
Covi, Giovanni; Gorpe, Mehmet Ziya; Kok Sørensen, Christoffer

Working Paper

CoMap: Mapping contagion in the euro area banking
sector

ECB Working Paper, No. 2224

Provided in Cooperation with:
European Central Bank (ECB)

Suggested Citation: Covi, Giovanni; Gorpe, Mehmet Ziya; Kok Sørensen, Christoffer (2019) :
CoMap: Mapping contagion in the euro area banking sector, ECB Working Paper, No. 2224, ISBN
978-92-899-3486-2, European Central Bank (ECB), Frankfurt a. M.,
https://doi.org/10.2866/094988

This Version is available at:
https://hdl.handle.net/10419/208258

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.2866/094988%0A
https://hdl.handle.net/10419/208258
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Working Paper Series 
CoMap:  
mapping contagion in the euro area 
banking sector 

Giovanni Covi, Mehmet Ziya Gorpe, 
Christoffer Kok 

Disclaimer: This paper should not be reported as representing the views of the European Central Bank 
(ECB). The views expressed are those of the authors and do not necessarily reflect those of the ECB. 

No 2224 / January 2019 



Abstract 
This paper presents a novel approach to investigate and model the network of euro 

area banks’ large exposures within the global banking system. Drawing on a unique 

dataset, the paper documents the degree of interconnectedness and systemic risk of 

the euro area banking system based on bilateral linkages. We then develop a 

Contagion Mapping (CoMap) methodology to study contagion potential of an 

exogenous default shock via counterparty credit and funding risks. We construct 

contagion and vulnerability indices measuring respectively the systemic importance 

of banks and their degree of fragility. Decomposing the results into the respective 

contributions of credit and funding shocks provides insights to the nature of 

contagion which can be used to calibrate bank-specific capital and liquidity 

requirements and large exposures limits. We find that tipping points shifting the euro 

area banking system from a less vulnerable state to a highly vulnerable state are a 

non-linear function of the combination of network structures and bank-specific 

characteristics. 

Keywords: Systemic Risk, Network Analysis, Interconnectedness, Large Exposures, 
Stress Test, Macroprudential Policy. 

JEL Codes: D85, G17, G33, L14. 
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Non-technical Summary 

We develop a contagion mapping methodology (CoMap) to study systemic risk 

stemming from interconnectedness based on the euro area Significant Institutions’ 

network of large exposures within the global banking system. On the basis of supervisory 

reporting of large bilateral exposures we construct the arguably most comprehensive to-

date euro area network of bilateral linkages and combine it with bank balance sheet 

information to capture bank-specific characteristics and related (regulatory) solvency and 

liquidity constraints.   

The CoMap methodology estimates contagion potential due to credit and funding 

risks via bilateral linkages. The main objective is to assess the amount of losses and 

number of defaults an exogenous shock to a bank (or a group of banks) induces to the 

system. In achieving this, the CoMap methodology evaluates first round effects (direct 

losses) and subsequent round effects (cascade losses) due to domino defaults and 

potential fire sale losses.  

We then develop contagion and vulnerability indexes capturing counterparty credit 

and funding risks of an exogenous default shock so as to rank banks in terms of 

contribution to euro area systemic risk and their degree of fragility, respectively. The 

outcome is a practical and quarterly updatable policy tool to map contagion risks 

stemming from within and outside the euro area banking system. Overall, the paper 

provides unique insights on the interplay of banks’ characteristics and the topology of the 

euro area interbank network.   

Specifically, the methodology allows for taking a more granular, heterogeneous and 

holistic approach to the euro area banking system’s study of contagion risk. Thus, we 

model 199 consolidated banking groups (of which 90 from the euro area) in Q3-2017 

tracking among them debt, equity, derivative and off-balance sheet exposures larger than 

10% of a bank’s eligible capital. We then model banks’ heterogeneity by calibrating the 

model’s parameters using exposure-specific information on collateral pledged and 

maturity structure as well as bank-specific pool of HQLA and non-HQLA assets and 

capital requirements. Overall, the large exposures dataset covers on average 90% of euro 

ECB Working Paper Series No 2224 / January 2019 2



area banks’ RWAs vis-à-vis credit institutions for a total amount of EUR 1.4 trillion and 

EUR 680 billion, respectively in gross and RWA terms.  

We furthermore calculate the contribution of amplification effects (beyond the initial 

loss) to the overall losses induced by a bank’s default or distress (amplification ratio), and 

we derive a sacrifice ratio indicator assessing the cost-return trade off of a bank-bailout. 

Finally, we illustrate how our framework can be used to run counterfactual simulations 

showing how contagion risk can be reduced by fine-tuning prudential capital and 

liquidity measures.  

Key findings highlight that the degree of bank-specific contagion and vulnerability 

depends on network specific tipping points affecting directly the magnitude of 

amplification effects. It follows that the identification of such tipping points and their 

determinants is the essence of an effective micro and macro prudential supervision. 

Moreover, we bring evidence that in isolation and with linear variations, bank-specific 

characteristics seem to play a less relevant role than the network structure, whereas what 

really matters comes from their non-linear interaction, for which both are equally 

important. In a variety of tests, heterogeneity in the magnitude of bilateral exposures and 

of bank-specific parameters is detected as a key driver of the total number of defaults in 

the system. We also show that international spillovers (also coming from non-euro area 

banks) are an important channel of contagion for the euro area financial system. 

Overall, we think that the CoMap methodology combined with the large exposures 

dataset may help enhance our understanding of how contagion within the euro area 

interbank network may propagate and be amplified by the actual heterogeneous 

characteristics of the agents and the topologic features of the network. It also provides a 

practical monitoring toolkit for the regular surveillance and assessment of contagion risk 

within the euro area interbank network.  

ECB Working Paper Series No 2224 / January 2019 3



“The financial crisis really was a stress test for the men 
and the women in the middle of it. We lived by 
moments of terror. We endured seemingly endless 
stretches when global finance was on the edge of 
collapse, when we had to make monumental decisions 
in a fog of uncertainty, when our options all looked 
dismal but we still had to choose” (Geithner, 2014: 19).  

1. Introduction

The collapse of Lehman Brothers has been the defining event of the Great Financial 

Crisis of 2007-2008. While the size of its balance sheet alone did not foreshadow the 

sequence of events that followed, surely, the uncertainty stemming from its default left 

market participants in panic of a wide-spread contagion. Regulators with limited 

information about its degree of interconnectedness and bilateral exposures faced the true 

dilemma: let it fail or save it. Lehman was allowed to default and the counterfactual 

outcome would be debated for years to come. In the last decade, significant progress has 

been made in studying the growing interconnectedness of the global financial system and 

how shocks are amplified or mitigated depending on the network topology and the 

heterogeneity of the agents. However, up to now, uncertainty surrounding the network 

due to the lack of available information still represents the major challenge policy makers 

face in order to assess the potential cascading effects of such an event. This is the 

fundamental question, as highlighted in the incipit of this paper, policy makers and 

regulators must answer and be prepared for in case such an adverse event takes place.  

Motivated by this question, the systemic risk literature has evolved along two tracks. 

The first group of studies try to get around the problem of limited information by relying 

on market data such as Acharya et al. (2012, 2017), Billio et al. (2012) and Diebold and 

Yilmaz (2014) among others. These market data-based studies allow for capturing 

financial institutions’ interconnectedness and to build systemic risk indexes in real time 

by exploiting high frequency information on co-movements of stock prices or CDS 

spreads. Nevertheless, the interpretation and identification of the underlying mechanism 

generating the co-movements may be difficult (Glasserman and Young, 2016). Moreover, 

the VAR approaches used to estimate variance decomposition for the forecast errors 

suffer from high-dimensionality problems  which limits the analysis to small samples of 

banks (Alter and Beyer, 2013; Diebold and Yilmaz (2009, 2012). Only recently, Demirer, 
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et al. (2017), Basu et al. (2017), Moratis and Sakellaris (2017) manage to estimate a high-

dimensional network using LASSO methods or Bayesian VARX models. Although 

recent innovations in estimation techniques has allowed to increase the sample of banks, 

these approaches still cover only a fraction of the banking system, as information on CDS 

and stock prices is limited to listed companies. Furthermore, this branch of the literature 

does not allow to directly model the interplay of prudential regulations and systemic risk 

since the former are only implicitly captured in the degree of co-movements of bank 

market prices. 

 Another stream of the interconnectedness literature hence exploits bilateral 

exposures and uses bank balance-sheet based methodologies1. This approach allows for 

studying the underlying mechanism of systemic risk formation and contagion stemming 

from concrete features of the network, the heterogeneity of the agents, the sources of risk, 

and their interplay. In general, balance sheet based studies have tended to focus on a few 

specific features so as to better disentangle the path of contagion and amplifications 

effects due to e.g. credit risk (Eisenberg and Noe, 2001; Rogers and Veraart, 2013), 

funding risks (Gai and Kapadia, 2010; Gai et al. 2011), cross-holdings of assets and fire 

sales (Espinoza-Sole 2010; Caballero and Simsek, 2013; Caccioli et al. 2014; Cont and 

Schaanning, 2017), as well as from multi-layer networks (Bargigli et al., 2015; Kok and 

Montagna, 2016). Overall, these approaches are more theory-based than empirical since 

they aim at providing insights on the properties of the network and their implications for 

financial stability than actually construct contagion and vulnerability indexes for a 

systemic risk assessment as in the market-based approaches.  

This is due, among other things, to the lack of availability of a complete set of 

bilateral exposures which undermines the accuracy of such systemic risk indicators. In 

this respect, most of the empirical literature tends to focus on specific market segment, 

overnight or repo markets, or they are country-specific such as studies on the Austrian, 

German, Dutch and Italian interbank market (Purh et al. 2012; Craig and von Peter, 2014; 

Craig et al. 2014; Veld and Van Lelyveld, 2014; Bargigli et al., 2015). Other studies try 

to compensate for the lack of complete network data by imputing missing bilateral 

1 See Hüser (2015) for a summary of the literature. 
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linkages based on maximum entropy solution as in Sheldon and Maurer (1998), on 

minimum entropy methods (Degryse and Nyguyen, 2007; Elsinger et al. 2006; Upper, 

2011), on relative entropy (Van Lelyveld and Liedorp, 2006), or by generating random 

networks consistent with partial information (Halaj and Kok, 2013; Anand et al., 2014). 

Overall, as emphasized by Glasserman and Young (2016) empirical work in this field 

was limited by the confidentiality of interbank transactions and the incomplete set of 

information on bilateral exposures. Moreover, these studies focused on rather standard 

network measures such as degree centrality, eigenvector centrality and pagerank 

algorithms to assess financial system vulnerabilities and systemic importance of banks 

Additionally, as access to confidential supervisory data is granted at national level, 

most empirical analyses tend to be country-specific. This resulted in the lack of a 

comprehensive analysis of cross-border financial exposures, thereby missing bi-

directional linkages with institutions outside a country’s jurisdiction. To a certain extent, 

Garratt et al. (2011) and Espinoza-Vega and Sole (2010) overcame this challenge by 

using aggregate-level International Consolidated Banking Statistics database from BIS to 

assess the cross-border credit and funding risks of a banking system’s default on another 

country’s banking system. However, neither study includes bank and exposure level 

information thereby ignoring the added value that a specific distribution of exposures and 

bank-specific characteristics may bring to the overall stability of the system.  

Against this background, this paper aims at overcoming some of the data and 

modelling gaps in the interconnectedness literature by studying the degree of contagion 

and vulnerability of euro area significant institutions within the global banking system. In 

overcoming this challenge, we exploit the actual topology of the euro area interbank 

network of large exposures and account for the heterogeneous characteristics of 

individual banks via a set of bank and exposure-specific parameters retrieved and 

calibrated on ECB supervisory data. This comprehensive data infrastructure allows us to 

build a detailed modelling framework capturing the specificities of prudential regulations 

such as minimum capital requirements, macroprudential capital buffers, the liquidity 

coverage ratio and large exposure limits and their interplay with credit, funding and fire 

sales risks.  
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We contribute to the literature in various directions. First, we construct contagion 

and vulnerability indexes assessing the systemic footprints of banks.  These model-based 

estimates allow us to conduct welfare analysis trading off systemic losses due to bank 

failures and the cost of policy interventions. Second, we provide a calibration benchmark 

for parameters capturing three types of risks: credit, liquidity and fire sales. Third, we 

bring evidence that liquidity risk is a major source of default in the interbank network of 

large exposures. Fourth, we perform stress test scenarios to assess resilience of the 

network structure to wide macro shocks. Fifth, we perform sensitivity analyses to 

changes in model parameters so as to assess the non-linear effects derived by the 

interplay of network structure and banks’ characteristics. Finally, we provide 

counterfactual exercises of prudential measures and their possible usages in reducing the 

vulnerability of the network. 

We find that tipping points shifting the euro area banking system from a less 

vulnerable state to a highly vulnerable state are a non-linear function of the combination 

of network structures and bank-specific characteristics. Hence, policies aiming at 

reducing systemic risk externalities related to interconnectedness should focus on 

increasing the resilience of weak nodes in the system, thereby curbing potential 

amplification effects due to cascade defaults, and on reshaping the network structure in 

order to set a ceiling to potential losses. Unless systemic risk externalities are internalized 

by each bank in the network, bank recapitalizations may be still convenient from a cost-

return trade-off of a global or European central planner. It follows that international 

cooperation is essential to limit the ex-ante risk and reduce the ex-post system-wide 

losses. 

The remainder of the paper is organized as follows. Section 2 presents the data 

infrastructure and illustrates the topology of the euro area interbank network of large 

exposures. Section 3 details the Contagion Mapping (CoMap) methodology and provides 

insights on the calibration of the model parameters. Section 4 discusses the results based 

on the contagion and vulnerability indicators and performs sensitivity analysis to assess 

the interplay of bank-specific characteristics and the network structure. Section 5 derives 

policy implications from a macroprudential supervisor’s perspective via fine-tuning 

prudential measures based on counterfactual exercises. The last section concludes. 
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2. Data

The Great Financial Crisis (GFC) of 2008 has led to a rethinking and strengthening of 

banking and financial regulation worldwide. The result was the Basel III standards, the 

new legal framework aiming at shaping a safer financial system. Macro and micro 

prudential regulatory requirements enhancing banks’ capital and liquidity standards as 

well as defining leverage and large exposure limits were the actual outcome of this 

process.2 In this regard, the large exposures regulation has been developed as a tool for 

limiting the maximum loss a bank could incur in the event of a sudden counterparty 

failure so as to complement the existing risk-based capital framework (pillar 2) and better 

deal with micro-prudential and concentration risks (BIS, 2014).3 Accordingly, banks are 

required to report to prudential authorities detailed information about their largest 

exposures. 

The focus and novelty of this paper is to exploit the microprudential supervisory 

framework of large exposures with the aim of constructing the euro area interbank 

network to enable us to track the systemic (contagion) risk embedded in the euro area 

banking system. The large exposure reporting represents, to our knowledge, the most 

comprehensive and up-to-date (on a quarterly basis) dataset capturing granular bank and 

exposure level-information of the euro area banking system vis-à-vis entities located 

worldwide covering all economic sectors: credit institutions (CIs), financial corporation 

(FCs), non-financial corporations (NFCs), general governments (GGs), central banks 

(CBs) and households (HHs). In this paper, however, we focus primarily on the 

exposures vis-à-vis other credit institutions i.e. the interbank network of large exposures. 

Nevertheless, there exist several barriers to utilizing these supervisory data in network 

analysis. Because of the confidential nature of this data, the access is generally restricted 

to banking supervisors and central banks. However, even for those with access to these 

reports, transforming raw data into a suitable format for network analysis is a laborious 

task with many challenges. ECB is in a unique position where the supervisory data from 

2 This new set of rules was incorporated with the Capital Requirement Regulation (CRR) into EU law, 
which from January 2014 applies. This date also coincides with banks’ reporting requirements to National 
Central Authorities (NCAs) and to the European Banking Authority (EBA), which ultimately transmits 
these large exposures data for monitoring purposes to the Single Supervisory Mechanism (SSM). 
3 The large exposure limit is set at 25% of a bank’s eligible capital or 15% for exposures among GSIBs. 
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member states are centrally accessible for monitoring purposes. While this wealth of 

information promises high potential, it is a colossal undertaking to reconcile this data 

across many jurisdictions and set-up a euro area banking network of large exposures for a 

comprehensive systemic risk assessment.  

2.1 Large Exposures 

An exposure is considered a “large exposure” when, before applying credit risk 

mitigations and exemptions, it is equal or higher than 10% of an institution’s eligible 

capital vis-à-vis a single client or a group of connected clients (CRR, art. 392).4  

Moreover, institutions that report FINREP supervisory data are also requested to report 

large exposures information with a value above or equal to EUR 300 million. Therefore 

the data sample coverage is very comprehensive and captures almost EUR 13.5 trillion of 

gross exposures in Q3 2017 (our reference date), more than 50% of euro area credit 

institutions’ total assets. In risk-weighted terms the coverage is smaller but still 

comprehensive, capturing almost 40% of the total RWAs of euro area banks. However, in 

terms of studying the euro area interbank network, which is the subject of our paper, the 

large exposures sample captures 90% of euro area banks’ RWAs vis-à-vis credit 

institutions. This extensive coverage provides us with confidence that we can reliably 

model euro area banks’ degree of interconnectedness and their contribution to cross-

sectional systemic risk.  

It is also notable that the large exposure data go well beyond the standard unsecured 

interbank transactions typically covered in many interbank network studies. In fact, in the 

supervisory reporting a large exposure is defined as any direct and indirect debt, 

derivative, equity, and off-balance sheet exposure that complies with the reporting 

threshold.5 In this regard, a key feature of the regulation is that the counterparty may be 

identified not only as an individual client, but also as a group of connected clients (CRR, 

4 Eligible capital is defined as the sum of tier 1 capital plus one-third or less of tier 2 capital (CRR, art. 4: 
71).  
5 Direct exposures refer to exposures on “immediate borrower” basis, while an indirect exposure, according 
to article 403 of CRR, is an exposure to a client guaranteed by a third party, or secured by collateral issued 
by a third party. Moreover, according to article 399 of CRR exposures arising from credit-linked notes shall 
also be reported as indirect exposures.  
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art. 4:1:39).6 The latter refers to the fact that the reporting institution needs to assess and 

take into account - not only direct and indirect risks - but also possible domino effects 

and negative externalities from funding shortfalls due to control relationships and 

economic interdependencies (EBA/GL/2017/15). This is a highly relevant feature and an 

added value of the data because large exposures allow us to capture the full risk spectrum 

and not only the actual amount of exposures at risk. Moreover, in achieving this, a 

standardized evaluation method is applied so that the totaling final exposure amount is 

reliably comparable across countries and reporting institutions7.  

2.2 Dataset  

This subset of large exposures data captures almost completely credit and funding risks 

of euro area SIs among themselves, and credit risks of EA SIs vis-à-vis non-euro area 

banks. However, the large exposures dataset does not capture euro area SIs’ funding risks 

from non-euro area banks. In order to tackle this information gap, we retrieve data on the 

10 largest funding sources of euro area SIs by using another COREP supervisory 

template defined as concentration of funding by counterparty or C.67.8 These 10 largest 

funding sources may come from central banks, governments, credit institutions, and 

corporates. Regarding, our sample of counterparties we find 41 funding exposures from 

non-euro area banks towards euro area SIs. We incorporate them into the large exposures 

dataset matching them with the gross exposures before exemptions and credit risk 

mitigations. Next, we consolidate the large exposures data from euro area SIs that are 

euro area-based subsidiaries of non-euro area banks with these 41 funding sources from 

non-euro area banks. We then drop intra-group exposures and set a 50 million threshold 

for exposure before credit risk mitigations (but after exemptions) to clean-up the network 

from negligible edges.  

6 EBA’s guidelines on connected clients - final report - further detail Art. 4(1)(39) emphasizing that 
whether financial difficulties or a failure of a client would not lead to funding or repayment difficulties for 
another client, these clients do not need to be considered a single risk (e.g. where the client can easily find a 
replacement for the other client). Moreover, these guidelines point out that a reporting institution should 
investigate all economic dependencies for which the sum of all exposures to one individual client exceeds 
5% of Tier 1 capital.  
7 Details on the construction of the dataset are provided in the appendix. 
8 A minimum threshold of 1 percent of total liabilities applies either as a single creditor or a group of 
connected clients. 
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On top of this, for modelling purposes, we retrieve from other COREP supervisory 

templates euro area SI’s RWAs (C.02.10), the total capital base (C.01.10), Tier 1 

(C.01.15), CET1 (C.01.20), pillar 2 capital requirements (C.03.00), and capital buffers 

(C.06.01, and ECB website).9  In this respect, bank-specific combined capital buffers 

were constructed following regulatory capital requirements: banks’ minimum capital 

requirement (MC), pillar 2 requirements (P2R), the capital conservation buffer (CCoB), 

the OSII, GSII and the systemic risk buffers (SRB), as well as the prevailing 

countercyclical capital buffer requirements (CCyB).10 Regarding the international 

Globally Systemic Important Institutions, the GSII buffers were retrieved from the 

Financial Stability Board 2017 list.11 Moreover, in order to calibrate the model we also 

retrieve from COREP templates the maturity buckets of large exposures (template C.30), 

banks’ HQLAs (C.72.00.a.10), the liquidity buffer and net liquidity outflow, respectively 

numerator and denominator of the liquidity coverage ratio (template C.76.00.a.10/20) as 

well as from FINREP templates banks’ total assets and their components (F.1.1.380).12 

Whereas, for the international banks we match our data set to Bankscope for bank 

characteristics, and when missing, we use the most recent annual consolidated financial 

report.13 In the end, we limit our data set to banks that has a complete set of information 

on the above described metrics. This yields our main dataset of 199 consolidated banking 

groups or nodes, whose total assets amount up to EUR 74 trillion, approximately 6.6 

times the GDP of the euro area.  

Overall, this brings us to a total number of large exposures equal to 1.734, and a total 

gross amount of EUR 1.38 trillion, or EUR 675 billion of risk-weighted assets. This sub-

set of SIs’ large exposures to credit institutions cover almost 80% of the total gross 

9 ECB Website: http://www.ecb.europa.eu/pub/fsr/html/measures.en.html 
10 Minimum capital requirements are defined as follows: 4.5% of CET1, 6% of TIER1, and 8.0% of own 
funds that is the sum of 4.5% CET1 + 1.5% AT1 + 2% T2. Pillar 2 measures are included on top of 
minimum capital requirements and are mandatory only within the EU. CCoB may take value of 1.875% 
CET1 if the country is still in a transitional period, or 2.5% CET1 if fully-loaded. 
11 Financial Stability Board’s 2017 list of global systemically important banks: http://www.fsb.org/wp-
content/uploads/P211117-1.pdf  
12 Tangible assets are calculated as total assets minus intangible assets (300), tax assets (330), other assets 
(360), and non-current assets and disposal groups classified as held for sale (370).  
13 In few cases for international banks, variables were approximated using a balance sheet-based 
methodology (discussed in the calibration section) using as reference value the average of the sample. 
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amount. Furthermore, the selected sample of counterparties guarantees a complete 

coverage of LEI codes, country of domicile and sector of belonging. 

Table 1 presents the summary statistics of the interbank network of large exposures in 

Q3 2017. It consists of 179 counterparties and 101 reporting institutions, for a total of 

1264 exposures (or edges), of which, almost 90% (1185) is reported by euro area-based 

banking groups, and the remaining 10% (79) from international banks. The latter 

provides a partial picture of the euro area banks’ funding risk related to non-euro area 

creditors. On the contrary, euro area banks’ credit risk is captured in its entirety, and it is 

distributed almost equally between euro area and extra-euro area counterparties, 

amounting to respectively 613 and 651 in terms of number of exposures (edges) or EUR 

431 billion and EUR 432 billion (gross amount minus exemptions). In comparison, gross 

exposures before exemptions and CRM (gross amount) amount to EUR 1.13 trillion, 

while after exemptions and CRM, exposures amount up to EUR 623 billion (net amount). 

No bilateral-linkages among extra-euro area banks are captured in this study. Therefore, 

to the best of our knowledge, in terms of coverage this dataset represents one of the most 

comprehensive attempts to study euro area systemic risks by means of granular bank and 

exposure level-information. 

Table 1: Interbank Network of Large Exposures 

Note: Amounts are expressed in billions of euros. Outstanding amounts as of Q3 2017. Gross amount 
minus exemptions is the reference metrics of this study. A 50 million threshold to exposures before credit 
risk mitigation was applied. Exemptions are those amounts which are exempted from the large exposure 
calculation, whereas credit risk mitigations refer to the amounts adjusted for risk weights.   

Data Sample Total Euro Area non-Euro Area
Entities
Consolidated Banking Groups 199 90 109
Counterparties 179 69 110
Reporting 101 84 17
Number of Exposures
From 1264 1185 79
To 1264 613 651
Total Exposures Amount
Gross Amount 1126 639 487
- Exemptions 263 208 55
Gross Amount minus Exemptions 863 431 432
- Credit Risk Mitigations 240 165 75
Net Amount 623 266 357
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2.3 Network Topology 

We are now in the position to plot the euro area interbank network of large exposures. 

For a graphical interpretation of the edges’ directionality, we drop from the interbank 

network the 79 funding linkages from international banks. This allows us to split each 

chart into two concentric circles. An inner-circle composed only of euro area banks’ 

credit and funding exposures among themselves (EA), and an outer-circle reflecting the 

international dimension of euro area banks’ credit exposures towards non-euro area banks 

(INT). Therefore all edges linking the inner circle to the outer circle are outward oriented. 

Figure 1 displays the network according to two mirror images, capturing respectively 

the size of exposures in Euro Billions - panel (a) - and in % of lender’s capital - panel (b). 

In both panels the edges take the color from the node borrowing the fund, i.e. the amount 

international banks are borrowing from euro area banks. Given the lack of credit 

exposures from international banks to euro area banks, for comparative purposes, we 

assign as a node’s size the weighted in-degree, that is, the sum of incoming exposures. 

Therefore, the node’s size captures the relative size of each bank’s funding exposure. 

On the one hand, panel (a) identifies which international banking system is the most 

interconnected with the euro area banking system. For instance, euro area banks appear to 

have few exposures but sizeable (thick) towards Chinese banks, many but relatively small 

exposures to Swiss banks, and many and sizeable exposures to US and UK banks. 

Overall, international spillovers seem to be an important channel of contagion to the euro 

area banking system. On the other hand, panel (b) of figure 1, which presents the 

interlinkages in percentage of the lenders’ capital shows that the node size of 

international banks becomes slightly smaller due to the fact that euro area medium and 

large-sized banks tend to lend more to international banks than small domestic banks, 

which by comparison tend to lend more to banks within the euro area. In this respect, 

even if not clearly visible, small-medium banks tend to have relatively fewer cross-border 

large exposures both within the inner circle and with the outer circle, implying that the 

potential for cross-country spillovers is likely to mostly pass-through the major country 

hubs. Overall, the euro area interbank network of large exposures can be characterized by 

a core-periphery network structure. This feature also results in a relatively sparse 

network. In fact, only 6.3% of all possible links are present. 
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Figure 1. Euro Area Interbank Network of Large Exposures - Borrower Perspective 

Euro Billions - Panel (a)                                % of Capital - Panel (b) 

Source: COREP C.27-C.28. 
Note: The size of the nodes captures the weighted in-degree of interconnectedness. The colours of nodes 
are clustered by country of origin, the thickness of the flows summarizes the value of the exposures in EUR 
billions and percentage of eligible capital, respectively. The colour of the flows refers to the target of the 
node’s colour capturing respectively the borrower perspective.  

3. Contagion Mapping (CoMap) Methodology

This paper relies primarily on a balance sheet simulation approach to map contagion. In 

addition to demonstrating the architecture of banking networks through bilateral linkages, 

such an approach also allows us to quantify systemic losses and determine channels of 

contagion by assuming hypothetical failures in the network. The emphasis on granularity 

in establishing bilateral connections applies equally in modeling contagion. By 

incorporating model parameters which are calibrated based on bank-specific - and to the 

extent possible exposure-specific - data allows us to simulate a contagion model that 

provides a fairly accurate picture of the reality.  

3.1 Modelling Framework 

Our Contagion Mapping model (CoMap) is essentially a variant of the Eisenberg and 

Noe (2001) framework. This framework has been at the center of many studies in the 

financial networks literature. Our starting point is a simple interbank exposure model 

EA US UK CN CH SE-NO-DK BR-IN-RU JP TR ROW

EA
INT
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with both credit and funding shocks.14 Credit shocks capture the impact of a bank 

defaulting on its liabilities to other banks. Funding shocks, on the other hand, represent 

how a bank’s withdrawal of funding from other banks forces them to deleverage by 

selling assets at a discount (fire sale). Triggering a distress event (single or multiple bank 

failures) reveals the cascade effects and propagation channels transmitted through these 

solvency and liquidity channels. In order to achieve a more realistic setting, we enrich 

this simple framework with a series of new features that reflect heterogeneity across 

banks, one of the novelties of this paper. Specifically, we model the effects of: (i) bank-

specific default thresholds, such as minimum capital requirements and capital buffers; (ii) 

changes to the network structure via large exposure limits; (iii) variations in exposures at 

risk (loss-given-default); (iv) maturity structure of bank funding; (v) market risk linked to 

a bank’s business model captured by the amount of financial and HQLA assets on a 

bank’s balance sheet; (vi) changes in bank-specific LCR ratio due to adjustments in the 

liquidity buffer and/or the net liquidity outflows. As a result, this comprehensive 

modelling framework is able to capture the risk-return trade-off a bank faces between 

holding HQLA and non-HQLA financial assets and allows for assessing both solvency 

and liquidity risk while accounting for bank-specific parameters. Hence, it incorporates 

(vii) liquidity constraint on the amount of assets available for sale allowing a bank to

default because of being illiquid. These seven distinctive features are jointly modelled in

our framework.

The initial set-up of our model, while closely following Espinosa-Vega and Sole 

(2010), expands the scope beyond interbank loans to capture all interbank claims. This is 

reflected in the stylized balance sheet identity of bank i as follows: 

� � 𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘
𝑘𝑘𝑖𝑖

+ 𝑎𝑎𝑖𝑖 = 𝑐𝑐𝑖𝑖 + 𝑑𝑑𝑖𝑖 + 𝑏𝑏𝑖𝑖 + � 𝑥𝑥𝑖𝑖𝑖𝑖
𝑖𝑖

  (1)

where 𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘  stands for bank i's claims of type k on bank j, 𝑎𝑎𝑖𝑖 stands for other assets, 𝑐𝑐𝑖𝑖 

stands for capital, 𝑏𝑏𝑖𝑖 are wholesale funding (excluding interbank transactions), 𝑑𝑑𝑖𝑖 stands 

for deposits, and 𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘 stands for bank i’s total obligations vis-à-vis bank j, or conversely, 

14 Espinosa-Vega and Sole (2010) illustrate the workings of such a model with the use of aggregated data. 
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bank j’s claims on bank i. 𝒵𝒵 is the complete set of all banks in the network with a total of 

N number of banks.  

Next, we introduce the key elements of our baseline model that will be used as a 

reference framework in the remainder of this paper.  

3.1.1 Credit Shock 

Credit shock captures the impact of a bank or a group of banks defaulting on their 

obligations to other banks. As a result, a bank incurs losses on a share of its claims 

depending on the nature and counterparty of its exposures. Other studies have assumed 

uniform loss-given default rates, be it at entity level or for the entire network.15 In 

practice, different claims may have different recovery rates. For example, the recovery 

rates from equity stakes and debt claims can vary. We introduce exposure-specific loss-

given default rates to reflect the precise risk mitigation and collateralization a bank has 

accounted for its claims vis-à-vis each counterparty. In response to a subset of banks, 

𝒴𝒴 ⊂ 𝒵𝒵, defaulting on their obligations, bank i’s losses are summed across all banks 𝑗𝑗 ∈ 𝒴𝒴 

and claim types 𝑘𝑘 using exposure-specific loss-given default rates, 𝜆𝜆𝑖𝑖𝑖𝑖𝑘𝑘 , corresponding to 

its claim of type k on bank j, 𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘 :  

� � 𝜆𝜆𝑖𝑖𝑖𝑖𝑘𝑘 𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘
𝑘𝑘

, 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝜆𝜆𝑖𝑖𝑖𝑖𝑘𝑘
𝑖𝑖∈𝒴𝒴

∈ [0,1] 𝑎𝑎𝑎𝑎𝑑𝑑 𝑖𝑖 ∉ 𝒴𝒴 (2) 

The total losses are absorbed by bank i's capital while the size of its assets is reduced 

by the same amount. 

� � 𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘
𝑘𝑘𝑖𝑖∈𝒵𝒵\𝒴𝒴

+ �𝑎𝑎𝑖𝑖 + � � �1 − 𝜆𝜆𝑖𝑖𝑖𝑖𝑘𝑘 �𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘
𝑘𝑘𝑖𝑖∈𝒴𝒴

�

= �𝑐𝑐𝑖𝑖 −  � � 𝜆𝜆𝑖𝑖𝑖𝑖𝑘𝑘 𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘
𝑘𝑘𝑖𝑖∈𝒴𝒴

� + 𝑑𝑑𝑖𝑖 + 𝑏𝑏𝑖𝑖 + � 𝑥𝑥𝑖𝑖𝑖𝑖
𝑖𝑖

  (3)

As a result, bank i's balance sheet shrinks, with lower capital, 𝑐𝑐𝑖𝑖′, reflecting the losses. 

The recouped portion of its claims are commingled with other assets, 𝑎𝑎𝑖𝑖′.  

15 See for instance: Battiston et al. (2012), Cifuentes et al. (2005), Cont et al. (2010), Espinosa-Vega and 
Sole (2010) and Rogers and Veraart (2013). 
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� � 𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘
𝑘𝑘𝑖𝑖∈𝒵𝒵\𝒴𝒴

+ 𝑎𝑎𝑖𝑖′ = 𝑐𝑐𝑖𝑖′ + 𝑑𝑑𝑖𝑖 + 𝑏𝑏𝑖𝑖 + � 𝑥𝑥𝑖𝑖𝑖𝑖
𝑖𝑖

  (4)

Figure 2 illustrates the transmission of credit shock via bilateral linkages on bank i's 

balance sheet.  

Figure 2. Impact of Credit Shock on Bank i’s Balance Sheet 

before credit shock credit shock after credit shock 

3.1.2 Funding Shock 

Funding shock represents how a bank’s withdrawal of funding from other banks forces 

them to deleverage by selling assets at a discount (fire sale). Typically, an assumption is 

made about the share of short-term funding that cannot be rolled over and the haircut rate 

that must be applied to fire sale of assets to meet the immediate liquidity needs. This 

would result in losses on the trading book, which would then be absorbed by the capital 

base. We introduce bank-specific funding shortfall rate, 𝜌𝜌𝑖𝑖, reflecting precisely the 

maturity structure of bank i's wholesale funding. In response to a subset of banks 

defaulting (getting into distress), 𝒴𝒴 ⊂ 𝒵𝒵, and thereby withdrawing funding from other 

counterparties, bank i faces funding shortfall summed across all banks 𝑗𝑗 ∈ 𝒴𝒴 using its 

specific funding shortfall rate, 𝜌𝜌𝑖𝑖: 

� 𝜌𝜌𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝜌𝜌𝑖𝑖
𝑖𝑖∈𝒴𝒴

∈ [0,1] (5) 
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We introduce to the model banks’ ability to hold liquidity surplus, which can be used 

to absorb these shortfalls, at least partially. In order to mitigate banks’ short-term funding 

risk, regulators have imposed liquidity coverage ratios (LCR) to ensure that banks have 

sufficient high-quality liquid assets (HQLA) to cover liquidity shortages. In practice, for 

immediate liquidity needs, banks can pledge HQLA as collateral to the central bank for 

overnight borrowing. From a modeling perspective, this implies that bank i can offset 

funding shortfall with the new credit line up to its liquidity surplus, 𝛾𝛾𝑖𝑖: 

𝑚𝑚𝑖𝑖𝑎𝑎 �𝛾𝛾𝑖𝑖,� 𝜌𝜌𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖
𝑖𝑖∈𝒴𝒴

�   (6) 

with the remaining liquidity shortage computed as: 

𝑚𝑚𝑎𝑎𝑥𝑥 �0,� 𝜌𝜌𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖
𝑖𝑖∈𝒴𝒴

− 𝛾𝛾𝑖𝑖� (7) 

In our model, a bank is pushed toward a fire sale when it has exhausted emergency 

credit lines from the central bank, that is, if the remaining liquidity shortage (7) 

emanating from the funding shock is strictly positive. At this point, we introduce a 

constraint, 𝜃𝜃𝑖𝑖, on the amount of remaining assets available to the bank to sell. This 

constraint sets an upper threshold to how much of the remaining liquidity shortage can be 

sustained with the fire sale proceeds after accounting for haircuts proportional to a 

discount rate, 𝛿𝛿𝑖𝑖. As a result, the deleveraging amounts to the sale of assets is equivalent 

to:  

𝑚𝑚𝑖𝑖𝑎𝑎 �
1

1 − 𝛿𝛿𝑖𝑖
𝑚𝑚𝑎𝑎𝑥𝑥 �0,� 𝜌𝜌𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖

𝑖𝑖∈𝒴𝒴
− 𝛾𝛾𝑖𝑖� ,𝜃𝜃𝑖𝑖�       ,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝛿𝛿𝑖𝑖 ∈ [0,1]    (8) 

As in credit shock, the losses due to the fire sale are absorbed fully by bank i's 

capital. The other liabilities of the bank decline by the amount of funding shortfall that 

couldn’t be replenished by central bank loans. The sum of the two declines are matched 

by the contraction on bank’s assets due to fire sales.  
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� � 𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘
𝑘𝑘𝑖𝑖

+ �𝑎𝑎𝑖𝑖 − 𝑚𝑚𝑖𝑖𝑎𝑎 �
1

1 − 𝛿𝛿𝑖𝑖
𝑚𝑚𝑎𝑎𝑥𝑥 �0,� 𝜌𝜌𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖

𝑖𝑖∈𝒴𝒴
− 𝛾𝛾𝑖𝑖� ,𝜃𝜃𝑖𝑖��

= �𝑐𝑐𝑖𝑖 − 𝛿𝛿𝑖𝑖𝑚𝑚𝑖𝑖𝑎𝑎 �
1

1 − 𝛿𝛿𝑖𝑖
𝑚𝑚𝑎𝑎𝑥𝑥 �0,� 𝜌𝜌𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖

𝑖𝑖∈𝒴𝒴
− 𝛾𝛾𝑖𝑖� ,𝜃𝜃𝑖𝑖�� + 𝑑𝑑𝑖𝑖

+ �𝑏𝑏𝑖𝑖 + 𝑚𝑚𝑖𝑖𝑎𝑎 �𝛾𝛾𝑖𝑖,� 𝜌𝜌𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖
𝑖𝑖∈𝒴𝒴

�� + �� 𝑥𝑥𝑖𝑖𝑖𝑖
𝑖𝑖∈𝒵𝒵\𝒴𝒴

+ � (1 − 𝜌𝜌𝑖𝑖)𝑥𝑥𝑖𝑖𝑖𝑖
𝑖𝑖∈𝒴𝒴

� (9) 

Overall, the balance sheet of the bank can potentially shrink by a larger factor than 

the associated capital losses in contrast with the credit shock. On the liabilities side, there 

is a shift in wholesale funding from other banks to the central bank, as well as an overall 

decline.  

� � 𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘
𝑘𝑘𝑖𝑖

+ 𝑎𝑎𝑖𝑖′′ = 𝑐𝑐𝑖𝑖′′ + 𝑑𝑑𝑖𝑖 + 𝑏𝑏𝑖𝑖′′ + �� 𝑥𝑥𝑖𝑖𝑖𝑖
𝑖𝑖∈𝒵𝒵\𝒴𝒴

+ � (1 − 𝜌𝜌𝑖𝑖)𝑥𝑥𝑖𝑖𝑖𝑖
𝑖𝑖∈𝒴𝒴

� (10) 

Figures 3 and 4 illustrate the transmission of funding shock via bilateral linkages on 

bank i's balance sheet, when the liquidity surplus is sufficient to meet funding shortfall 

and when it is insufficient, respectively. 

Figure 3. Impact of funding shock on bank i’s balance sheet with sufficient buffer

before funding shock funding shock after funding shock 
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Figure 4. Impact of funding shock on bank i’s balance sheet with insufficient buffer

before funding shock funding shock after funding shock 

3.1.3 Simultaneous Credit and Funding Shocks 

While it is helpful to consider credit and funding shocks in isolation, when a bank or a 

group of banks are in distress, they are likely to default on their obligations and shore up 

liquidity by withdrawing funding simultaneously. Therefore, we combine the impact of 

both shocks on bank i's balance sheet to capture the full impact of a distress event.  

�𝑎𝑎𝑖𝑖 + � � �1 − 𝜆𝜆𝑖𝑖𝑖𝑖𝑘𝑘 �𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘
𝑘𝑘𝑖𝑖∈𝒴𝒴

−𝑚𝑚𝑖𝑖𝑎𝑎 �
1

1 − 𝛿𝛿𝑖𝑖
𝑚𝑚𝑎𝑎𝑥𝑥 �0,� 𝜌𝜌𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖

𝑖𝑖∈𝒴𝒴
− 𝛾𝛾𝑖𝑖� ,𝜃𝜃𝑖𝑖��

+ � � 𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘
𝑘𝑘𝑖𝑖∈𝒵𝒵\𝒴𝒴

= �𝑐𝑐𝑖𝑖 −  � � 𝜆𝜆𝑖𝑖𝑖𝑖𝑘𝑘 𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘
𝑘𝑘𝑖𝑖∈𝒴𝒴

− 𝛿𝛿𝑖𝑖𝑚𝑚𝑖𝑖𝑎𝑎 �
1

1 − 𝛿𝛿𝑖𝑖
𝑚𝑚𝑎𝑎𝑥𝑥 �0,� 𝜌𝜌𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖

𝑖𝑖∈𝒴𝒴
− 𝛾𝛾𝑖𝑖� , 𝜃𝜃𝑖𝑖�� + 𝑑𝑑𝑖𝑖

+ �𝑏𝑏𝑖𝑖 + 𝑚𝑚𝑖𝑖𝑎𝑎 �𝛾𝛾𝑖𝑖,� 𝜌𝜌𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖
𝑖𝑖∈𝒴𝒴

��

+ �� 𝑥𝑥𝑖𝑖𝑖𝑖
𝑖𝑖∈𝒵𝒵\𝒴𝒴

+ � (1 − 𝜌𝜌𝑖𝑖)𝑥𝑥𝑖𝑖𝑖𝑖
𝑖𝑖∈𝒴𝒴

� (11)
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3.1.4 Default Mechanisms 

Up to this point, we focused on how credit and funding shocks are transmitted to a 

bank’s balance sheet. While credit shocks translate directly to weakening of a bank’s 

capital, funding shocks lead to depletion of its liquidity and via fire sales to capital losses. 

Now, we define at what level these losses result in a severe distress for a bank triggering 

its default.  

In a distress event, the capital of exposed counterparties, such as bank i, must absorb 

the losses on impact. Then, bank i becomes insolvent if its capital falls below a certain 

threshold 𝑐𝑐𝑖𝑖𝑑𝑑, which may be defined as the bank’s minimum capital requirements with or 

without capital buffers. In other words, bank i is said to fail if its capital surplus (𝑐𝑐𝑖𝑖 − 𝑐𝑐𝑖𝑖𝑑𝑑) 

is insufficient to fully cover the losses:  

𝑐𝑐𝑖𝑖 − 𝑐𝑐𝑖𝑖𝑑𝑑 <  � � 𝜆𝜆𝑖𝑖𝑖𝑖𝑘𝑘 𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘
𝑘𝑘𝑖𝑖∈𝒴𝒴

+ 𝛿𝛿𝑖𝑖𝑚𝑚𝑖𝑖𝑎𝑎 �
1

1 − 𝛿𝛿𝑖𝑖
𝑚𝑚𝑎𝑎𝑥𝑥 �0,� 𝜌𝜌𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖

𝑖𝑖∈𝒴𝒴
− 𝛾𝛾𝑖𝑖� ,𝜃𝜃𝑖𝑖�            (12) 

In terms of the impact through the liquidity channel, bank i’s liquidity surplus serves 

as the first line of defense. However, the remaining liquidity shortages might require a 

large-scale fire sale operation relative to its financial assets. Having already exhausted its 

liquidity surplus, bank i becomes illiquid if its remaining assets are insufficient to match 

the liquidity shortage:  

𝜃𝜃𝑖𝑖 <   
1

1 − 𝛿𝛿𝑖𝑖
𝑚𝑚𝑎𝑎𝑥𝑥 �0,� 𝜌𝜌𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖

𝑖𝑖∈𝒴𝒴
− 𝛾𝛾𝑖𝑖� (13) 

Notably, in our framework, a bank may default contemporaneously via solvency and 

liquidity when inequalities (12) and (13) are jointly satisfied. This implies that the 

funding shortfall is larger than the funds retrieved from the liquidity surplus and the fire 

sale operations, and, at the same time, the cumulated losses incurred via credit losses and 

fire sales are larger than the capital surplus.  

Bringing the full network of banks into picture, in each simulation the exercise tests 

the system for a given bank’s default as depicted in Figure 5. The initial default of bank 1 

is triggered by design in order to study the cascade effects and contagion path it causes 

through the interbank network. According to this example, the trigger bank is linked to 
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bank 2 and bank 4 via large exposures, respectively 𝑥𝑥12 and 𝑥𝑥14. The initial shock 

determines the subsequent bank 2’s default and losses to bank 4 via credit and funding 

risks. Hence, the exercise continues to the second round since there is at least one 

additional failure in response to the initial exogenous shock. In this round, banks’ losses 

are cumulated in calculation of their distress conditions. Therefore, bank 4’s losses 

experienced by bank 2’s default (𝑥𝑥24.) in round 2 are summed up with bank 1’s induced 

losses in round 1 (𝑥𝑥14.). Although, the initial default of bank 1 does not directly induce 

bank 4’s default, due to contagion and amplification effects, in round 2 bank 4‘s default 

realizes. In turn, bank 4 triggers the default of bank 3 (𝑥𝑥43) and produces additional 

losses to bank 2 (𝑥𝑥42) which already defaulted in round 2. In this respect, the losses 

experienced by bank 2 via the large exposure (𝑥𝑥42) will not further affect bank 2 since its 

surplus of capital above the minimum has been already depleted given bank 1 shock.16 

The exercise moves to subsequent rounds if there are additional failures in the system and 

stops when there are no other failures.  

Figure 5: Contagion Path and Rounds to Defaults 

Note: The trigger bank initializes the algorithm, rounds track the path of contagion via internal loops, while 
final failures define the convergence of the algorithm.   
Source: Inspired by Espinoza-Sole (2010). 

16 This is an assumption of the model that may be relaxed depending on whether we want to model the 
entire distress induced to the capital base or simply to the capital base above the minimum capital 
requirements. 
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3.2 Calibration 

The typical approach in the application of balance sheet simulation exercises has been to 

use benchmark parameters based on cross-country studies or sectoral averages. Few 

studies introduced some improvement by using random drawings from a distribution of 

observed values. One of the main contributions of this paper is to model bank-level 

heterogeneity with granular exposure and other balance sheet information. In the 

following, we describe in detail how we calibrate the bank-specific parameters for the 

set-up of our benchmark model. 

3.2.1 Loss Given Default 

The loss given default (LGD) parameter is calibrated for each bank at exposure level by 

calculating the ratio of net exposures to gross exposures. Gross exposures (GE) are 

defined as those after deducting defaulted amounts and exemptions from original gross 

exposures. Net exposures (NE) refer to the remaining exposures after adjusting gross 

exposures for credit risk mitigation measures. In other words, if bank i is lending to 

counterparty j, the exposure-specific LGD is defined as in equation (14). Non-reporting 

banks in the sample are assumed to have a uniform LGD equal to the average �̅�𝜆 across all 

reporting banks. 

𝜆𝜆𝑖𝑖,𝑖𝑖 =
𝑁𝑁𝑁𝑁𝑖𝑖,𝑖𝑖
𝐺𝐺𝑁𝑁𝑖𝑖,𝑖𝑖

= 𝐿𝐿𝐺𝐺𝐿𝐿𝑖𝑖,𝑖𝑖 (14) 

On the one hand, panel (a) of Figure 6 presents the distribution of the exposure-

specific loss given default parameters (𝜆𝜆𝑖𝑖,𝑖𝑖). The red line shows the average of the 

sample (�̅�𝜆) upon which is based the calibration for the non-reporting banks. The average 

net exposure amount is 80% of the gross amount after deducting exemptions. Panel (b) 

reports the distribution of exemptions across exposures. Both samples are concentrated 

respectively on the right and left side of the distribution, though cross-exposure 

heterogeneity is visible.  
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Figure 6: Exposure-Specific Loss Given Default Parameter 
        Panel (a)        Panel (b) 

Source: COREP Supervisory Data, Template C.28.00. 
Note: The LGD parameter is calculated on an exposure basis as the share of the net exposure (after CRM 
and exemptions) over the gross exposure amount before taking into account CRM, but after exemptions. 
The exemption rate shows the share of exempted amount over the original gross amount before deducting 
exemptions and CRM. 

3.2.2 Funding Shortfall 

Funding shortfall refers to the portion of withdrawn funding that is assumed not to be 

rolled over when the bank providing the funding defaults (or gets into distress). It is 

calibrated at bank-level using the share of short-term liabilities shorter than 30 days (1 

month maturity). The choice of this maturity threshold as baseline calculation is to allow 

the funding shortfall to be consistent with the Liquidity Coverage Ratio (LCR) which 

assumes a 30-day liquidity distress scenario. However, this assumption may be relaxed 

and 𝜌𝜌𝑖𝑖  can be calibrated on a shorter or longer period depending on the scenario we want 

to test. 

 For each bank, we use exposure level information retrieved from the concentration 

of funding template (C.67.00.a) and the large exposure maturity breakdown template 

(C.30). The former template allows us to retrieve information on the exposures’ amount 

and maturity breakdown on international banks lending to euro area banks. Therefore, as 

reported in equation (15), the funding shortfall is calibrated based on the share of 

exposures in buckets with maturities of less than 30 days over the total amount of 
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funding, aggregated across all reporting banks for whom bank i is a large exposure 

counterpart (Fi). 17 

𝜌𝜌𝑖𝑖 =
∑ 𝑥𝑥𝑖𝑖,𝑖𝑖<30𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑗𝑗𝐹𝐹𝑖𝑖

∑ 𝑥𝑥𝑖𝑖,𝑖𝑖𝑖𝑖𝑗𝑗𝐹𝐹𝑖𝑖
=
𝑆𝑆ℎ𝑜𝑜𝑒𝑒𝑜𝑜 𝑇𝑇𝑒𝑒𝑒𝑒𝑚𝑚 𝐹𝐹𝐹𝐹𝑎𝑎𝑑𝑑𝑖𝑖𝑎𝑎𝐹𝐹

𝑇𝑇𝑜𝑜𝑜𝑜𝑎𝑎𝑇𝑇 𝐹𝐹𝐹𝐹𝑎𝑎𝑑𝑑𝑖𝑖𝑎𝑎𝐹𝐹
(15) 

When no maturity information is available, we use the average maturity to which the 

reporting banks having an exposure to bank i are lending at to other banks. Therefore, we 

assume that the maturity information of the reporting bank is more accurate than setting 

𝜌𝜌𝑖𝑖 equal to the average of the sample. This approach allows us to increase heterogeneity 

in the distribution of the funding shortfall parameter.  

Figure 7: Bank-Specific Funding Shortfall Parameter 

Source: COREP Supervisory Data, Template C.30 and Template C.67.00.a 
Note: Funding shortfall is constructed as short-term funding divided by total funding. 

 As we see in figure 7, banks’ short term funding as share of total funding is 

distributed on the whole range of the maturity breakdown, with banks experiencing an 

average of 35% of short term funding over total funding.

3.2.3 Liquidity Surplus 

The liquidity surplus is directly derived from the liquidity coverage ratio template 

C.72.00a. It consists of the difference between the LCR’s numerator and denominator

since the former, as of 2018, needs to be larger than 100% of the latter (equation 16).

Hence, the liquidity surplus (𝛾𝛾𝑖𝑖) refers to the stock of HQLAs (𝐿𝐿𝐿𝐿𝑖𝑖) above the net

17 Bank i’s large exposure vis-à-vis bank j can be equally thought of as the amount of funding provided by 
bank i to bank j. 
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funding outflows (𝑁𝑁𝐿𝐿𝑁𝑁𝑖𝑖) over a 30-day liquidity distress scenario. Figure 8 reports the 

surplus as share of banks’ total assets. The average of the sample is close to 5.8% which 

is used for approximating the missing (𝛾𝛾𝑖𝑖) for some international banks. Furthermore, if a 

bank is currently facing a transition period to achieve the 100% LCR ratio, whenever 

𝑁𝑁𝐿𝐿𝑁𝑁𝑖𝑖 > 𝐿𝐿𝐿𝐿𝑖𝑖, to be conservative, we set 𝛾𝛾𝑖𝑖 = 0.  

𝐿𝐿𝐿𝐿𝐿𝐿:   
𝐿𝐿𝐿𝐿𝑖𝑖
𝑁𝑁𝐿𝐿𝑁𝑁𝑖𝑖

> 1
𝑑𝑑𝑖𝑖𝑦𝑦𝑦𝑦𝑑𝑑𝑑𝑑
�⎯⎯⎯�      𝐿𝐿𝐿𝐿𝑖𝑖 > 𝑁𝑁𝐿𝐿𝑁𝑁𝑖𝑖    

𝑑𝑑𝑖𝑖𝑦𝑦𝑦𝑦𝑑𝑑𝑑𝑑
�⎯⎯⎯�         𝛾𝛾𝑖𝑖 ≡   𝐿𝐿𝐿𝐿𝑖𝑖 − 𝑁𝑁𝐿𝐿𝑁𝑁𝑖𝑖 > 0              (16) 

Figure 8: Bank-Specific Liquidity Surplus 

Source: COREP Supervisory Data, Template C.72.00.a and Bankscope. 
Note: Liquidity Surplus (𝜸𝜸) is constructed as the difference between the numerator and the denominator of 
the liquidity coverage ratio (LCR), i.e. the difference between the stock of HQLAs (LB) and the net 
funding Outflows (NFO). 

3.2.4 Fire Sale Discount Rate and Pool of Assets 

The additional parameters required to simulate the contagion impact of a funding shock is 

the rate at which banks are forced to discount their assets as they react to a funding 

shortfall by deleveraging. Since, as the described in the previous section, we assume that 

the set of HQLA assets is used to cover the liquidity shortfall, and the fire sale stage is 

triggered only when it is exhausted, the set of assets available for sale is defined as the 

amount of unencumbered non-HQLA assets. This category of assets is retrieved from the 

asset encumbrance template F.32.01 which is further broken-down into different asset 

classes. In this respect, Equation (17) approximates the discount rate (𝛿𝛿𝑖𝑖) as the ratio 

between the discounted amount of unencumbered non-central bank eligible assets 

(𝐿𝐿_𝑈𝑈𝑁𝑁𝐿𝐿𝐿𝐿𝑁𝑁𝑈𝑈𝑖𝑖) over the total amount of unencumbered non-central bank eligible assets 

ECB Working Paper Series No 2224 / January 2019 26



(𝑈𝑈𝑁𝑁𝐿𝐿𝐿𝐿𝑁𝑁𝑈𝑈𝑖𝑖), which captures the pool of assets available for sale (𝜃𝜃𝑖𝑖). Therefore the 

𝛿𝛿𝑖𝑖 coefficient for euro area banks is derived as the weighted average haircut (𝛿𝛿𝚥𝚥�) of each 

asset classes 𝑈𝑈𝑖𝑖: respectively covered bonds (𝛿𝛿�̅�𝐶𝐶𝐶), asset backed securities (𝛿𝛿�̅�𝐴𝐶𝐶𝐴𝐴), debt 

securities issued by general governments (𝛿𝛿�̅�𝐺𝐺𝐺), debt securities issued by financial 

corporations (𝛿𝛿�̅�𝐹𝐶𝐶), debt securities issued by non-financial corporations (𝛿𝛿�̅�𝑁𝐹𝐹𝐶𝐶), and 

equity instruments (𝛿𝛿���𝐸𝐸). The average haircut (𝛿𝛿𝚥𝚥�) for each asset class is based on the 

latest ECB’s guidelines on haircuts.18 Moreover, in order to take into account that the 

instruments we are dealing with are non-central bank eligible, we assume that the bottom 

threshold for haircuts is the highest haircut for central bank eligible instrument, i.e. 38%. 

𝛿𝛿𝑖𝑖 = �
𝛿𝛿𝚥𝚥�𝑈𝑈𝑖𝑖
𝑈𝑈𝑖𝑖

=
𝑁𝑁

𝑖𝑖

𝛿𝛿�̅�𝐶𝐶𝐶𝐿𝐿𝐿𝐿𝑖𝑖 + 𝛿𝛿�̅�𝐴𝐶𝐶𝐴𝐴𝑈𝑈𝐿𝐿𝑆𝑆𝑖𝑖 + 𝛿𝛿�̅�𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑖𝑖 + 𝛿𝛿�̅�𝐹𝐶𝐶𝐹𝐹𝐿𝐿𝑖𝑖 + 𝛿𝛿�̅�𝑁𝐹𝐹𝐶𝐶𝑁𝑁𝐹𝐹𝐿𝐿𝑖𝑖 + 𝛿𝛿�̅�𝐸𝑁𝑁𝑖𝑖
𝑈𝑈𝑁𝑁𝐿𝐿𝐿𝐿𝑁𝑁𝑈𝑈𝑖𝑖

         (17) 

For international banks for which we lack FINREP template F.32.01, we derive the 

discount rate 𝛿𝛿𝑖𝑖 and the pool of assets available for sale (𝜃𝜃𝑖𝑖) with a two-step procedure. 

First, we regress the balance sheet categories i) assets available for sales, ii) assets held 

for trading and iii) HQLA assets for the euro area banks sample as reported in equation 

(18) on the numerator and denominator of equation (17).

�𝛿𝛿𝚤𝚤,𝚥𝚥����𝑈𝑈𝑖𝑖,𝑖𝑖

𝑁𝑁

𝑖𝑖

= 𝑎𝑎1𝐹𝐹𝑈𝑈𝑈𝑈𝑆𝑆𝑖𝑖 + 𝑎𝑎2𝐹𝐹𝑈𝑈𝐹𝐹𝑇𝑇𝑖𝑖 + 𝑎𝑎3𝐹𝐹𝐻𝐻𝐿𝐿𝑈𝑈𝑖𝑖 + 𝑒𝑒𝑖𝑖            (18) 

In this way we obtain three coefficients 𝑎𝑎1,𝑎𝑎2,𝑎𝑎3 explaining the contribution of each 

asset class for both dependent variables. As we can see from Table 2, the first two 

coefficients are statistically significant at 1% and the model shows a reliable goodness of 

fit, respectively 89% and 86% for the numerator and denominator of equation (17). Next, 

we retrieve from Bankscope the very same balance sheet categories for which we have a 

statistically significant coefficient, i.e., financial assets available for sale and financial 

assets held for trading.  Hence, the second step consists in multiplying each balance sheet 

18 The haircut used for each asset class is the average across maturities. Calculations can be provided upon 
request. See: https://www.ecb.europa.eu/ecb/legal/pdf/celex_32018o0004_en_txt.pdf  
https://www.ecb.europa.eu/mopo/assets/risk/liquidity/html/index.en.html 
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category for the relative estimated coefficients to derive the numerator and denominator 

of equation (17) for the sample of international banks and so obtaining the discount rate 

(𝛿𝛿𝑖𝑖) and the pool of assets (𝜃𝜃𝑖𝑖).  

Table 2: Step 1 - Regression Results for Euro Area Banks Sample 

Note: Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

Figure 9 depicts respectively the bank-specific discount rate (𝛿𝛿𝑖𝑖) and the pool of 

assets available for sale (𝜃𝜃𝑖𝑖), the latter as share of total assets. As can be noticed, the 

bank-specific discount rate (𝛿𝛿𝑖𝑖) is centered around 57.5% and resembles a normal 

distribution, whereas the pool of non-central bank eligible assets is left skewed, with a 

mean centered around 4% of total assets and outliers reaching an amount higher than 

20%.  

Figure 9: Bank-Specific Discount Factor - Fire Sale Parameter 

  

Source: COREP and FINREP Supervisory Data, Template F32.01 and bankscope. 
Note: the 𝜹𝜹 coefficient reflects a weighted average haircut of the portfolio 𝜽𝜽 for non-central bank eligible 
instruments. 

EA Banks EA Banks
VARIABLES Coefficients Numerator Eq. 12 Denominator Eq. 12

Financial Assets Available for Sale (FAAS) (a1) 0.169*** 0.309***
-0.044 (0.0879)

Financial Assets Held for Trading (FAHT) (a2) 0.0641*** 0.108***
(0.00973) (0.0194)

High Quality Liquid Assets (HQLA) (a3) -0.0205 -0.0373
(0.0327) (0.0652)

Observations / 85 85
Adj.R-squared / 0.89 0.86
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Overall, the nested set of liquidity and fire sale parameters (𝛾𝛾𝑖𝑖,𝜃𝜃𝑖𝑖  , 𝛿𝛿𝑖𝑖), depicted in 

Figure 10, captures the degree of heterogeneity characterizing the liquidity strategies of 

banks in our sample. For instance, a bank may choose to hold a larger amount of HQLAs 

as a share of total assets (𝛾𝛾𝑖𝑖) - the area below the 45 degree line - than the pool of 

unencumbered non-HQLA financial assets (𝜃𝜃𝑖𝑖) - the area above the 45 degree line. Banks 

belonging to area (A) are those that may most likely suffer capital losses by liquidity 

shocks since the liquidity surplus may easily become binding, and in turn may trigger fire 

sales. On the contrary, banks belonging to area (B) are those that may most likely 

experience a liquidity defaultwhen the liquidity surplus  (𝛾𝛾𝑖𝑖) is depleted. In this case, the 

pool of assets 𝜃𝜃𝑖𝑖 is likely to be insufficient to cover the remaining liquidity needs. In the 

end, the quadrant (C) captures those banks that are short of both buffers and are clear 

candidates for the realization of the liquidity default. Furthermore, the above mentioned 

effects are far more pronounced when the size of the nodes are large (red nodes), since it 

implies that they will face a harsher discount rate via fire sales.  The realization of these 

dynamics (A, B, C) is conditional to the amount of short-term bilateral 

exposures 𝜌𝜌𝑖𝑖𝑥𝑥𝑖𝑖ℎ, which, in the end, determines the spread of contagion within the 

interbank market.  

Figure 10: Liquidity Default Dynamics 

Note: nodes’ size is proportional to a bank’s discount rate (𝛿𝛿). Red nodes highlight the 75th percentile of the 
discount factor. For confidentiality reasons, the chart shows statistics as average among three banks. 
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3.2.5 Distress-Default Threshold 

A key assumption of the model is to define when counterparty bank i is not able to meet 

its payment obligations, i.e. a default or distress threshold 

�𝑐𝑐𝑖𝑖𝑑𝑑�. Accordingly, a bank can be considered in default/distress when the surplus of 

capital above the capital requirements a bank needs to meet at any time is depleted.  

For our simulations we distinguish between two types of capital requirements: (i) 

minimum capital requirements and (ii) capital buffers. The former requires banks to hold 

4.5% RWAs of minimum capital (MC). This minimum requirement might be higher 

depending on the bank-specific Pillar 2 requirement (P2R) set by the supervisor. In 

addition to this, a bank is required to keep a capital conservation buffer (CCoB) of 

between 1.875% and 2.5% CET1 capital as of 2018 (depending on the extent to which 

the jurisdiction where the bank is located has fully or only partially phased in the end-

2019 requirement19), and a bank-specific buffer, which is the higher among the Systemic 

Risk Buffer (SRB), GSII and OSII buffers. Furthermore, some jurisdictions also apply a 

positive counter-cyclical capital buffer requirement (CCyB). In this regard, we retrieved 

bank-specific information on minimum capital requirements (CET1, TIER1, Own Funds) 

and capital buffers from COREP supervisory templates C.01, C.03 and C.06.01 and the 

bank-specific risk weighted assets (RWAs) from C.02. For international banks our data 

source is Bankscope. 

Therefore, the capital surplus (𝑘𝑘𝑖𝑖) can be defined in two ways: a capital surplus (𝑘𝑘𝑖𝑖𝐷𝐷𝐹𝐹) 

above the minimum capital requirements defined as a default threshold (𝑐𝑐𝑖𝑖𝐷𝐷𝐹𝐹) reported in 

equation (19a), or a capital surplus (𝑘𝑘𝑖𝑖𝐷𝐷𝐴𝐴) above the sum of the minimum capital 

requirements and the capital buffers defined as a distress threshold (𝑐𝑐𝑖𝑖𝐷𝐷𝐴𝐴) presented in 

equation (19b). When the bank breaches the minimum capital requirement (𝑐𝑐𝑖𝑖𝐷𝐷𝐹𝐹) it is 

assumed that the supervisor would declare the bank for “failing or likely to fail” (which is 

the official trigger for putting the bank into resolution).20 When the bank breaches the 

19 In 2019 it will amount up to 2.5%. 
20 As stated in the Bank Recovery and Resolution Directive (BBRD), the resolution authority should trigger 
the resolution framework before a financial institution is balance sheet insolvent and before all equity has 
been fully wiped out (Title IV, Chapter I, Art. 32, Point 41). Thus, our calibration method is consistent with 
the Bank Recovery and Resolution Directive’s (BRRD) guidelines on fail or likely to fail: “An institution 
shall be deemed to be failing or likely to fail in one or more of the following circumstances: … because the 
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buffer requirement (𝑐𝑐𝑖𝑖𝐷𝐷𝐴𝐴) while not yet breaching the minimum capital requirement, it is 

assumed that it will not be declared failing but that it would rather be constrained in its 

ability to pay out dividends. This, itself, could be a trigger for bank distress and is thus 

considered as an alternative trigger threshold.  

𝑘𝑘𝑖𝑖𝐷𝐷𝐹𝐹 = 𝑐𝑐𝑖𝑖 − 𝑐𝑐𝑖𝑖𝐷𝐷𝐹𝐹

= 𝑐𝑐𝑖𝑖 −  (𝑀𝑀𝐿𝐿𝑖𝑖 + 𝐿𝐿𝐿𝐿𝑜𝑜𝐿𝐿𝑖𝑖 +  𝑃𝑃2𝐿𝐿𝑖𝑖) (19𝑎𝑎) 

𝑘𝑘𝑖𝑖𝐷𝐷𝐴𝐴 = 𝑐𝑐𝑖𝑖 − 𝑐𝑐𝑖𝑖𝐷𝐷𝐴𝐴

= 𝑐𝑐𝑖𝑖 −  [(𝑀𝑀𝐿𝐿𝑖𝑖 + 𝐿𝐿𝐿𝐿𝑜𝑜𝐿𝐿𝑖𝑖 +  𝑃𝑃2𝐿𝐿𝑖𝑖)  + max  (𝑆𝑆𝐿𝐿𝐿𝐿𝑖𝑖,𝐺𝐺𝑆𝑆𝐺𝐺𝐺𝐺𝑖𝑖,𝑁𝑁𝑆𝑆𝐺𝐺𝐺𝐺𝑖𝑖) + 𝐿𝐿𝐿𝐿𝐶𝐶𝐿𝐿𝑖𝑖]     (19𝑏𝑏) 

 Hence, this calibration method allows for some flexibility on the determination of a 

bank’s default depending on the purpose of the exercise. While from a resolution 

authority and supervisory perspective the capital surplus (𝑘𝑘𝑖𝑖𝐷𝐷𝐹𝐹) based on the default 

threshold (𝑐𝑐𝑖𝑖𝐷𝐷𝐹𝐹) may be the more relevant reference point, the distress threshold (𝑐𝑐𝑖𝑖𝐷𝐷𝐴𝐴) 

may be of interest to macroprudential supervisors. As this paper has a systemic risk 

focus, we will provide results based on the latter approach. This is further motivated by 

the fact that the inclusion of the macroprudential buffers (𝑆𝑆𝐿𝐿𝐿𝐿𝑖𝑖,𝐺𝐺𝑆𝑆𝐺𝐺𝐺𝐺𝑖𝑖  𝑁𝑁𝑆𝑆𝐺𝐺𝐺𝐺𝑖𝑖,𝐿𝐿𝐿𝐿𝐶𝐶𝐿𝐿𝑖𝑖) 

allows to take into account the impact of macroprudential policy actions.21 Nevertheless, 

we discuss the differences in the two approaches in the sensitivity analysis section.  

Finally, an additional feature that needs to be taken into consideration in order to 

accurately handle heterogeneity in the bank-specific capital surplus concerns the type of 

capital used in the calculation. In fact, both the capital base (𝑐𝑐𝑖𝑖) and the minimum capital 

(𝑀𝑀𝐿𝐿𝑖𝑖) and pillar 2 requirements (𝑃𝑃2𝐿𝐿𝑖𝑖) may vary whether the capital considered is 

CET1, TIER1, or own funds calculated as the sum of TIER1 and TIER2 instruments. For 

instance, 𝑀𝑀𝐿𝐿𝑖𝑖 are respectively 4.5% of RWAs for CET1 capital, 6% of RWAs for TIER1 

capital, and 8% of RWAs for own funds. In turn, these differences are also reflected in 

the capital base (𝑐𝑐𝑖𝑖). Hence, this implies that the very same bank may face a capital 

surplus (𝑘𝑘𝑖𝑖𝐶𝐶𝐸𝐸𝐶𝐶1 ≷  𝑘𝑘𝑖𝑖𝐶𝐶𝑇𝑇𝐸𝐸𝑇𝑇1 ≷ 𝑘𝑘𝑖𝑖𝑂𝑂𝐹𝐹) larger or smaller depending on the capital considered. 

institution has incurred or is likely to incur losses that will deplete all or a significant amount of its own 
funds” (Title IV, Chapter I, Art. 32, Point 4). 
21 Potentially also the Pillar 2 Guidance (P2G) may be included into the distress threshold calculation. 
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In this study, we use as benchmark the CET1 ratio, although we provide in the results 

section evidence for the robustness of our findings to this calibration feature.  

Figure 11: Bank-Specific Distress Threshold 

Panel (a) Panel (b) 

Source: COREP Supervisory Data Templates C.01-C.03, and Bankscope. 
Note: The sum of minimum capital and capital surplus gives total capital (c). The decreasing ordering is 
based on total capital. For confidentiality reasons, panel (b) shows surplus and minimum CET1 as average 
among three banks following total capital decreasing ordering. 

Panel (a) of Figure 11 depicts the distribution of the CET1 capital surplus based on a 

distress threshold, while panel (b) presents the contribution of the capital surplus (distress 

threshold) and the distress threshold to the capital base.22  

Overall, the advantage of this methodology is twofold. It allows us to tailor a realistic 

distress-default threshold and put it in relation to the bank’s voluntary buffer (here 

defined as ‘capital surplus’) as well as to perform scenario analysis and counterfactual 

analysis by imposing higher bank-specific capital requirements or by reducing the capital 

surplus under an adverse scenario. 

3.3 Model Outputs 

This exercise is tailored to rank banks for their systemic risk contribution to financial 

stability in terms of potential contagion and degree of vulnerability of the euro area 

22 Although the average capital surplus varies little among the different capital classes (close to 7-8% of 
RWAs). The number of banks close to the distress threshold moves from 24 for the CET1 capital threshold 
to 22 for TIER1, and to 18 for Total Capital (Own Funds). Bank-specific distress threshold for Tier 1 and 
total capital are available upon request. 
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banking system.  Considering, a policy maker’s perspective, each bank is evaluated upon 

four main model-based outputs, as follows:  

i. Contagion index (CI): system-wide losses induced by bank i in percent of total

capital in the system (excluding bank i);

𝐿𝐿𝐺𝐺𝑖𝑖 = 100
∑ 𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖≠𝑖𝑖

∑ 𝑘𝑘𝑖𝑖𝑖𝑖≠𝑖𝑖
 , 

where 𝐿𝐿𝑖𝑖𝑖𝑖 is the loss experienced by bank j due to the triggered default of bank i. 

ii. Vulnerability index (VI): average loss experienced by bank i across all simulations

in percent of its own capital.

𝑉𝑉𝐺𝐺𝑖𝑖 = 100
∑ 𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖≠𝑖𝑖

∑ 𝑘𝑘𝑖𝑖𝑖𝑖≠𝑖𝑖
 , 

iii. Contagion level: the number of banks that experience severe distress associated

with a default induced by the initial hypothetical failure of bank i;

iv. Vulnerability level: the total number of simulations under which bank i fails;

where 𝐿𝐿𝑖𝑖𝑖𝑖 is the loss experienced by bank i due to the triggered default of bank j.

Essentially, losses experienced by each bank (𝐿𝐿𝑖𝑖𝑖𝑖) is the sum of losses associated 

with credit risk shock (𝐿𝐿𝐿𝐿𝑒𝑒𝑖𝑖𝑖𝑖) and losses associated with a funding risk shock (𝐿𝐿𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖). 

Hence, each index can be broken down to the respective contributions by credit risk 

(CI_Cr and VI_Cr) and funding risk (CI_Fu and VI_Fu) shocks providing insights to the 

nature of contagion.  

𝐿𝐿𝐺𝐺_𝐿𝐿𝑒𝑒𝑖𝑖 = 100
∑ 𝐿𝐿𝐿𝐿𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖≠𝑖𝑖

∑ 𝑘𝑘𝑖𝑖𝑖𝑖≠𝑖𝑖
 ,𝑎𝑎𝑎𝑎𝑑𝑑 𝐿𝐿𝐺𝐺_𝐹𝐹𝐹𝐹𝑖𝑖 = 100

∑ 𝐿𝐿𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖≠𝑖𝑖

∑ 𝑘𝑘𝑖𝑖𝑖𝑖≠𝑖𝑖
 , 

𝑉𝑉𝐺𝐺_𝐿𝐿𝑒𝑒𝑖𝑖 = 100
∑ 𝐿𝐿𝐿𝐿𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖≠𝑖𝑖

∑ 𝑘𝑘𝑖𝑖𝑖𝑖≠𝑖𝑖
 ,𝑎𝑎𝑎𝑎𝑑𝑑 𝑉𝑉𝐺𝐺_𝐹𝐹𝐹𝐹𝑖𝑖 = 100

∑ 𝐿𝐿𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖≠𝑖𝑖

∑ 𝑘𝑘𝑖𝑖𝑖𝑖≠𝑖𝑖
 , 

The indices can be further decomposed based on banks’ geographical origins. For 

example, CI_EAi is a sub-index based on the total induced losses by bank i to the subset 

of banks that are in the euro area. Similarly, VI_EAi is a sub-index based on the average 

losses experienced by bank i across the subset of simulations where the triggered banks 

are in the euro area. Essentially, these two indices capture a given bank’s contagion and 

vulnerability to euro area banks.  
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𝐿𝐿𝐺𝐺_𝑁𝑁𝑈𝑈𝑖𝑖 = 100
∑ 𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖≠𝑖𝑖

∑ 𝑘𝑘𝑖𝑖𝑖𝑖≠𝑖𝑖
 , 𝑖𝑖 ∈ 𝕊𝕊𝐸𝐸𝐴𝐴 ,𝑎𝑎𝑎𝑎𝑑𝑑 𝑉𝑉𝐺𝐺_𝑁𝑁𝑈𝑈𝑖𝑖 = 100

∑ 𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖≠𝑖𝑖

∑ 𝑘𝑘𝑖𝑖𝑖𝑖≠𝑖𝑖
 , 𝑗𝑗 ∈ 𝕊𝕊𝐸𝐸𝐴𝐴 

where 𝕊𝕊𝐸𝐸𝐴𝐴 is the subsample of banks in the euro area. 

The geographical focus can be based on distinguishing between euro area and non-

euro area banks as well as between individual countries where banks are domesticated. 

Moreover, based on these outputs, we develop two additional indicators to deepen both 

analytical assessment and policy implications of contagion analysis and in turn facilitate 

the impact assessment of regulatory actions.  

v. Amplification ratio (cascade effect): this metric compares the losses induced by a

bank’s simulated default in the initial round vis-à-vis those occurring in all successive

rounds. From the perspective of a bank, bank i, triggering system-wide contagion:

𝑈𝑈𝑀𝑀𝑃𝑃(𝐿𝐿)𝑖𝑖 =
∑ 𝐿𝐿𝑖𝑖𝑖𝑖 𝑟𝑟0+𝑡𝑡𝑖𝑖≠𝑖𝑖  
∑ 𝐿𝐿𝑖𝑖𝑖𝑖 𝑟𝑟0𝑖𝑖≠𝑖𝑖

𝑊𝑊ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒0 = 𝑖𝑖𝑎𝑎𝑖𝑖𝑜𝑜𝑖𝑖𝑎𝑎𝑇𝑇 𝑒𝑒𝑜𝑜𝐹𝐹𝑎𝑎𝑑𝑑  ;  𝑒𝑒0+𝑡𝑡 = 𝑠𝑠𝐹𝐹𝑐𝑐𝑐𝑐𝑒𝑒𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑒𝑒 𝑒𝑒𝑜𝑜𝐹𝐹𝑎𝑎𝑑𝑑𝑠𝑠. 

This index measures how much of the system-wide impact from the failure of bank i is 

caused by cascading of defaults rather than direct and immediate losses from bank i. 

Hence, the higher the ratio, the larger the amplification through the network, and a ratio 

greater than 1 indicates that losses due to cascade effects dominate direct losses. 

Conversely, banks’ susceptibility to systemic events can be split into two similar 

components to distinguish how much of the losses experienced by bank i across all 

simulations were immediate losses as opposed to losses in successive rounds: 

𝑈𝑈𝑀𝑀𝑃𝑃(𝑉𝑉)𝑖𝑖 =
∑ 𝐿𝐿𝑖𝑖𝑖𝑖 𝑟𝑟0+𝑡𝑡𝑖𝑖≠𝑖𝑖

∑ 𝐿𝐿𝑖𝑖𝑖𝑖 𝑟𝑟0𝑖𝑖≠𝑖𝑖  

Amplification effect quantifies the degree to which cascading behavior impacts the 

banks both at system-wide and entity level. These are the losses associated with 

contagion spread through indirect linkages. Amplification effect is an important metric 

of the financial system architecture in the sense that it captures what portion of systemic 

risk is not directly observable to banks and, possibly, to the regulators in the absence of 

granular data. 
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vi. Sacrifice ratio: One of the most important policy questions during financial crises or

near-crisis episodes concerns bank recapitalization or emergency liquidity assistance.

The concept of “too big to fail” does not solely depend on a bank’s size and portfolio

compared to the domestic system but also on whether a single failure would induce a

larger collapse in the financial system. With respect to the latter, we construct a

sacrifice ratio, which measures the ratio of system-wide losses due to the failure of a

bank over the cost of a rescue package, tax-payer sacrifice, equal to the capital

requirements of the bank.23

𝑆𝑆𝐿𝐿𝑖𝑖 =
∑ 𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖≠𝑖𝑖  
𝑐𝑐𝑖𝑖𝐿𝐿𝑆𝑆

Therefore, ratios above 1 are associated with system-wide losses that could be 

avoided with relatively smaller cost to the tax payer. In contrast, ratios smaller than 1 

would imply that potential system-wide losses are not sufficiently large to justify the 

government assistance to the bank. We provide three types of sacrifice ratios from the 

perspectives of: (i) a global central planner; (ii) a euro area authority; and (iii) a national 

authority. These three measures take into account system-wide losses respectively 

induced to all banks in the system (global central planner) or to those banks belonging 

to each jurisdiction, whether it is euro area based, or national. It is important to 

underline that our modelling strategy does not take into account the mitigation and 

amplification effects induced by a bail-in mechanism, neither for the triggering bank nor 

for the subsequent failing banks.24 Once the magnitude of system-wide losses 

associated with bank failures are understood, a critical policy question is how the 

regulators respond to the pending default of an entity. In other words, the regulators 

would need to know whether the public cost of making the entity whole again justifies 

the potential damages to the system when no action is taken. 

23 Capital requirements are defined as for the distress threshold as follows: (𝑀𝑀𝐿𝐿𝑖𝑖 +  𝐿𝐿𝐿𝐿𝑜𝑜𝐿𝐿𝑖𝑖 + 𝑃𝑃2𝐿𝐿𝑖𝑖) +
max(𝑆𝑆𝐿𝐿𝐿𝐿𝑖𝑖 ,𝐺𝐺𝑆𝑆𝐺𝐺𝐺𝐺𝑖𝑖 ,𝑁𝑁𝑆𝑆𝐺𝐺𝐺𝐺𝑖𝑖) + 𝐿𝐿𝐿𝐿𝐶𝐶𝐿𝐿𝑖𝑖 . 
24 Introducing a bail-in mechanism into the model would tend to reduce the cost of a bank-recapitalization 
since bailinable liabilities would be transformed into new equity of the bank considered for resolution thus 
shielding taxpayers. At the same time, it could increase the amount of losses experienced by the other 
banks in the network since creditors’ assets such as additional tier 1 and tier 2 instruments, other 
subordinated debts, senior unsecured debt and non-eligible deposits, and non-covered eligible deposits may 
face a partial or complete written-off (see Hüser et al., 2017).  
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4 Results 

4.1 Main Findings 

This subsection delves in greater detail into main findings of the exercise across a broad 

range of interconnectedness attributes based upon our benchmark model with bank-

specific calibration. For the sake of clarity, out of 199 worldwide consolidated banking 

groups, Table 3 reports the top-50 default events ranked in terms of contagion index (CI) 

to the euro area banking system.  

The scale of losses follows a power-law distribution, with the top-10 banks inducing 

on average 2.5% of capital losses to the euro area banking system, around EUR 25 

billion.25 The CI index of the most contagious bank is larger by a factor of 12 than the 

average of the full sample, and even among the top-10 most contagious banks remarkable 

differences exist. International spillovers seem to be a key channel of contagion to the 

euro area banking system, with 27 banking groups out of the top-50 located outside the 

euro area. Therefore cross-border risks may propagate quickly via bilateral exposures to 

the euro area banking network, as evident during the Great Financial Crisis of 2008.  

In terms of channels underlying contagion, losses due to credit risk dominate those 

due to funding/liquidity risk via fire sales. When it comes to the nature of defaults 

(contagion level), illiquidity-driven defaults outweigh by far those triggered due to 

insolvency matching the historical reality as emphasized by Aikman et al. (2018). 

Notably, solvency defaults are mostly concentrated in the top-10, underlying how 

contagion due to solvency risks may be highly concentrated on few players due to their 

central role in the network as borrowers; whereas liquidity risks may be triggered by a 

greater number of lenders in the network for which the intrinsic characteristics of the 

borrower play a more crucial role. In other words, funding risk relative to credit risk 

seems to be less diversifiable and more concentrated on few large exposures, whose 

defaults may trigger a liquidity default event. This finding may suggest that it may be 

prudent to impose limits on the concentration of funding since some small and medium-

sized banks are exposed on the liability side to few large banks.  

25 Result for power-law distribution can be provided upon request. The capital of the triggering bank is not 
included in the CI index calculation. 
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Table 3: Contagion Measures 

Note: For confidentiality reasons bank names have been anonymized. The results in this table are ranked by 
CI index. CI refers to contagion index at euro area scale and amounts represent capital losses to all banks in 
percent of entire banking system’s total capital. This index is further decomposed into the respective 
contributions by credit (CI CR) and funding (CI FU) shocks. Defaults refer to the number of defaults a 
bank has induced in the system. Rounds indicate the maximum number of rounds the simulation required 
until no additional defaults in the system, whereas amplification ratio is the ratio of losses in subsequent 
rounds to losses in the initial round. The sacrifice ratio indicates the ratio of systemic losses caused by a 
bank over the cost of rescue package to fully recapitalize the bank. 

RANK Country CI CI CR CI FU ToT Solv. Liq. Rounds Ratio G EA N

1 EA 3.8 3.8 0.0 0 0 0 1 0.0 0.6 0.6 0.2
2 XEA 3.2 3.1 0.1 3 1 2 2 0.1 0.4 0.4 0.0
3 XEA 2.7 2.3 0.4 1 1 0 2 0.5 0.6 0.4 0.1
4 EA 2.4 2.4 0.0 2 2 0 2 0.0 0.7 0.7 0.3
5 EA 2.3 2.3 0.0 0 0 0 1 0.0 0.7 0.7 0.3
6 XEA 2.3 2.1 0.2 3 0 3 2 0.2 0.9 0.7 0.1
7 EA 2.2 2.1 0.1 1 0 1 2 0.0 0.4 0.4 0.2
8 XEA 1.9 1.9 0.0 0 0 0 1 0.0 0.3 0.3 0.0
9 XEA 1.9 1.9 0.0 0 0 0 1 0.0 0.5 0.5 0.0
10 EA 1.9 1.9 0.0 0 0 0 1 0.0 0.5 0.4 0.3

AVERAGE TOP 10 2.5 2.39 0.07 1.0 0.4 0.6 1.50 0.1 0.56 0.52 0.13

11 EA 1.8 1.8 0.0 1 1 0 2 0.0 0.3 0.3 0.1
12 XEA 1.4 1.2 0.2 1 0 1 2 0.1 0.3 0.2 0.0
13 XEA 1.4 1.3 0.1 2 0 2 2 0.3 0.9 0.7 0.0
14 EA 1.3 1.3 0.0 0 0 0 1 0.0 0.4 0.4 0.0
15 XEA 1.1 1.0 0.1 0 0 0 1 0.0 2.2 2.2 0.0
16 XEA 1.0 1.0 0.0 0 0 0 1 0.0 0.6 0.6 0.0
17 EA 1.0 1.0 0.0 0 0 0 1 0.0 0.5 0.4 0.2
18 EA 0.9 0.9 0.0 0 0 0 1 0.0 0.3 0.3 0.1
19 EA 0.8 0.8 0.0 1 0 1 2 0.1 0.4 0.4 0.3
20 XEA 0.8 0.8 0.0 0 0 0 1 0.0 0.3 0.3 0.0

21 XEA 0.8 0.8 0.0 0 0 0 1 0.0 0.5 0.5 0.0
22 EA 0.8 0.4 0.4 1 1 0 2 4.3 5.0 1.8 0.8
23 XEA 0.8 0.8 0.0 0 0 0 1 0.0 0.9 0.9 0.0
24 EA 0.8 0.8 0.0 0 0 0 1 0.0 0.5 0.5 0.2
25 XEA 0.7 0.7 0.0 0 0 0 1 0.0 0.3 0.3 0.0
26 EA 0.6 0.6 0.0 0 0 0 1 0.0 0.2 0.2 0.0
27 XEA 0.6 0.6 0.0 0 0 0 1 0.0 0.0 0.0 0.0
28 XEA 0.6 0.6 0.0 0 0 0 1 0.0 0.5 0.5 0.0
29 EA 0.5 0.5 0.0 0 0 0 1 0.0 1.2 1.2 1.2
30 EA 0.5 0.4 0.1 0 0 0 1 0.0 11.4 11.4 7.2

31 EA 0.5 0.5 0.0 0 0 0 1 0.0 1.2 1.1 1.1
32 XEA 0.5 0.5 0.0 0 0 0 1 0.0 0.1 0.1 0.0
33 XEA 0.5 0.5 0.0 0 0 0 1 0.0 0.0 0.0 0.0
34 XEA 0.5 0.4 0.1 3 0 3 2 1.4 1.3 0.5 0.0
35 EA 0.5 0.5 0.0 0 0 0 1 0.0 0.3 0.3 0.2
36 EA 0.4 0.4 0.0 0 0 0 1 0.0 0.2 0.2 0.0
37 XEA 0.4 0.4 0.0 0 0 0 1 0.0 0.3 0.3 0.0
38 XEA 0.4 0.4 0.0 0 0 0 1 0.0 0.0 0.0 0.0
39 EA 0.4 0.4 0.0 0 0 0 1 0.0 5.8 1.3 0.1
40 XEA 0.4 0.4 0.0 0 0 0 1 0.0 0.0 0.0 0.0

41 XEA 0.4 0.4 0.0 0 0 0 1 0.0 1.4 1.4 0.0
42 EA 0.4 0.4 0.0 0 0 0 1 0.0 4.0 3.9 1.1
43 XEA 0.4 0.4 0.0 0 0 0 1 0.0 1.2 1.2 0.0
44 XEA 0.4 0.4 0.0 0 0 0 1 0.0 0.3 0.3 0.0
45 XEA 0.4 0.4 0.0 0 0 0 1 0.0 0.1 0.1 0.0
46 EA 0.4 0.4 0.0 0 0 0 1 0.0 2.4 0.3 0.1
47 XEA 0.3 0.3 0.0 0 0 0 1 0.0 0.7 0.7 0.0
48 XEA 0.3 0.3 0.0 0 0 0 1 0.0 0.0 0.0 0.0
49 EA 0.3 0.3 0.0 0 0 0 1 0.0 0.5 0.5 0.5
50 EA 0.3 0.3 0.0 0 0 0 1 0.0 0.4 0.3 0.3

AVERAGE TOP 50 1.0 0.98 0.03 0.38 0.12 0.26 1.22 0.14 1.05 0.82 0.30
0.3 0.31 0.01 0.10 0.03 0.07 1.06 0.04 0.77 0.67 0.15

Contagion

AVERAGE

EURO AREA Sacrifice RatioDefaults Amplification
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4.1.1 Amplification Effects 

One powerful feature of our framework is its ability to capture cascade effects due to an 

initial distress event. In most cases, the contagion does not spread beyond the direct 

counterparties in the first round. At most, the contagion cycle ends after a second round 

of failures, and overall has limited repercussions on the system as a whole. There are only 

two banks with an amplification effect larger than 1 and whose failure causes losses 4.3 

and 1.4 times more in subsequent rounds compared to the initial round.  

4.1.2 Sacrifice ratio 

In this exercise, four failures warrant an intervention in the form of a rescue package 

by national authorities. The average sacrifice ratio is close to 0.3 for the top-50, whereas 

for the top-10 most systemic banks is equal to 0.13. The latter is lower than the former 

because i) global banks tend to have most of their exposures outside the domestic 

interbank market, thereby implying a lower numerator of the sacrifice ratio than a bank 

more domestic-oriented, ii) global banks tend to have a larger denominator than the more 

domestic-oriented ones due to higher capital requirements. However, if supervisors take 

the perspective of a euro area authority, the average ratio of the top-50 increases up to 

0.82, and five more interventions are justified. In this respect, six out of nine defaults 

originate from entities located within the euro area and, thus, can be resolved within the 

realm of the Single Resolution Mechanism. The other three interventions should be 

granted to extra-euro area banks, and given their respective contagion to the euro area 

banking system, it might be instructive to monitor the evolution of such costly spillovers 

and cooperate closely with international authorities as needed. 

 In the end, a global perspective increases the number of interventions up to eleven, 

thereby highlighting how international cooperation is necessary to reduce negative 

externalities to the whole financial system 

4.1.3 Vulnerability 

Having investigated the various aspects of contagion, it is important to understand its 

complementary interface, i.e. which banks are the most vulnerable and how contagion 

affects them. Hence, banks are ranked by vulnerability index at global scale.  
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Table 4: Vulnerability Measures 

Note: For confidentiality reasons bank names have been anonymized. VI refers to vulnerability index and 
amounts represent average capital losses across all independent simulations in percent of a bank’s capital. 
The vulnerability index is further decomposed into the respective contributions by credit (VI CR) and 
funding (VI FU) shocks. VI from Euro Area (VI EA) is computed with respect to average losses caused by 
banks in respective groups. Defaults refer to the number of defaults a bank has experienced given the 
hypothetical (exogenous) defaults of each other bank in the system. Amplification ratio is is the ratio of 
losses in subsequent rounds to losses in the immediate round. The results in this table are ranked by VI 
Global Scale. 

Amplification Contribution

RANK Country VI VI CR VI FU ToT Solv. Liq. Ratio Ratio VI VI CR VI FU

1 EA 1.8 0.7 1.2 2 2 0 0.0 0.9 1.6 0.7 1.0
2 EA 1.4 1.4 0.0 0 0 0 0.0 0.7 1.0 1.0 0.0
3 EA 1.1 1.1 0.0 0 0 0 0.0 1.5 1.6 1.6 0.0
4 EA 1.0 1.0 0.0 0 0 0 0.0 0.8 0.8 0.8 0.0
5 EA 0.9 0.9 0.0 0 0 0 0.0 1.1 1.0 1.0 0.0
6 XEA 0.8 0.8 0.0 0 0 0 0.4 1.1 0.9 0.9 0.0
7 EA 0.8 0.8 0.0 0 0 0 0.0 0.6 0.4 0.4 0.0
8 EA 0.7 0.7 0.0 0 0 0 0.0 0.9 0.6 0.6 0.0
9 EA 0.6 0.6 0.0 0 0 0 0.0 0.4 0.3 0.3 0.0

10 EA 0.6 0.5 0.1 2 0 2 0.0 2.1 1.3 1.1 0.2

AVERAGE TOP 10 1.0 0.8 0.1 0.4 0.2 0.2 0.0 1.0 0.9 0.8 0.1

11 EA 0.6 0.6 0.0 0 0 0 0.2 1.4 0.9 0.9 0.0
12 EA 0.5 0.5 0.0 0 0 0 0.0 0.7 0.4 0.4 0.0
13 EA 0.5 0.5 0.0 0 0 0 0.0 0.6 0.3 0.3 0.0
14 EA 0.5 0.5 0.0 0 0 0 0.0 0.8 0.4 0.4 0.0
15 EA 0.5 0.5 0.0 0 0 0 0.1 1.2 0.6 0.6 0.0
16 EA 0.4 0.4 0.0 0 0 0 0.1 1.0 0.4 0.4 0.0
17 EA 0.4 0.4 0.0 0 0 0 0.0 1.2 0.5 0.5 0.0
18 EA 0.4 0.4 0.0 3 3 0 0.0 1.3 0.5 0.5 0.0
19 EA 0.4 0.4 0.0 0 0 0 0.0 1.8 0.8 0.8 0.0
20 EA 0.4 0.4 0.0 0 0 0 0.0 1.0 0.4 0.4 0.0

21 EA 0.4 0.4 0.0 0 0 0 0.0 0.7 0.3 0.3 0.0
22 EA 0.4 0.4 0.0 0 0 0 0.0 2.1 0.8 0.8 0.0
23 EA 0.4 0.4 0.0 0 0 0 0.0 0.8 0.3 0.3 0.0
24 EA 0.4 0.4 0.0 0 0 0 0.0 1.0 0.4 0.4 0.0
25 EA 0.4 0.4 0.0 0 0 0 0.0 2.1 0.7 0.7 0.0
26 EA 0.4 0.4 0.0 0 0 0 0.0 1.6 0.6 0.6 0.0
27 EA 0.3 0.3 0.0 0 0 0 0.0 0.9 0.3 0.3 0.0
28 EA 0.3 0.3 0.0 0 0 0 0.0 1.0 0.4 0.4 0.0
29 EA 0.3 0.3 0.0 0 0 0 0.0 1.2 0.3 0.3 0.0
30 EA 0.3 0.3 0.0 0 0 0 0.0 0.6 0.2 0.2 0.0

31 EA 0.3 0.3 0.0 0 0 0 0.0 1.8 0.5 0.5 0.0
32 EA 0.3 0.2 0.1 4 0 4 0.0 0.1 0.0 0.0 0.0
33 EA 0.3 0.3 0.0 0 0 0 0.0 0.7 0.2 0.2 0.0
34 EA 0.3 0.1 0.1 4 0 4 0.0 0.2 0.0 0.0 0.0
35 EA 0.3 0.3 0.0 0 0 0 0.0 0.9 0.2 0.2 0.0
36 EA 0.3 0.3 0.0 0 0 0 0.0 0.8 0.2 0.2 0.0
37 EA 0.2 0.2 0.0 0 0 0 0.0 2.1 0.5 0.5 0.0
38 XEA 0.2 0.2 0.0 0 0 0 0.9 1.3 0.3 0.3 0.0
39 EA 0.2 0.2 0.0 0 0 0 0.0 1.8 0.4 0.4 0.0
40 EA 0.2 0.2 0.0 0 0 0 0.0 0.0 0.0 0.0 0.0

41 EA 0.2 0.2 0.0 0 0 0 0.0 1.1 0.2 0.2 0.0
42 EA 0.2 0.2 0.0 0 0 0 0.0 2.1 0.4 0.4 0.0
43 EA 0.2 0.2 0.0 0 0 0 0.0 0.8 0.2 0.2 0.0
44 EA 0.2 0.2 0.0 0 0 0 0.0 1.9 0.4 0.4 0.0
45 EA 0.2 0.2 0.0 0 0 0 0.0 1.3 0.3 0.3 0.0
46 EA 0.2 0.2 0.0 0 0 0 0.0 0.8 0.2 0.2 0.0
47 EA 0.2 0.2 0.0 0 0 0 0.0 1.2 0.2 0.2 0.0
48 EA 0.2 0.2 0.0 0 0 0 0.0 0.8 0.2 0.2 0.0
49 EA 0.2 0.2 0.0 0 0 0 0.0 1.3 0.3 0.3 0.0
50 EA 0.2 0.2 0.0 0 0 0 0.0 0.6 0.1 0.1 0.0

0.45 0.42 0.03 0.3 0.1 0.2 0.03 1.1 0.5 0.4 0.0
0.14 0.13 0.01 0.1 0.0 0.1 0.05 1.3 0.2 0.1 0.0AVERAGE

GLOBAL SCALE EURO AREADefaultsVulnerability

AVERAGE TOP 50
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Focusing on the banks with the 50 highest vulnerability scores, they are almost all 

from within the euro area. This is due to the fact that the large exposures dataset, as 

emphasized in section 2, mostly captures exposures from euro area banks, and for this 

precise reason, we adopt a euro area centric view. Although, this index is computed as the 

share of losses experienced by a bank over the bank’s capital base, and not in % of the 

system capital, the distribution of losses also for this index follows a power-law 

distribution.  

As previously emphasized, funding risk is concentrated with few banks, whereas 

losses due to credit risks are spread over the entire sample. Consistently, out of 15 

defaults experienced by the top-50 most vulnerable banks, liquidity defaults accounts for 

2/3 of failures, while solvency defaults account only for 1/3. Cascade effects seem to play 

a minor role in terms of loss amplification and induced defaults. None of the banks 

defaulting shows a positive amplification ratio, which is concentrated to a few entities.  

We also report for comparative purpose, the euro area based vulnerability index and 

its regional contribution in order to disentangle which banks may be most vulnerable 

from shocks arising from within and outside the euro area banking system. On average, 

losses produced from within the euro area are 1.3 time higher than the amount of losses 

experienced from entities located outside the euro area. Whereas, for the top-10 most 

vulnerable banks externally-driven losses are at least as important as euro area induced 

losses, reflecting the international profile of this group of institutions.  

In Figure 12, a systemic risk map combines information from both indexes in order 

to allow an easy identification of threats to euro area financial stability.26 In this picture, 

the contagion and vulnerability indexes are normalized and reported in absolute terms, 

i.e. total amount of losses induced and experienced by each bank, respectively. Figure 12

is divided into four quadrants capturing different degrees of banks’ systemic footprints.

Banks in the north-west quadrant (B) are those whose default would induce the greater

amount of losses to the euro area banking system, while those lying in the south-east

quadrant (C) are those most vulnerable to a default event. Banks located in the north-east

26 The vulnerability index is here reported in absolute terms, i.e. considering the EUR value of capital 
depletion, and not as a % of the capital base. 
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quadrant (D) are both highly contagious and vulnerable. These metrics provide a useful 

monitoring tool to assess vulnerabilities in the euro area banking system due to 

interconnectedness. 

Figure 12: Systemic-Risk Map 

Note: Contagion and vulnerability indexes are normalized by dividing each index for the entity’s maximum 
value. 

4.2 Bank-Specific Calibration 
Parameters and model heterogeneity renders a different picture compared with 

homogeneous parameters ( 𝜆𝜆,𝜌𝜌, 𝛾𝛾,𝜃𝜃, 𝛿𝛿 ) approximated as sample averages uniformly 

applied to all banks (Special Case I). This difference is even more marked when we don’t 

consider the bank-specific liquidity coverage ratio (𝛾𝛾) and the liquidity default 

assumptions, respectively by setting 𝛾𝛾 = 0 and 𝜃𝜃 =  ∞ (Special Case II).27  As shown in 

Figure 13, in both cases losses are larger than in the bank-specific calibration (benchmark 

case). On the one hand - special case I - using average parameters cancels all the losses 

coming from funding risk (See Table 1A Appendix). This is due to the fact that the 

liquidity buffer (𝛾𝛾) is large enough to cover all short-term funding needs. On the other 

hand, a bank-average calibration neglecting the liquidity buffer (𝛾𝛾) and the constraint 

based on the pool of available for sale assets (𝜃𝜃) results in an over-estimation of funding 

27 For computing fire sales losses, we now use a lower discount rate than the average of the bank-specific 
one because assets available for sales are not limited to the pool of non-HQLA assets, but comprehend also 
HQLA assets which, by definition, face lower haircuts. The former average was set close to 57.5% (as 
shown in figure 9), while now it stands to 26%. 
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risk. This is due to the assumption that each funding shortfall is directly transformed via 

fire sales into a solvency risk.  

Figure 13: Bank-Specific Calibration 

Note: Benchmark refers to results presented in section 4.1. Special case I sets ( 𝜆𝜆,𝜌𝜌, 𝛾𝛾,𝜃𝜃, 𝛿𝛿 ) equal to the 
average of the sample, while special case II sets ( 𝜆𝜆,𝜌𝜌, 𝛿𝛿 ) equal to the average of the sample and 𝛾𝛾 = 0 and 
𝜃𝜃 =  ∞. We use the same distress threshold as in the benchmark case.   

These findings highlight that bank-heterogeneity is an essential determinant of 

liquidity contagion, since weak nodes are those channels amplifying the initial shock and 

creating cascade effects. Moreover, by applying average parameters credit risk increases. 

The intuition behind this effect is that banks with larger and riskier exposures tend to ask 

for a higher collateral amount, which results in a counterbalancing-risk behavior and a 

lower exposure-specific LGD vis-à-vis riskier counterparties.  

Overall, the results from this exercise support the importance of calibrating the model 

with bank-level specificities and how the inclusion of prudential regulations into the 

model parameters such as the HQLA buffer (𝜆𝜆) is essential to more properly estimate 

liquidity risk. Model and parameter heterogeneity lead to significant corrections and 

overall changes in the CI and VI indexes as well as in bank-specific scores. In addition, 

this exercise clearly highlights the role played by weak nodes in amplifying contagion, 

and how neglecting them may lead to estimation bias. 
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4.3 Macro Stress Test Scenarios 

The framework has so far been applied as an exercise that simulated the hypothetical 

failure of each bank separately. Bank defaults may occur for purely institution-specific 

reasons. However, often bank defaults (or distress) happen against the background of 

more widespread stress in the financial system. Under such stressed circumstances the 

contagion potential from one bank defaulting might be more pronounced as also the 

banks’ counterparts are in a weakened position. To explore the contagion risk under a 

generalized financial stressed situation, we incorporate the EBA 2016 stress test adverse 

scenario in our framework.28 

In this exercise, as shown in equation (20), we recalibrate the capital surplus 

(𝑘𝑘𝑖𝑖
𝐷𝐷𝐴𝐴_𝐴𝐴𝐶𝐶16) in line with the capital depletion (𝑐𝑐𝑖𝑖𝐴𝐴𝐶𝐶16) that resulted from the 2016 EBA 

Stress Test of EU banks under an adverse scenario (Figure 14).29  

𝑘𝑘𝑖𝑖
𝐷𝐷𝐴𝐴_𝐴𝐴𝐶𝐶16 = 𝑘𝑘𝑖𝑖𝐷𝐷𝐴𝐴 − 𝑐𝑐𝑖𝑖𝐴𝐴𝐶𝐶16 (20) 

Figure 14: Distress Threshold – Stress Test 2016’s Capital Depletion 

Source: COREP Supervisory Data Templates C.01 – C.03, and Bankscope. 
Note: The sum of minimum CET1, surplus CET1 and ST16 gives total CET1. ST16 refers to the capital 
depletion due to the 2016 stress test’s results. For confidentiality reasons, the chart shows surplus and 
minimum CET1 as average among three banks following total capital decreasing ordering. 

Overall, as shown in Figure 15, the weakened solvency position of euro area banks 

results in a disproportional increase of the contagion index. The top-10 most systemic 

28 As an alternative to assuming a macro shock, we could implement a multiple default scenario 
approximating a severe shock causing near collapse of the banking system in several major economies (i.e. 
Global Financial Crisis).  
29 We apply the average capital depletion to those banks not included in the EBA exercise.  
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banks increase their average losses caused at aggregate level by 1.25 times. In addition, 

accounting for an adverse macro scenario reshapes the ranking of the most systemic 

banks. In contrast, the vulnerability ranking is more affected at the center of the 

distribution, with the most vulnerable banks preserving their position. Also concerning 

this indicator, the effects seem to suggest non-linearities as shown by uneven changes 

across banks. Overall, the average number of induced defaults rises by a factor of 3.3 

(from 0.1 to 0.34), impacting consistently both the average top-50 amplification ratio and 

the sacrifice ratio, which respectively increase from 0.05 to 0.25 and from 0.52 to 0.61 

(for the euro area authority), with 2 additional cases of positive system-wide returns from 

banks’ recapitalization.  

Figure 15: Non-linear Effects of a Stress Test Scenario 

Note: Benchmark refers to results presented in section 4.1. 

4.4 Sensitivity Analysis 

In this section we test the sensitivity of the results to a range of parameter assumptions so 

as to disentangle the key determinants of contagion and vulnerability of the euro area 

banking system. 

The first sensitivity analysis tests the difference between a distress and a default 

threshold as described respectively in equation (19a and 19b). As can be observed in 

Figure 16 (Appendix), on average the affected banks operate with a capital surplus based 

on a default threshold which is 1% higher than the capital surplus based on a distress 

threshold (in RWA terms), with some outliers close to 3% (panel a). Nonetheless, as we 
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can see from panel (b) this difference does not produce any relevant variation in the 

contagion and vulnerability indexes. The explanation for this finding is that the most 

systemic banks are also the ones facing the highest macroprudential buffer 

requirements (𝑆𝑆𝐿𝐿𝐿𝐿𝑖𝑖,𝐺𝐺𝑆𝑆𝐺𝐺𝐺𝐺𝑖𝑖,𝑁𝑁𝑆𝑆𝐺𝐺𝐺𝐺𝑖𝑖) and generally did not fail in the benchmark exercise 

with a distress threshold, which is by construction smaller than the default threshold. 

Moreover, the CCyB buffer is currently of a small magnitude, thereby reducing the 

capital surplus of the distress threshold by little.  

A second robustness check aims to verify whether changing the capital base from 

CET1 to own funds (total capital) may affect the capital surplus based on the distress 

threshold in a sizeable manner. As reported in Figure 17 panel (a) in the appendix, banks 

may face both a decrease or an increase in the capital surplus depending on whether the 

increased amount of minimum capital requirements (from 4.5% CET1 to 8% Own Funds) 

outweighs the increased amount of capital included into own funds, i.e. additional tier 1 

and tier 2 instruments. Overall, the results seem to be almost invariant to the selection of 

the capital base. In both exercises, the findings remain unchanged relative to the 

benchmark case.  

The third exercise aims to test the sensitivity of the results to a deterioration of 

banks’ liquidity position. In this respect, the key liquidity parameters, respectively the 

funding shortfall (𝜌𝜌𝑖𝑖), the net liquidity position (𝛾𝛾𝑖𝑖) and the pool of assets available for 

sales (𝜃𝜃𝑖𝑖) are adjusted to intensify a liquidity shock conditional on a default event. As we 

can see from panel (a) of Figure 18 (appendix) an increase of the short-term funding from 

an average of 35% (one month in the benchmark case) to 40% (3 months average) or 

alternatively an increase of short-term funding up to 50% produces a negligible effect on 

the contagion index, with only two banks on the contagion side facing a relevant positive 

adjustment.30 This implies that the current LCR ratio (𝛾𝛾𝑖𝑖) is large enough to cover the 

additional short-term liquidity needs. Next, we suppose a reduction of 20% and 40% in 

the net liquidity position (𝛾𝛾𝑖𝑖) for instance due to a sudden depletion of the buffer of 

HQLAs or due to a higher run off rate of deposits (panel b). In this case, we notice that 

results are almost unaffected for both indexes, implying that the bank-specific liquidity 

30 The average funding shortfall increases from 35% to 40% when considered 3 months as short-term 
liabilities. 
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buffer is well above the threshold needed to cover short-term liquidity needs. Finally, we 

assume that the pool of assets available for sales faces a haircut of 20% and 40% 

respectively (panel c). Results are unchanged because no other banks, except those 

previously triggering the fire sales stage, are liquidity constrained and therefore no 

additional losses or failures are accounted in the system given this assumption.31  

The fourth sensitivity analysis aims at capturing the role played by the network 

structure. In achieving this, we exploit additional granular exposure-level information 

from COREP template C.28 regarding bilateral linkages. Hence we test the sensitivity of 

the contagion and vulnerability indexes to a network structure based on total gross 

amounts (including exemptions). As we can see in Figure 19, when we consider the 

network structure based on gross amounts (€ 1.120 bn) both contagion and vulnerability 

indexes, as expected, strongly increase. These effects seem to be strong and distributed 

unevenly pointing to non-linear effects. Several banks move from the bottom to the top of 

the contagion index, depleting almost 3-4% of the capital of the system given their 

default.  Regarding the vulnerability index, the effects are even more pronounced than the 

contagion index, and the largest increase is about a factor of 55, depleting on average 

33% of the capital base.  

The fifth exercise consists of testing the sensitivity of the results to the interaction of 

different dimensions as in Kok and Montagna (2016): liquidity, solvency and network 

topology. In this respect, we assume first a full-liquidity shock affecting all parameters as 

in the benchmark case of the third sensitivity analysis, but contemporaneously: (𝜌𝜌𝑖𝑖 =

40%; ∆𝛾𝛾𝑖𝑖 = −20%; ∆𝜃𝜃𝑖𝑖 = −20%). Then we decrease by 20% the capital surplus, and we 

proportionally increase by 30% the exposure amounts which correspond to the gross 

amount presented in the fourth sensitivity analysis (€ 1.120 billion). As we can see from 

Figure 20 (appendix) the interplay of liquidity parameters pushes up the contagion and 

vulnerability indexes of some specific banks, but does not result in a relevant system-

wide increase. When this effect is combined with a decreased capital surplus, more 

indices increase, but also in this case it does not produce a systemic-wide effect. When 

31 The vulnerability index decreases for some selected banks because now those banks can sell a less 
amount of assets and therefore will face a lower amount of losses via fire sales. Nevertheless, the number 
of liquidity defaults remains unchanged. 
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we also stretch the network structure we are able to capture, this time, a quasi-linear 

effect on contagion and vulnerability indexes. The few non-linear effects are produced by 

the interaction of liquidity and solvency parameters. This exercise once more highlights 

the role played by tipping points within a network and how bank-specific and exposure-

specific characteristics may determine non-linear amplification effects resulting in a 

higher degree of systemic-risk.  

Finally, we compare our model-based estimates of contagion and vulnerability 

indices to market data-based measures of individual banks’ systemic footprint. We use 

the SRISK index based on Global Dynamic Marginal Expected Shortfall (MES) retrieved 

from V-lab and based on Acharya et al. (2012).32 For this purpose, we download and 

adjust the SRISK index for the European Union such that it overlaps with our sample of 

euro area banks. By doing this, we end up with 40 banks.33 Then we construct a SRISK 

index based on our model-based estimates by dividing the numerator of the vulnerability 

index (total losses experienced by each bank) by the total losses experienced by the 

system. By doing this, we are able to derive the proportional contribution of each firm's 

SRISK to the total positive SRISK of the euro area banking system. Figure 21 depicts 

both SRISK index and the ranking based on the SRISK index. Both measures display a 

high correlation with VI of 0.85 for the SRISK index and 0.74 for the SRISK ranking, 

respectively. As can be seen in the bottom left of the SRISK ranking, for the top-10 banks 

our balance-sheet based approach captures the very same banks of the SRISK approach 

based on MES.  

Overall, we find both similarities and divergences between market-based measures 

such as SRISK and balance sheet based measures such as our approach. Notwithstanding 

the  correspondence (high correlation) between our VI measure and SRISK is reassuring, 

we identify notable differences for individual banks in the middle of the distribution. This 

is potentially due to our modelling strategy which takes into account bank-specific 

characteristics which are only implicitly reflected in the market-based measures such as 

SRISK. 

32 See also Acharya et al. (2017). 
33 Differences in the sample are due to the fact that Acharya et al. (2010) work on a solo basis and they 
don’t include banks for which market-data are not available. The SRISK estimates are based on a 40% fall 
of the broad market index and a 8% capital requirement. 
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5. Reducing contagion risk by fine-tuning prudential measures

The modelling framework can also be used to conduct ex ante impact analysis of 

prudential policy measures based on counterfactual analyses. By exploiting the 

breakdown of the vulnerability index into credit and funding risks, we are able to target 

banks with specific liquidity and capital vulnerabilities that may give rise to contagion. 

Our findings suggest that regulators should look at the interplay of network topology 

and bank-specific characteristics in addition to setting prudential requirements based on 

individual supervisory assessments of each bank in isolation. Tipping points shifting the 

financial system from a less vulnerable state to a highly vulnerable state are a non-linear 

function of the combination of network structures and bank-specific characteristics.34 

Therefore, policies aiming at reducing systemic risk externalities related to 

interconnectedness should focus on increasing the resilience of weak nodes in the system, 

thereby curbing potential amplification effects due to cascade defaults, and on reshaping 

the network structure in order to set a ceiling to potential losses.  

As we show below, this requires a bank-specific calibration of prudential buffers 

both targeting solvency and liquidity defaults so as to minimize amplification effects due 

to contagion. Second-round default events are the key determinant of non-linear effects in 

loss amplification, thereby becoming a natural candidate as an intermediate policy target 

for macroprudential supervisors. In other words, the macroprudential regulator could aim 

at reducing the role played by the network structure in terms of spreading contagion and 

exposing the vulnerability of banks to shocks hitting the network. This paper proposes a 

methodology to capture such amplification effects as reflected in the contagion and 

vulnerability indexes (Figure 12) and their determinants (Tables 3 and 4). Moreover, as 

we illustrate below, the CoMap methodology can be used to run counterfactual 

simulations to study the effectiveness of different prudential actions in reducing 

contagion potential in the network.  

34 See also Battiston et al. (2009), Battiston and Caldarelli (2012) and Aikman et al. (2018). 
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For illustrative purposes, our counterfactual (macro) prudential simulations consist of 

(i) increasing the buffer of HQLA assets (𝛾𝛾𝑖𝑖), (ii) increasing the pool of available for sale

assets (𝜃𝜃𝑖𝑖), and/or (iii) increasing the CET1 capital surplus (𝑘𝑘𝑖𝑖𝐷𝐷𝐹𝐹). The three distinct

policy measures aim at assessing the effectiveness of a single and equal increase in each

of the parameter in terms of reducing the number of banks experiencing a liquidity or

solvency default in Table 8.

Specifically, we consider a mix of the three policy measures, which is based on a 

simple optimization problem for which we want to minimize the vulnerability level (VL) 

- number of defaults experienced - so as to reduce the losses incurred due to second-

round effects (equation 21). This optimization problem is subject to an inequality

constraint which establishes that the sum of the parameters may not be larger than a

certain buffer (F) and each parameter should be at least equal to or higher than the

starting value  �̅�𝛾, �̅�𝜃 , 𝑘𝑘𝐷𝐷𝐹𝐹����� derived by the bank-specific calibration.

min𝑉𝑉𝐿𝐿( 𝛾𝛾𝑖𝑖,𝜃𝜃𝑖𝑖 , 𝑘𝑘𝑖𝑖𝐷𝐷𝐹𝐹𝑖𝑖)      (21) 

𝑠𝑠. 𝑜𝑜.     𝜗𝜗1 𝑘𝑘𝑖𝑖𝐷𝐷𝐹𝐹 + 𝜗𝜗2 𝛾𝛾𝑖𝑖 +  𝜗𝜗3 𝜃𝜃𝑖𝑖 ≤ 𝐹𝐹    ;       𝑘𝑘𝑖𝑖𝐷𝐷𝐹𝐹 ≥  𝑘𝑘𝐷𝐷𝐹𝐹�����,      𝛾𝛾𝑖𝑖 ≥ �̅�𝛾, 𝜃𝜃𝑖𝑖 ≥ �̅�𝜃.

For simplicity, we set 𝜗𝜗1 = 𝜗𝜗2 = 𝜗𝜗3 = 1. 35 Figure 22 (panel a) presents the 

vulnerability and contagion levels for the top-80 and top-40 banks with the highest 

number of defaults experienced and induced, respectively. For the presentation of results, 

the number of defaults is divided into four buckets capturing twenty (ten) banks each in a 

descending order from most vulnerable (contagious) to less vulnerable.36 The benchmark 

results are reported for comparative purposes.   

The first exercise (LCR adj.) tests the effectiveness of an increase in the liquidity 

buffer (𝛾𝛾𝑖𝑖) by 25 billion37 so as to increase the LCR ratio and better absorb the funding 

shortfall induced by a default event. Since we are able to disentangle which banks suffer 

35 For purely illustrative purposes, we assume (for simplicity) that the cost of increasing one buffer is 
invariant across type of buffers. 
36 It was preferred to display the top-80 instead of the top-50 in order to capture all banks defaulting.  
37 The reasoning is that as initial policy rule we assume that banks experiencing a liquidity default would 
increase the HQLA buffer up to the average of the sample (as depicted in Figure 8). This initial condition 
increases the total amount of HQLA assets in the system by 25 billion. This policy rule is commonly used 
in the literature, for instance see Gai et al. (2011).  For the following exercises, this amount is shared across 
the treated banks following a weighted average calculation based on total assets. 
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liquidity and solvency defaults, we threat with this policy experiment 8 banks 

experiencing a default event. This experiment decreases the number of defaults by 16 

units (red bars) out of 20 reported initially in the benchmark case (black bars). The 

effectiveness of this treatment is relatively high, since the 4 remaining failures are all 

solvency driven.  

The second exercise (Pool adj.) resembles the first exercise and tests the 

effectiveness in curbing liquidity driven defaults by increasing the pool of assets 

available for sale by 25 billion. As captured by the blue bars, this policy rule is less 

effective than an equal increase of the HQLA buffer, nevertheless it still reduces the 

number of liquidity driven defaults by 11 units.  

The third exercise (CET1 adj.) increases the average capital surplus by 25 billion. 

Applying this policy measure reduces the number of defaults by only 6 units, although 

the number of solvency driven defaults gets to 0.  

The optimal policy mix set up by the minimization of the vulnerability level is able 

to bring the total number of defaults among the top-80 most vulnerable banks to 0. Given 

the set-up of the model, as described in equation (21), the most effective allocation is 

divided between an increase in the liquidity buffer (𝛾𝛾𝑖𝑖) for those banks facing liquidity 

driven defaults and an increase in the CET1 capital surplus for those banks vulnerable to 

facing capital shortfalls. No fund is allocated to the pool of assets because each amount 

used to absorb the funding shortfall will be discounted by a bank-specific discount rate, 

leading to a less effective outcome than in the case of an equal increase in the buffer of 

HQLA assets to which no discount rate is applied by assumption.38 

Overall, the policy mix is able to bring the contagion level induced by the top-40 

most systemic banks to zero. However, as shown in panel (b) of Figure 22, which reports 

the vulnerability and contagion indexes, the scale of losses induced and experienced even 

after the policy mix treatment still presents a fat-tailed distribution. This emphasizes that 

decreasing the number of cascade defaults reduces contagion and vulnerability indexes 

38 A different cost structure than 𝜗𝜗1 = 𝜗𝜗2 = 𝜗𝜗3 = 1 would affect the optimal policy mix. 
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by the contribution of amplification effects, which in our set-up are limited. In this 

regard, first round effects dominate losses incurred due to cascade defaults.39  

Figure 22: Comparative Statics of Policy Options  
Panel (a) 

Panel (b) 

Note: Benchmark refers to results presented in section 4.1. 

A final remark on the counterfactual policy simulations is that they focus solely on 

the benefits related to curbing contagion risk in the system by modifying the network 

structure and making banks more resilient. What is however not considered are the 

potential costs of imposing more stringent requirements on banks (e.g. requiring higher 

liquidity and or capital buffers). In reality, policy makers need to conduct a cost-benefit 

analysis taking into account also the costs of doing so; for instance, in terms of lower 

intermediation activity in the interbank market and other market segments where banks 

interact.    

39 This finding is in line with the literature; see e.g. Upper (2011) and Hüser (2015). 

ECB Working Paper Series No 2224 / January 2019 51



Conclusion 

Our euro-centric systemic risk assessment based on the network of euro area banks’ large 

exposures within the global banking system highlights that the degree of bank-specific 

contagion and vulnerability depends on network specific tipping points affecting directly 

the magnitude of amplification effects. This leads to the clear-cut conclusion that the 

identification of such tipping points and their determinants is the essence of an effective 

micro and macro prudential supervision. The current financial regulations seek to limit 

each institution’s risk in isolation underestimating the systemic risk contribution to the 

overall fragility.  

In this paper, we argue that in isolation and with linear variations, bank-specific 

characteristics seem to play a less relevant role than the network structure, whereas what 

really determines a system shift comes from their non-linear interaction, for which both 

are equally important. In a variety of tests, heterogeneity in the magnitude of bilateral 

exposures and of bank-specific parameters is detected as a key driver of the total number 

of defaults in the system. Unless systemic risk externalities are internalized by each bank 

in the network, bank recapitalizations may be still convenient from a cost-return trade-off 

of a global or European central planner. It follows that international cooperation is 

essential to limit the ex-ante risk and reduce the ex-post system-wide losses striving for a 

Pareto efficient outcome 

Several extensions of our work should be explored in the future. The results are 

network and model dependent based on an incomplete set of bilateral exposures. 

Therefore, both dimensions need to be extended so as to include additional channels of 

contagion and in turn improve the loss estimates of an extreme event. As a natural step  

work should be done to incorporate i) euro area less significant institutions to complete 

the euro area banking system, ii) financial corporations to model the complex interactions 

within the financial system, and iii) exposures to real economy so as to capture feedback 

loops. Moreover, we could complete the extra-euro area network by imputing missing 

bilateral linkages by generating random networks consistent with partial information as in 

Halaj and Kok (2013). Without changing the model assumptions, enlarging the dataset 

dimension would lead to closer-to-reality second-round amplification effects. Next, the 

modelling strategy may include a confidence channel so as to capture liquidity-hoarding 

ECB Working Paper Series No 2224 / January 2019 52



behaviors. This feature should bring funding risks to the forefront and determine a more 

balanced contribution to loss estimation than the actual, which is mainly credit risk 

driven. While we estimate fire-sales losses using a static balance-sheet approach, another 

way to model them is dynamically by exploiting information on cross-holdings of assets 

and derive the discount rate endogenously à la Cont and Schaanning (2017). Finally, we 

should investigate the role of additional prudential requirements currently missing in our 

framework such as a leverage ratio and a net stable funding ratio which in 2019 will 

become binding.  

Uncertainty surrounding the global financial network requires regulators to handle an 

ever complex set of information so to be prepared in case such an adverse event takes 

place. Nevertheless, networks are adaptive and so the policy mix needs to be. We have 

provided a framework to capture few features of such complexity, and many more need 

to be modelled to prune the fog of uncertainty, and take a decision when instability 

suddenly arises. 
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Appendix 
Data Infrastructure 

Regarding the data reporting requirements, institutions should provide the name, Legal 
Entity Identifier (LEI code), country, sector, and NACE classification of the 
counterparty.40 This qualitative information is not always fulfilled, especially for 
exposures to group of connected clients which cover approximately half of the data 
sample. In addition, LEI codes are often missing and not every institution owns a LEI 
code. This implies that identifying exposures vis-à-vis the very same counterparty across 
countries can only take place through the counterparty’s name. However, the 
counterparty’s name is often reported differently by different reporting institution and in 
different languages according to the reporting country. For that reason, to exploit the 
large exposures data and analyze the complex network of euro area banks’ large 
exposures a reconciliation (or mapping) of counterparty names is necessary. Furthermore, 
to complete the set of inputs for the modelling framework (section 3) is required to link 
large exposures information with additional data sources. 

In achieving this, we have developed an advanced algorithm defined as the Stata 
Mapping Code (SMC), which aims at mapping counterparties’ names as well as filling 
data reporting deficiencies regarding missing and misleading counterparty’s details (e.g. 
LEI codes, country and sector)41.  

At our reference date (Q3 2017), before applying the SMC, there were almost 34.080 
exposures of which 9.880 reported from euro area less significant institutions (LSIs). Out 
of the 24.200 remaining exposures reported by euro area significant institutions (SIs), 
15.363 are from institutions which are subsidiaries of the group, while the remaining 
8.837 are from euro area consolidated group of SIs. These are the reporting institutions 

40 The guidelines by the European Banking Authority (EBA) include common reporting templates and 
guidance in relation to large exposures (LE) reporting within the COREP framework. There are three 
templates included in the LE reporting framework that constitute the main source of data in establishing 
bank network. These are: LE1 (C. 27.00) identification of the counterparty; LE2 (C. 28.00) exposures to 
individual client and group of connected clients; LE3 (C. 29.00) detail of the exposures to individual clients 
within groups of connected clients; LE4 (C. 30.00) and LE5 (C. 31.00): detail the information regarding the 
maturity buckets to which the expected maturing amounts of the ten largest exposures to institutions as well 
as the ten largest exposures to unregulated financial sector entities shall be allocated, respectively for table 
C.28.00 and C.29.00.
41 The SMC follows a four-step approach. The step (1) aims at reconciling counterparties’ names using
fuzzy match commands based on a set of names’ similarities, existing LEI codes or combination of
counterparty-specific keywords and counterparty details such as country or sector of belonging. Step (2)
cross-merges the dataset by counterparties’ names and LEI codes in order to exploit existing
counterparties’ information so as to fill missing LEI codes, country and sectoral details. Step (3) enhances
further data quality by retrieving the missing counterparty information from the following sources:
gleif.org, Bloomberg or Bankscope. In the end, step (2) is repeated to complete the cycle. This cycle is
repeated up to the point no information is added to the system. Two cycles are sufficient to cover most of
the improvements.

ECB Working Paper Series No 2224 / January 2019 58



on which we base this study; that is, the 107 euro area significant institutions at the 
highest level of consolidation.42  

In this regard, before applying the SMC, 5.833 individual counterparties were 
identified, while after the algorithm mapping counterparty names was implemented the 
number reduces by 1.353 units. Furthermore, the SMC by cross-merging information 
already existing within the dataset and by adding missing information retrieved from 
Bloomberg and Bankscope, is able to increase data availability on counterparties’ details 
on average by 40%43. The coverage of LEI codes increases from 30% to 69%, the 
country dimension from 68% to 97%, sectors from 57% to 94%, and NACE codes from 
34% to 81%.  

Specifically, regarding the counterparty sector of interest - credit institutions - we identify 
2.189 large exposures towards 498 unique counterparties, of which 77 are euro area 
significant institutions (SIs), 155 non-euro area credit institutions, 238 euro area less-
significant institutions (LSIs), 21 are state development banks (SDBs), while 7 are 
international organizations (IOs). In our study, we focus on large exposures between 
reporting SIs and the first two counterparty groups, that is, SIs and non-euro area credit 
institutions. Therefore, we drop from the sample of exposures LSIs, SDBs, and IOs. We 
do this because for the modelling framework we need precise information about the 
capital base and RWAs that are often not available for state development banks and 
international organizations, as well as because exposures to SDBs and IOs are often 
riskless. The inclusion of LSIs in the counterparty sample would be consistent only if we 
include LSIs on the reporting side too. However, given the large number of LSI reporting 
entities, we leave the LSI dimension for a future investigation.

42 For the sake of clarity, euro area SIs are 118 as cut-off date January 2018. However, since we work with 
consolidated banking groups, large exposure amounts comprehend the exposures from its subsidiaries, i.e., 
from other SIs. For instance Unicredit Austria is a significant institution which belongs to Unicredit spa. In 
this respect, the number of individual SIs decrease from 118 to 107 because of the consolidated approach. 
See SSM’ list of supervised entities, cut-off date January 2018: 
 https://www.bankingsupervision.europa.eu/ecb/pub/pdf/ssm.list_of_supervised_entities_201802.en.pdf 
43 We aim at having complete information about the counterparties for two main reasons: (1) LEI codes are 
necessary to link the dataset with complementary sources of information about bank balance sheet data and 
in turn calibrate the bank-specific model’s parameters; (2) country codes are necessary to disentangle the 
geographical contribution to systemic risk.  
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Table A1: Top 30 Most Contagious and Vulnerable Banks – Special Cases 

Note: Special case I sets ( 𝜆𝜆,𝜌𝜌, 𝛾𝛾, 𝜃𝜃, 𝛿𝛿 ) equal to the average of the sample, while special case II sets 
( 𝜆𝜆,𝜌𝜌, 𝛿𝛿 ) equal to the average of the sample and 𝛾𝛾 = 0 and 𝜃𝜃 =  ∞. CI EA refers to contagion index and 
amounts represent capital losses to EA banks in percent of EA banking system’s total capital buffer. This 
index is further decomposed into the respective contributions by credit (CI EA CR) and funding (CI EA 
FU) shocks. VI refers to vulnerability index and amounts represent average capital losses across all 
independent simulations in percent of a bank’s capital buffer. The vulnerability index is further 
decomposed into the respective contributions by credit (VI CR) and funding (VI FU) shocks. The results in 
the tables are ranked respectively according to CI EA and VI based on the benchmark model with bank-
specific parameters 

Amp. Amp. Defaults Amp.
RANK Country Solv. Solv. Liq. CI CI CR CI FU Ratio Defaults Solv. Liq. CI CI CR CI FU Ratio ToT CI CI CR CI FU Ratio

1 EA 0 0 0 3.8 3.8 0.0 0.0 2 2 0 4.5 4.5 0.0 0.2 2 4.8 4.5 0.3 0.2
2 XEA 3 1 2 3.2 3.1 0.1 0.1 2 2 0 3.3 3.3 0.0 0.0 2 3.3 3.3 0.1 0.0
3 XEA 1 1 0 2.7 2.3 0.4 0.5 5 5 0 4.0 4.0 0.0 1.1 5 4.5 4.0 0.6 1.3
4 EA 2 2 0 2.4 2.4 0.0 0.0 6 6 0 4.7 4.7 0.0 1.1 6 5.1 4.7 0.5 1.1
5 EA 0 0 0 2.3 2.3 0.0 0.0 1 1 0 2.8 2.8 0.0 0.0 1 2.9 2.8 0.1 0.0
6 XEA 3 0 3 2.3 2.1 0.2 0.2 1 1 0 2.9 2.9 0.0 0.1 1 3.2 2.9 0.3 0.2
7 EA 1 0 1 2.2 2.1 0.1 0.0 0 0 0 2.6 2.6 0.0 0.0 6 5.2 4.2 1.0 1.2
8 XEA 0 0 0 1.9 1.9 0.0 0.0 0 0 0 1.9 1.9 0.0 0.0 0 2.0 1.9 0.0 0.0
9 XEA 0 0 0 1.9 1.9 0.0 0.0 0 0 0 2.0 2.0 0.0 0.0 0 2.0 2.0 0.0 0.0
10 EA 0 0 0 1.9 1.9 0.0 0.0 1 1 0 2.4 2.4 0.0 0.0 1 2.6 2.4 0.2 0.0

11 EA 1 1 0 1.8 1.8 0.0 0.0 1 1 0 2.0 2.0 0.0 0.0 1 2.2 2.0 0.2 0.0
12 XEA 1 0 1 1.4 1.2 0.2 0.1 0 0 0 1.3 1.3 0.0 0.0 0 1.3 1.3 0.1 0.0
13 XEA 2 0 2 1.4 1.3 0.1 0.3 0 0 0 1.5 1.5 0.0 0.0 0 1.5 1.5 0.0 0.0
14 EA 0 0 0 1.3 1.3 0.0 0.0 0 0 0 1.2 1.2 0.0 0.0 0 1.5 1.2 0.3 0.0
15 XEA 0 0 0 1.1 1.0 0.1 0.0 5 5 0 2.8 2.8 0.0 2.5 5 3.3 2.8 0.5 2.8
16 XEA 0 0 0 1.0 1.0 0.0 0.0 0 0 0 1.0 1.0 0.0 0.0 0 1.1 1.0 0.0 0.0
17 EA 0 0 0 1.0 1.0 0.0 0.0 1 1 0 1.2 1.2 0.0 0.0 1 1.3 1.2 0.1 0.0
18 EA 0 0 0 0.9 0.9 0.0 0.0 0 0 0 0.9 0.9 0.0 0.0 0 1.2 0.9 0.2 0.0
19 EA 1 0 1 0.8 0.8 0.0 0.1 0 0 0 0.7 0.7 0.0 0.0 1 0.8 0.7 0.1 0.0
20 XEA 0 0 0 0.8 0.8 0.0 0.0 0 0 0 0.8 0.8 0.0 0.0 0 0.8 0.8 0.0 0.0

21 XEA 0 0 0 0.8 0.8 0.0 0.0 0 0 0 0.8 0.8 0.0 0.0 0 0.9 0.8 0.1 0.0
22 EA 1 1 0 0.8 0.4 0.4 4.3 0 0 0 0.1 0.1 0.0 0.0 0 0.3 0.1 0.2 0.0
23 XEA 0 0 0 0.8 0.8 0.0 0.0 0 0 0 0.7 0.7 0.0 0.0 0 0.7 0.7 0.0 0.0
24 EA 0 0 0 0.8 0.8 0.0 0.0 0 0 0 1.2 1.2 0.0 0.0 0 1.4 1.2 0.1 0.0
25 XEA 0 0 0 0.7 0.7 0.0 0.0 0 0 0 0.8 0.8 0.0 0.0 0 0.8 0.8 0.0 0.0
26 EA 0 0 0 0.6 0.6 0.0 0.0 0 0 0 0.6 0.6 0.0 0.0 0 0.8 0.6 0.2 0.0
27 XEA 0 0 0 0.6 0.6 0.0 0.0 0 0 0 0.6 0.6 0.0 0.0 0 0.6 0.6 0.0 0.0
28 XEA 0 0 0 0.6 0.6 0.0 0.0 0 0 0 0.5 0.5 0.0 0.0 0 0.5 0.5 0.0 0.0
29 EA 0 0 0 0.5 0.5 0.0 0.0 0 0 0 0.7 0.7 0.0 0.0 0 0.8 0.7 0.1 0.0
30 EA 0 0 0 0.5 0.4 0.1 0.0 0 0 0 0.5 0.5 0.0 0.0 0 0.6 0.5 0.1 0.0

0.53 0.20 0.33 1.43 1.37 0.05 0.19 0.83 0.83 0.00 1.70 1.70 0 0.17 1.07 1.93 1.75 0.18 0.23

Contagion

AVERAGE TOP 30

Special Case 1
Average Parameters

Special Case 2
Average Parameters ( θ = ∞ and γ = 0 )

Defaults Euro Area Defaults Euro Area Euro Area
Bank-Specific Perameters

Model-Parameter Heterogeneity

Amp. Amp. Defaults Amp.
RANK Country ToT Solv. Liq. VI VI CR VI FU Ratio ToT Solv. Liq. VI VI CR VI FU Ratio ToT VI VI CR VI FU Ratio

1 EA 2 2 0 1.8 0.7 1.2 0.0 4 4 0 2.8 2.8 0.0 0.1 5 3.3 2.9 0.4 0.1
2 EA 0 0 0 1.4 1.4 0.0 0.0 0 0 0 2.0 2.0 0.0 0.0 0 2.0 2.0 0.0 0.0
3 EA 0 0 0 1.1 1.1 0.0 0.0 0 0 0 1.6 1.6 0.0 0.6 1 1.7 1.7 0.0 0.7
4 EA 0 0 0 1.0 1.0 0.0 0.0 1 1 0 1.2 1.2 0.0 0.0 1 1.2 1.2 0.0 0.0
5 EA 0 0 0 0.9 0.9 0.0 0.0 0 0 0 0.8 0.8 0.0 0.0 0 0.8 0.8 0.0 0.0
6 XEA 0 0 0 0.8 0.8 0.0 0.4 0 0 0 1.0 1.0 0.0 0.6 0 1.2 1.1 0.2 0.8
7 EA 0 0 0 0.8 0.8 0.0 0.0 0 0 0 0.7 0.7 0.0 0.0 0 0.8 0.7 0.0 0.0
8 EA 0 0 0 0.7 0.7 0.0 0.0 0 0 0 0.8 0.8 0.0 0.0 0 0.8 0.8 0.0 0.0
9 EA 0 0 0 0.6 0.6 0.0 0.0 0 0 0 0.6 0.6 0.0 0.0 0 0.7 0.6 0.1 0.1
10 EA 2 0 2 0.6 0.5 0.1 0.0 0 0 0 0.4 0.4 0.0 0.0 0 0.6 0.4 0.2 0.0

11 EA 0 0 0 0.6 0.6 0.0 0.2 6 6 0 6.4 6.4 0.0 0.9 7 7.0 6.4 0.6 0.9
12 EA 0 0 0 0.5 0.5 0.0 0.0 0 0 0 0.6 0.6 0.0 0.4 0 0.6 0.6 0.0 0.4
13 EA 0 0 0 0.5 0.5 0.0 0.0 0 0 0 0.4 0.4 0.0 0.0 0 0.5 0.4 0.0 0.0
14 EA 0 0 0 0.5 0.5 0.0 0.0 0 0 0 0.5 0.5 0.0 0.1 0 0.6 0.5 0.0 0.1
15 EA 0 0 0 0.5 0.5 0.0 0.1 0 0 0 0.5 0.5 0.0 0.2 0 0.6 0.5 0.0 0.2
16 EA 0 0 0 0.4 0.4 0.0 0.1 5 5 0 3.8 3.8 0.0 1.0 6 4.3 4.3 0.0 1.2
17 EA 0 0 0 0.4 0.4 0.0 0.0 0 0 0 0.4 0.4 0.0 0.0 0 0.5 0.4 0.1 0.1
18 EA 3 3 0 0.4 0.4 0.0 0.0 3 3 0 0.4 0.4 0.0 0.0 3 0.4 0.4 0.0 0.0
19 EA 0 0 0 0.4 0.4 0.0 0.0 0 0 0 0.5 0.5 0.0 0.0 0 0.5 0.5 0.0 0.0
20 EA 0 0 0 0.4 0.4 0.0 0.0 0 0 0 0.7 0.7 0.0 0.0 0 0.8 0.7 0.0 0.0

21 EA 0 0 0 0.4 0.4 0.0 0.0 0 0 0 0.3 0.3 0.0 0.0 0 0.4 0.3 0.1 0.1
22 EA 0 0 0 0.4 0.4 0.0 0.0 0 0 0 0.3 0.3 0.0 0.0 0 0.3 0.3 0.0 0.0
23 EA 0 0 0 0.4 0.4 0.0 0.0 0 0 0 0.4 0.4 0.0 0.1 0 0.4 0.4 0.1 0.2
24 EA 0 0 0 0.4 0.4 0.0 0.0 0 0 0 0.3 0.3 0.0 0.0 0 0.3 0.3 0.0 0.0
25 EA 0 0 0 0.4 0.4 0.0 0.0 0 0 0 0.6 0.6 0.0 0.0 0 0.7 0.6 0.1 0.0
26 EA 0 0 0 0.4 0.4 0.0 0.0 7 7 0 1.7 1.7 0.0 0.7 8 2.0 1.9 0.1 0.9
27 EA 0 0 0 0.3 0.3 0.0 0.0 0 0 0 0.3 0.3 0.0 0.0 0 0.4 0.4 0.0 0.0
28 EA 0 0 0 0.3 0.3 0.0 0.0 0 0 0 0.3 0.3 0.0 0.1 0 0.4 0.3 0.0 0.1
29 EA 0 0 0 0.3 0.3 0.0 0.0 1 1 0 0.3 0.3 0.0 0.0 1 0.4 0.3 0.0 0.0
30 EA 0 0 0 0.3 0.3 0.0 0.0 0 0 0 0.6 0.6 0.0 0.6 0 0.7 0.6 0.1 0.6

0.23 0.17 0.07 0.60 0.56 0.04 0.02 0.90 0.90 0.00 1.05 1.05 0.00 0.18 1.07 1.16 1.09 0.08 0.22
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Figure 16: Distress vs Default CET1 Thresholds

Panel (a) 

Panel (b) 

Note: Panel (a) is ordered according to CET1 distress threshold. For confidentiality reasons, the chart 
shows statistics as average among three banks. 

Figure 17: CET1 Distress Threshold vs Total Capital Distress Threshold 

Panel (a) 

Panel (b) 

Note: Panel (a) is ordered according to CET1 distress threshold. For confidentiality reasons, the chart 
shows statistics as average among three banks. 
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Figure 18: Sensitivity to Funding Parameters 

Panel (a): Funding Shortfall 

Panel (b): Net Liquidity Position 

Panel (c): Pool of assets 

Note: Benchmark refers to results presented in section 4.1. 
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Figure 19: Network Structure Sensitivity Based on Gross Exposures 

Note: Network Structured is based on the statistics presented in table 1 regarding gross exposures amounts 
before taking into account exemptions. Benchmark refers to results presented in section 4.1. 

Figure 20: Multi-Factor Sensitivity 

Note: The liquidity scenario has been modelled as (∆𝜌𝜌𝑖𝑖 = 40%; ∆𝑁𝑁𝐿𝐿𝑃𝑃𝑖𝑖 = −20%; 𝜃𝜃𝑖𝑖 = −20%), the  
capital scenario includes a 20% decrease in the capital surplus, while in the third scenario (network) 
exposure amounts increase by 30% up to which (€ 1.120 billion).  
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Figure 21: SRISK Ranking Comparison 

Note: Regarding the SRISK ranking, bank number 1 is the one with the highest SRISK estimate, i.e. the 
one in the top-right corner of the SRISK Index. MES based SRISK estimates for European banks have been 
retrieved from vlab.stern.nyu.edu. For confidentiality reasons, the chart shows statistics as average among 
three banks. 
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