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Abstract

The paper analyzes the excess entry hypothesis for sealed-bid first-

price public procurement auctions.The hypothesis is proved analytically

for any feasible combination of bid preparation cost and bid evaluation

cost when the bidders face a rectangular cost density function and con-

firmed in numerical simulations based on a family of flexible cost density

functions. The excess entry hypothesis implies that the procurer may re-

duce both his own cost and the social cost by imposing a positive fee on

the bids.

Sequential search is a superior strategy to a public procurement auc-

tion whether or not the procurer imposes an optimal fee on the bids.

Keywords: Excess entry, Public procurement auctions, Optimal fee,

Sequential search

JEL codes: D21, D43, D44, L13, L51,

1 Introduction

According to the seminal papers by Mankiw and Whinston 1986 [15] and Suzu-

mura and Kiyono 1987 [20], entry costs may cause the market equilibrium num-

ber of firms to exceed the socially efficient number of firms in oligopolistic mar-

kets for homogeneous final goods.1 Following Suzumura and Kiyono the result

is dubbed the (second-best) excess entry theorem.2

In Mankiw andWhinston’s setting the sufficient conditions for this to happen

are: (a) firms face identical cost functions and act symmetrically; (b) total

output increases in the number of firms; (c) the output per firm declines as

the number of firms increases; (d) the postentry (equilibrium) price exceeds

marginal costs.3

1For recent surveys, see Suzumura 2012 [21] and Fujita 2016 [6]
2 Second-best because the social planner is assumed to take oligopolistic pricing as granted

rather than enforcing the marginal-cost principle.
3 In effect, conditions (b) to (d) say that the demand function is declining and that the

individual firm’s producer’s surplus in insufficient to cover its total costs (inclusive fixed costs)
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The hypothesis analyzed in this paper is that the excess entry theorem also

holds in the case of ordinary sealed-bid first-price public procurement auctions

under similarly, in this case seemingly innocuous, conditions: (a’) firms face

the same ex ante cost density function and act symmetrically; (b’) the expected

winning bid decreases in the number of bidders; (c’) the bidders’ expected profit

declines as the number of bidders increases; (d’) the winning bid exceeds the

winning bidder’s cost. The analytical problem is that in the case of a public pro-

curement auction there are no simple analogies to the market demand function

and the producers cost function in the ordinary goods market.

The excess entry theorem is of little practical relevance in ordinary goods

markets because, in general, it is not feasible to reduce the number of firms to

the socially efficient number without raising the price of the good and harm-

ing consumers. On the contrary, in public procurement auctions the procurer

may appropriate the efficiency gain and reduce both private and social costs by

imposing a fee on the bids. The analysis indicates that the potential saving is

significant.

An ordinary public procurement auction is just one way of organizing pro-

curement. An alternative is sequential search. In sequential search (as defined in

this paper), the procurer is supposed to peg a price and ask a randomly selected

potential bidder if he will accept the offer. If the supplier addressed declines,

the procurer continues until he finds a supplier that accepts. The price offered

must be sufficiently high to induce the supplier to pay bid preparation costs

and learn his production costs. As shown below, sequential search is a supe-

rior search strategy to a public procurement auction. This finding is consistent

with the empirical fact that private sector procurers, who are free to choose the

mode of contract they find most suitable, make little use of public procurement

auctions (literature referred to below).

The present analysis is deliberately made as simple as possible. It falls

within the independent private value paradigm and is restricted to the case of

perfect symmetry. Potential bidders are assumed not to know their production

cost before they have paid a common (sunk) bid preparation cost and entry

fee, if any. However, they (and the procurer) know the (common, restricted)

cost density function. These assumptions imply that each bidder’s price is a

monotonically increasing function of his production cost; that any potential

bidder that has decided to pay the bid preparation cost and the entry fee, if

any, also submits a bid even if his realized cost and price may be high and his

probability of winning be correspondingly low; and that the bidder that realizes

the lowest production cost also offers the lowest price, wins the auction and (in

market equilibrium) earns a profit equal to the bid preparation cost paid by his

competitors.

if the price equals marginal costs and, consequently, that the second-best (market equilibrium)

solution is inferior to the (infeasible) first-best solution. In technical terms, the cost function

satisfies (i) 
0
()  0 for all   0, (ii) either  (0)  0 or lim→0+ 

00
() := 

00
(0)  0 and

(iii) 
00
()   · 0


 +


 6= 


, where  is the i-th firm’s output,  the market price,

and  the coefficient of conjectural variations,  =  ( = 1 ) 2  ) (Suzumura and

Kiyono 1987) [20]
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For simplicity, I assume that the procurer determines the number of bidders

that are invited to submit bids and that this number (≥ 2) is made known to the
bidders. The number of invited bidders is determined as the number of bidders

consistent with the condition that the bidders’ ex ante expected profit is non-

negative. These assumptions ensure that the invited bidders will actually bid,

and that no bid exceeds the cost density function’s upper support. The outcome

of the game is defined in terms of (i) the market equilibrium number of bidders

and the associated expected private and social costs, (ii) the efficient number

of bidders and the associated expected private and social costs, and (iii) the

optimum (cost-minimizing) fee.

As to public procurement auctions the paper relates to Riley and Samuelson

1981 [17] (as to the derivation of the bid function) and to Samuelson 1985 [18]

(as to the impact of bid preparation costs on the efficient number of bidders).

A crucial difference is that Samuelson assumes that the bidders know their

costs before incurring bid preparation costs and, consequently, only pay bid

preparation costs and submit a bid if their production cost is below a certain

value (increasing in the entry cost and number of competitors), which makes the

supplier indifferent between accepting the invitation or abstaining. The analysis

of the relation between entry costs and the optimal entry fee has a parallel in

French and McComick 1984 [5], although their model differs significantly from

this one.

McAfee and McMillan 1988 [14] analyze the sequential direct search mech-

anism introduced by Stigler in his seminal paper on the economics of informa-

tion [19]. In their paper, the imperfection is solely due to the procurer’s cost

of searching for potential suppliers: The procurer continues searching until the

search cost exceeds the expected gain from addressing one more potential sup-

plier. Providers’ bid preparation cost is implicitly assumed of no significance. In

my setting, the most important factor is the providers’ (bid preparation) cost;

consequently, the price offered must be sufficiently high to make it worthwhile

for potential providers to consider the offer.

In section 2, I develop the general setup. However, the general model does

not to allow me to derive conclusions regarding the efficiency of public procure-

ment auctions. The pivotal element is the cost density function. In section 3,

I solve the model analytically under the mathematically simplifying assump-

tion that the cost density function is rectangular. In section 4, I solve the

model numerically for a family of trigonometric (multi-humped) density func-

tions. I select his family of density functions because the one-humped density

function looks very much like the normal density function (and satisfies the

essential condition of being bounded by a lower and a upper support), the two-

humped density functions may be considered an approximation to the case in

which the bidders (randomly) fall in two groups (low and high costs), and the

many-humped density function approximates the discontinuous version of the

rectangular density function. Numerical solutions based on other mathematical

specifications of the density function (not reported here) do not qualitatively

affect the results. Section 5 concludes the paper.
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2 The general setup

2.1 Strategic games

In the following, I consider and compare two procurement strategies: (i) public

procurement auction and (ii) sequential search.

The time line in the public procurement auction case is as follows: At time

0 the procurer invites  potential bidders to request a description of the project

in question4. The access to the tender documents may depend on their paying

a fee, . The potential bidders are informed of the number of rivals. The

number of invited potential bidders, , and the fee,  if any, are determined

by the procurer on basis on his ex ante information of the potential bidders’

production cost density function,  (), their (common) bid preparation cost,

, and his own bid evaluation cost, , so as to minimize his expected total net

costs. At time 1 each of the invited bidders ’draws’ his production cost, ,

and determines the bid  () that maximizes his expected profit. At time 2 the

procurer ’opens the envelopes’, evaluates the bids and awards the contract to

the bidder, who has submitted the lowest bid.

In the sequential search case, the procurer at time 0 pegs a price, ̂, and

asks a potential supplier selected at random if he is willing to deliver the project

at that price. The offered price must be sufficiently high to make it worthwhile

for the supplier to pay the bid preparation cost and learn his production cost

given the probability that his realized cost may be higher than the offered price.

At time 1, the supplier learns his production cost, accepts the offer if his cost

is below the offered price, and declines if his cost exceeds the offered price. In

the latter case, the procurer selects another potential supplier at random and

asks the same question. The game continues until a supplier accepts the offer.

Note that I focus on determining the optimal procurement strategy and,

consequently, on the privately and socially best ex ante expected outcome, which

due to the rationality and information assumptions made is identical to the

optimal equilibrium outcome.

2.2 Derivation of the bid function

Each bidder pegs his bid, , to maximize his expected profit, (Π), given his

production cost, , his bid preparation cost (common to all bidders), , and the

probability that his − 1 competitors have higher realized costs, ( )
4As in most of the literature, it is (unrealistically) assumed that the number of bidders is

continuous. Alternatively, we might assume that the procurer pegs the number of bidders to

the integer just below the estimated market equilibrium number of bidders. A more satisfac-

tory solution to the integer problem is to assume that the buyer issues an open invitation to

suppliers to guage their interest, announces the number of potential (i.e. interested) bidders

and assumes that the potential bidders adopt a common mixed strategy regarding whether

to participate in the auction as in, e.g., Li and Zheng 2009 [11]. However, this solution is less

efficient, as the expected private and social costs are increasing in the number of potential

bidders. See Levin and Smith 1994 [10]
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(Π) = (− ) ·( )−  (1)

( ) ≡ Pr
=[2]

(  ) = (1−  ())
−1

;  (c
¯
 ) = 1;  (̄ ) = 0

where c
¯
is the lower support and ̄ is the upper support of the common cost

density function  ().

The first-order profit maximization condition is

(Π)


= ( ) + (− ) ·  ( ) · 


= 0

or (as  is a monotonically increasing function of )5




·( ) + (− ) ·  ( ) = 0 (2)

The bid function is derived as the solution to eq. (2)




·( ) +  ·  ( ) =  ·  ( )

 ( ( ) · )


=
 ( ( ) · )


−( )

 ( ) ·  =  ( ) · −
Z

( )

 ( ) = − 1

( )
·
Z

( ) (3)

which, as  (̄ ) = 0, also may be written as

 ( ) = − 1

( )
·
Z 

̄

( ) (4)

2.3 The market equilibrium number of bidders

The ex ante expected lowest cost is

 (1 ()) =

R ̄
c
¯

( ·( ) · ()) R ̄
c
¯

( ) · ()
=  ·

Z ̄

c
¯

( ·( ) · ())  (5)

5This is a common assumption in the literature; see e.g. Krishna 2009 [9]. A formal proof

is provided in McAfee and McMillan 1987b [13]. The proof is based on two steps: First,

one bidder’s response to a particular decision rule that he arbitrarily conjectures his rivals to

be using. Second, the Nash requirement that the conjecture decision rule is consistent with

optimizing behavior by the other bidders.
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because, by symmetry, each of the  bidders is equally likely to realize the lowest

cost, and consequently, Z ̄

c
¯

( ) · () = 1



The ex ante expected lowest bid is

 (1 ()) =

R ̄
c
¯

³
− 1

()
· R 

̄
( )

´
( ) · ()R ̄

c
¯

( ) · ()

=  (1 ())−  ·
Z ̄

c
¯

µZ 

̄

( )

¶
· () (6)

and the ex ante expected profit for all  competitors

(Π ()) =  (1 ())− (1 ())−  ·  (7)

=  ·
Z ̄

c
¯

µµ
−
Z 

̄

( )

¶
·  ()

¶
−  ·  (8)

The market equilibrium number of bidders,  (), is the solution to(Π ( )) =

0.

2.4 Social costs and the efficient number of bidders

The expected total social cost is the expected lowest production cost plus the

bidders’ bid preparation cost, , and the procurer’s bid evaluation cost, ,

() = (1 ()) +  · (+ ) (9)

The efficient number of bidders, ∗ , is the solution to 
0( ()) = 0.

2.5 Procurer’s cost

The procurer’s total expected cost is

 () = (1 ()) +  ·  (10)

The procurer’s preferred number of bidders, ∗, is the solution to
0
( ()) =

0. The preferred number of bidders may be large, in fact infinite, if the

procurer has no bid evaluation costs. However, the procurer cannot coerce

potential bidders to submit a bid if their ex ante expected profit is negative.

Consequently, the highest feasible number of bidders is  and the associ-

ated lowest feasible cost in the case of ordinary public procurement auctions is

 ( ()) =  ( ()).
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2.6 Sequential search

An alternative to a public procurement auction is to peg a price, ̂, select a

potential supplier at random and ask whether he is willing to deliver at that

price. The procurer’s cost of finding and addressing a potential supplier is ̂

The search cost ̂ may differ from the bid evaluation cost in public procurement

auctions, . However, for simplicity, in the following I shall assume that ̂ = 

If the supplier declines after having learned his production cost, the procurer

moves to the next supplier and repeats the process, until a finds one that accepts

the offer.

The procurer’s expected cost is

(̂) = ̂+ (̂) · ̂ (11)

where  (̂) is the expected number of potential suppliers he must address before

he finds one that realizes a cost below the price offered,  ≤ ̂. The probability

Pr
³
 ≤ ̂

´
= 

³
̂
´
, and the expected number of trials is  (̂1) =

1

 (̂)
.

The unrestricted cost-minimizing offered price6 is the solution to

(̂
³
̂

´
)

̂
= 1− (̂)

 (̂)2
· ̂ = 0

 (̂)
2

(̂)
= ̂ (12)

However, if ̂ is low, then the potential suppliers’ expected profit may be

negative. If so, they will abstain from considering the offer, and the procurer

must offer ̂  ̂ The restricted offered price ̂ is the solution to 
³
Π̂
³
̂
´´
=

0,


³
Π̂
³
̂
´´

=
³
̂− (̂)

´
·  (̂)− 

=

⎛⎝̂−
R ̂
0
( ·  ()) R ̂
0
 () 

⎞⎠ ·  (̂)− 

= ̂ ·  (̂)−
Z ̂

0

( ·  ()) −  (13)

The expected private costs and expected social costs are identical


³
̂

´
= ̂ + 

̂
· ̂ = 

³
̂

´
= 

³
̂
³
̂

´´
+ 

̂
· (+ ̂) (14)

as 
³
Π̂
³
̂

´´
= 0

6The subscript u denotes unrestricted and the subscript restricted.
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I want to compare the social outcomes of the three procurement strategies:

(a) ordinary procurement auction, (b) procurement auction cum optimal fee,

and (c) sequential search. However, to do so I need to specify the cost density

function.

3 Rectangular cost density function

To compare the social outcomes of the three procurement strategies considered:

(a) an ordinary procurement auction, (b) a procurement auction cum optimal

fee, and (c) sequential search, I need to specify the cost density function.

For simplicity and with no loss of generality I assume that c
¯
= 0 and ̄ = 1

and, consequently, that the spread  = ̄− c
¯
is normalized to 1. With this

normalization I obtain

 () = 1;  () = ; ( ) = (1− )
−1

;

Z
( ) =

−1

· (1− )



3.1 Public procurement auctions

The bid function reduces to

 ( ) =
1


+

− 1


·  (15)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

c

b

(); = (2 3 5 10)

Figure 1: The bid function, rectangular cost density function
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The expected lowest cost and lowest bid are, respectively,

 (1 ()) =  ·
Z 1

0

³
 · (1− )

−1 · 1
´


=  ·
µ
1


− 1

+ 1

¶
=

1

+ 1

 ( ( )) =
1


+

− 1


· (1 ())

=
1


+

− 1


· 1

+ 1
=

2

+ 1

The zero-profit restriction

 (Π ( )) =  ( ( ))− (1 ( ))−  ·  = 1

+ 1
−  ·  = 0

implies that the market equilibrium number of bidders is

 =

r
1

4
+
1


− 1
2

(16)

The total expected social cost is

( ()) = (1) +  · (+ ) =
1

+ 1
+  · (+ ) (17)

The corresponding efficient (cost-minimizing) number of bidders and mini-

mum social cost are

∗ =

r
1

+ 
− 1 (18)

(∗ (
∗
)) = 2 ·

√
+  − (+ ) (19)

Comparing equations 16 and 18, respectively 17 and 19, implies

Proposition 1 If the cost density function,  (), is rectangular, then the excess

entry hypothesis

  ∗
( ())  (∗ (

∗
))

holds true for any feasible7 , non-negative values of the bid preparation cost, 

and the bid evaluation cost, .

7The condition for the existence of a competitive market solution,  ≥ 2, is  ≤ 1
6
.

Hence, the model implies that the number of public procurement auctions is likely to be

rather small. If the spread is narrow compared to the bidders’ bid preparation cost, there

may be no or only one bidder. The condition for an efficient market solution, ∗ ≥ 2, is

stricter, +  ≤ 1
9
.
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The excess entry hypothesis implies that it is profitable for the procurer to

reduce the number of bidders by imposing a positive fee, , on the bidders. The

optimal fee, ∗, is derived from the zero expected profit condition:

 (Π (∗  (+ ))) =
1

∗ + 1
− ∗ · (+ ∗) = 0

∗ =
1

(∗ + 1) · ∗
− 

=
 +  ·√+ 

1−√+ 
 0

Proposition 2 If  () is rectangular, then the procurer may reduce both private

and social costs by imposing an optimal fee, ∗ on the bidders. The optimal fee
is positive for any feasible non-negative values of bid preparation cost,  and

bid evaluation cost, , and is increasing in both  and .

Figure 2 illustrates the solution of the model for various combinations of bid

preparation cost, , and bid evaluation cost, . The curves depict (from above)

the procurer’s expected cost,  ( ()), the expected social cost,  ( ()),

and the bidders’ expected profit,  (Π ()), as functions of . In all three cases,

the sum of bid preparation cost and bid evaluation cost is identical, + = 0075,

and, consequently, so is the expected social cost.

The market equilibrium solution  ( ()) =  ( ()) is marked by

a dot, the efficient solution  ( (
∗
)) =  ( (

∗
  
∗)) is marked by a circle,

and the procurer’s preferred solution  ( (
∗
)) (infeasible if 

∗
  ) is

marked by a box. The crosses indicate the expected number of searches and the

resulting expected total cost if the procurer adopts a sequential search strategy.

The derivation is given below.

2 4 6 8 10
0.0

0.5

1.0

n

a:  = 0075;  = 0

2 4 6 8 10
0.0

0.5

1.0

n

b:  = 005;  = 0025

2 4 6 8 10
0.0

0.5

1.0

n

c:  = 0025;  = 005

Figure 2: Solution of the model for various combinations of  and .

Rectangular cost density function

Figure 2a illustrates the case in which the bidders’ bid preparation costs are

relatively high and the procurer pays no bid evaluation cost,  = 0075  = 0.

10



In this case the market equilibrium number of bidders is  = 319 and only

somewhat higher than the efficient number of bidders, ∗ = 265. As  = 0, the
procurer would like to see many more bidders, in fact ∗ → ∞. It is natural
to conjecture that the procurer in this case might benefit from subsidizing the

bidders, thereby attracting more bidders, intensifying the competition among

the bidders and reducing his cost. This conjecture is erroneous. On the contrary,

the optimal strategy is to impose a fee, ∗ = 0028 on the bidders. The fee

will, of course, reduce the number of bidders and raise the lowest expected bid,

however by less than the fees collected (the move from the solution indicated by

a dot to the solution indicated by a circle). Figure 2b illustrates the standard

case, i.e., the bid evaluation costs are positive but significantly smaller than the

bid preparation costs,  = 005  = 0025. The overall picture is very much the

same as in figure 2a. The market equilibrium number of bidders is higher, as

is the potential cost reduction by imposing a (higher) optimum fee, ∗ = 0053.
Figure 2c illustrates the unlikely case,  = 2· = 005. In this case, ∗ = 0078 is
quite high, as is the gain, ( ())−( (

∗
)) = 011. Notice that in this

case the number of bidders that minimizes the procurer’s expected costs is less

than the market equilibrium number of bidders, ∗  , and consequently,

the procurer may reduce his cost (marginally) by directly limiting the number

of bidders. However, it is more profitable to indirectly reduce the number of

bidders by imposing a (high) fee on the bids.

3.2 Sequential search

In sequential search, the procurer pegs a price, ̂, and asks a randomly selected

potential supplier whether he is willing to deliver at that price. If not, the

procurer moves on to the next potential supplier and repeats the process, until

his offer is accepted.

The procurer’s expected cost is


³
̂

´
= ̂+ (̂) · ̂ = ̂+

1


³
̂
´ · ̂ = ̂+

1

̂
· ̂

The unrestricted optimal offered price, ̂, is the solution to


³
̂

³
̂
´´

̂
=


³
̂+ ̂

̂

´
̂

= 0

from which

̂ =
√
̂ and  (̂) =

1


³
̂
´ = 1

̂
=

1√
̂

Provided a potential supplier realizes production cost ̂1 ≤ ̂, then his ex-

pected production cost is

 (̂1) =

R ̂
0
R ̂

0


=
1

2
· ̂ =

√
̂

2
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The expected costs to the procurer and society and the suppliers’ expected

profit are, respectively,


³
̂

³
̂

´´
= ̂ + (̂) · ̂ =

√
̂ +

̂√
̂


³
̂

³
̂

´´
=  (̂1) + (̂) · (+ ̂) =

√
̂

2
+

+ ̂√
̂


³
Π̂
³
̂

´´
=

³
̂ − (̂1)

´
− (̂) ·  =

√
̂

2
− √

̂
 0 iff ̂ ≥ 2 · 

The non-negative profit restriction implies that  is only feasible in the un-

likely case that the procurer’s cost of finding and addressing a potential supplier,

̂, is more than twice the supplier’s cost of calculating his production cost, .

In the ’normal’ case, ̂ ≤ 2 ·  the procurer must offer    to attract

potential suppliers.

The offered price,  is the solution to


³
Π̂
´

=
³
̂− (̂1)

´
− (̂) · 

=

µ
̂− 1

2
· ̂
¶
− 1

̂
·  = 0

from which

̂ =
√
2

 (̂) =
1

̂
=

1√
2

3.3


³
̂(̂)

´
= 

³
̂(̂)

´
= ̂+ (̂)·̂ =

√
2+

̂√
2
=
2+ √
2

Comparing the three procurement strategies

The isocost functions  ( ( )) related to the three procurement strategies

are, respectively,

(∗) =
1³q

1
+
− 1
´
+ 1

+

Ãr
1

+ 
− 1
!
· (+ ) = 

( ()) =
1³q

1
4
+ 1


− 1

2

´
+ 1

+

Ãr
1

4
+
1


− 1
2

!
· (+ ) = 


³
̂

³
̂

´´
=

√
̂

2
+

+ ̂√
̂
=  ∧

³
̂(̂)

´
=
√
2+

̂√
2
= 
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where  is any feasible cost.

The isocost functions for  = 05 are shown in figure 3.8

0.00 0.02 0.04 0.06 0.08 0.10 0.12
0.00

0.02

0.04

0.06

0.08

0.10

0.12

v

u

Figure 3: Isocost curves for different procurement strategies

The thick downward-sloping line depicts the combinations of  and  for

which the socially efficient solution (∗ (+ )) = ( ( (+ ∗)  + )) =

. The thin curved solid line depicts the combinations for which the market

solution ( ( ()  + )) = , if  = 0 Any point on curved line is to

the left of the thick line indicating that the market equilibrium is inferior to the

socially efficient equilibrium, as lower values of  and  result in the same total

social cost, . The broken curves depict the combinations of  and  for which,

respectively, 
³
̂

³
̂ (̂)  + 

´´
=  and 

³
̂(̂ ()  + )

´
= . If

 ≤ ̂
2
, the optimal search strategy is to offer ̂, and if  ≥ ̂

2
the optimal

8The corresponding  ()-functions are

(∗) :  = 0085786− 

( ()) :  =


1

4(05)−8


4 + (05)


(05) +


−8 + 2 (05)  + (05)2 + 2


− (05)  − 2 (05)2




− 1
4(05)−8


−4 − (05)


(05)−


−8 + 2 (05)  + (05)2 + 2


+ (05)  + 2 (05)2






̂


̂


:  = (05)

√
 − 3

2




̂(̂)


:  =

 − 1
2
 − 1

4
(05)


−4 + (05)2 + 1

4
(05)2 

− 1
2
 + 1

4
(05)


−4 + (05)2 + 1

4
(05)2


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strategy is to offer ̂. In both cases, any combination of  and  is to the right

of the (∗) line. This fact implies that sequential search as search strategy is
superior to a socially efficient public procurement auction (an auction where the

procurer imposes an optimal fee), as total costs,  are the same even though

bid preparation cost, , and bid evaluation cost, , are higher.

Proposition 3 If  () is rectangular, then sequential search is a superior strat-

egy to a public procurement auction for any feasible non-negative combination

of bid preparation cost,  and bid evaluation cost, .

Qualitatively, the broken isocost curves illustrating the sequential search

strategy must have the same shapes regardless of the cost density function.

At the origin, ( = 0  = 0)  searching costs nothing and ̂ → ∞. A slight

increase in ̂ reduces the optimal number of searches leaving a relatively con-

siderable ’room within the budget’ for an increase in . If ̂ is already rel-

atively high, a further increase will squeeze the budget left for . At some

value of ̂,  is reduced to zero. That is, 
³
̂

³
̂ (̂)  + 

´´
=  must

be shaped as an inverted U along the -axis. Similar reasoning implies that


³
̂(̂ ()  + )

´
=  must have the shape of an inverted U along the

-axis. The two curves must intersect at some point along the line defined by


³
Π
³
̂ ()  + 

´´
= 0.

These general properties allow us to conclude that if 
³
̂
´
  (∗) for

all three combinations of  and  at the thick, solid (∗ (+ )) =  isocost

curve indicated by dots, then sequential search is a superior strategy to public

procurement auction for any feasible combination of  and . That conclusion

holds for any feasible cost density function,  ().9

4 A family of multi-humped density functions

4.1 Public procurement auctions

The cost density function is defined as

 () = 1− cos 2 (20)

where  ≥ 0 is an integer defining the number of humps. The rectangular

distribution is a special case,  = 0.

9 ()  0; (c
¯
= 0) ; (̄) = 1
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0

1

2

 = 10

Figure 4. Density functions,  = 1 2 10.

The corresponding distribution function, probability function, and bid func-

tion are

 () = − sin 2
2

(21)

 ( ) =

µ
1− +

sin 2

2

¶−1
(22)

 ( ) = −
R 
1

³¡
1− + sin 2

2

¢−1´
¡

1− + sin 2
2

¢−1 (23)

The bid functions are depicted in figure 5 below. As →∞, the distribution
function and bid functions approximate the corresponding functions in the case

in which the density function is rectangular.

0.0 0.5 1.0
0.0

0.5

1.0

 = 1; = [2 3 5]

0.0 0.5 1.0
0.0

0.5

1.0

 = 2; = [2 3 5]

0.0 0.5 1.0
0.0

0.5

1.0

 = 10; = [2 3 5]

Figure 5 The bid function, trigonometric density function
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The bidders’ total profit and social cost are, respectively,

 (Π ( )) =  ·
Z 1

0

(( ()− ) · ( ) ·  ()) −  ·  (24)

= − ·
Z 1

0

ÃÃZ 

1

Ãµ
1− +

sin 2

2

¶−1!


!
· (1− cos 2)

!
−  · 

 ( ( + )) =  ·
Z 1

0

( · ( ) ·  ()) +  · (+ ) (E(CS(tri)))

=  ·
Z 1

0

Ã
 ·
µ
1− +

sin 2

2

¶−1
· (1− cos 2)

!
+  · (+ )

As above, the market equilibrium number of bidders,  (), is the solution

to  (Π ( )) = 0. The socially efficient number of bidders, ∗ ( )  is the
solution to

((+))


= 0.

1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

n

 = 1

1 2 3 4 5
0.0
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0.8

n

 = 2

1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

n

 = 10

Figure 6. Expected social cost, efficient solution and market equilibrium

The curves in figure 6 depict the expected social cost,  ( ())  for (from

below)  = [0025 005 0 075 01]. The circles indicate the socially efficient

solutions, and the dots indicate the market equilibrium solutions. In all three

cases (and in cases not reported), the circles are to the left of and below the

corresponding dots as the excess entry theorem predicts.

Proposition 4 If the cost density function is trigonometric, then the excess

entry theorem

 ( )  ∗ ( + )

 ( ( ( )))   ( (
∗
 ( + )))
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holds and, consequently, it is possible to reduce private and social costs by im-

posing a positive fee,  on the bidders,

∗ (  )  0

 ( ( ( + ∗))) =  ( ( ( + ∗))) =  ( (
∗
 ( + )))

  ( ( ( )))

for any integer number of humps, , and any feasible non-negative combinations

of bid preparation cost,  and bid evaluation cost, .

4.2 Sequential search

The expected number of searches, ̂, and the procurer’s expected cost are, re-

spectively,

 (̂) =
1


³
̂
´ = 1

̂− sin 2̂
2

(25)


³
̂

³
̂
´´

= ̂+ (̂) · ̂ (26)

= ̂+
̂

̂− sin 2̂
2

The unrestricted cost-minimizing offered price, ̂ (̂), is the solution to

0
³
̂

³
̂
´´
= 0.

However, the minimum feasible offered price must be sufficiently high to

make a potential supplier’s expected profit non-negative. The restricted offered

price, ̂ (), is the solution to


³
Π̂
³
̂
´´

=
³
̂− (̂1)

´
− ̂ · 

=

⎛⎝̂−
R ̂
0
( · (1− cos 2)) 

̂− sin 2̂
2

⎞⎠− 

̂− sin 2̂
2

= 0

In both cases, the expected social cost is


³
̂

³
̂
´´

=  (̂1) + ̂ · (+ ̂)

=

R ̂
0
( · (1− cos 2)) 

̂− sin 2̂
2

+
+ ̂

̂− sin 2̂
2

Figure 7 serves to demonstrate that sequential search is superior to a public

procurement auction.10

10The ten-humped case is not shown, as it is very similar to the rectangular cost density

function.
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Figure 7: The social isocost function and combinations of ̂ and  for which

the procurer’s best strategy is ̂ (̂) or ̂ ().

The downward-sloping lines are isocost functions determined by the con-

dition  (∗ ( + )) =  (). The slope of the line is −1. The  () is

the maximum social cost consistent with efficient competitive equilibrium, i.e.

∗ ( + ) = 2 . In the one-humped case, the maximum value of + is 0068,

and in the two-humped case, the value is 010127. The upward-sloping sequences

of crosses delimit the combinations of  and  where ̂ (̂) is the optimal search

strategy (below) and ̂ () is the optimal search strategy (above).

As discussed in section 3.3 above, we only need to compare 
³
̂

´
and

 (∗) at the three points on the linear  (∗) isocost curves depicted by

dots. In all three cases 
³
̂

´
is smaller than  (∗)

11 . Consequently, we

may conclude that sequential search is always a superior strategy to a public

procurement auction cum an optimal (positive) fee, ∗, and more so compared
to a less efficient ordinary public procurement auction.

Proposition 5 If the cost density function,  (), is trigonometric, then se-

quential search is a superior procurement strategy to a public procurement auc-

tion for any integer number of humps, , and feasible non-negative combinations

of,  and ̂ = .

11The numerical results are

 = 1  = 2

 004070 0 006800 006740 0 010127

 002729 006800 0 003387 010127 0



∗


0532 6 0532 6 0532 6 0551 7 0551 7 0551 7



̂


05301 048870 04962 0494 3 0452 5 0472 9

The first column refers to the acombination of  and , where ̂ = ̂, the second column

refers to the case where  = 0, and the third column to the case where  = 0.
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Figure 8 illustrates the standard case, i.e.  = 005, and  = 0025

The curved lines depicts the expected social costs,  ( (  + )) for  =

[1 2 10]  The optimal fee, ∗ is the solution to  (Π (∗  ( (+ ∗)))) = 0.

The dots indicate the market equilibrium, the circles indicate the efficient so-

lution, and the diamonds denote the expected social costs, 
³
̂

³
̂ ()

´´
in

the case of sequential search. The vertical lines mark the corresponding values

of  
∗
 and ̂.
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Figure 8 Social costs in public procurement auctions and sequential search for

various values of .

5 Conclusion

Under the simplifying assumption that the cost density function is rectangular, I

have analytically proved the excess entry hypothesis for any feasible non-negative

combination of bid preparation cost and bid evaluation cost.

The hypothesis implies

• that an ordinary public procurement auction is an inefficient procurement
strategy and

• that the procurer may reduce his own costs and social costs by imposing
a positive fee on the bids.

In addition I proved

• that sequential search is a superior strategy to a public procurement auc-
tion for any feasible non-negative combination of bid preparation cost and

bid evaluation cost.

I found it not possible to prove analytically that these results hold in general

as the general model implies integrals that have no analytical solution. As an

alternative, I explored the properties of the three procurement strategies by nu-

merically solving the optimization problem for a flexible family of trigonometric
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cost density functions. The simulations confirm the strong results derived an-

alytically in the rectangular case and suggest (but do not prove) that they do

hold in general.12

Although simple, the model conforms well to a number of empirical observa-

tions: (a) The number of bidders in public procurement auctions is often quite

low13, (b) the costs associated with public procurement auctions are relatively

high14, and (c) in general, private sector procurers, who are free to choose the

mode of contract they find most suitable, make little use of public procurement

auctions15.

The model and these empirical observations indicate that public procure-

ment auction, as required by, e.g., EU legislation is an inefficient mode of

contracting and that the sought for transparency, equality of treatment and

economic integration come with a significant cost16 .
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