0.077 0.127 0.543 -0.327 0.172
RAhigh 0.059 0.052 0.260 -0.043 0.160
constant 0.594 0.150 0.000 0.300 0.887
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Standard deviations and correlation coefficient of r parameters in wave 1 and wave 2

o, 0.856 0.089 0.000 0.682 1.030
o, 0.787 0.137 0.000 0.518 1.056
Qitr2 0.360 0.099 0.000 0.166 0.554

Other correlation coefficients

Osts2 -0.340 0.125 0.006 -0.585 -0.096
Ostrl 0.080 0.060 0.183 -0.038 0.199
Ostr2 -0.288 0.117 0.014 -0.517 -0.059
Qs2r1 -0.133 0.103 0.195 -0.335 0.068
Qs2e2 0.665 0.067 0.000 0.534 0.796

Test for temporal stability of predicted group means for r parameter

aBase 0.180 0.152 0.236 -0.118 0.478
aRAhigh 0.151 0.144 0.294 -0.131 0.433
aRAfirst 0.016 0.171 0.928 -0.320 0.352

Notes: Group means are predicted using the estimated mean function for r parameter. aBase tests whether the between-
wave difference in constant is significant. ARAhigh (aARAfirst) tests whether the between-wave difference in constant +

RAhigh (RAfirst) is significant.
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Table 3: Estimates of the RDU Parameters
with Full Controls for Sample Selection and Attrition
(Log-simulated likelihood = -10972 for for 25,555 observations on 413 subjects and 1,583 rejecters
in wave 1 and 182 subjects and 172 rejecters in wave 2 using 100 Halton draws.)

Standard
Variable Estimate Error p-value 95% Confidence Interval

Selection equation: B,/V'V ar(u,;)

female -0.067 0.063 0.290 -0.191 0.057
young 0.144 0.113 0.202 -0.077 0.364
middle 0.279 0.108 0.010 0.066 0.491
old 0.399 0.098 0.000 0.207 0.591
high_fee 0.165 0.063 0.009 0.041 0.289
dist -0.031 0.006 0.000 -0.044 -0.018
dist® 0.0005 0.0001 0.001 0.0002 0.0007
constant -0.895 0.097 0.000 -1.085 -0.704

Alttrition equation: Bo/N'V ar(n,y)

female -0.093 0.142 0.513 -0.371 0.185
young -0.445 0.239 0.063 -0.914 0.024
middle -0.110 0.247 0.657 -0.594 0.375
old -0.159 0.244 0.515 -0.638 0.320
IncLow -0.134 0.173 0.440 -0.473 0.206
IncHigh -0.177 0.178 0.320 -0.525 0.172
earnings 0.064 0.058 0.273 -0.050 0.177
constant 0.862 0.303 0.004 0.268 1.456

Mean of r parameter in wave 1

RAfirst 0.106 0.090 0.242 -0.071 0.283
RAhigh 0.050 0.045 0.271 -0.039 0.138
constant 0.574 0.095 0.000 0.389 0.760

Mean of r parameter in wave 2

RAfirst 0.018 0.104 0.864 -0.187 0.222
RAhigh -0.003 0.066 0.916 -0.132 0.125
constant 0.606 0.091 0.000 0.426 0.785

41-



Standard deviations and correlation coefficient of r parameters in wave 1 and wave 2

o 0.955 0.113 0.000 0.733 1.176
O 0.763 0.102 0.000 0.564 0.962
Orix2 0.689 0.072 0.000 0.549 0.829
Mean of p parameter in wave 1
RAfirst -0.337 0.197 0.086 -0.722 0.048
RAhigh -0.049 0.085 0.562 -0.216 0.118
constant 1.731 0.245 0.000 1.251 2.210
Mean of p parameter in wave 2
RAfirst 0.519 0.332 0.119 -1.170 0.133
RAhigh 0.325 0.162 0.045 -0.642 -0.008
constant 2.272 0.438 0.000 1.414 3.130
Median of p parameter in wave 1
RAfirst -0.165 0.097 0.088 -0.354 0.025
RAhigh -0.024 0.041 0.563 -0.106 0.058
constant 0.847 0.165 0.000 0.523 1.170
Median of p parameter in wave 2
RAfirst -0.219 0.125 0.081 -0.464 0.027
RAhigh -0.137 0.062 0.027 -0.259 -0.015
constant 0.959 0.113 0.000 0.738 1.179
Standard deviations and correlation coefficient of ¢ parameters in wave 1 and wave 2
Oy 2.697 0.494 0.000 1.729 3.665
Oy 3.915 1.268 0.002 1.431 6.399
Qolg2 0.662 0.159 0.000 0.351 0.973
Other correlation coefficients
Qsis2 -0.416 0.162 0.010 -0.733 -0.098
Qsirt 0.120 0.090 0.185 -0.057 0.297
Ostr2 0.246 0.054 0.000 0.141 0.351
Qsig1 0.402 0.042 0.000 0.319 0.485
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Ostg2 0.252 0.057 0.000 0.140 0.364

Qsart -0.277 0.130 0.034 -0.533 -0.022
Qs2e2 -0.114 0.171 0.505 -0.450 0.222
Os201 -0.187 0.077 0.015 -0.337 -0.037
Qx2¢2 -0.015 0.104 0.883 -0.219 0.188
Orip1 -0.104 0.086 0.228 -0.272 0.065
Orig2 -0.034 0.088 0.698 -0.206 0.138
Q1201 0.127 0.089 0.155 -0.048 0.303
Qu2¢2 -0.002 0.091 0.982 -0.180 0.176

Test for temporal stability of predicted group means for r parameter

aBase 0.031 0.109 0.775 -0.182 0.245
aRAhigh 0.022 0.097 0.824 -0.212 0.169
aRAfirst -0.057 0.103 0.582 -0.258 0.169

Test for temporal stability of predicted group means for ¢ parameter

aBase 0.541 0.377 0.151 -0.197 1.280
aRAhigh 0.266 0.306 0.385 -0.334 0.866
aRAfirst 0.360 0.235 0.126 -0.102 0.821

Test for temporal stability of predicted group medians for ¢ parameter

aBase 0.112 0.163 0.493 -0.208 0.432
aRAhigh -0.001 0.156 0.995 -0.307 0.305
aRAfirst 0.058 0.102 0.572 -0.143 0.258

Notes: Group means are predicted using the estimated mean function for each parameter. aBase tests whether the
between-wave difference in constant is significant. ARAhigh (aARAfirst) tests whether the between-wave difference in

constant + RAhigh (RAfirst) is significant.
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Figure 2: Population Distributions of
Risk Aversion Due to Utility
Curvature under RDU

With Corrections for Selection and Attrition

8
= = = Low Stakes 1n Wave 1
= = = High Stakes in Ware 1
6 ————— Low Stakes in Ware 2
" || —— sk Stakes in Wave 2
4
24
0 T T T T T T T T T
-1.5 -1 -3 0 i 1 1:5 2 2:5
Belative Bazk Aversion Parameter ¢
i No Correction for Selection and Attrition
6
A4
2
0- f T T T

-3 0 i 1 1:5 2 25
Belative Bazk Aversion Parameter r

44



Figure 3: Population Distributions of
Risk Aversion Due to Probability

Weighting under RDU
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Figure 4: Decision Weights under RDU
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Figure 5: Relative Risk Premia under RDU
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