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Abstract* 

 
In 2016 the Central Bank of Argentina began to announce inflation targets. In this 
context, providing authorities with good estimates of relevant macroeconomic 
variables is crucial for making pertinent corrections in order to reach the desired 
policy goals. This paper develops a group of models to forecast inflation for 
Argentina, which includes autoregressive models and different scale Bayesian 
VARs (BVAR), and compares their relative accuracy. The results show that the 
BVAR model can improve the forecast ability of the univariate autoregressive 
benchmark’s model of inflation. The Giacomini-White test indicates that a BVAR 
performs better than the benchmark in all forecast horizons. Statistical differences 
between the two BVAR model specifications (small and large-scale) are not found. 
However, looking at the RMSEs, one can see that the larger model seems to 
perform better for longer forecast horizons. 
 
JEL classifications: C11, C13, C32, C53 
Keywords: Bayesian Vector Autoregressive, Forecasting, Prior specification, 
Marginal likelihood, Small-scale and large-scale models 
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1. Introduction 
 
Long-term nominal commitments such as labor contracts, mortgages and other debt are widespread 

features of modern economies. Forecasting how the general price level will evolve over the life of 

a commitment is an essential part of private sector decision-making. 

The existence of long-term nominal obligations is also among the primary reasons 

economists generally believe that monetary policy is not neutral, at least over moderate horizons. 

Central banks aim is to keep inflation stable, and perhaps also to keep output near an 

efficient level. With these objectives, the New Keynesian model makes explicit that optimal policy 

will depend on optimal forecasts (e.g., Svensson, 2005), and further, that policy will be most 

effective when it is well understood by the public. 

Under “inflation targeting,” central banks have generally released forecasts in quarterly 

“Inflation Reports” in order to be more transparent in their actions. The costs and benefits of 

transparency are widely debated, but the need for a central bank to be concerned with inflation 

forecasting is broadly agreed. In short, inflation forecasting is of the foremost importance to 

households, businesses, and policymakers. 

During the year 2016, the Central Bank of Argentina has begun to announce inflation 

targets. In this context, providing the authorities with good estimates of relevant macroeconomic 

variables turns out to be crucial to making the pertinent corrections in order to reach the desired 

policy goals. 

A standard tool in macroeconomics that is widely employed in forecasting is Vector 

Autoregressive (VAR) analysis. VARs are flexible time series models that can capture complex 

dynamic relationships among macroeconomic aggregates. However, their dense parameterization 

often leads to unstable inference and inaccurate out-of-sample forecasts, particularly for models 

with many variables, due to the estimation uncertainty of the parameters. 

Litterman (1980) and Doan, Litterman, and Sims (1984) have proposed to combine the 

likelihood function (the data) with some informative prior distributions (the researcher’s belief 

about the values of coefficients) to improve the forecasting performance of VAR models, 

introducing a Bayesian approach into VAR modeling. 

In any Bayesian inference, a fundamental yet challenging step is prior specification, which 

influences posterior distributions of the unknown parameters and, consequently, the forecasts 
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(Geweke, 2005). Fortunately, the literature has proposed some methodologies to set how 

informative the prior distributions should be. 

Regarding prior selection, Litterman (1980) and Doan, Litterman, and Sims (1984) set the 

tightness of the prior by maximizing the out-of-sample forecasting performance of a small-scale 

model. Many authors follow this strategy, such as Robertson and Tallman (1999) and Wright 

(2009), and Giannone et. al (2014), who minimize the Root Mean Square Error (RMSE) of the 

forecasts. 

On the other hand, Banbura, Giannone and Reichlin (2008) propose controlling the 

overfitting caused by the considerable number of variables in the model by selecting the shrinkage 

of the coefficients in such a way as to provide appropriate fitting “in-sample.” Within this second 

selection strategy, we can find authors such as Giannone, Lenza and Primiceri (2012), Bloor and 

Mathenson (2009), Carriero, Clark and Marcellino (2015) and Koop (2011). 

Banbura, Giannone and Reichlin (2008) showed that by applying Bayesian VAR 

methodology, they were able to handle large unrestricted VARs models and therefore they 

demonstrated that VAR framework can be applied to empirical problems that require the analysis 

of more than a few sets of time series. The authors showed that a Bayesian VAR is a viable 

alternative to factor models or panel VARs for analysis of large dynamic systems. 

This paper develops a group of models to forecast inflation for Argentina, which includes 

autoregressive models, and different scale Bayesian VARs (BVAR), and compares their relative 

accuracy.  

The paper is organized as follows. Section 2 presents the methodological aspects related to 

the application of Bayesian analysis in a VAR framework, and Section 3 presents a brief 

description of the data. Section 4 goes through the empirical results, and finally, Section 5 

concludes. 

 
2. Bayesian VAR Methodology 
 
A VAR model has the following structure 
 

𝐲𝐲t = 𝐜𝐜 + 𝐁𝐁𝟏𝟏𝐲𝐲t−1+. . . +𝐁𝐁p𝐲𝐲t−p + 𝛆𝛆t, (1) 
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where 𝐲𝐲t is a n × 1 vector of endogenous variables, 𝛆𝛆t ~ N(𝟎𝟎,𝚺𝚺) is a n × 1 vector of exogenous 

shocks, c is a n × 1 vector of constants, 𝐁𝐁𝟏𝟏 to 𝐁𝐁p are n × n matrices and 𝚺𝚺 is n × n covariance 

matrix. 

The BVAR coefficients are a weighted average of the prior mean (researcher’s belief) and 

the maximum likelihood (ML) estimators (inferred from the data), with the inverse covariance of 

the prior and the ML estimators as weights. 

Consider the following posterior distribution for the VAR coefficients 

 
𝛃𝛃|𝛀𝛀 ~ N(𝛃𝛃0,𝛀𝛀−𝟏𝟏ξ) (2) 

 

where the vector 𝛃𝛃0 is the prior mean (whose elements will represent the coefficient in equation 

(1), the matrix Ω is the known variance of the prior and ξ is a scalar parameter controlling the 

tightness of the prior information. Even though Ω could have many shapes, gamma and Wishart 

distributions are frequently used in the literature, since they ensure a normally distributed 

posterior.2 

The conditional posterior of 𝛃𝛃 can be obtained by multiplying the prior by the likelihood 

function. The posterior takes the form 
 

𝛃𝛃|𝛀𝛀, 𝐲𝐲 ~ N �𝛃𝛃�(ξ),𝐕𝐕�(ξ)� , (3) 
 

where 
𝛃𝛃�(ξ) ≡ vec �𝐁𝐁�(ξ)� , (4) 

and 
𝐁𝐁�(ξ) ≡ (𝐱𝐱′𝐱𝐱 𝚺𝚺−1 + (𝛀𝛀ξ)−1)−1(𝐱𝐱′𝐲𝐲𝚺𝚺−1 + (𝛀𝛀ξ)−1𝛃𝛃0), (5) 

 

𝐕𝐕�(ξ) ≡ (𝐱𝐱′𝐱𝐱 𝚺𝚺−1 + (𝛀𝛀ξ)−1)−1. (6) 
 

Vectors 𝐲𝐲 and 𝐱𝐱 represent observed data while 𝛃𝛃0 is a matrix where each column corresponds to 

the prior mean of each equation. 

It is important to note that if we choose a large value for ξ, the prior will have little weight 

into the posterior. This translates to a large volatility of the prior and not enough information 

coming from the prior. On the other hand, if the ξ is set to a small value (i.e., close to zero), the 

                                                            
2 If the posterior distributions are in the same family as the prior probability distribution, the prior and posterior are 
then called conjugate distributions. 
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prior becomes more informative and the posterior mean moves towards the prior mean. To see this 

point, we can express (5) as follows: 
 

𝐁𝐁�(ξ) ≡ 𝛀𝛀�[𝛀𝛀 0
−1𝛃𝛃0 + (𝚺𝚺−1 ⊗ 𝐱𝐱′)𝐲𝐲 ] (7) 

 
and 

𝛀𝛀� = [𝛀𝛀0
−1 +  𝚺𝚺−1 ⊗ 𝐱𝐱′𝐱𝐱]−1 (8) 

 

If the second element between brackets in equation (7) is multiplied by (𝐱𝐱′𝐱𝐱)−1(𝐱𝐱′𝐱𝐱), we 

obtain the following equation 
 

𝐁𝐁�(ξ) ≡ 𝛀𝛀��𝛀𝛀 0
−1𝛃𝛃0] + 𝛀𝛀�[𝚺𝚺−1 ⊗ 𝐱𝐱′𝐱𝐱 (𝐱𝐱′𝐱𝐱)−1𝐱𝐱′𝐲𝐲 � (9) 

 

𝐁𝐁�(ξ) ≡ 𝛀𝛀��𝛀𝛀 0
−1𝛃𝛃0] + 𝛀𝛀�[𝚺𝚺−1 ⊗ 𝐱𝐱′𝐱𝐱 𝛃𝛃ols� (10) 

 
As can be seen, the posterior is a weighted average between the prior and the Ordinary 

Least Square (OLS) estimators,3 where the weights are the reciprocal of the prior covariance matrix 

and the reciprocal of the OLS covariance matrix respectively. As a result, if the information 

contained in the data is good enough to describe the process behind it, the posterior will move 

towards the OLS estimators. However, it is important to underscore that, even if the available 

series are adequate to describe the data generating process, the researcher could still formulate 

hypothesis about the distribution of the parameters based on his own beliefs. That would imply 

ignoring the information contained in the data, and usually that kind of decisions are based on 

strong beliefs. 

The issue mentioned in the last paragraph demonstrates the need to be cautious about 

choosing the prior mean and the hyperpriors. In the following subsections, these aspects are 

discussed in more detail. 

 
2.1 Level or Growth Rate 
 
It is unclear a priori whether transforming variables into their growth rates can enhance the forecast 

performance of a BVAR model. On one hand, the level specification can better accommodate the 

existence of long-run (cointegrating) relationships across the variables, which would be omitted in 

a VAR in differences. On the other hand, Clements and Hendry (1996) have shown that in a 

                                                            
3 The OLS estimators of a VAR coincide exactly with the ML estimators conditional on the initial values. 
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classical framework, differencing can improve forecasting performance in the presence of 

instability. 

There has been little effort in the BVAR literature to compare specifications in levels 

versus differences. Carriero, Clark and Marcellino (2015) work with this specific topic and found 

that models in growth rates generally yield more accurate forecasts than those obtained from the 

models in levels. However, we can find both approaches in the literature. Following the Litterman 

(1986) tradition, some authors considered BVARs with variables in levels (e.g., Banbura et al., 

2008; Giannone et al., 2014; and Giannone, Lenza and Primiceri, 2012). Other authors used 

BVARs with variables in differences or growth rates (e.g., Clark and McCracken, 2007, and Del 

Negro et al. (2004). 

As mentioned above, there is no apparent reason to opt for series in levels or in differences 

to work with; nevertheless, choosing a representation ex ante gives us information about the 

characteristics of the prior distribution (values of the mean prior). For example, working with 

variables in differences implies that the persistence of those variables should be low, and that one 

should impose a number close to zero as a prior mean of the first lag, denoting low persistence in 

the series. 

Since it is a good practice to start with some idea about the value that the prior could take 

and encouraged by the evidence found by Carriero, Clark and Marcellino (2015), we have opted 

to work with variables in differences. 

In the next subsection, we will treat the variance of the prior as another aspect of prior 

distribution. 

 
2.2 Choice of Hyperparameters and Lag Length Strategy 
 
To select the hyperparameters and the lag length we will follow the strategy suggested by Banbura, 

Giannone and Reichlin (2008), Carriero, Clark and Marcellino (2015) and Giannone, Lenza and 

Primiceri (2012). Suppose, that a model is described by a likelihood function p(𝐲𝐲|𝛉𝛉) and a prior 

distribution p𝛄𝛄(𝛉𝛉), where 𝛉𝛉 is a vector parameter of the model and 𝛄𝛄 is a vector of hyperparameters 

affecting the distribution of all the priors of the model. It is natural to choose these hyperparameters 

by interpreting the model as a hierarchical one, i.e. replacing p𝛄𝛄(𝛉𝛉) with p(𝛉𝛉|𝛄𝛄) and evaluating 

their posterior (Berger, 1985; Koop, 2003). In this way, the posterior can be obtained by applying 

Bayes’ law 
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p(𝛄𝛄|𝐲𝐲) ≈ p(𝐲𝐲|𝛄𝛄)p(𝛄𝛄), (11) 

 
where p(𝛄𝛄) is the density of the hyperparameters and p(𝐲𝐲|𝛄𝛄) is the marginal likelihood. In turn, 

the marginal likelihood is the density that comes from the data when the hyperparameters change, 

in other words, the marginal likelihood can be obtained after integrating out the uncertainty about 

the parameters in the model, 
 

p(𝛄𝛄|𝐲𝐲) = �p(𝐲𝐲|𝛉𝛉, 𝛄𝛄) p(𝛉𝛉|𝛄𝛄)d𝛉𝛉. (12) 
 

For every conjugate prior, the density p(𝛄𝛄|y) can be computed in closed form. To obtain 

the Bayesian hierarchical structure, it is necessary to obtain the distribution of p(𝛉𝛉) by integrating 

out the hyperparameters 
 

p(𝛉𝛉) = � p(𝛉𝛉, 𝛄𝛄) p(𝛄𝛄)d𝛄𝛄. (13) 
 
More precisely, we can find different values of the prior distribution from different hyperparameter 

values and, in this way, we can represent the posterior as: 
 

p(𝛉𝛉,𝛄𝛄|𝐲𝐲) = p(𝐲𝐲|𝛉𝛉,𝛄𝛄)p(𝛉𝛉,𝛄𝛄)p(𝛄𝛄). (14) 
 

The marginal likelihood should be sufficient to discriminate among models; in this sense, 

we can choose models with different hyperparameters and different likelihood specification (more 

precisely, lags length structure). To make this point operational, we estimate different models, 

following Giannone, Lenza and Primiceri (2012) who introduce a procedure allowing to optimize 

the values of the hyperparameters that maximize the value of the marginal likelihood of the model. 

This implies that the hyperparameter values are not set a priori but are estimated. 

Then the marginal likelihood can be estimated for every combination of hyperparameter 

values within specified ranges and for different lag length structures, and the optimal combination 

is retained as the one that maximizes that value. 

 
2.3 Comparison Strategy 
 
In this subsection we present some details about our strategy for model comparison. We will 

mention the steps that we will follow to do it and then give more details about the predictive ability 

tests used for comparison: 
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a) Estimate a univariate AR model. 

b) Compute the relative RMSE to the AR from a). 

c) Compute the relative RMSE to the BVAR.4 

d) Run the test of Giacomini and White (2006) to compare both models. 
 
Our benchmark is a univariate model. This means that we have at hand different statistical 

measures that cover both the frequentist and the Bayesian approaches. While frequentist literature 

tends to compare the forecasts with actual values, Bayesian literature compares the realized values 

with the whole posterior predictive density. 

The testing methodology of Giacomini and White (2006) consists on evaluating relative 

forecast accuracy with a Diebold-Mariano (1995) like test, but with one central difference: the size 

of the in-sample estimation window is kept fixed, instead of expanding. Using the sample 

observations available at time “t”, forecasts of 𝐲𝐲t+τ are produced for different “t” for given “τ” 

periods into the future, with rolling windows of estimation with the two models that are being 

compared. The sequences of forecasts are then evaluated according to some loss function and then 

the difference of forecast losses is computed. This way, a time series of differences of forecast 

losses ∆Lt+τ(θ�) that depends on the estimated parameters is constructed. The test then consists of 

a Wald test on the coefficients of the regression of that series against a constant, the unconditional 

version of the test in equation (15), or against other explanatory variables, the conditional version 

in equation (16), 
 

∆Lt+τ�θ�� = 𝜇𝜇 + 𝜀𝜀𝑡𝑡 , (15) 
 

∆Lt+τ�θ�� = 𝛽𝛽′𝑋𝑋𝑡𝑡 + 𝜀𝜀𝑡𝑡 . (16) 
 
Standard errors may be calculated using the Newey-West covariances estimator, controlling for 

heteroskedasticity and autocorrelation. In this paper, the unconditional version is used. 

The Giacomini-White test5 has many advantages: it captures the effect of estimation 

uncertainty on relative forecast performance, it allows for comparison between either nested or 

non-nested models, and, finally, it is quite easy to compute. 

 
  

                                                            
4 The mean of the predictive density is considered. 
5 See chapter 17 of Hashimzade and Thornton (2013) for a detailed discussion of this test.  
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2.4 Model Specification 
 
We follow Banbura et al. (2008) and analyze two VAR models that incorporate variables of special 

interest, including indicators of real economic activity, consumer prices and monetary variables. 

We consider the following two alternative models:  
 
Small-Scale Model. This is a small monetary VAR including three key variables: 

a) Prices: we used the consumer price index constructed by the National Institute 

of Statistics and Census of Argentina (INDEC). After December 2006 until July 

2012, the previous series is linked with the evolution of the consumer price 

index provided Provincial Institute of Statistics and Census of the Province of 

San Luis and, after July 2012, series is again linked with the evolution of the 

consumer price index of the City of Buenos Aires.6 

b) Economic Activity: we used a monthly economic activity indicator known as 

EMAE (Estimador Mensual de Actividad Económica) published by INDEC. 

The EMAE is based on the value added for each activity at a base price plus net 

taxes (without subsidies), and it uses weights provided by Argentina’s National 

Accounts (2004). It tries to replicate quarterly GDP at a monthly frequency. 

c) Interest Rate: we used data from the Central Bank of Argentina (BCRA) on 30 

to 59-day fixed-term deposit rates. 
 

Large-Scale Model. In addition to the variables included in the small-scale model, this version 

also includes the rest of variables in the data set. These are detailed in the next section. 

In September 2016, Argentina transitioned to an inflation targeting regime. This could 

generate a structural break in the mean or/and variance. To account for this possible change in the 

mean of the process, we incorporate a dummy variable in both specifications (Marcelino and 

Mizon, 2000).7 

As we compare models of different sizes, we need a strategy on how to choose the 

shrinkage hyperparameter as models become larger. As the dimension increases, we want more 

                                                            
6 From December 2006 to October 2015, the index by INDEC presented severe discrepancies with provincial and 
private price indexes and was therefore discard for that period. 
7 In the Appendix, we show the posterior estimation of the whole sample to see the effect of this. We controlled the 
change in the mean due the transition to an inflation targeting regime and indeed obtained a significant coefficient in 
both models. 
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shrinkage, as suggested by the analysis in De Mol, Giannone and Reichlin (2008) to control for 

overfitting. We set the tightness of the prior for the model to have better in-sample fit; in this way, 

we are shrinking more in a larger dimension model. 

 
3. Data 
 
Our data set is composed of a group of 16 monthly macroeconomic variables for Argentina. 
 

Table 1. List of Endogenous Variables 
 

 Source Description Transf. Characteristics 

1 INDEC EMAE log SA Unit-Root 

2 INDEC CPI Inflation - - Trend 

3 INDEC Core CPI Inflation (ex. seasonal and 

 

- - Trend 

4 INDEC Industrial Employment log SA Unit-Root 

5 INDEC Construction Employment log SA Unit-Root 

6 INDEC Retail Trade Employment log SA Stationary 

7 BCRA M2 Monetary Aggregate log SA Unit-Root 

8 BCRA Multilateral Nominal Exchange Rate log - Unit-Root 

9 BCRA 30 to 59-day Deposit Rate - - Unit-Root 

10 INDEC Imports of Intermediate Goods log SA Unit-Root 

11 INDEC Total Exports log SA Unit-Root 

12 UTDT Consumer Confidence Index - - Unit-Root 

13 INDEC Monthly Supermarket Sales log SA Unit-Root 

14 AFCP Cement Sales log SA Unit-Root 

15 MINEM Asphalt Sales log - Stationary 

16 MERVAL Stock Market Index log - Unit-Root 
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4. Results 
 

4.1 Estimation of the BVAR Model 
 
4.1.1 The Optimal Hyperparameters 
 

We work with a Normal-Wishart BVAR specification. In this type of specification there are two 

hyperparameters and two parameters. We estimate the overall tightness λ1, lag decay λ3 and the 

lag length as we have described in Section 2.2, and then we impose the value of the prior mean 

(the autoregressive coefficient) equal to zero as discussed earlier. 

The hyperparameter of the overall tightness λ1 is the standard deviation of the prior of all 

the coefficients in the system different from the constant. In other words, it determines how all the 

coefficients are concentrated around their prior means. 

The term λ3 is a decay factor, and 1/(Lλ3) controls the tightness on lag “L” relative to the 

first lag. Since the coefficients of higher order lags are more likely to be close to zero than those 

of lower order lags, the prior for the standard deviations of the coefficients decrease as the lag 

length increases. The values usually used in the literature are 1 or 2, so we settle for λ3 = 2. 

The prior variance of the parameters of 𝛃𝛃�(ξ) is set according to: 
 

σij2 = �
1
σj2
� �

λ1
Lλ3

�
2

, (17) 

 

where σj2 denotes the OLS residual variance of the autoregressive coefficient for variable “j”, λ1 

is an overall tightness parameter, “L” is the current lag, and λ3 is a scaling coefficient controlling 

the speed at which coefficients for lags greater than 1 converge to 0. 

For exogenous variables, we define the variances as: 
 

σ2 = (λ1λ4)2 (18) 
 

The results for the hyperparameters and prior means of the small and the large-scale model are 

shown in Table 2; as can be seen, all the hyperparameters are equal for both type of models 

excepted for the hyperparameter λ1. 

The characteristics of our hyperparameters after the optimization procedure are as follows: 
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Table 2. List of Hyperparameter Values 
 

Hyperparameters Values Large-Scale 
Model Small-Scale Model 

Autoregressive Coefficient: 0 0 

Overall Tightness (λ1): 0.05 0.23 

Lag Decay (λ3): 2 2 
Exogenous Variable 

Tightness 1 1 

Lag Length 1 1 
 

The hyperparameter λ1 is equal to 0.05 for the large-scale model while the hyperparameter 

λ1 for the small-scale is 0.23. From a practical point of view, this means that the “true” value of 

the coefficients estimated (posterior) is probably farther from the prior mean in the small-scale 

model than in the large-scale one.  

Another aspect to consider about λ1, is the fact that this hyperparameter impacts on the 

distribution of the parameters of lagged endogenous and exogenous variables of each equation in 

the system. In this sense, with more shrinkage for example, it is less probable that the posterior 

coefficients of the lagged endogenous and exogenous variables depart from the prior. 

As can be seen in Table 2, the posterior coefficients of the variables in the large-scale 

model are less probable to depart from the prior than the small-scale ones. Models with many 

variables will tend to have a better in-sample fit even when λ1 is set to a “loose” value. 

The posteriors obtained for the small- and the large-scale model of the inflation equation 

in each type of model are shown in the Appendix.  

 
4.1.2 Forecasting Exercise 
 
Our forecasting exercise is conducted in the following way. We estimate the hyperparameters 

considering the whole sample, through the maximization of the marginal likelihood; and then, we 

compute the forecasts. 

As mentioned above, the data set goes from January 2004 to July 2017. We compute one, 

three and six-step-ahead forecasts with rolling windows. The size of the estimation sample is the 

same for each forecast horizon. Out-of-sample forecast accuracy is measured in terms of RMSE 

of the forecasts. Therefore, we obtained three RMSEs for each model. 
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Relative forecast accuracy is analyzed in Table 3, by computed the different combinations 

of RMSE ratios. On average, the BVAR presents better accuracy than the benchmark 

independently of the forecast horizon. For immediate horizons, the small-scale model slightly 

outperforms the large-scale model, but the large-scale model outperforms the small-scale model  

for longer forecast horizons. 

 
Table 3. Relative Forecast Accuracy 

 

 
One Step Ahead  Three Step Ahead  Six Step Ahead 

Ratio Small 
Model-

Benchmark 

Ratio Large 
Model-

Benchmark 

Ratio Large 
Model-Small 

Model 

Ratio Small 
Model-

Benchmark 

Ratio Large 
Model-

Benchmark 

Ratio Large 
Model-Small 

Model 

Ratio Small 
Model-

Benchmark 

Ratio Large 
Model-

Benchmark 

Ratio Large 
Model-
Small 
Model 

0.77 0.90 1.69 0.78 0.77 1.02 0.87 0.82 0.94 

 
 

In the next subsection, we analyze these results with a Giacomini-White test.  

 
4.2 Forecast Evaluation 
 
To evaluate the predictive performance of the different models, we used the tests described earlier. 

Each column of Table 4 contains the probability value of Giacomini-White test statistic for the 

different models. 

 
Table 4. Giacomini-White Test  

 

Forecast Horizon 
Large 

BVAR vs. 
Benchmark 

Small 
BVAR vs. 

Benchmark 

Difference 
Between 
BVAR 
Models 

One-Step-Ahead 0.03 0.01 0.29 

Three-Steps-
Ahead 0.00 0.00 0.49 

Six-Steps-Ahead 0.09 0.05 0.41 
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The result of the Giacomini-White test show that at a 5% significance level, the large 

BVAR model outperforms the benchmark for one step and three-step-ahead forecast horizon, 

while the small BVAR outperforms the benchmark at a 5% significance level for all forecast 

horizons. The last column of the table shows the Giacomini-White test applied to the differences 

in predictive ability between the small- and large-scale BVAR models, but in this case the 

differences are not significant for all forecast horizons. 

 
5. Conclusions 
 
This paper assesses the performance of Bayesian VAR to forecast inflation in Argentina. We 

considered a Normal Wishart BVAR specification for a small- and a large-scale model of 

differentiated variables setting the prior mean according to standard recommendations in previous 

studies. The overall tightness hyperprior and the lag length of the different models were set by 

optimization of the marginal likelihood. We found that large-scale models have narrower priors, 

giving more weight to the priors mean than small-scale models. 

Overall, the results show that the BVAR model can improve the forecast ability of the 

univariate autoregressive benchmark’s model of inflation. The Giacomini-White test indicates that 

a BVAR performes better than the benchmark in all forecast horizons. Statistical differences 

between the two BVAR model specifications (small and large-scale) are not found. However, 

looking at the RMSEs, one can see that the larger model seems to perform better for longer forecast 

horizons. 
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Appendix 
 

Table 1A. Small BVAR Characteristics 
 

Endogenous variables: Inflation, Interest Rate, Real Activity 

Exogenous variables: Constant, Dummy 2016-11 

Estimation sample: July 2004 to July 2017 

Sample size (omitting initial conditions): 156 

Number of lags included in regression: 1 

Prior: Normal-Wishart 

Autoregressive coefficient: 0 

Overall tightness: 0.23 

Lag decay: 2 

Exogenous variable tightness: 1 

 
Table 2A. Small BVAR Inflation Equation Coefficient Values 

 

 Median SD LB UB 

INF(-1) 
I(-1) 
Y(-1) 

Constant 
d112016 

0.468 
0.901 
2.631 
0.280 

-0.197 

0.066 
0.640 
3.500 
0.071 
0.144 

0.338 
-0.356 
-4.237 
0.140 

-0.479 

0.598 
2.157 
9.499 
0.420 
0.086 

 
Sum of squared residuals: 91.05 
R-squared: 0.291 
Adj. R-squared: 0.272 
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Table 3A. Large BVAR Characteristics 
 

Endogenous variables 

Inflation, Interest Rate, Real Activity, Multilateral Exchange Rate, 
Industrial Employment, Cement Sales, Asphalts Sales, Imports of 

Intermediate Goods, Total Exports, M2, Core Inflation, 
Construction Employment, Consumer Confidence Index, 

Supermarket Sales, Stock Market Index  

Exogenous variables: Constant, Dummy 2016-11 

Estimation sample: July 2004 to July 2017 

Sample size: 156 

Number of lags: 1 

Prior: Normal-Wishart 

Autoregressive coefficient: 0 

Overall tightness: 0.05 

Lag decay: 2 

Exogenous variable tightness: 1 
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Table 4A. Large BVAR Inflation Equation Coefficient Values 
 

 

 
Sum of squared residuals: 89.33 
R-squared: 0.304 
Adj. R-squared: 0.224 

 Median SD LB UB 

INF(-1) 
I(-1) 
Y(-1) 
E(-1) 

EMPI(-1) 
CEM(-1) 
ASPH(-1) 
IMP(-1) 
EXP(-1) 
M2(-1) 

INFC(-1) 
EMPC(-1) 

ICC(-1) 
SUP(-1) 
STK(-1) 
Constant 
d112016 

0.145 
0.436 
1.177 
7.261 

16.644 
-0.680 
0.083 
0.125 
0.091 
4.093 
0.183 

-1.452 
-0.011 
2.243 
0.133 
0.056 

-0.014 

0.045 
0.407 
2.131 
3.431 

11.611 
0.556 
0.411 
0.477 
0.491 
2.410 
0.047 
2.933 
0.013 
1.322 
1.110 
0.039 
0.042 

0.057 
-0.362 
-3.005 
0.528 

-6.143 
-1.771 
-0.723 
-0.810 
-0.873 
-0.637 
0.091 

-7.207 
-0.036 
-0.351 
-2.045 
-0.021 
-0.096 

0.234 
1.235 
5.359 

13.994 
39.431 
0.410 
0.888 
1.061 
1.055 
8.823 
0.275 
4.303 
0.013 
4.837 
2.310 
0.132 
0.067 


