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Abstract 

Recent studies document that, in many cases, sought-after schools do not improve student 
test scores. Three explanations are that (i) existing studies identify local average treatment 
effects that do not generalize to the average student, (ii) parents cannot discern schools’ causal 
impacts, and (iii) parents value schools that improve outcomes not well measured by test 
scores. To shed light on this, this study employs administrative and survey data from Barbados. 
Using discrete choice models, it documents that most parents have strong preferences for the 
same schools. Using a regression-discontinuity design, the causal impact of attending a 
preferred school on a broad array of outcomes is estimated. As found in other settings, 
preferred schools have better peers, but do not improve short-run test scores. The study 
implements a new statistical test and finds that this null effect is not due to school impacts 
being different for marginal students than for the average student. Looking at longer-run 
outcomes, for girls, preferred schools reduce teen motherhood, increase educational 
attainment, increase earnings, and improve health. In contrast, for boys, the effects are mixed. 
The pattern for girls is consistent with parents valuing school impacts on outcomes not well 
measured by test scores, while the pattern for boys is consistent with parents being unable to 
identify schools’ causal impacts. The results indicate that impacts on test scores may be 
incomplete measures of school quality.  

Key words: Barbados, peer quality, school preferences.  

JEL Codes: I20, J0 
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1. Introduction 

There is a growing literature documenting that parental preferences for schools are often 
unrelated to schools’ casual impacts on test scores. For example, while a handful of studies find 
that attending sought-after selective secondary schools improves students’ academic 
achievement (e.g., Jackson, 2010; Pop-Eleches and Urquiola, 2013) several studies document 
that the most sought-after elite schools confer modest or no test score improvement (Clark, 
2010;  Abdulkadiroğlu et al., 2014; Bui et al., 2014; Lucas and Mbiti, 2014; Dobbie and Fryer, 
2014; Ajayi, 2015). Relatedly, many studies find mixed or no impacts of winning a public school 
choice lottery on test scores (Cullen et al., 2006; Deming et al., 2014; Hastings et al., 2009) and 
despite weakly positive evidence on the impacts of private school vouchers (see Rouse and 
Barrow, 2009),  Abdulkadiroğlu et al. (2018) find that students who used vouchers to attend 
private schools had worse test scores.1 

The lack of robust achievement effects of attending schools that parents prefer is 
something of a puzzle. One possible explanation is statistical. Most studies in this literature rely 
on regression-discontinuity designs that compare the outcomes of applicants to preferred 
schools who just made or just missed some admissions test score cutoff (e.g., Jackson, 2010; 
Clark, 2010; Pop-Eleches and Urquiola, 2013;  Abdulkadiroğlu et al., 2014;  Bui et al., 2014;  
Lucas and Mbiti, 2014;  Dobbie and Fryer, 2014; Ajayi, 2015). These studies identify local 
average treatment effects (Imbens and Angrist, 1994) for the marginal applicant. If the marginal 
applicant benefits less from preferred schools than the average applicant, it could explain why 
parents, on average, may have strong preferences for schools with small impacts on the 
marginal applicant. 

Another potential explanation is that parents have flawed information so that the schools 
that they perceive as being best are not.2  Yet another explanation is that parents prefer schools 
that may not improve test scores because preferred schools improve students’ longer-run 
outcomes in ways not well measured by test scores.3 Schools that do not improve test scores 
may confer several important long-run benefits: (i) preferred schools may improve non-cognitive 
and social skills that are unrelated to test scores but rewarded in the labor market (Jackson, 
2018; Heckman et al., 2006; Glaeser et all, 2007); (ii) preferred schools may promote behaviors 

                                                      
1 Note that Deming et al. (2014) find that winning a lottery increases college going for women but not for men. 
2 One plausible scenario is that parents base their decisions on observed ex-post outcomes that may reflect student selection rather 
than schools’ ability to improve examination performance. Also, parents may overestimate the direct benefit of exposure to higher-
achieving peers. Finally, admission to a preferred school might trigger behavioral responses (e.g., reduced parental effort) that undo 
the potential academic benefits (Pop-Eleches and Urquiola, 2013). However, none of these explanations would lead to improved 
longer-run outcomes as we find in this paper. 
3 In an important contribution, Clark and Del Bono (2016) examine the longer-run effect of attending one of three elite schools in 
Aberdeen Scotland during the 1960s. However, they do not examine whether the long-run impacts relate to school impacts on test 
scores, they do not examine how these impacts relate to parental preferences, and they are unable to determine whether their impacts 
for the marginal admit are similar to the impacts for the average student. 
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such as reduced criminality and teen childbearing even if they do not improve test scores 
(Beuermann et al., 2018; Deming, 2011; Milligan et al., 2004); (iii) employers may use more-
selective schools as a signal of individual ability (Spence 1973; MacLeod and Urquiola, 2015); 
and (iv) preferred schools might provide access to better-connected social networks that can be 
leveraged to improve employment and social opportunities (Ioannides and Loury 2004; 
Schmutte 2015).  

We seek to shed light on these issues using data from Barbados.  We examine whether 
there is broad agreement among parents regarding which schools are preferred over others, 
and we discuss the characteristics of preferred schools. We then exploit quasi-random variation 
to estimate the causal effect of attending a preferred school on examination performance. Next, 
we implement a new statistical test to examine whether the causal impacts for the marginal 
students differ from those of the average student. This is a useful methodological contribution 
because this new test can be implemented in other settings. Finally, we leverage survey data to 
estimate the causal effect of attending a preferred school on a broad set of social and economic 
outcomes measured in adulthood. 

A few key features of the Barbados data and context are well suited for this study. At the 
end of primary school, students take the Barbados Secondary School Entrance Examination 
(BSSEE). At BSSEE registration, students submit a ranked list of preferred secondary schools 
to the Ministry of Education, Science, Technology and Innovation (METI), and the METI uses a 
deferred acceptance algorithm (Gale and Shapley, 1962;  Abdulkadiroğlu et al., 2005) to assign 
students to schools based on their choices and their test scores. Dubins and Freedman (1981) 
and Roth (1982) show that, among the set of schools listed, truthfully ranking schools is a weakly 
dominant strategy. As such, using the ordered list of choices, we can reasonably infer 
preferences for schools. Being able to measure parental preferences is important because a 
disconnect between parental preferences for schools and schools’ causal impacts would have 
much broader implications if all parents share a common view of which schools are better than 
others. Unlike studies that implicitly assume that most parents prefer the same set of elite 
schools, we can examine this empirically. 

The second key feature is that the assignment rule used by the METI creates a test score 
cutoff for each school above which student applicants are admitted and below which they are 
not. This feature allows us to employ a regression discontinuity design to identify the causal 
effect of attending a preferred school (relative to a next-preferred school). A third key feature is 
that, while many school systems use test score cutoffs to assign students to the most elite 
schools (e.g., in Boston, Chicago, New York, the United Kingdom, and others), test score cutoffs 
are used for all schools in Barbados. This allows us to identify effects of attending a preferred 



5 
 

school across the entire distribution of school desirability. This distinguishes our paper from 
existing work and allows us to examine any differences between the impacts of the most elite 
schools and other preferred schools. 

We exploit administrative data on the BSSEE and all secondary school applications and 
assignments for 25 years (1987 through 2011). To track educational outcomes, we merge these 
student-level BSSEE data to administrative school exam records taken at the end of secondary 
and post-secondary studies between 1993 and 2016. To track long-run outcomes, we link the 
administrative BSSEE records to the 2016 Barbados Survey of Living Conditions and focus on 
cohorts aged 25 or older at the time of the survey. This survey is an official parish-level 
representative 2 percent survey of the population that was executed by the Barbados Statistical 
Service. It contains data on demographics, education, health, fertility, migration, consumption, 
employment, and income. 

Because we are interested in whether parents tend to prefer schools that improve child 
outcomes, our main treatment is attending a “preferred” school. To better understand the 
“preferred” school treatment, we first examine parent preferences. We find that preferences for 
secondary schools are nearly universally shared and stable over time. Specifically, we estimate 
a rank-ordered logit model and follow Avery et al. (2013) to construct a revealed-preference 
ranking of secondary schools. The correlation between school rankings in 1987 and 2011 is 
0.96. To gain a sense for how broadly held these rankings are, we examine how individual 
rankings in 2011 deviate from the aggregate 1987 rankings. Over 95 percent of individuals in 
2011 listed a top choice school with a higher 1987 ranking than their bottom choice school. In 
sum, there is broad consensus regarding what schools are most desirable, and this was largely 
unchanged over time. Because there is broad agreement about which schools are preferred, 
and students are assigned to schools based on test scores, we show that “preferred” schools 
are almost always more selective schools. 

Using a regression discontinuity design, we show that attending a preferred school is 
associated with higher-achieving peers, more academically homogeneous peers, and smaller 
cohorts. However, we find no improvement on secondary-school exam performance for girls and 
potentially worse performance for boys. This lack of improved test scores echoes findings from 
Cullen et al. (2006) in Chicago, Deming et al. (2014) in North Carolina, Clark (2010) in the United 
Kingdom, Abdulkadiroğlu et al. (2014) in Boston, Dobbie and Fryer (2014) in New York, Lucas 
and Mbiti (2014) in Kenya, and Ajayi (2015) in Ghana. 

To assess the claim that the reason for the null effect (in this study and others) is that 
marginal applicants are less responsive to school quality differences than the average applicant, 
we implement a new empirical test. For all the applicants to each school, we estimate the impact 
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of scoring above the cutoff for that school. This uncovers the impact of being admitted to that 
school relative to the next preferred schools for the marginal admits (who scored just above the 
cutoff). We then use fixed-effects models to estimate the value-added of each school for the 
average admit. We predict what the cutoff effect would be if school impacts for the marginal 
admit were equal to the average value-added. The cutoff effects for the marginal admits are 
almost identical to the predicted impacts, making it highly unlikely that a difference in 
responsiveness between the average and the marginal admits can explain the null impact of 
attending preferred schools.4 

 Looking at medium- and longer-run outcomes tells a different story from the short-run test 
score impacts. In administrative data, students at preferred schools are more likely to earn a 
post-secondary credential. In survey data, attending a preferred school is associated with more 
years of completed formal education. Consistent with the educational attainment effects of older 
individuals in our analytical sample, people who attended a preferred school were less likely to 
be in the labor force between the ages of 17 and 24 but more likely to be in school during those 
ages. However, these longer-run educational benefits are driven largely by women. Consistent 
with these educational patterns, attending a preferred school has no effect on earnings among 
males, but does increase female earnings. An exploration in to mechanisms reveals that the 
earnings increase for women is likely mediated by their being employed in higher status 
occupations (as opposed to being more productive at the same job). We provide evidence that 
the improved social networks at preferred schools may facilitate securing these higher status 
jobs.  

 To further help explain the gender differences, we examine fertility. Attending a preferred 
school is associated with reduced teen motherhood but no change in total fertility.5 This teen 
motherhood effect may explain why women at preferred schools are more likely to be in school 
between the ages of 17 and 24, attain more years of education by age 25, and have higher 
earnings while there is no such effect for men. It can also explain the sizable long-run benefits 
for women despite no test score effects, and it offers a potential explanation for the finding that 
women may benefit more from attending better high schools than men (Jackson, 2010; Deming 
et al., 2014). To our knowledge, this is the first evidence of a causal link between school quality 
and teen motherhood.  

 While economists have long proposed a causal link between educational attainment and 
health (Cutler and Lleras-Miney, 2006; Buckles et al., 2016; Clark and Royer, 2013; Malamud 

                                                      
4 Note that this test differs from that presented in Angrist and Rokkanen (2015) who make some reasonable but strong assumptions 
to extrapolate treatment impacts away from the cutoff. Our approach relies on much weaker assumptions and compares average 
impacts to marginal impacts. 
5 This pattern of delayed childbearing is similar to the finding of reduced female fertility found for attending elite UK schools in Clark 
and Del Bono (2016). However, delayed childbearing and reduced fertility are distinct phenomena. 
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et al., 2018), to our knowledge we are the first to use quasi-random variation to isolate the causal 
impact of school quality on health.6 Both girls and boys who attend preferred schools are more 
likely to be of normal weight and less likely to be overweight or obese. We also find positive 
effects on lifestyle behaviors, such as exercising regularly and having regular dental checkups. 
The overall health benefits are similar for both boys and girls, even though preferred schools 
increasing having medical insurance only for girls. This suggests that preferred schools may 
promote productive habits and attitudes that are not measured by test scores but contribute to 
overall well-being. This may represent a significant but previously undocumented return on 
school quality.  

 Many related studies examine the causal impact of attending one or a few elite schools 
within a local area (e.g., Clark, 2010; Abdulkadiroğlu et al., 2014; Dobbie and Fryer, 2014; Lucas 
and Mbiti, 2014; Ajayi, 2015; Clark and Del Bono, 2016). To better relate our analysis of all 
preferred schools to that of the elite school literature, we explore whether the patterns observed 
are due to elite schools or a more general pattern across all schools. By and large, our results 
suggest that the marginal impacts are similar for elite preferred schools and non-elite preferred 
schools such that the disconnect between parental preferences for schools and schools’ causal 
impacts (especially for boys) exists for all schools and not just the most elite. 

 Our results suggest that there is considerable agreement among parents regarding which 
schools are “good” and which are not. The patterns for girls suggest that school impacts on test 
scores may understate their impacts on adult well-being such that parents may be rational in 
their desires to send their children to schools that have no effect on test scores. However, the 
strong parental preferences for schools that have relatively small short- or long-run impacts for 
boys suggest that parents may be uninformed about the impacts of schools on boys. As such, 
there may be benefits to the provision of information to parents on the causal impacts of schools 
for different kinds of children. To our knowledge, this is the first paper to simultaneously examine 
parental preferences for schools and estimate the effect of attending a preferred school on test 
scores, educational attainment, health, and labor market outcomes. Accordingly, we build on, 
and bring together, the literatures on the long-run effects of schools, on the effect of elite schools 
on test scores, on the effect of education on health, and on parental preferences for schools 
(e.g., Hastings et al., 2006; Burgess et al., 2015; Black, 1999). 

 The remainder of this paper is as follows: Section 2 presents the background of the 
Barbados education system along with the student allocation mechanism to secondary schools. 
Section 3 presents the discrete choice analysis of parental preferences for schools. Section 4 
describes the data used to estimate school impacts. Section 5 outlines the identification strategy, 

                                                      
6 Jones, et al. (2011) use matching methods and find that students who attend better schools have better health. 
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Section 6 presents the results, and Section 7 concludes.  
 

2. The Barbados Education System 

The Barbados education system evolved from the English education system. At the end of 
primary school (after grade 6), students register to take the BSSEE and provide a list of ranked 
secondary school choices to the METI. Between 1987 and 1995, students could rank all schools, 
while after 1996 students could list up to nine school choices. The BSSEE is comprised of three 
subjects that all students take: mathematics, English language, and an essay. The total BSSEE 
score is the sum of the scores on the individual sections and ranges from 0 to 200. Using a 
computerized system, the METI ranks students by their BSSEE score and gender. No other 
criteria are used (e.g., sibling preferences or geographic proximity) for the ranking. Individual 
school capacity by gender is predetermined. The algorithm assigns the highest ranked student 
to her first choice. It then moves on to the second and treats her similarly. At some point, the 
procedure will reach a student whose first choice is full. At that point, it tries to assign the student 
to her second choice. If full, to the third choice and so on. Only once this student has been 
assigned to a school does the algorithm move onto the next person. Under this allocation 
mechanism, within the set of schools listed, truthfully revealing the rankings is a dominant 
strategy (Haeringer and Klijn, 2009; Pathak and Sönmez, 2013).  This feature will allow us to 
infer parental preferences from the choice lists. As pointed out in  Abdulkadiroğlu et al. (2017), 
when the number of choices is constrained (as in many settings), the algorithm is not strategy 
proof. We show that the inferred school preferences are very similar during the 1978-1995 period 
(when there were unlimited choices) and thereafter (when there were nine choices), so that this 
is not a cause for concern in our setting.  

Secondary school begins in first form (the equivalent of 7th grade) and ends at fifth form 
(the equivalent of 11th grade) when students take the Caribbean Secondary Education 
Certification (CSEC) examinations. These are the Caribbean equivalent of the British Ordinary 
levels (O-levels) examinations and are externally graded by the Caribbean Examinations 
Council (CXC). The CSEC examinations are given in 33 subjects. Passing five subjects including 
the two core subjects of English language and mathematics is considered completing secondary 
school. This is a sufficient entry requirement for less prestigious tertiary institutions such as 
community colleges, technical schools, or training schools. It can also be used for entry at some 
colleges in the United States. Students who complete these requirements continue their studies 
at a tertiary institution (if accepted) or pursue the Caribbean Advanced Proficiency Examination 
(CAPE), also externally graded by CXC. 
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The CAPE is a tertiary-level program. Students seeking to eventually attend University (as 
opposed to a community college) will take the CAPE. The CAPE is the equivalent of the British 
Advanced levels (A-levels) examinations and was launched in 2005. The CAPE is a two-year 
program and includes three two-unit subjects (each unit taken in different academic years) and 
two core subjects (Caribbean Studies and Communication Studies). While requirements vary 
across programs, passing at least two CAPE units is typically required for entry to the University 
of the West Indies. Passing six CAPE units is accepted as a general admission requirement to 
British higher education institutions. The post-secondary qualification of a CAPE Associate’s 
Degree is awarded for passing seven CAPE units, including Caribbean Studies and 
Communication Studies. 

 

3. The Revealed Preference Ranking of Schools 

One key contribution of this work is that we can shed light on what drives parental preferences 
by linking parental preferences for schools directly to schools’ causal impacts. To better 
understand parental preferences for secondary schools we follow Avery et al. (2013) and exploit 
the choice data to construct a revealed-preference ranking of secondary schools in Barbados. 
Intuitively, because each student lists a set of schools that they wish to attend, in order of 
desirability, and the allocation algorithm is truth-revealing, one can determine which are the more 
preferred schools by seeing which individual schools tend to be systematically higher in 
individuals’ choices. The ranking approach is very similar to that used for ranking players in 
tournaments where players are observed in several head-to-head comparisons (i.e., ranked 
above other schools on the list) are more highly ranked, and schools that are preferred over 
more highly ranked schools are themselves more highly ranked. Because each list of 𝑋𝑋 ranked 
schools includes ∑ (𝑋𝑋 − 𝑛𝑛)𝑋𝑋−1

𝑛𝑛=1 , such head-to-head comparisons and thousands of students 
submit such lists each year, constructing such rankings from the choice data is feasible. We 
expand on the model below. 

Each student 𝑖𝑖, has a utility value, 𝑈𝑈𝑖𝑖𝑖𝑖, for each secondary school 𝑗𝑗, given by (1) below.

  

𝑈𝑈𝑖𝑖𝑖𝑖 = 𝜃𝜃𝑗𝑗 + 𝜀𝜀𝑖𝑖𝑖𝑖 (1)   

The parameter 𝜃𝜃𝑗𝑗 is an index of the overall desirability of school 𝑗𝑗, and the random error term is 
𝜀𝜀𝑖𝑖𝑖𝑖. The parameter 𝜃𝜃𝑗𝑗 does not vary at the student level and therefore represents a school’s 
average desirability.  Let 𝜃𝜃𝑗𝑗

𝑟𝑟𝑖𝑖𝑖𝑖 be the desirably of the school  𝑗𝑗 that individual 𝑖𝑖 ranked 𝑠𝑠(𝑟𝑟𝑖𝑖 = 𝑠𝑠) 
in their list of options 𝑅𝑅𝑖𝑖.  Let 𝑈𝑈𝑖𝑖𝑖𝑖

𝑟𝑟𝑖𝑖𝑖𝑖be the utility individual 𝑖𝑖 gets from school 𝑗𝑗 that she ranked in 
position 𝑠𝑠, so that 𝑈𝑈𝑖𝑖𝑖𝑖

𝑟𝑟𝑖𝑖1 is her utility from the school she ranked first, 𝑈𝑈𝑖𝑖𝑖𝑖
𝑟𝑟𝑖𝑖2 her utility for the school 
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ranked second, and so on. Because the assignment mechanism is truthfully revealing (Haeringer 
and Klijn, 2009; Pathak and Sönmez, 2013), we make the behavioral assumption that higher-
ranked schools are preferred to lower-ranked schools. It therefore follows that the probability 
that an individual 𝑖𝑖 submits a particular ranking over the set of listed schools is 

 

P r ��𝑈𝑈𝑖𝑖𝑖𝑖
𝑟𝑟𝑖𝑖1 > 𝑈𝑈𝑖𝑖𝑖𝑖

𝑟𝑟𝑖𝑖𝑖𝑖 , 1 < 𝑚𝑚,∀𝑚𝑚 ∈ {2, … ,𝑅𝑅𝑖𝑖}� ∩…∩ �𝑈𝑈𝑖𝑖𝑖𝑖
𝑟𝑟𝑖𝑖𝑅𝑅𝑖𝑖−1 > 𝑈𝑈𝑖𝑖𝑖𝑖

𝑟𝑟𝑖𝑖𝑅𝑅𝑖𝑖�� (2) 

 

As is common practice in the discrete-choice literature, we assume that 𝜀𝜀𝑖𝑖𝑖𝑖 follows an extreme 

value distribution so that the probability of an individual 𝑖𝑖 submits a particular ranking over all 
ranked schools is a product of standard logit formulas. The likelihood (or probability) that 
individual 𝑖𝑖 choose ranking {𝑟𝑟𝑖𝑖1, 𝑟𝑟𝑖𝑖2, … ,𝑅𝑅𝑖𝑖} is now: 

 

𝑙𝑙𝑖𝑖(𝜃𝜃) = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃[𝑟𝑟𝑖𝑖1, 𝑟𝑟𝑖𝑖2, … ,𝑅𝑅𝑖𝑖] =
exp �𝜃𝜃𝑗𝑗

𝑟𝑟𝑖𝑖1�

∑ exp�𝜃𝜃𝑖𝑖𝑖𝑖
𝑟𝑟𝑖𝑖𝑖𝑖�𝑅𝑅𝑖𝑖

𝑘𝑘=1
∙

exp �𝜃𝜃𝑗𝑗
𝑟𝑟𝑖𝑖2�

∑ exp�𝜃𝜃𝑖𝑖𝑖𝑖
𝑟𝑟𝑖𝑖𝑖𝑖�𝑅𝑅𝑖𝑖

𝑘𝑘=2
…

exp �𝜃𝜃𝑗𝑗
𝑟𝑟𝑖𝑖𝑅𝑅𝑖𝑖−1�

exp �𝜃𝜃𝑗𝑗
𝑟𝑟𝑖𝑖𝑅𝑅𝑖𝑖−1� + exp �𝜃𝜃𝑘𝑘

𝑟𝑟𝑖𝑖𝑅𝑅𝑖𝑖�
(3) 

  

The full log likelihood of observing all the choices is simply the sum of the log of the individual 
likelihoods across all individuals. 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(ex p(𝜃𝜃)) = � log 𝑙𝑙𝑖𝑖(𝜃𝜃)
𝑁𝑁

𝑖𝑖=1

(4)  

One can obtain estimated preferences for each school 𝜃𝜃𝚥𝚥�   by finding the 𝜃𝜃𝑗𝑗s that maximize the 

full log likelihood. Practically, this is achieved by estimating a rank-ordered logit model with a full 
set of indicator variables for each school in Barbados. Schools with larger  𝜃𝜃𝚥𝚥�s are those that 
tend to be listed higher up in individuals’ ordered lists. The school with the highest  𝜃𝜃𝚥𝚥�  will be the 

school that is most likely to be preferred (on average) in head-to-head comparisons with other 
schools. After running this model, we rank schools by their estimated desirability to obtain a 
revealed-preference ranking over all schools. If students who list both schools A and B tend to 
list school A above school B, and students who list both schools B and C tend to list school B 
above school C, our approach will rank school A above B and B above C.  

 
3.1. The Estimated School Rankings 

To determine whether the preference rankings are meaningful, we first establish that they are 
stable over time. The top five schools in 1987 remain the top five schools in 2011 with the only 



11 
 

difference being that the top two schools swapped places.7 While there is some movement 
among the lower-ranked schools, the rankings are quite stable across this 25-year period. 
Overall, the correlation between the revealed preference rank in 1987 and the revealed 
preference rank in 2011 is 0.96. The similarity in rankings when parents can rank all schools 
(and therefore truthful revelation is a dominant strategy) and when they can rank up to nine 
schools, indicates that one can reliably infer parental preferences from choice data when parents 
can only rank nine choices. A scatter-plot of the rankings across these two years is presented 
in the left panel of Figure 1. The regression predicting the rank in 2011 based on the rank in 
1987 has a slope of 0.97 and an R-squared of 0.91. The p-value test that the slope is equal to 
1 is 0.7. This suggests that the average view regarding which schools are most desirable has 
been very stable over time. 

 Having established that aggregate school rankings are stable over time, we now explore 
how much the average view is shared among individuals. To do this, we rank schools in each 
year, and then estimate the likelihood of a given school being listed as a preferred school in a 
given year as a function of its aggregate ranking in that year.8  If there is widespread agreement 
among parents about what the most desirable schools are, aggregate rankings would predict 
being ranked more highly by parents and rank reversals (i.e. putting a lower-ranked school 
higher on one’s choice list) would be very uncommon. Conversely, if there is considerable 
heterogeneity in parents’ views regarding which schools are more desirable, aggregate rankings 
may predict being ranked more highly by parents on average, but rank reversals would be 
common. The average ranking in a given year is a very strong predictor of individual choices in 
that year. A school is 44 percent more likely to be more highly ranked by an individual if it is one 
rank higher in the aggregate, three times as likely to be more highly ranked if it is three ranks 
higher in the aggregate, and 38 times as likely to be more highly ranked if it is 10 ranks higher 
in the aggregate. 

 To assuage concerns that the analysis above uses an in-sample prediction (for which 
there may be some mechanical correlation), we also rank schools based on the choice lists in 
1987, and the estimate the likelihood of a given school being listed as a preferred school in 2011 
as a function of its ranking in 1987. We estimate this using a rank-ordered logit model on the 
2011 choices in which the 1987 ranking enters the model as the sole predictor. Because we use 
the rankings from a different year, this model will understate the extent to which the individual 
choices are similar to the average view. However, the patterns are very similar. The 1987 ranking 

                                                      
7 Using the revealed preference rankings, the five top-ranked schools in 1987 were (1) Harrison College (HC), (2) Queens College 
(QC), (3) Combermere School (CS), (4) St. Michaels School (SM), and (5) Christ Church Foundation (CF). A quarter century later, in 
2011, the top-ranked schools were (1) QC, (2) HC, (3) CS, (4) SM, and (5) CF.  
8 We estimate a rank-ordered logit model in which the aggregate ranking enters the model as the sole predictor. 
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is an extremely powerful predictor of rankings in subsequent years. A school is 33 percent more 
likely to be more highly ranked in 2011 if it is one rank higher in 1987, and more than 19 times 
as likely to be more highly ranked in 2011 if it is 10 ranks higher in 1987.9 These patterns suggest 
that while parents may disagree regarding which schools are most desirable among very 
similarly ranked schools, there is considerable agreement regarding which group of schools is 
most desirable. To allow for the possibility that boys and girls may have different preferences for 
schools, we examined differences by student gender, and the results are virtually identical.10  

 Because the highest-achieving students are admitted to their top choices first, if most 
students rank schools similarly, then the more preferred schools will also be more selective than 
the less preferred schools. To show that the data bear this out, the right panel of Figure 1 shows 
the cumulative distribution of the mean peer incoming BSSEE scores of students’ school 
choices. The distribution of the mean BSSEE scores of first-choice schools is to the right of the 
second-choice schools, which is to the right of the third-choice schools, and so on. That is, 
parents and students tend to place schools with higher-achieving peers higher up on their 
preference ranking. This is further evidence that most parents agree on which schools are most 
desirable. As above, we allow for the possibility that boys and girls may have different 
preferences for schools, we examined differences by student gender, and the results are virtually 
identical. Given that the impact of schools may differ by student gender, this is an important 
finding.  

 Our analysis reveals that preferences have been very stable over time, and that there was 
considerable agreement regarding which schools were the most desirable. If parents were 
rational and well informed, preferred schools should have improved child outcomes (in either the 
short or the long run or both). The extent to which these clear preferences for “preferred” schools 
reflect schools’ actual impacts on students is the empirical question we tackle in the remainder 
of this paper. 
 

4. Data 

Our analytic sample is the full population of students who applied to a public secondary school 
in Barbados between 1987 and 2011.11 We obtained the official administrative BSSEE data for 
each of these years. These data include each student’s name, date of birth, gender, primary 

                                                      
9 Put differently, a rank reversal would occur only about 42 percent of the time for schools that were one rank apart in 1987, under 30 
percent of the time for schools that were four ranks apart in 1987, and less than 6 percent of the time for schools that were 10 ranks 
apart. Appendix Figure A1 shows the estimated likelihood that a parent would rank a school above another school in 2011 as a 
function of the difference in the school rankings in 1987.  
10 We calculated revealed preference rankings pooling all BSSEE cohorts separately by gender. The correlation between girls’ 
rankings and boys’ rankings is 0.996. 
11 Around 91 percent of secondary students in Barbados are enrolled in the public education system. 
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school attended, parish of residence, total score on the BSSEE exam, the ranked list of 
secondary schools the student wished to attend, and the administrative assignment by the 
Ministry of Education.12  

 Administrative Examination Data: To track student performance in secondary school, 
we collected data on the CSEC examinations (taken five years after secondary school entry, 
typically at age 16). The CSEC data are available for all years between 1993 and 2016. These 
data include the student’s name, date of birth, gender, scores for each subject examination 
taken, and the secondary school attended. The CSEC data were linked to the 1987 through 
2011 BSSEE cohorts by full name (first, middle, and last), gender, and date of birth.13 To track 
post-secondary outcomes for the full population, we also collected data from the CAPE 
examinations (completed after two years of post-secondary school studies, typically at age 18). 
The CAPE data are available for years 2005 through 2016 and are linked to the 1998 through 
2009 BSSEE cohorts by name, gender, and date of birth.14 As with the CSEC, these data contain 
scores for each subject examination taken. 

Survey data: Our longer-run outcomes come from survey data. Our survey data are from 
the 2016 Barbados Survey of Living Conditions. The reference BSSEE cohorts (1987-2011) 
were between 17 and 40 years old when surveyed in 2016. This survey is a large parish-level 
representative two-percent survey of the population. It included 2,508 households and 7,098 
individuals. The survey data was collected over a 12-month period (12 randomly distributed sub-
samples from February 2016 until January 2017). The survey collected data on demographics, 
education, health, fertility, migration, consumption, employment, and income. The national 
survey was purposely designed to be matched with the BSSEE administrative data at the 
individual level and asked for full names at age 10 (to account for any name changes), date of 
birth, and gender. For individuals who would have been in the 1987 through 2011 BSSEE cohorts 
(primarily born between years 1976 and 1999), we match roughly 90 percent of respondents to 
the administrative data. Appendix Figure A3 displays the geographical distribution of the 
matched survey observations.  

As we show in Section 6.1, admission to a preferred school is unrelated to being matched 
with the survey. Also, in Appendix Table 1 we show that the test score effects measured at the 
end of secondary school (CSEC) are similar in both the full administrative dataset and among 
those who are linked to the surveys. Accordingly, we are reasonably confident that our estimated 

                                                      
12 Appendix Figure A2 shows the raw broadsheets with student names redacted. These broadsheets were scanned and digitized for 
merging with other datasets.  
13 We matched 90 percent of individuals observed in the CSEC administrative records to the BSSEE records. The 10 percent rate of 
unmatched individuals closely mimics the 9 percent enrollment rate in private secondary schools who would not have taken the 
BSSEE.  
14 We matched 96 percent of individuals observed in the CAPE administrative records to the BSSEE records.  
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long-run impacts on the survey sample generalize to the full population. 

 
4.1. Summary Statistics 

Table 1 presents summary statistics for the full administrative data. The population is roughly 
half female, and the average admitted cohort size across all schools is about 157 students. 
Overall, about 68 percent of students took at least one CSEC subject.15 The average student 
passed about two CSEC subjects and 26.8 percent passed five subjects, including English and 
Math (i.e., qualified for tertiary education). We also break up the sample by the rank of the 
student’s assigned school (based on the revealed preference rankings from Section 3). Among 
those assigned to the top ranked schools, incoming BSSEE scores are roughly one standard 
deviation higher than the average of the population (column 2). As one might expect given the 
large differences in incoming scores, students at these schools have much better outcomes than 
average. About 60 percent of students at the most preferred schools qualify for a tertiary 
education (column 2), while only 4.1 percent of students at the least selective schools do (column 
4). In terms of post-secondary education, among students at the most preferred schools, 36.8 
percent took at least one CAPE unit and 21 percent earned an associate’s degree. Remarkably 
almost no students in the bottom third-ranked schools continue to take the post-secondary exam. 

The top panel of Table 2 presents summary statistics for individuals who are matched to 
the survey data (1,545 observations) by age. For individuals between the ages of 17 and 24 
(column 2), roughly 56 percent were in the labor market, and 31.4 percent were in school. 
However, consistent with most individuals completing their schooling by age 25, among those 
between the ages of 25 and 40 (column 3), roughly 86 percent were in the labor market and only 
1 percent was in school. The lower panel of Table 2 shows that, among those who would have 
completed schooling (ages 25 to 40), the average number of years of completed education is 
11.33.  

The lower panel of Table 2 also breaks up the sample of individuals 25 to 40 years of age 
when surveyed by the rank of the assigned school. Students at the most preferred schools 
average 15.4 years of completed education, and 52.3 percent of them hold a university degree 
(column 2), while students at the least preferred schools average 8.5 years of education, and 
only 2.6 percent hold a university degree (column 4). Employment quality is noticeably better for 
individuals assigned to the most selective schools. Among them, 33 percent have a managerial 
or professional position and average monthly earnings are about US$1,936. This contrasts with 

                                                      
15 Because CSEC taking is not mandatory, this measure is not equivalent to secondary school completion. Students receive a School 
Leaving Certificate regardless of CSEC taking after completing five years of secondary school. About 87.5 percent of surveyed 
individuals in our reference BSSEE cohorts report having completed secondary school. 
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individuals of the middle and bottom third of schools, among whom only 10.2 and 2.8 percent, 
respectively, hold a managerial or professional position and for whom average salaries are 
roughly US$1,230 and US$950, respectively. One interesting pattern is that individuals at the 
most selective schools rely more on their school network when seeking employment. Indeed, 
1.1 percent of individuals at the most selective schools engaged in networking with fellow 
students while almost nobody within the middle and bottom third of schools reported doing so. 
This provides the first suggestive evidence that access to better job-referral networks may be 
one benefit of attending a more selective school. 

Table 2 also reports the incidence of teen motherhood. There are large differences in the 
rate of teen motherhood across schools. Only 3.6 percent of women assigned to the most 
selective schools had a live birth before age 18, while 9.8 and 17 percent of women in the middle 
and bottom third of schools did. Preventive health behaviors are also more prevalent among 
individuals assigned to more selective schools. Indeed, the likelihoods of having medical 
insurance, attending yearly dental checkups, and attending a gym at least once a week are 
higher among individuals at the most selective schools (column 2). These likelihoods 
monotonically decrease for the middle and bottom third of schools (columns 3 and 4, 
respectively). 

The descriptive statistics reveal better outcomes for individuals assigned to more 
preferred (or selective) schools in a wide range of domains. Next, we describe the identification 
strategy used to determine whether these observed relationships are causal. 
 

5. Empirical Strategy 

As described in Section 2, the assignment mechanism creates a test score cutoff above which 
student applicants to that school are admitted and below which they are not. This setup lends 
itself to a regression discontinuity design. Because of the assignment mechanism, the 
likelihood of attending a preferred school increases in a discontinuous manner as a student’s 
BSSEE score goes from below to above the cutoff score for a preferred school. If nothing else 
differs for those with test scores just above and below the cutoff, any discontinuous change in 
outcomes as a student’s BSSEE score goes from below to above the cutoff score for a preferred 
school can be attributed to attending a preferred school (Hahn et al., 2001). We exploit the 
discontinuity in the admission probability through the cutoff by estimating the following two-stage 
least-squares (2SLS) regression:  

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜋𝜋 ∙ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑓𝑓1(𝐵𝐵𝐵𝐵𝐵𝐵𝐸𝐸𝑖𝑖𝑖𝑖) + 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝛾𝛾1 + 𝐶𝐶1,𝑗𝑗𝑗𝑗 + 𝑃𝑃1,𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜀𝜀1,𝑖𝑖𝑖𝑖𝑖𝑖 (5) 
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𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛽𝛽 ∙ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑓𝑓2(𝐵𝐵𝐵𝐵𝐵𝐵𝐸𝐸𝑖𝑖𝑖𝑖) + 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝛾𝛾2 + 𝐶𝐶2,𝑗𝑗𝑗𝑗 + 𝑃𝑃2,𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜀𝜀2,𝑖𝑖𝑖𝑖𝑖𝑖 (6) 

 

In the first stage equation (5) we predict whether an individual 𝑖𝑖 attends school 𝑗𝑗 at time 𝑡𝑡, 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖, as a function of scoring above the cutoff for preferred school  𝑗𝑗 at time 𝑡𝑡, 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖, 

and controls. To account for latent outcomes that vary smoothly through the cutoffs, we control 
for a cubic in BSSEE and a cubic of BSSEE interacted with the 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 indicator ( 𝑓𝑓1(𝐵𝐵𝐵𝐵𝐵𝐵𝐸𝐸𝑖𝑖𝑖𝑖)). 
We also include parish of residency fixed effects and gender (included in 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖).16 

Following Jackson (2010) and Pop-Eleches and Urquiola (2013), we stack the data 
across all application pools for each year to each school (that is, we stack data for all the cutoffs 
into a single cutoff), and include cutoff fixed effects (𝐶𝐶1,𝑗𝑗𝑗𝑗 ). The inclusion of cutoff fixed effects 

ensures that all comparisons are among students who applied to the same school in the same 
year. In the second stage (equation (6)), we regress the outcomes of interest (𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖) on preferred 

school attendance (estimated in the first stage) and the same set of controls as in equation (5). 
The second stage excluded instrument is 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖. Because individuals can enter the data for 

multiple cutoffs, the estimated standard errors are adjusted for two-way clustering at the student 
and BSSEE relative score levels. 

One important feature of our data is that we observe the ranked school choices of every 
student. These choices reflect student preferences and are much stronger predictors of student 
outcomes than variables typically observed in most datasets. We exploit these data by adding 
choice group fixed effects (𝑃𝑃1,𝑗𝑗𝑗𝑗) as additional controls to increase precision. These choice group 

fixed effects define the unique set of schools in a student’s list along with the unique ranking of 
those schools. As such, students in the same choice group list the same set of schools in the 
exact same order. Importantly, we show that all of our results are robust to excluding these 
powerful controls. 

The key identifying assumption behind this RD-based model is that nothing other than the 
change in likelihood of attending a preferred school changes in a discontinuous manner through 
the cutoff. We test this assumption in several ways. First, following McCrary (2008), we test for 
a discontinuity in density through the cutoff and find no economically or statistically significant 
change in density either in the full population or in the matched survey sample (see Table 3, 
panel A). Second, as an additional test for smoothness through the cutoff, we estimate reduced 
form models of each of our predetermined covariates. These include indicators for month of 
birth, the average BSSEE standardized score of the primary school attended, the average 

                                                      
16 Note that the BSSEE scores are included as relative scores (i.e., net of the cutoff score for a preferred school). 
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BSSEE standardized score of the incoming class corresponding to each secondary school 
choice, and indicators for the parish of the primary school (Appendix Table 2). None of the 33 
coefficients in either the full population or the survey sample is statistically significant at the 5 
percent level. Third, to summarize impacts on all these covariates into a more efficient test, we 
create the predicted number of CSEC subjects passed, predicted number of CAPE units passed, 
predicted years of education, and predicted wages for each student (based on all these 
covariates). We report the estimated coefficients on the 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 indicator on the predicted 

outcomes in Table 3, panel B.17 Reassuringly, in all subsamples, predicted outcomes vary 
smoothly through the cutoffs. Having determined that our estimation strategy is likely valid, we 
now present our regression-discontinuity estimates.  
 

6. Results 

6.1. The First Stage and Survey Representativeness 

Table 3, panel C presents the first-stage estimates on the 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 indicator from equation (5). 

In the full sample (columns 1 and 2), scoring above a cutoff increases the likelihood of attending 
a preferred school by 81 percentage points. Among observations within 0.75 standard deviations 
from the cutoff, this falls to 74 percentage points. The left panel of Figure 2 illustrates the first 
stage, showing the discontinuous jump in the likelihood of attending a preferred school through 
the cutoff. To ensure that the survey is representative of the population (as it was designed to 
be), we estimate the first stage on the survey sample (columns 5 and 6). The first stage estimate 
is almost identical in the population and the survey sample.18 We also test whether the matching 
rate with our survey data varies through the cutoffs (Table 3, panel D). Scoring above the cutoff 
for a preferred school is unrelated to being observed in the survey, lending credibility to the 
survey results. 

 To describe the “preferred school” treatment, Table 3, panel E reports 2SLS estimates of 
attending a preferred school on various school characteristics. Attending a preferred school 
increases peer quality (average BSSEE scores) by 0.25 standard deviations (illustrated in the 
right panel of Figure 2). This effect is consistent across all samples and specifications. Also, 
attending a preferred school reduces the school-level coefficient of variation of incoming BSSEE 
scores. This implies that attending a preferred school not only increases peer quality but also 
provides an environment with more homogeneous students in terms of incoming academic 
achievement. While the peer effects literature is mixed (Sacerdote, 2014), one might expect that 

                                                      
17 We also report reduced form estimates for all predicted CSEC and CAPE outcomes as well as predicted years of education and 
wages across different samples and by gender in Appendix Table 3.  
18 The first stage estimates are also equivalent between women and men. 
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higher-achieving and more homogeneous peers would lead to improved outcomes. We now 
examine empirically the extent to which this is true.19 

 
6.2. Effects on Secondary School Academic Achievement 

Table 4, panel A presents estimated impacts on several CSEC outcomes measured at the end 
of secondary school. To retain consistency with the cohorts for which CAPE data are also 
available, we examine outcomes for the BSSEE cohorts from 1998 to 2009.20 We present 
estimated preferred school impacts in models that do not include the choice group effects (odd-
numbered columns) and those that do (even-numbered columns). Given the similarity on the 
results, in the interest of brevity, we focus our discussion on the full model with all controls. 

Students who attend preferred schools do not perform better on the secondary school 
leaving exams and may in fact do slightly worse. Overall (column 2), we find no effect on taking 
the CSEC exams, no effect on the number of exams passed, and a small negative effect on the 
likelihood of qualifying for tertiary education (passing five subjects including English language 
and mathematics). This negative impact on passing the secondary school exam is marginally 
statistically significant at the 10 percent level. Looking at boys and girls separately, there is a 
negative impact on the number of subjects passed for boys (marginally statistically significant) 
and a small positive (not statistically significant) impact on that for girls. Looking at the overall 
effect on taking the CSEC, the effect is similar across both groups and cannot be distinguished 
from zero. The reduced form impacts of scoring above the cutoff on qualifying for tertiary 
education are presented visually in the top panel of Figure 3. The visual evidence is consistent 
with the regression results. The top panel of Appendix Figure A4 shows that the results are 
similar for any choice of bandwidth.  

 The results suggest no impact of attending a preferred school on secondary school test 
scores and possible deleterious effects for boys. These findings echo previous studies 
documenting zero effects on test scores from attending more selective schools (Clark, 2010; 
Abdulkadiroğlu et al., 2015; Bui et al., 2014; Lucas and Mbiti, 2015; Ajayi, 2015). The possible 
ill effects for boys are consistent with evidence documenting negative effects of elite school 
attendance on school completion (Dustan et al., 2017).21 These estimated secondary school test 
score impacts, coupled with the strong documented preferences for these schools, beg the 

                                                      
19Attending a preferred school also reduces cohort size by about 12 students. We also calculated the Herfindahl-Hirschman Index 
(HHI) in terms of parish of residency for each incoming class. This measure summarizes how geographically diverse classes are. We 
find no robust effect on geographic diversity. 
20 Appendix Table 1, panel A shows estimated CSEC effects using the BSSEE cohorts 1987-2002 (25 to 40 years old when surveyed) 
in whom we focus to estimate longer-term effects later. Results are similar.  
21 Appendix Table 1, panel B shows estimated effects on the same outcomes but restricting the sample to individuals that were 
matched with the survey data. Results are similar suggesting null effects.  
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question of whether marginal admits are less responsive to preferred school attendance than 
the average student. We now tackle this question.  

 
6.3. Do the Null Effects Generalize to the Average Student? 

Because our estimated preferred school effects are based on applicants who score just above 
or just below the cutoff for a preferred school, this local treatment effect may not reflect the 
experiences of the average student at a preferred school. This limitation applies to all similar 
studies that rely on test score cutoffs to identify school impacts (e.g., Jackson, 2010; Clark, 2010; 
Pop- Eleches and Urquiola, 2013  Abdulkadiroğlu et al., 2014;  Bui et al., 2014;  Lucas and Mbiti, 
2014; Dobbie and Fryer, 2014; Ajayi, 2015). In these studies (as here) the estimated treatment 
effect is the impact of being the lowest scoring student at a preferred school relative to being a 
more typical student at a less preferred school, which may be different from the average effect 
of attending a preferred school relative to a less preferred school. If so, the small benefits to 
attending a preferred school for the marginal admit could be reconciled with strong parental 
preferences for such schools if the average impacts were more positive than those for the 
marginal student who scores just above the cutoff. Contributing to this literature 
methodologically, we implement a test for whether the estimated school impacts for the marginal 
students are similar to those for the average student. This test will help potentially explain the 
null impacts we find in Barbados and possibly other settings. 

 
6.3.1 The Empirical Test 

We now introduce some notation. The impact of attending school 𝑗𝑗 for the average student is 

𝜇𝜇𝑗𝑗1 while that for the marginal student is 𝜇𝜇𝑗𝑗2. The outcome for marginal student 𝑖𝑖 at school 𝑗𝑗 is 

 

𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜇𝜇𝑗𝑗2 + 𝑓𝑓2(𝐵𝐵𝐵𝐵𝐵𝐵𝐸𝐸𝑖𝑖𝑖𝑖) + 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝛾𝛾2 + 𝐶𝐶𝑗𝑗𝑗𝑗 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 (7) 

 

The estimated effect on outcome 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 of scoring above the admissions cutoff for any school 𝑗𝑗 
is 𝐸𝐸�Γ𝑗𝑗,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎� = 𝐸𝐸�Y𝑖𝑖𝑖𝑖𝑖𝑖�𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 1� − 𝐸𝐸�Y𝑖𝑖𝑖𝑖𝑖𝑖�𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 0�. Substituting (7) into this expression and 

taking expectations, in the neighborhood of the cutoff yields 

𝐸𝐸�Γ𝑗𝑗,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎� = 𝐸𝐸�𝜇𝜇𝑗𝑗2�𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 1� − 𝐸𝐸�𝜇𝜇𝑗𝑗2�𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 0� (8) 

In expectation, the RD estimate of scoring above the cutoff for school 𝑗𝑗 simply reflects the 
difference through that cutoff in the attended school impacts for the marginal students. This is 
intuitive; scoring above the cutoff for school 𝑗𝑗 increases the likelihood of attending school 𝑗𝑗 and 
reduces the likelihood of attending the next-preferred schools. If school 𝑗𝑗 is no more effective for 
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the marginal admit (on average) than the next-preferred schools, then the cutoff effect for school 
𝑗𝑗 will be zero. Conversely, the cutoff for school 𝑗𝑗 will only have a positive impact if school 𝑗𝑗 is 
more effective at improving outcomes for the marginal admit (on average) than the next-
preferred schools.  

Now consider impacts for the average admit, 𝜇𝜇𝑗𝑗1. One can estimate the impact of school 
𝑗𝑗 for the average student, 𝜇𝜇𝑗𝑗1, in a value-added framework. Where 𝐼𝐼𝐽𝐽=𝑗𝑗 is an indicator variable 

equal to 1 if student 𝑖𝑖 attends school 𝑗𝑗, the outcome for average student 𝑖𝑖 at school 𝑗𝑗 is 

 
𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐼𝐼𝑖𝑖,𝐽𝐽=𝑗𝑗𝜇𝜇𝑗𝑗1 + 𝑓𝑓(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐸𝐸𝑖𝑖𝑖𝑖) + 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝛾𝛾 + 𝐶𝐶𝑗𝑗𝑗𝑗 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖 (9) 

One can obtain an estimate of the value-added of school 𝑗𝑗 for the average attendee by 
estimating equation (9) by OLS. The resulting estimate 𝜇̂𝜇𝑗𝑗1 is simply a school fixed effect that 

reflects the school-level average outcomes after accounting for observable student 
characteristics such as incoming test scores, choices, and demographics.22 

As discussed above, the RD estimate of scoring above the cutoff for school 𝑗𝑗 on outcomes 
reflects the difference through that cutoff in the attended school impacts (i.e. 𝛿𝛿�𝜇𝜇𝑗𝑗2�/𝛿𝛿(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴)) 
for the marginal admits. We define Γ𝑗𝑗,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝as the difference through that cutoff in the 
estimated value-added of the attended school (i.e. 𝛿𝛿�𝜇̂𝜇𝑗𝑗2�/𝛿𝛿(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴)) among that same marginal 
admits. If (i) the value-added estimate is unbiased such that 𝐸𝐸�𝜇̂𝜇𝑗𝑗1� = µ𝑗𝑗1, and (ii) the effect of 
school 𝑗𝑗 for the marginal admit is the same as the average admit such that 𝜇𝜇𝑗𝑗1 = 𝜇𝜇𝑗𝑗2, then (iii) in 

expectation, the change in the average estimated value-added of the school attended through 
the cutoff for school 𝑗𝑗 should be equal to the actual change in outcomes through that cutoff.23 
We test this empirically by estimating Γ𝑗𝑗,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 and Γ𝑗𝑗,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 for each school 𝑗𝑗 across all the 

CSEC outcomes, and then we regress one on the other. To avoid endogeneity, we use out-of-
sample (or leave-year-out) estimates of school value-added. If our school value-added estimates 
are biased, then the slope of this regression will differ from 1. In addition, if the school impacts 
are different for the marginal student from those for the average student, then this slope will also 
differ from 1. However, if (a) our school value-added estimates are unbiased, and (b) the school 

                                                      
22 Under the assumption that  𝐸𝐸�𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖�𝐼𝐼𝑖𝑖,𝐽𝐽=𝑗𝑗 ,𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐸𝐸𝑖𝑖𝑖𝑖,𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖,𝐶𝐶𝑗𝑗𝑗𝑗,𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖� = 0 this will be an unbiased estimate.  
 
23 One can estimate the impact of scoring above the cutoff for school 𝑗𝑗 on the average value-added of the schools students attend, 
𝜇̂𝜇𝑗𝑗1, by replacing the actual outcomes with the estimated value-added of the attended school and estimating the model below.  
    

𝜇̂𝜇𝑗𝑗1 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝜁𝜁𝑗𝑗 + 𝑓𝑓(𝐵𝐵𝐵𝐵𝐵𝐵𝐸𝐸𝑖𝑖𝑖𝑖) + 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝛾𝛾 + 𝐶𝐶𝑗𝑗𝑗𝑗 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖 (10) 

 
The parameter   𝜁𝜁𝑗𝑗  is the difference in school value-added between those who score above the cutoff for school 𝑗𝑗 compared to those 
who score just below. In the neighborhood of the cutoff, this is  

 
𝐸𝐸�𝜁𝜁𝑗𝑗�𝑋𝑋𝑖𝑖 ,𝐵𝐵𝐵𝐵𝐵𝐵𝐸𝐸𝑖𝑖� = 𝐸𝐸�𝜇𝜇𝑗𝑗1�𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 1� − 𝐸𝐸�𝜇𝜇𝑗𝑗1�𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 0� (11) 
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impacts are the same for the marginal student as for the average student, then the slope will be 
equal to 1. 

Pooling the estimated impacts for each cutoff (preferred school) across all CSEC 
outcomes, we plot the estimated impacts against the difference in school value-added in Figure 
4. The estimated slope is 0.97, revealing that on average the predicted impacts are very similar 
to the actual impacts. The p-value associated with the null hypothesis that the slope is zero has 
a p-value of less than 0.001, and the p-value associated with the null hypothesis that the slope 
is 1 has a p-value of 0.836. This is compelling evidence that the null impacts on short-run test 
scores are not because the impact for the marginal student is more negative than that for the 
average student.24 
 

6.4. Effects on Post-Secondary Certification and Educational Attainment  

Having established that the lack of positive preferred school effects on secondary school 
outcomes was not driven by the marginal students but was common to all students, we now 
examine the possibility than preferred schools impact longer-run outcomes. Looking beyond 
secondary school outcomes, we examine CAPE taking (a measure of continued education 
beyond secondary school) and earning a CAPE Associate’s degree in the middle panel of Table 
4. Overall, columns 1 and 2 show that attending a preferred school increases the likelihood of 
taking the CAPE by about 2 percentage points and increases the likelihood of earning an 
Associate’s degree by 2.1 percentage points (significant at the 1 percent level). That is, despite 
a slight reduction in the likelihood of passing the secondary school exam, students at preferred 
schools are more likely to enter and complete the CAPE post-secondary education. In the results 
that look at men and women separately, there is no evidence of any differential effect by gender. 
The reduced form impacts of scoring above the cutoff on earning an Associate’s degree are 
presented visually in the lower panel of Figure 3. As before, the visual evidence is consistent 
with the regression results. Similarly, the lower panel of Appendix Figure A4 shows that results 
remain positive and significant for any choice of bandwidth. 

Preferred schools improve outcomes for those on the margin of pursuing post-secondary 
education and hurt outcomes for those on the margin of not passing the secondary school exam. 
Such patterns are consistent with schools focusing their efforts on the high-achieving students 
to the detriment of their lower-achieving classmates. If parents were aware of such dynamics, 
parents of low-achieving children should prefer less selective schools, but the choice data do 
not show this to be the case. While these positive effects may seem small in absolute 

                                                      
24 This test also serves as validation of the school fixed effects (i.e. value-added estimates). 



22 
 

magnitudes, they are substantial relative to the population mean. The estimated positive effect 
on CAPE taking of 2 percentage points is equivalent to 13.16 percent of the sample average 
and almost 100 percent of the average at the least preferred (selective) schools.25 The remaining 
outcomes we examine come from survey data. As such, to assuage any lingering concerns 
regarding the representativeness of our survey or biases in the survey sample, we show that 
our academic achievement results are similar when we restrict the sample to those linked to the 
surveys (see Appendix Table 1).  

 Our measure of completed educational attainment comes from survey data and is 
measured for respondents who were between 25 and 40 years old at the time of the survey (this 
is the age range for which we find that individuals have completed their education in Table 2). 
Attending a more selective school increases the likelihood of earning CAPE post-secondary 
credential. Given that many individuals pursue university studies after the CAPE, one might 
expect to see increases in overall years of educational attainment. Overall Table 4, panel C 
shows that attending a preferred school increases year of educational attainment by 0.677 years 
(p-value<0.1). However, this effect is entirely driven by women. Women who attend a preferred 
school have 1.644 more years of education (column 4), while there is no average effect for men 
(columns 5 and 6). This increased years of education for women is reflected in a 17.4 percentage 
point higher likelihood of having a university degree (column 4). There is no effect on the 
likelihood that men complete university. The reduced form visual evidence is presented in Figure 
5. While the figures are noisy in the survey data (owing to a smaller sample size), one can see 
a clear discontinuity in years of education for women that is not present for men. Consistently, 
Appendix Figure A5 shows that estimated effects for women, while noisier for narrower 
bandwidths, remain positive and stable for any choice of bandwidth. Given that both male and 
female students who attend preferred schools experienced increased CAPE completion, the 
lack of an overall educational effect for men is surprising. We examine possible mechanisms 
behind this asymmetric result in Section 6.7. 

Given the increased years of education for women (but not men), a standard human 
capital model (e.g., Becker 1975) would predict improved labor market outcomes for women 
(and perhaps none for men). However, if attending a preferred school grants both men and 
women access to better job referral networks (e.g., Ioannides and Loury, 2004; Schmutte, 2015) 
or serves as a signal of ability in the labor market (e.g., Spence, 1973; MacLeod and Urquiola, 
2015), there could be large gains to attending a preferred school for both sexes. We examine 
this possibility next. 

                                                      
25 Given that for the longer-term outcomes we focus on BSSEE cohorts 1987-2002, Appendix Table 1, panel C shows estimated 
CAPE effects for the cohorts that have CAPE data availability and overlap with this longer-term sample (i.e., BSSEE cohorts 1998-
2002). While less precise, the results are similar.  
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6.5.  Effects on Labor Market Outcomes  

The first labor market outcome we examine is the likelihood of being employed. We find positive 
effects of attending a preferred school on adult employment. Panel A of Table 5 shows that 
attending a more selective school increases the likelihood of being employed by 10.1 percentage 
points (column 2). This is a 14.2 percent increase relative to the sample average. While the 
positive effect on employment is larger for women, we can’t reject the null of equality of effects 
between women and men. However, the source of these positive effects differs between women 
and men. 

For women, the increase in employment is almost entirely explained through an equivalent 
reduction in unemployment. That is, preferred school attendance does not affect the likelihood 
of participating in the labor market, but it shifted women from unemployment to employment. In 
contrast, the increased male employment does not correspond to a decrease in unemployment 
but rather a decrease in being out of the labor force. Attending a preferred school reduces the 
likelihood that a man is out of the labor market by 11.4 percentage points (p-value<0.05). While 
the estimated effects on unemployment and employment are not significant for men, it appears 
that men who attended a preferred school were more likely to be in the labor market, and as a 
result, more likely to be employed and more likely to be searching for a job (unemployed). In 
sum, the effects of attending a preferred school are unambiguously positive for women, and 
mixed or neutral for men. This mirrors the educational attainment results, suggesting that 
increased human capital is the operative mechanism for women.  

We also examine effects on occupational prestige by classifying reported occupations into 
those that are managerial or professional versus technical or clerical. Table 5 panel B shows 
strong positive effects for women. For women, preferred school attendance increased the 
likelihood of being employed as a manager or professional (as opposed to a technical or clerical 
role) by 24.6 percentage points (a doubling of the sample average) (column 4). For men, the 
estimated effect is negative and marginally significant; selective school attendance decreased 
the likelihood of being employed as a manager or professional by about 9 percentage points. 
The reduced form Regression Discontinuity plot is presented in the top panel of Figure 6. The 
sensitivity of these effects to bandwidth choices is presented in the top panel of Appendix Figure 
A6. Results for women are positive, stable, and significant for any choice of bandwidth. 

As one might expect given the pattern of results, women who attend a preferred school 
have higher earnings while men do not. This can be seen visually in the lower panel of Figure 
6. Attending a preferred school increases women’s monthly wages by about 42 percent (p-
value<0.01). This is a large estimated effect, but the 95 percent confidence interval lies between 
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10 and 71 percent. For men, the estimated effect is small and not statistically distinguishable 
from zero. The lower panel of Appendix Figure A6 shows consistent positive effects for women 
across all choices of bandwidth, while effects for men are close to zero and insignificant. These 
results are consistent with the increased educational attainment associated with attending a 
preferred school (among women) being rewarded in the labor market. The fact that we observe 
no wage increase for men (for whom there was no increase in overall educational attainment) 
suggests that the benefits for women are not driven by more elite schools signaling ability. 
 

6.6. Effects on Adult Health 

In addition to educational attainment and labor market performance, health status is another key 
component of human capital. Preferred school attendance could have potentially affected long- 
term health through increasing healthy behaviors such as getting regular physical exercise. 
Panel A of Table 6 shows the estimated preferred school effects on adult preventive health 
behaviors. Attending a preferred school increases the likelihood of attending a gym at least once 
per week by 12.5 percentage points on average (column 2). The effects are similar for both 
women and men. Relative to the sample average, this represents a sizable 98.4 percent 
increase. With respect to having medical insurance, there is no effect overall. However, there is 
suggestive evidence that women who attend a preferred school are more likely to have health 
insurance. Consistent with the notion that attending a preferred school may lead to better 
practices, attending preferred school increases the likelihood of having an annual dental 
checkup by 11 percentage points (column 2). We compute a summary index of preventive health 
behavior by averaging the incidence of gym attendance, medical insurance, and yearly dental 
checkup. Attending a more selective school increases overall preventive health behavior by 8.6 
percentage points (column 2). This effect is similar for both women and men and can be seen 
visually in the top panel of Figure 7.26 The fact that we observed improved behaviors despite no 
appreciable increase in health insurance suggests that these improvements are due to improved 
behavioral norms at more preferred schools. Importantly, even though there were only 
educational and employment benefits for women, long-term preventive health behaviors 
improved for both women and men because of selective school attendance. 

Since health behaviors improved, one might expect objective health outcomes to have 
improved also. Table 6, panel B shows that selective school attendance increased the likelihood 
of being within a normal BMI range by 16.7 percentage points (column 2).27 The effect is similar 

                                                      
26 The top panel of Appendix Figure A7 shows that estimates remain stable for any choice of bandwidth.  
27 Using the objective anthropometric measures captured in the survey, we calculated body mass indexes (BMI) and classified people 
by whether they are within normal weight, underweight, or overweight or obese. Following international standards, we classified people 
as underweight if they have a BMI below 18.5. People are classified within normal weight if they have a BMI below 25 but on or above 
18.5. People with a BMI of 25 or above are classified as overweight or obese. 
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for both women and men. This increased likelihood is largely driven by a decreased incidence 
of being overweight or obese. The visual evidence presented in the lower panel of Figure 7 
illustrates this.28 The pattern suggests that the improved health practices caused by attending a 
preferred school may have translated into improved objective health outcomes for both sexes. 

 
6.7. Mechanisms 

Here we explore some potential mechanisms operating behind the observed effects. Because 
we do not have independent variation in all the potential causal pathways, the patterns presented 
in this section are suggestive. One possible benefit to attending a preferred school (that would 
not be related to test score impacts) is that individuals who attend more selective schools might 
gain access to better-connected social networks, thus facilitating higher quality social capital that 
can be leveraged to improve employment opportunities (Schmutte, 2015). To examine this 
possibility, we test whether preferred school attendance influences the likelihood of being 
referred for one’s current job during adulthood by somebody in one’s secondary school network. 
Table 7, panel A shows that the likelihood of having been referred to one’s current job by 
somebody in one’s secondary school network increases by 3.7 percentage points due to 
attending a preferred school. This effect is large given that only 0.6 percent of individuals in the 
population benefit from such a referral. Columns 4 and 6 reveal that the referral effect is similar 
for women and men.29 The fact that both men and women experience similar increases in the 
likelihood of employment suggests that improved referral networks may be a mechanism. It 
would also explain why men who attend preferred schools experience higher employment even 
though they do not have more years of education.  In contrast, men (who have no increase in 
education) have no wage increases while women do, suggesting that referrals do not explain 
the higher wages for women. Taken together, the pattern of results is consistent with the referral 
network effect leading to increased employment for both men and women, and the increased 
years of education (for women) increasing wages (for women) conditional on being employed. 
We examine the education mechanism further below. 

We found that attending a preferred school increased CAPE taking and obtaining an 
Associate’s degree for both women and men, but we only observed increased years of education 
and college-going for women. One plausible explanation for these findings is that the gains in 
educational attainment for men who pass the CAPE were offset by some losses among those 
who do not pass the secondary school exam in the aggregate. Indeed, the reduction in qualifying 
for tertiary education (based on CSEC performance) and earning a CAPE Associate’s degree 

                                                      
28 The lower panel of Appendix Figure A7 shows that estimates remain stable and significant for any choice of bandwidth.  
29 The estimated effect can be seen visually in the top left panel of Appendix Figure A8. 
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are opposite in sign and almost identical in magnitude. However, the differences in overall 
educational attainment between men and women would imply that women who complete the 
CAPE were more likely than men to continue their studies and pursue a university degree. To 
test for such differential studying behaviors by sex, we rely on younger cohorts. Among these 
younger cohorts aged between 17 and 24 when surveyed (BSSEE cohorts 2003-2011), we 
examine whether being a full-time student is listed as the main occupation. We refer to this as 
“studying” for short. Panel B of Table 7 shows that attending a more preferred school increases 
the likelihood that a person between the ages of 17 and 24 is a full-time student by about 11.6 
percentage points. These effects, while imprecisely estimated by gender, are larger for women 
than for men.30 

One possible explanation for the lack of increased male earnings at preferred schools is 
that preferred schools led males to pursue more academic oriented programs (as evidenced by 
increase CAPE passing) at the expense of pursuing technical and vocational training. If such 
technical/vocational training has a higher rate of return than academic programs for these 
marginal males, the labor market impacts could be negative.31 To assess this, we examine the 
impact of attending a preferred school on having a technical/vocation credential (see Table 4). 
The point estimates indicate that attending a preferred school has no impact on having a 
technical/vocation credential–inconsistent with preferred schools reducing technical vocational 
training. 

The results above suggest that girls who attend preferred schools may be more likely than 
boys to continue their studies between the ages of 17 and 24. More generally, while school 
quality has often been found to improve outcomes for girls more than for boys (e.g., Jackson 
2010; Deming et al. 2014;  Clark 2010) the reasons for the gender differences are not well 
understood.  One potential explanation is that attending a better school reduces the likelihood 
of teen pregnancy (which disproportionately impacts girls). Given that teen motherhood has 
been shown, by some, to adversely impact educational attainment and earnings (e.g., Fletcher 
and Wolfe 2009), this could explain the pattern of results. We examine this using questions about 
the dates of birth of one’s children in the sample of women aged 25 to 40. Panel C of Table 7 
shows that the likelihood of giving birth by age 18 is reduced by 6.2 percentage points (p-
value<0.05). Relative to the average in the population, this represents a considerable 59 percent 
decrease.32 

To examine whether our estimated effects reflect decreased fertility or delayed fertility, we 

                                                      
30 The estimated effect for women can be seen visually in the top right panel of Appendix Figure A8.  
31 This explanation is proposed in Clark and Del Bono (2016) to explain why males may not have higher earnings from attending elite 
schools in Scotland during the 1960s. They are unable to test this hypothesis using their data. 
32 Teen motherhood estimated effects can be seen in the lower panel of Appendix figure A8. 
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also examine overall fertility. We find no impact on the likelihood of having a baby by the age of 
25, having at least one baby ever, or on the number of children (Appendix Table 4). This 
suggests that preferred schools lead to delayed child bearing rather than reduced fertility. This 
result, in conjunction with the improved health behaviors, suggests that preferred schools may 
lead to greater patience and possibly reduced risk-taking. Given the strong documented 
associations between teen motherhood and educational attainment, this is plausible evidence 
that decreased teen motherhood may have played a key role in explaining the long-term 
improvements in educational attainment and employment for women. 

 
6.8. Elite Schools or Preferred Schools? 

Much of the literature on the effects of attending a selective school has focused on the most elite 
schools. For example, Clark and Del Bono (2016) focus on the effect of three selective schools 
in Aberdeen,  Scotland;  while   Abdulkadiroğlu et  al.  (2014)  examine  three  elite  schools  in  
Boston and three elite schools in New York City. To relate our results to existing work, we 
examine the extent to which the patterns we uncover are common to all preferred schools, or if 
the most elite schools are different. We classify elite schools as the most preferred seven 
schools based on the revealed preference ranking across all years. This cut corresponds to 
those schools where the average incoming BSSEE score of applicants is above the population 
mean. We estimate the main results separately for cutoffs to elite and non-elite schools and 
report them in Table 8. We focus our discussion on the educational and labor market outcomes. 

Looking first at girls (columns 2 and 5), we see that there is no appreciable impact on 
short-run examination performance in either the elite or the non-elite schools. However, the 
improved tertiary outcomes appear to be driven almost entirely by the most elite schools. 
Attending an elite preferred school increases the likelihood of women earning a CAPE 
Associate’s degree by 4.4 percentage points (p-value<0.05), while the effect for a non-elite 
preferred school is small and not significantly different from zero.33 Consistent with this, elite 
school attendance increases years of education by 1.84 years (p-value<0.05) and increases the 
likelihood of having a university degree by 31 percentage points (p-value<0.05). The impacts of 
attending a non-elite preferred school are smaller than for elite schools, not statistically 
significantly different from zero, but are positive. The results indicate that attending a preferred 
school increases girls’ educational attainment, but that the increases are larger and more robust 
for the most elite schools. This conclusion is supported by the pattern among the younger 
cohorts (panel D); attending a preferred elite school increases the likelihood of women being in 
school between the ages of 17 and 24. The non-elite schools have no appreciable effect on the 

                                                      
33 This is visually presented in the top panel of Appendix Figure A9. 
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likelihood of a woman being a student between the ages of 17 and 24. 

For all the labor market outcomes, the estimated impacts for elite and non-elite schools 
are similar, and for none of the labor market outcomes can one reject that the impacts are the 
same in the two sets of schools. By and large, irrespective of the elite status of the school, for 
women, attending a preferred school increases employment by between 7 and 16 percentage 
points, reduces unemployment by between 15 and 21 percentage points, increases the 
likelihood of having a managerial or professional occupation by between 25 and 33 percentage 
points, and increases the wage by between 30 and 65 percent. In both elite and non-elite 
schools, one is more likely to have been referred for their current job by a high school friend, but 
the point estimate is larger for elite schools. Looking at teen motherhood, however, there are 
some differences. Almost all the reduced teen motherhood is from attending a less elite preferred 
school.34 This result is not surprising given that teen motherhood rates are very low among 
women at the most elite schools. However, it may suggest that the improved labor market 
outcomes for women at the most elite schools are not driven by teen motherhood alone, but 
relatively larger gains in educational attainment and somewhat higher reliance on their high 
school social networks.35 Taken together, the result for women suggests that preferred schools 
improve longer-run outcomes despite having no impact on short-run test scores. However, elite 
schools have more robust positive impacts on educational attainment, while non-elite schools 
have more robust impacts on teen motherhood. Overall, both groups of preferred schools are 
associated with similar labor market gains for women. 

For men, attending a more preferred school has a negative impact on secondary school 
performance at both elite and non-elite schools (columns 3 and 6). The most elite schools appear 
to decrease the likelihood of CSEC taking by about 4.3 percentage points, while the impact of 
non-elite schools is smaller and not statistically significant. However, looking at the likelihood of 
qualifying for tertiary education, both elite and non-elite preferred schools reduce qualifying for 
tertiary education by about 2 percentage points. Despite the negative impact on secondary 
outcomes, attending an elite preferred school has positive impacts on male post-secondary 
outcomes. For men, attending the most elite schools increases the likelihood of earning a CAPE 
Associate’s degree by 3.1 percentage points. As with women, the positive impact on the CAPE 
are driven entirely by the elite schools. Despite the positive impact on the CAPE, the point 
estimates for attending an elite school are negative for years of education and having a university 
degree. This may reflect that positive impacts on educational attainment for some men are offset 
by some ill effects on educational attainment for others (recall the decreased likelihood of CSEC 

                                                      
34 The visual evidence presented in the lower panel of Appendix Figure A9 illustrates this. 
35 Having said this, it is worth noting that there could be sizable impacts on teen pregnancy in both settings, but that it only reduced 
teen motherhood at the non-elite schools. 
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taking).36  

We find no robust impacts on labor market outcomes for males, irrespective of the elite 
status of the secondary school. This may reflect offsetting positive impacts (increases in CAPE 
passing and better social connections) and negative impacts (decreased CSEC taking). The one 
exception is that attending a preferred non-elite school does appear to reduce the likelihood that 
men will be out of the labor market (with no statistically significant impact on employment or 
wages). Overall, attending a preferred school (irrespective of the elite status of the school) may 
have some deleterious impacts on male outcomes in the short run, but little impact on longer-
run male outcomes. 
 

7. Discussion and Conclusions 

Using administrative education data from Barbados, we document that there is considerable 
agreement regarding which schools are preferred, and that these preferences are held by 
parents of both girls and boys. We also document that in Barbados, a preferred school and a 
more selective school are almost synonymous. Given these patterns, one would expect that 
attending a more preferred school would conf sizable benefits to the students who attend them. 
However, using examination performance in secondary school, we find little evidence that this 
is the case. Attending a more selective school has no appreciable effect on girls’ outcomes and 
may decrease high school examination performance among boys. We implement a new 
empirical test to examine the extent to which these impacts for the marginal admit differ from 
those of the average student. This test reveals that the average impacts of schools (measured 
using value-added) are statistically indistinguishable from that of the marginal admit (using the 
RD variation through the cutoff). These findings can be explained by (a) parents being 
uninformed about which schools improve child outcomes, or (b) parents valuing school impacts 
on a broader set of outcomes than those measured by achievement tests, or both. 

 Our results support both explanations. Specifically, for girls, despite the lack of test score 
impacts in the short run, we find considerable longer-run benefits to attending a preferred (or 
more selective) school. Girls who attend a more preferred school attain more years of education, 
are more likely to have a university degree, are more likely to be employed, have higher-status 
jobs, and have higher labor market earnings. They are also less likely to have a teen birth (but 
not less overall fertility) and enjoy better health. In sum, for girls, school impacts on secondary 
school examinations are a poor measure of impact on girls’ longer-run outcomes. Given the 

                                                      
36 We find no significant impact of attending a non-elite school on the overall educational attainment of men. However, among the 
younger cohorts (panel D), there is some suggestive indication that attending a preferred non-elite school may increase the likelihood 
of being in school between ages 17 and 24. 
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broad array of improved outcome we document, it would be reasonable for parents to prefer 
more selective schools despite the lack of any secondary school test score gains. The pattern 
of results for girls born in Barbados in the 1970s and 1980s are remarkably similar to those of 
girls born in the 1950s in England (Clark and Del Bono, 2016). They are also in line with a pattern 
of girls benefiting more from better schools than boys (e.g., Jackson, 2010; Deming et al., 2014). 

In contrast to the patterns for girls, the pattern of results and school preferences for boys 
are more difficult to rationalize. For boys, attending a preferred school may actually decrease 
high school examination performance. Looking at longer-run outcomes, boys who attend more 
preferred schools do have improved post-secondary outcomes (as measured by the CAPE), but 
do not have any more years of educational attainment and may be less likely to attend university. 
Consistent with this, we find little evidence that attending a preferred school improves the labor 
market outcomes for men. We do find that attending a preferred school decreases the likelihood 
of being out of the labor market and increases the chances of being referred for one’s current 
job by a high-school colleague. It is possible that men who would have not worked leverage 
connections from preferred schools to find employment. However, we also find an increase in 
men searching for employment, suggesting that men who otherwise would not have been 
seeking employment (or working) are more likely to seek employment and not find work. While 
this is highly speculative, such patterns could reflect the fact that social norms among individuals 
at more selective schools are more work and employment oriented. One area for which we do 
find positive effects is on health, as preferred school attendance increased the practice of 
preventive health behaviors and reduced the incidence of being overweight or obese. However, 
overall, evidence of long-run benefits for men is mixed. The fact that parental preferences for 
selective schools are similar for parents of boys and girls, indicates that parents of boys may be 
relatively uninformed of the causal impacts of schools on their sons. 

It is important to note that, on average, more preferred schools do confer important long-
run benefits in terms of educational attainment and labor market outcomes. As such, parental 
preferences in the aggregate are reasonable. The disconnect between parental preferences and 
causal impacts (for boys) can be explained by parents not differentiating between effects for 
boys and effects for girls. From a policy perspective our results suggest that school impacts on 
test scores may not be the best measure of a school’s impacts on longer-run outcomes. 
Accordingly, policymakers should be cautious (and thoughtful) regarding using test score 
impacts in accountability systems and incentive pay schemes. The findings also suggest that 
parents are relatively well informed about schools that improve outcomes on average, but that 
many parents (especially those of boys) could benefit from better information about the 
heterogeneous causal impacts of particular schools for various outcomes. 
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Figure 1. School Choices 
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Figure 2. RD Effect on Attending a Preferred School and Peer Incoming Scores 

Notes: The X-axis is the BSSEE score relative to the cutoff. The circles are outcome means corresponding to 1-point bins of the relative score. The 
solid lines are the fitted outcomes generated by fitting a third-degree polynomial of the relative score fully interacted with the ’Above’ indicator. 
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Figure 3. RD Effect on Secondary and Tertiary Education for Girls and Boys 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Notes: The X-axis is the BSSEE score relative to the cutoff. The Y-axis is the mean outcome for each relative score (net of the mean for the cutoff). The 
circles represent 1-point bins of the relative score. The solid lines are the fitted outcomes generated by fitting a third-degree polynomial of the relative score 
fully interacted with the ’Above’ indicator.  
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Figure 4. Predicted Cutoff Effects vs Actual Cutoff Effects - CSEC Outcomes 

Notes: The X-axis represents the estimated coefficients on the ’Above’ indicator resulting from equation (10); estimated for each school 𝑗𝑗 and for each CSEC 
outcome (school value-added measures enter as dependent variables). The Y-axis represents the estimated coefficients on the ’Above’ indicator resulting from 
reduced form models as in equation (5); estimated for each school 𝑗𝑗 and for each CSEC outcome (individual level outcomes enter as dependent variables).  
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Figure 5. RD Effect on Educational Attainment for Women and Men 

Notes: The X-axis is the BSSEE score relative to the cutoff. The Y-axis is the mean outcome for each relative score (net of the mean for the cutoff). The circles 
represent 1-point bins of the relative score. The solid lines are the fitted outcomes generated by fitting a third-degree polynomial of the relative score fully 
interacted with the ’Above’ indicator.  
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Figure 6. RD Effect on Employment Quality and Wages for Women and Men 

 

Notes: The X-axis is the BSSEE score relative to the cutoff. The Y-axis is the mean outcome for each relative score (net of the mean for the cutoff). The circles 
represent 1-point bins of the relative score. The solid lines are the fitted outcomes generated by fitting a third-degree polynomial of the relative score fully 
interacted with the ’Above’ indicator. 
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Figure 7. RD Effect on Health Outcomes (Men and Women Combined) 

Notes: The X-axis is the BSSEE score relative to the cutoff. The Y-axis is the mean outcome for each relative score (net of the mean for the cutoff). The circles 
represent 1-point bins of the relative score. The solid lines are the fitted outcomes generated by fitting a third-degree polynomial of the relative score fully 
interacted with the ’Above’ indicator.
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Table 1. Summary Statistics 

 
 
Notes: All individuals who took the BSSEE between 1987 and 2011 are included in panels A and B. 
However, as CAPE examinations started in 2005, panel C only includes individuals who took the BSSEE 
between 1998 and 2009. Standard deviations are reported in parentheses below the means. * Qualification 
for tertiary education requires passing five CSEC examinations including English and Math. 

  

All Schools 1 - 8 9 - 16 17 - 24
(1) (2) (3) (4)

Panel A: Baseline Characteristics (prior to secondary school enrollment)
Standardized BSSEE score 0.000 1.049 0.052 -0.983

(1.000) (0.451) (0.475) (0.621)
Female 0.497 0.507 0.625 0.384

(0.500) (0.500) (0.484) (0.486)
Admitted cohort size 156.88 157.84 161.66 151.74

(47.70) (21.34) (54.67) (58.54)

Panel B: CSEC Performance (after 5 years of secondary school)
Took at least 1 subject 0.677 0.883 0.776 0.411

(0.468) (0.321) (0.417) (0.492)
Number of subjects passed 2.188 4.550 1.868 0.331

(2.910) (3.252) (2.176) (1.037)
Qualified for tertiary * 0.268 0.597 0.184 0.041

(0.443) (0.490) (0.387) (0.198)
Individuals 95,391 31,567 28,613 35,211

Panel C: CAPE Performance (after 2 years of post-secondary studies)
Took at least 1 unit 0.152 0.368 0.060 0.010

(0.359) (0.482) (0.237) (0.102)
Number of units passed 0.865 2.210 0.230 0.039

(2.338) (3.346) (1.180) (0.506)
Earned Associate Degree 0.080 0.210 0.017 0.003

(0.272) (0.407) (0.128) (0.056)
Individuals 43,984 15,542 13,477 14,965

School Rank Range (by 
revealed preferences):
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Table 2. Summary Statistics cont’d 

 
Notes: Standard deviations are reported in parentheses below the means. Statistics are weighted by the 
inverse of sampling probability to reflect survey design.  

BSSEE Cohorts (Age at Survey):
1987-2011 

(17-40)
2003-2011 

(17-24)
1987-2002 

(25-40)
(1) (2) (3)

Main Occupation
In labor force 0.739 0.558 0.860

(0.438) (0.499) (0.335)
Studying 0.131 0.314 0.010

(0.336) (0.466) (0.092)
Individuals 1,545 605 940

All Schools 1 - 8 9 - 16 17 - 24
(1) (2) (3) (4)

Educational Attainment
Years of education 11.331 15.359 11.377 8.498

(4.413) (3.873) (3.268) (3.434)
University degree 0.196 0.523 0.111 0.026

(0.384) (0.500) (0.308) (0.176)
Technical/Vocational degree 0.182 0.094 0.247 0.201

(0.385) (0.316) (0.429) (0.388)
Individuals 888 258 256 374

Employment Quality and Social Netwoks (only employed persons)
Manager or professional 0.136 0.330 0.102 0.028

(0.330) (0.448) (0.311) (0.178)
Monthly gross wage (2016 US$) 1358.9 1936.4 1230.9 948.8

(973.8) (1192.4) (843.3) (628.9)
Referred to current job by school network 0.006 0.011 0.009 0.000

(0.084) (0.115) (0.098) ---
Individuals 697 225 209 263

Teen Motherhood (only females)
Baby by age 18 0.105 0.036 0.098 0.170

(0.307) (0.183) (0.309) (0.372)
Individuals 401 116 151 134

Preventive Health Behaviors
Have medical insurance 0.301 0.496 0.256 0.193

(0.451) (0.500) (0.434) (0.380)
Attends yearly dental checkup 0.441 0.571 0.479 0.326

(0.496) (0.498) (0.501) (0.469)
Attends gym at least once per week 0.127 0.199 0.147 0.065

(0.336) (0.413) (0.345) (0.247)
Individuals 940 272 269 399

School Rank Range (by revealed 
preferences) - BSSEE cohorts 1987-2002:
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Table 3. First Stage 

 

Notes: Estimated standard errors in parenthesis two-way clustered at the individual and BSSEE score levels. 
Sociodemographic controls include student gender and parish fixed-effects. Panel A reports the results of the 
McCrary (2008) cutoff manipulation test. Panels B and C report estimated coefficients on the ’Above’ indicator 
resulting from reduced form models as in equation (5) of the text. Panels D and E report estimated 2SLS 
coefficients on ’Attend’ a preferred school using ’Above’ as the excluded instrument (resulting from equation 
system (5) - (6) in the text). Models with predicted outcomes as left-hand side variables (Panel B) do not control for 
preferences as the selectivity of preferences were used when predicting the outcomes. Regressions in columns 
(5) and (6) are weighted by the inverse of sampling probability to reflect survey design.  Column (7) reports the p-
value of a test for the equality of estimates reported   in columns (4) and (6). Sample corresponds to BSSEE 
cohorts 1987 - 2002 (25 to 40 years old when surveyed). + Significant at 15%; * Significant at 10%; ** significant 
at 5%; *** significant at 1%.  

Estimation Sample:
(4)=(6)

(1) (2) (3) (4) (5) (6) (7)
Panel A: Cutoff manipulation test
Differential density
[p-value]
Panel B: Predicted Outcomes - Reduced Form
Predicted: CSEC subjects passed 0.976

Predicted: CAPE units passed 0.812

Predicted: Years of education

Predicted: Log monthly wage

Panel C: First Stage
Attended preferred school 0.811*** 0.811*** 0.745*** 0.744*** 0.745*** 0.744*** 0.975

(0.024) (0.024) (0.016) (0.016) (0.033) (0.033)
Panel D: Survey Match Rate - 2SLS
Matched with survey <0.001 <0.001 -0.003 -0.004

(0.001) (0.001) (0.003) (0.003)
Panel E: School Environments Effects - 2SLS
Peers BSSEE score 0.241*** 0.240*** 0.250*** 0.254*** 0.256*** 0.247*** 0.750

(0.008) (0.008) (0.015) (0.013) (0.023) (0.021)
BSSEE coef. of variation -0.009*** -0.010*** -0.010*** -0.010*** -0.012*** -0.009*** 0.187

(0.001) (0.001) (0.002) (0.001) (0.002) (0.001)
Cohort size -11.356*** -11.379*** -12.906*** -13.237*** -13.344*** -10.799*** 0.481

(0.982) (0.994) (3.095) (2.506) (4.399) (3.971)
Parish HHI -0.006*** -0.006*** -0.002 -0.001 -0.002 -0.005 0.392

(0.001) (0.001) (0.002) (0.002) (0.005) (0.005)
Observations 375,131 375,131 184,595 184,595 5,610 5,610
Sociodemographics Yes Yes Yes Yes Yes Yes
BSSEE cubic spline Yes Yes Yes Yes Yes Yes
Cutoff fixed effects Yes Yes Yes Yes Yes Yes
Preferences fixed effects No Yes No Yes No Yes

-0.009 <0.001

(0.140)
0.021

(0.049)

[0.3673]

<0.001
(0.009) (0.002) (0.003)

Full Population: all 
observations

Full Population: +/- 
0.75 SD from cutoff Face to Face Survey

0.117

0.005 0.001 0.002
(0.010) (0.029) (0.047)

-0.7302 -0.8439 -0.9015
[0.4652] [0.3987]
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Table 4. 2SLS Effects on Educational Outcomes 

 

Notes: This table reports estimated 2SLS coefficients on ’Attend’ a preferred school using ’Above’ as the excluded 
instrument (resulting from equation system (5) - (6) in the text). Estimated standard errors in parenthesis two-way 
clustered at the individual and BSSEE score levels. Sociodemographic controls include student gender and parish 
fixed-effects. Samples in Panels A and B correspond to BSSEE cohorts that have both CSEC and CAPE data 
available (BSSEE cohorts 1998-2009). This because the earliest CAPE outcome data corresponds to year 2005 
which is associated with the 1998 BSSEE cohort; while the latest CAPE data corresponds to year 2016 which is 
associated with the 2009 BSSEE cohort. Panel C uses the matched survey data covering BSSEE cohorts 1987-
2002 (25 to 40 years old when surveyed) and these regressions are weighted by the inverse of sampling probability 
to reflect survey design. Column (7) reports the p-value of a test for the equality of estimates reported in columns 
(4) and (6). + Significant at 15%; * Significant at 10%; ** significant at 5%; *** significant at 1%.  

(4)=(6)
(1) (2) (3) (4) (5) (6) (7)

(1) (2) (3) (4) (5) (6) (7)
Took at least 1 subject 0.002 0.000 0.006 0.005 -0.003 -0.005 0.611

(0.010) (0.010) (0.013) (0.012) (0.015) (0.015)
Number of subjects passed -0.028 -0.026 0.110 0.106 -0.152* -0.145* 0.030

(0.061) (0.061) (0.091) (0.091) (0.078) (0.077)
Qualified for tertiary -0.017* -0.017* -0.019 -0.020 -0.016 -0.014 0.784

(0.010) (0.010) (0.016) (0.016) (0.013) (0.013)
Observations 106,670 106,670 54,631 54,631 52,039 52,039

Took at least 1 unit 0.020** 0.019* 0.019 0.018 0.020* 0.019* 0.977
(0.010) (0.010) (0.015) (0.016) (0.012) (0.012)

Number of units passed 0.197*** 0.193*** 0.175* 0.171* 0.218*** 0.213*** 0.735
(0.061) (0.061) (0.103) (0.103) (0.068) (0.068)

Earned Associate Degree 0.021*** 0.021*** 0.027** 0.026** 0.017** 0.016** 0.491
(0.007) (0.007) (0.012) (0.012) (0.008) (0.008)

Observations 106,670 106,670 54,631 54,631 52,039 52,039

Years of education 0.615* 0.677* 1.409** 1.644*** -0.189 -0.238 0.022
(0.365) (0.369) (0.568) (0.580) (0.535) (0.527)

University degree 0.043 0.045 0.168** 0.174*** -0.063 -0.066 0.007
(0.043) (0.042) (0.067) (0.066) (0.056) (0.056)

Technical/Vocational degree 0.017 0.025 -0.037 -0.008 0.053 0.049 0.512
(0.051) (0.046) (0.050) (0.048) (0.082) (0.072)

Observations 5,277 5,277 2,510 2,510 2,767 2,767
Sociodemographics Yes Yes Yes Yes Yes Yes
BSSEE cubic spline Yes Yes Yes Yes Yes Yes
Cutoff fixed effects Yes Yes Yes Yes Yes Yes
Preferences fixed effects No Yes No Yes No Yes

Panel B: CAPE Performance. Sample: BSSEE cohorts 1998 - 2009 (Full Population +/- 0.75 SD from cutoff)

Panel C: Educational Attainment. Sample: BSSEE cohorts 1987 - 2002 (25 - 40 Years old at Survey) 

All Women Men

Panel A: CSEC Performance. Sample: BSSEE cohorts 1998 - 2009 (Full Population +/- 0.75 SD from cutoff)
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Table 5. 2SLS Effects on Labor Market Outcomes 

 

Notes: This table reports estimated 2SLS coefficients on ’Attend’ a preferred school using ’Above’ as the 
excluded instrument (resulting from equation system (5) - (6) in the text). Estimated standard errors in 
parenthesis two-way clustered at the individual and BSSEE score levels. Sociodemographic controls include 
student gender and parish fixed-effects. Regressions are weighted by the inverse of sampling probability to 
reflect survey design. Column (7) reports the p-value of a test for the equality of estimates reported in 
columns (4) and (6). + Significant at 15%; * Significant at 10%; ** significant at 5%; *** significant at 1%. 

  

BSSEE Cohorts:
(4)=(6)

(1) (2) (3) (4) (5) (6) (7)
Panel A: Main Occupation
Employed 0.097* 0.101** 0.140* 0.133* 0.065 0.076 0.566

(0.053) (0.050) (0.076) (0.070) (0.074) (0.071)
Unemployed -0.022 -0.039 -0.110* -0.126** 0.052 0.037 0.032

(0.044) (0.039) (0.064) (0.054) (0.059) (0.055)
Out of labor force -0.075** -0.062* -0.030 -0.007 -0.117** -0.114** 0.179

(0.036) (0.037) (0.051) (0.054) (0.056) (0.054)
Observations 5,610 5,610 2,616 2,616 2,994 2,994

Panel B: Employment Quality (only employed persons)
Manager or professional 0.057 0.056 0.248*** 0.246*** -0.094* -0.088+ 0.001

(0.048) (0.049) (0.078) (0.078) (0.056) (0.057)
Log monthly wage 0.176* 0.158+ 0.420*** 0.413*** -0.015 -0.043 0.014

(0.097) (0.099) (0.158) (0.159) (0.113) (0.117)
Observations 4,003 4,003 1,772 1,772 2,231 2,231
Sociodemographics Yes Yes Yes Yes Yes Yes
BSSEE cubic spline Yes Yes Yes Yes Yes Yes
Cutoff fixed effects Yes Yes Yes Yes Yes Yes
Preferences fixed effects No Yes No Yes No Yes

1987 - 2002: 25 - 40 Years old at Survey
All Women Men
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Table 6. 2SLS Effects on Health Outcomes 

 
Notes: This table reports estimated 2SLS coefficients on ’Attend’ a preferred school using ’Above’ as the 
excluded instrument (resulting from equation system (5) - (6) in the text). Estimated standard errors in 
parenthesis two-way clustered at the individual and BSSEE score levels. Sociodemographic controls include 
student gender and parish fixed-effects. Regressions are weighted by the inverse of sampling probability to 
reflect survey design. Column (7) reports the p-value of a test for the equality of estimates reported in 
columns (4) and (6). + Significant at 15%; * Significant at 10%; ** significant at 5%; *** significant at 1%. 

  

BSSEE Cohorts:
(4)=(6)

(1) (2) (3) (4) (5) (6) (7)
Panel A: Preventive Health Behaviors
Attends gym at least once per week 0.117*** 0.125*** 0.140*** 0.136*** 0.092+ 0.107* 0.683

(0.039) (0.039) (0.051) (0.050) (0.056) (0.056)
Have medical insurance 0.027 0.028 0.136* 0.102 -0.065 -0.035 0.196

(0.055) (0.052) (0.073) (0.072) (0.080) (0.076)
Attends yearly dental checkup 0.107* 0.111** 0.006 0.043 0.200** 0.176** 0.225

(0.055) (0.054) (0.080) (0.076) (0.079) (0.077)
Summary index 0.083*** 0.086*** 0.089** 0.090** 0.078* 0.083* 0.902

(0.030) (0.029) (0.040) (0.039) (0.044) (0.043)
Observations 5,166 5,166 2,444 2,444 2,722 2,722

Panel B: Objective Health Outcomes (based on BMI)
Normal weight 0.183*** 0.167*** 0.186** 0.200** 0.190** 0.129+ 0.586

(0.065) (0.064) (0.094) (0.095) (0.090) (0.085)
Overweight or Obese -0.145** -0.141** -0.171* -0.191** -0.126+ -0.082 0.383

(0.064) (0.063) (0.093) (0.092) (0.087) (0.082)
Underweight -0.038+ -0.026 -0.015 -0.009 -0.064* -0.047+ 0.433

(0.026) (0.024) (0.038) (0.038) (0.036) (0.031)
Observations 4,361 4,361 2,146 2,146 2,215 2,215
Sociodemographics Yes Yes Yes Yes Yes Yes
BSSEE cubic spline Yes Yes Yes Yes Yes Yes
Cutoff fixed effects Yes Yes Yes Yes Yes Yes
Preferences fixed effects No Yes No Yes No Yes

1987 - 2002: 25 - 40 Years old at Survey
All Women Men
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Table 7. 2SLS Effects on Mechanisms 

 

Notes: This table reports estimated 2SLS coefficients on ’Attend’ a preferred school using ’Above’ as the 
excluded instrument (resulting from equation system (5) - (6) in the text). Estimated standard errors in 
parenthesis two-way clustered at the individual and BSSEE score levels. Sociodemographic controls include 
student gender and parish fixed-effects. Regressions are weighted by the inverse of sampling probability to 
reflect survey design. Panel B shows estimated effects on main occupations restricted to interviewed 
individuals who were part of BSSEE cohorts 2003 - 2011 (17 - 24 years old when surveyed). All other panels 
include interviewed individuals who were part of BSSEE cohorts 1987 - 2002 (25 to 40 years old when 
surveyed).   Column (7) reports the p-value of a test for the equality     of estimates reported in columns (4) 
and (6). + Significant at 15%; * Significant at 10%; ** significant at 5%; *** significant at 1%. 

  

(4)=(6)
(1) (2) (3) (4) (5) (6) (7)

Panel A: Social Networks. Sample: BSSEE cohorts 1987 - 2002 (25 - 40 years old when surveyed)
Referred to current job by 0.038** 0.037** 0.042* 0.043* 0.034+ 0.033+ 0.772
school network (0.017) (0.017) (0.025) (0.026) (0.021) (0.023)
Observations 4,003 4,003 1,772 1,772 2,231 2,231

Panel B: Youth Main Occupation. Sample: BSSEE cohorts 2003 - 2011 (17 - 24 years old when surveyed)
Studying 0.133* 0.116* 0.173* 0.134 0.096 0.109 0.860

(0.068) (0.070) (0.099) (0.095) (0.104) (0.109)
Observations 2,618 2,618 1,443 1,443 1,175 1,175

Panel C: Teen Motherhood. Sample: BSSEE cohorts 1987 - 2002 (25 - 40 years old when surveyed)
Baby by age 17 -0.067* -0.057**

(0.040) (0.023)
Baby by age 18 -0.055 -0.062**

(0.053) (0.030)
Observations 2,271 2,271
Sociodemographics Yes Yes Yes Yes Yes Yes
BSSEE cubic spline Yes Yes Yes Yes Yes Yes
Cutoff fixed effects Yes Yes Yes Yes Yes Yes
Preferences fixed effects No Yes No Yes No Yes

All Women Men
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Table 8. 2SLS Effects by Elite School Status 

 

Notes: This table reports estimated 2SLS coefficients on ’Attend’ a preferred school using ’Above’ as the 
excluded instrument (resulting from equation system (5) - (6) in the text). Estimated standard errors in 
parenthesis two-way clustered at the individual and BSSEE score levels. Sociodemographic controls include 
student gender and parish fixed-effects. All regressions include a cubic spline in the BSSEE relative score 
interacted with the ’Above’ indicator, cutoff fixed effects, and preference fixed effects. Regressions are 
weighted by the inverse of sampling probability to reflect survey design. + Significant at 15%; * Significant 
at 10%; ** significant at 5%; *** significant at 1%. 

All Women Men All Women Men
(1) (2) (3) (4) (5) (6)

Took at least 1 subject -0.021* -0.003 -0.043** -0.019 -0.022 -0.017
(0.012) (0.017) (0.018) (0.016) (0.026) (0.023)

Number of subjects passed -0.174* -0.009 -0.380*** -0.004 -0.005 -0.025
(0.099) (0.136) (0.140) (0.056) (0.103) (0.059)

Qualified for tertiary -0.002 0.013 -0.020 -0.017* -0.019 -0.019*
(0.015) (0.021) (0.022) (0.011) (0.020) (0.011)

Took at least 1 unit 0.036** 0.030 0.039+ -0.008 -0.010 -0.006
(0.018) (0.025) (0.024) (0.008) (0.015) (0.006)

Number of units passed 0.333*** 0.262+ 0.401*** -0.021 -0.020 -0.020
(0.116) (0.180) (0.146) (0.033) (0.070) (0.026)

Earned Associate Degree 0.038*** 0.044** 0.031* -0.002 -0.002 -0.001
(0.014) (0.022) (0.016) (0.004) (0.008) (0.003)

Years of education 0.681 1.839* -0.699 0.209 1.456 -0.623
(0.820) (1.103) (1.170) (0.562) (1.057) (0.673)

University degree 0.010 0.314** -0.263* 0.011 0.091 -0.030
(0.083) (0.127) (0.141) (0.053) (0.112) (0.037)

Employed 0.030 0.068 -0.006 0.151+ 0.160 0.134
(0.066) (0.119) (0.122) (0.097) (0.136) (0.135)

Unemployed -0.057 -0.151** 0.006 -0.055 -0.210+ 0.077
(0.058) (0.061) (0.093) (0.077) (0.135) (0.090)

Out of labor force 0.027 0.083 0.000 -0.096 0.050 -0.211**
(0.045) (0.099) (0.095) (0.073) (0.116) (0.103)

Manager or professional 0.060 0.254** -0.189 0.098+ 0.334** 0.005
(0.100) (0.121) (0.142) (0.062) (0.159) (0.050)

Log monthly wage 0.284 0.273 0.204 0.223 0.627 0.014
(0.203) (0.192) (0.345) (0.228) (0.465) (0.226)

Referred to current job by 0.056* 0.074 0.035+ 0.031+ 0.042 0.023
school network (0.033) (0.061) (0.023) (0.021) (0.038) (0.026)
Baby by age 18 -0.028 -0.176**

(0.076) (0.080)

Studying 0.246** 0.510*** 0.008 0.080 -0.090 0.250*
(0.119) (0.176) (0.154) (0.097) (0.126) (0.145)

Elite Cutoff Non-Elite Cutoff

Panel A: CSEC Performance. Sample: BSSEE cohorts 1987 - 2002 (Full Population +/- 0.75 SD from cutoff)

Panel B: CAPE Performance. Sample: BSSEE cohorts 1998 - 2009 (Full Population +/- 0.75 SD from cutoff)

Panel C: Survey Sample BSSEE Cohorts 1987 - 2002 (25 - 40 years old when surveyed)

Panel D: Survey Sample BSSEE cohorts 2003 - 2011 (17 - 24 years old when surveyed)
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VI Appendix 

 

 
 
Appendix Figure A1. Probability of Rank Reversal 

 

 

46 
 



51 
 

Appendix Figure A2. Raw Data Broadsheet 

 

Notes: Example of raw administrative BSSEE records for 1987. Similar records covering the 1987-1995 
BSSEE cohorts were scanned and digitalized as only hard copies were available.  
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Appendix Figure A3. Matched Survey Geographical Distribution 
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Appendix Figure A4. 2SLS Effects on Secondary and Tertiary Education by Bandwidth 

Notes: This figure depicts estimated 2SLS coefficients on ’Attend’ a preferred school using ’Above’ as the excluded instrument 
(resulting from equation system (5)- (6) in the text). The estimated 2SLS effects are reported for each bandwidth between +/-15 
(+/-0.6sd) and +/-60 (+/-2.5sd). The 90 percent confidence interval for the estimate is presented in light gray, and the 95 percent 
confidence interval is in dark gray.  
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Appendix Figure A5. 2SLS Effects on Educational Attainment by Bandwidth 

Notes: This figure depicts estimated 2SLS coefficients on ’Attend’ a preferred school using ’Above’ as the excluded instrument 
(resulting from equation system (5)- (6) in the text). The estimated 2SLS effects are reported for each bandwidth between +/-15 
(+/-0.6sd) and +/-60 (+/-2.5sd). The 90 percent confidence interval for the estimate is presented in light gray, and the 95 percent 
confidence interval is in dark gray.  
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Appendix Figure A6. 2SLS Effects on Employment Quality and Wages by Bandwidth 

Notes: This figure depicts estimated 2SLS coefficients on ’Attend’ a preferred school using ’Above’ as the excluded instrument 
(resulting from equation system (5)- (6) in the text). The estimated 2SLS effects are reported for each bandwidth between +/-15 
(+/-0.6sd) and +/-60 (+/-2.5sd). The 90 percent confidence interval for the estimate is presented in light gray, and the 95 percent 
confidence interval is in dark gray.  
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Appendix Figure A7. 2SLS Effects on Health Outcomes by Bandwidth (Men and Women Combined) 

Notes: This figure depicts estimated 2SLS coefficients on ’Attend’ a preferred school using ’Above’ as the excluded instrument 
(resulting from equation system (5)- (6) in the text). The estimated 2SLS effects are reported for each bandwidth between +/-15 
(+/-0.6sd) and +/-60 (+/-2.5sd). The 90 percent confidence interval for the estimate is presented in light gray, and the 95 percent 
confidence interval is in dark gray.  



57 
 

 

Appendix Figure A8. RD Effect on Mechanisms 

Notes: The X-axis is the BSSEE score relative to the cutoff. The Y-axis is the mean outcome for each relative score (net of the 
mean for the cutoff). The circles represent 1-point bins of the relative score. The solid lines are the fitted outcomes generated 
by fitting a third-degree polynomial of the relative score fully interacted with the ’Above’ indicator.  
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Appendix Figure A9. RD Effect by Elite vs Non-Elite Cutoffs - Women 
 

Notes: The X-axis is the BSSEE score relative to the cutoff. The Y-axis is the mean outcome for each relative score (net of the 
mean for the cutoff). The circles represent 1-point bins of the relative score. The solid lines are the fitted outcomes generated by 
fitting a third-degree polynomial of the relative score fully interacted with the ’Above’ indicator.



59 
 

Appendix Table 1. 2SLS Effects on Educational Outcomes - Alternative Samples 

 

Notes: This table reports estimated 2SLS coefficients on ’Attend’ a preferred school using ’Above’ as the 
excluded instrument (resulting from equation system (5) - (6) in the text). Estimated standard errors in 
parenthesis two-way clustered at the individual and BSSEE score levels. Sociodemographic controls include 
student gender and parish fixed-effects. Panel B shows estimated effects using only observations that 
belong to the matched survey data and regressions are weighted by the inverse of sampling probability to 
reflect survey design. Column (7) reports the p- value of a test for the equality of estimates reported in 
columns (4) and (6). + Significant at 15%; * Significant at 10%; ** significant at 5%; *** significant at 1%. 
  

(4)=(6)
(1) (2) (3) (4) (5) (6) (7)

Took at least 1 subject -0.020** -0.019** -0.010 -0.009 -0.030** -0.029** 0.322
(0.010) (0.009) (0.014) (0.014) (0.014) (0.014)

Number of subjects passed -0.072 -0.069 0.003 0.004 -0.161** -0.159** 0.109
(0.054) (0.054) (0.078) (0.078) (0.070) (0.070)

Qualified for tertiary -0.004 -0.004 0.003 0.002 -0.012 -0.011 0.454
(0.009) (0.009) (0.014) (0.014) (0.012) (0.012)

Observations 184,596 184,596 94,353 94,353 90,243 90,243

Took at least 1 subject 0.039 0.041 0.124* 0.072 -0.048 0.010 0.351
(0.047) (0.041) (0.066) (0.054) (0.063) (0.050)

Number of subjects passed -0.049 -0.022 0.463 0.299 -0.481 -0.286 0.141
(0.240) (0.198) (0.321) (0.281) (0.329) (0.270)

Qualified for tertiary 0.021 0.028 0.066 0.020 -0.020 0.036 0.842
(0.044) (0.034) (0.065) (0.053) (0.062) (0.050)

Observations 5,610 5,610 2,616 2,616 2,994 2,994

Took at least 1 unit 0.015 0.015 0.007 0.008 0.021 0.022 0.602
(0.013) (0.013) (0.021) (0.021) (0.016) (0.016)

Number of units passed 0.130* 0.135* 0.072 0.067 0.178** 0.190** 0.416
(0.076) (0.077) (0.126) (0.127) (0.088) (0.088)

Earned Associate Degree 0.014+ 0.014+ 0.017 0.016 0.010 0.011 0.743
(0.009) (0.009) (0.015) (0.015) (0.010) (0.010)

Observations 45,874 45,874 23,299 23,299 22,575 22,575
Sociodemographics Yes Yes Yes Yes Yes Yes
BSSEE cubic spline Yes Yes Yes Yes Yes Yes
Cutoff fixed effects Yes Yes Yes Yes Yes Yes
Preferences fixed effects No Yes No Yes No Yes

Panel C: CAPE Performance. Sample: BSSEE cohorts 1998 - 2002 (Full Population +/- 0.75 SD from cutoff)										

All Women Men

Panel A: CSEC Performance. Sample: BSSEE cohorts 1987 - 2002 (Full Population +/- 0.75 SD from cutoff)										

Panel B: CSEC Performance. Sample: BSSEE cohorts 1987 - 2002 (matched survey observations)										
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Appendix Table 2. Reduced Form Estimates on Baseline Characteristics 
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Appendix Table 2 cont’d. Reduced Form Estimates on Baseline Characteristics 

Notes: This table reports estimated coefficients on the ’Above’ indicator resulting from reduced form models 
as in equation (5) of the text. Estimated standard errors in parenthesis two-way clustered at the individual 
and BSSEE score levels. Sample corresponds to BSSEE cohorts 1987 - 2002 (25 to 40 years old when 
surveyed). Regressions in columns 4-6 are weighted by the inverse of sampling probability to reflect survey 
design. + Significant at 15%; * Significant at 10%; ** significant at 5%; *** significant at 1%.  
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Appendix Table 3. Reduced Form Estimates on Predicted Outcomes 

 

Notes: This table reports estimated coefficients on the ’Above’ indicator resulting from reduced form models 
as in equation (5) of the text. Estimated standard errors in parenthesis two-way clustered at the individual 
and BSSEE score levels. Samples in Panels A and B correspond to BSSEE cohorts that have both CSEC 
and CAPE data available (BSSEE cohorts 1998 - 2009). This because the earliest CAPE outcome data 
corresponds to year 2005 which is associated with the 1998 BSSEE cohort; while the latest CAPE data 
corresponds to year 2016 which is associated with the 2009 BSSEE cohort. Panel C shows estimated effects 
on predicted educational attainment and wages obtained from the matched survey data covering BSSEE 
cohorts 1987-2002 (25 to 40 years old when surveyed). Column (4) reports the p-value of a test for the 
equality of estimates reported in columns (2) and (3). Regressions do not control for preferences as the 
selectivity of preferences were used when predicting the outcomes. Regressions are weighted by the inverse 
of sampling probability to reflect survey design. + Significant at 15%; * Significant at 10%; ** significant at 
5%; *** significant at 1%.  

All Women Men (2)=(3)
(1) (2) (3) (4)

Panel A: Predicted CSEC Performance. Sample: BSSEE cohorts 1998 - 2009 (Full Population +/- 0.75 SD from cutoff)
(1) (2) (3) (4)

Predicted: Took at least 1 subject <0.001 -0.001 -0.001 0.982
(0.002) (0.003) (0.004)

Predicted: Number of subjects passed -0.013 -0.009 -0.010 0.963
(0.013) (0.020) (0.016)

Predicted: Qualified for tertiary -0.001 -0.001 -0.001 0.849
(0.002) (0.003) (0.002)

Observations 106,669 54,631 52,039

Panel B: Predicted CAPE Performance. Sample: BSSEE cohorts 1998 - 2009 (Full Population +/- 0.75 SD from cutoff)
Predicted: Took at least 1 unit -0.001 <0.001 -0.001 0.847

(0.001) (0.002) (0.001)
Predicted: Number of units passed -0.005 -0.004 -0.004 0.981

(0.006) (0.009) (0.008)
Predicted: Earned Associate Degree <0.001 <0.001 <0.001 0.943

(0.001) (0.001) (0.001)
Observations 106,669 54,631 52,039

Panel C: Predicted Education and Earnings. Sample: BSSEE cohorts 1987 - 2002 (25 - 40 Years old at Survey) 
Predicted: Years of education 0.117 -0.050 0.223 0.313

(0.140) (0.189) (0.192)
Predicted: Log monthly wage 0.021 0.034 0.008 0.792

(0.049) (0.087) (0.049)
Observations 5,277 2,510 2,767
BSSEE cubic spline Yes Yes Yes
Cutoff fixed effects Yes Yes Yes
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Appendix Table 4. 2SLS Effects on Fertility 

 
Notes: This table reports estimated 2SLS coefficients on ’Attend’ a preferred school using ’Above’ as the 
excluded instrument (resulting from equation system (5) - (6) in the text). Estimated standard errors in 
parenthesis two-way clustered at the individual and BSSEE score levels. Sociodemographic controls 
include student gender and parish fixed-effects. Regressions are weighted by the inverse of sampling 
probability to reflect survey design. + Significant at 15%; * Significant at 10%; ** significant at 5%; *** 
significant at 1%. 
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