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Abstract

We introduce a structural quantile vector autoregressive (VAR) model.

Unlike standard VAR which models only the average interaction of the

endogenous variables, quantile VAR models their interaction at any

quantile. We show how to estimate and forecast multivariate quantiles

within a recursive structural system. The model is estimated using real

and financial variables. The dynamic properties of the system change

across quantiles. This is relevant for stress testing exercises, whose

goal is to forecast the tail behavior of the economy when hit by large

financial and real shocks.

Keywords: Regression quantiles; Structural VAR; Growth at Risk.

JEL Codes: C32; C53; E17; E32; E44.
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NON-TECHNICAL SUMMARY

The standard definition of financial stability adopted by central banks around

the world emphasises the negative impact that severe financial shocks may

have on real economic activity. This definition underscores an intrinsic ten-

sion in connecting the macro and financial dimensions of the economy. The

empirical workhorse of macroeconomists is the vector autoregressive (VAR)

model, which studies the expected dynamics of the endogenous variables.

Financial instability, on the other hand, is inherently linked to the tail dy-

namics of the system. Using econometric models developed to analyse the

average behaviour of macroeconomic variables is bound to miss important

aspects of macro-financial linkages which arguably only arise when the sys-

tem is affected by tail shocks. This paper develops a quantile VAR model,

which is designed to address many of the core questions of the macro-finance

research agenda.

Quantile VAR models the interaction and feedback effects that the vari-

ables of the system have on their quantile dynamics. To study the macro-

financial linkages in Europe, we estimate a quantile VAR model on euro area

data for industrial production and an indicator of financial distress. We find

that financial shocks – defined as a tail quantile realization – are transmitted

to the real economy only when the economy is simultaneously hit by a real

negative shock. Modelling the mean dynamics with a standard VAR misses

most of the action associated with this important channel of transmission of

financial shocks. Furthermore, shutting down financial linkages in the system
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significantly changes the dynamics of the real economy when hit by negative

shocks, but leaves the dynamics largely unaffected in normal conditions. One

advantage of quantile VAR is that it allows us to perform impulse response

analyses and to forecast the quantiles of the endogenous variables. We find

that by hitting the system with a financial shock there is a strong and persis-

tent asymmetric impact on the distribution of industrial production, which

takes about two years to be absorbed.

Quantile VAR provides also the natural environment to perform stress

testing exercises. To its core, stress testing is a forecast of what happens

to the system when it is hit by an arbitrary sequence of negative shocks. If

the euro area is hit by a sequence of six monthly consecutive financial and

real shocks, its industrial production contracts by a cumulated amount of

more than 10% over the same period. This contrasts with a median increase

of industrial production of around 2%, a forecast which would hold under

normal circumstances.

This paper also contributes to the quantile regression econometric liter-

ature by showing how to deal with multiple variables and how to forecast

in a time series context. Our econometric framework is general enough to

cover the modelling of multiple quantiles of multiple random variables. Stress

testing can be thought of as an estimate of the reaction of the endogenous

random variables when the system is hit by a sequence of quantile shocks.

Stress scenarios are nothing else than an arbitrary series of quantile shocks

hitting the macro-financial environment.
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1 Introduction

Vector autoregressive (VAR) models are the empirical workhorse of macroe-

conomists. In their most basic formulation, these models rely on constant

coefficients and i.i.d. Gaussian innovations. There is, however, substantial

empirical evidence that macroeconomic variables are characterised by non-

linearities and asymmetries which cannot be captured by simple linear Gaus-

sian models (Perez-Quiros and Timmermann 2000, Hubrich and Tetlow 2015,

Kilian and Vigfusson 2017, Adrian, Boyarchenko and Giannone 2019). We

show how to estimate recursive structural VAR models with quantile regres-

sion methods. The insights of our approach can be extended more generally

to produce iterated forecasts for nonlinear models. The methodology is ap-

plied to the euro area, revealing the presence of an asymmetric and sizable

downside risk to the real economy, driven by shocks to the financial system.

Quantile regression was introduced by Koenker and Bassett (1978) and

has found many applications in economics (Koenker 2005, 2017). Early ap-

plications to univariate time series include Engle and Manganelli (2004) and

Koenker and Xiao (2006). White, Kim and Manganelli (2010, 2015) develop

a framework to model multivariate quantiles. Schüler (2014) introduces a

Bayesian quantile structural vector autoregressive model. In homoskedas-

tic linear regression models, the conditioning variables shift the location of

the conditional density of the dependent variables, but they have no effect

on conditional dispersion or shape. In general, however, this need not be
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the case. Quantile regression is a semiparametric technique which allows

different covariates to affect different parts of the distribution. If and how

this happens is an empirical question. In our empirical applications, we find

that estimates of quantile regression slopes and quantile impulse response

functions vary across quantiles. This may happen either because of unmod-

eled time varying higher order moments, and/or because the conditioning

variables affect the conditional distribution of the dependent variables in a

nonlinear way. These effects cannot be detected with standard OLS VAR

estimates.

The VAR for VaR model of White et al. (2015) represents the starting

point of our analysis, as it provides the general framework for inference.

Casting the problem in a multivariate framework such as a VAR model im-

mediately raises the issue of the definition of structural shocks and identi-

fication. We show that structural identification and quantile modeling of

multiple variables are different sides of the same coin. We identify the quan-

tile VAR by estimating a recursive system, where the variables ordered earlier

are allowed to contemporaneously affect the remaining variables, as in the

recursive conditioning framework of Chesher (2003).

This recursion implies that the quantile of the second variable conditional

on the first one, say, is a random variable as it depends on the contemporane-

ous value taken by the first variable. By conditioning on the quantile of the

first random variable (which is available from the previous equation of the

system) we can estimate the quantile of the second random variable. This
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reasoning can be repeated recursively for all the random variables, therefore

giving the quantile of the quantile of the cross section at any given point in

time.

This intuition holds also for multi step ahead quantile forecasting. The

quantile two periods ahead depends on the value taken by the random vari-

ables one period ahead. By conditioning on the quantile values of the random

variables one period ahead (which is available from the initial one step ahead

forecast described in the previous paragraph), we can estimate the quantiles

of the two step ahead random variables. Iterating this reasoning forward, we

can obtain any multi step ahead quantile forecast.

Our econometric framework is general enough to cover the modeling of

multiple quantiles of multiple random variables. It is this multivariate ap-

proach that gives the flexibility to assess the impact of any future quantile

realization. Stress testing can be thought of as an estimate of the reaction

of the endogenous random variables when the system is hit by a sequence of

tail shocks, where tail shocks are defined by future realizations of the ran-

dom variables being equal to low quantiles. Stress scenarios are defined as

an arbitrary series (to be chosen by the policy maker or calibrated to past

crises) of future quantile realizations hitting the system.

We estimate a quantile VAR model on euro area data for industrial pro-

duction growth and an indicator of financial distress and perform three types

of exercises.

First, we estimate euro area growth at risk, defined as the 10% quantile
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of industrial production growth. We find that severe financial shocks are

transmitted to the real economy only when the economy is simultaneously

hit by a real negative shock. Modeling the conditional mean with a standard

VAR misses most of these dynamics. Furthermore, shutting down the finan-

cial channel of transmission in the system significantly changes the dynamics

of the real economy when hit by negative shocks, but leaves the dynamics

largely unaffected in normal conditions. These results are broadly in line

with those found by Adrian et al. (2019) for the U.S. economy. The empiri-

cal model estimated by Adrian et al. (2019) is equivalent to estimating only

one equation of our quantile VAR model. The advantage of quantile VAR

is that it allows us to perform impulse response analyses and to forecast the

quantiles of the endogenous variables. We find that by hitting the system

with a financial shock there is a strong, persistent and asymmetric impact

on the distribution of industrial production, which takes about two years to

be absorbed.

Second, we forecast euro area growth under alternative stress scenarios.

Quantile VAR provides the natural environment to perform stress testing

exercises. At its core, stress testing is a forecast of what happens to the

system when it is hit by an arbitrary sequence of negative shocks. If the

euro area is hit by a sequence of six monthly consecutive financial and real

10% quantile realizations, its industrial production contracts by a cumulated

amount of more than 10% over the same period. This contrasts with a

median forecast (that is, a sequence of median realizations of the endogenous

ECB Working Paper Series No 2330 / November 2019 7



variables) of industrial production of around 2%.

Third, we perform a counterfactual scenario analysis before Lehman Broth-

ers’ default. Using estimates up to August 2008, we find evidence of sizable

and unprecedented downside risk to the euro area real economy already in

mid 2007. Such counterfactual exercises require the estimation of a structural

quantile model.

The paper is organized as follows. Section 2 develops the general quantile

structural vector autoregressive framework. It provides the links with stan-

dard OLS structural VAR, derives the asymptotic distributions, and shows

how to do forecasting with quantile structural VAR. Section 3 estimates the

quantile VAR model for the euro area, and performs a stress testing exer-

cise and the counterfactual analysis before Lehman’s bankruptcy. Section 4

concludes.

2 Quantile Vector Autoregression

This section introduces the structural quantile VAR (QVAR) and impulse re-

sponse function, shows how to compute quantile VAR forecasts and provides

the asymptotic properties of the model.
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2.1 The Law of Iterated Quantiles and Quantile Im-

pulse Response Functions

Consider a sequence of random variables {Ỹt : t = 1, . . . , T}, where Ỹt is an

n× 1 vector with ith element denoted by Ỹit for i ∈ {1, . . . , n}.

Consider the following structural vector autoregressive model:

Ỹt+1 = ω + A0Ỹt+1 + A1Ỹt + εt+1, εt+1 ∼ i.i.d.(0,Σ) (1)

where A0 and A1 are a n × n coefficient matrices, ω is a n × 1 vector of

constants, εt+1 is a n× 1 vector of i.i.d. structural zero mean shocks with Σ

a diagonal matrix. Imposing that A0 has a lower triangular structure with

zeros along the main diagonal, the identification of this system is equivalent

to assuming a Choleski decomposition of the variance covariance matrix of

the residuals from a standard reduced form VAR (see, for instance, chapter

2 of Lütkepohl 2005).

Denote with Et(Ỹt+H+1) ≡ E(Ỹt+H+1|Ωt) the expected value of Ỹt+H+1

given Ωt, the information available at time t. We report for convenience the

following result.

Theorem 1 (VAR forecast) — The mean forecast at time t of process

(1) for H ≥ 0 is:

Et(Ỹt+H+1) =
H∑
h=0

Bhν +BH+1Ỹt (2)

where ν ≡ (In−A0)
−1ω, B ≡ (In−A0)

−1A1 and In is the identity matrix of
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dimension n.

Proof — See appendix.

The impulse-response function is derived from the marginal impact that

a structural shock has on the expected value of future expectations, via the

impact it has on Ỹt.

Theorem 2 (Mean Impulse Response Function) — The response of

the mean forecast of process (1) to a unit structural shock to the variables of

the system is:

∂Et(Ỹt+H+1)/∂ε
′
t = BH+1(In − A0)

−1, for H ≥ 0 (3)

Proof — See appendix.

This framework motivates our definition of a structural QVAR. Since

we want to consider the possibility of jointly modelling multiple quantiles,

we need additional notation. For our purposes, it is important to define a

recursive information set, which allows us to work with structural models.

Definition 1 (Recursive information set) — The recursive informa-

tion set at time t is defined as:

Ω1t ≡ {Ỹt, Ỹt−1, . . .}

Ωit ≡ {Ỹ1,t+1, . . . , Ỹi−1,t+1, Ỹt, Ỹt−1, . . .} for i = 2, . . . , n.
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According to this definition, the recursive information set Ω2t, say, contains

all the lagged values of Ỹt as well as the contemporaneous value of Ỹ1,t+1.

Considering p distinct quantiles, 0 < θ1 < θ2 < . . . < θp < 1, the quantile

structural vector autoregressive model is defined as follows:1

Yt+1 = ωθ + Aθ0Yt+1 + Aθ1Yt + εθt+1, P (ε
θj
i,t+1 < 0|Ωit) = θj, (4)

i = 1, . . . , n, j = 1, . . . , p

The dependent variable Yt is now an np-vector, which is obtained as Yt =

ιp ⊗ Ỹt, where ιp is a p-vector of ones, and εθt ≡ [εθ11t , . . . , ε
θ1
nt, . . . , ε

θp
1t , . . . , ε

θp
nt]
′.

The matrices Aθ0 and Aθ1 are block diagonal, to avoid trivial multicollinearity

problems. We further impose that the diagonal blocks of Aθ0 are lower trian-

gular matrices with zeros along their main diagonal, reflecting the recursive

identification assumption of the system. The conditional quantile restric-

tion on the residuals defining the regression quantile follows the recursive

structure of the identification assumption.

To derive the results for the quantile VAR forecast, we need first to define

the quantile operators.

Definition 2 (Quantile operators) — Given the an np× 1 random vec-

tor Xt and a nonrandom np × np matrix A, let Zt ≡ AXt, with individual

elements denoted by Zi
t , i = 1, . . . , np.

1The model can be generalised to the case where quantile indices are different for
different elements of Yt. See White et al. (2015) for details.
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The cross sectional conditional quantile is defined by:

Qθ
t (Zt+1) ≡ [Qθ1

1t(. . . Q
θ1
nt(Z

1
t+1)), Q

θ1
1t(. . . Q

θ1
nt(Z

2
t+1)), . . . , Q

θ1
1t(. . . Q

θ1
nt(Z

n
t+1)),

. . . ,

Q
θp
1t (. . .Q

θp
nt(Z

n(p−1)+1
t+1 )), Q

θp
1t (. . . Q

θp
nt(Z

n(p−1)+2
t+1 )), . . . , Q

θp
1t (. . . Q

θp
nt(Z

np
t+1))]

′

where the generic conditional quantile Q
θj
kt(Z

i
t+1), given the information

set Ωkt, is implicitly defined by:

P (Zi
t+1 < Q

θj
kt(Z

i
t+1)|Ωkt) = θj for j = 1, . . . , p k = 1, . . . , n

The conditional quantile corresponds to the standard definition of quantile,

conditional on the appropriate information set. The cross sectional condi-

tional quantile is an operator that for each element of a vector takes the

conditional quantiles of the conditional quantile for all the cross sectional

variables, using the recursive information set.

The following theorems derive the quantile forecast and the quantile im-

pulse response function.

Theorem 3 (Quantile VAR forecast) — The quantile forecast at time

t of process (4) for H ≥ 0, is:

Qθ
t (· · ·Qθ

t+H(Yt+H+1)) =
H∑
h=0

(Bθ)hνθ + (Bθ)H+1Yt (5)
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where νθ ≡ (Inp − Aθ0)−1ωθ and Bθ ≡ (Inp − Aθ0)−1Aθ1.

Proof — See appendix.

The quantile impulse response function is derived from the marginal im-

pact that a structural shock has on the quantile of future quantiles, via the

impact it has on Ỹt.

Theorem 4 (Quantile Impulse Response Function) — The response

of the quantile forecast of process (1) to a unit structural shock to the variables

of the system is:

∂Qθ
t (· · ·Qθ

t+H(Y θ
t+H+1))/∂(εθt )

′ = (Bθ)H+1(Inp − Aθ0)−1 for H ≥ 0 (6)

Proof — See appendix.

An explicit example may help. Consider a model with two endogenous

random variables and two quantiles, say 50% and 90%. System (4) can be
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written explicitly as:



Ỹ1,t+1

Ỹ2,t+1

Ỹ1,t+1

Ỹ2,t+1


=



ω.51

ω.52

ω.91

ω.92


+



0 0

a.5021 0

0 0

0 0

0 0

0 0

0 0

a.9021 0





Ỹ1,t+1

Ỹ2,t+1

Ỹ1,t+1

Ỹ2,t+1


+ (7)

+



a.511 a.512

a.521 a.522

0 0

0 0

0 0

0 0

a.911 a.912

a.921 a.922





Ỹ1t

Ỹ2t

Ỹ1t

Ỹ2t


+



ε.51,t+1

ε.52,t+1

ε.91,t+1

ε.92,t+1


That is, model (4) is a convenient notation to stack all the estimated QVAR

models. Let us work with this example to illustrate the intuition of the proof

of theorem 3. The line corresponding to the 90%, say, quantile of Ỹ2,t+1 is:

Ỹ2,t+1 = q.92t + a.9021ε
.9
1,t+1 + ε.92,t+1

where q.92t ≡ ω.92 + a.9021ω
.9
1 + (a.9021a

.9
11 + a.921)Ỹ1t + (a.9021a

.9
12 + a.922)Ỹ2t. The 90%

quantile of Ỹ2,t+1 conditional on the information set Ω2,t = {Ỹ1,t+1, Ỹt} is

Q.9
2t(Ỹ2,t+1) = q.92t + a.9021ε

.9
1,t+1, because, by the conditional quantile restriction

of (4), Q.9
2t(ε

.9
2,t+1) = 0. This quantity is still a random variable at time t,

because of the term a.9021ε
.9
1,t+1. The 90% quantile of Q.9

2t(Ỹ2,t+1), conditional

on the information set Ω1,t = {Ỹt} is therefore Q.9
1t(Q

.9
2t(Ỹ2,t+1)) = q.92t. This

reasoning can be repeated for any n variables in Yt+1 and for any future
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variables Yt+h for any h ≥ 1.

If system (1) is the data generating process, then ωθ = ιp ⊗ ω + κθ,

where κθ is the np-vector containing the θ quantiles of εt+1, A
θ
0 = Ip ⊗ A0

and Aθ1 = Ip ⊗ A1. Under this assumption, the VAR and quantile VAR are

characterized by identical dynamics.

We refer to equation (5) as to the Law of Iterated Quantiles. Notice the

difference with respect to the law of iterated expectations, which states that,

given any generic random variable Xt with finite expectation:

Et(Xt+1 +Xt+2) = Et(Et+1(Xt+1 +Xt+2))

For the law of iterated quantiles, instead, this is generally not the case:

Qθ
t (Xt+1 +Xt+2) 6= Qθ

t (Q
θ
t+1(Xt+1 +Xt+2))

2.2 Forecasting and stress testing

The result of theorem 3 is restricted to the quantiles of the same quantile.

That is, it derives the forecast for the 90% quantile, say, of future and cross

sectional 90% quantiles. This subsection generalizes this result, by deriving

the quantile forecast for any combination of future quantiles.

Define Sjt+1 the n×np matrix selecting specific quantiles from the vector

εθt+1. That is, Sjt+1ε
θ
t+1 = [ε

θ
j1t+1

1,t+1, . . . , ε
θjnt+1

n,t+1]
′ for jit+1 ∈ {1, . . . , p} and i ∈

{1, . . . , n}. The superscripts of the structural residuals are indexed by jit+h,
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as this gives the flexibility to choose any quantile (indexed by j) of any of the

endogenous variables (indexed by i) at any future period (indexed by t+ h).

Theorem 5 (Generic quantile VAR forecast) — Let {Sjt+h
}Hh=1 de-

note the sequence of matrices selecting the future quantiles to be forecasted

and Ŷt+H the value of the dependent variable corresponding to this sequence

of quantile realization. The corresponding quantile forecasts as of time t of

process (4) for H ≥ 1, can be computed recursively as:

Ŷt+1 = B̄θ
t+1(ω

θ + Aθ1Yt) (8)

Ŷt+H = B̄θ
t+H(ωθ + Aθ1Ŷt+H−1) for H ≥ 2 (9)

where B̄θ
t+H ≡ (In−Sjt+H

Aθ0S̄)−1Sjt+H
and S̄ is the pn×n duplication matrix

such that Yt+h = S̄Sjt+h
Yt+h for any h.

Proof — See appendix.

For instance, the forecast of Yt+H conditional on future shocks taking

their median values can be obtained by choosing the {Sjt+h
}Hh=1 matrices

such that they select the median quantile.

Equations (8)-(9) are a generalization of (5). Relationship (5) implic-

itly assumes a specific sequence of shocks. For instance, the first element

of (5) is the θ1 quantile associated with the first dependent variable of all

the future and cross-sectional θ1 quantiles of the dependent variables. This

corresponds to the first element of (8)-(9) when the sequence {Sjt+h
}Hh=1 se-
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lects the following shocks {εθ11,t+1, . . . , ε
θ1
n,t+1, . . . , ε

θ1
1,t+H , . . . , ε

θ1
n,t+H} to be set

to zero. Equations (8)-(9) allow one to forecast any quantile of any future

and cross-sectional quantile.

It is also possible to rewrite the impulse response function in terms of

(8)-(9).

Theorem 6 (Generic Quantile Impulse Response Function) — Sup-

pose that at time t the shock ε
θj
it = 0 had realized, for some j ∈ {1, . . . , p},

resulting in the realization Ÿt, instead of Yt. The change in forecast, given

this shock, is:

Ŷt+1|Ÿt − Ŷt+1 = B̄θ
t+1A

θ
1(Ÿt − Yt) (10)

Ŷt+H |Ÿt − Ŷt+H = B̄θ
t+HA

θ
1(Ŷt+H−1|Ÿt − Ŷt+H−1) for H ≥ 2 (11)

Proof — See appendix.

The greater generality and flexibility of (8) provides the natural environ-

ment to perform stress testing exercises. A policy maker interested in how

the endogenous variables react to a given stress scenario can first define the

scenario by choosing a series of future tail (say, 10% or 1%) quantiles of in-

terest, and then obtain the forecast of the endogenous variables conditional

on the chosen scenario.

A corollary of the previous results is that it is straightforward to compute

average step ahead forecasts from the QVAR model.
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Corollary 1 (Average step ahead forecast) — Consider the average

H-step ahead values of the dependent variables at time t, that is:

Yt,H ≡ H−1
H∑
h=1

Yt+h (12)

The forecast, conditional on the scenario identified by the sequence of matri-

ces {Sjt+h
}Hh=1, is:

Ŷt,H ≡ H−1
H∑
h=1

Ŷt+h

where Ŷt+h is defined in (8)-(9).

Proof — See appendix.

2.3 General quantile VAR(q) model

Model (4) can be generalized to any desired lag order q using its companion

form. Define the npq vectors ω̄ ≡ [(ωθ)′, 0′, . . . , 0′]′, Ȳt+1 ≡ [Y ′t+1, Y
′
t , . . . , Y

′
t−q+2]

′,

εt+1 ≡ [(εθt+1)
′, 0′, . . . , 0′]′, and the (npq × npq) matrices

A0 =



Aθ0, 0, . . . , 0

0, 0, . . . , 0

...
. . .

0, 0, . . . , 0


and A1 =



Aθ1, Aθ2, . . . , Aθq

Inp, 0, . . . , 0

...
. . .

0, . . . , Inp, 0


.
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Then the companion form of the VAR(q) model is:

Ȳt+1 = ω̄ + A0Ȳt+1 + A1Ȳt + εt+1 (13)

All the results of the previous sections extend to model (13).

2.4 Estimation and Asymptotics

The recursive QVAR model (4) can be estimated using the framework de-

veloped by White et al. (2015). Let qθt (β) ≡ ωθ + Aθ0Yt + Aθ1Yt−1 and q
θj
it (β)

the jth quantile of the ith variable of the vector qθt (β), where we have made

explicit the dependence on β, the vector containing all the unknown param-

eters in ωθ, Aθ0, and Aθ1. Define the quasi-maximum likelihood estimator β̂

as the solution of the optimization problem:

β̂ = arg min
β
T−1

T∑
t=1

{
n∑
i=1

p∑
j=1

ρθ

(
Ỹit − q

θj
it (β)

)}
, (14)

where ρθ (u) ≡ u(θ − I(u < 0)) is the standard check function of quantile

regressions. The asymptotic distribution of the regression quantile estimator

is provided by White et al. (2015), which we report here for convenience.

Theorem 7 (White et al., 2015) — Under the assumptions of theorems

1 and 2 of White et al. (2015), β̂ is consistent and asymptotically normally
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distributed. The asymptotic distribution is:

√
T (β̂ − β∗) d−→ N(0, Q−1V Q−1) (15)

where

Q ≡
n∑
i=1

p∑
j=1

E[f
θj
it (0)∇qθjit (β∗)∇′qθjit (β∗)]

V ≡ E[ηtη
′
t]

ηt ≡
n∑
i=1

p∑
j=1

∇qθjit (β∗)ψθj(ε
θj
it )

ψθj(ε
θj
it ) ≡ θj − I(ε

θj
it ≤ 0)

ε
θj
it ≡ Ỹit − q

θj
it (β∗)

and f
θj
it (0) is the conditional density function of ε

θj
it evaluated at 0.

The asymptotic variance-covariance matrix can be consistently estimated as

suggested in theorems 3 and 4 of White et al. (2015), or using bootstrap

based methods in the spirit of Buchinsky (1995).2

The following corollary derives the standard errors of the forecasts.

Corollary 2 (Forecast standard errors) — Let YT+H(β̂) ≡ ŶT+H the

forecast (8)-(9), where it has been made explicit the dependence on the model

2Modern statistical softwares contain packages for regression quantile estimation and
inference. This paper uses the interior point algorithm discussed by Koenker and Park
(1996).
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parameters β. Then:

√
T (YT+H(β̂)− YT+H(β∗))

d−→ N(0,Φ(β∗)Q−1V Q−1Φ′(β∗)) (16)

where Φ(β∗) ≡ ∂YT+H(β∗)/∂β′.

Proof — See appendix.

The standard errors associated with the impulse response function (10)-

(11) can be computed in a similar fashion.

3 Stress testing the euro area economy

We apply the methodology developed in the previous section to model the

interaction between real and financial variables in Europe. We study the

interrelationship between the euro area industrial production growth (Ỹ1t)

and the composite indicator of systemic stress in the financial system (CISS,

Ỹ2t) of Hollo, Kremer and Lo Duca (2012). We perform three exercises.

First, we estimate short term euro area growth at risk (defined as the 10%

quantile of Ỹ1t), as a function of financial conditions. Second, we forecast euro

area growth under a severe stress scenario, where both the real and financial

parts of the euro area economy are hit by a sequence of six consecutive tail

shocks. Third, we ask whether the quantile VAR methodology could have

been helpful in detecting vulnerabilities in the months preceding Lehman

Brothers’ default.

ECB Working Paper Series No 2330 / November 2019 21



3.1 Euro area growth at risk

Adrian et al. (2019) have shown that there are substantial asymmetries in

the relationship between the US real GDP growth and financial conditions.

In particular, they find that the estimated lower quantiles of the distribution

of future GDP growth are significantly affected by financial conditions, while

the upper quantiles appear to be more stable over time. The quantile model

specification of Adrian et al. (2019) is the following:

Ỹ1,t+1 = ωθ1 + aθ11Ỹ1,t + aθ12Ỹ2t + εθt+1 (17)

They estimate this model for θ ∈ {0.05, 0.25, 0.75, .95}. This corresponds to

the first line of model (4). An obvious drawback of neglecting the second

line of the quantile VAR model is that iterated multiperiod ahead forecasts

become impossible. In fact, for the four quarters ahead analysis, they have

to resort to direct estimation, whereby they quantile regress the four quarter

ahead GDP directly on current GDP and financial conditions. Our frame-

work, instead, allows us to estimate the model at the highest possible fre-

quency and still to study the forecasting properties of the system as well as

to test the presence of any feedback effect. While there are merits in direct

forecast approaches (see, for instance, McCracken and McGillicuddy, 2018),

iterated forecasts allow for richer scenario analyses.

We start by reporting in figure 1 the monthly time series of industrial

production and CISS in the euro area from January 1999 until July 2018.
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Figure 1: Real and financial variables

Note: Time series evolution of euro area industrial production (dash line) and Composite
Indicator of Systemic Stress (CISS, continuous line). Monthly data, 1999:01-2018:07.
Source: ECB.

The data is downloaded from the Statistical Data Warehouse database of the

ECB.3 A cursory view at the plot reveals a clear negative correlation between

the two time series, especially during the Great Financial Crisis.

Next, we estimate the quantile VAR model (4):

Ỹ1,t+1 = ωθ1 + aθ11Ỹ1t + aθ12Ỹ2t + εθ1,t+1 (18)

Ỹ2,t+1 = ωθ2 + aθ0Ỹ1,t+1 + aθ21Ỹ1t + aθ22Ỹ2t + εθ2,t+1 (19)

By ordering CISS after industrial production, we impose the structural

identification assumption that financial variables can react contemporane-

ously to real variables, but real variables react to financial developments

3Available at https://sdw.ecb.de/home.do.
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only with a lag. This corresponds to a Choleski identification where shocks

to real economic variables can have an immediate impact on financial vari-

ables, while shocks to financial variables are allowed to affect real variables

only with a lag. Given the speed at which financial markets react to news,

this seems like a reasonable assumption.

The interaction between real and financial variables can be tested by

checking whether the off-diagonal coefficients are statistically different from

zero:

H0 : aθ12 = 0, H0 : aθ0 = 0, H0 : aθ21 = 0 (20)

Figure 2 reports the estimated quantile coefficients aθ12, a
θ
0, a

θ
21 for θ ∈

{0.05, 0, 10, 0, 15, . . . , 0.95}, together with the OLS estimate. We observe the

presence of substantial asymmetries, especially in the aθ12 coefficient, which

cannot be detected with standard OLS models. The coefficient estimates of

aθ12 are consistent with the findings of Adrian et al. (2019), whereby financial

conditions significantly affect the left tail of the distribution of industrial

production, but not the right tail.

In the top panel of figure 3, we show that the impact of financial conditions

is not only statistically significant, but also economically relevant. The figure

reports the 10% and 90% quantiles of industrial production. It reveals that

worsening of financial conditions impacts the left tail by about two percentage

points. The middle line represents the estimated conditional expectation

of industrial production according to a standard OLS VAR model. Notice
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Figure 2: Testing interactions between real and financial variables

Note: Estimated coefficients of the off diagonal elements at different θ quantiles, with 90%
confidence intervals. The flat line represent the OLS estimate.
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that the impact of the financial crisis is much more muted relative to the

one obtained with the 10% quantile. For comparison, in the bottom panel

of figure 3 we report the same time series quantile estimates of industrial

production where the off-diagonal coefficient aθ12 has been set to zero.

In figure 4 we compute a three dimensional quantile impulse response

function corresponding to (6), which studies how different quantiles of in-

dustrial production react to a shock to CISS. The thought experiment is the

following: How different the various quantiles would have been if we had

observed a different realization in the financial conditions of the euro area

economy? The change in quantile forecasts is measured along the vertical

axis (QIRF), while the horizontal plane contains the different quantiles (θ)

and time horizons (h). We continue to notice substantial asymmetric im-

pacts in different parts of the distribution, but the chart now reveals that

these asymmetries disappear after around 24 periods, which corresponds to

two years. This analysis highlights the advantage of our framework. It is an

internally consistent fully dynamic model of the real and financial variables

of the euro area economy, which allows us to study the propagation of shocks

across the different parts of the distribution and through time.

3.2 Forecasting growth under stress scenarios

In figure 5, we report the forecast distribution of industrial production several

months ahead, conditional on the future endogenous variables being hit by

different quantile realizations. Each dotted line corresponds to alternative
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Figure 3: Euro area growth at risk

Note: Time series estimates of the 10% and 90% quantiles of euro area industrial pro-
duction, together with the mean estimate according to a standard OLS VAR. The top
panel represents the unrestricted estimates, the bottom panel restricts the off-diagonal
coefficients to be zero.
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Figure 4: Quantile impulse response function for the euro area industrial
production

Note: The figure reports how a shock to the financial variable would affect the estimates
of the different quantiles of euro area industrial production at different time horizons.
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Figure 5: Forecasting and stress testing the real and financial variables in
the euro area

Note: The figure reports the time series of industrial production for the euro area together
with the forecasts associated with different scenarios. The path highlighted in blue cor-
responds to a scenario where both the real and financial variables are hit by a sequence
of median shocks. The path highlighted in red corresponds to the stress scenario where
the financial variable is hit by a 90% shock and the real variable by a 10% shock for six
consecutive months, followed by median shocks.

specifications for the sequence of {SjT+h
}10h=1 matrices in (8)-(9). The various

dots at each point in time can be thought as possible realizations from the

distribution of the future random variables.

We have highlighted two specific scenarios. The one in blue corresponds

to a situation where the sequence of future random variables are set to their

median values. This roughly corresponds to the results that one would obtain

from a standard OLS VAR analysis. Our framework, however, allows us also

to create arbitrary stress scenarios and to assess their impact. In the same

figure, we have highlighted in red the forecast of the system associated with

the following stress testing exercise. We assume that the euro area economy
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Figure 6: Evolution of industrial production under alternative scenarios

Note: The figure reports the historical time series of industrial production together with
its projected levels as of July 2018 under the stress scenario (red line) and median scenario
(blue line). The stress scenario is defined as in figure 5 as a sequence of six monthly 90%
financial and 10% real shocks, followed by a sequence of median shocks.

is hit by a series of six consecutive 90% quantile realizations to its financial

system and 10% quantile realizations to its real economy. This can be seen by

the fact that the red line initially follows the trajectory of the bottom dotted

line, which traces the forecasts associated with consecutive 90% and 10%

quantile realizations. After that, we assume that the system is hit by a series

of median shocks, reverting to normal functioning. We see that industrial

production contracts by a maximum of around 2%.

Figure 6 reports the implication of the scenarios of figure 5 in levels of

industrial production, by cumulating the monthly growth forecasts. Notice

that the chosen stress scenario implies an overall contraction in industrial

production of more than 10% over 6 months, a contraction falling somewhere
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in between the one experienced during the financial crisis in 2008-2009 and

that of the euro area sovereign debt crisis in 2012. Charts of this type can

be used by policy makers to calibrate the severity of the stress test according

to their own preferences.

3.3 Counterfactual scenario analysis before Lehman

Brothers’ default

One year after the collapse of Lehman Brothers, Queen Elizabeth II famously

asked: Why did nobody notice it? From the perspective of the methodology

developed in this paper, predicting a crisis and its severity is like predicting

that a certain sequence of adverse quantile realizations will hit the system.

This is impossible, to the same extent as it is impossible to predict which

number of the roulette will come out in the next round. It is possible, how-

ever, to use the quantile VAR methodology to measure if an economy is

resilient to alternative stress scenarios.

We estimate the model (18)-(19) using data only up to August 2008. For

given parameter estimates, we use the system to forecast industrial produc-

tion six months ahead under the following three scenarios:

1. Good financial scenario: sequence of six 10% quantile realizations

for both industrial production and CISS.

2. Normal financial scenario: sequence of six 10% quantile realizations

for industrial production and median realizations for CISS.
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3. Bad financial scenario: sequence of six 10% and 90% quantile real-

izations for industrial production and CISS, respectively.

The estimates are reported in figure 7. It is evident that the good and

normal financial scenarios were posing little risks to the euro area economy,

since even after a sequence of six negative shocks to the real economy, growth

at risk was quite contained. It is only under the combination of adverse real

and financial shocks that growth at risk is significantly affected. In fact,

already in mid 2007, growth at risk under this adverse scenario had reached

unprecedented magnitudes for the euro area, from an historical perspective.

The large growth at risk under the bad financial scenario reveals the presence

of a fat left tail in the distribution of the euro area industrial production,

which would go unnoticed by simply estimating the 5% growth at risk using

direct estimation techniques.

More generally, such counterfactual exercises are not feasible with the di-

rect forecast approach. By directly quantile regressing industrial production

six months ahead against current real and financial conditions, one implicitly

imposes that the system evolves according to some average scenario during

the intervening six months. While this may be a reasonable assumption if

one is interested in modeling the conditional mean of the endogenous vari-

ables, it seems like an undesirable constraint to impose when modeling their

tail behavior. Notice, however, that if one is interested in such unconditional

scenario, this can be recovered from the empirical distribution obtained by

simulating the quantile VAR under all alternative quantile scenarios (simi-
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Figure 7: Growth at risk under alternative scenarios as of August 2008

Note: six month ahead forecast of euro area industrial production under three alternative
scenarios. The good, normal and bad scenarios are defined by a sequence of six consecutive
benign, normal and adverse financial shocks. The parameter of the quantile VAR are
estimated using only observations up to August 2008.

larly to all the possible dotted lines of figure 5) and then choosing the desired

empirical quantile forecast.

4 Conclusion

We have developed a quantile VAR model and used it to forecast and stress

test the interaction between real and financial variables in the euro area. Un-

like OLS VAR, quantile VAR models each quantile of the distribution. This

provides the natural modeling environment to design particular stress sce-

narios and test the impact that they have on the economy. A stress scenario

is just a sequence of tail quantile shocks, which can be chosen arbitrarily by
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the policy maker or calibrated to mimic previous crisis episodes. We find

the presence of strong asymmetries in the transmission of financial shocks

in the euro area, with negative financial shocks being particularly harmful

when coupled with negative real shocks. By modelling the average inter-

action between the random variables, OLS VAR models miss most of these

detrimental interactions.

Appendix — Proofs

Proof of Theorem 1 (VAR forecast) — We report here a variant of

this proof, for comparison with the proof of the QVAR forecast. Rewrite the

structural vector autoregressive model (1) in reduced form:

Ỹt+1 = µt + (In − A0)
−1εt+1

where µt ≡ (In − A0)
−1ω + (In − A0)

−1A1Ỹt. The expected value of the

process (1) at time t+H can be rewritten as:

Et+H(Ỹt+H+1) = µt+H

= ν +BỸt+H

Solving the system backwards in terms of the structural shocks {εt+h}Hh=1,
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for H ≥ 1:

µt+H =
H∑
h=0

Bhν +BH+1Ỹt +
H∑
h=1

BH−h+1(In − A0)
−1εt+h

Since µt+H depends on future shocks, it is a random variable. Computing

the expectation of its future expectations, we obtain the desired result:

Et(· · ·Et+H−1(µt+H)) =
H∑
h=0

Bhν +BH+1Ỹt

�

Proof of Theorem 2 (Mean Impulse Response Function) — Rewrite

the forecast in terms of structural shocks:

Et(Ỹt+H) =
H∑
h=0

Bhν +BH+1Ỹt

=
H∑
h=0

Bhν +BH+1(µt−1 + (In − A0)
−1εt)

By taking the derivative with respect to εt, the result follows. �

Proof of Theorem 3 (Quantile VAR forecast) — Rewrite the θ quantile

of process (4) in reduced form:

Yt+1 = qθt + (Inp − Aθ0)−1εθt+1

where qt
θ = (Inp−A0

θ)−1ωθ + (Inp−A0
θ)−1A1

θYt and Inp is the identity matrix
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of dimension np.

The quantile at time t+H, given the information available at t+H, is:

Qθ
t+H(Yt+H+1) = qθt+H +Qθ

t+H((Inp − Aθ0)−1εθt+H+1)

where Qθ
t+H(·) is the cross sectional quantile operator of definition 2. Assume

first that θ is a scalar and let A ≡ (Inp − Aθ0)−1, with typical entry aij and

row ai, i, j = 1, . . . n. Since Aθ0 is lower triangular with zeros along the main

diagonal, also A is lower triangular. The last element of the vector Aεθt+H+1

can therefore be written as anε
θ
t+H+1 = an1ε

θ
1,t+H+1 + . . .+ an,n−1ε

θ
n−1,t+H+1 +

εθn,t+H+1. By definition of process (4), the quantile of this expression condi-

tional on Ωn,t+H is Qθ
n,t+H(anε

θ
t+H+1) = an1ε

θ
1,t+H+1 + . . . + an,n−1ε

θ
n−1,t+H+1,

because Qθ
n,t+H(εθn,t+H+1) = 0 and the other elements belong to the informa-

tion set Ωn,t+H . The quantile of this expression, in turn, conditional on the

information set Ωn−1,t+H , that is, excluding the last contemporaneous vari-

able, is Qθ
n−1,t+H(Qθ

n,t+H(an ε
θ
t+H+1)) = an1ε

θ
1,t+H+1 + . . .+ an,n−2ε

θ
n−2,t+H+1.

4

Continuing taking the conditional quantile for all the cross section, we get

Qθ
1,t+H(. . . Qθ

n,t+H(anε
θ
t+H+1)) = 0. Repeating the same reasoning for all the

rows of the matrix A, we get in the more concise notation of definition 2:

Qθ
t+H((Inp − Aθ0)−1εθt+H+1) = 0

4Here we have a slight abuse of notation, as P (an,n−1ε
θ
n−1,t+H+1 < 0|Ωn−1,t+H) = 1−θ

when an,n−1 < 0, and so it becomes the (1− θ) quantile.
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The case when θ is a vector can be proven in a similar fashion, by applying the

same reasoning to each individual quantile block of the np-vector Aεθt+H+1.

Therefore:

Qθ
t+H(Yt+H+1) = qθt+H

= νθ +BθYt+H

= νθ +Bθqθt+H−1 +Bθ(Inp − Aθ0)−1εθt+H

where νθ ≡ (Inp − Aθ0)−1ωθ and Bθ ≡ (Inp − Aθ0)−1Aθ1.

For H ≥ 1, recursive substitution gives:

qθt+H =
H∑
h=0

(Bθ)hνθ + (Bθ)H+1Yt +
H∑
h=1

(Bθ)H−h+1(Inp − Aθ0)−1εθt+h

Notice that like µt+H also qθt+H is a random vector at time t, as it depends

on the vector of future structural shocks εθt+h. Applying recursions over time

similar to those outlined above for the cross section gives the θ quantile of

future θ quantiles:

Qθ
t (· · ·Qθ

t+H(Yt+H+1)) =
H∑
h=0

(Bθ)hνθ + (Bθ)H+1Yt

because Qθ
t+h−1((B

θ)H−h+1(Inp − Aθ0)−1εθt+h) = 0 for all h. �

Proof of Theorem 4 (Quantile Impulse Response Function) — Rewrite
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the quantile forecast in terms of structural shocks:

Qθ
t (· · ·Qθ

t+H(Yt+H+1)) =
H∑
h=0

(Bθ)hνθ + (Bθ)H+1Yt

=
H∑
h=0

(Bθ)hνθ + (Bθ)H+1(qθt−1 + (Inp − Aθ0)−1εθt )

By taking the derivative with respect to εθt , the result follows. �

Proof of Theorem 5 (Generic quantile VAR forecast) — By (4), the

forecast of Ỹt+1, conditional on setting the residuals identified by the matrix

Sjt+1 to zero, is:

Ŷt+1
(n×1)
|Sjt+1 = Sjt+1Yt+1

= Sjt+1(ω
θ + Aθ0Yt+1 + Aθ1Yt)

= Sjt+1ω
θ + Sjt+1A

θ
0S̄Sjt+1Yt+1 + Sjt+1A

θ
1Yt

where we have made use of the equality S̄Sjt+1Yt+1 = Yt+1. Solving for

Sjt+1Yt+1 and iterating the equation forward, for any given sequence {Sjt+h
}Hh=1,

we obtain the result. �

Proof of Theorem 6 (Generic Quantile Impulse Response Function)

— The result follows immediately from equation (8). �

Proof of Corollary 1 (Average step ahead forecast) — The result

follows from (8) and from observing that each forecast is not random. �
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Proof of Corollary 2 (Forecast standard errors) — Consider the mean

value expansion YT+H(β̂) = YT+H(β∗) + Φ(β̄)(β̂ − β∗). The result follows

from the asymptotic properties of β̂. �
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