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Abstract 
This paper presents the first rigorous empirical evidence of the impact of a large hydrocarbon 
project in both its economic and environmental dimension. Concentrating on Peru’s largest 
hydrocarbon project, the Camisea Gas Project, which began operating in the dense Amazonian 
jungle under strict environmental safeguards in 2004, we assess whether natural resource 
extraction can have beneficial economic effects without causing negative environmental 
externalities. The analysis relies on the synthetic control method to systematically choose 
comparison units (departments), which allows for precise quantitative inference in small-sample 
studies. Our results indicate that in six of the eight years since the Camisea gas fields began 
operating, local economic effects, as measured by nighttime lights data, are robustly positive. An 
examination of remotely-sensed vegetation data suggests that the Camisea Gas Project did not 
have a significant effect on deforestation, suggesting that the implementation of stringent 
safeguards can help mitigate environmental risks. 
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1 Introduction 

Whilst the exploitation of a country’s oil and gas reserves promises economic growth, these hopes 

can go unfulfilled. The capture of windfall rents by local politicians, the undermining of local 

institutions, and low local absorptive capacity are some of the issues recently addressed in the 

literature (Vicente, 2010; Caselli & Michaels, 2013; Gadenne, 2017; Loayza et. al., 2014; Corral 

et. al., 2016). More broadly, these issues have been attributed to a “natural resource curse” 

(Robinson et al., 2006; Dalgaard & Olson, 2008; Van der Ploeg, 2011). The exploitation of oil and 

gas reserves can also be controversial and face scrutiny by environmental organizations, 

particularly when reserves are found in areas of renowned cultural and biodiverse richness (The 

Economist, 2003). Further, realized economic and environmental outcomes might be dependent 

on the political-economic interactions between key parties involved, i.e. governments, extraction 

firms, environmental organizations, and lenders (Schopf & Voss, 2018).  

In this article, we analyze the economic and ecological impacts of Peru’s biggest energy 

project, the Camisea gas project, on the Department of Cusco, where the natural gas is found4. 

As the producing region, Cusco benefits from royalty transfers. To this end, we address the non-

random siting of the project, so as not to conflate the environmental and economic effects of the 

project with the effects of pre-existing conditions. We rely on the synthetic control method to 

systematically choose comparison units (other departments), which allows for precise quantitative 

inference in small-sample studies (Abadie & Gardeazabal, 2003). To circumvent data limitations, 

we use remotely-sensed satellite imagery on lights at night as a proxy for economic growth 

(Henderson et al., 2012) and the Normalized Difference Vegetation Index (NDVI) for forest cover 

(for a recent application see BenYishay et. al., 2017). The policy relevant question is whether and 

under what conditions can extractive industries lead to economic growth without spurring 

deforestation, both directly and indirectly through royalty transfers. 

The economic impacts of natural resource endowments have received widespread attention 

in the literature.  Though some studies  highlight the positive effects of natural resource 

endowment (i.e. oil, gas, fisheries, mining,  forestry), finding that backward linkages to local input 

markets and strengthened local institutions may benefit economic development (Collier & 

Hoeffler, 2004; Aragón & Rud, 2013; Lippert, 2014), other studies note the perils of a “resource 

curse”, which associates resource wealth with a number of economic and political woes 

                                                
4 Peru’s territory consists of departments (or regions), provinces, and districts. Specifically, the country is divided into 
26 units: 25 departments and the province of Lima. Departments are subdivided into provinces, and all provinces are 
subdivided into districts. In each jurisdiction, national, departmental, and local governments were constituted and 
organized 
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(Robinson et al., 2006; Dalgaard & Olson, 2008; Van der Ploeg, 2011). What has received 

significantly less attention, however, are the environmental consequences of the large 

infrastructure projects that the exploitation of the natural resource usually encompasses. 

Research shows that infrastructure extension is among the leading global causes of deforestation 

(Barbier & Burgess, 1996; Geist & Lambin, 2002; Mayaux, 2013). Given that carbon emissions 

caused by forest clearing contribute approximately 20% to the global total of greenhouse gases, 

the long-term consequences of climate change, in addition to the significant loss of biodiversity, 

are of major concern (IPCC, 2007). 

A well-rounded approach to assessing the sustainability of large hydrocarbon and other 

infrastructure projects should therefore consider both its economic and environmental impacts. 

Such evidence is mostly absent from the literature, with two noteworthy recent exceptions. For 

the Democratic Republic of Congo, Damania et al. (2017) examine the tradeoff of economic 

benefits and adverse environmental impacts that come with the expansion of the road network. 

Although improved road connectivity boosts economic growth and trade due to decreased 

transportation costs, road construction also results in increased deforestation and significant 

biodiversity loss. The authors find that forest clearing intensity increases considerably by 3.1% 

with each 10% decrease in distance from a road. Considering both the economic and 

environmental effects of a conditional cash transfer program, Alix-Garcia et al. (2013) examine 

the impact of the Oportunidades program in Mexico and find that, although the program has 

poverty-alleviating effects on beneficiary households, it comes at the cost of environmental 

degradation: Exposure to the program doubles the probability of deforestation occurring near a 

beneficiary community, and deforestation rates increase by 15 to 33% in communities that had 

previously cleared forests. These observations appear to be in line with previously proposed 

theoretical frameworks for analyzing deforestation dynamics along a country’s economic 

development path: According to the von Thünen model, land use is a function of rent 

maximization, so that land use is determined, among other factors, by location. Hence, easier 

access to forested land, facilitated by road networks, increases payoffs to alternative activities, 

such as agriculture, thereby encouraging deforestation (Angelsen, 2007). 

To account for these potentially adverse environmental effects, environmental organizations, 

development agencies and donors have demanded more stringent environmental and social 

safeguards from project developers. In this context, environmental and social impact studies (EIA) 

that draw on various disciplines including biology, ecology, and environmental science can help 

identify areas of high ecological value and then select appropriate measures such as enhancing 

property rights, creating end enforcing protected areas, and wildlife sanctuaries, to protect the 
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most vulnerable areas (Wunder & Sunderlin, 2004; Wright et al., 2013). These environmental 

safeguards are often complemented by social safeguards to protect the livelihoods and ethnic 

diversity of local communities affected by infrastructure projects. Particularly in the tropics, where 

many indigenous communities still rely on forest resources as their principal source of income, 

social safeguards are a useful tool to address concerns over the expropriation of and 

encroachment on communal forest areas (BenYishay et al., 2016). In this context, research has 

found that land rights formalization is generally associated with slower deforestation and better 

agricultural results (Robinson et al., 2014; Lawry et al., 2017). However, the extent to which 

governments and extraction firms can be lobbied to incorporate stringent environmental and 

social safeguards depends on the relative bargaining power of the parties involved (Schopf & 

Voss, 2018). 

In this paper we study the effects of the Camisea Gas Project, Peru’s biggest energy project, 

on the economic development and forest cover change of the department of Cusco, where the 

resource is found. Camisea has proven reserves of 9 trillion cubic feet of natural gas. In 2000, 

Peru's government awarded licenses to develop the Camisea field and to build and operate a 700 

km (440 mile) pipeline to the Peruvian coast (Inter-American Development Bank, 2002). The 

Camisea fields are deep in one of the more pristine parts of the Peruvian jungle. Its opponents at 

the time claimed that the project threatened isolated tribes of Amazon Indians, rare species and 

the rainforest (The Economist, 2003). This led the Inter-American Development Bank (IDB), who 

provided $75m loan for the pipeline construction, to carry out detailed environmental and social-

impact studies and propose a series of design modifications and actions to mitigate the potential 

negative impacts. As a result, the extraction firm used “offshore” technology at Camisea: drilling 

sites were operated as if they were islands in the jungle (IDB., 2003). Workers and supplies were 

helicoptered in, and no access roads were built. These efforts were meant to minimize risks of 

colonization from the highlands and illegal extraction activities in the pristine rainforest. In parallel, 

the IDB also provided a $5 million “institution-building” loan to the Government to help it police 

the Camisea project and support sustainable development planning in affected areas. This led to 

the creation of four new protected areas5 covering close to a million hectares (12.8% of the total 

territory of the Department of Cusco), the titling of 28 native communities6 and the issuance of 

over 10,000 property titles (IDB, 2007). Since the gas project’s operational inception in 2004, the 

                                                
5 Recent evidence for Peru finds that protected areas are effective in reducing deforestation rates (Miranda et. al. 2016). 
6 Evidence for Peru finds that titling native communities in the jungle area stems deforestation (Blackman et.al., 2017). 

See also Blackman and Veit (2018). 
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Department of Cusco has enjoyed significant windfalls and receives approximately $300 million 

annually in transfers from the central government earmarked for capital investments, including 

roads.7  

In order to estimate the impact of the Camisea Gas Project on Cusco’s economic and 

environmental outcomes, we need to identify the counterfactual path of economic and 

environmental outcomes that would have existed in the absence of Camisea. A comparison group 

consisting of departments sharing common pre-Camisea economic and environmental trends can 

be constructed for this purpose. To do this we employ a data-driven combination of control units, 

namely the synthetic control method of Abadie and Gardeazabal (2003), extended in Abadie et 

al. (2010), which Athey and Imbens (2017) have touted as “arguably the most important 

innovation in the policy evaluation literature in the last 15 years.” 

In the natural resource extraction literature, the synthetic control approach has been 

previously used by Mideksa (2013) to estimate the impact of Norway’s considerable petroleum 

endowment on economic growth. However, due to the cross-country nature of his application, the 

study cannot control for the likely presence of idiosyncratic shocks to individual countries. Our 

paper, to our knowledge, presents the first evaluation of both the local economic and 

environmental impact of natural resource abundance using the synthetic control approach in a 

within-country setting.  

To assess the economic and environmental impacts of the Camisea Gas Project at the 

department level, we employ two sources of remote-sensing data. To measure economic activity, 

we rely on remotely sensed nightlight density, or luminosity, capturing human economic activity 

carried out during nighttime at considerably low levels of spatial disaggregation. The 

environmental effect of the program is measured in terms of deforestation rates, as captured by 

the Normalized Difference Vegetation Index (NDVI) processed from NASA’s Land Long Term 

Data Record satellite imagery, which provides both sufficient spatial resolution to measure 

deforestation at the departmental level as well as a continuous time series dating back more than 

20 years. The final dataset includes this information on a total of 25 departments for the period of 

1992-2012. Using this data, we employ the synthetic control methodology to create a synthetic 

Cusco that represents a weighted average of all Peruvian departments and can mirror the 

                                                
7 The Canon Law of 2001 allocates royalties associated with the extraction of a number of different natural resources 

(e.g. gas, mining, oil, energy, fisheries, and forestry). Canon is a Spanish word commonly used in Peru to describe 
a rule by which a fraction of the natural resource revenues collected by the central government is allocated to 
subnational governments where the resources are found. The Canon Law thus regulates the distribution of resources 
in favor of municipalities and regional governments where the resources are located. Thus, Cusco as the region 
where the Camisea Gas Project's natural gas is located receives revenues through the Canon Law. 
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trajectory of luminosity and forest cover in the absence of treatment to assess the impact of the 

Camisea Gas Project on the economic and environmental development of Cusco. 

Our analysis provides a positive image of the medium-term effects of this large-scale 

infrastructure investment. The results indicate that the Camisea Gas Project had a positive impact 

on local economic growth as measured by an annual gap of 27.9% in luminosity, or approximately 

7.5% in local GDP between Cusco and its synthetic counterpart. Here, luminosity in Cusco 

exceeds the upper bound of the estimated 95% confidence intervals in five of the seven years 

post-treatment for the period 2007-2012. This suggests that royalty payments targeted towards 

the economic development of the department may have helped Cusco avoid falling into the trap 

of the natural resource curse. With regards to the environmental impact of the project, results are 

also encouraging. Despite the feared adverse effect on Cusco’s pristine rainforest, our analysis 

does not detect significant negative effects, with the annual post-treatment gap between actual 

and synthetic Cusco remaining close to zero. This neutral impact result indicates that strict 

environmental and social safeguards may have played a significant role in preventing adverse 

ecological effects of the project on the surrounding area, and that encouraging economic growth 

without negative environmental consequences is possible if the latter is strictly monitored and 

regulated. It should be noted, of course, that the focus of the analysis is limited to the department 

of Cusco; Camisea’s larger, potentially country-wide impacts go beyond the scope of this paper. 

The remainder of the paper is organized as follows: Section 2 provides background 

information on the Camisea Gas Project, the Gas Canon Law, and the department of Cusco. 

Section 3 then describes the data set used and discusses in more detail luminosity as an impact 

indicator for economic growth and NDVI as an impact indicator for deforestation. Section 4 

presents the methodological approach used and discusses potential empirical issues and how 

these are addressed. Results of the impact analysis and appropriate sensitivity tests are 

presented and analyzed in Section 5. Finally, Section 6 contains concluding notes and policy 

implications. 

 

2 The Camisea Gas Project 
The Camisea natural gas fields are located in the lower Urubamba region of the department of 

Cusco in southeastern Peru, an area of extraordinarily high biological diversity (Dallmeier & 

Alonso, 1997). It is also the home to indigenous peoples living in voluntary isolation. Camisea, 

with proven reserves of 9 trillion cubic feet, is among the largest in Latin America. Initially 

discovered in the 1980s, development of the Camisea natural gas fields was not launched until 

the late 1990s. In 2000, the Government of Peru (GoP) awarded the development of the fields to 
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an “upstream” consortium led by the Argentinian oil company PlusPetrol, and a second, 

“downstream” consortium headed by the company TGP (Transportadora de Gas del Peru) was 

awarded the construction and operation of two major pipeline systems to transport the natural gas 

and natural gas liquids to Peru’s coast (IDB, 2002).  

TGP requested a US$75 million loan from the IDB, with the hope that the loan’s approval 

would unlock other funding sources8. Prior to approval, the IDB carried out detailed environmental 

and social impact studies for the entire project. This process allowed environmental organizations 

to raise their concerns and participate actively in proposing risk mitigating actions by the project 

sponsors and the GoP. In parallel, the IDB granted a US$5 million institutional strengthening loan 

to the GoP to support its oversight of the project and to promote sustainable development in the 

area of influence of the Camisea project. The GoP for its part presented the IDB with a letter of 

“commitments” outlining specific actions it would undertake to deal with the direct, indirect and 

cumulative environmental and social impacts and risks associated with the Camisea Project, 

including assistance to governmental entities receiving project royalties, creation and resource 

allocation for new natural protected areas near the project, the creation of the Nahua Kugapakori 

Reserve for the protection of Indigenous Peoples Living in Voluntary Isolation, and enhanced 

environmental management planning (GoP, 2003).9 These efforts led to significant modifications 

in the technology used for construction of the project, the introduction of measures to protect and 

safeguard the rich biodiverse and culturally sensitive area, and the promotion of sustainable 

development in Cusco and other regions. We now turn to describing the most important actions 

adopted as a result of the bargaining that took place among the GoP, the extraction firm, the IDB 

and environmental organizations.10  

The extraction firm adopted a so-called “offshore” technology at Camisea: drilling sites were 

operated as if they were islands in the jungle (IDB, 2003). Workers and supplies were helicoptered 

in, and no access roads were built. These efforts were meant to minimize risks of colonization 

from the highlands and illegal extraction activities in the pristine rainforest. With the same 

                                                
8 Due to pressure from civil society groups over concerns about the project’s environmental risks, some funding 

agencies, including the US Overseas Private Investment Corporation (OPIC), and the Export-Import Bank of the 
United States (Ex-Im) eventually decided not to provide funding for the project. 

9 One requirement associated with the IDB approval of the loan to TGP was for IDB Management to provide periodic 
reports to the IDB Board of Executive Directors summarizing the performance of TGP, Pluspetrol, and the GoP 
pertaining to their respective environmental and social commitments. In addition, progress made was closely 
monitored and reported to civil society in biannual workshops held in Peru and in Washington, DC (see 
https://www.iadb.org/en/project/pe0222 for specific reports of meetings held). 

10 The bargaining outcome seems consistent with the theoretical sequential Nash bargaining model of Schopf and Voss 
(2018), where the IDB served as a conduit and filter for the demands of environmental organizations. Once the Ex-
Im Bank and other potential lenders dropped out, the bargaining position of the IDB was strengthened and the GoP 
and extraction firm were more receptive to the stringent safeguard and development proposals put forth. 
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objective in mind, the GoP created four new protected areas in the lower Urubamba, totaling close 

to a million hectares, or around 0.7% of the total Peruvian territory. Linked to this strategy was 

the safeguarding of native communities’ territories in the buffer area of the Camisea Project. In 

this regard, the property rights of 33 communities were enhanced. One of the most contentious 

aspects of the project was that the Camisea gas fields where located in territories inhabited by 

IPLVI. As a response, the GOP created the Nahua Kugapakori Reserve, and implemented 

protocols with Pluspetrol to minimize potential contact. A compensation fund was also stablished. 

Realizing that Cusco would receive significant Camisea royalty payments (see below), the GoP 

supported the development of land use plans and sustainable development plans, including the 

identification and prioritization of projects. In parallel, the GoP launched an ambitious training 

program in public investment project management that trained over 370 professionals from local 

municipalities. Finally, the GoP supported local governments to develop feasibility studies of over 

70 key projects for investment with royalty resources (IDB, 2008).  

In sum, Camisea represents a unique kind of hydrocarbon project, not only in the sheer scale 

of its infrastructure, but also in its potential for adverse environmental impact and the extent of 

institutional effort to mitigate these risks by implementing stringent and comprehensive 

safeguards, and to promote a more efficient and expedited use of Camisea royalty resources in 

the producing region of Cusco. 

Construction of the project was finalized by 2004 and it became operational in June 2004. 

Since 2004, the Camisea Gas Project has been the biggest producer of hydrocarbons in Peru 

and generated approximately $1.13 billion in public revenues for subnational governments 

between 2004 and 2009 (Munilla, 2010). The department of Cusco, where the natural gas fields 

are located,  has been the beneficiary of  royalty payments of approximately $300 million annually 

in transfers from the central government (ibid).  

The distribution of the substantial fiscal revenues resulting from the Camisea Gas project 

falls under allocative rules determined by the federal Canon Law. Legislated in 2001, the law 

regulates the distribution of public revenues collected from extractive industries (mining, oil, 

energy, forestry, and fishery) by the central government to producing subnational municipalities 

(Ardanaz & Maldonado, 2016). The exact distribution to the regional and local governments in 

Cusco is determined by a provision in the law, which takes into account whether the respective 

province is a gas producer, and prioritizes districts and provinces based on an index that 

measures the levels of poverty and unsatisfied basic needs in each municipality (Munilla, 2010). 

The central government further imposes certain spending conditions on the Canon transfers, so 

that resources are used for capital expenses that invest in infrastructure and the provision of 
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public goods. The Gas Canon transfers are then allocated according to the following rule: the 

producing district (Echarate) receives 10%; the regional government (Cusco) receives 25%; local 

governments in the producing province receive 25%; local governments in non-producing 

provinces and districts receive 40%.  

To put these fiscal windfalls from the Gas Canon transfers into perspective, the department 

of Cusco had, on average, an annual revenue of US$550 million between 2005 and 2013 (INEI, 

2018). Therefore, the transfer payments contributed approximately 58% to annual revenue and 

generally exceeded the annual current expenditures among municipalities at the district and 

provincial level (ibid). This suggests that the fiscal windfalls that the Camisea gas project 

generated would have a significant impact on government spending in the department of Cusco. 

 

 
Figure 1. Primary road construction in Cusco in comparison to the national average. 

 
To assess improvements in infrastructure that may have resulted from Camisea’s natural 

resource windfalls to local governments, we consider the construction of new primary roads in 

Cusco in comparison to Peru’s other departments.11 We analyze data obtained from Peru’s 

national register of municipalities, RENAMU (Registro Nacional de Municipalidades). Primary 

road construction reported at the district level was aggregated to department level for each 

                                                
11 Two departments were excluded from the comparison: Lima, due to its outlier characteristics as Peru’s capital, and 

Ucayali, due to missing data. Therefore, the comparison is to the other 23 departments. 
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region.12 Figure 1 displays the annual level of primary road construction between 2002 and 2013, 

comparing Cusco to the national average. Note that information for 2006 was not available from 

RENAMU. 

As the graph indicates, annual road construction in Cusco has been higher than the national 

average level following the beginning of Camisea’s operation in 2004. Between 2004 and 2013, 

an average of 40 km of primary road was constructed in Cusco, in comparison to only 23 km in 

other departments. This equals a total of 360 km of road constructed in Cusco in comparison to 

208 km in other departments on average, implying that 73% more road was constructed in Cusco. 

This anecdotal evidence suggests that Gas Canon transfers may have indeed contributed to an 

expanding infrastructure and local economic development in Cusco. 

 

3 Data Description 

3.1 General Data Sources 

To create a valid counterfactual for the department of Cusco with which to evaluate the impact of 

the Camisea Gas project on the economic development and environmental condition of Cusco, 

our study relies on a comprehensive panel dataset. For the synthetic Cusco to adequately mirror 

the trajectory of economic growth in the absence of the Camisea project, the dataset needs to 

contain variables that determine the level and trend of economic growth in each state, including 

socio-economic and infrastructural information. As indicated previously, the development impacts 

of natural resource windfalls depend crucially on the absorptive capacities of local governments. 

Therefore, the dataset also contains information on the budgetary flows and administrative 

capacity of municipal governments, at both the provincial and district level (since Canon transfers 

are distributed to both).  

Specifically, we draw upon four data sources for the creation of our panel dataset. First, 

variables capturing socio-economic information at the department level are obtained from the 

Sistema de Información Regional para la Toma de Decisiones (SIRTOD). This database collects 

and systematizes information from various surveys conducted by Peru’s national statistical 

agency INEI (Instituto Nacional de Estadistica e Informatica). From this database, we obtain 

annual information on regional variables including population size, dependency ratio, poverty rate, 

number of schools, health, and lodging facilities, as well as the number of construction licenses 

granted for new business establishments.  

                                                
12 Since the data was reported in km2, a rather unusual way of measuring the extent of road construction, the data was 

transformed into km using the assumption that primary, paved roads are on average 6m wide. 
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Second, we include additional information from INEI’s national register of municipalities, 

RENAMU (Registro Nacional de Municipalidades), which has collected information on Peru’s 

1,842 municipalities (1,646 district and 196 provincial municipalities) at an annual frequency since 

2002. Data in this register is self-reported by the municipality’s administration and contains 

information on numerous topics ranging from district/province infrastructure and public services, 

to local development indicators in aspects of education, health, sanitation, public safety, as well 

as local economic activity. Variables selected from this database include the number of municipal 

staff at managerial, technical, and administrative level, current and capital expenditures and 

revenues, as well as the extent of the road network and access to public services within the 

jurisdiction. Though this information is available at the municipal level, the analysis is conducted 

at the department level, so that data is aggregated for all district and provincial governments within 

a department respectively. 

The third and fourth sources of data for our panel data set provide information on the 

economic and environmental indicator, respectively, and are discussed in more detail below. 

 

3.2 Luminosity as a Proxy of Economic Activity 

Traditional measures of economic activity, such as the gross domestic product (GDP), the 

employment rate, or the investment rate, are not available at the department level for the time 

period preceding the Camisea Gas Project. While INEI systematizes and makes publicly available 

a plethora of economic indicators at the national and regional level, most regional-level data do 

not become available until after 2004. Since the synthetic control method relies crucially on the 

availability of a sufficiently long pre-treatment period to estimate a synthetic control that can fulfill 

the parallel trends assumption, none of these variables are a feasible option for our analysis. 

Given the unavailability of traditional measures of economic activity, the study relies on 

remotely sensed night light density data to approximate economic growth. Specifically, this night 

light density, or luminosity, data has been recorded since the 1970s by satellites from the United 

States Air Force Defense Meteorological Satellite Program, or DMSP for short, which use so-

called Operational Linescan System (OLS) sensors to detect Earth-based lights (Henderson et 

al., 2012). In contrast to most other economic or demographic indicators that are based on 

estimates and censuses, light emission can be measured instantaneously, objectively, and 

systematically (Cauwels et al., 2014).  

The raw data that becomes available from the satellites, which observe every location on the 

planet at a nightly interval, undergo extensive processing by the National Oceanic and 

Atmospheric Administration (NOAA) before being publicized. Light sources that may disturb the 
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measurement of human-made luminosity, including forest fires, auroral activities, and extensive 

lunar light, are removed, and data is then averaged from all valid, cloud-cover free observations 

in a given year (Cauwels et al., 2014). The available satellite-year dataset reports intensity of 

lights in a latitude-longitude grid of 30 arc-second output pixels, which approximates 1 km2 near 

the equator (ibid). Night light intensity is then represented as the index of an integer scale from 0 

to 63, zero meaning no light and 63 being the most intense (Keola et al., 2015). To date, annual 

data is available from 1992 to 2012. The data is originally available in a grid of rectangular pixels 

of 30-arc seconds, where each pixel contains a luminosity index value that exhibits the annual 

average of night light intensity measured for this area. Since economic activity is to be measured 

at the department level, luminosity values for Peru are spatially aggregated from pixel to 

department level. Following the approach suggested in the literature (e.g., Zhou et al., 2015), 

each pixel located within the boundary of the department, even if only partially, is included in this 

aggregation. Our luminosity indicator then measures the annual sum of nightlights within each 

department. 

Since NOAA made Earth-based lights captured by satellites publicly available in the early 

1990s, an increasing number of papers have relied on luminosity as a proxy for income and GDP 

growth. Numerous studies, including those by Elvidge et al. (1997), Sutton and Costanza (2002), 

Doll et al. (2006), Ghosh et al. (2010), and Henderson et al. (2012) have corroborated the viability 

of night light intensity as a proxy for traditional measures of economic activity. Faced with a lack 

of reliable socioeconomic data, especially in developing countries, numerous authors have used 

luminosity to estimate economic growth at low levels of spatial disaggregation. For instance, 

Alesina et al. (2016) rely on nighttime light data combined with the historical location of 

ethnolinguistic groups to construct an index of ethnic income inequality in over 150 countries. 

Storeygard (2013) uses luminosity to investigate the effect of inter-city transport costs on urban 

economic activity in sub-Saharan Africa. In a study focusing on intra-city economic development, 

Agnew et al. (2008) assess the effect of the U.S. military surge into specific neighborhoods of 

Baghdad in 2007 on levels of violence and consequently the quality of life. In a recent study, 

Corral and Schling (2017) employ luminosity to evaluate the local economic impact of a shoreline 

stabilization program in Barbados. 

 



13 
 

 
 (i) GDP and luminosity measures over time 

 
(ii) Plotting GDP vs. luminosity measures 

Figure 2. Luminosity as a measure of economic activity. 

These and other studies have either shown or relied on the assumption that the intensity of 

night lights reflects both outdoor and indoor use of lights, which is required for consumption of 

almost all goods past nightfall. In this context, there appears to exist a positive, linear relationship 

between a rise in economic activity and greater lights usage per person (Henderson et al., 2012). 
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However, given that so many studies now rely on luminosity as a proxy for income and GDP 

growth, it becomes important to assess the relationship between these economic measures and 

their proxy where possible.  

Panel (i) of Figure 2 depicts the time trend of GDP p.c. and luminosity p.c. at the country level 

for the period 1992-2012. The graph indicates that the rise of economic activity as measured by 

GDP reflects a slightly steadier increase, while luminosity is stagnant at first and then increases 

at faster rates after 2006. However, both time series exhibit a clear and similar upward trend. 

Plotting GDP versus luminosity, as displayed in Panel (ii), confirms this impression. The linear 

regression lines indicate that there exists a positive, linear relationship between the two variables. 

The R2 of 0.82 for the linear regression suggests that luminosity can accurately capture variation 

in GDP. Lastly, the relationship between GDP and luminosity in terms of elasticity is also of 

interest. While the exact relationship varies by country context, reasonable estimates from the 

literature indicate an elasticity of around one between income and luminosity for most countries.13 

As presented in Appendix A, in the case of Peru a simple log-log regression indicates an elasticity 

of 0.27. 

While the availability of GDP data at the national level allows us to assess the relationship 

between income and luminosity at the aggregate level, this might not necessarily hold for our 

analysis at the spatially disaggregated department level. We examine the relationship between 

luminosity and GDP for the department of Cusco for the six years between 2007 and 2012 for 

which both time series are available. Based on these six observations, there exists a strong 

positive correlation of 0.97 between the two variables, which suggests that a similar relationship 

may hold at the department level as it does at the national level. Nevertheless, the interpretation 

of results based on luminosity to assess changes in economic activity in Cusco will be done 

keeping in mind that the elasticity between GDP and luminosity may differ at the department level 

from the one estimated for Peru as a whole. Lastly, to interpret any change in luminosity over time 

in percentage terms, the natural logarithm of the luminosity per capita data is used as the impact 

indicator of interest in this evaluation. 

 

3.3 Vegetation Index as a Proxy of Deforestation 

To capture the environmental impact of the Camisea Gas Project on deforestation rates in Cusco, 

we use remote-sensing satellite imagery from NASA’s Land Long Term Data Record (LTDR) over 

                                                
13 For country-specific estimates, please see Elvidge et al. (1997) or Henderson et al. (2012). Others, such as Sutton 

and Costanza (2002) or Ebener et al. (2005) find a high correlation between GDP measures and luminosity. 
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the period 1992-2012. Specifically, we rely on satellite data with a global 0.05-degree resolution 

which provides a measurement of vegetation through the Normalized Difference Vegetation Index 

(NDVI)14. This index measures the difference between near-infrared light and red light reflected 

from plants. It ranges from minus one (-1) to plus one (+1), where values below zero indicate no 

vegetation (or rocky terrain) and values close to one indicate a highly green area (or densely 

forested terrain).15 As argued by BenYishay et al. (2017), while there are tradeoffs to using LTDR 

in lieu of other satellite datasets, the LTDR data record provides two key attributes, which makes 

the NDVI a good instrument to measure deforestation. First, the differences in NDVI values 

between forested and deforested lands are quite large: areas of barren rock or snow have usually 

very small NDVI values, whereas grasslands or tropical forests have moderate or high NDVI 

values. This feature from the NDVI allows us to capture changes in vegetation including 

deforestation.16 Second, the daily time records extending back over nearly 30 years permit to rule 

out quality issues.  This is a key attribute, given the importance of sufficient pre-treatment records 

necessary for the credibility of our synthetic control. In another application, Wyman and Stein 

(2010) also rely on the NDVI to assess the drivers of deforestation at the household level in 

protected areas of Belize.  

To calculate yearly NDVI values at the department level, we processed 7,671 images of LTDR 

Version 4 (daily records of processed satellite information from the AVH13C1 satellite) for the 

minimum rectangle that encloses Peru.17 We then constructed annual measures of the NDVI by 

analyzing the 194,081 cells contained in each daily raster file. To do so, we followed the approach 

used by BenYishay et al. (2017) and truncated the negative values to zero as they could represent 

water, snow, ice, dirt, or rock terrain. Hence, we calculated NDVI yearly values by aggregating 

the daily to monthly raster files using the maximum value per cell. Once again following the 

approach used by BenYishay et al. (2017), we use the maximum in lieu of the median because it 

approximates the highest point or observable plant productivity in any given month, thereby 

                                                
14 We recognize that other environmental impacts associated with Camisea, including on biodiversity, hunting, fishing, 

is not be captured by NDVI. 
15 See Appendix C for a more in-depth explanation of how vegetation is measured with this index. 
16 We did not make use of tree cover loss data from the University of Maryland (Hansen et al., 2013) as a proxy of 
deforestation for two reasons: First, one of the main drawbacks of this indicator is that it could unambiguously be related 
to other type of forest cover change – and not necessarily deforestation –, such as shifting patterns of cultivation by 
local communities, crop rotation, fire and storm damages or even selective logging. Second, recall that tree cover is 
defined as all vegetation taller than 5 meters in height, thus, as it has been pointed out by Mitchard et al. (2015), it 
might be the case that in certain areas of the country small areas of deforestation dominate, thus, if we were to use this 
indicator we might be underestimating the level of deforestation.  
17 These images were provided by the Land Data Operational Products Evaluation Team from NASA in a hdf format. 

Once the images were received, they were converted into raster files (.tif files) using standard statistical software. 
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providing the best measurement of total annual vegetation. We then aggregated to yearly raster 

files by finding the mean values per cell over the monthly raster files. This is done to average out 

the effect of extreme values from any given month. Finally, we extract yearly values for each 

department using the average value in the cells corresponding to each department polygon in 

Peru. During the image processing work, we found some daily images unclear due to excessive 

cloud coverage. This was particularly evident for 1994 images, where more than 100 images were 

completely blurred. To avoid potential data error in the NDVI calculation, we exclude data prior to 

1995 from our analysis.18  

In sum, by combining all described data sources, the final dataset is then a panel consisting 

of 21 years (1992-2012) for the luminosity indicator and 18 years (1995-2012) for the NDVI 

measure, for the 25 departments of Peru. In the following, we describe the methodology used to 

assess the impact of the Camisea Gas Project on economic development, as captured by night 

light density, and deforestation rates, as captured by the NDVI. 
 

4 Constructing a synthetic version of Cusco and estimating impact 
In this section, we describe the methodology used to assess the impact of the Camisea Gas 

Project on economic development, as captured by night light density, and deforestation rates, as 

captured by the NDVI. The impact evaluation of the Camisea Gas Project requires the 

identification of a valid counterfactual, i.e. what would have happened in the department of Cusco 

in the absence of this large-scale infrastructure project. Measuring this impact requires the 

estimation of the counterfactual outcome from sufficiently similar comparison units (departments). 

In this study, we utilize an empirically rigorous and data driven approach to choose the best 

comparison units by employing the synthetic control method of Abadie and Gardeazabal (2003). 

Ferrero and Hanauer (2014) highlight the potential of the synthetic control method to assess the 

impact of environmental programs. Sills et al. (2015) use the method to assess the impact of 

municipal level policy innovations in Brazil to stem deforestation; Mideksa (2013) created a 

synthetic control at the country level to estimate the impact of Norway’s considerable petroleum 

endowment on economic growth. 

For the construction of a synthetic control unit, Abadie and Gardeazabal (2003) propose that 

longitudinal data can be used to build a weighted average of non-treated units that best parallels 

characteristics of the treatment unit over time, prior to treatment. Abadie et al. (2010) highlight 

that the synthetic control approach has several methodological advantages over the more 

                                                
18 A step by step description of NDVI data processing can be found in Appendix B. 
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commonly used difference-in-difference approach, as its prominent features include both 

transparency and safeguarding against issues of extrapolation (ibid). Specifically, using a 

weighted average of all potential control units makes transparent the relative contribution of each 

unit to the counterfactual, and reveals similarities between treated and synthetic control units with 

respect to the important common trend assumption prior to the intervention (ibid). Furthermore, 

since individual weights are usually restricted to be positive and sum to one, extrapolation can 

purposefully be guarded against.  

The creation of a synthetic control unit that most resembles the treatment unit in key pre-

treatment characteristics crucially relies on	𝑾 = $𝑤&,… ,𝑤)*′, a (𝐽𝑥1) vector of nonnegative 

weights for all potential control units	𝐽, where 𝑤1 represents the weight for unit 𝑗 of the synthetic 

control, and all individual weights sum up to one. Let 𝑿𝟏 be a (𝐾	𝑥	1) vector of K pre-treatment 

covariates of determinants of our outcome of interest (luminosity and deforestation in our case) 

for the treatment unit, in this case Cusco, and 𝑿𝟎, a (𝐾	𝑥	𝐽) vector of the same variables for all 

possible control departments. Additionally, define 𝑽 as a diagonal matrix with nonnegative values 

reflecting the relative importance of the different covariates. Then, the vector of optimal weights  

𝑾∗ is found by minimizing the distance in pre-treatment characteristics between treated units and 

the weighted average of control units:  

min
𝑾
(𝑿𝟏 − 𝑿𝟎𝑾)=𝑽(𝑿𝟏 − 𝑿𝟎𝑾) 

𝑠. 𝑡.		𝑤1 ≥ 0,			𝑤& +⋯+𝑤) = 1									∀	𝑗 = 1,2, … , 𝐽	

Note that for the diagonal matrix	𝑽, components are optimally chosen to linearly weigh 

variables of 𝑿𝟎 and 𝑿𝟏 so that the mean square error of the synthetic control estimator is 

minimized, which can be achieved, for instance, by choosing 𝑽	such that the mean squared 

prediction error (MSPE) of the outcome variable is minimized for pre-treatment periods (ibid).  

The estimated treatment effect 𝛼HIJ on an outcome 𝑌 (luminosity and deforestation in our 

case) over the period	𝑡 ∈ {𝑇I + 1,… , 𝑇&} for an intervention that occurred in time 𝑇I is then the 

difference between the observed outcome of the treated unit (𝑗 = 0) and the weighted average of 

outcome values for control units: 

𝛼HIJ = 𝑌IJ −P𝑤1∗𝑌1J

)

1Q&

 

The estimated impact is computed by measuring the ex-post difference between the outcome 

of an indicator in the treatment unit,	𝑌IJ, and the outcome for the synthetic control unit as an 
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optimally weighted average of all control units in the donor pool, ∑ 𝑤1∗𝑌1J
)
1Q& . In this context, the 

choice of pre-treatment characteristics crucially determines the weights and composition of the 

synthetic control. Therefore, one should choose that specification for which included pre-

treatment characteristics generate the smallest mean squared prediction error (MSPE) that can 

be achieved to find the optimal weight distribution (Abadie & Gardeazabal, 2003). 

We take advantage of the twelve pre-treatment years (1992-2003) of available luminosity 

data and nine years (1995-2003) of deforestation data to construct a synthetic Cusco that mirrors 

the levels of economic activity, as captured by luminosity, and deforestation as captured by NDVI 

prior to the beginning of operations of the Camisea Gas Project and the royalty payments to the 

department of Cusco in 2004. Pre-treatment characteristics that are posited to be determinants 

of luminosity and deforestation are chosen based on the previous discussion and include socio-

economic characteristics (population size, poverty and dependency rate, number of health 

facilities, schools, and business licenses), infrastructure (road network, household access to 

water network), as well as the municipal absorptive capacity (number of staff) and budgetary flows 

at both the provincial and district level. Following the approach suggested by Kaul et al. (2016), 

we include the average of all pre-treatment luminosity values as an additional predictor. 

Since the purpose of the synthetically created control unit for Cusco is to reproduce the 

luminosity and deforestation values that would have occurred in Cusco if the Camisea Gas Project 

had not been undertaken, both the department and independent province of Lima are a priori 

discarded from the donor pool, since they differ significantly from the rest of the country. The 

department of Ucayali was also excluded, since a significant share of data was not available for 

this region. This leaves us with a total of 22 departments in the donor pool. 

Because we have one treatment unit and relatively few comparison units in the donor pool, 

the optimal synthetic control is potentially a noisy estimate of the counterfactual and we cannot 

rely on large-sample properties to provide standard errors for statistical assessment. To address 

this limitation, we evaluate the statistical significance of the post-treatment impact by estimating 

standard errors based on a bootstrapping method previously used by Kirkpatrick and Bennear 

(2014), Sills et al. (2015), and Corral and Schling (2017). We construct 1,000 synthetic controls 

from a subset of 15 departments iteratively and randomly drawn (without replacement) from the 

final donor pool of 22 departments. The estimated W weights from each of the 1,000 iterations 

are then used to create 95 % confidence bounds on the estimated median synthetic Cusco.  

The economic (environmental) impact of the Camisea Gas Project is estimated as the 

difference in actual luminosity p.c. (NDVI) levels in Cusco against those predicted by synthetic 

Cusco, including the 95% confidence bounds on the estimated counterfactual, during the post-



19 
 

treatment period of 2005-2012. Robustness checks consisting of sensitivity and falsification tests 

are also performed and reported below. 

 
5 Results 

5.1 Economic Impact 

Turning first to the economic impact of the Camisea Gas Project as measured by luminosity, 

we construct a synthetic Cusco from a convex combination of departments in the donor pool. 

Table I displays the mean values of all pre-treatment characteristics for actual and synthetic 

Cusco, as well as the average values for the entire study area. The last column presents the 

optimal weight distribution for included covariates (as captured in the diagonal matrix 𝑽). Based 

on the study area averages, it becomes clear that not all departments in the donor pool would 

have provided a reasonable counterfactual for the department of Cusco. Average levels of 

luminosity in Peru are higher than in Cusco, which appears reasonable given the remote location 

of Cusco and the fact that it remained one of the poorest departments of the country.  

This is also reflected in several department-level covariates, which indicate that on average, 

households in Cusco had a higher dependency ratio of children and seniors to working-age adults 

in households, a significantly lower number of health-related facilities. In contrast, the number of 

new establishments and small and medium enterprises in the state seemed to lie above the study 

area average. In terms of province- and district-level attributes, the summary statistics indicate 

that municipal governments within donor pool states counted with higher levels of revenues and 

expenditures, though with slightly less municipal white-collar staff. Primary road construction, as 

an indicator of investment in infrastructure, appeared higher within the districts of donor pool 

departments. 

 
Table I. Luminosity: Pre-treatment characteristics (1992-2003 average). 

Variable  Study 
Area 

Cusco 
V Matrix  
Weights Actual Syntheti

c 
Luminosity per 10,000 people, logged 5.72 5.12 5.12 0.00 
Population (in 10,000s, avg. 1994-2003) 78.73 115.99 98.45 0.00 

Department-level characteristics         
Dependency ratio (1993) 71.29 83.80 81.59 0.00 
No. of health-related facilities (2000-2003) 257.44 130.25 143.74 0.00 
No. of licenses granted for opening establishments (in 1000, 

2003) 1.52 3.60 2.32 0.00 
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No. of licenses granted for opening restaurants (in 1000, 
2003) 0.15 0.74 0.19 0.00 

Small and medium enterprises of food and beverages 
(2003) 216.09 693.00 303.05 0.00 

Personnel (in 10,000, 2003) 0.20 0.31 0.28 0.02 

Aggregated Province-level characteristics         
Managerial municipal staff per 10,000 people (2003) 1.41 0.78 1.68 0.00 
White-collar municipal staff per 10,000 people (2003) 1.16 1.55 1.13 0.00 
Technical municipal staff per 10,000 people (2003) 3.92 3.67 3.43 0.00 
Municipal revenue per capita (in PEN, 2003) 83.65 69.91 74.06 0.03 
Municipal expenditures per capita (in PEN, 2003) 72.98 71.80 68.25 0.01 
Primary roads constructed (in km2, 2003) 0.03 0.04 0.04 0.00 

Aggregated District-level characteristics         
Managerial municipal staff per 10,000 people (2003) 1.13 1.19 1.24 0.00 
White-collar municipal staff per 10,000 people (2003) 1.97 2.67 1.69 0.00 
Technical municipal staff per 10,000 people (2003) 4.17 4.02 3.99 0.00 
Municipal revenue per capita (in PEN, 2003) 155.38 77.72 93.11 0.65 
Municipal expenditures per capita (in PEN, 2003) 112.41 98.54 80.94 0.25 
Primary roads constructed (in km2, 2003) 0.14 0.05 0.16 0.00 

 

 

In contrast, synthetic Cusco is able to reproduce more accurately the average pre-treatment 

values for key characteristics capturing the departments economic activity, infrastructure, and 

government finances and employment. Some characteristics, notably the number of small and 

medium enterprises of food and beverages, are not reproduced as accurately. However, a look 

at the V matrix weights reveals that these variables received a weight approaching zero in the 

optimization, as they do not appear to have substantial predicting power with regards to pre-

treatment luminosity levels. 

Table II displays the distribution of the optimal weights estimated for each department in the 

donor pool to create a synthetic Cusco. In the specification that renders the best fit (as expressed 

in the smallest mean squared prediction error, or MSPE), synthetic Cusco is composed of seven 

departments. Interestingly, the geographic location of these departments is not limited to one 

region of Peru, say the jungle, mountain, or coastal region. Rather, the departments that 

contribute to synthetic Cusco are distributed throughout the country, from Piura as the 

northernmost coastal state, to Loreto as Peru’s largest state located in the Amazonian rainforest. 

 

Table II. Luminosity: Optimal department weights for synthetic Cusco. 
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Department Weight   Department Weight 
Amazonas 0   Lambayeque 0 
Ancash 0   Lima - 
Apurímac 0.193   Loreto 0.164 
Arequipa 0   Madre de Dios 0 
Ayacucho 0   Moquegua 0 
Cajamarca 0   Pasco 0 
Callao 0.195   Piura 0.185 
Huancavelica 0   Puno 0 
Huánuco 0   San Martin 0.001 
Ica 0   Tacna 0 
Junín 0.218   Tumbes 0 
La Libertad 0.044   Ucayali - 

 
Having constructed a synthetic counterfactual that adequately reproduces pre-treatment 

luminosity levels in Cusco, the post-treatment impact for 2005-2012 can now be estimated. Figure 

4 depicts actual luminosity for Cusco and the 95% confidence bounds on the estimated synthetic 

counterfactual. The graph displays the period 1992-2012, where the treatment occurring in 2004 

is indicated by the vertical dotted line. As the graph indicates, economic growth as measured by 

luminosity remained relatively modest in the years prior to 2004. A comparison of the trend in 

Cusco to that of median Cusco and the confidence bounds prior to the inception of Camisea 

suggests that our synthetic control specification can indeed replicate the pre-treatment trajectory 

of the treated unit. Notably, luminosity in Cusco experiences a modest peak in the year 2003, 

which is accurately captured by the trend line for synthetic Cusco. 

The impact of the Camisea Gas Program on economic activity in Cusco is measured as the 

estimated difference between luminosity in actual and synthetic Cusco. As can be seen in Figure 

4 below, the two lines begin to diverge following an initial dip in luminosity during the first two 

years post-treatment. Beginning in 2006, economic activity in Cusco increases drastically, and 

while this significant economic growth appears to be part of a general trend, synthetic Cusco does 

not exhibit the same increases as observed in Cusco. In 2007 and thereafter, we observe an ever-

widening positive gap between Cusco and synthetic Cusco, which also exceeds the upper 

confidence bound between 2007 and 2012.  
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Figure 4. Luminosity for Cusco and synthetic Cusco. 

 

This impact gap is illustrated in Table III, which presents the annual post-treatment difference 

in luminosity between Cusco and the best-fit synthetic Cusco. Note that because luminosity has 

been transformed to natural logarithms, the difference between actual and synthetic Cusco can 

be interpreted in percentage terms. Therefore, the estimated gap confirms the visual interpretation 

of a consistent positive impact beginning in 2007: Ranging from 33.7 % in 2007 to 50 % in 2011, 

the post-treatment gap can be quantified at an average annual increase of 27.9 % in luminosity. 

Given that luminosity in Cusco exceeds the upper confidence bound of synthetic Cusco for the 

last six years post-treatment, this suggests that the impact gap is indicative of a significant effect 

of the Camisea Gas Project for these years. 

Given that the exact relationship between luminosity and GDP cannot be determined at the 

department level due to the lack of data, we use the elasticity of luminosity and GDP at the 

national level, estimated to be 0.27, to approximate the impact on local economic activity. Using 

this elasticity, an average annual post-treatment gap of 27.9 % in luminosity would therefore imply 

that local GDP increased, on average, by an annual 7.5 % between 2005 and 2012. 

 

Table III. Gap in luminosity. 

Year Gap Actual 
Cusco 

Synthetic Cusco:  
95% Confidence 

Interval 
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Low High 
2005 -0.200 5.103 5.197 5.326 
2006 -0.125 5.230 5.167 5.372 
2007 0.337 6.462 6.006 6.278 
2008 0.351 6.411 5.969 6.204 
2009 0.396 6.768 6.224 6.540 
2010 0.482 7.312 6.648 7.033 
2011 0.500 7.440 6.727 7.153 
2012 0.489 7.378 6.703 7.095 

 

Overall, this suggests that the large-scale infrastructure investment and subsequent receipts 

of gas royalties from the Camisea Gas Project have had a positive impact on local economic 

activity in Cusco in comparison to what would have been experienced without the Project. While 

these impact estimates based on the synthetic control approach appear promising, it is possible 

that these results are driven by some alternate explanation, rather than a significant effect of the 

Camisea Gas Project. To assess whether the results are robust, a number of placebo tests that 

follow Abadie et al. (2003; 2010) and others are conducted.19  

The first robustness check reviews the choice of optimal weights in the diagonal matrix V. 

While the synthetic control process ensures that covariate weights assigned through V are chosen 

so that the mean squared error of the synthetic control estimate is minimized, it is still possible 

that the optimal choice of V is affected by the researcher’s subjective assessment of the predictive 

power of individual covariates included in the specification (Abadie et al., 2003).  

                                                
19 In addition to the robustness checks presented here, Appendix D includes an additional falsification test. 
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Figure 5. Constructing a synthetic control using cross-validation for luminosity. 

To confirm that this method still renders the best fit for the available data, Abadie et al. (2010) 

proposes a method of cross-validation, dividing the time before treatment into a “training period” 

and a “validation period”. If an optimal fit is found for the initial “training period”, the synthetic 

control should mirror as closely as possible the movement of luminosity in actual Cusco during 

the “validation period”, because no treatment has yet occurred that could let actual and synthetic 

Cusco diverge. If this is achieved, the chosen matrix V can then be used to compute optimal 

covariate weights to create a synthetic control that has proven accurate in mirroring the actual 

data trend and now extends through the post-treatment time period. 

Figure 5 presents the results of creating a synthetic Cusco using this alternative cross-

validation method. Bootstrapped confidence bounds are computed to assess the fit of the 

synthetic control for this specification. The year 1998 is chosen as the cut-off point that divides 

the pre-treatment period into training and validation period. Synthetic Cusco achieves a similar fit 

during the validation period of 1999-2004 to that of the optimization approach presented in Figure 

4. The trajectory obtained for the post-treatment period appears similar to that in Figure 4 and is 

of similar magnitude.  

 

 

Table IV. Gap and confidence bounds with cross validation method for luminosity. 
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Year Gap Actual 
Cusco 

Synthetic Cusco:  
95% Confidence 

Interval 
Low High 

2005 -0.199 5.103 5.154 5.322 
2006 -0.127 5.230 5.159 5.373 
2007 0.334 6.462 6.013 6.287 
2008 0.347 6.411 5.969 6.213 
2009 0.392 6.768 6.232 6.551 
2010 0.471 7.312 6.648 7.048 
2011 0.485 7.440 6.738 7.164 
2012 0.476 7.378 6.706 7.106 

 
Table IV presents the estimated impact gap alongside 95 % confidence bounds around 

median synthetic Cusco computed with the cross-validation method. The confidence bounds are 

very similar to those created for the original specification, so that the estimated annual gaps in 

luminosity are of very similar magnitude. These gaps lie outside of the confidence bounds in the 

same years as before, with a slightly negative significant gap in 2005, and consistently positive 

significant impacts for the years 2007-2012, though annual post-treatment gaps are slightly 

smaller for the cross-validation method. This results in an average annual gap of 27.2 % in 

deblurred luminosity, or a corresponding 7.3 % average annual increase in local GDP. 

Another concern is that results are driven by one particular control unit that strongly 

determines the trajectory of synthetic Cusco, potentially due to the particular characteristics of 

that department. Following the approach in Mideksa (2013), departments that received positive 

weights in the original synthetic control specification are sequentially removed from the 

estimation. Table V displays the resulting gaps and confidence bounds, where the relevant seven 

donor pool departments were sequentially excluded from the estimation. A visual representation 

of the sensitivity test can be found in Appendix A.  

The results of this test are consistent with the main result in two regards: First, confidence 

bounds for each of the seven specifications are very similar to those estimated for the original 

model. Second, luminosity values for Cusco consistently exceed the upper confidence bound for 

five of seven post-treatment years (2007-2012), and the lower confidence bound for the first year 

post-treatment, 2005. The estimated annual gaps vary in magnitude to some degree, with an 

average annual post-treatment gap of 14.2 % in luminosity (3.8 % in GDP) when Apurímac is 

excluded, to a 28.8 % in luminosity (7.8 % in GDP) if La Libertad is excluded from the donor pool. 

Given that the original specification rendered a result of 27.9 % in luminosity (7.5 % in GDP), this 



26 
 

sensitivity analysis suggests that this may be an upper bound estimate of the economic impact, 

and that the actual effect on local economic growth may have been slightly smaller, though still 

economically significant.  

 

Table V. Sensitivity test with bootstrapped confidence bounds for luminosity. 

    Without Apurímac Without Callao Without Junín Without La Libertad 

      95% CI 
around Cusco   95% CI 

around Cusco   95% CI 
around Cusco   95% CI 

around Cusco 

Year Actual 
Cusco Gap Low High Gap Low High Gap Low High Gap Low High 

2005 5.103 -0.140 5.227 5.336 -
0.130 5.202 5.347 -

0.108 5.172 5.331 -
0.050 5.164 5.325 

2006 5.230 0.026 5.197 5.386 -
0.012 5.168 5.388 -

0.005 5.193 5.407 0.044 5.164 5.371 

2007 6.462 0.152 6.066 6.286 0.256 6.073 6.335 0.288 5.974 6.259 0.289 6.025 6.282 
2008 6.411 0.179 6.028 6.214 0.266 6.037 6.256 0.277 5.955 6.203 0.277 5.989 6.204 
2009 6.768 0.190 6.294 6.551 0.302 6.316 6.603 0.347 6.203 6.527 0.364 6.249 6.549 
2010 7.312 0.237 6.731 7.044 0.345 6.776 7.085 0.413 6.615 7.030 0.446 6.676 7.038 
2011 7.440 0.247 6.820 7.167 0.349 6.884 7.200 0.434 6.687 7.158 0.476 6.766 7.160 
2012 7.378 0.245 6.781 7.102 0.347 6.837 7.149 0.423 6.665 7.091 0.455 6.729 7.099 

    Without Loreto Without Piura Without San Martin       

      95% CI 
around Cusco   95% CI 

around Cusco   95% CI 
around Cusco       

Year Actual 
Cusco Gap Low High Gap Low High Gap Low High       

2005 5.103 -0.107 5.200 5.327 -
0.101 5.184 5.334 -

0.102 5.170 5.246       
2006 5.230 0.056 5.175 5.377 0.062 5.161 5.366 0.061 5.167 5.264       
2007 6.462 0.211 6.030 6.295 0.217 6.006 6.327 0.216 5.966 6.188       
2008 6.411 0.237 5.993 6.221 0.243 5.968 6.253 0.243 5.942 6.133       
2009 6.768 0.256 6.260 6.558 0.262 6.220 6.599 0.262 6.195 6.438       
2010 7.312 0.308 6.688 7.045 0.315 6.617 7.084 0.314 6.649 6.910       
2011 7.440 0.319 6.777 7.159 0.326 6.686 7.198 0.326 6.754 7.025       
2012 7.378 0.309 6.739 7.105 0.316 6.662 7.147 0.316 6.714 6.973       

 

Overall, the results of this analysis indicate that, within a few years of the Camisea gas fields 

beginning operation, a consistently meaningful and significant impact can be found on the local 

economic activity in Cusco as measured by luminosity. This suggests that this large-scale 

infrastructure project and subsequent natural resource windfalls via royalty transfers has had a 

positive impact on economic development in the medium term, and that Cusco has, to some 

extent, avoided the pitfalls associated with the natural resource curse. 

5.2 Environmental Impact 
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We now turn to assessing whether this economic growth came at the cost of incremental 

environmental degradation as captured by deforestation. We again employ the synthetic control 

approach. Table VI presents the mean values of all pre-treatment characteristics for departments 

in the donor pool as well as for Cusco and its synthetically created counterpart.20 The last column 

again presents the optimal weight distribution for included covariates in the diagonal matrix 𝑽 that 

is used to compose synthetic Cusco.  

  

Table VI. NDVI: Pre-treatment characteristics (1995-2003 average). 

Variable  Study 
Area 

Cusco V Matrix  
Weights Actual Synthetic 

Normalized Difference Vegetation Index (NDVI) 0.40 0.48 0.48 0.69 
Population (in 10,000s, avg. 1995-2003) 5.71 5.25 5.46 0.00 

Department-level characteristics         
No. of licenses granted for opening restaurants (in 1000, 

2003) 1.77 3.60 1.84 0.00 

Personnel (in 10,000, 2003) 0.21 0.31 0.23 0.00 

Aggregated Province-level characteristics         
Managerial municipal staff per 10,000 people (2003) 1.37 0.78 1.53 0.00 
White-collar municipal staff per 10,000 people (2003) 1.20 1.55 1.04 0.00 
Municipal revenue per capita (in PEN, 2003) 84.56 69.91 69.14 0.05 
Municipal expenditures per capita (in PEN, 2003) 73.28 71.80 61.92 0.00 

Aggregated District-level characteristics         
Managerial municipal staff per 10,000 people (2003) 1.15 1.19 1.20 0.00 
White-collar municipal staff per 10,000 people (2003) 2.00 2.67 2.55 0.02 
Municipal revenue per capita (in PEN, 2003) 147.69 77.72 104.78 0.05 
Municipal expenditures per capita (in PEN, 2003) 110.13 98.54 94.86 0.11 
Primary roads constructed (in km2, 2003) 0.16 0.49 0.64 0.05 

 

This exercise again provides a justification for choosing synthetic Cusco as a counterfactual 

over a simple study area average: Departments in the donor pool appear to have less vegetation 

and higher population. Municipal governments enjoy significantly higher revenues at both the 

district and province level, as well as having slightly higher expenditures. In comparison, synthetic 

Cusco is able to reproduce the same level of vegetation as measured for Cusco during the pre-

treatment period, and closely resembles the treated department across covariates such as 

                                                
20 It should be noted that additional covariates to capture agricultural activity as a determinant of deforestation were not 

available for the pre-treatment period and/or for all control units, so that they had to be excluded from the analysis. 
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municipal revenue and expenditure and the number of municipal government staff. These are the 

variables that also receive significant weight in the V-matrix and therefore contribute considerably 

to identifying departments that contribute to creating a synthetic Cusco. 

 

Table VII. NDVI: Optimal department weights for synthetic Cusco. 

Department Weight   Department Weight 
Amazonas 0   Lambayeque 0 
Ancash 0   Lima - 
Apurímac 0   Loreto 0.162 
Arequipa 0   Madre de Dios 0 
Ayacucho 0   Moquegua 0.07 
Cajamarca 0.137   Pasco 0 
Callao 0   Piura 0 
Huancavelica 0.168   Puno 0 
Huánuco 0   San Martin 0 
Ica 0   Tacna 0.006 
Junín 0.458   Tumbes 0 
La Libertad 0   Ucayali - 

 

Table VII displays the distribution of the optimal weights estimated for each department in 

the donor pool to create a synthetic Cusco with regards to its pre-treatment NDVI trend. In the 

specification with the lowest mean squared prediction error (MSPE), synthetic Cusco is composed 

of six departments. Here, four of the six departments are located in the climatic zones of the 

highlands (Cajamarca, Huancavelica, and Junín) and jungle (Loreto), while only two are located 

along the coastal line of Peru (Moquegua and Tacna) with relatively small weights. Given the 

focus on vegetation density to create synthetic Cusco, it is therefore not surprising that 

departments in the highlands and jungle with larger green areas would contribute more to the 

counterfactual. In a next step, the NDVI trend in Cusco is compared visually to the trajectory of 

the synthetic counterfactual. Figure 6 presents this visualization, including the median synthetic 

control as well as bootstrapped 95% confidence bounds. Once again, the vertical dotted line 

indicates the occurrence of treatment when operation at the Camisea gas fields began. NDVI 

levels remained relatively stable in Cusco in the displayed time period of 1995 to 2012. Given the 

low volatility of pre-treatment trends, we are able to closely mirror the trajectory of NDVI in Cusco 

with the synthetic counterfactual, with the median synthetic control overlaying actual Cusco for 

most of the pretreatment period.  
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Figure 6. NDVI for Cusco and synthetic Cusco. 

 

In a next step, we examine the post-treatment time period of 2005-2012 to assess the impact 

that the Camisea Gas Project has had on changes in NDVI levels. It appears that for much of this 

period, there is no visible effect in deforestation, as measured by the gap between NDVI levels in 

Cusco and synthetic Cusco. A spike in NDVI levels can be observed in 2010 for Cusco, and this 

spike is not mirrored by its synthetic counterpart, which suggests that vegetation levels were 

higher during this year in Cusco. 

 

Table VIII. Gap in NDVI. 

Year Gap Actual 
Cusco 

Synthetic Cusco:  
95% Confidence Interval 

Low High 
2005 -0.002 0.478 0.472 0.487 
2006 -0.002 0.473 0.469 0.476 
2007 -0.001 0.467 0.464 0.472 
2008 -0.004 0.472 0.470 0.481 
2009 -0.002 0.463 0.461 0.468 
2010 0.015 0.493 0.469 0.481 
2011 -0.005 0.469 0.467 0.477 
2012 0.000 0.474 0.473 0.478 
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Table VIII displays the gap between NDVI levels in actual and synthetic Cusco and confirms 

the initial visual impression. Impact remains close to zero for all the years post-treatment except 

2010. Impact during these years is not only negligible but also insignificant, as it remains within 

the estimated 95% confidence interval. For 2010, a difference of 0.015 in NDVI is measured 

between Cusco and synthetic Cusco, and this positive gap appears significant by exceeding the 

upper bound of the bootstrapped confidence interval.  

This result suggests that the construction and operation of the Camisea gas fields had no 

sustained, significant impact on deforestation levels in Cusco. Additionally, the influx of royalty 

transfers, and the capital expenditures thereof, appear to have had no detrimental impact on 

deforestation. This implies that the Camisea project did not lead to higher deforestation rates, as 

was feared by environmental organizations (The Economist, 2003) and has repeatedly been 

claimed since (USAID, 2004; Gamboa et al., 2008; Munilla, 2010). Our finding is in line with the 

observation made by indigenous environmental monitors of the project that find that in the 11 

years since Camisea became operational, there has been no serious impact on the forest (The 

Economist, 2014). We posit that the set of rigorous environmental safeguards bargained between 

the GoP, the extraction firm, and the IDB have been successful in preventing adverse ecological 

effects of the project. 
 

 
Figure 7. Constructing a synthetic control using cross-validation for NDVI. 



31 
 

To confirm that these results are robust to various potential biases, several robustness and 

falsification tests are presented below. First, we use the cross-validation test to assess whether 

the chosen specification of the optimal weights in the V matrix was potentially biased by our 

subjective assessment of the predictive power of individual covariates included in the 

specification. The pre-treatment period is divided into a training period from 1995 to 2000, and a 

validation period of 2001 to 2004. The result of this approach is presented in Figure 7. 

Overall, Figure 7 closely mirrors the original specification presented in Figure 5, with a very 

similar median synthetic control that provides a good fit in the pre-treatment period. The post-

treatment trajectory of the synthetic control created with the cross-validation method has a similar 

trajectory to that of the original specification, though slightly wider confidence bounds indicate that 

the peak observed in 2010 may be of less significance than inferred from Figure 5. 

 

Table IX. Gap and confidence bounds with cross validation method for NDVI. 

Year Gap Actual 
Cusco 

Synthetic Cusco:  
95% Confidence 

Interval 
Low High 

2005 0.000 0.478 0.472 0.488 
2006 -0.002 0.473 0.465 0.481 
2007 0.002 0.467 0.461 0.471 
2008 -0.002 0.472 0.465 0.479 
2009 -0.002 0.463 0.458 0.470 
2010 0.012 0.493 0.463 0.488 
2011 -0.002 0.469 0.462 0.477 
2012 0.001 0.474 0.464 0.478 

 
Table IX presents the estimated impact gap alongside 95 % confidence computed with the 

cross-validation method for the NDVI. The estimated gap and confidence bounds are very similar 

to those from the original specification as displayed in Table VIII. The annual gaps are of similar 

magnitude and significance. Gaps in NDVI between actual and synthetic Cusco are negligible for 

most of the post-treatment period, though the positive impact measured in 2010 remains 

significant by exceeding the upper bound of the confidence interval. 
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Table X. Sensitivity test with bootstrapped confidence bounds for NDVI. 

    Without Cajamarca Without 
Huancavelica Without Junín 

      95% CI 
around Cusco   95% CI 

around Cusco   95% CI 
around Cusco 

Year Actual 
Cusco Gap Low High Gap Low High Gap Low High 

2005 0.478 -
0.002 

0.47
0 

0.48
7 

-
0.003 0.473 0.48

8 
-

0.002 0.470 0.485 

2006 0.473 -
0.004 

0.46
9 

0.47
7 0.000 0.469 0.47

6 0.001 0.468 0.475 

2007 0.467 0.000 0.46
4 

0.47
0 

-
0.001 0.464 0.47

1 
-

0.005 0.465 0.473 

2008 0.472 -
0.002 

0.46
9 

0.47
5 

-
0.007 0.470 0.48

1 
-

0.010 0.468 0.483 

2009 0.463 -
0.004 

0.46
1 

0.46
9 

-
0.001 0.461 0.46

7 
-

0.002 0.460 0.469 

2010 0.493 0.013 0.47
0 

0.48
1 0.017 0.469 0.48

1 0.023 0.467 0.476 

2011 0.469 -
0.004 

0.46
6 

0.47
5 

-
0.005 0.466 0.47

6 
-

0.008 0.466 0.476 

2012 0.474 -
0.001 

0.47
2 

0.47
8 0.000 0.473 0.47

8 
-

0.006 0.472 0.480 

    Without Loreto Without Moquegua Without Tacna 

      95% CI 
around Cusco   95% CI 

around Cusco   95% CI 
around Cusco 

Year Actual 
Cusco Gap Low High Gap Low High Gap Low High 

2005 0.478 -
0.005 

0.47
1 

0.48
8 

-
0.002 

0.47
1 

0.48
7 

-
0.003 0.472 0.487 

2006 0.473 0.002 0.46
8 

0.47
6 0.000 0.46

8 
0.47

6 
-

0.002 0.469 0.476 

2007 0.467 0.000 0.46
4 

0.47
1 

-
0.003 

0.46
5 

0.47
2 

-
0.002 0.464 0.471 

2008 0.472 -
0.002 

0.47
1 

0.48
2 

-
0.003 

0.46
9 

0.48
1 

-
0.006 0.470 0.481 

2009 0.463 0.001 0.46
0 

0.46
9 

-
0.002 

0.46
1 

0.46
9 

-
0.002 0.461 0.468 

2010 0.493 0.018 0.46
9 

0.48
1 0.016 0.47

2 
0.48

1 0.015 0.469 0.481 

2011 0.469 -
0.004 

0.46
9 

0.47
7 

-
0.002 

0.46
6 

0.47
6 

-
0.006 0.467 0.476 

2012 0.474 -
0.002 

0.47
3 

0.47
8 

-
0.001 

0.47
3 

0.47
8 

-
0.001 0.473 0.478 

 
 

Next, we perform a sensitivity tests that sequentially excludes those departments that 

contributed to the creation of synthetic Cusco. Table X displays the resulting gaps and confidence 
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bounds, where the relevant six donor pool departments were sequentially excluded from the 

estimation. A visual representation of the sensitivity test can be found in Appendix A. The 

estimated sensitivity gaps indicate that no one particular donor pool department appears to drive 

results. Estimated impact gaps remain consistent and of comparable magnitude to that of the 

original specification, with the average annual gap staying close to zero for all six iterations. The 

same is true for the bootstrapped confidence bounds. Notably, across all six specifications, the 

positive peak observed in the year 2010 lies outside of the upper confidence bound and is 

therefore significant. Though the magnitude of this positive impact varies, it remains relatively 

small. 

These robustness tests confirm what the synthetic control analysis indicated: The impact of 

the Camisea Gas Project on deforestation was, with exception of 2010, neutral throughout the 

observed years post-treatment. 

 

6 Conclusion 

To our knowledge, this study presents the first rigorous evidence of the economic and 

environmental effects of a large hydrocarbon project. Concentrating on Peru’s largest 

hydrocarbon project, the Camisea Gas Project, we assess its impact on the producing department 

of Cusco. Relying on remote-sensing data to measure night-light density as a proxy of economic 

growth, we apply the synthetic control method to estimate that the economic effect of the Camisea 

Gas Project accumulates to 27.9% in luminosity, or an annual increase in local GDP of 

approximately 7.5%. Bootstrapped confidence bounds, and various robustness checks suggest 

that this positive impact gap is significant for six of the eight years post treatment, 2007 through 

2012. Employing a remotely-sensed vegetation index to capture changes in tree cover, we find 

that the positive economic impact is not associated with an adverse environmental effect: 

Throughout the post-treatment period, the impact gap remains close to zero and insignificant 

(except for a positive peak in 2010), suggesting that the Camisea Gas Project and the royalty 

windfalls thereof did not lead to higher rates of deforestation in the department of Cusco. This is 

again confirmed by bootstrapped confidence intervals and robustness checks.  

To sum up, Camisea gas production generates significant revenues for the department of 

Cusco. These windfalls have led to meaningful and significant economic growth as captured by 

nighttime lights. The Camisea gas project and the royalty transfers have not spurred deforestation 

of the pristine rainforest found in the department. These findings suggest that the Camisea Gas 

project has contributed to the development of Cusco, thereby avoiding the pitfalls associated with 

the so-called natural resource course. Specific to the Camisea project, our findings suggest that 
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strict environmental and social safeguards and an explicit commitment to actions geared towards 

creating long-term benefits for local populations and the environment can lead to sustainable 

development. The bargaining that took place among the GoP, the extraction firm and the IDB, 

with the inputs of environmental organizations, as well as the high visibility of the project, and 

associated reputational risk, provided the impetus for setting rigorous safeguards and dedication 

to the promotion of sustainable development.  

The Camisea project offers important lessons for how hydrocarbon exploitation can be 

developed and exist within fragile environments and how long-term benefits can be realized. 

Future research in this vein that assess the economic and ecological impacts of large 

infrastructure projects would benefit the parties negotiating such projects by providing a careful 

and complete record of the types of safeguards and other efforts made to avoid negative impacts, 

as well as the political-economic interactions that are likely driving the evolution of the economic 

and ecological performance associated with such projects.   
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Appendix 

A. Additional Tables and Figures 

 
Table AI. Elasticity of GDP with regards to luminosity.a 

  Log of Cusco 
GDP p.c. 

Log of national 
GDP p.c. 

Log of Cusco luminosity p.c. 0.17 ***     
  (0.02)       
Log of national luminosity p.c.     0.27 *** 
      (0.02)   
Constant 2.87 *** 4.39 *** 
  (0.15)   (0.03)   
Observations 6 21 
a Difference unequal to zero if p-value significant at the 99 (***), 95 (**), or 90 (*)     
  confidence level. Standard errors reported in parentheses. 

 

 
 
 

 
Figure A1. Sensitivity test of sequentially excluding donor pool departments for luminosity. 
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Figure A2. Sensitivity test of sequentially excluding donor pool departments for NDVI. 

 
 

B. Processing of NDVI Data 
This section describes the steps taken to process the raw files provided by NASA to generate 

yearly measures of the NDVI at department level. All data manipulation was performed in the 

statistical software R. The following is an example for one year, the same steps are followed for 

all 21 years in the dataset. 

Step 1. Once the data is downloaded from the NASA server, each hdb file is converted into 

a raster file using the raster package, resulting in more than 7,300 files. These .tif files are then 

stored in yearly folders to facilitate their further manipulation and analysis. Each raster layer is a 

matrix with dimensions of 421 rows and 461 columns, for a total of 194,081 cells. The resolution 

of each image is 0.05 degrees, and its spatial extent is the following: minimum x coordinate -86, 

maximum x coordinate -63, minimum y coordinate -20, and maximum y coordinate 1. Each file 

has a file name of the following form: year (4 number digits), month (2 number digits), and day (2 

number digits). For instance, January 1st of 1992 is labeled as 1992.01.01. 
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Figure B1. Original NDVI raster from January 1st, 1992. 

 

Step 2. For each year we create a stack of rasters using the stack command. We then 

truncate the negative values of the cells of each raster layer to zero as they could represent water, 

snow, ice, dirt, or rock terrain. 

Step 3. We create an empty list and store our stack of rasters into that list in matrix form.  

Step 4. We create a new list containing 461 empty matrices; each has a dimension of 365 

rows and 461 columns. We then use our list from step 3 and, employing a loop, store the first row 

of matrices from 1 to 365 (or 366 for a leap year), into the first matrix of our new list. This new 

matrix has dimensions 365 rows by 461 columns. Thus, the first row of this new matrix represents 

the first row from day 1 of year 1992, the second row the first row of day 2 of year 1992, the third 

row the first row of day 3 of year 1992, and so forth until we cover all days in 1992. Hence, the 

second matrix of our new list contains the second row of every day from the same year. Using 

this method, we fill 421 matrices corresponding to the number of rows of the original raster layer. 
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Step 5. We add a date column to each of our 421 matrices from step 4. More specifically, a 

factor variable is added to indicate the month to which each of the rows (days) of the matrix 

correspond. For instance, in the first matrix the rows from 1 to 31 correspond to January.  

 

 
Figure B2. Monthly NDVI in Peru during 1992. 

 

Step 6. We create another empty list with 412 matrices; this time each matrix has dimensions 

12 rows by 461 columns. In a next step, we use the group_by and summarize_all functions (using 

our month variable and estimating the maximum value) and apply them to every matrix from the 

list in step 5. The corresponding results are stored in our new list. Figure B2 shows the monthly 

raster files resulting from this step. 
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Step 7. To facilitate the manipulation of the matrices, we convert the list created in step 6 

into a 3-dimensional array with characteristics 421, 461, 12. We eliminate the variables for date 

and month, and then use the apply function to calculate the mean values for each cell in the array. 

The result is a single matrix with dimensions 421 rows by 461 columns, which later will represent 

the raster file for a single year. 

Step 8. We convert our single matrix from step 7 back into a raster file. To do so, we again 

set the coordinate system and the spatial extent from step 1. Figure B3 then presents the resulting 

raster that contains average NDVI values for an entire year. 

 

 
Figure B3. NDVI in Peru for the year. 

 

Step 9. We import the polygon for Peru outlining department borders using the 

readShapeSpatial function and merge it with our raster file from step 8. Importantly, we employ 

the extract function from the raster package, using the mean function and setting the options of 

“weights” and “small” equal to true.21 Using these settings, the department mean values better 

                                                
21 As is explained in the documentation of the Raster Package, when we set the “weights” equal to true we assume 

that all the cells that overlap with a particular polygon, regardless of whether they do so completely or just in certain 
parts (in the latter case the cell centroid might not fall into a polygon), should be accounted. On the contrary, if we 
set the “weights” to false, then only cells whose centroid fall into a polygon should be taken into account. Put 
differently, the weights indicate which cells (or parts of cells) are going to be considered to extract the values. On the 
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represent the information for the entire polygon units regardless of their size or location within the 

polygon. If the units are large, the maximum value might be considerably larger than the mean 

and could represent an extreme within that polygon, whereas smaller units may receive less 

weight. The resulting mean department values are depicted in Figure 3, Panel (i) in the main text. 

 
C. Using NDVI to measure deforestation 

The Normalized Difference Vegetation Index (NDVI) is an instrument that is commonly used by 

researchers and analysts to measure how green a patch of land is. The Index uses as a primary 

element the different colors or wavelengths that are reflected into plants by sunlight. In this regard, 

the pigment from plant leaves, which is commonly known as chlorophyll, permits plants to absorb 

visible light, while the cells living in the leaves allow plants to reflect near-infrared light. In other 

words, vegetation reflects near-infrared light and absorbs red or visible light. Thus, in this manner, 

the NDVI quantifies vegetation by measuring the difference from the amount of near-infrared light 

that is reflected by plants and the amount of red light that is absorbed by them. More specifically, 

the formula to calculate the NDVI is the following: 

NDVI = 
STUVWXYZVUVT[	\X]^J		W		VT[	\X]^J
STUVWXYZVUVT[	\X]^J		_		VT[	\X]^J

 

Given this formula, the NDVI ranges from -1 to +1. Obviously high levels of near-infrared light 

combined with low levels of red light will yield a high NDVI, meaning that that area is probably 

densely green or at least contains a significant portion of green leaves. By the same token, low 

levels of red light combined with high levels of near-infrared light will yield a low NDVI, meaning 

that that area has probably very limited vegetation or no vegetation at all (such as water or ice).  
 

  

                                                
other hand, when we set “small” equal to true, we allow small cells of different shapes to be accounted to extract the 
values. 
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D. Additional Robustness Check: Placebo Gaps 
As an additional robustness test to the ones already presented in the main body of the study, we 

assess how often results of the same magnitude can be obtained by fictitious treatment to rule 

out the possibility that the positive estimate is driven by chance. To this end, departments in the 

donor pool were assigned a fictitious operation of a gas project similar to that of Camisea in 2004 

and the placebo impacts, i.e. the difference between the synthetic and fictitious treatment unit, 

are graphed for all donor pool departments. In practice, the synthetic control method is iteratively 

applied to all 22 departments from the donor pool.22 If this process were to produce consistently 

positive gaps of similar magnitude for departments that were not the location of this large-scale 

infrastructure and resource extraction project, this would suggest that the impact results might be 

related to something other than the Camisea Gas Project. 

 

                     
    (i) Placebo gaps in all 19 control departments            (ii) Placebo gaps in 16 states (excluded 

if pre- 

           treatment MSPE 20x higher than 

Cusco’s)   
 

                      
 

       (iii) Placebo gaps in 11 states (excluded if pre-           (iv) Placebo gaps in 5 states (excluded 

if pre- 

                                                
22 Cusco is excluded from this iterative process. 
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              treatment MSPE 5x higher than Cusco’s)                   treatment MSPE 2x higher than 

Cusco’s) 
 

   Figure D1. Gap in luminosity for Cusco and placebo gaps for states in donor pool. 



 

 
 

This iterative process for our economic indicator of luminosity renders a distribution of 

estimated placebo gaps, which are displayed in Panel (i) of Figure D1. The grey lines represent 

the gaps in luminosity for 19 departments in the donor pool23, while the bold black line represents 

the original result obtained for Cusco. In comparison to all other states from the donor pool for 

which a synthetic counterfactual was created, the estimated gap for Cusco appears relatively 

strong, but is among several positive impact gaps. However, it is noticeable that the pre-treatment 

fit is decidedly less accurate for most of these donor departments. While the pre-treatment mean 

squared prediction error (MSPE) for Cusco has a value of 0.004, the median pre-treatment MSPE 

for all other donor states is 0.014, which is almost four times larger. This indicates that a convex 

combination of available donor departments cannot adequately reproduce pre-treatment levels of 

luminosity for all states in the panel.  

Since placebo runs that are unable to create a good fit pre-treatment can provide little reliable 

information about the significance of any post-treatment gap, Panels (ii) – (iv) present only those 

placebo runs that provide a reasonably good fit relative to that of the synthetic Cusco version, as 

measured by the size of their pre-treatment MSPE. Under a restriction of not exceeding Cusco’s 

MSPE by more than 20 times, Panel (ii) displays 16 placebo runs. At this large cutoff point, several 

other positive impact gaps remain, though they are noticeably much more volatile in the post-

treatment period, with a marked negative impact in the first two to three years after Camisea 

began its operation. In Panel (iii), an additional 5 placebo runs are excluded as they exceed 

Cusco’s MSPE by more than 5 times. The impact for Cusco remains one of few positive post-

treatment, while all other placebo gaps indicate negative or neutral impact. 

Lastly, Panel (iv) focuses on those departments that can reproduce Cusco’s fit as closely as 

possible, so that six additional departments are excluded because they exceed Cusco’s MSPE 

by more than a factor of two. This confirms that the impact for Cusco stands out as a positive 

impact that is relatively large in magnitude and is based on a relatively close counterfactual in the 

pre-treatment period. This is confirmed by a look at the distribution of the ratios of post/pre-

treatment MSPEs as another approach to assessing fit, where Cusco exhibits the third highest 

ratio in comparison to the 22 control departments. The pseudo p-value for the probability of 

obtaining a post/pre-treatment MSPE ratio as large as Cusco’s is therefore 3/22 = 0.136. Though 

this would not indicate a significant impact of the Camisea Gas Project on economic activity in 

Cusco on this measure alone, it supports the robust performance of results across all other 

                                                
23 Placebo gaps for three control departments could not be constructed from a convex combination of donor states. 



 

 
 

falsification tests and suggests that the analysis can render reliable results about the magnitude 

and significance of the economic growth effects. 

 

                     
    (i) Placebo gaps in all 19 control departments            (ii) Placebo gaps in 16 states (excluded 

if pre- 

           treatment MSPE 20x higher than 

Cusco’s)   
 

                      
 

       (iii) Placebo gaps in 12 states (excluded if pre-           (iv) Placebo gaps in 10 states (excluded 

if pre- 

              treatment MSPE 5x higher than Cusco’s)                    treatment MSPE 2x higher than 

Cusco’s) 
 

   Figure D2. Gap in NDVI for Cusco and placebo gaps for states in donor pool. 

 
We repeat the same exercise for our environmental indicator. Figure D2 presents the placebo 

gap results using the NDVI indicator; Panel (i) displays gaps for all 19 control departments.7 As is 

visible in this panel, several placebo gaps are quite noisy and unable to provide a good pre-

treatment fit, whereas the gap for Cusco remains close to zero during the pre-treatment period. A 

comparison of the pre-treatment MSPE for Cusco and the average MSPE for all other states 

confirms this impression: While the pre-treatment MSPE is close to zero for Cusco (9.75 x 10-6), 

the average pre-treatment MSPE for the placebo gaps is 0.00004, that is almost 4 times larger.  
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To again compare Cusco’s gap to only those placebo gaps that can provide a comparable 

pre-treatment fit, panels (ii)-(iv) display only those placebo gaps that do not exceed Cusco’s pre-

treatment MSPE by more than twenty, five, and two times respectively. As is visible, the 

distribution of placebo gaps becomes noticeably less noisy, and at the strictest cutoff in panel (iv), 

a little more than half of all donor placebos remain. Given that the NDVI indicator is less noisy in 

the pre-treatment period relatively to luminosity, it should not be surprising that more placebo 

gaps can be created with a relatively accurate pre-treatment counterfactual. Among these ten 

placebo gaps, the gap for Cusco still remains less volatile in both the pre- and post-treatment 

period, except for the previously noted peak in 2010. Nevertheless, a look at the distribution of 

the ratio between post- and pre-treatment MSPEs indicates that Cusco only provides the 8th best 

fit out of all 22 donor pool departments, resulting in a pseudo p-value of 8/22=0.363. According 

to this estimate, the results for the environmental effect of the Camisea Gas Project on vegetation 

would have to be judged as insignificant. Of course, this would be in line with the previously 

presented robustness checks, which all find that the post-treatment impact on vegetation is 

neither positive nor negative. In other words, this additional falsification test confirms that the 

Camisea Gas Project does not appear to have had an adverse effect on deforestation in the 

Cusco region, suggesting that environmental safeguards may have helped prevent such a 

negative impact. 
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