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Abstract

We study optimal monetary and fiscal policy in a New Keynesian model where occasional

declines in agents’ confidence can give rise to persistent liquidity trap episodes. Unlike in the

case of fundamental-driven liquidity traps, there is no straightforward recipe for mitigating

the welfare costs and the systematic inflation shortfall associated with expectations-driven

liquidity traps. Raising the inflation target or appointing an inflation-conservative central

banker improves inflation outcomes away from the lower bound but exacerbates the short-

fall at the lower bound. Using government spending as an additional policy tool worsens

stabilization outcomes both at and away from the lower bound. However, appointing a

policymaker who is sufficiently less concerned with government spending stabilization than

society can eliminate expectations-driven liquidity traps altogether.

Keywords: Effective Lower Bound, Sunspot Equilibria, Monetary Policy, Fiscal Policy,

Discretion, Policy Delegation

JEL-Codes: E52, E61, E62

ECB Working Paper Series No 2304 / August 2019 1



Non-technical summary

The lower bound on nominal interest rates is an important concern for policymakers. In normal

times, central banks can adjust short-term nominal interest rates to stabilize inflation and, if part

of their mandate, economic activity. However, when interest rates reach their lower bound—

as has been the case in major parts of the industrialized world following the Global Financial

Crisis—the central bank is unable to counteract inflation rates below target by further lowering

current short-term nominal interest rates. This state of affairs is often called a liquidity trap.

Economists have explored the potential causes of liquidity traps and the effectiveness of various

policy measures, both, monetary and fiscal, in dealing with their economic consequences. An

ongoing policy debate tries to come up with lessons for the design of policy frameworks.

Macroeconomic models are a helpful and widely-used tool for economists to address these

issues. Typically, in model-based analyses of liquidity traps, it is a deterioration in the funda-

mentals of the economy, for instance, a tightening of borrowing constraints, that results in a

severe economic downturn and leads the central bank to lower short-term nominal interest rates

to their lower bound. However, in workhorse macroeconomic models, liquidity traps can also

arise due to a decline in households’ and firms’ confidence about the economic outlook without

any change in fundamentals. Economic analysis has paid much less attention to these so-called

expectations-driven liquidity traps.

In this paper, we study optimal monetary and fiscal policy for an economy where occasional

declines in agents’ confidence give rise to a binding lower bound on nominal interest rates.

The analysis is based on a New Keynesian model that can be solved in closed form. In the

considered equilibrium, liquidity traps are rare but long-lasting events characterized by subdued

economic activity and deflation that give rise to a systematic inflation shortfall both at and

away from the lower bound. We focus on two questions. First, is there a straightforward way to

improve stabilization outcomes and welfare, taking as given the occasional occurrence of such

expectations-driven liquidity traps? Second, is it possible to prevent the economy from falling

into an expectations-driven liquidity trap? Following the policy delegation literature, we address

these questions by assuming that society designs the policy framework and a discretionary

policymaker sets the policy instruments in accordance with the assigned objective function.

We first study monetary policy in the absence of fiscal policy. In this case, the policymaker

has only one instrument, the short-term nominal interest rate. The existing literature based on

models with fundamental-driven liquidity traps suggests that society can improve stabilization

outcomes and welfare by imposing a positive inflation target or by making inflation stabilization

the primary policy objective. These two approaches have in common that they raise inflation

away from the lower bound. In models with fundamental-driven liquidity traps, higher inflation

away from the lower bound mitigates the drop in output and inflation at the lower bound.

However, in our model with expectations-driven liquidity traps, we find that increasing the

inflation target or appointing an inflation-conservative central banker further reduces output
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and inflation in the state where confidence is low and the lower bound is binding. As a result,

in the sunspot equilibrium, the welfare implications of these two policy delegation schemes

are ambiguous. Indeed, we find that the optimal inflation target can be negative or positive.

Likewise, we find that the optimal weight on inflation relative to output stabilization in the

policymaker’s objective function can be smaller or larger than the one in society’s objective

function.

Next, we turn to fiscal policy. Specifically, we allow the policymaker to use government

spending as an additional policy tool. As in models with fundamental-driven liquidity traps, the

policymaker raises government spending whenever the lower bound constraint becomes binding,

and she keeps government spending at an elevated level until confidence resumes and the lower

bound constraint becomes slack. However, unlike in models with fundamental-driven liquidity

traps—where fiscal policy improves allocations at and away from the lower bound—this fiscal

policy intervention worsens stabilization outcomes both at and away from the lower bound.

Taking as given the occasional occurrence of expectations-driven liquidity traps, it is therefore

best for society to disincentivize the use of government spending as a stabilization tool.

Thus, the answer to our first question—is there a straightforward way to improve welfare of

an economy that is subject to occasional expectations-driven liquidity traps?—is rather disap-

pointing. None of the reviewed policy delegation schemes—a higher inflation target, inflation

conservatism, and fiscal activism—unambiguously improves stabilization outcomes and welfare

in our model. However, the answer to our second question—is it possible to prevent the econ-

omy from falling into an expectations-driven liquidity trap?—turns out to be more promising if

government spending is part of the policymaker’s toolkit. Specifically, we find that when society

assigns a sufficiently low relative weight on government spending stabilization to the policy-

maker’s objective function the sunspot equilibrium ceases to exist. When the relative weight

is sufficiently small, the policymaker is willing to adjust government spending sufficiently elas-

tically to deviations of inflation and the output gap from target that pessimistic expectations

fail to be validated. In the remaining no-sunspot equilibrium, the sunspot shock does not affect

private sector decisions and government spending stays constant. Nevertheless, we verify that

the government spending expansion that would be implemented by a policymaker of this type if

a decline in inflation and the output gap occurred and the lower bound became binding—maybe

because of a fundamental shock—appears plausible from a quantitative perspective.
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1 Introduction

The recent decade of low nominal interest rates and anemic inflation poses new challenges for

monetary and fiscal policy. Current policy frameworks were predominantly designed at a time

when the lower bound on nominal interest rates was not a major concern for central banks,

and discretionary fiscal policy was not widely considered as an essential part of stabilization

policies.1

This paper studies the implications of the lower bound on nominal interest rates for optimal

monetary and fiscal policy. The analysis is based on a New Keynesian model that can be solved

in closed form. The key difference to the existing literature on optimal policy with a lower

bound is that we consider an equilibrium where liquidity trap episodes—i.e. periods where the

lower bound constraint is binding—result from a decline in agents’ confidence rather than from

a deterioration of economic fundamentals. In this sunspot equilibrium, liquidity traps are rare

but long-lasting events characterized by subdued economic activity and deflation that give rise

to a systematic inflation shortfall in all states of the world.

We focus on two questions. First, is there a straightforward way to improve stabilization

outcomes and welfare, taking as given the occasional occurrence of such expectations-driven

liquidity traps? Second, is it possible to prevent the economy from falling into an expectations-

driven liquidity trap? Following the policy delegation literature (e.g. Rogoff, 1985; Walsh, 1995;

Svensson, 1997), we address these questions by assuming that society designs the policy frame-

work and a discretionary policymaker sets the policy instruments in accordance with the assigned

objective function.

We first study monetary policy in the absence of fiscal policy. In this case, the policymaker

has only one instrument, the short-term nominal interest rate. The existing literature based on

models with fundamental-driven liquidity traps suggests that society can improve stabilization

outcomes and welfare by imposing a positive inflation target or by making inflation stabilization

the primary policy objective (Nakata and Schmidt, 2019a).2 The latter approach is usually

referred to as inflation conservatism and goes back to Rogoff (1985).3 These two approaches have

in common that they raise inflation away from the lower bound. In models with fundamental-

driven liquidity traps, higher inflation away from the lower bound mitigates the drop in output

and inflation at the lower bound. However, in our model with expectations-driven liquidity

traps, we find that increasing the inflation target or appointing an inflation-conservative central

banker further reduces output and inflation in the state where confidence is low and the lower

1At the time of writing, the U.S. Federal Reserve and the Bank of Canada are officially reviewing their monetary
policy frameworks. Both central banks explicitly refer to the challenges for monetary policy associated with the
lower bound (Wilkins, 2018; Clarida, 2019).

2Other monetary policy delegation schemes that are known to be desirable in the context of fundamental-
driven liquidity traps are price level targeting, nominal GDP level targeting and interest rate gradualism. This
paper focuses on frameworks that facilitate closed-form solutions of the model.

3Inflation conservatism was originally proposed as a remedy to the classic inflation bias problem. Formally,
an inflation-conservative central banker puts less weight on output relative to inflation stabilization than society
does.
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bound is binding. As a result, in the sunspot equilibrium, the welfare implications of these two

policy delegation schemes are ambiguous. Indeed, we find that the optimal inflation target can

be negative or positive. Likewise, we find that the optimal weight on inflation relative to output

stabilization in the policymaker’s objective function can be smaller or larger than the one in

society’s objective function.

Next, we turn to fiscal policy. Specifically, we allow the policymaker to use government

spending as an additional policy tool.4 As in models with fundamental-driven liquidity traps, the

policymaker raises government spending whenever the lower bound constraint becomes binding,

and she keeps government spending at an elevated level until confidence resumes and the lower

bound constraint becomes slack. However, unlike in models with fundamental-driven liquidity

traps—where fiscal policy improves allocations at and away from the lower bound—this fiscal

policy intervention worsens stabilization outcomes both at and away from the lower bound.

Taking as given the occasional occurrence of expectations-driven liquidity traps, it is therefore

best for society to disincentivize the use of government spending as a stabilization tool. To do

so, society has to assign a sufficiently high relative weight to government spending stabilization

in the policymaker’s objective function.5

Thus, the answer to our first question—is there a straightforward way to improve welfare of

an economy that is subject to occasional expectations-driven liquidity traps?—is rather disap-

pointing. None of the reviewed policy delegation schemes—a higher inflation target, inflation

conservatism, and fiscal activism—unambiguously improves stabilization outcomes and welfare

in our model. However, the answer to our second question—is it possible to prevent the econ-

omy from falling into an expectations-driven liquidity trap?—turns out to be more promising

if government spending is part of the policymaker’s toolkit. Specifically, we find that when

society assigns a sufficiently low relative weight on government spending stabilization to the

policymaker’s objective function the sunspot equilibrium ceases to exist.6 Conditional on the

existence of the sunspot equilibrium, a marginal reduction in the policymaker’s relative weight

on government spending stabilization increases the spending stimulus at the lower bound and de-

teriorates stabilization outcomes both at and away from the lower bound. But when the relative

weight is sufficiently small, the policymaker is willing to adjust government spending sufficiently

elastically to deviations of inflation and the output gap from target that pessimistic expectations

fail to be validated. In the remaining no-sunspot equilibrium, the sunspot shock does not affect

private sector decisions and government spending stays constant. Nevertheless, we verify that

the government spending expansion that would be implemented by a policymaker of this type if

a decline in inflation and the output gap occurred and the lower bound became binding—maybe

4Like most of the related literature, we assume that the provision of public goods generates some household
utility.

5In contrast, in models with fundamental-driven liquidity traps, society can further improve stabilization
outcomes and welfare by appointing a policymaker who is less concerned with government spending stabilization
than society as a whole. See Schmidt (2017).

6From an institutional perspective, this could be operationalized by the appointment of a decision-making
fiscal council. Alternatively, one could think of society electing a policymaker with a certain type of preferences.
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because of a fundamental shock—appears plausible from a quantitative perspective.

Our paper is related to a small but growing literature on equilibrium multiplicity and the

lower bound on nominal interest rates. Benhabib et al. (2001) were the first to show that

the lower bound constraint gives rise to two steady state equilibria in a model where monetary

policy is governed by an interest-rate feedback rule. In one steady state the policy rate is strictly

positive and inflation is at target, and in the other steady state the lower bound constraint is

binding and inflation is below target.7 Armenter (2018) and Nakata and Schmidt (2019a) show

that the lower bound constraint can give rise to multiple Markov-perfect equilibria under optimal

discretionary monetary policy. Moreover, Armenter (2018) shows that price-level targeting does

not eliminate the equilibrium multiplicity.

This equilibrium multiplicity naturally opens the door for sunspot equilibria. Mertens and

Ravn (2014) construct a sunspot equilibrium in a New Keynesian model with an interest-rate

feedback rule and assess the effects of an exogenous increase in government spending when

confidence is low and the lower bound is binding.8 They find that a positive government spending

shock is deflationary.9 Bilbiie (2018) considers several other exogenous policy interventions

such as an exogenous change in the policy rate path in an analytical model setup. Coyle and

Nakata (2018) numerically solve a fully nonlinear New Keynesian model with an interest-rate

rule allowing for both, fundamental-driven and expectations-driven liquidity traps, and find that

the optimal inflation target in the policy rule is lower than in the model with fundamental-driven

liquidity traps only.

A few papers have assessed the plausibility of expectations-driven liquidity traps empirically

or used the concept for positive analysis of recent economic events. Aruoba et al. (2018) conduct

a model-based empirical assessment to shed light on the type of liquidity trap events experienced

by the U.S. economy and the Japanese economy, finding that Japan transitioned in the late 1990s

to an expectations-driven liquidity trap state and that the U.S. had been in a fundamental-driven

liquidity trap equilibrium.10 Schmitt-Grohé and Uribe (2017) show that a model with downward

nominal wage rigidities and a sunspot shock can mimic the economic dynamics of a recessionary

lower bound episode that is followed by a jobless recovery. Lansing (2017) develops a New

Keynesian model with a lower bound on nominal interest rates in which agents’ beliefs about

the steady state to which the economy converges in the long run depends on aggregate outcomes.

This model with endogenous regime switches is applied to the U.S. economy. Jarociński and

7Benhabib et al. (2001) also show that there usually exist an infinite number of perfect-foresight equilibria
where the economy can originate arbitrarily close to the first steady state and converge to the second steady state.

8See also Boneva et al. (2016).
9Wieland (2018) shows that if one relaxes the assumption of Mertens and Ravn (2014) that the government

spending shock is perfectly correlated with the sunspot shock, a sufficiently short-lived increase in government
spending can be inflationary.

10Hirose (2018) estimates a DSGE model log-linearized around the deflationary steady state on Japanese
data. Cuba-Borda and Singh (2019) compare a permanent expectations-driven liquidity trap to a permanent
fundamental-driven liquidity trap in a model with government bonds in the utility and downward nominal wage
rigidities. Their empirical analysis suggests that the permanent expectations-driven liquidity trap equilibrium fits
Japanese data better than the permanent fundamental-driven liquidity trap equilibrium.
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Maćkowiak (2018) use a sticky-price model with a sunspot shock to conduct counterfactual

simulations of the euro area economic downturn in 2008-2015.

Our paper also makes contact with some existing studies on how to avoid expectations-driven

liquidity traps and equilibrium multiplicity. Benhabib et al. (2002) and Woodford (2003) show

how non-Ricardian fiscal policies that entail an off-equilibrium violation of the transversality

condition can rule out perfect-foresight equilibria in which the economy converges to the steady

state where the lower bound constraint is binding. Sugo and Ueda (2008) and Schmitt-Grohé

and Uribe (2014) consider alternative interest-rate feedback rules. Schmidt (2016) shows that

it is possible to design Ricardian government spending rules that insulate the economy from

expectations-driven liquidity traps. Tamanyu (2019) provides a similar analysis for the case of

tax rules. Armenter (2018) shows that augmenting the objective function of a discretionary

central bank with an objective for stabilizing the level of a long-run nominal interest rate can

ensure the existence of a unique Markov-perfect equilibrium.

Finally, there is a rich literature on optimal monetary and fiscal policy in models with

fundamental-driven liquidity traps. Studies on optimal monetary policy include Eggertsson and

Woodford (2003), Jung et al. (2005), Adam and Billi (2006, 2007), Nakov (2008) and Nakata

and Schmidt (2019a,b). Optimal fiscal policy is analyzed by e.g. Eggertsson and Woodford

(2006), Eggertsson (2006), Schmidt (2013, 2017), Nakata (2016, 2017), Bilbiie et al. (2018) and

Bouakez et al. (2016), among others.

The remainder of the paper is organized as follows. Section 2 presents the model, describing

the private sector behavioral constraints, monetary policy and the shock structure, and defines

the equilibria of interest. Section 3 presents results on equilibrium existence and stabilization

outcomes. Section 4 assesses the desirability of a positive inflation target and inflation conser-

vatism in the sunspot equilibrium. Section 5 extends the analysis to fiscal policy. Section 6

concludes.

2 Model

We use a standard infinite-horizon New Keynesian model formulated in discrete time. The

economy is inhabited by identical households who consume and work, goods-producing firms

that act under monopolistic competition and are subject to price rigidities, and a government.

For now, we assume that the one-period nominal interest rate is the only policy instrument. In

Section 5, the model is extended with government spending. More detailed descriptions of the

model can be found in Woodford (2003) and Gaĺı (2015). We work with a semi-loglinear version

of the model that can be solved in closed form and allows us to derive analytical results.

2.1 Private sector behavior and welfare

Aggregate private sector behavior is described by a Phillips curve and a consumption Euler

equation
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πt = κyt + βEtπt+1 (1)

yt = Etyt+1 − σ (it − Etπt+1 − rnt ) (2)

The private sector behavioral constraints have been (semi) log-linearized around the intended

zero-inflation steady state. πt is the inflation rate between periods t − 1 and t, yt denotes the

output gap, it is the level of the riskless nominal interest rate between periods t and t+1, rnt is the

exogenous natural real rate of interest, and Et is the rational expectations operator conditional

on information available in period t. The parameters are defined as follows: β ∈ (0, 1) is the

households’ subjective discount factor, σ > 0 is the intertemporal elasticity of substitution in

consumption, and κ represents the slope of the Phillips curve.11

Households’ welfare at time t is given by the expected discounted sum of current and future

utility flows. A second-order approximation to household preferences leads to

Vt = −1

2
Et

∞∑
j=0

βj
[
π2
t+j + λ̄y2

t+j

]
, (3)

where λ̄ = κ/θ.12

2.2 Central bank

At the beginning of time, society delegates monetary policy to a central bank. The central bank

does not have a commitment technology, that is, it acts under discretion. The monetary policy

objective is given by

V CB
t = −1

2
Et

∞∑
j=0

βj
[
(πt+j − π∗)2 + λy2

t+j

]
, (4)

where λ ≥ 0 and π∗ are policy parameters to be set by society when designing the central bank’s

objective function. When λ = λ̄ and π∗ = 0, the central bank’s objective function coincides

with society’s objective function (3).

The policy problem of a generic central bank is as follows. Each period t, it chooses the

inflation rate, the output gap, and the nominal interest rate to maximize its objective function

(4) subject to the behavioral constraints of the private sector (1)–(2), and the lower bound

constraint it ≥ 0, with the value and policy functions at time t+ 1 taken as given.

The first-order necessary conditions to this problem imply that interest rate policy is governed

by the following targeting rule

11κ is itself a function of several structural parameters of the economy: κ = (1−α)(1−αβ)
α(1+ηθ)

(σ−1 + η), where

α ∈ (0, 1) denotes the share of firms that cannot reoptimize their price in a given period, η > 0 is the inverse of
the labor-supply elasticity, and θ > 1 denotes the price elasticity of demand for differentiated goods.

12See Woodford (2003). We assume that the steady state distortions arising from monopolistic competition are
offset by a wage subsidy.
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[κ(πt − π∗) + λyt] it = 0, (5)

where κ(πt − π∗) + λyt = 0 whenever it > 0 and κ(πt − π∗) + λyt < 0 when the lower bound

constraint is binding, it = 0. In words, each period the central bank aims to stabilize a weighted

sum of current period’s inflation rate (in deviation from target) and the output gap.

2.3 Sunspot shock

For the benchmark setup, we assume that there is no uncertainty regarding the economy’s

fundamentals. Specifically, rnt = rn = 1/β − 1 for all t. However, agents expectations may be

affected by a non-fundamental sunspot or ‘confidence’ shock ξt. The sunspot shock follows a

two-state Markov process, ξt ∈ (ξL, ξH). We refer to state ξL as the low-confidence state and to

state ξH as the high-confidence state. The transition probabilities are given by

Prob (ξt+1 = ξH |ξt = ξH) = pH (6)

Prob (ξt+1 = ξL|ξt = ξL) = pL (7)

In words, pH ∈ (0, 1] is the probability of being in the high-confidence state in period t + 1

conditional on being in the high-confidence state in period t, and can be interpreted as the

persistence of high confidence. Note that while we allow the high-confidence state to be an

absorbing state we do not restrict our analysis to this special case. pL ∈ (0, 1) is the probability

of being in the low-confidence state in period t + 1 when the economy is in the low-confidence

state in period t, and can be interpreted as the persistence of low confidence.13

Let xs, s ∈ {L,H} be the equilibrium value of some variable x in state ξs. Sunspots matter

if there is an equilibrium in which {πL, yL, iL, VL} 6= {πH , yH , iH , VH}. We are interested in

a sunspot equilibrium where the economy is subject to recurring liquidity trap episodes. We

associate the occurrence of these liquidity trap events with the low-confidence state.

Definition 1 The sunspot equilibrium with occasional liquidity traps is defined as a vector

{yH , πH , iH , yL, πL, iL} that solves the following system of linear equations

13Mertens and Ravn (2014), Schmidt (2016), Aruoba et al. (2018) and Bilbiie (2018) also consider a sunspot
shock that follows a two-state Markov process. However, Mertens and Ravn (2014), Schmidt (2016) and Bilbiie
(2018) assume that the high-confidence state is an absorbing state, that is, pH = 1. Aruoba et al. (2018) allow for
recurring declines in confidence and assume that conditional on being in the high-confidence state agents attach
a 1% probability to the possibility of ending up in the low-confidence state in the next period. Formally, in the
context of our setup they impose pH = 0.99.
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yH = [pHyH + (1− pH)yL] + σ [pHπH + (1− pH)πL − iH + rn] (8)

πH = κyH + β [pHπH + (1− pH)πL] (9)

0 = κ(πH − π∗) + λyH (10)

yL = [(1− pL)yH + pLyL] + σ [(1− pL)πH + pLπL − iL + rn] (11)

πL = κyL + β [(1− pL)πH + pLπL] (12)

iL = 0, (13)

and satisfies the following two inequality constraints

iH > 0 (14)

κ(πL − π∗) + λyL < 0. (15)

2.4 Alternative setup: Fundamental shock

Throughout the paper, we contrast results for the benchmark model—an economy that is subject

to a sunspot shock—with those for an economy that is subject to a fundamental shock instead

of a sunspot shock but is otherwise identical to the benchmark economy. In this alternative

model, the natural real rate is assumed to be stochastic.

To keep the model setup as close as possible to the one with the sunspot shock, rnt is assumed

to follow a two-state Markov process. In the high-fundamental state, the natural real rate is

strictly positive rnH > 0, and in the low-fundamental state it is strictly negative rnL < 0. The

transition probabilities for the natural real rate shock are given by

Prob
(
rnt+1 = rnH |rnt = rnH

)
= pfH (16)

Prob
(
rnt+1 = rnL|rnt = rnL

)
= pfL, (17)

and are distinguished from the transition probabilities of the sunspot shock via the superscript

f . The fundamental equilibrium in the model with the natural real rate shock is defined as

follows.

Definition 2 The fundamental equilibrium with occasional liquidity traps is defined as a
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vector {yH , πH , iH , yL, πL, iL} that solves

yH =
[
pfHyH + (1− pfH)yL

]
+ σ

[
pfHπH + (1− pfH)πL − iH + rnH

]
(18)

πH = κyH + β
[
pfHπH + (1− pfH)πL

]
(19)

yL =
[
(1− pfL)yH + pfLyL

]
+ σ

[
(1− pfL)πH + pfLπL − iL + rnL

]
(20)

πL = κyL + β
[
(1− pfL)πH + pfLπL

]
(21)

as well as (10) and (13), and satisfies inequality constraints (14) and (15).

This Markov-perfect equilibrium has been analyzed in detail in Nakata and Schmidt (2019a).14

To keep the exposition parsimonious, we will refer to this paper for the proofs related to the

fundamental equilibrium whenever applicable.15

3 Basic properties of the sunspot equilibrium

This section presents conditions for existence of the sunspot equilibrium as well as equilibrium

allocations and prices, and discusses how they compare to those of the fundamental equilibrium.

3.1 Equilibrium existence

The following proposition establishes the necessary and sufficient conditions for existence of the

sunspot equilibrium.

Proposition 1 The sunspot equilibrium exists if and only if

pL − (1− pH)− 1− pL + 1− pH
κσ

(1− βpL + β(1− pH)) > 0, (22)

and

π∗ > −κ
2 + λ(1− β)

κ2
rn. (23)

Proof: See Appendix A.

Three observations are in order. First, for the sunspot equilibrium to exist, the two confidence

states have to be sufficiently persistent. Second, prices have to be sufficiently flexible, i.e. κ

14Nakata and Schmidt (2019a) analytically show that in this model with a two-state fundamental shock there
exists another Markov-perfect equilibrium in which the lower bound constraint binds in the low and the high-
fundamental state. Here, we do not consider this equilibrium.

15The notation used in Nakata and Schmidt (2019a) is slightly different from the one used here. They use pH
to denote the probability that the economy is in the low state in the next period conditional on being in the high
state today.
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has to be sufficiently large. Third, the central bank’s inflation target must be higher than some

strictly negative lower bound. Note that conditional on the inflation target not being too low,

equilibrium existence does not depend on the policy parameters λ and π∗.

These conditions for existence of the sunspot equilibrium qualitatively differ from the con-

ditions for existence of the fundamental equilibrium. In particular, for the fundamental equilib-

rium to exist, the low-fundamental state must not be too persistent (see Nakata and Schmidt,

2019a). Hence, the fundamental equilibrium stipulates an upper bound on the average duration

of liquidity traps whereas the sunspot equilibrium stipulates a lower bound. When pH , p
f
H = 1,

the upper bound for the fundamental equilibrium to exist and the lower bound for the sunspot

equilibrium to exist coincide.16

3.2 Allocations and prices

The allocations and prices in the sunspot equilibrium can be solved for in closed form. For

now, we assume that the central bank has the same objective function as society as a whole.

The signs of inflation and the output gap in the two confidence states are then unambiguously

determined.

Proposition 2 Suppose λ = λ̄ and π∗ = 0. In the sunspot equilibrium, πL < 0, yL < 0, πH ≤ 0,

yH ≥ 0. When pH < 1, then πH < 0, yH > 0.

Proof: See Appendix A

When confidence is low, agents expect persistently low future income, and therefore increase

desired saving at the expense of lower desired consumption. Due to the presence of price rigidi-

ties, prices do not fully adjust immediately and output falls. The central bank lowers the policy

rate to equate desired saving to zero, but if agents are sufficiently pessimistic, the lower bound

on the policy rate becomes binding. At the lower bound, to equate desired saving to zero, output

has to fall, validating agents’ pessimistic expectations. The lower bound is binding, and inflation

and the output gap both settle below target.

When confidence is high, the policy rate is strictly positive but if pH < 1 the risk of a

future decline in confidence creates a monetary policy trade-off between inflation and output

gap stabilization. Specifically, the possibility that confidence might fall in the future while the

price set by a firm reoptimizing today is still in place provides an incentive for forward-looking

firms to set a lower price than they would in the absence of any risk of a future drop in confidence.

To counteract these deflationary forces, the central bank allows for a positive output gap, that

is, it sets the policy rate in the high-confidence state such that the ex-ante real interest rate

is below the constant natural real rate. In equilibrium, the high-confidence output gap is thus

positive and inflation is below target.

16Appendix A provides a numerical illustration of the existence conditions for the sunspot equilibrium and for
the fundamental equilibrium.
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The signs of output and inflation in the fundamental equilibrium are identical to those in

the sunspot equilibrium. Output and inflation are negative in the low-fundamental state, and

output (inflation) is positive (negative) in the high-fundamental state (see Nakata and Schmidt,

2019a). However, in the fundamental equilibrium, it is the temporarily negative natural real

rate of interest in the low-fundamental state that leads to the decline in output and inflation in

the low state.

3.3 Aggregate demand and aggregate supply schedules

In order to better understand equilibrium outcomes in the model with the sunspot shock and in

the model with the fundamental shock, and how they are affected by the policy framework, we

recast the models in terms of aggregate demand (AD) and aggregate supply (AS) curves. The

AD curve is the set of pairs of inflation rates and output gaps consistent with Euler equation

(2) where the policy rate is set in line with target criterion (5), and the AS curve is the set of

pairs of inflation rates and output gaps consistent with Phillips curve (1). Specifically, we focus

on the AD and AS schedules conditional on the economy being in the low state of the respective

model. For the model with the sunspot shock the two curves in the low-confidence state are

given by

AD-sunspot: yL = min

[(
yH + σπH +

σ

1− pL
rn
)

+
σpL

1− pL
πL,

κ

λ
(π∗ − πL)

]
(24)

AS-sunspot: yL = −β(1− pL)

κ
πH +

1− βpL
κ

πL, (25)

where in each equation we distinguish between terms that are multiplied by πL—the slope

coefficient—and the other terms—the intercept. For the model with the fundamental shock, the

two curves are given by

AD-fundamental: yL = min

[(
yH + σπH +

σ

1− pfL
rnL

)
+

σpfL

1− pfL
πL,

κ

λ
(π∗ − πL)

]
(26)

AS-fundamental: yL = −
β(1− pfL)

κ
πH +

1− βpfL
κ

πL. (27)

Figure 1 plots these AD-AS curves for the model with the sunspot shock (left panel) and

for the model with the fundamental shock (right panel), assuming that the high state in both

models is an absorbing state. One period corresponds to one quarter. We set pL = 0.9375 in

the model with the sunspot shock, implying an average duration of lower bound episodes of 4

years in the sunspot equilibrium. In the model with the fundamental shock, we set pfL = 0.85,

implying an average duration of lower bound episodes of 1 1/2 years. The other parameter

values are summarized in Table 1. For πH , yH = 0, the intercept terms in the AS curves are

zero, whereas the intercept terms in the AD curves are positive (model with sunspot shock) and

negative (model with fundamental shock), respectively.
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Table 1: Parameter values for numerical example

Parameter Value Economic interpretation

β 0.9975 Subjective discount factor
σ 0.5 Intertemporal elasticity of substitution in consumption
η 0.47 Inverse labor supply elasticity
θ 10 Price elasticity of demand
α 0.8106 Share of firms per period keeping prices unchanged
λ λ̄ Policy parameter: Relative weight on output term
π∗ 0 Policy parameter: Inflation target
rnH rn High-state natural real rate in model with fundamental shock
rnL -0.005 Low-state natural real rate in model with fundamental shock

Note: This parameterization implies rn = 0.0025, κ = 0.0194, λ̄ = 0.0019.

Figure 1: Aggregate demand and aggregate supply in the low state
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(a) Model with sunspot shock
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(b) Model with fundamental shock

Note: In the left panel, S marks the sunspot equilibrium and NS the no-sunspot equilibrium. In the right panel,

F marks the fundamental equilibrium. Inflation is expressed in annualized terms.

The low-state AD-AS curves in the two models have several common features. First, due

to the lower bound constraint, the AD curve has a kink. To the left of the kink, the lower

bound constraint is binding and to the right of the kink the lower bound constraint is slack.

Second, the AD curve is upward-sloping to the left of the kink—aggregate demand is increasing

in inflation when the lower bound is binding because an increase in inflation lowers the ex-

ante real interest rate—and downward-sloping to the right of the kink—aggregate demand is

decreasing in inflation when the lower bound constraint is slack because the central bank raises

the policy rate more than one-for-one with inflation. Third, the AS curve is monotonically

upward-sloping—an increase in demand leads to an increase in inflation—and goes through the

origin.

In the model with the sunspot shock, the AD curve is steeper than the AS curve. This is a
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necessary—and in case of π∗ = 0 sufficient—condition for existence of the sunspot equilibrium.17

Intuitively, since the low-confidence state is highly persistent, households’ desired consumption is

very sensitive to changes in low-state inflation, i.e. the AD curve is relatively steep. At the same

time, the high persistence of the low-confidence state makes firms’ price setting very sensitive to

changes in aggregate demand, i.e. the AS curve is relatively flat. Consistent with Proposition 2,

when confidence is low, output and inflation are strictly negative in the sunspot equilibrium as

represented by intersection point S. The panel also shows that besides the sunspot equilibrium,

there is a second equilibrium—represented by intersection point NS—where the lower bound

constraint on the policy rate is not binding and low-state output and inflation are at target. In

this ‘no-sunspot’ equilibrium, the sunspot shock does not affect agents’ behavior.

In the model with the fundamental shock, the AD curve is flatter than the AS curve, which

is a necessary condition for the fundamental equilibrium to exist and reflects the relatively

lower persistence of the low-fundamental state. In the fundamental equilibrium, marked by

intersection point F in the right panel, low-state output and inflation are negative, again in line

with analytical results.

4 Monetary policy frameworks

Having shown that the sunspot equilibrium is associated with rare but long-lasting spells at the

lower bound and chronic deflation, we now explore whether stabilization outcomes and welfare

can be improved by assigning an objective function to the policymaker that differs from society’s

objective function. This section focuses on two monetary policy frameworks that are known to

be desirable in models with fundamental-driven liquidity traps: a non-zero inflation target and

inflation conservatism. The subsequent section extends the analysis to fiscal policy.

4.1 A non-zero inflation target

In the fundamental equilibrium, society’s welfare can be improved by assigning a strictly positive

inflation target to the central bank (Nakata and Schmidt, 2019a). This subsection explores the

desirability of a non-zero inflation target in the sunspot equilibrium. Throughout this subsection,

we assume λ = λ̄.

While the signs of allocations and prices are sensitive to the quantitative value of the cen-

tral bank’s inflation target, the effects of a change in the target on allocations and prices are

unambiguously determined.

Proposition 3 In the sunspot equilibrium, ∂πL
∂π∗ < 0, ∂yL

∂π∗ < 0, ∂πH
∂π∗ > 0, ∂yH

∂π∗ > 0.

Proof: See Appendix A.

17See the condition for existence of the sunspot equilibrium (22) with pH = 1.
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Figure 2: The effect of increasing the central bank’s inflation target
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Note: Solid lines: π∗ = 0; dashed lines: π∗ = 1/400. In the left (right) panel, S (F ) marks the sunspot

(fundamental) equilibrium in the baseline and S′ (F ′) marks the sunspot (fundamental) equilibrium in the case

of a higher π∗. NS marks the no-sunspot equilibrium in the baseline, and NS′ marks the no-sunspot equilibrium

in the case of a higher π∗. Inflation is expressed in annualized terms.

In the sunspot equilibrium, a marginal increase in the inflation target lowers output and

inflation in the low-confidence state and raises output and inflation in the high-confidence state.18

Consider first the high-confidence state. All else equal, if π∗ increases, the gap between the

inflation target and actual inflation widens, and hence the central bank becomes more willing

to tolerate a positive output gap to bring inflation again closer to its target. In equilibrium, an

increase in π∗ therefore raises the output gap and inflation in the high-confidence state.

To understand why low-state output and inflation are increasing in π∗, we make use of the

the AD-AS framework. The left panel of Figure 2 depicts how the low-confidence state AD and

AS curves (24)–(25) are shifted in response to an increase in the central bank’s inflation target,

assuming that the high state is an absorbing state. An increase in the inflation target shifts

the AD curve upwards, because, all else equal, agents increase their desired consumption given

higher expected inflation. At the same time, the AS curve shifts downwards, as firms’ desired

price increases in light of higher expected inflation for given current demand. Hence, at the

inflation rate consistent with the sunspot equilibrium in the baseline, marked by intersection

point S, there is now excess demand. In the model with the sunspot shock, excess demand is

increasing in the inflation rate as long as the lower bound is binding. To restore equilibrium,

low-state inflation and output thus have to decline. The new intersection point S′ lies to the

south-west of the baseline intersection point S.19

18It can also be shown that ∂πH
∂π∗ < 1. Together with Proposition 2, this implies that for any positive inflation

target actual inflation in the high-confidence state is below target.
19An increase in the inflation target also affects the no-sunspot equilibrium. With a non-zero inflation target, the

central bank faces a trade-off between output stabilization and stabilization of inflation at target. In equilibrium,
when the inflation target is positive, high-state inflation is slightly below target and the output gap is slightly
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In the fundamental equilibrium, a marginal increase in the inflation target also raises high-

state inflation. The effects on low-state outcomes, however, differ from those in the sunspot

equilibrium. Higher inflation in the high-fundamental state lowers the conditional ex-ante real

interest rate in the low-fundamental state. This stimulates aggregate demand and leads to an

increase in low-state output and inflation (Nakata and Schmidt, 2019a). The right panel of

Figure 2 depicts how in the model with the fundamental shock the low-state AD and AS curves

(26)–(27) are shifted in response to an increase in the inflation target.

For the characterization of the welfare-maximizing inflation target in the model with the

sunspot shock, it is also useful to show that there exists an inflation target such that inflation

in the high-confidence state is stabilized at zero.

Lemma 1 There exists a π0 > 0 such that in the sunspot equilibrium πH = 0 if π∗ = π0.

Proof: See Appendix A.

One can then establish the following result concerning the welfare-maximizing inflation tar-

get.

Proposition 4 Suppose λ = λ̄ and pH < 1. Let π∗∗ denote the value of π∗ > −κ2+λ(1−β)
κ2 rn

that maximizes households’ unconditional welfare EVt where Vt is defined in equation (3). In

the sunspot equilibrium, π∗∗ < π0.

Proof: See Appendix A.

Together with Proposition 3 and Lemma 1, this proposition means that the optimal inflation

target can be negative or positive. However, this proposition also means that even if the optimal

inflation target is positive, it will be below the level needed to engineer strictly positive inflation

in the high-confidence state. The ambiguity concerning the sign of the optimal target can be

understood from the fact that an increase in π∗ has a negative effect on low-state inflation

(moving low-state inflation further into negative territory), and a positive effect on high-state

inflation (moving high-state inflation closer to zero as long as π∗ < π0).20 Only for the special

case where the high-confidence state is an absorbing state, pH = 1, the optimal inflation target

is unambiguously negative.21

The left panel of Figure 3 shows how π∗∗ depends on pH and pL, the persistence of the high

and the low-confidence state, respectively.22 The figure distinguishes three cases: i. π∗∗ > 0

(light gray-shaded area), ii. π∗∗ ≤ 0 and yH > 0 (gray-shaded area), and iii. π∗∗ < 0 and

yH ≤ 0 (black-shaded area). The white-shaded area represents pairs of pH and pL for which the

sunspot equilibrium does not exist. When the two confidence states are highly persistent, the

positive.
20Appendix A provides a numerical example of how π∗ affects allocations and welfare in the sunspot equilibrium.
21This follows directly from Propositions 2 and 3.
22The values for the other model parameters are reported in Table 1.
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Figure 3: Optimal inflation target in model with sunspot shock
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Note: In the right panel pH = pL. The optimal inflation target π∗∗ is expressed in annualized terms.

optimal inflation target is strictly positive. When the two states are less persistent, the optimal

inflation target is negative. Most pairs {pH , pL} that are consistent with equilibrium existence

fall into this second category. If the pair of persistence parameters just marginally satisfies

the conditions for equilibrium existence, the optimal inflation target is sufficiently negative to

engineer a negative output gap in the high state.

The right panel of Figure 3 plots the optimal inflation target (left vertical axis, solid black

line) and the welfare gain from assigning the optimal target to the central bank (right vertical

axis, dashed blue line) as a function of the persistence of the two confidence states, assuming

pH = pL. For sufficiently low values of pH and pL, the optimal inflation target is negative and

is increasing in the persistence parameters. When pH and pL are high enough, the optimal

inflation target is slightly positive. The welfare gain of assigning an optimized inflation target

to the central bank is most elevated when the persistence parameters take on the lowest possible

values for which the sunspot equilibrium exists.

Next, we assess the desirability of inflation conservatism.

4.2 Inflation conservatism

An inflation-conservative central banker is a policymaker who puts a higher relative weight on

inflation stabilization than society as a whole (λ < λ̄). In models with occasional fundamental-

driven liquidity trap episodes, the appointment of an inflation-conservative policymaker improves

welfare relative to the case where the policymaker has the same objective function as society as

a whole (Nakata and Schmidt, 2019a). Specifically, if the only source of uncertainty is a natural

real rate shock—as assumed for the model with the fundamental shock—then it is optimal to

appoint a strictly inflation-conservative policymaker, i.e. λ = 0.

Let us now turn to the model with the sunspot shock. We first establish how a change in

the central bank’s relative weight on output stabilization λ affects allocations and prices in the

sunspot equilibrium and then explore the welfare implications. To focus on the role of inflation
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conservatism, we assume π∗ = 0 throughout this subsection.

Proposition 5 Suppose π∗ = 0 and pH < 1. In the sunspot equilibrium, ∂πL
∂λ > 0, ∂yL

∂λ > 0,
∂πH
∂λ < 0, ∂yH

∂λ < 0.

Proof: See Appendix A.

In the sunspot equilibrium, a marginal increase in the relative weight on output gap stabi-

lization raises output and inflation in the low-confidence state and lowers output and inflation

in the high-confidence state.23 Qualitatively, the effects are thus the same as those of a marginal

reduction in π∗ (see Proposition 3).

The next proposition focuses on the welfare implications of inflation conservatism.

Proposition 6 Suppose π∗ = 0 and pH < 1. Let λ∗ denote the value of λ ∈ [0,∞] that

maximizes households’ unconditional welfare EVt where Vt is defined in equation (3). In the

sunspot equilibrium, λ∗ > 0.

Proof: See Appendix A.

In words, strict inflation conservatism—the welfare-maximizing configuration in the funda-

mental equilibrium—is not desirable in the sunspot equilibrium. In the Appendix, we show that

the optimal relative weight, λ∗, can be either smaller or bigger than households’ relative weight

on output gap stabilization λ̄ and provide the corresponding necessary and sufficient conditions.

The reason for this ambiguity with regard to the desirability of inflation conservatism is similar

to why the optimal inflation target can be negative or positive.

Before turning to fiscal policy, it is useful to point out that there is a close relationship

between inflation conservatism and a non-zero inflation target.

Proposition 7 Suppose pH < 1. For any λ̂ ≥ 0, there exists a π̂∗ such that the sunspot

equilibrium under optimal discretionary policy associated with the inflation conservatism regime

satisfying (λ = λ̂, π∗ = 0) is replicated by the inflation target regime satisfying (λ = λ̄, π∗ = π̂∗),

where

π̂∗ ≡ β(1− pH)rn

βλ̂(1− pH)− (κ2 + λ̂(1− β))C

(
λ̄− λ̂

)
. (28)

Proof: See Appendix A.

The reverse is not true, as a sufficiently negative inflation target results in a strictly negative

high-state output gap, an allocation that is unattainable under inflation conservatism for any

23If the high-confidence state was an absorbing state, pH = 1, a change in λ would not affect allocations, and,
hence, welfare.
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λ ≥ 0.24 An interesting implication of equation (28) is that if the allocation under the optimal

inflation target is attainable under inflation conservatism, then the optimal inflation target π∗∗

is positive if and only if the optimal relative output weight λ∗ is smaller than society’s weight

λ̄.25

In summary, it is not straightforward to improve the sunspot equilibrium by means of a

simple modification of the central bank’s objective function such as imposing a non-zero inflation

target or a different relative weight on inflation stabilization than the one implied by households’

preferences.

5 Fiscal policy

This section extends the analysis to fiscal policy. To do so, we explicitly model government

spending, which can be used by the discretionary policymaker as an additional policy tool. We

first show how the introduction of fiscal policy affects equilibrium existence and allocations, and

then turn to the design of fiscal policy by asking how much relative weight should be put on

government spending stabilization in the policymaker’s objective function.

5.1 The model with fiscal policy

The aggregate private sector behavioral constraints in the model with government spending are

πt = κxt + βEtπt+1 (29)

xt = (1− Γ)gt + Et(xt+1 − (1− Γ)gt+1)− σ (it − Etπt+1 − rnt ) , (30)

where gt denotes government spending as a share of steady-state output, expressed in deviation

from the steady-state ratio, xt ≡ yt − Γgt, with Γ = σ−1

σ−1+η
, will be referred to as the modified

output gap, and, in a slight abuse of notation, σ now denotes the inverse of the elasticity of the

marginal utility of private consumption with respect to total output.

We assume that the provision of public goods provides utility to households and that utility

is separable in private and public consumption. A second-order approximation to household

preferences leads to26

Vt = −1

2
Et

∞∑
j=0

βj
(
π2
t+j + λ̄x2

t+j + λ̄gg
2
t+j

)
. (31)

The relative weight on government spending stabilization satisfies λ̄g = λ̄Γ
(
1− Γ + σ

ν

)
> 0,

24Likewise, a sufficiently positive inflation target results in a strictly positive high-state inflation rate, an
allocation that is also unattainable under inflation conservatism for any λ ≥ 0.

25To see this, note that βλ̂(1− pH)− (κ2 + λ̂(1− β))C > 0 in the sunspot equilibrium.
26See Schmidt (2013) for details.

ECB Working Paper Series No 2304 / August 2019 20



where ν denotes the inverse of the elasticity of the marginal utility of public consumption with

respect to total output. As before, λ̄ = κ/θ.

At the beginning of time, society delegates monetary and fiscal policy to a discretionary

policymaker. The objective function of the policymaker is given by

VMF
t = −1

2
Et

∞∑
j=0

βj
(
π2
t+j + λ̄x2

t+j + λgg
2
t+j

)
, (32)

where λg ≥ 0 is a policy parameter the value of which is chosen by society when designing the

policymaker’s objective function. When λg = λ̄g, the policymaker’s objective function coincides

with society’s objective function. The policymaker’s optimization problem and the first-order

conditions are relegated to Appendix B.

As before, we focus on a sunspot equilibrium where the lower bound is binding in the low-

confidence state and slack in the high-confidence state.

Definition 3 The sunspot equilibrium with fiscal policy and occasional liquidity traps is defined

as a vector {xH , πH , iH , gH , xL, πL, iL, gL} that solves the following system of linear equations

xH = pHxH + (1− pH) [xL + (1− Γ)(gH − gL)] + σ [pHπH + (1− pH)πL − iH + rn] (33)

πH = κxH + β [pHπH + (1− pH)πL] (34)

λggH = −(1− Γ)
(
κπH + λ̄xH

)
(35)

0 = κπH + λ̄xH (36)

xL = pLxL + (1− pL) [xH − (1− Γ)(gH − gL)] + σ [(1− pL)πH + pLπL − iL + rn] (37)

πL = κxL + β [(1− pL)πH + pLπL] (38)

λggL = −(1− Γ)
(
κπL + λ̄xL

)
(39)

iL = 0, (40)

and satisfies the following two inequality constraints

iH > 0 (41)

κπL + λ̄xL < 0. (42)

The sunspot equilibrium is compared to a fundamental equilibrium in a setup where the two-

state sunspot shock is replaced with a two-state natural real rate shock. As before, we consider

a Markov-perfect equilibrium where the lower bound constraint is slack in the high-fundamental

state and binding in the low-fundamental state.

Definition 4 The fundamental equilibrium with fiscal policy and occasional liquidity traps is
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defined as a vector {xH , πH , iH , gH , xL, πL, iL, gL} that solves the following system of linear equa-

tions

xH = pfHxH + (1− pfH) [xL + (1− Γ)(gH − gL)] + σ
[
pfHπH + (1− pfH)πL − iH + rnH

]
(43)

πH = κxH + β
[
pfHπH + (1− pfH)πL

]
(44)

xL = pfLxL + (1− pfL) [xH − (1− Γ)(gH − gL)] + σ
[
(1− pfL)πH + pfLπL − iL + rnL

]
(45)

πL = κxL + β
[
(1− pfL)πH + pfLπL

]
(46)

as well as (35), (36), (39) and (40), and satisfies the inequality constraints (41) and (42).

5.2 Equilibrium existence and allocations

The following proposition establishes a necessary and sufficient condition for existence of the

sunspot equilibrium in the model with fiscal policy. The condition for existence of the fun-

damental equilibrium in the model with the natural real rate shock is provided in Appendix

D.

Proposition 8 The sunspot equilibrium exists if and only if

λgΩ(pL, pH , κ, σ, β)− (1− Γ)2 1− pL + 1− pH
κσ

[
κ2 + λ̄(1− βpL + β(1− pH))

]
> 0, (47)

where Ω(pL, pH , κ, σ, β) ≡ pL − (1− pH)− 1−pL+1−pH
κσ (1− βpL + β(1− pH)) .

Proof: See Appendix C.

From Proposition 1, we know that the sunspot equilibrium in the model without fiscal

policy and a zero-inflation target exists if and only if Ω(·) > 0. In the model with fiscal

policy, Ω(·) > 0 is a necessary but not a sufficient condition for existence of the sunspot

equilibrium. Importantly, the condition for equilibrium existence depends on the policy pa-

rameter λg. Suppose Ω(·) > 0. Then, the sunspot equilibrium exists if and only if λg >
(1−Γ)2

Ω(·)
1−pL+1−pH

κσ

[
κ2 + λ̄(1− βpL + β(1− pH))

]
> 0.

Next, we characterize allocations and prices in the sunspot equilibrium.

Proposition 9 In the sunspot equilibrium, πL < 0, xL < 0, gL > 0, πH ≤ 0, xH ≥ 0 and

gH = 0. When pH < 1, then πH < 0, xH > 0.

Proof: See Appendix C.

The policymaker increases government spending when the lower bound on nominal interest

rates is binding, and keeps government spending at its steady state otherwise. The same holds

true for the fundamental equilibrium. See Appendix D.
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5.3 Welfare implications of fiscal policy

In the model with fundamental-driven liquidity traps, society can improve its welfare by ap-

pointing a “fiscally-activist” policymaker who puts less relative weight on government spending

stabilization than society as a whole (Schmidt, 2017). To assess the welfare implications of fiscal

policy in the sunspot equilibrium, we first establish how a marginal change in the policymaker’s

relative weight on government spending stabilization λg affects allocations and prices.

Proposition 10 In the sunspot equilibrium, ∂πL
∂λg

> 0, ∂xL
∂λg

> 0, ∂gL
∂λg

< 0, ∂πH
∂λg
≥ 0, ∂xH

∂λg
≤ 0. If

pH < 1, ∂πH
∂λg

> 0, ∂xH
∂λg

< 0.

Proof: See Appendix C.

That is, the higher the relative weight on government spending stabilization in the poli-

cymaker’s objective function, the smaller the fiscal stimulus in the low-confidence state. At

the same time, an increase in λg raises the inflation rate and the modified output gap in the

low-confidence state. Finally, an increase in λg raises the inflation rate and lowers the modified

output gap in the high-confidence state. Thus, the higher λg the closer to target is the economy.

In the fundamental equilibrium, an increase in λg lowers government spending in the low

state, as in the sunspot equilibrium. However, unlike in the sunspot equilibrium, an increase

in λg lowers the inflation rate and the modified output gap in the low state. Finally, it lowers

inflation and raises the modified output gap in the high state. See Appendix D.

It is instructive to show how a change in λg affects the low-state AD and AS curves in the

two models. For both models, we assume that the high state is absorbing. The low-state AD

and AS curves in the model with the sunspot shock and fiscal policy are then given by

AD-sunspot: xL = min

[
1

λg + (1− Γ)2λ̄

(
σλg

1− pL
rn +

(
σpLλg
1− pL

− (1− Γ)2κ

)
πL

)
,−κ

λ̄
πL

]
AS-sunspot: xL =

1− βpL
κ

πL,

where πH and xH have been set equal to zero. For the model with the fundamental shock and

fiscal policy, the low-state AD and AS curves are given by

AD-fundamental: xL = min

[
1

λg + (1− Γ)2λ̄

(
σλg

1− pfL
rnL +

(
σpfLλg

1− pfL
− (1− Γ)2κ

)
πL

)
,−κ

λ̄
πL

]

AS-fundamental: xL =
1− βpfL

κ
πL,

where again πH and xH have been set equal to zero.

Figure 4 depicts how the AD-AS curves are affected by a reduction in λg. The parame-

terization follows Table 1, except that we now account for a non-zero steady-state government

spending to output ratio of 0.2. This ratio implies that the inverse of the elasticity of the
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Figure 4: The effect of reduction in λg on low-state aggregate demand and supply
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Note: Solid lines: λg = λ̄g; dashed lines: λg = λ̄g/10. In the left panel, S marks the sunspot equilibrium in the

baseline, S′ marks the sunspot equilibrium in case of a lower λg and NS marks the no-sunspot equilibrium. In

the right panel, F marks the fundamental equilibrium in the baseline and F ′ marks the fundamental equilibrium

in case of a lower λg. Inflation is expressed in annualized terms.

marginal utility of private consumption with respect to output σ becomes 0.4.27 The inverse

of the elasticity of the marginal utility of public consumption with respect to output ν is set

to 0.1.28 This implies λ̄g = 0.0082. As before, pL = 0.9375 and pfL = 0.85. The intersection

point S in the left panel marks the sunspot equilibrium in the model with the sunspot shock for

the baseline calibration, and the intersection point NS marks the no-sunspot equilibrium. The

intersection point F in the right panel, in turn, marks the fundamental equilibrium in the model

with the natural real rate shock for the baseline calibration. In both models, the AD curve

becomes flatter to the left of the kink when λg is lowered. Intuitively, when the policymaker

adjusts government spending more aggressively to changes in inflation, aggregate demand, too,

responds ceteris paribus more elastically to changes in inflation. In the model with the sunspot

shock, the AD curve is steeper than the AS curve, and hence a flattening of the AD curve shifts

the point at which the two curves intersect when the lower bound is binding to the south-west.

In contrast, in the model with the fundamental shock, the AD curve is flatter than the AS curve,

and hence a flattening of the AD curve shifts the point at which the two curves intersect to the

north-east.

Propositions 9 and 10 together have a straightforward implication for the optimal value of

λg in the sunspot equilibrium.

Proposition 11 Let λ∗g denote the value of λg that maximizes households’ unconditional welfare

27Assuming that the intertemporal elasticity of substitution in private consumption equals 0.5, as before, we
have σ = 0.5× 0.8 = 0.4.

28This corresponds to the case in which the marginal utility of consumption of the public good decreases at the
same rate as the marginal utility of consumption of the non-public good, i.e. ν = 0.5× 0.2 = 0.1.
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EVt where Vt is defined in equation (31). In the sunspot equilibrium, λ∗g →∞.

It is easy to show that as λg → ∞, gL → 0. Intuitively, if it becomes infinitely costly

for the policymaker to adjust government spending, she will not use it as a stabilization tool.

This turns out to be the optimal configuration in the sunspot equilibrium. Put differently,

introducing an additional policy tool in the form of government spending reduces welfare in the

sunspot equilibrium. Conditional on the existence of the sunspot equilibrium, it is therefore

optimal to make the use of the tool so expensive for the policymaker that she will refrain from

using it.29

5.4 Why is government spending raised in the low-confidence state?

If an expansionary fiscal policy in the low-confidence state moves the economy further away from

target in both confidence states, why does the policymaker not refrain from raising government

spending in the low-confidence state for any λg <∞? To shed light on this question consider the

following thought experiment. Suppose, λg →∞, i.e. there is no systematic use of government

spending for stabilization purposes in the low-confidence state. Consider some period T ≥ 0

where the economy is in the low-confidence state and the lower bound is binding. For ease

of exposition, let pH = 1. The private sector behavioral constraints for period T can then be

written as

xTL = (1− Γ)gTL − pL
(1− βpL)κ2 + (1− β)(1− βpL + β(1− pH))λ̄+ κσ

(
κ2 + λ̄(1− βpH)

)
κE

rn + σrn

πTL = κxTL − βpL
κ2 + λ̄(1− βpH)

E
rn,

where πTL , x
T
L, g

T
L are the inflation rate, the modified output gap and government spending in

period T . Now suppose that in period T there is an unexpected one-time increase in government

spending. The marginal effect of this policy on the modified output gap and the inflation rate

in period T is (∂xTL/∂g
T
L) = 1−Γ > 0 and (∂πTL/∂g

T
L) = κ(1−Γ) > 0. In words, the unexpected

and temporary government spending stimulus raises the modified output gap and inflation in

the low-confidence state.30

Hence, if expectations do not change, an increase in government spending is expansionary.

A discretionary policymaker who raises government spending in the low-confidence state would

like the private sector to expect the fiscal expansion to be temporary. However, if the economy

continues to be in the low-confidence state in the next period, any discretionary policymaker

with an objective function satisfying λg <∞ will have an incentive to renege on her promise to

undo the government spending expansion. A policy announcement of a one-time fiscal stimulus

is therefore not credible. In equilibrium, agents anticipate that the discretionary policymaker

29Appendix C provides a numerical example of how λg affects allocations and welfare in the sunspot equilibrium.
30This echoes the result by Wieland (2018) that it is the persistence of the fiscal policy intervention at the lower

bound rather than the type of the liquidity trap that matters for the sign of government spending multipliers.
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will raise government spending whenever the economy transitions from the high-confidence state

to the low-confidence state and that she will keep government spending at a higher level for as

long as the economy remains in the low-confidence state. Since the low-confidence state is

highly persistent, expansionary government spending at the lower bound is contractionary, as

in Mertens and Ravn (2014).31

5.5 Avoiding the sunspot equilibrium

The results presented so far might appear disappointing from the perspective of policy design.

Clearly, the sunspot equilibrium cannot be improved by allowing the discretionary policymaker

to use government spending as an additional policy instrument. However, Proposition 8 implies

that society may be able to eliminate the sunspot equilibrium and avoid expectations-driven

liquidity traps altogether. To do so it has to make the relative weight on government spending

stabilization in the policymaker’s objective function sufficiently small.

Intuitively, when λg → 0, the policymaker is willing to do “whatever it takes”—in terms of

fiscal policy—to make sure that the weighted sum of inflation and the modified output gap are

stabilized. Since the lower bound is not binding when this target criterion is met, λg → 0 rules

out the sunspot equilibrium. In this case, the only stationary equilibrium in the model with the

sunspot shock is the no-sunspot equilibrium where the shock does not affect agents’ behavior.

In the no-sunspot equilibrium, all variables are at target in both confidence states. Figure 5

provides a graphical illustration. For a sufficiently low λg the AD curve to the left of the kink

becomes flatter than the AS curve and there is only one intersection point left, which is the one

associated with the no-sunspot equilibrium.

From a practical perspective, an important question is whether a policymaker who puts a

sufficiently small relative weight on government spending stabilization to rule out the sunspot

equilibrium would be consistent with quantitatively plausible variations in government spending

in the face of actual fluctuations in output and inflation. To shed light on this question, we

conduct the following counterfactual experiment. We first calculate the annualized inflation

rate and the output gap in the low state of the sunspot equilibrium when the policymaker has

the same objective function as society (λg = λ̄g). Unlike for the numerical analysis based on

the AD-AS curves, we do not have to assume that the high-confidence state is absorbing, and

set pH = 0.98. In this case, annualized inflation is −2.5% and the output gap is −1.6% in the

low-confidence state. We then ask by how much a policymaker with a λg low enough to rule out

the sunspot equilibrium would raise government spending taking as given the above outcomes

for inflation and output.

Figure 6 plots the counterfactual government spending response as a function of λg. A

policymaker with a sufficiently small relative weight on government spending stabilization to

31Appendix C provides a comparison of our setup where government spending is an endogenous variable set by
an optimizing policymaker to the case where government spending is an exogenous variable, as in Mertens and
Ravn (2014).
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Figure 5: Avoiding the sunspot equilibrium
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Figure 6: Counterfactual government spending response for alternative λg
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rule out the sunspot equilibrium would raise government spending by at least 3% of total output,

a quantitatively non-negligible but plausible number.

6 Conclusion

Expectations-driven liquidity traps differ from fundamental-driven liquidity traps in terms of

their implications for the design of desirable monetary and fiscal stabilization policies. In par-

ticular, policy design becomes more complicated when liquidity trap episodes are caused by

changes in agents’ confidence than when they are caused by changes in the economy’s funda-

mentals.

The occurrence of occasional fundamental-driven liquidity trap events makes it desirable for

society to assign a strictly positive inflation target—high enough to generate positive inflation

in the high state—or an inflation-conservative objective function to the central bank. No such

clear-cut policy recommendations can be derived in case of expectations-driven liquidity trap

events. The optimal inflation target may be negative or positive. Likewise, the optimal relative

weight on inflation in the central bank’s objective function may be smaller or larger than the

weight that society puts on inflation stabilization, depending on parameter values. However,

strict inflation conservatism or an inflation target high enough to generate positive inflation in

the high state are never optimal in the sunspot equilibrium.

Turning to fiscal policy, the use of government spending as an additional stabilization tool—

welfare-improving in the case of fundamental-driven liquidity traps—is welfare-reducing in the

case of expectations-driven liquidity traps. Nevertheless, it may be desirable to assign an explicit

role to fiscal policy in an economy prone to the latter, for the appointment of a policymaker

who puts a sufficiently small relative weight on government spending stabilization eliminates the

sunspot equilibrium.

In this paper, we have focused on policy frameworks that allow for a closed-form solution.

There are other frameworks that have featured prominently in the ongoing policy debate, such

as price-level targeting and nominal-GDP targeting. The analysis of these frameworks in the

model with expectations-driven liquidity traps is an interesting avenue for future research.
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Appendix

A Sunspot equilibrium in the model without fiscal policy

A.1 Proof of Proposition 1

To proof Proposition 1 on the necessary and sufficient conditions for existence of the sunspot

equilibrium, it is useful to proceed in four steps. Each step is associated with an auxiliary

proposition.

Let

A := −βλ(1− pH), (A.1)

B := κ2 + λ(1− βpH), (A.2)

C :=
(1− pL)

σκ
(1− βpL + β(1− pH))− pL, (A.3)

D := −(1− pL)

σκ
(1− βpL + β(1− pH))− (1− pL) = −1− C, (A.4)

and

E := AD −BC. (A.5)

Proposition A.1 There exists a vector {yH , πH , iH , yL, πL, iL} that solves the system of linear

equations (8)–(13).

Proof: Rearranging the system of equations (8)–(13) and eliminating yH and yL, we obtain two

unknowns for πH and πL in two equations

[
A B

C D

][
πL

πH

]
=

[
κ2π∗

rn

]
. (A.6)

For what follows, it is useful to show that E = 0 is generically inconsistent with existence of

the sunspot equilibrium. Since B > 0, we can always write πH = κ2/Bπ∗ − A/BπL. Plugging

this into CπL +DπH = rn and multiplying both sides by B, we get Dκ2π∗−EπL = Brn. Since

the right-hand side of this equation is strictly positive, E = 0 is inconsistent with the existence

of the sunspot equilibrium for generic π∗.

Hence, we can invert the matrix on the left-hand-side of (A.6)

[
πL

πH

]
=

1

AD −BC

[
D −B
−C A

][
κ2π∗

rn

]
. (A.7)

Thus,
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πH = −Cκ
2

E
π∗ +

A

E
rn (A.8)

and

πL =
Dκ2

E
π∗ − B

E
rn. (A.9)

From the Phillips curves in both states, we obtain

yH =
κ (β(1− pH)− (1− β)C)

E
π∗ +

βκ(1− pH)

E
rn (A.10)

and

yL =
κ (βpL − 1− (1− β)C)

E
π∗ − (1− βpL)κ2 + (1− β)(1− βpL + β(1− pH))λ

κE
rn. (A.11)

Proposition A.2 Suppose equations (8)–(13) are satisfied. Then λyL + (κπL − π∗) < 0 if and

only if (i) E > 0 and π∗ > −κ2+λ(1−β)
κ2 rn or (ii) E < 0 and π∗ < −κ2+λ(1−β)

κ2 rn.

Proof: Using (A.9) and (A.11), we have

λyL + κ(πL − π∗) = −κ
2 + λ (1− βpL + β(1− pH))

E
κ

(
π∗ +

κ2 + λ(1− β)

κ2
rn
)
. (A.12)

Notice that (κ2 + λ (1− βpL + β(1− pH)))κ > 0, and κ2+λ(1−β)
κ2 rn > 0. Thus, if E > 0 and

π∗ > −κ2+λ(1−β)
κ2 rn, then λyL + κ(πL − π∗) < 0. Similarly, if E < 0 and π∗ < −κ2+λ(1−β)

κ2 rn,

then λyL + κ(πL − π∗) < 0.

Proposition A.3 Suppose equations (8)–(13) are satisfied, E > 0 and π∗ > −κ2+λ(1−β)
κ2 rn.

Then iH > 0 if and only if pL − (1− pH)− 1−pL+1−pH
κσ (1− βpL + β(1− pH)) > 0.

Proof: iH is given by

iH =
1− pH
σ

(yL − yH) + pHπH + (1− pH)πL + rn

=

(
pL − (1− pH)− 1−pL+1−pH

κσ (1− βpL + β(1− pH))
)
κ2

E

(
π∗ +

κ2 + λ(1− β)

κ2
rn
)
,

(A.13)

where in the second row we made use of (A.8)–(A.11).
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Proposition A.4 Suppose equations (8)–(13) are satisfied, E < 0 and π∗ < −κ2+λ(1−β)
κ2 rn.

Then iH < 0.

Proof: First, substitute equations (A.1), (A.2), and (A.4) into equation (A.5) to obtain

E = βλ(1− pH)−
(
κ2 + λ(1− β)

)
C. (A.14)

Hence, E < 0 implies C > 0.

Corollary A.1 C < 0 implies E > 0.

Next, note that

pL−(1−pH)−1− pL + 1− pH
κσ

(1− βpL + β(1− pH)) = −C−(1−pH)
1− βpL + β(1− pH) + κσ

κσ
.

Hence, C > 0 implies pL − (1− pH)− 1−pL+1−pH
κσ (1− βpL + β(1− pH)) < 0.

Corollary A.2 pL − (1− pH)− 1−pL+1−pH
κσ (1− βpL + β(1− pH)) > 0 implies C < 0.

From equation (A.13), it follows that pL − (1 − pH) − 1−pL+1−pH
κσ (1− βpL + β(1− pH)) < 0,

E < 0 and π∗ < −κ2+λ(1−β)
κ2 rn imply iH < 0.

We are now ready to proof Proposition 1. For notational convenience, define

Ω(pL, pH , κ, σ, β) ≡ pL − (1− pH)− 1− pL + 1− pH
κσ

(1− βpL + β(1− pH)) . (A.15)

Proof of “if” part: Suppose that Ω(·) > 0 and π∗ > −κ2+λ(1−β)
κ2 rn. According to Proposition

A.1 there exists a vector {yH , πH , iH , yL, πL, iL} that solves equations (8)–(13). According to

Corollary A.2, Ω(·) > 0 implies C < 0. According to Corollary A.1, C < 0 implies E > 0.

According to Proposition A.2, E > 0 and π∗ > −κ2+λ(1−β)
κ2 rn imply λyL + κ(πL − π∗) < 0.

According to Proposition A.3, given E > 0 and π∗ > −κ2+λ(1−β)
κ2 rn, Ω(·) > 0 implies iH > 0.

Proof of “only if” part: Suppose that the vector {yH , πH , iH , yL, πL, iL} solves (8)–(13), and

satisfies λyL+κ(πL−π∗) < 0 and iH > 0. According to Proposition A.2, λyL+κ(πL−π∗) < 0 im-

plies that either (i) E > 0 and π∗ > −κ2+λ(1−β)
κ2 rn or (ii) E < 0 and π∗ < −κ2+λ(1−β)

κ2 rn. Accord-

ing to Proposition A.4, (ii) is inconsistent with iH > 0. Hence, E > 0 and π∗ > −κ2+λ(1−β)
κ2 rn.

According to Proposition A.3, given E > 0 and π∗ > −κ2+λ(1−β)
κ2 rn, iH > 0 implies Ω(·) > 0.
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A.2 Proof of Proposition 2

The allocations and prices in the sunspot equilibrium are given by

πL = −(C + 1)κ2

E
π∗ − κ2 + λ(1− βpH)

E
rn

yL =
κ (βpL − 1− (1− β)C)

E
π∗ − (1− βpL)κ2 + (1− β)(1− βpL + β(1− pH))λ

κE
rn

πH = −Cκ
2

E
π∗ − βλ(1− pH)

E
rn

yH =
κ (β(1− pH)− (1− β)C)

E
π∗ +

βκ(1− pH)

E
rn

Assuming π∗ = 0 and λ > 0, it holds

πL = −κ
2 + λ(1− βpH)

E
rn < 0

yL = −(1− βpL)κ2 + (1− β)(1− βpL + β(1− pH))λ

κE
rn < 0

πH = −βλ(1− pH)

E
rn ≤ 0

yH =
βκ(1− pH)

E
rn ≥ 0

When pH < 1, πH < 0 and yH > 0.

A.3 Proof of Proposition 3

Keeping in mind that −1 < C < 0 in the sunspot equilibrium, it holds,

∂πL
∂π∗

= −C + 1

E
κ2 < 0 (A.16)

∂yL
∂π∗

= −β(1− pL) + (1− β)(C + 1)

E
κ < 0, (A.17)

and

∂πH
∂π∗

= −C
E
κ2 > 0 (A.18)

∂yH
∂π∗

=
β(1− pH)− (1− β)C

E
κ > 0. (A.19)
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A.4 Proof of Lemma 1

If π0 exists, it holds −Cκ2

E π0 − βλ(1−pH)
E rn = 0. Solving for π0, one obtains

π0 = −βλ(1− pH)

Cκ2
rn, (A.20)

where C < 0, and hence π0 > 0.

A.5 Proof of Proposition 4

Note first that

EV = − 1

1− β
1

2

[
1− pL

1− pL + 1− pH
(
π2
H + λ̄y2

H

)
+

1− pH
1− pL + 1− pH

(
π2
L + λ̄y2

L

)]
, (A.21)

where V is defined in equation (3).

Assuming λ = λ̄, the partial derivative of EV with respect to π∗ is

∂EV

∂π∗
=− 1

(1− β)(1− pL + 1− pH)E2

{[ (
κ2 + λ̄(1− β)2

) (
(1− pH)(C + 1)2 + (1− pL)C2

)
+ λ̄β(1− pH)(1− pL)(1− βpL + 1− βpH)

]
κ2π∗ +

[
λ̄
(
κ2 + λ̄(1− β)

)
(1− βpL + β(1− pH))

(β(1− pL) + (1− β)(C + 1)) +
(
κ2 + λ̄(1− β + β2(1− pL + 1− pH))

)
κ2(C + 1)

− (βκ)2λ̄(1− pL)
]
(1− pH)rn

}
.

Note that all terms in the square brackets which are multiplied by π∗ are positive. In

the square brackets which are multiplied by rn all terms are positive except for the last one,

−(βκ)2λ̄(1− pL) < 0.

The first-order necessary condition for the welfare-maximizing inflation target is ∂EV
∂π∗ = 0.

Solving for π∗, one obtains

π
∗∗

= −
1− pH
κ2

λ̄
(
κ2 + λ̄(1− β)

)
(1− βpL + β(1− pH )) (β(1− pL) + (1− β)(C + 1)) +

(
κ2 + λ̄(1− β + β2(1− pL + 1− pH ))

)
κ2(C + 1)− (βκ)2λ̄(1− pL)(

κ2 + λ̄(1− β)2
) (

(1− pH )(C + 1)2 + (1− pL)C2
)

+ λ̄β(1− pH )(1− pL)(1− βpL + 1− βpH )
r
n

Note that π∗∗ > −κ2+λ̄(1−β)
κ2 rn whenever existence condition (22) is satisfied. Specifically,

π∗∗ > −κ2+λ̄(1−β)
κ2 rn if and only if
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(
κ2 + λ̄(1− β)

) {
(κ2 + λ̄(1− β)2)C [(1− pL + 1− pH)C + 1− pH ]

}
>
[(
κ2 + λ̄(1− β)

)
λ̄β(1− β)(1− pH) + (βκ)2λ̄(1− pH)

]
[(1− pL + 1− pH)C + 1− pH ] ,

where (1−pL+1−pH)C+1−pH = −(1−pL)Ω(pL, pH , κ, σ, β) < 0. Hence, the left-hand side of

the inequality is positive and the right-hand side is negative, so that the inequality is satisfied.

Next, we show that π∗∗ < π0. This requires

−
βλ̄

C
> −

λ̄
(
κ2 + λ̄(1− β)

)
(1− βpL + β(1− pH )) (β(1− pL) + (1− β)(C + 1)) +

(
κ2 + λ̄(1− β + β2(1− pL + 1− pH ))

)
κ2(C + 1)− (βκ)2λ̄(1− pL)(

κ2 + λ̄(1− β)2
) (

(1− pH )(C + 1)2 + (1− pL)C2
)

+ λ̄β(1− pH )(1− pL)(1− βpL + 1− βpH )
,

which can be rewritten as

βλ̄κ
2
(1− pL)(1− β)C

2
+ βλ̄

2
(1− β)

2
(1− pL)C

2
+ βλ̄

(
κ
2

+ λ̄(1− β)
2
)

(1− pH )(C + 1)
2

+ (βλ̄)
2
(1− pL)(1− pH )(1− βpL + 1− βpH )

> (βκ)
2
λ̄(1− pL)(1− pH )C + κ

2
(
κ
2

+ λ̄(1− βpH )
)
C +

[
κ
2
(1− βpL) + λ̄(1− β)(1− βpL + 1− βpH )

]
[β(1− pL) + (1− β)(C + 1)] λ̄C.

Note that all terms on the left-hand side of the inequality sign are strictly positive and all

terms on the right-hand side are strictly negative. This completes the proof.

A.6 Proof of Proposition 5

Suppose π∗ = 0 and pH < 1. It holds

∂πL
λ

=
βκ2(1− pH)(1− pL)

E2

κσ + (1− βpL + β(1− pH))

κσ
rn > 0

∂yL
∂λ

=
βκ(1− pH)(1− pL)

E2

κσ + (1− β)(1− βpL + β(1− pH))

κσ
rn > 0

∂πH
∂λ

=− βκ2(1− pH)

E2

[
Ω(pL, pH , κ, σ, β) + (1− pH)

κσ + (1− βpL + β(1− pH))

κσ

]
rn < 0

∂yH
∂λ

=− βκ(1− pH)

E2

[
(1− β)Ω(pL, pH , κ, σ, β) + (1− pH)

κσ + (1− β)(1− βpL + β(1− pH))

κσ

]
rn < 0

A.7 Proof of Proposition 6

Note first that

EV = − 1

1− β
1

2

[
1− pL

1− pL + 1− pH
(
π2
H + λ̄y2

H

)
+

1− pH
1− pL + 1− pH

(
π2
L + λ̄y2

L

)]
, (A.22)

where V is defined in equation (3).

Assuming π∗ = 0, the partial derivative of EV with respect to λ is
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∂EV

∂λ
=

β ((1− pH)rn)2

(1− β)(1− pL + 1− pH)E3

{[
βκ2(1− pL)C + κ2(1− βpH)(C + 1)

+ λ̄(1− β)(1− βpL + β(1− pH)) ((1− β)(C + 1) + β(1− pL))
]
λ

+ βκ2
[
(1− pL)(1− pH)βλ̄− (1− pL)(1− β)Cλ̄

]
+ κ4(C + 1)

+ λ̄(1− βpL)κ2 ((1− β)(C + 1) + β(1− pL))

}
.

Note that since (C + 1) > 0 and C < 0, all terms in curly brackets are positive except for

the very first one, βκ2(1 − pL)C < 0. Also note that since in the sunspot equilibrium E > 0,

the term in front of the curly brackets is positive for any λ ≥ 0. Since the only negative term in

curly brackets is multiplied by λ, ∂EV
∂λ |λ=0

> 0, and therefore λ∗ > 0.

Furthermore, if

κ2β(1−pL)C+κ2(1−βpH)(C+1)+λ̄(1−β) (1− βpL + β(1− pH)) ((C + 1)(1− β) + β(1− pL)) ≥ 0,

then ∂EV
∂λ > 0 for all λ ≥ 0. Hence, in this case no interior solution for λ∗ exists and λ∗ =∞.

If instead

κ2β(1−pL)C+κ2(1−βpH)(C+1)+λ̄(1−β) (1− βpL + β(1− pH)) ((C + 1)(1− β) + β(1− pL)) < 0,

then

λ∗ = −
βκ2

[
(1− pL)(1− pH)βλ̄− (1− pL)(1− β)Cλ̄

]
+ κ4(C + 1) + λ̄(1− βpL)κ2 ((1− β)(C + 1) + β(1− pL))

κ2β(1− pL)C + κ2(1− βpH)(C + 1) + λ̄(1− β) (1− βpL + β(1− pH)) ((C + 1)(1− β) + β(1− pL))

In this case, λ∗ > λ̄ if

(βκ)
2
(1−pL)λ̄ (C + 1− pH )︸ ︷︷ ︸

<0

+κ
2
(
κ
2

+ (1− βpH )λ̄
)

(C+1)+
(
κ
2
(1− βpL) + (1− β)λ̄(1− βpL + β(1− pH ))

)
(β(1− pL) + (1− β)(C + 1)) λ̄ > 0

A.8 Proof of Proposition 7

Let XS|λ=λ̄,π∗=π̂∗ denote the outcome of variable X ∈ {π, y} in state S ∈ {H,L} of the sunspot

equilibrium when λ = λ̄ and π∗ = π̂∗, and XS|λ=λ̂,π∗=0 when λ = λ̂ and π∗ = 0. We need to

show that XS|λ=λ̄,π∗=π̂∗ = XS|λ=λ̂,π∗=0 for all X × S and any λ̂ ≥ 0.
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High-state inflation:

πH|λ=λ̄,π∗=π̂∗ =− Cκ2

[βλ̄(1− pH)− (κ2 + λ̄(1− β))C]

β(1− pH)(λ̄− λ̂)

[βλ̂(1− pH)− (κ2 + λ̂(1− β))C]
rn

− βλ̄(1− pH)

βλ̄(1− pH)− (κ2 + λ̄(1− β))C
rn

=− βλ̂(1− pH)

βλ̂(1− pH)− (κ2 + λ̂(1− β))C
rn

=πH|λ=λ̂,π∗=0

High-state output:

yH|λ=λ̄,π∗=π̂∗ =
κ (β(1− pH)− (1− β)C)

[βλ̄(1− pH)− (κ2 + λ̄(1− β))C]

β(1− pH)(λ̄− λ̂)

[βλ̂(1− pH)− (κ2 + λ̂(1− β))C]
rn

+
βκ(1− pH)

βλ̄(1− pH)− (κ2 + λ̄(1− β))C
rn

=
βκ(1− pH)

βλ̂(1− pH)− (κ2 + λ̂(1− β))C
rn

=yH|λ=λ̂,π∗=0

Low-state inflation:

πL|λ=λ̄,π∗=π̂∗ =
Dκ2

[βλ̄(1− pH)− (κ2 + λ̄(1− β))C]

β(1− pH)(λ̄− λ̂)

[βλ̂(1− pH)− (κ2 + λ̂(1− β))C]
rn

− κ2 + λ̄(1− βpH)

βλ̄(1− pH)− (κ2 + λ̄(1− β))C
rn

=− κ2 + λ̂(1− βpH)

βλ̂(1− pH)− (κ2 + λ̂(1− β))C
rn

=πL|λ=λ̂,π∗=0

Low-state output:

yL|λ=λ̄,π∗=π̂∗ =
κ(βpL − 1− (1− β)C)

[βλ̄(1− pH)− (κ2 + λ̄(1− β))C]

β(1− pH)(λ̄− λ̂)

[βλ̂(1− pH)− (κ2 + λ̂(1− β))C]
rn

− κ2(1− βpL) + λ̄(1− β) (1− βpL + β(1− pH))

βλ̄(1− pH)− (κ2 + λ̄(1− β))C
rn

=− κ2(1− βpL) + λ̂(1− β) (1− βpL + β(1− pH))

βλ̂(1− pH)− (κ2 + λ̂(1− β))C
rn

=yL|λ=λ̂,π∗=0
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A.9 Numerical example

This subsection provides a numerical example of the sunspot equilibrium in the model without

fiscal policy. One period is assumed to correspond to one quarter, and the parameterisation

follows Table 1.

Figure A.1 plots the region of existence for the sunspot equilibrium in the (pH , pL) space

(black area), and the region of existence for the fundamental equilibrium in the (pfH , p
f
L) space

(gray area).32

Figure A.1: Existence regions for sunspot equilibrium and fundamental equilibrium
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Figure A.2 shows how allocations and welfare in the sunspot equilibrium depend on the

central bank’s inflation target π∗. We set pL = 0.9375 and pH = 0.98. In this particular

example, the optimal inflation target is negative.

B Policy problem in the model with fiscal policy

At the beginning of time, society delegates monetary and fiscal policy to a discretionary policy-

maker. The objective function of the policymaker is given by

VMF
t = −1

2
Et

∞∑
j=0

βj
(
π2
t+j + λ̄x2

t+j + λgg
2
t+j

)
, (B.1)

32In case of the fundamental equilibrium, the condition for equilibrium existence depends on the value of the
natural real rate in the low-fundamental state, rnL. The region of existence is shrinking in the absolute value of
rnL.
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Figure A.2: Allocations and welfare as a function of π∗
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Note: Dash-dotted vertical lines indicate the case where the central bank has the same objective function as

society as a whole, i.e. π∗ = 0. Solid vertical lines indicate the welfare-maximizing inflation target. The welfare

gain/loss is expressed relative to the welfare level achieved when the inflation target is zero (in percent).

where for λg = λ̄g, the policymaker’s objective function coincides with society’s objective func-

tion.

The optimization problem of a generic policymaker acting under discretion is as follows.

Each period t, she chooses the inflation rate, the modified output gap, government spending,

and the nominal interest rate to maximize its objective function (B.1) subject to the behavioral

constraints of the private sector and the lower bound constraint, with the policy functions at

time t + 1 taken as given. Since the model features no endogenous state variable, the central

bank solves a sequence of static optimization problems

max
πt,xt,gt,it

−1

2

(
π2
t + λ̄x2

t + λgg
2
t

)
(B.2)

subject to

πt = κxt + βEtπt+1 (B.3)

xt = Etxt+1 + (1− Γ)(gt − gt+1)− σ (it − Etπt+1 − rnt ) (B.4)

it ≥ 0 (B.5)
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The consolidated first order conditions are

(κπt + λ̄xt)it = 0 (B.6)

κπt + λ̄xt ≤ 0 (B.7)

it ≥ 0 (B.8)

λggt + (1− Γ)(κπt + λ̄xt) = 0 (B.9)

together with the private sector behavioral constraints.

C Sunspot equilibrium in the model with fiscal policy

C.1 Proof of Proposition 8

To proof Proposition 8 on the necessary and sufficient condition for existence of the sunspot

equilibrium, it is useful to proceed in three steps. Each step is associated with an auxiliary

proposition.

Let

C̃ := λgC +
(
κ2 + λ̄(1− βpL)

) (1− Γ)2

κσ
(1− pL), (C.1)

D̃ := λgD − βλ̄
(1− Γ)2

κσ
(1− pL)2, (C.2)

and

Ẽ :=AD̃ −BC̃

=λgE −
(1− Γ)2(1− pL)

κσ

(
κ2 + λ̄(1− β)

) [
κ2 + λ̄(1− βpL + β(1− pH))

]
, (C.3)

where A,B,C,D and E are defined in (A.1)–(A.5).

Proposition C.1 There exists a vector {xH , πH , iH , gH , xL, πL, iL, gL} that solves the system

of linear equations (33)–(40).

Proof: Rearranging the system of equations (33)–(40) and eliminating xH , iH , gH , xL, iL and

gL, we obtain two unknowns for πH and πL in two equations

[
A B

C̃ D̃

][
πL

πH

]
=

[
0

λgr
n

]
. (C.4)

For what follows, it is useful to show that Ẽ = 0 is inconsistent with existence of the

sunspot equilibrium. Since B > 0, we can always write πH = −A/BπL. Plugging this into
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C̃πL + D̃πH = λgr
n and multiplying both sides by B, we get −ẼπL = Bλgr

n. Since the right-

hand side of this equation is strictly positive for λg > 0, Ẽ = 0 is inconsistent with the existence

of the sunspot equilibrium. Hence, we can invert the matrix on the left-hand-side of (C.4)

[
πL

πH

]
=

1

AD̃ −BC̃

[
D̃ −B
−C̃ A

][
0

λgr
n

]
. (C.5)

Thus,

πH =
A

Ẽ
λgr

n (C.6)

and

πL =
−B
Ẽ
λgr

n. (C.7)

From the Phillips curves in both states, we obtain

xH =
βκ(1− pH)

Ẽ
λgr

n (C.8)

and

xL = −(1− βpL)κ2 + (1− β)(1− βpL + β(1− pH))λ̄

κẼ
λgr

n. (C.9)

Using the target criterion for fiscal policy in the low-confidence state (39), we obtain

gL =
(1− Γ)

(
κ2 + λ̄(1− β)

) (
κ2 + λ̄(1− βpL + β(1− pH))

)
κẼ

rn. (C.10)

Using the consumption Euler equation in the high-confidence state (33), we obtain

iH =

[
1− 1− pH

Ẽ

(
λg

(
κ2 + λ̄+ (κ2 + λ̄(1− β))

1− βpL + β(1− pH)

κσ

)

+
(1− Γ)2

κσ
(κ2 + λ̄(1− β))

(
κ2 + λ̄(1− βpL + β(1− pH))

))]
rn. (C.11)

Finally, from equations (35) and (40), we have gH = 0, and iL = 0.

Proposition C.2 Suppose equations (33)–(40) are satisfied. Then λ̄xL + κπL < 0 if and only

if Ẽ > 0.

Proof: Using (C.7) and (C.9), we have

λ̄xL + κπL = −
(
κ2 + λ̄(1− β)

) (
κ2 + λ̄(1− βpL + β(1− pH))

)
κẼ

λgr
n (C.12)
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Notice that λgr
n > 0 and

(
κ2 + λ̄(1− β)

) (
κ2 + λ̄(1− βpL + β(1− pH))

)
> 0. Thus, if λ̄xL +

κπL < 0, then Ẽ > 0. Similarly, if Ẽ > 0, then λ̄xL + κπL < 0.

Proposition C.3 Suppose equations (33)–(40) are satisfied and Ẽ > 0. Then iH > 0 if and

only if λgΩ(pL, pH , κ, σ, β)− (1− Γ)2 1−pL+1−pH
κσ

[
κ2 + λ̄(1− βpL + β(1− pH))

]
> 0, where Ω(·)

is defined in (A.15).

Proof: First, notice that iH is given by

iH =
1− pH
σ

(xL − xH + (1− Γ)(gH − gL)) + pHπH + (1− pH)πL + rn

=

(
κ2 + λ̄(1− β)

)
rn

Ẽ

[
λgΩ(pL, pH , κ, σ, β)− (1− Γ)2 1− pL + 1− pL

κσ

(
κ2 + λ̄(1− βpL + β(1− pH))

)]
,

(C.13)

where in the second row we made use of (C.6)–(C.10). Notice also that
(κ2+λ̄(1−β))rn

Ẽ
> 0. Thus,

if λgΩ(pL, pH , κ, σ, β)−(1−Γ)2 1−pL+1−pH
κσ

[
κ2 + λ̄(1− βpL + β(1− pH))

]
> 0 then iH > 0. Simi-

larly, if iH > 0 then λgΩ(pL, pH , κ, σ, β)−(1−Γ)2 1−pL+1−pH
κσ

[
κ2 + λ̄(1− βpL + β(1− pH))

]
> 0.

We are now ready to proof Proposition 8. For notational convenience, define

Ω̃(pL, pH , κ, σ, β,Γ, λg) = λgΩ(pL, pH , κ, σ, β)−(1−Γ)2 1− pL + 1− pH
κσ

[
κ2 + λ̄(1− βpL + β(1− pH))

]
(C.14)

Proof of “if” part: Suppose that Ω̃(·) > 0. According to Proposition C.1 there exists a vector
{xH , πH , iH , gH , xL, πL, iL, gL} that solves equations (33)–(40). Notice that

(κ2 + λ̄(1− β))Ω̃(·) =Ẽ − (1− pH)

[
λg

(
κ2 + λ̄+ (κ2 + λ̄(1− β))

1− βpL + β(1− pH)

κσ

)

+
(1− Γ)2

κσ
(κ2 + λ(1− β))

(
κ2 + λ(1− βpL + β(1− pH))

) ]
.

Hence, Ω̃(·) > 0 implies Ẽ > 0. According to Proposition C.2, Ẽ > 0 implies λ̄xL+κπL < 0.

According to Proposition C.3, given Ẽ > 0, Ω̃(·) > 0 implies iH > 0.

Proof of “only if” part: Suppose that the vector {xH , πH , iH , gH , xL, πL, iL, gL} solves (33)–

(40), and satisfies λ̄xL + κπL < 0 and iH > 0. According to Proposition C.2, λ̄xL + κπL < 0

implies Ẽ > 0. According to Proposition C.3, Ẽ > 0 and iH > 0 imply Ω̃(·) > 0.
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C.2 Proof of Proposition 9

In the sunspot equilibrium, allocations and prices are given by

πL =− κ2 + λ̄(1− βpH)

Ẽ
λgr

n < 0 (C.15)

xL =− (1− βpL)κ2 + (1− β)(1− βpL + β(1− pH))λ̄

κẼ
λgr

n < 0 (C.16)

gL =
(1− Γ)

(
κ2 + λ̄(1− β)

) (
κ2 + λ̄(1− βpL + β(1− pH))

)
κẼ

rn > 0 (C.17)

πH =− βλ̄(1− pH)

Ẽ
λgr

n ≤ 0 (C.18)

xH =
βκ(1− pH)

Ẽ
λgr

n ≥ 0 (C.19)

gH =0, (C.20)

where Ẽ > 0 is defined in equation (C.3). When pH < 0, πH < 0 and xH > 0.

C.3 Proof of Proposition 10

In the sunspot equilibrium, it holds

∂πL
∂λg

=
(κ2 + λ̄(1− βpH))(1− Γ)2(κσ)−1(1− pL)(κ2 + λ̄(1− β))

[
κ2 + λ̄(1− βpL + β(1− pH))

]
Ẽ2

rn > 0

∂xL
∂λg

=
[
κ2(1− βpL) + λ̄(1− β)(1− βpL + β(1− pH))

]
×

(1− Γ)2(κσ)−1(1− pL)(κ2 + λ̄(1− β))
[
κ2 + λ̄(1− βpL + β(1− pH))

]
κẼ2

rn > 0

∂gL
λg

= −
(1− Γ)

(
κ2 + λ̄(1− β)

) (
κ2 + λ̄(1− βpL + β(1− pH))

)
κẼ2

Ern < 0

and

∂πH
∂λg

=
βλ̄(1− pH)(1− Γ)2(κσ)−1(1− pL)(κ2 + λ̄(1− β))

[
κ2 + λ̄(1− βpL + β(1− pH))

]
Ẽ2

rn ≥ 0

∂xH
∂λg

= −
βκ(1− pH)(1− Γ)2(κσ)−1(1− pL)(κ2 + λ̄(1− β))

[
κ2 + λ̄(1− βpL + β(1− pH))

]
Ẽ2

rn ≤ 0.

When pH < 1, ∂πH
∂λg

> 0 and ∂xH
∂λg

< 0.
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C.4 Comparison with an exogenous increase in government spending

In our analysis of fiscal policy, government spending is an endogenous variable set by an opti-

mizing policymaker. A more common approach in the literature on fiscal policy in expectations-

driven liquidity traps is to treat the fiscal policy instrument as an exogenous variable (e.g.

Mertens and Ravn, 2014; Bilbiie, 2018). We therefore provide a brief comparison of these two

approaches.

Suppose that government spending follows an exogenous process that is perfectly correlated

with the sunspot shock, as commonly assumed in the literature, i.e. gt = gL if ξt = ξL and

gt = gH if ξt = ξH , where gL > gH = 0. For this case, the definition of the sunspot equilibrium

has to be slightly modified.

Definition 5 The sunspot equilibrium in the model with the sunspot shock and exogenous fiscal

policy is given by a vector {xH , πH , iH , xL, πL, iL} that solves the system of linear equations (33),

(34), (36), (37), (38), (40), and satisfies the inequality constraints (41) and (42).

Assuming that the high-confidence state is absorbing (pH = 1), the low-confidence-state AD

and AS curves in the model with exogenous fiscal policy are given by

AD-sunspot g-ex: xL = min

[(
σ

1− pL
rn + (1− Γ)gL

)
+

σpL
1− pL

πL,−
κ

λ̄
πL

]
(C.21)

AS-sunspot g-ex: xL =
1− βpL

κ
πL (C.22)

Figure C.1 compares the effects of a reduction in λg—which in equilibrium results in an

increase in gL—on the AD-AS curves in the model with endogenous fiscal policy to those of an

increase in gL in the model with exogenous fiscal policy. For the baseline, it is assumed that

λg = ∞ in the model with endogenous fiscal policy and gL = 0 in the model with exogenous

fiscal policy. Hence, in the baseline, the low-state AD curve is the same whether fiscal policy

is endogenous or exogenous. The sunspot equilibrium in the baseline is represented by the

intersection of the AD curve (red solid line) with the AS curve (blue solid line), marked by point

S. When considering an increase in low-state government spending in the model with exogenous

fiscal policy, we calibrate the stimulus to be of the same size as the equilibrium increase in

government spending that occurs in the model with endogenous fiscal policy in response to the

reduction in λg.

In the model with endogenous fiscal policy a change in λg affects the slope of the AD curve

to the left of the kink. A reduction in λg makes the AD curve flatter (red dashed line). In the

model with exogenous fiscal policy, a change in low-state government spending instead affects

the intercept term in the AD curve and results in a level shift to the left of the kink. An increase

in low-state government spending shifts the AD curve upwards (green dashed line). While the

sunspot equilibria in the two models are observationally equivalent by construction (see point
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Figure C.1: Low-confidence state AD-AS curves: Endogenous vs exogenous fiscal policy
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terms.

S′), the two AD curves are not observationally equivalent. Since an exogenous increase in low-

state government spending does not affect the slope of the AD curve, a policy intervention of

this type is in general unsuited to eliminate the sunspot equilibrium.

C.5 Numerical example

This subsection provides a numerical example of how allocations and welfare depend on the rela-

tive weight that the policymaker’s objective function puts on government spending stabilization

λg. The parameterisation follows Table 1 except that we account for a non-zero steady-state

government spending to output ratio of 0.2, which implies that the inverse of the elasticity of

the marginal utility of private consumption with respect to output σ becomes 0.4. The inverse

of the elasticity of the marginal utility of public consumption with respect to output ν is set to

0.1, as in Section 5. This implies λ̄g = 0.0082. In addition, pL = 0.9375 and pH = 0.98.
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Figure C.2: Allocations and welfare as a function of λg
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D Fundamental equilibrium in the model with fiscal policy

D.1 Existence of the fundamental equilibrium

Proposition 12 The fundamental equilibrium in the model with government consumption and

a two-state natural real rate shock exists if and only if

Ẽf <(1− pfH)
rnL
rnH

[
λg

(
κ2 + λ̄+ (κ2 + λ̄(1− β))

1− βpfL + β(1− pfH)

κσ

)

+
(1− Γ)2

κσ
(κ2 + λ̄(1− β))

(
κ2 + λ̄(1− βpfL + β(1− pfH))

)]
(D.1)

where Ẽf ≡ λgEf −
(1−Γ)2(1−pfL)

κσ

(
κ2 + λ̄(1− β)

) [
κ2 + λ̄(1− βpfL + β(1− pfH))

]
.

To proof Proposition 12, we proceed again in three steps. Each step is associated with an

auxiliary proposition.

Proposition D.1 There exists a vector {xH , πH , iH , gH , xL, πL, iL, gL} that solves the system

of linear equations (35), (36), (39), (40), and (43)–(46).
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Proof: Let

Af := −βλ̄(1− pfH), (D.2)

Bf := κ2 + λ̄(1− βpfH), (D.3)

Cf :=
(1− pfL)

σκ
(1− βpfL + β(1− pfH))− pfL, (D.4)

Df := −
(1− pfL)

σκ
(1− βpfL + β(1− pfH))− (1− pfL) = −1− Cf , (D.5)

and

Ef := AfDf −BfCf . (D.6)

Rearranging the system of equations and eliminating xH , iH , gH , xL, iL and gL, we obtain

two unknowns for πH and πL in two equations

[
Af Bf

C̃f D̃f

][
πL

πH

]
=

[
0

λgr
n
L

]
, (D.7)

where

C̃f := λgC
f +

(
κ2 + λ̄(1− βpfL)

) (1− Γ)2

κσ
(1− pfL), (D.8)

D̃f := λgD
f − βλ̄(1− Γ)2

κσ
(1− pfL)2. (D.9)

Define Ẽf := Af D̃f − Bf C̃f . For what follows, it is useful to show that Ẽf = 0 is in-

consistent with existence of the fundamental equilibrium. Since B > 0, we can always write

πH = −Af/BfπL. Plugging this into C̃fπL + D̃fπH = λgr
n
L and multiplying both sides by Bf ,

we get −ẼfπL = Bfλgr
n
L. Since the right-hand side of this equation is strictly negative for

λg > 0, Ẽf = 0 is inconsistent with the existence of the fundamental equilibrium. Hence, we

can invert the matrix on the left-hand-side of (D.7)

[
πL

πH

]
=

1

Af D̃f −Bf C̃f

[
D̃f −Bf

−C̃f Af

][
0

λgr
n
L

]
. (D.10)

Thus,

πH =
Af

Ẽf
λgr

n
L (D.11)

and

πL =
−Bf

Ẽf
λgr

n
L. (D.12)
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From the Phillips curves in both states, we obtain

xH =
βκ(1− pfH)

Ẽf
λgr

n
L (D.13)

and

xL = −
(1− βpfL)κ2 + (1− β)(1− βpfL + β(1− pfH))λ̄

κẼf
λgr

n
L. (D.14)

Using the target criterion for fiscal policy in the low-confidence state (39), we obtain

gL =
(1− Γ)

(
κ2 + λ̄(1− β)

) (
κ2 + λ̄(1− βpfL + β(1− pfH))

)
κẼf

rnL. (D.15)

Using the consumption Euler equation in the high-confidence state (43), we obtain

iH =rnH −
1− pfH
Ẽf

(
λg

(
κ2 + λ̄+ (κ2 + λ̄(1− β))

1− βpfL + β(1− pfH)

κσ

)

+
(1− Γ)2

κσ
(κ2 + λ̄(1− β))

(
κ2 + λ̄(1− βpfL + β(1− pfH))

))
rnL. (D.16)

Finally, from equations (35) and (40), we have gH = 0, and iL = 0.

Proposition D.2 Suppose equations (35), (36), (39), (40), and (43)–(46) are satisfied. Then

λ̄xL + κπL < 0 if and only if Ẽf < 0.

Proof: Using (D.12) and (D.14), we have

λ̄xL + κπL = −

(
κ2 + λ̄(1− β)

) (
κ2 + λ̄(1− βpfL + β(1− pfH))

)
κẼf

λgr
n
L (D.17)

Notice that λgr
n
L < 0 and

(
κ2 + λ̄(1− β)

) (
κ2 + λ̄(1− βpfL + β(1− pfH))

)
> 0. Thus, if λ̄xL +

κπL < 0, then Ẽf < 0. Similarly, if Ẽf < 0, then λ̄xL + κπL < 0.

Proposition D.3 Suppose equations (35), (36), (39), (40), and (43)–(46) are satisfied and

Ẽf < 0. Then iH > 0 if and only if Ẽf < Ẽ
f
,

where Ẽ
f ≡ (1−pfH)

rnL
rnH

[
λg

(
κ2 + λ̄+ (κ2 + λ̄(1− β))

1−βpfL+β(1−pfH)

κσ

)
+ (1−Γ)2

κσ (κ2+λ̄(1−β))
(
κ2 + λ̄(1− βpfL + β(1− pfH))

)]
.

Proof: First, notice that iH is given by
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iH =
1− pfH
σ

(xL − xH + (1− Γ)(gH − gL)) + pfHπH + (1− pfH)πL + rnH

=rnH −
1− pfH
Ẽf

[
λg

(
κ2 + λ̄+ (κ2 + λ̄(1− β))

1− βpfL + β(1− pfH)

κσ

)

+
(1− Γ)2

κσ
(κ2 + λ̄(1− β))

(
κ2 + λ̄(1− βpfL + β(1− pfH))

)]
rnL, (D.18)

The term in square brackets is strictly positive, rnH > 0, rnL < 0 and Ẽf < 0. Thus, if Ẽf < Ẽ
f

then iH > 0. Similarly, if iH > 0 then Ẽf < Ẽ
f
.

We are now ready to proof Proposition 12.

Proof of “if” part: Suppose that Ẽf < Ẽ
f
. According to Proposition D.1 there exists a

vector {xH , πH , iH , gH , xL, πL, iL, gL} that solves equations (35), (36), (39), (40), and (43)–(46).

Notice that Ẽ
f
< 0. Hence, Ẽf < Ẽ

f
implies Ẽf < 0. According to Proposition D.2, Ẽf < 0

implies λ̄xL + κπL < 0. According to Proposition D.3, given Ẽf < 0, Ẽf < Ẽ
f

implies iH > 0.

Proof of “only if” part: Suppose that the vector {xH , πH , iH , gH , xL, πL, iL, gL} solves (35),

(36), (39), (40), (43)–(46), and satisfies λ̄xL + κπL < 0 and iH > 0. According to Proposition

D.2, λ̄xL + κπL < 0 implies Ẽf < 0. According to Proposition D.3, Ẽf < 0 and iH > 0 imply

Ẽf < Ẽ
f
.

D.2 Allocations and prices

In the fundamental equilibrium, allocations and prices are given by:

πL =−
κ2 + λ̄(1− βpfH)

Ẽf
λgr

n
L < 0 (D.19)

xL =−
(1− βpfL)κ2 + (1− β)(1− βpfL + β(1− pfH))λ̄

κẼf
λgr

n
L < 0 (D.20)

gL =
(1− Γ)

(
κ2 + λ̄(1− β)

) (
κ2 + λ̄(1− βpfL + β(1− pfH))

)
κẼf

rnL > 0 (D.21)

πH =−
βλ̄(1− pfH)

Ẽf
λgr

n
L ≤ 0 (D.22)

xH =
βκ(1− pfH)

Ẽf
λgr

n
L ≥ 0 (D.23)

gH =0. (D.24)

When pfH < 1, πH < 0 and xH > 0.

ECB Working Paper Series No 2304 / August 2019 51



D.3 Effects of a marginal change in λg

The partial derivatives of the policy functions with respect to λg are

∂πL
∂λg

=
(κ2 + λ̄(1− βpfH))(1− Γ)2(κσ)−1(1− pfL)(κ2 + λ̄(1− β))

[
κ2 + λ̄(1− βpfL + β(1− pfH))

]
(Ẽf )2

rnL < 0

∂xL
∂λg

=
[
κ2(1− βpfL) + λ̄(1− β)(1− βpfL + β(1− pfH))

]
×

(1− Γ)2(κσ)−1(1− pfL)(κ2 + λ̄(1− β))
[
κ2 + λ̄(1− βpfL + β(1− pfH))

]
κ(Ẽf )2

rnL < 0

∂gL
λg

= −
(1− Γ)

(
κ2 + λ̄(1− β)

) (
κ2 + λ̄(1− βpfL + β(1− pfH))

)
κ(Ẽf )2

EfrnL,

and

∂πH
∂λg

=
βλ̄(1− pfH)(1− Γ)2(κσ)−1(1− pfL)(κ2 + λ̄(1− β))

[
κ2 + λ̄(1− βpfL + β(1− pfH))

]
(Ẽf )2

rnL ≤ 0

∂xH
∂λg

= −
βκ(1− pfH)(1− Γ)2(κσ)−1(1− pL)(κ2 + λ̄(1− β))

[
κ2 + λ̄(1− βpfL + β(1− pfH))

]
(Ẽf )2

rnL ≥ 0.

When pfH < 1, ∂πH
∂λg

< 0 and ∂xH
∂λg

> 0.
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