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1. Introduction

The present paper contributes to the theory of measuring the efficiency costs of

taxes. To address this issue the standard approach in the public finance literature is

to use the excess burden of taxation, which measures the efficiency cost of taxes in

money terms. In this paper, we propose a non-money metric aggregate that contains

normative information about the current level of taxes in a quite intuitive way. We

argue that this measure is easy to use for comparisons between countries and over

time.

Despite its wide appeal, the excess burden measure has some well-known defects

in its application. Quoting Auerbach (1985), the excess burden of taxation is defined

"as the amount that is lost in excess of what the government collects. Unfortunately,

while this definition makes intuitive sense, it is too vague to permit a single interpre-

tation" (p.67). The problem with excess burden is that it represents a money metric

aggregate. Moreover, a money metric equivalent of the tax distortion can be derived

both by using an equivalent variation and a compensating variation method. Thus,

while in Mohring (1971) the excess burden is the amount in excess of taxes being

collected that the consumer would give up in exchange for the removal of all taxes

(an equivalent variation calculation), in Diamond and McFadden (1974) the excess

burden is the amount that the government must supply to the consumer to allow her

to maintain the initial level of utility (a compensating variation calculation). The

results, as we know, differ. More importantly, and independently of which method

we use, comparisons of different countries’ excess burden should be done with care as

issues, such as using a purchasing power parity corrected exchange rate, are involved
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(see Neary, 2004).

In the present paper we suggest a measure of tax efficiency that is not expressed

in money terms and is therefore easy to use for international and inter-temporal

comparisons. Building on distance function techniques recently utilized by Anderson

and Neary (1996), we propose an index that measures the welfare burden of a given

tax configuration as its distance from optimal taxes (where the welfare burden is

taken to be zero). We call it the Tax Optimality Index (TOI). Our measure has an

immediate, and intuitive, interpretation: for example, a TOI equal to 0.6 implies that

current taxes are 60% efficient, or, in other words, that a 40% reduction of optimal

tax rates will reduce welfare to the level that exists at the current tax rates. Being

a distance measure of tax efficiency, it is not expressed in money terms and can be

directly compared between different countries and/or time periods.

In addition to the TOI, we also propose a Revenue Equivalent Uniform Tax

(REUT) measure to address an issue frequently considered in public economics, viz.

the uniform tax rate that keeps the provision of public goods unchanged. This cor-

responds to a reform of taxes that changes the non-uniform initial tax structure to a

uniform one that yields the same amount of tax revenues and thus the same provi-

sion of public goods (a flat-tax type of reform). The resulting uniform tax rate is a

convenient and easily interpreted measure of the size of the public sector.

The rest of the paper proceeds as follows. The model of a small open econ-

omy with public good provision and distortionary taxation is presented in section

2. Section 3 contains the definition of the tax optimality index, its properties and

its interpretation. The derivation of the revenue-equivalent average tax is presented
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in section 4. To illustrate the techniques used, a numerical example is presented in

section 5. Finally, section 6 concludes.

2. A Small Open Economy with Public Good Production

Consider a small open economy that faces fixed world prices on goods that it trades

with the rest of the world. Assume that the number of traded goods is 1+M, withM

being the number of non-numeraire goods. The world prices of these non-numeraire

goods are denoted by the vector p.1

The government raises revenues by taxing consumption.2 Denote t as the (M×1)

vector of ad-valorem taxes, which create a wedge between world and producer prices

p and consumer prices q = (1 + t) · p.3 The tax revenues finance the production of a

public good g that is returned to consumers free of charge.

We assume the existence of a representative agent that achieves utility level u

by consuming private and public goods and raising income through its (fixed) fac-

tor supply. The consumer decisions are characterized by the expenditure function

e(q, g, u), which denotes the minimum expenditure needed to achieve utility level u,

given consumer prices q = (1+ t) ·p and a level g of the public good.4 Standard prop-

erties of this function (see Dixit and Norman, 1980, Woodland, 1982, and Cornes,

1We use the first of the traded goods as a numeraire, its price being normalised to unity. In
addition, it is assumed, without loss of generality, that this good is not taxed. Unless otherwise
mentioned, all vectors are taken to be column vectors and the transpose of a vector x is denoted by
x0.

2Extending the model to include both income taxes and consumption taxes is straightforward
and therefore delegated to the appendix. Similarly, taxes and subsidies on international trade can
easily be incorporated into the model.

3The notation “·” denotes the horizontal product of two vectors; if z = x · y then zi = xiyi. In
the expression for q, 1 is a vector of ones.

4The unit price of the numeraire good is also an argument of the expenditure function, but it is
supressed for simplicity. We do the same to the revenue function with respect to both the price of
the numeraire good and the (fixed) factor endownments vector.
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1992) imply that eq ≡ ∂e/∂q is the vector of compensated demand functions for the

private goods, −eg is the marginal willingness to pay for the public good and eu is

the inverse of the marginal utility of income.5

Let the restricted revenue function r(p, g) denote the value of total income gen-

erated in the private sector given producer prices p and the level of the provision

of the public good g. The gradient of this function with respect to producer prices

(rp ≡ ∂r/∂p) gives the vector of domestic supplies of private goods and rg is the

supply shadow price of the public good (−rg > 0 is the unit cost of producing the

public good). It is assumed that the production technology exhibits constant returns

to scale technology, implying that rgg ≡ ∂2r/∂g2 = 0.

In describing the equilibrium of this economy we use the private sector’s net

expenditure function E defined as

E((1 + t) · p, g, u) = e((1 + t) · p, g, u)− r(p, g). (1)

Thus, net expenditure is the consumer’s expenditure on private goods minus the

revenue earned by the production sector from the sale of private goods. As is well

known, the price gradient Ep = ep − rp is the vector of utility-compensated excess

demands. The derivative −Eg = −eg−(−rg) denotes the wedge between the marginal

willingness to pay for the public good (−eg > 0) and the marginal cost of producing

it (−rg > 0). Clearly, if this wedge is positive (negative) an extra unit of the public

5The term eg represents the reduction in expenditure on the private goods as a result of an extra
unit consumption of the public good, holding utility level constant. In that sense, eg is the shadow
demand price of the public good and −eg(> 0) is then the marginal willingness to pay for the public
good.
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good will increase (decrease) welfare.6

The equilibrium of our economy is described by the following two equations:

E((1 + t) · p, g, u) = −rg(p, g)g (2)

(t · p)0 ep = −rg(p, g)g. (3)

The first equation is the private sector’s budget constraint expressed in domestic

prices. It demands that the extra money consumers spent on private goods (extra in

the sense that is in addition to the income that they earn by working in the private

sector) comes from working in the public sector (−rgg is the total cost of producing

g units of the public good, which, under the assumption of constant returns to scale,

is equal to total income generated in that sector). The second equation is the public

sector budget constraint, equating tax revenues and total public sector costs. Given

world prices p and the tax vector t, these two equations simultaneously determine

the level of utility u and the level of provision of public goods g.

The public sector budget constraint (3) may be solved for the quantity of the

public good g as a function of t and u, i.e. g = g(t, u). Substituting this solution

into equation (2) and re-writing the private sector budget constraint as the balance

of trade function B(t, u), we obtain:

B(t, u) ≡ E((1 + t) · p, g(t, u), u) + rg(p, g(t, u))g(t, u) = 0. (4)

6The condition −Eg = 0 (i.e. −eg = −rg, or MRS = MRT ) is the so-called Samuelson rule for
optimal public good provision in a closed economy without distortionary taxation. This rule does
not apply here as we consider a small open economy with distortionary taxation.
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Equation (4) represents the general equilibrium budget constraint for the economy,

making sure that the public good market is in equilibrium and that consumers and

the government cannot spend more money than they earn. It is expressed in terms

of the tax rates and the level of utility. The utility level that satisfies equation (4) is

given by the indirect utility function expressed as u = U(t).

3. The Tax Optimality Index

Having expressed the economy’s equilibrium with a single compact equation (4), we

now construct a measure of the efficiency of the tax structure in the presence of public

goods.

Suppose that we observe a country with tax rates and utility given by (t1, u1) and

a level of public good provision given by g1 = g(t1, u1). Let (t0, u0) be the welfare

maximizing choice of taxes and corresponding utility level and let the corresponding

optimal public good provision be g0 = g(t0, u0). This welfare optimal solution is

obtained by maximizing the indirect utility function U(t) with respect to the tax

vector t, yielding solution t0. The objective is to obtain a measure of how well

the observed tax-public good situation compares with the optimal tax-public good

solution.

With these preliminaries in hand, we can now define the Tax Optimality Index

(TOI) as the distance function

T
¡
t0, u1

¢ ≡ min©δ : B(δ t0, u1) = 0, δ > 0
ª
. (5)

The solution δ0 to this problem determines a tax vector et1 ≡ δ0t0 that yields the
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reference utility level u1. This new tax vector has the property that it is a contraction

of the optimal tax vector t0 towards the origin and thus lies on the ray from the origin

to t0 in tax space. The solution δ0 to the minimization problem in (5) is the scaling

factor by which the optimal tax vector is contracted. Thus, the Tax Optimality Index

T
¡
t0, u1

¢
is the proportion of the optimal tax vector that achieves the same level of

welfare u1 as achieved by the observed tax vector t1.7

If the economy is already at the welfare optimum, then t1 = t0 and u1 = u0 and

so the index takes a value of unity. If the country is not at the welfare optimum, its

level of utility is u1 < u0 and so a proportionally smaller vector of tax rates than t0

will allow the country to maintain its level of utility u1.8 Our index will therefore be

less than unity. In an extreme case, the observed tax vector is t1 = 0 and there is a

zero provision of public goods g1 = 0. In this case, the solution to the above problem

is δ0 = 0 and so the tax optimality index takes the value of zero. Thus, in short, the

tax optimality index T
¡
t0, u1

¢
ranges from zero to unity. Zero indicates that there

is, effectively, no public sector in the observed situation. Unity indicates that the

government’s choice of taxation rates (and hence the provision of public goods) is

optimal. In between, a higher index indicates greater proximity to the optimum. We

can refer to this index, therefore, as a Tax Optimality Index (TOI).

7This definition of the TOI is expressed as a distance function in tax space. Anderson and
Neary (1996) use a distance function in commodity price space to derive measures of the trade
restrictiveness of tariffs, but their measure can also be expressed in tax space. Chau et.al (2003)
use distance functions in quantity space to derive measures of economic inefficiency of tariffs. These
authors provide also a comparison between their efficiency measure and the coefficient of resource
utilisation (Debreu, 1951), the open economy index of deadweight loss (Diewert, 1985), and the
well-known equivalent variation measure.

8There will also exist another set of taxes that is higher than t0 that can maintain the same level
of utility. The index then will be greater than unity, as optimal taxes will have to be inflated. Our
definiton, and thus convention, is to consider only the lower than t0 taxes (hence the min in equation
(5)).
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Figure 1: The Tax Optimality Index

The index is illustrated in Figure 1. The figure depicts iso-utility contours in

a three (two taxable) good small open economy with public good provision. Since

we assume without loss of generality that one good (the numeraire) is not taxed, the

index may be illustrates in the two-dimensional tax space (t2, t3). PointW represents

the optimal tax situation where non-zero taxes finance the production of public goods,

while point A is the assumed current tax situation for the economy. The contours

(indifference curves) show the sets of tax rates that yield various levels of utility,

point W being on the highest feasible indifference curve.

A proportional contraction of the optimal taxes given by W yield tax vectors

on the ray passing through the origin and W . In particular, one such deflation of

the optimal taxes takes us to point B in Figure 1, which produces the same level of

utility as at the current tax equilibrium given by point A. The tax optimality index

for the current tax equilibrium is therefore given by the ratio TOI = OB/OW. This
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tax vector B, as defined above, is (a) a uniform contraction of the optimal tax vector

and (b) yields the same level of utility as the initial tax situation. It should be noted

that the level of provision of the public good will generally be different at points W ,

A and B, but these differences have no bearing on the tax optimality index TOI,

which focuses on welfare alone.9 The TOI index in based on welfare comparisons;

points B and A are welfare equivalent and yield lower welfare than point W .

If the initial tax situation is given by point C, the same point B is obtained and

so the index takes the same value as for situation A. This is as it should be; even

though they may produce different levels of the public good, both have the same

utility and so they are equal in a welfare sense. At initial situation D, on the other

hand, the level of utility is lower than at A and C and so the tax optimality index will

also be lower. Tax configuration D is further from the welfare optimum W than are

A and C in the sense that it is on a lower indifference curve. Its tax optimality index

is given by OF/OW , which is lower than A’s index. In summary, our TOI measures

the distance of any initial tax vector from the optimal tax vector, distance being

measured along the ray OW . This distance, relative to the distance OW , accurately

ranks initial tax situations according to their levels of utility relative to the optimal

utility point W . Thus, we measure the true welfare cost of taxes as the distance from

the optimal tax structure.10

9 It is possible, of course, for the level of provision of public goods to be the same at points A and
W . The level of utility at A will be lower than at W by choosing a sub-optimal tax vector to finance
the public sector.
10As we have mentioned, the techniques we use are based on the work of Anderson and Neary

(1996), whose method measures the welfare-preserving uniform tax when optimal taxes are zero.
However, when optimal taxes are not zero, such a measure may not exist. To see this, consider
Figure 1: clearly the 45 line (which depicts uniform taxes) may not intersect with the iso-utility
contour corresponding to a current tax configuration. The only welfare-preserving tax that we can
always find, is the tax that lies on the line that connects the origin with the optimal tax configuration.
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Note that there can be two scalars that will do the job: if the current tariff

structure is described by point A, the optimal tariff rates can be both proportionally

increased and decreased to get the same utility level (points E and B, respectively).

Our convention is to consider only points on the OW line (that is, only point B is

considered) and then measure the TOI by the ratio OB/OW .

The distance BW measures (in tax space) the loss of welfare associated with

initial point A compared to the best attainable welfare at W . The ratio BW/OW

can therefore be interpreted as a Tax Inefficiency Index (TII). Of course, the two

indices are related by the equation TII = 1− TOI.

Some of the properties of the TOI are apparent from the above discussion. The

main properties are brought together as follows:

1. The TOI has the range [0, 1]. If an economy has optimal choices of both public

goods provision and commodity tax rates, then TOI = 1. If an economy has

sub-optimal choices of either public goods provision or commodity tax rates,

then TOI < 1.

2. The TOI is monotonically increasing in utility. Thus, higher values for TOI

indicate higher welfare; same values for TOI indicate the same level of welfare.

3. The TOI is homogeneous of degree zero in world prices, and hence independent

of the choice of numeraire.

The first two properties are easily proved and follow from the definition of the

The position of this welfare-preserving tax on this line is exactly what our Tax Optimality Index
measures.
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TOI. The final property follows from the homogeneity properties of the revenue and

expenditure functions.11

These properties make the TOI particularly appropriate for measuring the opti-

mality or, conversely, inefficiency of tax structures and for undertaking international

or inter-temporal comparisons. Property 2 states that the TOI and the level of

welfare are positively and uniquely related. Thus, in comparing various alternative

tax/public good situations for a given economy the TOI is a perfectly accurate mea-

sure of welfare.12 For example, index calculations of TOI1 = 0.9 and TOI2 = 0.8

indicate that situation 1 is more efficient than situation 2 and that u1 > u2.

Because the tax optimality index is homogeneous of degree zero in world prices

(Property 3) and so is a "pure number", it can be readily used for comparisons

between different countries and/or different time periods. Different countries may

have different preferences and technologies and, thus, different optimal taxes and

different optimal levels of public good provision. Nevertheless, comparisons on the

basis of the TOI are valid, as the TOI measures the distance of the current tax

structure from its optimal tax configuration. Thus, the TOI can be easily used

to rank countries in terms of distance from optimality. Such rankings of the TOI

generally cannot be translated into welfare rankings, of course.13

11The homogeneity of the TOI in prices follows from the homogeneity properties of the expen-
diture and revenue functions. If all world prices (including the numeraire’s price) are doubled, the
expenditure and revenue via functions e and r, double and, hence, net expenditure via E doubles.
In addition, the shadow supply price rg(p, g) doubles as does tax revenues. Thus, the solution for
the real variables u and g in equations (2) and (3) remain unchanged as a result of the world price
inflation. Hence the balance of trade function B(t, u) is homogeneous of degree zero in prices and
this implies that the TOI is also homogeneous of degree zero in prices.
12Of course, we are dealing with the special case of a single household economy here.
13On the other hand, if two countries have the same technologies, preferences and endowments

then a comparison of their TOIs will enable an accurate welfare comparison. A similar remark applies
to a comparison of the same economy in different time periods.
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When only small tax changes have occurred between time periods, we can use

calculus to uncover some properties of the TOI. Totally differentiating (5) around the

initial equilibrium, holding t0 fixed, we get that B0t(δt0, u1)t0dδ +Bu(δt
0, u1)du = 0.

Total differentiation of B(t1, u1) = 0 yields B0t(t1, u1)dt+Bu(t
1, u1)du = 0, which may

be used to solve for the change in utility consequent upon marginal changes in the

initial taxes. Substituting the result into the first expression yields the relationship

dTu
Tu

=
Bu(et1, u1)

Bu(t1, u1)B0t(et1, u1)et1B0t(t1, u1)dt, (6)

where it is recalled that et1 = δt0.

We can easily see from the above formula that the proportional change of the Tu

deflator is related (via a scaling factor - the first term) to the weighted average of the

tax changes (dt), with the weights being the marginal welfare effects of taxes (Bt)

evaluated at the initial equilibrium. The structure of these weights in terms of deriv-

atives of the revenue and expenditure functions is obtained by totally differentiating

(4) to get

B0t = e0p −
eg

rg + (t · p)0epg
£
(p · ep)0 + (t · p)0epp

¤
. (7)

The term B0t denotes the marginal effects of tax changes upon the balance of trade (4),

which can be interpreted as the foreign exchange needed (zero in our case) to sustain

utility u given world prices p, taxes t, and public good provision g. The change in B

following a change in taxes gives the money metric measure of the resulting welfare

effect.14

14Totally differention of (4) yields
Budu+B0

tdt = 0,
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The first term on the right hand side of this expression (7) for B0t gives the "snap-

shot" effect of a tax change, ignoring the general equilibrium effects incorporated in

the remaining term. If only this "snapshot" effect were to be taken into account, the

expression for (6) would be the approximation dbTu/bTu = −c0dt/c0t, where c = ep is

the consumption vector at the initial equilibrium. This expression weights the mar-

ginal changes in the tax rates by the consumption vector and measures the (snapshot)

percentage change in consumption tax revenue. While this is easy to compute and

"intuitive", it ignores important general equilibrium effects. The appropriate mar-

ginal index is given by (6) and (7). This is the marginal version of our TOI.

The TOI, as defined above, compares the existing tax situation to the optimal

tax situation. The optimal tax situation is one in which the economy chooses its

consumption tax vector and the level of public good provision to maximize utility.15

A variation on this tax optimality index may be defined for the situation where

the level of public goods provision is not endogenously determined. Consider a tax

structure that maximizes utility subject to the requirement that the level of public

good provision is equal to an exogenously determined public revenue requirement. In

this case, the constrained optimal tax structure maximizes utility u subject to the

where
Bu = eu − eg

rg + (t · p)0epg (t · p)
0epu

and Bt is given as (7). The derivative Bu denotes the welfare gain to a unit increase of the economy’s
purchasing power, while B0

t denotes the marginal welfare effects of tax changes. Since the balance of
trade equation can be interpreted as determining the foreign exchange needed (zero in our case) to
sustain utility u given world prices p, taxes t, and public good provision g, the change in B following
a change in taxes gives the money metric measure of the resulting welfare effect. Clearly, and due
to the existence of public goods, B0

t is not always negative and, thus, an optimal level of taxes can
be derived by setting B0

t = 0.
15We should clarify here that by optimality we mean a constrained optimality where lump sum

taxes do not exist.
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private budget constraint (2) in which g = g1 is given, that is, subject to

B(t, u, g1) ≡ E((1 + t) · p, g1, u) + rg(p, g
1)g1 = 0. (8)

Call the solution for the tax vector t0. The constrained tax optimality index (CTOI)

can then be defined, analogously to the TOI as

T
¡
t0, u1, g1

¢ ≡ minnδ : B(δ t
0
, u1, g1) = 0, δ > 0

o
. (9)

This index measures the efficiency or optimality of the existing tax structure

relative to the optimal tax structure that achieves the same public good provision

outcome as the initial equilibrium. If the initial taxes are optimal for this purpose

then the index is unity; if sub-optimal for this purpose, the index is less than one.

This index, therefore, does not assume optimality of the public good provision choice.

4. The Revenue-Equivalent Uniform Tax

We now turn to the case of deriving a uniform tax that holds the provision of public

goods, and thus the tax revenue, constant.16

For this, we use the private sector’s budget constraint (2) to solve for utility u

as a function of t and g, i.e. u = u(t, g), and substitute the solution into the public

sector’s budget constraint (3). Rewriting the public sector budget constraint, we

have:

Π(t, g) ≡ (t · p)0 ep((1 + t)p, g, u(t, g)) + rg(p, g)g = 0. (10)

16Anderson and Neary (2003) make a similar application in which they keep fixed the initial trade
vector.
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Figure 2: The Revenue Equivalent Uniform Tax

Equation (10) represents the general equilibrium public sector budget constraint for

the economy. Denoting by t1 and g1 the current level of taxes and public good

provision, we define the revenue equivalent uniform tax Tg as

Tg : Π(1 · Tg, g1) = 0. (11)

According to this definition, Tg is the uniform tax rate that will yield the reference

level of public good provision (g1) for the economy. Since this uniform tax rate

satisfies the general equilibrium public sector budget constraint (10), both the public

and private sector budget constraints are satisfied.

Figure 2 depicts this revenue-equivalent uniform tax (REUT) rate. In the figure,

point A is the initial tax rate configuration (t1), while W is the optimal vector of

taxes. The contours concentric to point W represent different levels of utility. The
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locus of points given by the solid curve through point A defines the set of taxes that

can support the public good provision (g1) given at the initial situation. The shape

of this locus is determined by the general equilibrium public sector budget constraint,

i.e. equation (10), but it will be downward sloping. This constant-g contour cuts the

45 degree line at point A0. Hence, the uniform tax (Tg) that reproduces the same

level of the public good (g1) is then given by point A0. Clearly, imposing this uniform

tax rate may increase or decrease welfare (as Figure 2 is drawn, welfare falls).

We can now use this uniform tax as a measure of the size of the public sector in

different time periods within a country or between different countries. Even if the

shape of the constant public good locus is not the same between countries, they will all

cut the 45 degree line thus allowing for such a comparison. As an example, consider a

second country’s tax configuration at point B with a constant public good locus given

by the stippled curve, which passes through points B and B0. The second country’s

revenue equivalent uniform tax vector is then B0, which is smaller than A0, and, thus,

the second country B has a smaller public good sector than the first country A. What

makes the revenue equivalent uniform tariff the correct tool for comparing the two

countries is, of course, the fact that it takes into account the general equilibrium

effects of changing taxes and is independent of the choice of numeraire.

To put our revenue equivalent uniform tax measure into perspective, we briefly

discuss a somewhat different uniform tax used in public finance, viz. the average

effective tax. The average effective tax (also called, the tax burden) is used to mea-

sure the size of taxation of a particular activity. It is defined as the ratio of tax

revenues over tax base. For the case of, say, consumption taxes, the average effective
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consumption tax (tc) is defined as tc =
P

i
tipici
C , where ci is the consumption of good

i, ti is the consumption tax rate and C =
P

i(1 + ti)pici is total value of consump-

tion at consumer prices. Thus, the resulting scalar is constructed by using current

tax rates (ti) weighted by current activity information (ci). Clearly, its popularity is

its simplicity: reference to the national statistics of a given country provides all the

information needed for its calculation.17 However, the above method is theoretically

problematic. The use of current activity information is the culprit of a classic index-

number problem: the activity that is highest taxed weighs less in the index! As the

tax on a particular good rises, the weight put on that good (here, its consumption

level) falls. At prohibitively high levels of taxation the weight is zero and thus the

constructed index underestimates the true tax burden in the economy. These are

typical index number problems that could be addressed by applying index number

techniques.18 Clearly, these type of problems do not exist in the calculation of our

revenue-equivalent uniform tax as it uses correct general equilibrium weights.

5. Calculating the TOI: A Numerical Example

In order to illustrate the use of the TOI, we present a numerical example. The model

we use has four commodities - three private and one public good. As in our theoretical

17Due to that, the literature on measuring the average effective tax has concentrated on the
details of what should be included in the nominator and denominator of the above expression (a
recent overview can be found in Sørensen, 2004).
18The problem in its basic form is the same as the one encountered in the price index literature

concerning the relation between Paasche, Laspeyres, and Konüs Indexes, viz. PL > PK > PP (see
Diewert, 1981). While the former two have the advantage of using easily available information, it is
only the latter that truly expresses the true cost of living. This latter index, however, presupposes
knowledge of the utility function and as such it is difficult to use. The solution is to calculate
the Fisher ideal price index, which is a combination of the Paasche and Laspeyres indexes (PF =
[PLPP ]

0.5), and which can closely approximate the Konüs index. Such a development could also be
done in the average effective tax literature, where the current measue underestimates the true tax
burden. A similar procedure, to a different issue, is also argued by Cornes (1996).
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model, the economy is a small open economy with the prices of the private goods

being given by world market conditions. Commodity 1 is taken to be the numeraire.

5.1. Production. The production side of the economy is described by the revenue

function R(p, v), where p is now a vector of producer prices for the four goods and v

is the vector of endowments. There is just one endowment in the numerical model.

The revenue functional form is

R(p, v) =

 4X
i=1

lipi +

Ã
4X

i=1

bi(pi)
2

!0.5 v = hl(p) + eR(p)i v,
where b = (b1, b2, b3, b4) > 0 and l = (l1, l2, l3, l4) ≤ 0 are vectors of parameters and

v > 0 is a scalar. This functional form is linearly homogeneous and convex in prices

(assumed positive, of course). It is increasing in prices over a cone of prices; if l = 0

then it is increasing for all positive prices. The output supply functions are

yi(p, v) =

"
li +

bipieR(p)
#
v.

The parameter vector l is introduced to allow an output to be zero. Specifically, we

might want to set the output of the public good equal to zero, in which case y4 = 0. If

l4 < 0, then there exists a shadow supply price qs4 such that a zero output is feasible.

More generally, setting g = y4(p, v) we can solve for the shadow supply price for

the public good ps4, which can then be eliminated from the revenue function to get

the restricted revenue function that we define in section 2, i.e. r(p1, p2, p3, g, v) =

R(p1, p2, p3, p
s
4(p1, p2, p3, g, v), v). We do not have to perform this solution and sub-

stitution analytically as it can be done numerically in the example.
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5.2. Consumption. The expenditure function is

ee(q, u) = 4X
i=1

kiqi +

Ã
d

4Y
i=1

(qi)
ai

!
u = k(q) + �(q)u,

where a = (a1, a2, a3, a4) > 0 and k = (k1, k2, k3, k4) ≤ 0 are vectors of parameters, d

is a scalar parameter and u > 0 is a scalar representing utility. The consumer prices

are denoted by qi = (1+ti)pi and t4 = 0. This functional form is linearly homogeneous

and concave in domestic prices (assumed positive, of course). It is increasing in prices

over a cone of prices; if k = 0 then it is increasing for all positive prices.

The compensated demand functions are

ci(q, u) = ki +
ai�(q)

qi
u,

which is the linear expenditure system. The parameter vector k is introduced to

allow an output to be zero. Specifically, we might want to set the quantity of the

public good equal to zero, in which case c4 = 0. If k4 < 0, then there exists a shadow

demand price qd4 such that a zero output is feasible.

More generally, setting g = c4(q, u) we can solve for the shadow demand price

for the public good qd4 , which can then be eliminated from the expenditure func-

tion to get the expenditure that we define in section 2, i.e. e(q1, q2, q3, g, u) =

ee(q1, q2, q3, qd4(p1, p2, p3, g, u), u). Again, we do not have to perform this solution and

substitution analytically as a numerical solution suffices.
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5.3. Parameter Values and Results. The parameter values chosen are given

in table 1:

Table 1: Parameter values

Revenue: l =

·
0 0 0 −0.5

¸0
, b =

·
1 1 1 1

¸0
Expenditure: k =

·
0 0 −0.15 −0.5

¸0
, a =

·
0.2 0.2 0.2 0.4

¸0
, d = 2

Other: p =

·
1 0.7 0.5

¸0
, v = 1

As seen from the parameter values, we treat private goods (goods 1-3) symmetrically

in our revenue function specification, but asymmetry is introduced into preferences

via the choice of the parameter k3 for private good 3. Good 4, the public good,

enters the expenditure function with a larger coefficient (a4), indicating a higher

marginal willingness to pay for the public good than for the private goods. Finally,

we normalize the endowment of the single factor (v) to unity and we set the world

prices of the private goods (p) so that the country exports the numeraire good (good

1) and imports the other two goods (goods 2 and 3) (although the trade pattern does

not matter here).

Table 2 below summarizes the results of the equilibrium for the open economy at

the initial or reference tax vector t1 = [0, 0.16, 0.21]0 and at the optimal tax vector t0.

In the table, ti, i = 2, 3 are the ad valorem consumption taxes on the non-numeraire

goods, c is the consumption vector, g is the quantity of public production and TIi
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denotes the traditional tax burden indexes.

Table 2: Results

Reference equilibrium Optimal equilibrium

t12 = 0.16, t
1
3 = 0.21 t02 = 0.2290, t

0
3 = 0.2080

c11 = 0.4161, c
1
2 = 0.5124, c

1
3 = 0.5377 c01 = 0.4176, c

0
2 = 0.4854, c

0
3 = 0.5414

g1 = 0.1116 g0 = 0.1265

u1 = 1.0601 u0 = 1.0609

TI1 = 0.1814 TI0 = 0.2197

TI1/TI0 = 0.8258

REUT = 0.1812

TOI = 0.7972

At the reference equilibrium, the tax rate on good 2 is significantly lower than the

tax rate on good 3. The optimal tax solution reverses this divergence of tax rates and,

due to the asymmetries in the technology and preferences between private goods, the

optimal tax rates are different and are given by t02 = 0.2290 and t03 = 0.2080. The

consumer responds by reducing consumption of the good taxed at a higher rate (good

3) and increasing consumption of the other two private goods (good 2’s tax rate being

lowered) compared to the reference situation. The optimal solution calls for a higher

level of public good provision than at the reference equilibrium, and hence a greater

tax revenue (in terms of the numeraire) is required. Of course, the level of utility is

higher at the optimal solution.

Calculating the Tax Optimality Index we find that TOI = 0.7972. Thus, we can
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Figure 3: The Tax Optimality Index: Numerical Example

achieve the reference utility u1 by using tax rates that are precisely 0.7972 times the

optimal taxes t0. Thus, we say that the reference point taxes t1 are 79.7% efficient.

In other words, an 20.3% proportionate reduction in the optimal tariffs would achieve

the reference utility level u1.

Figure 3 provides an illustration of the TOI in tax space. The figure shows

the reference tax point t1 , the optimal tax point t0 and the constructed tax point

et1 = TOI ∗ t0. By construction, this tax point lies on the ray through the optimal

tax point.

Figure 4 illustrates the REUT rate. The figure shows the tax revenue contours in

tax space along with the reference tax point, the optimal tax point and the revenue-

equivalent uniform tax vector. The reference tax rates are t12 = 0.16 and t13 = 0.21
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Figure 4: Revenue Equivalent Uniform Tax: Numerical Example (labels rounded to
two decimal places)

and public good provision is g1 = 0.1165. The same public good provision may be

attained using a uniform tax rate of Tg = 0.1812. This provides a readily interpreted

measure of the size of the public sector: the public sector size corresponds to an

18.1% uniform tax rate.

It is useful to compare our REUT calculations in this numerical example with

traditional public finance measures used in the literature. One such measure is the

"tax burden". Calculating the average effective trade tax at the reference equilibrium

as the ratio of tax revenues over tax base, gives us a TI1 = 0.1814. This is not exactly

the same as our REUT, indicating that the two methods are different.19

19As it is well known, the effective average tax has no normative value. Still, we could induce a
normative assesment if we were: (i) calculating the average effective tax at the optimal equilibrium
TI0, and (ii) comparing TI1 and TI0. Step (i) gives us a TI0 = 0.2197, implying a tax burden of
21.97%. Step (ii) reveals that the average reference trade tax does not differ substantially from the
optimal average effective tax (TI1/TI0 = 0.8258). However, the tax burden indices were not designed
to measure the optimality of the tax structure. Our TOI is designed for measuring optimality and,
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6. Concluding Remarks

We have proposed a new measure of tax inefficiency, viz. the Tax Optimality Index.

Its advantage is its intuitive and informative interpretation: it tells immediately

how efficient are the current taxes. For example, a TOI equal to 0.8 implies that

current taxes are 80% efficient, or in other words, that a 20% reduction of the optimal

taxes will bring welfare down to the current (distorted) welfare level. The type of

information that the index conveys can easily be compared between countries and

time, and thereby it avoids a basic defect possessed by the excess burden measure of

inefficiency (calculated either as an equivalent or compensating variation).

We illustrated our methods by considering a numerical example. Admittedly,

the true application of our method is to take it to the data and compute TOIs for

different countries and time periods. That, remains to be done.

as indicated above, gives a result TOI = 0.7972, indicating a somewhat bigger tax inefficiency than
the one derived using relative tax burden measures.
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Appendix: The Model with Indirect and Direct Taxes

In addition to the traded goods mentioned in section 2 of the paper, we now assume

the existence of N non-traded goods, whose price vector w is endogenously deter-

mined by markets within the country. There are two types of non-tradeables: private

goods, whose characteristics makes them non-tradeable, and factors with elastic sup-

ply and no possibility of international mobility. However, as long as both markets

clear competitively and factor supplies are elastic, there is no modelling advantage in

distinguishing between the two. To simplify, we assume that all N non-traded goods

are factors facing an endogenous (factor) price w, while the only private goods are

the M traded ones facing a fixed world price p.

The government raises revenues by taxing the consumption of private goods and

by taxing factors’ income. Denote t the (M × 1) vector of ad-valorem indirect taxes

and τ the (N × 1) vector of ad-valorem direct taxes.

The consumer decisions are characterized by the expenditure function e((1 + t) ·

p, (1− τ) ·w, g, u), which denotes the minimum expenditure needed to achieve utility

level u, given consumer prices (1+ t) · p, after-tax factor prices (1− τ) ·w and a level

g of the public good.20 Standard properties of this function imply, in addition to the

properties mentioned in section 2, that ew is the vector of factor supplies.

Let the restricted revenue function r(p,w, g) to denote the value of total income

generated in the private sector given producer prices p, producer factor prices w and

the level of the provision of the public good g. The new property to note here is that

20There is arguably a tension between the assumption of a representative agent and that of many
factors. However, we can easily consider the case of many agents if we assume the existence of a
social welfare function that a government maximises by use of lump-sum transfers.
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rw denotes the vector of factor demands.

The net expenditure function E is defined as

E((1 + t)p, (1− τ)w, g, u) = e((1 + t)p, (1− τ)w, g, u)− r(p,w, g).

The price gradient Ew = ew − rw is the vector of excess factor supply.

The equilibrium of our economy is described by the following three equations:

E((1 + t) · p, (1− τ) · w, g, u) = −rgg (A1)

(t · p)0 ep + (τ · w)0 ew = −rgg (A2)

Ew = 0. (A3)

The first equation is the private sector’s budget constraint expressed in domestic

prices. The second equation is the public sector budget constraint, equating tax

revenues and total costs. Finally, the third equation ensures that the factor markets

clear.

We can solve the last two equations together expressing w and g as functions of

t, τ , and u, i.e. w = w(t, τ , u) and g = g(t, τ , u). Substituting these into the first

equation, and rewriting the private budget constraint as a balance of trade function,

we have:

B(t, τ , u) ≡ E((1 + t) · p, (1− τ) · w(·), g(·), u) + rg(p,w(·), g(·))g(·) = 0. (A4)

Equation (A4) represents the general equilibrium budget constraint for the economy,
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making sure that the markets for the non-tradeable goods (both the factor markets

and the public good market) are in equilibrium and that consumers and the gov-

ernment can not spent more money that they earn. We can now define the TOI

as:

Tu
¡
t0, τ0, u1

¢ ≡ min{δ : B(δt0, δτ0, u1) = 0}. (A5)

Thus, the Tax Optimality Index T
¡
t0, τ0, u1

¢
is the proportion of the optimal tax

vectors that achieves the same level of welfare u1 as achieved by the observed tax

vectors t1, τ1. Thus, the TOI developed in the paper is readily extended to this

more general context.
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