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Abstract: Measuring economic uncertainty is crucial for understanding investment de-

cisions by individuals and firms. Macroeconomists increasingly rely on survey data on

subjective expectations. An innovative approach to measure aggregate uncertainty ex-

ploits the rounding patterns in individuals’ responses to survey questions on inflation

expectations (Binder, 2017). This paper uses the panel dimension of household surveys to

study individual-level heterogeneity in this measure of individual uncertainty. The results

provide evidence for the existence of considerable heterogeneity in individuals’ response

behavior and inflation expectations.
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1 Introduction

Inflation expectations of individuals are crucial for understanding the economy and eco-

nomic policies. Individuals’ expectations are directly linked to their decision-making re-

garding investments, savings, retirement planning and wage negotiations. Since these

decisions again directly translate into real economy transactions, modern monetary policy

relies to a large extent on individuals’ inflation expectations (Sims, 2009; Galí, 2015). In

fact, expected or perceived inflation is often thought to be more important for monetary

policy than the actual, measured inflation rate (Bernanke, 2007; Blanchard et al., 2010).

When analyzing individual data on inflation expectations, macroeconomic studies usually

focus on their predictive power for actual inflation and on interpersonal heterogeneity (see,

amongst others, Souleles, 2004; Blanchflower and MacCoille, 2009; Hobijn et al., 2009).

These studies usually take survey answers at face value, neglecting that responses may suf-

fer from several reporting issues, such as rounding, measurement error and non-response.

However, as shown in Kleinjans and van Soest (2014), these reporting issues may not

only reduce data quality, but also lead to biases in the estimates induced by selection

effects. Microeconomic studies have, in contrast, a longer tradition of rigorously modeling

these reporting issues. For example, when analyzing (probabilistic) stock market expecta-

tions of private households, it is common to explicitly model measurement error, rounding

behavior or both.1 In a recent contribution, Manski (2018) gives an overview of how

macroeconomics can benefit from microeconomic insights, when working with subjective

expectations, and encourages interactions between both fields.

In this paper, I follow the call by Manski (2018) and propose a microeconometric panel

data model for inflation point (rather than probabilistic) expectations of individuals, ex-

plicitly accounting for item nonresponse and rounding behavior.2 Specifically, I generalize

1 See, for example, Hudomiet et al. (2011), Ameriks et al. (2018) or Heiss et al. (2019).
2 In this paper, I abstract from measurement error other than rounding.
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a model by Binder (2017) who suggests that the population can be described by a mixture

of two different response types. When asked about the year-ahead inflation expectations,

type NR (non-rounder) reports her true expectation, while Type RD (rounder) rounds

her answer to a multiple of five percent. Binder (2017) estimates monthly RD type shares

in the US between 1978 and 2014 and shows that they can serve as measure of economic

uncertainty. This paper builds on her model and extends it in several dimensions. First,

I introduce a third response type DK for respondents, who choose a “don’t know” option,

when asked about their inflation expectations. Second, I add a panel dimension to the

econometric model and estimate the uncertainty index by month-year fixed effects in the

model for the type probabilities, rather than by hundreds of separate estimations. Third,

I allow the type probabilities to depend on both observed and unobserved heterogeneity,

rather than treating them as constant scalars. I therefore contribute to the literature by

providing a rich, but tractable panel data model for inflation expectations, which – in

contrast to previous studies, in particular Binder (2017) – allows for an additional panel

dimension, individual-specific heterogeneity and item nonresponse.

I apply the model to monthly data from the Michigan Survey of Consumers (MSC) between

1978 and 2017. Assuming type RD rounds to the next multiple of five percent, the estim-

ated population shares of types (NR,RD,DK) are (0.65,0.28,0.07). This implies that most

respondents report their true inflation expectation, while only few choose a “don’t know”

response. The model also identifies considerable heterogeneity in individuals’ type probab-

ilities. For example, males and respondents with at least a college degree are significantly

less likely to round or to choose a “don’t know” option than females and respondents

without a college degree. I also find evidence for the importance in accounting for unob-

served factors. The unobserved, individual-specific (random) effects for types RD and DK

are positively correlated, implying that respondents who are more likely to round are, in

general, also more likely to choose a “don’t know” option. This also suggests that discard-

ing non-respondents – as often done in the literature and also in Binder (2017) – is invalid,

because it would only be allowed if the individual effects were uncorrelated. In addition,
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my model identifies considerable heterogeneity across individuals’ inflation expectations,

confirming previous findings from the literature.

At the individual level, I find evidence for the persistence of response types over time.

If respondents are interviewed twice, the probability of being a specific response type in

the first interview is positively correlated with the probability of being the same type in

the second interview and negatively correlated with the probability of being another type.

Furthermore, model-implied posterior type probabilities, i.e. type probabilities conditional

on the reported inflation expectation, suggest that roughly every second respondent who

reports an inflation expectation of zero or five percent is rounding. Almost all respondents

who report more extreme multiples of five, such as 25 or minus ten percent, are predicted

to round.

I then follow the insight in Binder (2017) and construct a macroeconomic uncertainty

index, which is given by the monthly share of rounders (RD) and respondents choosing

the “don’t know” option (DK). The resulting uncertainty index spikes during periods of

arguably high uncertainty, such as the financial crisis, 9/11 or the Gulf War. However, the

index is almost identical to the uncertainty index by Binder (2017). Even though it is more

strongly correlated with alternative state-of-the-art uncertainty measures, the advantages

of the generalized model therefore vanish – at least in terms of measuring macroeconomic

uncertainty.

This paper is related to three different strands of the literature. First, several studies

focus on heterogeneity of inflation expectations across individuals. Most prominently, fe-

males are found to systematically report higher inflation expectations than males. This is

often explained by an argument of Jonung (1981), suggesting that females are on average

more exposed to food prices than males and therefore more able to predict price changes.

However, this view is challenged by Bryan and Venkatu (2001a,b), showing that gender

differences can also be found between single females and single males as well as during peri-
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ods where food prices actually increased less than prices for other goods. More generally,

systematic differences in inflation expectations between different socio-economic subgroups

of the population are often related to different consumption patterns, even though this

is known not to be enough to explain all the variation (see for example, Ranyard et al.,

2008; Hobijn et al., 2009; Georganas et al., 2014). Malmendier and Nagel (2016) show

that experienced inflation rates during a respondent’s lifetime are also strong predictors

for inflation expectations. Indeed, research has shown that personal inflation experiences

of members of the Federal Open Market Committee (FOMC) can be used to predict their

voting behavior and consequently the federal funds target rate (Malmendier et al., 2017).

Second, the paper is related to several microeconometric papers focusing on measurement

and modeling of probabilistic (rather than point) expectations. Comprehensive overviews

are given by Manski (2004) and Hurd (2009). Kleinjans and van Soest (2014) show that

expectations in various domains in the Health and Retirement Study (HRS) are subject

to rounding, nonresponse and focal values and discuss potential implications. Heiss et al.

(2019) elicit individual distributions of stock market expectations, analyze how individuals

differ in using past stock market returns, when forming their expectations, and explicitly

model rounding behavior. Drerup et al. (2017) argue that subjective stock market expect-

ations might only be meaningful if they are precise. Expectations with low precision may

indicate that individuals base their decisions not on expectations, but rather on heuristics

or rules of thumb.

A third strand of the literature is concentrated on measuring general economic uncer-

tainty. Traditional measures are given by the realized (or implied) volatility of stock

market returns, the ex-ante cross-sectional dispersion of subjective forecasts by house-

holds or professional forecasters – often referred to as “disagreement” – and the ex-post

cross-sectional dispersion of stock returns, productivity and forecast errors (see, amongst

others, Bloom, 2009; Bachmann et al., 2013; Rossi and Sekhposyan, 2015; Rossi et al.,

2017). In a recent contribution, Baker et al. (2016) show that using newspaper coverage

5



frequencies of specific combinations of terms, such as “uncertainty”, “economic” and “defi-

cit”, can also be used to construct a measure of economic uncertainty. Jurado et al. (2015)

propose another measure which is based on whether the economy has become more or less

predictable by focusing on the volatility of expected forecast errors. As mentioned earlier,

Binder (2017) introduces an uncertainty measure which is based on rounding patterns in

inflation expectations of US households.

The remainder of this paper is organized as follows. I first describe the data and present

basic descriptive statistics in Section 2. The econometric model is introduced in Section

3. Section 4 applies the model to data from the Michigan Survey of Consumers and

presents the results, while several robustness analyses are discussed in Section 5. Section

6 concludes.

2 Data

For information on subjective inflation expectations and socio-economic characteristics,

I draw on data from the Michigan Survey of Consumers (MSC).3 Starting in 1978, this

nationally representative, monthly survey asks roughly 500 respondents on a variety of

topics, including personal finances, unemployment, confidence in government and eco-

nomic policies, personal attitudes and expectations.4 Most prominently, answers to some

of these questions are used to construct the University of Michigan Consumer Sentiment

Index, one of the leading US indicators for consumer confidence.

In every month, respondents can be divided into three different groups. One third are

3 After registration, the data is freely available at: https://data.sca.isr.umich.edu/ [accessed August 10,
2018].

4 American households from Alaska and Hawaii are not included in the sample. Note also that some
questionnaire items from the MSC date back to the late 1940s, when surveys were conducted on a
yearly or quarterly basis. The systematic rotating panel design was incorporated in January 1978,
which is also the earliest date available at the University of Michigan Survey Research Center. For more
details on the survey and its design see Curtin (1982).
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new respondents who will be interviewed again in six months, while another third are new

respondents who will not be contacted again. The last third consists of re-interviews of

respondents who were already interviewed six months before. A substantial share of re-

spondents is therefore interviewed twice, adding a panel dimension to the data, which will

later be exploited by the econometric model. Focusing on the entire universe of interviews

between January 1978 and December 2017, the data set contains 97,159 individuals who

are interviewed twice and 77,630 individuals who are interviewed once, making a total

of 271,948 observations. To reduce the computational burden, the main analysis concen-

trates on respondents who are interviewed twice, but the results are shown to be robust

to including respondents with only one interview.5

As the focus of this paper lies on subjective inflation expectations, the following question

from the MSC is of particular interest:

Q1: “During the next 12 months, do you think that prices in general will go

up, or go down, or stay where they are now?”

Respondents are asked about “prices in general” rather than “inflation” directly, the main

reason being that researchers are afraid that “ordinary persons may not understand the

professional economic use of the term [inflation]” (Manski, 2018, p.441). However, as dis-

cussed in Armantier et al. (2013), asking about “prices in general” might be problematic

too, because respondents could interpret the term heterogeneously. Indeed, the authors

find that some respondents focus on prices which they recently paid themselves rather

than on actual inflation. While I assume that respondents think about actual inflation,

this distinction becomes less important to the extent that the individual-specific (random)

effects in the panel data model capture these interpersonal differences.6

5 For details, see Section 5 and Appendices B and F.
6 An in-depth analysis of the effect of the exact question wording on inflation expectations can also be

found in Bruine de Bruin et al. (2010).
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If respondents’ answer to question Q1 is “stay where they are”, their answer is coded as

zero. If respondents choose “go up” or “go down”, they are asked another question:

Q2: By about what percent do you expect prices to go (up/down) on the aver-

age, during the next 12 months?

Respondents are allowed to report any integer response. The answers to both questions

are combined into an integer variable px1, measuring the subjective expected inflation

rate in the year ahead. Note that both questions allow respondents to choose a “don’t

know” (DK) option, i.e. respondents are not forced to answer the questions if they can-

not or do not want to.7 Figure 1 shows the response distribution of individuals’ inflation

expectations (px1) in the year 2009. Overall, responses vary between −25 and 25 percent,

with most respondents expecting a positive inflation rate. One quarter of respondents re-

port an expected inflation rate of zero percent, i.e. no change in prices, and more than ten

percent of respondents do not answer the questions at all (DK). Clearly, there is evidence

for substantial heaping at multiples of five and ten percent, and focal values of zero, two or

three percent. While these response patterns are often taken into account by microecono-

metric studies, they are usually neglected in macroeconomic studies that take responses at

face value. However, as shown in Binder (2017), rounding is systematically related to eco-

nomic uncertainty, indicating that temporal variation in these response patterns contains

additional information by itself.

In addition, the questionnaire also includes questions about the average, yearly inflation

rate over the next five years (px5). The elicitation and construction of these medium-run

inflation expectations is almost identical to the procedure for short-run expectations and

is presented in Appendix A. However, questions for px5 have not been asked in all months

and years, leading to several month-year combinations where data is missing. The main

analysis therefore focuses on short-run inflation expectations (px1), while the results for

medium-run inflation expectations (px5) are reported as robustness check in Section 5.

7 There are also additional questions after a “don’t know” response or an extraordinarily high inflation rate
to ensure respondents’ understanding of the question. The exact procedure is given by the interviewer
instructions summarized in Appendix A.
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Figure 1: Response distribution of one-year inflation expectations (px1) in 2009

Table 1 reports standard summary statistics for the main sample, which consists of all

respondents, who are interviewed twice between January 1978 and December 2017 (al-

ways with a six-month interval in between).8 Panel A focuses on respondents’ inflation

expectations. On average, respondents expect an inflation rate of 3.92 percent for the year

ahead and a slightly higher, yearly inflation rate of 3.97 percent over the next five years.

The standard deviations are with 5.51 and 4.92 relatively large, hinting at substantial

disagreement between respondents.

Panel B displays summary statistics regarding several binary socio-demographic charac-

teristics. Overall, the sample contains slightly more females than males. One in five

respondents is 65 or older; one in three respondents is younger than 40. 61 percent of

respondents report to be living with a partner, and 40 percent to hold at least a college

8 Table B1 in Appendix B reports summary statistics for the full sample, adding respondents who are
interviewed only once. The results are very similar.
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degree. Starting in October 1979, respondents are also asked about their total income (all

sources including job) from the previous year. In every given month-year combination, this

information is used to classify respondents into income quartiles, which are also presented

in Panel B. Panel C reports coarse information on the region of residence at the time of

the interview.9

Table 1: Summary statistics for the main sample

Mean SD p5 p95 Min Max Observations

A: Inflation expectations [%]

Short-run (px1) 3.92 5.51 0 11 -50 50 179,483

Medium-run (px5) 3.97 4.92 0 10 -50 50 139,897

B: Sociodemographics [0/1]

Male 0.46 0.50 0 1 0 1 194,065

Partner 0.61 0.49 0 1 0 1 193,224

Age > 64 0.21 0.41 0 1 0 1 193,379

Age < 40 0.36 0.48 0 1 0 1 193,379

College 0.40 0.49 0 1 0 1 193,174

1st income quartile 0.20 0.40 0 1 0 1 183,104

2nd income quartile 0.21 0.41 0 1 0 1 183,104

3rd income quartile 0.28 0.45 0 1 0 1 183,104

4th income quartile 0.30 0.46 0 1 0 1 183,104

C: Regional information [0/1]

West 0.20 0.40 0 1 0 1 194,269

Northcentral 0.27 0.45 0 1 0 1 194,269

Northeast 0.19 0.39 0 1 0 1 194,269

South 0.33 0.47 0 1 0 1 194,269

Notes: This table is based on all 97,159 respondents from the MSC who are interviewed twice
within a six-month interval between January 1978 and December 2017, making a total of 194,318
observations. Number of observations differs due to item nonresponse. Panel B and C report
dummy variables. Information on income (1st-4th quartile) not available before October 1979.
For details see text.

9 US states are classified into the four statistical regions “West”, “Northcentral”, “Northeast” and “South”,
as defined by the United States Census Bureau.
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Lastly, I draw on data on the official US inflation rate from the Organisation for Economic

Co-operation and Development (OECD).10 More specifically, I use monthly inflation rates

between January 1956 and June 2018, measured by the annual growth rate of the US

Consumer Price Index (CPI). Its time series is presented in Appendix C.

3 Econometric model

In the following paragraphs, I introduce the econometric panel data model used in this

paper and discuss the main differences to the model by Binder (2017).

3.1 Panel data model and likelihood function

Assume that the population can be described by three distinct response types, who differ

in how they report their true inflation point expectation. Type NR (non-rounder) always

reports her true inflation expectation. In contrast, type RD (rounder) always rounds

to the next multiple of m, say for example five percent. Type DK chooses the “don’t

know” option, when asked about her one-year inflation expectation. Note that individu-

als’ responses partially identify individuals’ response types. For example, both reporting

non-multiples of m and not answering at all uniquely classifies respondents as type NR

and type DK, respectively. However, every individual reporting a multiple of m is always

consistent with both type NR and type RD (but not with type DK).

I assume that the true inflation expectations of all individuals approximately follow a

normal distribution, whose two parameters (mean µ and variance σ2) are allowed to differ

across types NR and RD:11

y∗
it ∼ N(µR, (σR)2), R ∈ {NR, RD} (1)

10The data is freely available at https://data.oecd.org/price/inflation-cpi.html [accessed August 10, 2018].
11In a robustness analysis, I later relax the normality assumption and report estimates under the assump-

tion that inflation expectations follow alternative distributions (cf. Table F1).
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where y∗
it is the true (and partially) unobserved inflation expectation of individual i in

period t. The main difference between type NR and type RD is given by the mapping

from the reported inflation expectation yit to the true inflation expectation y∗
it. Abstracting

from measurement error other than rounding, type NR reports by definition her true

expectation, i.e. y∗
it = yit. In contrast, type RD always reports a rounded value (to the

next multiple of m), implying that we can only identify a symmetric interval for the true

inflation expectation, i.e. y∗
it ∈ [yit − m

2
; yit + m

2
]. Using this insight as well as the fact that

the reported values of yit partially identify individuals’ response types, the probabilities

of observing yit conditional on response type Tit are then given by:

P (yit|Tit) =



































fNR(yit) if Tit = NR

fRD(yit) if Tit = RD

0 if Tit = DK

& yit is a multiple of m

P (yit|Tit) =



































fNR(yit) if Tit = NR

0 if Tit = RD

0 if Tit = DK

& yit is not a multiple of m (2)

P (yit|Tit) =



































0 if Tit = NR

0 if Tit = RD

fDK(yit) if Tit = DK

& yit is missing

with

fNR(yit) = φ(yit; µNR; σNR)

fRD(yit) = Φ

(

yit + m
2

− µRD

σRD

)

− Φ

(

yit − m
2

− µRD

σRD

)

(3)

fDK(yit) = 1

where φ(·) denotes the probability density function (p.d.f.) of the standard normal dis-
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tribution and Φ(·) denotes the standard normal cumulative distribution function (c.d.f.).

Equation 2 illustrates the partial identification of reporting types. If an individual re-

ports a missing value or an inflation expectation which is not a multiple of m, her type is

uniquely identified as type DK or NR, respectively. Reporting a multiple of m, however,

is consistent with two types, namely NR and RD. As shown in Equation 3, the p.d.f. for

type NR, fNR(·), is given by a Gaussian density function with mean µNR and standard

deviation σNR, whereas the p.d.f. for type RD, fRD(·), is given by the difference between

two normal c.d.f.s with mean µRD and standard deviation σRD evaluated at yit ± m
2

, re-

spectively. For completeness, the p.d.f. for type DK, fDK(·), is equal to one and therefore

independent of any parameters.

In addition, the model allows the (type-specific) mean of the inflation expectation distri-

bution to vary across individuals and time by using the following linear parameterization:

µR
it = witβ

R, R ∈ {NR, RD} (4)

where wit is a vector of potentially time-varying covariates of respondent i in period t.

This formulation allows to capture systematic differences in inflation expectations between

individuals, as often found in the literature.

I model response type probabilities in a standard random effects multinomial logit model

with three outcomes:

u
j
it = xitβ

j + α
j
i + ε

j
it, j = 1, 2, 3

Tit = j if u
j
it ≥ uk

it, k = 1, 2, 3 (5)

P (εj
it ≤ z) = exp(− exp(−z)) (standard Gumbel)

where xit is a vector of covariates of respondent i in period t, potentially including period

fixed effects. α
j
i is an unobserved respondent-specific effect for type j and ε

j
it denotes
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an i.i.d. standard Gumbel error term. Without loss of generality, type NR is taken as

benchmark outcome Tit = 1, leading to the standard normalizations β1 = 0 and α1
i = 0.

The other outcomes are type RD (Tit = 2) and type DK (Tit = 3). The response type

probabilities conditional on the observed covariates xit and the unobserved effects α2
i and

α3
i can then be derived from the distributional assumptions on the error term ε

j
it and are

given by:

P (Tit = j|xit, α2
i , α3

i ) =
exp(αj

i + xitβ
j)

3
∑

k=1
exp(αk

i + xitβk)
; j = 1, 2, 3 (6)

In addition to the previous assumptions, I impose the following assumption on the vector

of unobserved heterogeneity α:

α =
(

α2
i α3

i

)

=
(

αRD
i αDK

i

)

∼ N(0, Σ) (7)

Equation 7 implies that the individual (random) effects are i.i.d. jointly normal with

mean zero and arbitrary variance-covariance matrix Σ and independent of xit and ε
j
is for

j = 1, 2, 3 and s = 1, ..., T . Note that both rounding and not answering at all can be seen

as indicators for individual uncertainty. I therefore expect a positive correlation between

αRD
i and αDK

i , indicating that individuals who do not answer at all are also more likely

to round, unlike in a standard multinomial logit model.12

Under these assumptions the likelihood function conditional on the unobserved individual

effects αRD
i and αDK

i can be written as:

Lc(αRD
i , αDK

i ) =
N
∏

i=1

T
∏

t=1

Lc
it(α

RD
i , αDK

i ) (8)

12As shown by Revelt and Train (1998), adding unobserved heterogeneity to a multinomial logit model
breaks the independence of irrelevant alternatives (IAA) assumption. See also Kleinjans and van Soest
(2014) for a similar application.
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with

Lc
it(α

RD
i , αDK

i ) = P
(

Tit = NR|xit, αRD
i , αDK

i

)

fNR(yit|wit) +

+ P
(

Tit = RD|xit, αRD
i , αDK

i

)

fRD(yit|wit) if yit is a multiple of m

Lc
it(α

RD
i , αDK

i ) = P
(

Tit = NR|xit, αRD
i , αDK

i

)

fNR(yit|wit) if yit is not a multiple of m

Lc
it(α

RD
i , αDK

i ) = P
(

Tit = DK|xit, αRD
i , αDK

i

)

fDK(yit|wit) if yit is missing

where fNR(·), fRD(·) and fDK(·) are given by Equation 3 and the conditional type prob-

abilities P (Tit|·) by Equation 6. Again this conditional likelihood function illustrates the

partial identification of response types, as already discussed before.

The unconditional likelihood function can be derived by integrating out the individual

effects:13

L =
N
∏

i=1

∫

❘2

T
∏

t=1

Lc
it(α

RD
i , αDK

i )f(α)dα. (9)

To avoid numerical integration in multiple dimensions, I use Maximum Simulated Likeli-

hood (MSL) and replace the integral by a simulated mean. The simulated sample likeli-

hood (SL) is then given by

SL =
N
∏

i=1

1

Q

Q
∑

q=1

T
∏

t=1

Lc
it(α

RD
iq , αDK

iq ) (10)

where αRD
iq , αDK

iq are simulated random effects for a given draw q. Applying a Cholesky

decomposition of the variance-covariance matrix Σ, yields a positive semi-definite lower

diagonal matrix L such that Σ = LL′, with the elements of L to be estimated. For a

given draw q, the unobserved heterogeneity is then calculated by α = Lτ , where τ con-

13Appendix D discusses the derivation of the likelihood function in greater detail. Note also that the
likelihood function is written for a respondent who participates in every period. If a respondent did not
participate in one particular period, her likelihood contribution for this period (Lc

it
) can be replaced by

one.
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tains simulated vectors of the independent standard normal distribution. As suggested

by Train (2003), I use draws from Halton sequences to obtain the independent standard

normal variables τ to reduce the variance induced by the simulation.

Note that after solving the maximization problem the estimated parameter vector can be

used to predict individual-specific (i) unconditional type probabilities as well as (ii) pos-

terior type probabilities, i.e. response type probabilities conditional on the reported value

of yit. The calculation of (i) is based on Equation 6 with the true parameter vectors βj be-

ing replaced by their respective estimates β̂j and the individual effects being integrated out

by simulation or quadrature methods. Specifically, I use 151 draws from Halton sequences

and simulate the normal individual effects with mean zero and a variance-covariance mat-

rix which is given by the estimates of Σ̂. (ii) can be calculated using Bayes’ theorem. Not

surprisingly, the posterior probability of being type DK is one if yit is missing. Similarly, if

the respondent does not report a multiple of m, her posterior probability of being type NR

is one. In contrast, if she reports a multiple of m, the probability of being type NR and

RD, respectively, is strictly between zero and one and can be calculated applying Bayes’

theorem. See Appendix D for derivations, formulas and further details.

3.2 Comparison to Binder (2017)

This econometric panel data model is essentially a generalization of the model by Binder

(2017) and nests it as a special case. First, Binder (2017) models the population as a

mixture of two response types only (rounders and non-rounders) and drops respondents

with missing information on inflation expectations.14 This is equivalent to restricting the

unconditional probability for type DK to zero in my model. Second, she does not allow for

either observed or unobserved interpersonal heterogeneity in the type probabilities, which

corresponds to restricting all coefficients other than the constants in the random effects

14She does so for the estimation of her empirical model. For the construction of her uncertainty index,
the DK share is added ad-hoc after the estimation.
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multinomial logit model (Equation 6) to zero. Third and most importantly, she ignores

the panel dimension of the data and rather estimates cross-sectional models, separately

for every month between January 1978 and July 2014. This is equivalent to restricting

the variances and covariances of the individual effects to zero, i.e. Σ = 0, and applying

the restricted model to each month separately. An important difference between both

models is therefore that temporal variation in the unconditional rounding probabilities –

which will later be used to construct the macroeconomic uncertainty index – comes from

hundreds of separate estimations in Binder (2017) and from the month-year fixed effects

of the joint model in this paper.

My approach offers several advantages over the model by Binder (2017). First, one can

expect considerable gains in efficiency, mainly stemming from two sources. On the one

hand, the model additionally uses information of respondents with missing information

on inflation expectations; on the other hand, the entire model is estimated jointly for

all months in the estimation sample. Second, my approach allows for the identification

of interpersonal heterogeneity in the response type probabilities. Third, leveraging the

existence of the panel dimension in the MSC data also allows to model unobserved hetero-

geneity via the inclusion of individual-specific (random) effects. By allowing for arbitrary

correlations between the individual effects, the model can actually test whether or not

dropping respondents with missing responses – as often done in the literature – is valid.

This will only be allowed if the individual-specific effects are uncorrelated.

17



4 Results

4.1 Interpersonal heterogeneity

I apply the econometric model to monthly data from the Michigan Survey of Consumers

between 1978 and 2017.15 Assuming that type RD rounds her true inflation expectation

to the next multiple of five percent, i.e. m = 5, Table 2 reports one model specification

excluding and one specification including month-year fixed effects in the random effects

multinomial logit model (Equation 6), respectively.16

Columns 1a, 1b and 2a, 2b of Table 2 report coefficients of the random effects multino-

mial logit model for the type probabilities (Equation 6). Recall that the baseline category

is type NR (non-rounder). Interestingly, males are found to be significantly less likely

to round or report a “don’t know” response than females. This finding could be driven

by the fact that men are on average more financially literate than women and therefore

more certain of and confident about their inflation predictions (see, for example, van Rooij

et al., 2011). It could also correspond to general overconfidence of men, as often found

in behavioral studies (cf. Niederle and Vesterlund, 2007). Unfortunately, the MSC does

neither include a measure of financial literacy nor (over-)confidence to further analyze

these patterns. Education is also significantly associated with type probabilities. Re-

spondents holding at least a college degree are less likely type RD (rounder) or type DK

(don’t know), compared to respondents without a college degree. This seems intuitive,

because more educated people are arguably more likely to know the concept of inflation.

15The estimation sample is based on all respondents, who are interviewed twice and who have full inform-
ation on all socio-economic characteristics and the exact month and year of the interview. Note that
respondents with missing information on inflation expectations via choosing a “don’t know” option are
explicitly allowed in the model and thus not excluded from the analysis. To make the results compar-
able to Binder (2017), I exclude extreme inflation expectations that are smaller than minus ten and
larger than 25 percent. Including these outliers, however, yields almost identical results. These data
requirements result in a total of 172,548 observations.

16As a robustness check, I also estimate the model for m = 10, i.e. type RD rounds her true inflation
expectation to the next multiple of ten percent, as well as a model which includes both rounding types
at the same time. Results are discussed in Section 5.
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Wealthy individuals are more likely to be type NR, i.e. these individuals tend to provide

exact answers, compared to less affluent respondents. Comparing specifications 1 and 2,

the coefficients of the socio-economic covariates are remarkably similar. Therefore, in-

cluding month-year fixed effects in the random effects multinomial logit model leaves the

effects of the covariates on the type probabilities almost unchanged.17 In summary, there

is strong evidence for the fact that socio-economic characteristics predict individual type

probabilities. Recall that Binder (2017) models these type probabilities as constant scal-

ars, which would require all coefficients in columns 1a, 1b, 2a and 2b in Panel A of Table

2 other than the constants to be statistically indistinguishable from zero.

Columns 1c, 1d and 2c, 2d report estimates for the parameterized subjective mean of in-

flation expectations for type NR (non-rounder) and RD (rounder), respectively (Equation

4). Even though the magnitude of the coefficients slightly varies between both types, the

effect of the covariates is qualitatively the same. Men report significantly lower inflation

expectations than women, while less educated and less affluent respondents tend to report

higher inflation expectations, independent of response type. Overall, these findings con-

firm findings from the previous literature (cf. Section 1).

Panel B focuses on the estimated standard deviation of the type-specific normal distri-

bution of inflation expectations. Interestingly, rounders seem to have a more dispersed

distribution of inflation expectations than non-rounders. The estimated standard devi-

ations for both types differ, in fact, by a factor of two. This is in line with arguing that

rounders perceive a higher level of uncertainty than non-rounders. It is, however, im-

portant to distinguish this estimated standard deviation from the cross-sectional standard

deviation of individual beliefs, which is also often used in the literature as measure of

uncertainty (see, for example, Bachmann et al., 2013).

17The results are also shown to be robust to including month-year fixed effects in the model of the
parameterized mean of the normal inflation expectations (Equation 4). For further details, see Section
5.
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Table 2: Model estimates

Excluding month-year FE Including month-year FE

P(T=RD) P(T=DK) Mean NR Mean RD P(T=RD) P(T=DK) Mean NR Mean RD
(1a) (1b) (1c) (1d) (2a) (2b) (2c) (2d)

Panel A

Male -1.00∗∗∗ -1.40∗∗∗ -0.12∗∗∗ -1.10∗∗∗ -0.93∗∗∗ -1.40∗∗∗ -0.12∗∗∗ -1.12∗∗∗

[0.03] [0.03] [0.02] [0.06] [0.02] [0.03] [0.02] [0.06]
Partner -0.06∗∗ -0.12∗∗∗ -0.02 0.32∗∗∗ -0.05∗ -0.13∗∗∗ -0.01 0.29∗∗∗

[0.03] [0.03] [0.02] [0.06] [0.02] [0.03] [0.02] [0.06]
College -0.66∗∗∗ -0.58∗∗∗ -0.12∗∗∗ -0.37∗∗∗ -0.55∗∗∗ -0.67∗∗∗ -0.13∗∗∗ -0.39∗∗∗

[0.03] [0.03] [0.02] [0.06] [0.03] [0.03] [0.02] [0.06]
1st income quartile 0.69∗∗∗ 1.76∗∗∗ 0.22∗∗∗ 1.37∗∗∗ 0.71∗∗∗ 1.71∗∗∗ 0.23∗∗∗ 1.37∗∗∗

[0.04] [0.04] [0.03] [0.09] [0.04] [0.05] [0.03] [0.09]
2nd income quartile 0.26∗∗∗ 0.87∗∗∗ 0.01 1.14∗∗∗ 0.37∗∗∗ 0.81∗∗∗ 0.02 1.12∗∗∗

[0.03] [0.04] [0.03] [0.09] [0.03] [0.04] [0.03] [0.09]
3rd income quartile 0.15∗∗∗ 0.33∗∗∗ 0.00 0.66∗∗∗ 0.18∗∗∗ 0.31∗∗∗ 0.00 0.67∗∗∗

[0.03] [0.04] [0.02] [0.08] [0.03] [0.04] [0.02] [0.08]
West -0.14∗∗∗ -0.10∗∗∗ 0.06∗∗∗ -0.01 -0.15∗∗∗ -0.12∗∗∗ 0.06∗∗ 0.01

[0.03] [0.04] [0.02] [0.08] [0.03] [0.04] [0.02] [0.08]
Northcentral -0.02 -0.21∗∗∗ -0.01 -0.17∗∗ -0.04 -0.20∗∗∗ -0.01 -0.17∗∗

[0.03] [0.04] [0.02] [0.07] [0.03] [0.04] [0.02] [0.07]
Northeast 0.16∗∗∗ 0.10∗∗∗ 0.03 -0.06 0.13∗∗∗ 0.10∗∗∗ 0.03 -0.05

[0.03] [0.04] [0.02] [0.08] [0.03] [0.04] [0.02] [0.08]
Constant -0.70∗∗∗ -2.92∗∗∗ 3.16∗∗∗ 4.84∗∗∗ 1.19∗∗∗ -0.51∗ 3.17∗∗∗ 4.83∗∗∗

[0.04] [0.05] [0.03] [0.09] [0.24] [0.31] [0.03] [0.09]

Panel B

σNR 2.82∗∗∗ 2.81∗∗∗

[0.00] [0.00]
σRD 5.87∗∗∗ 5.89∗∗∗

[0.02] [0.02]

Panel C

V ar(αRD) 3.46∗∗∗ 2.88∗∗∗

[0.11] [0.10]
V ar(αDK) 4.24∗∗∗ 4.04∗∗∗

[0.12] [0.12]
Corr(αRD, αDK) 0.71∗∗∗ 0.71∗∗∗

[0.01] [0.01]

Panel D

Implied share NR 0.6485 0.6491
Implied share RD 0.2834 0.2829
Implied share DK 0.0681 0.0680

Month-year FE no yes
Observations 172,548 172,548

Notes: This table reports model estimates for the dependent variable on short-run inflation expectations (px1). Response
types are non-rounders (NR), rounders (RD) and respondents who choose a “don’t know” answer (DK). Specification 1 (2)
excludes (includes) month-year fixed effects in the random effects multinomial logit model for type probabilities (Equation
6). Panel A reports estimates for interpersonal heterogeneity. Columns a and b focus on the random effects multinomial logit
model for type probabilities. Omitted category is type NR. Columns c and d report estimates for the parameterized mean of
inflation expectations for type NR and RD (Equation 4), respectively. Panel B displays type-specific estimates for the stand-
ard deviation of the normal distribution of inflation expectations. Panel C reports the estimated variances of the individual
specific random effects and its correlations. Panel D reports averages of model-implied unconditional type probabilities. For
details see text. Standard errors in brackets. *** p <0.01, ** p <0.05, * p <0.1.

Panel C reports the estimated variances and correlation of the two random individual

effects, which are derived from the entries of the estimated Cholesky matrix L̂. As shown,
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the variances of the individual effects are both significantly different from zero, confirming

the importance in accounting for unobserved heterogeneity in the model. The individual

effects are – as suspected in Section 3 – positively correlated (ρ = 0.71 in both specifica-

tions), implying that individuals who are more likely to round are also more likely not to

respond at all. It is important to note that this correlation could not have been identified

if type probabilities were modeled in a standard multinomial logit model. The positive

correlation between the individual effects thus reinforces the necessity of joint estimation

of the model. In fact, separate estimation – as often done in the literature by discarding

item nonrespondents – would only be valid if the individual effects were uncorrelated.

Panel D displays the model-implied response type distribution in the sample, which is

given by the unconditional type probabilities, averaged over time and individuals. With

almost no differences between the two specifications, the average probability for type DK

is given by 6.8 percent. This is almost identical to the crude DK share in the data set,

which is given by 6.7 percent (11,490 out of 172,548 respondents choose the “don’t know”

option), strengthening the validity of the model. The average share of non-rounders is

given by roughly 65 percent, implying that almost two in three respondents report an exact

inflation expectation. The remaining 28 percent are consistent with type RD, implying

that roughly one in four respondents rounds her inflation expectations to the next multiple

of five percent. In comparison, the crude share of responses which are multiples of five

percent is given by roughly 43 percent (74,161 out of 172,548 respondents) and clearly

overestimates the true rounding share in the population, as identified by the model.

4.2 Type transitions and posterior probabilities

Recall that the methodology in this paper does not uniquely classify respondents into the

three response types NR (non-rounder), RD (rounder) and DK (don’t know), but rather

assigns individual-specific probabilities to each of the three types. The panel dimension of

the data allows me to analyze how these type probabilities change between the six-months-
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apart interviews. Figure 2 plots individual, unconditional type probabilities for a specific

response type in the first interview against the type probability of the same type in the

second interview, based on the results of specification 2 of Table 2 (including month-year

fixed effects). Clearly, there is evidence for a strong, positive correlation. For all three

response types, the Pearson correlation coefficient is between 0.85 and 0.89. This indicates

that, for example, individuals with a high probability of being type NR in the first wave,

also have a high probability of being type NR in the second interview. The same applies to

DK and RD type probabilities, even though the levels are considerably smaller. Overall,

the strong, positive correlation across time can be explained by the fact that several

covariates, such as gender and education, are time-constant for most respondents in the

sample. Therefore, temporal variation in the unconditional type probabilities mainly stems

from time-varying covariates and from the month-year fixed effects. Note that unobserved

heterogeneity – modeled via the individual-specific random effects – only contributes to

variation in the type probabilities across respondents, but not over time.

Figure 2: Type probability correlation between 1st and 2nd interview

22



Moreover, I am interested in how the probability of a specific type in the first interview is

related to the probability of being another type in the second interview. Figure 3 therefore

plots the RD probability in the first interview (horizontal axis) against the two other type

probabilities (NR and DK) in the second interview (vertical axis). Mirroring the findings

from the previous figure, there is a strong, negative correlation between types NR and

RD. The lower the RD probability in the first interview, the higher the NR probability in

the second interview (ρ = −0.810). The correlation with the type DK probability in the

second interview is much weaker. Despite being slightly correlated (ρ = 0.295), a higher

RD probability in the first interview seems to be rather unrelated to the DK probability

in the second interview.

Figure 3: Type transition probabilities between 1st and 2nd interview

As highlighted in Figures 2 and 3, the levels of the unconditional type probabilities differ

considerably across respondents and types. For example, the highest probability of be-

ing type DK is predicted to be “only” 0.390, the average being 0.0681 (cf. Table 2). In
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contrast, the highest probability of being type RD is given by 0.722, with an average of

0.283 (cf. Table 2). However, the probabilities discussed so far are (individual-specific)

unconditional type probabilities. Posterior probabilities, i.e. type probabilities conditional

on the reported inflation expectations (px1), may in contrast be very different.18

0

.2

.4

.6

.8

1

P
o
s
te

ri
o
r 

ty
p
e
 p

ro
b
a
b
ili

ty

−10 −5 0 5 10 15 20 25

Multiples of five for inflation expectations (px1)

P(T=NR|px1)

P(T=RD|px1)

Figure 4: Posterior type probabilities conditional on reporting multiples of five

In fact, conditional on reporting a missing value, the posterior probability of type DK

is one and, consequently, the posterior probabilities of types RD or NR are zero. For

non-missing inflation expectations, there are two cases. First, if the respondent reports a

non-multiple of five, the posterior probability of type NR is one; the posterior probabilities

of type NR or DK are then zero. Second, if the reported value is a multiple of five, the

posterior probability of being type DK is (exactly) zero, while the posterior probabilities

of types RD and NR are strictly positive and can be calculated using Bayes’ theorem.

Figure 4 shows these probabilities for several multiples of five. To respondents reporting

18The exact calculation of the posterior probabilities is described in Section 3 and Appendix D.
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extreme expectations, such as a future inflation rate of 25 percent or minus ten percent

(deflation), the model assigns a posterior RD probability of almost one, implying that these

respondents are rounders with almost certainty. This pattern changes when looking at

more moderate inflation expectations. For example, conditional on reporting a predicted

inflation rate of zero (five) percent, the posterior probability of being type RD is 0.57

(0.54). This implies that every second respondent reporting an inflation prediction of zero

(five) percent does not have an exact inflation expectation of zero (five) percent in mind,

but rather some different value and reports a rounded value.

4.3 Uncertainty index

Next, I use the insight of Binder (2017) and argue that rounding patterns in individuals’

inflation expectations can serve as measure of economic uncertainty. I follow her analysis

and calculate an uncertainty index as average, unconditional rounding (RD) probabil-

ity, augmented by the average unconditional probability for type DK. Thus, the index

is essentially an estimate for the population shares of types RD and DK. While Binder

(2017) estimates this index separately for each month, the temporal variation in my in-

dex comes from the month-year fixed effects in the random effects multinomial logit model.

Figure 5 plots the uncertainty index as well as the average DK share for every month

between 1980 and 2017, based on the results from specification 2 of Table 2. The share

of rounders (RD share) is implicitly given by the difference between both lines. Clearly,

there is evidence for meaningful variation over time. Respondents’ reported inflation ex-

pectations display more rounding in times of higher economic uncertainty, compared to

times of lower uncertainty. For example, the uncertainty index increases shortly after the

terrorist attacks in September 2001 or Hurricane Katrina in August 2005. Moreover, the

variation in the index is almost exclusively driven by temporal variation in the RD share

rather than variation in the DK share. In fact, the latter is relatively constant across

time and on average around seven percent. Therefore, respondents seem to systematically
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use rounding rather than the “don’t know” option to express uncertainty. These results

confirm the findings in Binder (2017).
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Figure 5: Model-implied uncertainty index over time

Figure 6 compares the uncertainty index to several other measures.19 Most importantly,

Panel A shows that the index is highly correlated with the original Binder (2017) index

(Pearson’s ρ = 0.964). Even though some minor differences exist, both indices display

almost identical variation over time. My index is also shown to be correlated with two

other measures of economic uncertainty (Panel B and C).20 The first index by Baker et al.

(2016) is based on newspaper coverage frequencies of specific combinations of terms, such

as “uncertainty”, “economic” and “deficit”. In contrast to my uncertainty measure, this

index does not spike after Hurricane Katrina, but does spike during the European sover-

eign debt crisis in 2012. The overall correlation between both indices is 0.527. The second

index by Jurado et al. (2015) measures uncertainty by the volatility of expected forecast

errors over a one-year horizon. The correlation with my measure of economic uncertainty

19Figure 6 is inspired by Figure 3 in Binder (2017, p.8).
20The data for both indices is freely available at the authors’ websites: http://www.policyuncertainty.com

and https://www.sydneyludvigson.com [accessed October 8, 2018].
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is a lot higher with a correlation coefficient of 0.775. While the increase after 9/11 and

Hurricane Katrina is less pronounced, the increase during the financial crisis in 2008 is

similar. Overall, my uncertainty index shows a slightly higher correlation with the two

alternative uncertainty measures than the original Binder (2017) index.21

Last, Panel D shows that there is only a small, positive correlation of the uncertainty index

with the actual US inflation rate across time (ρ = 0.357). In particular, it is reassuring

that the variation in the index is not driven by the level of the current inflation. The

uncertainty index spikes during both times of high inflation, such as the Gulf War in late

1990, and times of low inflation, such as the financial crisis in 2008.

In summary, at least for the construction of the uncertainty index, the advantages of the

generalized model introduced in this paper over the original Binder (2017) model become

small. Both models yield almost identical uncertainty indices, with only minor advantages

for my uncertainty index in terms of correlation with alternative uncertainty measures.

21The correlations of the original Binder index with the Baker et al. (2016) index and the Jurado et al.
(2015) index are given by 0.470 and 0.755 (not reported), respectively.
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5 Robustness

This section provides several robustness checks to variations in methodology and sample

size. All tables and figures are presented in Appendix F. To reduce the computational

burden, some specifications are estimated under the restriction that the variances of the

individual effects are zero, as indicated in the tables.22

Logistic inflation expectations. To check whether the results are sensitive to the assump-

tion that inflation expectations follow a normal distribution, I repeat the analysis under

the assumption of logistic inflation expectations (Table F1). The implied type distribu-

tion as well as the effects of the covariates on individual type probabilities and inflation

expectations are almost unchanged.

Medium-run inflation expectations. I also use data on medium-run inflation expectations,

which are based on the expected yearly inflation rate over the next five years (px5). Note,

however, that I lose several month-year combinations, since this question is not asked

throughout all waves. As shown in Table F2, the implied NR share increases to roughly

77 percent, implying that respondents round on average less when asked about medium-

run inflation expectations, compared to short-run expectations (px1). In addition, the

DK share increases to almost nine percent. Both effects are shown not to be driven by

differences in sample size and periods, but rather by the difference between short-run and

medium-run inflation expectations (not reported).

Rounding to multiples of ten. The main analysis assumes that type RD respondents round

to the next multiple of five percent. I repeat the analysis for rounding to the next multiple

of ten percent in Table F3. Since multiples of ten are by definition also multiples of five,

the new share of rounders should decrease, as it does. In fact, the type shares are similar

22By restricting the variances of the individual effects to zero, these models ignore the panel structure of
the data and essentially become pooled ordinary least squares models.

29



in magnitude to the ones from the analysis on medium-run inflation expectations. Again,

the effects of the covariates on individual type probabilities and mean inflation expecta-

tions remain the same.

Two rounding types. I also estimate a variant of the model with two rounding types: type

RD5 rounds to the next multiple of five percent, while type RD10 rounds to the next

multiple of ten percent. Together with type NR and DK, this model is then a mixture

of four different response types. Results are presented in Table F4, suggesting that the

aggregated NR and DK share are 65% and 6.7%, respectively, and thus literally identical

to the shares from the main model. The remaining 28% of rounders are split between 19%

of respondents who round to the multiple of five, and 9% who round to the next multiple

of ten percent. The effect of the covariates on the type probabilities is very similar for

types RD5 and RD10 and qualitatively close to the main findings. Further analysis shows

that the increase in the uncertainty index after 9/11 and the Lehman collapse are mainly

driven by an increase in the RD10 share, while the increase after hurricane Katrina and

Northern Rock is driven by an increase in the RD5 share (cf. Figure F1).

Level of current inflation. Rounding may also depend on the current level of the inflation

rate. For example, one might to be more willing to round to five percent if the current

inflation rate is given by 4.8 percent rather than 4.0 percent. Table F5 therefore includes

month-year fixed effects not only in the random effects multinomial logit model, but also

in the equation for the mean of the inflation expectation distribution (Equation 4). The

time effects capture all variables affecting respondents similarly across time, such as the

current inflation rate. The implied type distribution is literally unaffected by this specific-

ation and the associations with the covariates get even stronger.

Full sample. I also estimate the model for the full data set, i.e. I add data from the 77,630

respondents, who are interviewed only once (Table F6). The average NR share slightly

decreases by two percentage points, while the RD and DK share increase by one percentage
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point each. The resulting type distribution is thus almost identical to the one from the

main section. Due to the increase in sample size, the standard errors of the estimates get

– as expected – even smaller. The other results are unchanged.

6 Conclusion

This paper introduces a microeconometric panel data model for inflation point expect-

ations of US households. In contrast to previous studies, in particular Binder (2017), I

explicitly model a panel dimension and allow for individual heterogeneity and item non-

response. The population is described as a finite mixture of three distinct response types,

who differ in how they report their inflation expectations: rounders (RD), non-rounders

(NR) and respondents who choose a “don’t know” response (DK). Type probabilities are

allowed to depend on both observed and unobserved heterogeneity.

The estimated average population shares of types (NR,RD,DK) are given by (0.65,0.28,0.07),

implying that most respondents actually report their true inflation expectation rather than

some rounded value. However, the results suggest that more than a quarter of respondents

round their inflation expectations to the next multiple of five, with meaningful variation

over time. Rounding is more prevalent in times of higher economic uncertainty compared

to times of lower economic uncertainty. Moreover, I find that response type probabilities

can be predicted by both observed and unobserved heterogeneity. For example, males

and respondents with at least a college degree are significantly less likely to round and

to choose a “don’t know” option than females and respondents without a college degree.

Respondents who are more likely to round are also more likely to choose “don’t know”,

questioning the standard procedure of dropping missing answers. I also find evidence for

type stability across interviews.

This generalized model of Binder (2017) allows to increase efficiency of the estimates, to

identify meaningful heterogeneity in the type probabilities and to explicitly take item non-
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response into account. However, in terms of the construction of the uncertainty index,

there seems to be little difference across both models. In fact, the resulting uncertainty

indices are almost identical.

This paper has several implications. For example, the insight that rounding behavior sys-

tematically varies with socio-economic characteristics may guide future survey design and

improve data quality. Furthermore, since rounding patterns in inflation expectations are

systematically linked with economic uncertainty over time, this information may be used

to determine or at least improve existing estimates for the current level of uncertainty

in the economy. Future research should, in addition, analyze if this also applies to other

domains, i.e. if economic uncertainty is also related to rounding behavior in expectations

questions in other domains or survey questions unrelated to expectations.

More generally, this paper demonstrates the usefulness of survey data, that goes beyond

the face value of individuals’ responses. Researchers have recently started to extensively

rely on so-called paradata. This includes, for example, respondent-level information on the

amount of time spent on a specific survey question, the number of adjustments, the number

of mouse clicks as well as the exact mouse movement pattern. The latter, for example, has

already been used for PC user verification (Pusara and Brodley, 2004; Zheng et al., 2011).

Clearly, these novel approaches have the potential to improve not only data quality, but

also the understanding of the decision-making process of individuals itself.
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Appendix

A Questionnaire for price expectations

Figures A1 and A2 describe the exact procedure for the elicitation of inflation expectations

in the short-run (px1) and the medium-run (px5), respectively. The entire questionnaire

and interviewer instructions are available at the University of Michigan Survey Research

Center and are described in Curtin (1996).
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During the next 12 months, do you

think that prices in general will go up,

or go down, or stay where they are

now?

Stay the same Go upDon’t know Go down

END

Do you mean that the prices will go

up at the same rate as now, or that

prices in general will not go up during

the next 12 months?

Will not go up Go up

By about what percent do you expect

prices to go (up/down) on the average,

during the next 12 months?

Don’t know X percent

END

X > 5 Else

END

Let’s make sure I have that correct.

You said that you expect prices to go

(up/down) during the next 12 months

by (X) percent. Is that correct?

Don’t knowYes No

END

How many cents on the dollar do you

expect prices to go (up/down) on the

average, during the next 12 months?

X cents Don’t know

END END

Figure A1: Questionnaire for short-run inflation expectations (px1)
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What about the outlook for prices over

the next 5 to 10 years? Do you think

prices will be higher, about the same,

or lower, 5 to 10 years from now?

Stay the same HigherDon’t know Lower

END

Do you mean that prices will go up at

the same rate as now, or that prices in

general will not go up during the next

5 to 10 years?

Will not go up Go up

By about what percent do you expect

prices to go (up/down) on the average,

during the next 5 to 10 years?

X percent Don’t know

END

X > 5 Else

END

Would that be (X) percent per year,

or is that the total for prices over the

next 5 to 10 years?

Don’t knowTotal Per Year

ENDAbout what percent per year would

that be?

How many cents on the dollar per

year do you expect prices to go

(up/down) on the average, during the

next 5 to 10 years?

X percent Don’t know

X cents Don’t know

END

END END

Figure A2: Questionnaire for medium-run inflation expectations (px5)
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B Full sample summary statistics

Table B1: Summary statistics for the full sample

Mean SD p5 p95 Min Max Observations

A: Inflation expectations [%]

Short-run (px1) 4.55 6.30 0 15 -50 50 246,683

Medium-run (px5) 4.06 5.17 0 10 -50 50 176,177

B: Sociodemographics [0/1]

Male 0.46 0.50 0 1 0 1 271,277

Partner 0.60 0.49 0 1 0 1 268,594

Age > 64 0.20 0.40 0 1 0 1 269,899

Age < 40 0.39 0.49 0 1 0 1 269,899

College 0.37 0.48 0 1 0 1 268,579

1st income quartile 0.21 0.41 0 1 0 1 234,095

2nd income quartile 0.21 0.41 0 1 0 1 234,095

3rd income quartile 0.28 0.45 0 1 0 1 234,095

4th income quartile 0.30 0.46 0 1 0 1 234,095

C: Regional information [0/1]

West 0.20 0.40 0 1 0 1 271,853

Northcentral 0.27 0.44 0 1 0 1 271,853

Northeast 0.19 0.39 0 1 0 1 271,853

South 0.33 0.47 0 1 0 1 271,853

Notes: This Table is based on all 77,630 respondents who are interviewed once and all 97,159
respondents from the MSC who are interviewed twice between January 1978 to December 2017,
making a total of 271,948 observations. Number of observations differ due to item nonresponse.
Panel B and C report dummy variables if not indicated differently. Information on income (1st-
4th quartile) not available before October 1979. For details see text.
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C US inflation between 1978 and 2018
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Figure C1: Yearly inflation rates in the US between 1978 and 2018
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D Derivation of the likelihood function

Recall that the probabilities of observing yit conditional on type Tit are given by:

P (yit|Tit) =



































fNR(yit) if Tit = NR

fRD(yit) if Tit = RD

0 if Tit = DK

& yit is a multiple of m

P (yit|Tit) =



































fNR(yit) if Tit = NR

0 if Tit = RD

0 if Tit = DK

& yit is not a multiple of m

P (yit|Tit) =



































0 if Tit = NR

0 if Tit = RD

fDK(yit) if Tit = DK

& yit is missing

with

fNR(yit) = φ(yit; µNR; σNR)

fRD(yit) = Φ

(

yit + m
2

− µRD

σRD

)

− Φ

(

yit − m
2

− µRD

σRD

)

fDK(yit) = 1

By definition, the unconditional probability of observing yit is given by:

P (yit) = P (yit|Tit = NR) · P (Tit = NR) +

P (yit|Tit = RD) · P (Tit = RD) +

P (yit|Tit = DK) · P (Tit = DK)
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which can then be simplified to:

P (yit) =



































P (Tit = DK) if yit is missing

fNR · P (Tit = NR) if yit is not a multiple of m

fNR · P (Tit = NR) + fRD · P (Tit = RD) if yit is a multiple of m

Taking the product over individuals and time and parameterizing the type probabilities

P (Tit = j) results in the likelihood function presented in the main section. Note also that

– after maximization of the likelihood function – the estimated (unconditional) individual

type probabilities can be used to calculate posterior type probabilities conditional on the

reported values of yit. More specifically, those are given by Bayes’ theorem:

P (Tit = j|yit) = P (yit|Tit = j)
P (Tit = j)

P (yit)

Using the definitions introduced earlier, it is straightforward to show that

P (NR|yit) =



































0 if yit is missing

1 if yit is not a multiple of m

fNR · P (NR)
fNR·P (NR)+fRD·P (RD)

if yit is a multiple of m

P (RD|yit) =



































0 if yit is missing

0 if yit is not a multiple of m

fRD · P (RD)
fNR·P (NR)+fRD·P (RD)

if yit is a multiple of m

P (DK|yit) =



































1 if yit is missing

0 if yit is not a multiple of m

0 if yit is a multiple of m.
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E Computational issues for the Hessian matrix

The default optimization method in Stata R©15 is given by a (modified) Newton-Raphson

algorithm, which is based on the calculation of the gradient and the Hessian matrix. While

this algorithm is known to work fine for many applications, it becomes computationally

very costly as the number of parameters increases. In fact, calculating the Hessian mat-

rix for a k-dimensional parameter vector requires O(k2) evaluations of the log-likelihood

function (Jeliazkov and Lloro, 2011). In the application of my model, I use monthly data

over a 40-year period, which implies that adding month-year fixed effects increases the

dimension of the parameter vector by almost 500 per response type. In combination with

the Maximum Simulated Likelihood approach, which requires a repeated calculation of

the likelihood function at every iteration, calculating the Hessian matrix and thus using

the Newton-Raphson algorithm becomes computationally too costly and in fact infeasible.

I therefore rely on Quasi-Newton, gradient-based optimization methods, which replace

the Hessian matrix by some other – computationally less costly – measure. For example,

the Berndt-Hall-Hall-Hausmann (BHHH) algorithm replaces the negative Hessian by the

outer product of the gradients. Similarly, the Broyden-Fletcher-Goldfarb-Shanno (BFGS)

algorithm replaces the Hessian by a function of the gradient, which aims for an ever-

improving estimate of the Hessian at every iteration.23 One fundamental advantage of

these algorithms is that they only require O(k) evaluations of the likelihood function

(Jeliazkov and Lloro, 2011). My specific optimization routine switches between the BHHH

algorithm (5 iterations) and the BFGS algorithm (10 iterations) and focuses on BFGS only,

when BHHH is not applicable.

By default, Stata declares convergence if the following two conditions are met: First, the

scaled gradient is sufficiently small, i.e. gH−1g′ < 10−5, where g is the gradient (row)

vector and H is the Hessian matrix of the parameter vector θ̂. Second, either the relative

23See Gould et al. (2006) for more details on both algorithms.
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change in the parameter vector θ̂ or the relative change in the value of the log-likelihood

function L(θ̂) from one iteration to the next is sufficiently small. As the first criterion

requires again the calculation of the Hessian matrix, I use Stata’s qtolerance() option,

which causes Stata to use the modified (gradient-based) version of the Hessian matrix as

final check for convergence rather than the actual Hessian. Note that this procedure has

been the default option in Stata until version 12. The second criterion remains unchanged.

Similarly, I estimate the variance-covariance matrix of my parameter vector and there-

fore the standard errors of my estimates by the outer product of the gradients (Gould

et al., 2006). Again, Stata’s default estimator would require the calculation of the Hessian

matrix.
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F Additional Figures and Tables

9
/1

1

N
o
rt

h
e
rn

 R
o
c
k

L
e
h
m

a
n

B
la

c
k
 M

o
n
d
a
y

G
u
lf
 W

a
r

K
a
tr

in
a

0

.1

.2

.3

.4

.5

F
ra

c
ti
o

n

1980m1 1985m1 1990m1 1995m1 2000m1 2005m1 2010m1 2015m1

Month

Share RD5

Share RD10

Figure F1: Rounding shares with two distinct rounding types
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Table F1: Model estimates for logistic inflation expectations

Logistic distribution Normal distribution

Mean NR Mean RD P(T=RD) P(T=DK) Mean NR Mean RD P(T=RD) P(T=DK)

(1a) (1b) (1c) (1d) (2a) (2b) (2c) (2d)

Panel A

Male -0.01 -1.05∗∗∗ -0.59∗∗∗ -0.99∗∗∗ -0.13∗∗∗ -1.12∗∗∗ -0.64∗∗∗ -0.99∗∗∗

[0.02] [0.06] [0.01] [0.02] [0.02] [0.06] [0.02] [0.02]

Partner 0.01 0.31∗∗∗ -0.02 -0.06∗∗∗ 0.02 0.34∗∗∗ -0.02 -0.06∗∗∗

[0.02] [0.06] [0.02] [0.02] [0.02] [0.07] [0.02] [0.02]

Age -0.01∗∗∗ -0.02∗∗∗ -0.00 0.02∗∗∗ -0.01∗∗∗ -0.02∗∗∗ -0.00∗ 0.02∗∗∗

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

College -0.01 -0.22∗∗∗ -0.35∗∗∗ -0.43∗∗∗ -0.11∗∗∗ -0.37∗∗∗ -0.38∗∗∗ -0.43∗∗∗

[0.02] [0.06] [0.02] [0.02] [0.02] [0.07] [0.02] [0.02]

1st income quartile 0.15∗∗∗ 1.61∗∗∗ 0.44∗∗∗ 1.20∗∗∗ 0.30∗∗∗ 1.59∗∗∗ 0.49∗∗∗ 1.21∗∗∗

[0.03] [0.09] [0.02] [0.03] [0.03] [0.10] [0.03] [0.03]

2nd income quartile -0.01 1.27∗∗∗ 0.23∗∗∗ 0.58∗∗∗ 0.05∗ 1.22∗∗∗ 0.26∗∗∗ 0.59∗∗∗

[0.02] [0.08] [0.02] [0.03] [0.03] [0.09] [0.02] [0.03]

3rd income quartile -0.03 0.67∗∗∗ 0.10∗∗∗ 0.23∗∗∗ 0.01 0.67∗∗∗ 0.12∗∗∗ 0.24∗∗∗

[0.02] [0.07] [0.02] [0.03] [0.02] [0.08] [0.02] [0.03]

West 0.06∗∗∗ 0.08 -0.10∗∗∗ -0.06∗∗ 0.06∗∗ -0.00 -0.10∗∗∗ -0.06∗∗

[0.02] [0.08] [0.02] [0.03] [0.03] [0.09] [0.02] [0.03]

Northcentral 0.03 -0.17∗∗ -0.02 -0.16∗∗∗ -0.02 -0.18∗∗ -0.02 -0.16∗∗∗

[0.02] [0.07] [0.02] [0.03] [0.02] [0.08] [0.02] [0.03]

Northeast 0.04 -0.02 0.08∗∗∗ 0.06∗∗ 0.02 -0.04 0.08∗∗∗ 0.06∗∗

[0.02] [0.08] [0.02] [0.03] [0.03] [0.08] [0.02] [0.03]

Constant 3.09∗∗∗ 5.05∗∗∗ 0.68∗∗∗ -1.35∗∗∗ 3.50∗∗∗ 5.78∗∗∗ 0.67∗∗∗ -1.36∗∗∗

[0.03] [0.11] [0.17] [0.23] [0.04] [0.12] [0.18] [0.23]

Panel B

σNR 1.39∗∗∗ 2.81∗∗∗

[0.00] [0.01]

σRD 3.10∗∗∗ 5.87∗∗∗

[0.01] [0.02]

Panel C

Random effects are restricted to zero

Panel D

Implied share NR 0.629 0.652

Implied share RD 0.305 0.281

Implied share DK 0.067 0.067

Month-year FE yes yes

Observations 172,548 172,548

Notes: This table repeats the main analysis under the assumption of logistic inflation expectations (specification 1). Depend-
ent variable is short-run inflation expectations (px1). Response types are non-rounders (NR), rounders (RD) and respondents
who choose a “don’t know” answer (DK). All columns include month-year fixed effects in the random effects multinomial logit
model for type probabilities (Equation 6). Panel A reports estimates for interpersonal heterogeneity. Columns a and b re-
port estimates for the parameterized mean of inflation expectations for type NR and RD (Equation 4), respectively. Columns
c and d focus on the random effects multinomial logit model for type probabilities. Omitted category is type NR. Panel B
displays type-specific estimates for the standard deviation of the logistic or normal distribution, respectively. The individual
effects are normalized to zero (Panel C). Panel D reports averages of model-implied unconditional type probabilities. For
details see text. Standard errors in brackets. *** p <0.01, ** p <0.05, * p <0.1.
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Table F2: Model estimates for medium-run inflation expectations

Excluding month-year FE Including month-year FE

Mean NR Mean RD P(T=RD) P(T=DK) Mean NR Mean RD P(T=RD) P(T=DK)

(1a) (1b) (1c) (1d) (2a) (2b) (2c) (2d)

Panel A

Male 0.02 -0.30∗∗∗ -0.95∗∗∗ -0.84∗∗∗ 0.00 -0.44∗∗∗ -0.89∗∗∗ -0.82∗∗∗

[0.02] [0.11] [0.02] [0.02] [0.02] [0.11] [0.02] [0.02]

Partner -0.02 0.46∗∗∗ -0.08∗∗∗ -0.10∗∗∗ -0.02 0.43∗∗∗ -0.05∗∗ -0.08∗∗∗

[0.02] [0.11] [0.02] [0.02] [0.02] [0.10] [0.02] [0.02]

Age -0.01∗∗∗ -0.06∗∗∗ -0.01∗∗∗ 0.02∗∗∗ -0.01∗∗∗ -0.06∗∗∗ -0.00∗∗∗ 0.02∗∗∗

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

College -0.11∗∗∗ -0.00 -0.84∗∗∗ -0.43∗∗∗ -0.13∗∗∗ -0.08 -0.58∗∗∗ -0.34∗∗∗

[0.02] [0.12] [0.03] [0.02] [0.02] [0.11] [0.03] [0.02]

1st income quartile 0.03 -0.12 0.93∗∗∗ 1.09∗∗∗ 0.05∗ 0.10 1.05∗∗∗ 1.14∗∗∗

[0.03] [0.16] [0.04] [0.03] [0.03] [0.16] [0.04] [0.03]

2nd income quartile -0.15∗∗∗ -0.26 0.44∗∗∗ 0.49∗∗∗ -0.15∗∗∗ -0.09 0.62∗∗∗ 0.54∗∗∗

[0.02] [0.16] [0.03] [0.03] [0.02] [0.15] [0.03] [0.03]

3rd income quartile -0.10∗∗∗ -0.20 0.29∗∗∗ 0.21∗∗∗ -0.10∗∗∗ -0.07 0.35∗∗∗ 0.23∗∗∗

[0.02] [0.15] [0.03] [0.03] [0.02] [0.15] [0.03] [0.03]

West 0.09∗∗∗ 0.12 -0.11∗∗∗ -0.01 0.09∗∗∗ 0.11 -0.11∗∗∗ -0.01

[0.02] [0.14] [0.03] [0.03] [0.02] [0.14] [0.03] [0.03]

Northcentral -0.02 -0.06 -0.11∗∗∗ -0.20∗∗∗ -0.02 -0.14 -0.12∗∗∗ -0.20∗∗∗

[0.02] [0.12] [0.03] [0.03] [0.02] [0.12] [0.03] [0.03]

Northeast 0.02 -0.17 0.01 0.06∗∗ 0.03 -0.16 -0.05 0.04

[0.02] [0.14] [0.03] [0.03] [0.02] [0.14] [0.03] [0.03]

Constant 3.88∗∗∗ 10.31∗∗∗ -1.01∗∗∗ -3.02∗∗∗ 3.88∗∗∗ 10.22∗∗∗ 0.54∗∗∗ -1.75∗∗∗

[0.03] [0.21] [0.05] [0.05] [0.03] [0.20] [0.17] [0.22]

Panel B

σNR 2.39∗∗∗ 2.39∗∗∗

[0.01] [0.01]

σRD 5.76∗∗∗ 5.77∗∗∗

[0.03] [0.03]

Panel C

Random effects are restricted to zero

Panel D

Implied share NR 0.777 0.774

Implied share RD 0.134 0.137

Implied share DK 0.089 0.089

Month-year FE no yes

Observations 136,264 136,264

Notes: This table repeats the main analysis for the alternative dependent variable of medium-run inflation expectations (px5).
Response types are non-rounders (NR), rounders (RD) and respondents who choose a “don’t know” answer (DK). Specific-
ation 1 (2) excludes (includes) month-year fixed effects in the random effects multinomial logit model for type probabilities
(Equation 6). Panel A reports estimates for interpersonal heterogeneity. Columns a and b report estimates for the paramet-
erized mean of inflation expectations for type NR and RD (Equation 4), respectively. Columns c and d focus on the random
effects multinomial logit model for type probabilities. Omitted category is type NR. Panel B displays type-specific estimates
for the standard deviation of the normal distribution of inflation expectations. The individual effects are normalized to zero
(Panel C). Panel D reports averages of model-implied unconditional type probabilities. For details see text. Standard errors
in brackets. *** p <0.01, ** p <0.05, * p <0.1.
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Table F3: Model estimates for rounding to the next multiple of ten percent

Excluding month-year FE Including month-year FE

Mean NR Mean RD P(T=RD) P(T=DK) Mean NR Mean RD P(T=RD) P(T=DK)

(1a) (1b) (1c) (1d) (2a) (2b) (2c) (2d)

Panel A

Male -0.51∗∗∗ -1.38∗∗∗ -0.52∗∗∗ -0.88∗∗∗ -0.51∗∗∗ -1.37∗∗∗ -0.48∗∗∗ -0.88∗∗∗

[0.02] [0.08] [0.02] [0.02] [0.02] [0.08] [0.02] [0.02]

Partner 0.06∗∗∗ 0.33∗∗∗ -0.03 -0.05∗∗ 0.07∗∗∗ 0.30∗∗∗ -0.03 -0.06∗∗

[0.02] [0.09] [0.02] [0.02] [0.02] [0.09] [0.02] [0.02]

Age -0.01∗∗∗ -0.03∗∗∗ 0.00∗∗∗ 0.02∗∗∗ -0.01∗∗∗ -0.03∗∗∗ 0.00∗∗∗ 0.02∗∗∗

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

College -0.34∗∗∗ -0.37∗∗∗ -0.48∗∗∗ -0.32∗∗∗ -0.34∗∗∗ -0.41∗∗∗ -0.37∗∗∗ -0.38∗∗∗

[0.02] [0.09] [0.02] [0.02] [0.02] [0.09] [0.02] [0.02]

1st income quartile 0.62∗∗∗ 2.00∗∗∗ 0.32∗∗∗ 1.12∗∗∗ 0.64∗∗∗ 1.95∗∗∗ 0.32∗∗∗ 1.11∗∗∗

[0.04] [0.13] [0.03] [0.03] [0.04] [0.12] [0.03] [0.03]

2nd income quartile 0.21∗∗∗ 1.54∗∗∗ 0.02 0.57∗∗∗ 0.22∗∗∗ 1.46∗∗∗ 0.09∗∗∗ 0.52∗∗∗

[0.03] [0.12] [0.02] [0.03] [0.03] [0.12] [0.03] [0.03]

3rd income quartile 0.08∗∗∗ 0.85∗∗∗ 0.02 0.22∗∗∗ 0.09∗∗∗ 0.80∗∗∗ 0.03 0.21∗∗∗

[0.03] [0.11] [0.02] [0.03] [0.03] [0.11] [0.02] [0.03]

West -0.02 0.09 -0.09∗∗∗ -0.05 -0.02 0.09 -0.10∗∗∗ -0.05

[0.03] [0.11] [0.02] [0.03] [0.03] [0.11] [0.02] [0.03]

Northcentral -0.05∗ -0.16 -0.01 -0.17∗∗∗ -0.04∗ -0.18∗ -0.01 -0.15∗∗∗

[0.03] [0.10] [0.02] [0.03] [0.03] [0.10] [0.02] [0.03]

Northeast 0.03 0.09 0.10∗∗∗ 0.05 0.03 0.07 0.07∗∗∗ 0.05∗

[0.03] [0.11] [0.02] [0.03] [0.03] [0.11] [0.02] [0.03]

Constant 4.35∗∗∗ 4.59∗∗∗ -1.20∗∗∗ -3.35∗∗∗ 4.33∗∗∗ 4.69∗∗∗ -0.20 -1.81∗∗∗

[0.04] [0.16] [0.03] [0.05] [0.04] [0.16] [0.17] [0.22]

Panel B

σNR 3.55∗∗∗ 3.55∗∗∗

[0.01] [0.01]

σRD 5.50∗∗∗ 5.47∗∗∗

[0.03] [0.03]

Panel C

Random effects are restricted to zero

Panel D

Implied share NR 0.761 0.759

Implied share RD 0.172 0.175

Implied share DK 0.067 0.067

Month-year FE no yes

Observations 172,548 172,548

Notes: This table repeats the main analysis under the assumption that rounders (RD) round to the next multiple of ten rather
than five percent. Other response types are non-rounders (NR) and respondents who choose a “don’t know” answer (DK).
Dependent variable is short-run inflation expectations (px1). Specification 1 (2) excludes (includes) month-year fixed effects
in the random effects multinomial logit model for type probabilities (Equation 6). Panel A reports estimates for interper-
sonal heterogeneity. Columns a and b report estimates for the parameterized mean of inflation expectations for type NR and
RD (Equation 4), respectively. Columns c and d focus on the random effects multinomial logit model for type probabilities.
Omitted category is type NR. Panel B displays type-specific estimates for the standard deviation of the normal distribution
of inflation expectations. The individual effects are normalized to zero (Panel C). Panel D reports averages of model-implied
unconditional type probabilities. For details see text. Standard errors in brackets. *** p <0.01, ** p <0.05, * p <0.1.
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Table F4: Model estimates for four response types

Excluding month-year FE Including month-year FE

Mean NR Mean RD5 Mean RD10 P(T=RD5) P(T=RD10) P(T=DK) Mean NR Mean RD5 Mean RD10 P(T=RD5) P(T=RD10) P(T=DK)

(1a) (1b) (1c) (1d) (1e) (1f) (2a) (2b) (2c) (2d) (2e) (2f)

Panel A

Male -0.14∗∗∗ -1.24∗∗∗ 0.27∗ -0.77∗∗∗ -0.32∗∗∗ -0.98∗∗∗ -0.15∗∗∗ -1.21∗∗∗ 0.21∗ -0.71∗∗∗ -0.32∗∗∗ -0.98∗∗∗

[0.02] [0.09] [0.15] [0.02] [0.03] [0.02] [0.02] [0.09] [0.13] [0.02] [0.03] [0.02]

Partner 0.00 0.36∗∗∗ 0.00 0.00 -0.08∗∗ -0.06∗∗ 0.02 0.35∗∗∗ 0.12 -0.01 -0.05∗ -0.06∗∗∗

[0.02] [0.10] [0.17] [0.02] [0.03] [0.02] [0.02] [0.09] [0.14] [0.02] [0.03] [0.02]

Age -0.01∗∗∗ -0.02∗∗∗ 0.00 -0.00∗∗∗ 0.00∗∗∗ 0.02∗∗∗ -0.01∗∗∗ -0.02∗∗∗ -0.00 -0.00∗∗∗ 0.01∗∗∗ 0.02∗∗∗

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

College -0.17∗∗∗ -0.96∗∗∗ -0.07 -0.36∗∗∗ -0.59∗∗∗ -0.36∗∗∗ -0.16∗∗∗ -0.76∗∗∗ -0.25∗ -0.36∗∗∗ -0.33∗∗∗ -0.43∗∗∗

[0.02] [0.10] [0.17] [0.02] [0.03] [0.02] [0.02] [0.09] [0.13] [0.02] [0.03] [0.02]

1st income quartile 0.27∗∗∗ 1.37∗∗∗ 0.47∗ 0.64∗∗∗ 0.06 1.21∗∗∗ 0.27∗∗∗ 1.30∗∗∗ -0.10 0.66∗∗∗ 0.01 1.21∗∗∗

[0.03] [0.15] [0.27] [0.03] [0.05] [0.03] [0.03] [0.13] [0.21] [0.03] [0.04] [0.03]

2nd income quartile -0.01 0.58∗∗∗ 0.40 0.40∗∗∗ -0.32∗∗∗ 0.62∗∗∗ 0.01 0.69∗∗∗ -0.07 0.44∗∗∗ -0.18∗∗∗ 0.58∗∗∗

[0.03] [0.13] [0.26] [0.03] [0.05] [0.03] [0.03] [0.12] [0.19] [0.03] [0.04] [0.03]

3rd income quartile -0.02 0.41∗∗∗ 0.06 0.22∗∗∗ -0.16∗∗∗ 0.25∗∗∗ -0.01 0.49∗∗∗ -0.06 0.21∗∗∗ -0.10∗∗∗ 0.24∗∗∗

[0.02] [0.13] [0.17] [0.03] [0.04] [0.03] [0.02] [0.12] [0.15] [0.03] [0.03] [0.03]

West 0.04 -0.17 0.08 -0.07∗∗ -0.15∗∗∗ -0.06∗∗ 0.04 -0.11 -0.30∗ -0.07∗∗ -0.19∗∗∗ -0.06∗∗

[0.03] [0.13] [0.22] [0.03] [0.04] [0.03] [0.03] [0.12] [0.17] [0.03] [0.04] [0.03]

Northcentral -0.02 -0.21∗ 0.12 -0.03 0.01 -0.17∗∗∗ -0.01 -0.14 0.02 -0.04∗ 0.03 -0.16∗∗∗

[0.02] [0.11] [0.17] [0.03] [0.04] [0.03] [0.02] [0.11] [0.15] [0.02] [0.03] [0.03]

Northeast 0.02 -0.04 -0.30 0.13∗∗∗ 0.05 0.06∗∗ 0.02 0.01 -0.33∗∗ 0.09∗∗∗ 0.06∗ 0.06∗∗

[0.03] [0.12] [0.19] [0.03] [0.04] [0.03] [0.03] [0.12] [0.16] [0.03] [0.04] [0.03]

Constant 3.72∗∗∗ 7.65∗∗∗ 0.30 -0.81∗∗∗ -1.62∗∗∗ -3.10∗∗∗ 3.71∗∗∗ 7.74∗∗∗ 0.00 0.78∗∗∗ -0.95∗∗∗ -0.75∗∗∗

[0.04] [0.19] [0.33] [0.05] [0.06] [0.05] [0.04] [0.17] [0.33] [0.20] [0.34] [0.22]

Panel B

σ
NR 2.79∗∗∗ 2.80∗∗∗

[0.01] [0.01]

σ
RD5 5.95∗∗∗ 5.86∗∗∗

[0.04] [0.03]

σ
RD10 3.15∗∗∗ 2.69∗∗∗

[0.06] [0.09]

Panel C

Random effects are restricted to zero

Panel D

Implied share NR 0.646 0.645

Implied share RD5 0.194 0.197

Implied share RD10 0.093 0.091

Implied share DK 0.067 0.067

Month-year FE no yes

Observations 172,548 172,548

Notes: This table repeats the main analysis under the assumption of four response types: respondents who round to the next multiple of five (RD5) and ten (RD10), non-rounders (NR) and
respondents who choose a “don’t know” answer (DK). Dependent variable is short-run inflation expectations (px1). Specification 1 (2) excludes (includes) month-year fixed effects in the random
effects multinomial logit model for type probabilities. Panel A reports estimates for interpersonal heterogeneity. Columns a, b and c report estimates for the parameterized mean of inflation
expectations for type NR, RD5 and RD10, respectively. Columns d, e and f focus on the random effects multinomial logit model for type probabilities. Omitted category is type NR. Panel B
displays type-specific estimates for the standard deviation of the normal distribution of inflation expectations. The individual effects are normalized to zero (Panel C). Panel D reports averages
of model-implied unconditional type probabilities. For details see text. Standard errors in brackets. *** p <0.01, ** p <0.05, * p <0.1.
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Table F5: Model estimates for full month-year fixed effects

Excluding month-year FE Including month-year FE

Mean NR Mean RD P(T=RD) P(T=DK) Mean NR Mean RD P(T=RD) P(T=DK)

(1a) (1b) (1c) (1d) (2a) (2b) (2c) (2d)

Panel A

Male -0.12∗∗∗ -1.09∗∗∗ -0.66∗∗∗ -0.99∗∗∗ -0.10∗∗∗ -1.18∗∗∗ -0.64∗∗∗ -0.99∗∗∗

[0.02] [0.06] [0.02] [0.02] [0.02] [0.06] [0.02] [0.02]

Partner 0.01 0.36∗∗∗ -0.02 -0.06∗∗ 0.04∗ 0.31∗∗∗ -0.01 -0.06∗∗

[0.02] [0.07] [0.02] [0.02] [0.02] [0.06] [0.02] [0.02]

Age -0.01∗∗∗ -0.02∗∗∗ -0.00∗∗∗ 0.02∗∗∗ -0.00∗∗∗ -0.03∗∗∗ 0.00 0.02∗∗∗

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

College -0.10∗∗∗ -0.35∗∗∗ -0.45∗∗∗ -0.37∗∗∗ 0.07∗∗∗ -0.49∗∗∗ -0.38∗∗∗ -0.43∗∗∗

[0.02] [0.07] [0.02] [0.02] [0.02] [0.07] [0.02] [0.02]

1st income quartile 0.28∗∗∗ 1.57∗∗∗ 0.48∗∗∗ 1.22∗∗∗ 0.36∗∗∗ 1.52∗∗∗ 0.50∗∗∗ 1.22∗∗∗

[0.03] [0.10] [0.02] [0.03] [0.03] [0.09] [0.02] [0.03]

2nd income quartile 0.05∗ 1.21∗∗∗ 0.19∗∗∗ 0.62∗∗∗ 0.21∗∗∗ 1.13∗∗∗ 0.28∗∗∗ 0.59∗∗∗

[0.03] [0.09] [0.02] [0.03] [0.03] [0.09] [0.02] [0.03]

3rd income quartile 0.00 0.68∗∗∗ 0.10∗∗∗ 0.25∗∗∗ 0.08∗∗∗ 0.65∗∗∗ 0.13∗∗∗ 0.24∗∗∗

[0.02] [0.08] [0.02] [0.03] [0.02] [0.08] [0.02] [0.03]

West 0.06∗∗ -0.00 -0.09∗∗∗ -0.06∗∗ 0.05∗∗ 0.02 -0.10∗∗∗ -0.06∗∗

[0.03] [0.09] [0.02] [0.03] [0.02] [0.08] [0.02] [0.03]

Northcentral -0.02 -0.16∗∗ -0.01 -0.17∗∗∗ -0.03 -0.24∗∗∗ -0.02 -0.16∗∗∗

[0.02] [0.08] [0.02] [0.03] [0.02] [0.07] [0.02] [0.03]

Northeast 0.02 -0.04 0.11∗∗∗ 0.06∗∗ -0.03 -0.04 0.08∗∗∗ 0.06∗∗

[0.03] [0.08] [0.02] [0.03] [0.03] [0.08] [0.02] [0.03]

Constant 3.50∗∗∗ 5.73∗∗∗ -0.43∗∗∗ -3.10∗∗∗ 7.13∗∗∗ 8.19∗∗∗ 0.63∗∗∗ -1.37∗∗∗

[0.04] [0.12] [0.03] [0.05] [0.34] [0.59] [0.17] [0.23]

Panel B

σNR 2.82∗∗∗ 2.67∗∗∗

[0.01] [0.01]

σRD 5.86∗∗∗ 5.67∗∗∗

[0.02] [0.02]

Panel C

Random effects are restricted to zero

Panel D

Implied share NR 0.652 0.650

Implied share RD 0.281 0.283

Implied share DK 0.067 0.067

Month-year FE no yes

Observations 172,548 172,548

Notes: This table repeats the main analysis and adds month-year fixed effects in the equation of the parameterized mean
of inflation expectations for types NR and RD (Equation 4). Response types are non-rounders (NR), rounders (RD) and
respondents who choose a “don’t know” answer (DK). Dependent variable is short-run inflation expectations (px1). Specific-
ation 1 (2) excludes (includes) month-year fixed effects in the random effects multinomial logit model for type probabilities
(Equation 6). Panel A reports estimates for interpersonal heterogeneity. Columns a and b report estimates for the paramet-
erized mean of inflation expectations for type NR and RD (Equation 4), respectively. Columns c and d focus on the random
effects multinomial logit model for type probabilities. Omitted category is type NR. Panel B displays type-specific estimates
for the standard deviation of the normal distribution of inflation expectations. The individual effects are normalized to zero
(Panel C). Panel D reports averages of model-implied unconditional type probabilities. For details see text. Standard errors
in brackets. *** p <0.01, ** p <0.05, * p <0.1.
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Table F6: Model estimates for the full sample

Excluding month-year FE Including month-year FE

Mean NR Mean RD P(T=RD) P(T=DK) Mean NR Mean RD P(T=RD) P(T=DK)

(1a) (1b) (1c) (1d) (2a) (2b) (2c) (2d)

Panel A

Male -0.12∗∗∗ -1.03∗∗∗ -0.65∗∗∗ -0.95∗∗∗ -0.13∗∗∗ -1.03∗∗∗ -0.63∗∗∗ -0.96∗∗∗

[0.02] [0.06] [0.01] [0.02] [0.02] [0.06] [0.01] [0.02]

Partner 0.03 0.36∗∗∗ -0.02 -0.06∗∗∗ 0.04∗ 0.34∗∗∗ -0.02 -0.06∗∗∗

[0.02] [0.06] [0.01] [0.02] [0.02] [0.06] [0.01] [0.02]

Age -0.01∗∗∗ -0.03∗∗∗ -0.00∗∗∗ 0.02∗∗∗ -0.01∗∗∗ -0.03∗∗∗ -0.00∗∗ 0.02∗∗∗

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

College -0.22∗∗∗ -0.51∗∗∗ -0.47∗∗∗ -0.44∗∗∗ -0.23∗∗∗ -0.53∗∗∗ -0.37∗∗∗ -0.47∗∗∗

[0.02] [0.06] [0.01] [0.02] [0.02] [0.06] [0.02] [0.02]

1st income quartile 0.23∗∗∗ 1.30∗∗∗ 0.44∗∗∗ 1.24∗∗∗ 0.25∗∗∗ 1.29∗∗∗ 0.50∗∗∗ 1.26∗∗∗

[0.03] [0.08] [0.02] [0.03] [0.03] [0.09] [0.02] [0.03]

2nd income quartile 0.00 1.02∗∗∗ 0.17∗∗∗ 0.60∗∗∗ 0.01 1.01∗∗∗ 0.27∗∗∗ 0.59∗∗∗

[0.03] [0.08] [0.02] [0.03] [0.03] [0.08] [0.02] [0.03]

3rd income quartile -0.01 0.49∗∗∗ 0.09∗∗∗ 0.27∗∗∗ -0.00 0.47∗∗∗ 0.13∗∗∗ 0.28∗∗∗

[0.02] [0.07] [0.02] [0.03] [0.02] [0.07] [0.02] [0.03]

West 0.08∗∗∗ -0.02 -0.08∗∗∗ -0.08∗∗∗ 0.07∗∗∗ -0.01 -0.09∗∗∗ -0.09∗∗∗

[0.02] [0.08] [0.02] [0.02] [0.02] [0.08] [0.02] [0.02]

Northcentral -0.06∗∗ -0.14∗∗ -0.02 -0.19∗∗∗ -0.05∗∗ -0.16∗∗ -0.03 -0.18∗∗∗

[0.02] [0.07] [0.02] [0.02] [0.02] [0.07] [0.02] [0.02]

Northeast 0.03 -0.04 0.11∗∗∗ 0.02 0.03 -0.03 0.08∗∗∗ 0.02

[0.03] [0.08] [0.02] [0.02] [0.03] [0.08] [0.02] [0.02]

Constant 3.89∗∗∗ 6.61∗∗∗ -0.33∗∗∗ -2.81∗∗∗ 3.87∗∗∗ 6.72∗∗∗ 0.00 -1.66∗∗∗

[0.04] [0.11] [0.03] [0.04] [0.04] [0.11] [0.08] [0.10]

Panel B

σNR 3.06∗∗∗ 3.05∗∗∗

[0.01] [0.01]

σRD 6.11∗∗∗ 6.14∗∗∗

[0.02] [0.02]

Panel C

Random effects are restricted to zero

Panel D

Implied share NR 0.632 0.635

Implied share RD 0.290 0.288

Implied share DK 0.077 0.077

Month-year FE no yes

Observations 228,151 228,151

Notes: This table repeats the main analysis for the full sample, thus adding respondents who are interviewed only once.
Response types are non-rounders (NR), rounders (RD) and respondents who choose a “don’t know” answer (DK). Depend-
ent variable is short-run inflation expectations (px1). Specification 1 (2) excludes (includes) month-year fixed effects in the
random effects multinomial logit model for type probabilities (Equation 6). Panel A reports estimates for interpersonal het-
erogeneity. Columns a and b report estimates for the parameterized mean of inflation expectations for type NR and RD
(Equation 4), respectively. Columns c and d focus on the random effects multinomial logit model for type probabilities.
Omitted category is type NR. Panel B displays type-specific estimates for the standard deviation of the normal distribution
of inflation expectations. The individual effects are normalized to zero (Panel C). Panel D reports averages of model-implied
unconditional type probabilities. For details see text. Standard errors in brackets. *** p <0.01, ** p <0.05, * p <0.1.
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