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OUTLIER DETECTION IN THE ANALYSIS OF NESTED 
GAGE R&R, RANDOM EFFECT MODEL 

Mohammed Abduljaleel1, Habshah Midi2, Mostafa Karimi3 

ABSTRACT 

Measurement system analysis is a comprehensive valuation of a measurement 
process and characteristically includes a specially designed experiment that 
strives to isolate the components of variation in that measurement process. Gage 
repeatability and reproducibility is the adequate technique to evaluate variations 
within the measurement system. Repeatability refers to the measurement variation 
obtained when one person repeatedly measures the same item with the same 
Gage, while reproducibility refers to the variation due to different operators using 
the same Gage. The two factors factorial design, either crossed or nested factor, 
is usually used for a Gage R&R study. In this study, the focus is only on the 
nested factor, random effect model. Presently, the classical method (the method of 
analysing data without taking into consideration the existence of outliers) is used 
to analyse the nested Gage R&R data. However, this method is easily affected by 
outliers and, consequently, the measurement system’s capability is also affected. 
Therefore, the aims of this study are to develop an identification method to detect 
outliers and to formulate a robust method of measurement analysis of nested 
Gage R&R, random effect model. The proposed methods of outlier detection are 

based on a robust 𝑚𝑚 location and scale estimators of the residuals. The results 

of the simulation study and real numerical example show that the proposed outlier 
identification method and the robust estimation method are the most successful 
methods for the detection of outliers. 

Key words: measurement system analysis, 𝑚𝑚 location, nested Gage R&R, 

outlier, residuals. 

1. Introduction and background 

Control is a contentious word that on occasions can be identified with having 
power (Macintosh and Quattrone, 2010) or training oppression, but in a structural 
background it has been defined as the ability to create and monitor rules and 
regulations which should be followed (Ouchi and Maguire, 1975) or on the 

                                                           
1 Ministry of Electricity, Baghdad, Iraq.  
2 Department of Applied and Computational Statistics, Institute for Mathematical Research,  University 

Putra Malaysia, Serdang, Selangor 43400, Malaysia. E-mail: habshahmidi@gmail.com 
3 Department of Applied and Computational Statistics, Institute for Mathematical Research, University 

Putra Malaysia, Serdang, Selangor 43400, Malaysia. E-mail: mostafa.karimi.ir@gmail.com 



32                                                M. Abduljaleel, et al.: Outlier detection in the analysis… 

 

 

 

opposing, has been seen as a routine, uninteresting task of observing, 
supervising, measuring and providing feedback (Reeves and Woodward, 1970). 
Whatever the definition, the concept is viewed by many as the central nervous 
system of the processes in every organization. 

Montgomery (2007) clarified that the quality control system always has been 
an integral part of virtually all products and services. However, wakefulness of its 
importance and the introduction of formal methods for quality control and 
improvement have been an evolutionary development. An important part of the 
statistical quality control is the six sigma system (Smith, 1993). Six Sigma is a 
severe, focused and highly effective application of proven quality principles and 
techniques. Companies operating at six sigma typically spend less than 5 per 
cent of their profits fixing problems. In contrast with non-six sigma companies, 
these costs are often extremely high. Companies operating at three or four 
sigmas typically spend between 25 and 40 per cent of their profits fixing problems 
(Pyzdek and Keller, 2014). Based on (Kwak and Anbari, 2006), the authors 
showed that understanding the key features, impediments, and confines of the six 
sigma method allow organizations to better support their strategic directions and 
increasing needs for monitoring and training. Although Six Sigma provides 
assistance over prior approaches to quality management, it also creates new 
challenges for researchers and experts (Schroeder et al., 2008). 

The important part of the six sigma quality is the measurement system 
analysis (MSA) used to isolate the variation among devices being measured from 
the error in the measurement system. The measurement system analysis has 
been the focus of substantial attention because of its ability to determine the level 
and range of variation in data. In a process that is important to a measurement 
system, some variation is likely to occur. The measurement system analysis is an 
important part of a study that is able to determine the amount of variation (Bourne 
et al., 2007). 

To ensure that the measurement system variability is not adversely large, it is 
necessary to conduct the measurement system analysis (MSA). Such a study can 
be conducted in virtually any type of manufacturing industry. According to (He et 
al., 2011), MSA helps to measure the ability of a Gage or measuring device to 
produce data that support the analyst’s decision-making requirements. Also, MSA 
is an important section of Six Sigma as well as of the ISO/TS 16949 standards. 
Burdick et al., (2003) showed that Gage repeatability and reproducibility (Gage 
R&R) is the most common study in MSA to assess the precision of measurement 
systems. 

Awad et al., (2009) and Peruchi et al., (2013) showed that the repeatability 
represents the variability from the Gage or measurement tool when it is used to 
measure the same part (with the same operator or setup or in the same time 
period), whereas reproducibility reveals the variability arising from different 
operators, setups, or time periods. As stated by (Grejda et al., 2005; Parker et al., 
2005; Piratelli-Filho et al., 2012), some works have used repeatability and/or 
reproducibility perceptions and ignored Gage R&R statistical analysis in matching 
measurement system variation to process variation. These studies comprise only 
Gage variability which are lacking to determine whether the measurement system 
is able to monitor a particular manufacturing process or not. In case the variation 
of the measurement system is small relative to the variation of the process, the 
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measurement system is reflected as acceptable measurements. Furthermore, 
Gage R&R studies must be performed any time a process is adopted. This is 
because as the process variation decreases, a once-capable measurement 
system may now be unqualified. As identified by (Burdick et al., 2003; Wang and 
Chien, 2010), there are two methods commonly used in the analysis of a Gage 
R&R study, namely the analysis of variance ANOVA, X bar and R chart. 
Furthermore, analysts prefer the ANOVA method because it measures the 
operator-to-part interaction Gage error.  

Larsen (2003) extended the univariate Gage R&R study to a common 
industrial test scenario where multiple features were tested on each device. 
Providing examples from an industrial application, the author showed that the 
total yield, false failures and missed false estimates could lead to improvements 
in the production test process and hence to lower production costs, and finally to 
customers receiving higher quality products. (Flynn et al., 2009) used regression 
analysis to analyse the qualified performance capability between two functionally 
equal but technically different automatic measurement systems. For such 
accurate measurements as repeatability and reproducibility, the authors found the 
“pass/fail” criteria for the unit being tested incorrect. Hence, they proposed a 
methodology based on principal components analysis (PCA) and MANOVA to 
examine whether there was a statistically significant difference among the 
measurement systems. He et al., (2011) proposed a PCA-based approach in 
MSA for the in-process monitoring of all instruments in multisite testing. The 
approach considers a defective instrument to be one whose statistical distribution 
of measurements differs significantly from the overall distribution across multiple 
test tools. Their approach can be implemented as an online monitoring procedure 
for test instruments so that, until a faulty instrument is identified, production goes 
continuously. Whereas, Parente et al., (2012) applied univariate and multivariate 
methods to evaluate the repeatability and reproducibility of the measurement of 
opposite phase chromatography (RP-HPLC) peptide profiles of excerpts from 
cheddar cheese. The ability to discriminate different samples was assessed 
according to the sources of variability in their measurement and analysis 
procedure. The authors showed that their study had an important impact on the 
design and analysis of experiments for summarizing of cheese proteolysis. 
Inferential statistical procedures helped them to analyse the relationships 
between design variables and proteolysis. In evaluating a measurement system’s 
variation, the most an adequate technique, once an instrument is calibrated, is 
Gage repeatability and reproducibility Gage R&R (Hoffa and Laux, 2007). The 
primary purpose of a Gage study is to determine how much variation in the data is 
due to the measurement system, and whether the measurement system is 
accomplished by assessing the process performance. The first type of Gage R&R 
is crossed Gage R&R, which is developed to analyse data from typical 
measurement system studies. It adopts the most common approach to the 
appropriate measurement of data with an ANOVA model and evaluates different 
sources of variation in the measurement system using the variance components 
in the model. The second type of Gage R&R is the nested Gage R&R, which is 
developed to measure the system analysis when all operators in the system 
measure different parts. 
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2. Mathematical model and measurement guality of nested Gage 
R&R, random effect model 

The nested design is the first option for destructive testing since each 
operator measures unique parts. If a part can be measured multiple times by 
different operators, then it is necessary to use the crossed design. In this study, 
we focus only on the nested design. For the nested experiment, as well as the 
part is nested within each operator, it is impossible to assess the operator and 
part interaction. The data of nested Gage R&R is represented as shown 
in Table 1. 
 

Table 1. The experimental format for nested Gage R&R data 

Operator 𝒊 Parts 𝒋(𝒊) Replication �̅� 𝑺𝟐 

 
 
1 
 
 

1 
. 
. 
. 
p 

                    𝑦111       𝑦112    . . . . .. .𝑦11𝑛 

. 

. 

. 
                  𝑦1𝑝1       𝑦1𝑝2    . . . . . .𝑦1𝑝𝑛 

�̅�11 

. 

. 

. 
�̅�1𝑝 

𝑠2
11 

. 

. 

. 

𝑆2
1𝑝 

 
 
2 
 
 
 

1 
2 
. 
. 
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                      𝑦211       𝑦212    .  .. . . .𝑦21𝑛 

. 

. 

.                  
                       𝑦

2𝑝1
       𝑦2𝑝2    . . . .. .𝑦2𝑝𝑛 

�̅�21 

. 

. 

. 
�̅�2𝑝 

𝑠2
21 

. 

. 

. 

𝑆2
2𝑝 

. 

. 

. 

. 

. 

  
 
 
  

  

 
 
o 
 
 

1 
2 
. 
. 
p 

                     𝑦𝑜11       𝑦𝑜12    . .. . . .𝑦𝑜1𝑛 

. 

. 

. 
                     𝑦𝑜𝑝1       𝑦𝑜𝑝2    . . . . .𝑦𝑜𝑝𝑛 

�̅�𝑜1 

. 

. 

. 
�̅�𝑜𝑝 

𝑠2
𝑜1 

. 

. 

. 

𝑆2
𝑜𝑝 

 

The analysis of variance, random effect model of nested Gage R&R, is 
represented in Equation 1. 
 

𝑦𝑖𝑗𝑘 = 𝜇 + 𝜏𝑖 + 𝛽𝑗(𝑖) + 𝜀𝑖𝑗𝑘                   {
𝑖 = 1,2,3 … … … . 𝑜
𝑗 = 1,2,3, … … … . 𝑝
𝑘 = 1,2,3, … … … 𝑛

 (1) 

 

where 
𝜇 is the overall mean 

𝜏𝑖  is the effect for the 𝑖𝑡ℎoperator, 𝜏𝑖~
𝑖𝑖𝑑  𝑁(0, 𝜎2

𝜏)  
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𝛽𝑗(𝑖) is the effect of the 𝑗𝑡ℎ part nested within the 𝑖𝑡ℎoperator, 𝛽𝑗(𝑖)~𝑖𝑖𝑑  𝑁(0, 𝜎2
𝛽) 

𝜀𝑖𝑗𝑘  is random error where 𝜀𝑖𝑗𝑘~𝑖𝑖𝑑  𝑁(0, 𝜎2) 

The total variation and the total degree of freedom of the nested design 
random effect model can be partitioned into three components as follows: 

𝑠𝑠𝑇𝑜𝑡𝑎𝑙 = 𝑠𝑠𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 + 𝑠𝑠𝑝𝑎𝑟𝑡(𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟) + 𝑠𝑠𝑒𝑟𝑟𝑜𝑟  

 
 
 

∑ ∑ ∑(𝑦𝑖𝑗𝑘 − �̅�…)
2

=  ∑ ∑ ∑(�̅�𝑖.. − �̅�…)2 + ∑ ∑ ∑( �̅�𝑖𝑗. − �̅�𝑖..)
2

+ ∑ ∑ ∑(𝑦𝑖𝑗𝑘 −  �̅�𝑖𝑗.)² 

∑ ∑ ∑(𝑦𝑖𝑗𝑘 − �̅�…)
2

= 𝑝𝑛 ∑(�̅�𝑖.. − �̅�…)²

𝑖

+ 𝑛 ∑ ∑( �̅�𝑖𝑗. −

𝑗

�̅�𝑖..)² + ∑ ∑ ∑(𝑦𝑖𝑗𝑘 −  �̅�𝑖𝑗.)²

𝐼

 

Partitioning of Degree of Freedom: 

𝑜𝑝𝑛 − 1 = (𝑜 − 1) + 𝑜(𝑝 − 1) + 𝑜𝑝(𝑛 − 1) 

𝑜𝑝𝑛 − 1 = 𝑜 − 1 + 𝑜𝑝 − 𝑝 + 𝑜𝑝𝑛 − 𝑜𝑝 

where: 

          𝑦𝑖.. = ∑ ∑ 𝑦𝑖𝑗𝑘𝑘𝑗 ;     �̅�𝑖.. =
𝑦𝑖..

𝑛𝑝
 

          𝑦𝑖𝑗. = ∑ 𝑦𝑖𝑗𝑘𝑘 ;          �̅�𝑖𝑗. =
𝑦𝑖𝑗.

𝑛
 

        𝑦… = ∑ ∑ ∑ 𝑦𝑖𝑗𝑘;       �̅�… =
𝑦…

𝑜𝑝𝑛
 

The Expected Mean Squares of the nested Gage R&R random effect model are 
presented in Table 2. 

Table 2.  Expected Mean Squares  

Mean Squares Degree Of Freedom Expected Mean Squares 

𝑀𝑆𝑜 𝑜 − 1 𝜎2 + 𝑛𝑝𝜎2
𝜏 + 𝑛𝜎2

𝛽(𝑖) 

  𝑀𝑆𝑃(𝑂) 𝑜(𝑝 − 1) 𝜎2 + 𝑛𝜎2
𝛽(𝑖) 

𝑀𝑆𝐸 𝑜𝑝(𝑛 − 1) 𝜎² 

 
The nested experiment calculations for a total sum of squares (𝑆𝑆𝑇𝑜𝑡𝑎𝑙), the 

sum of squares of the operator (𝑆𝑆𝑂), the sum of squares of the part nested within 

operator (𝑆𝑆𝑝𝑎𝑟𝑡(𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟)) and the sum of a square of error (𝑆𝑆𝐸) are shown 

in Table 3.  
 



36                                                M. Abduljaleel, et al.: Outlier detection in the analysis… 

 

 

 

Table 3.  Analysis of variance table for the random effect model for Gage R&R 
study nested design 

Source S.S D.F MS F 

𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝑠𝑠𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 = 𝑝𝑛 ∑(�̅�𝑖.. − �̅�…)²

𝑖

 𝑜 − 1 𝑀𝑆𝑜 =
𝑠𝑠𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟

𝑜 − 1
 𝐹𝑂 =

𝑀𝑆𝑜

𝑀𝑆𝑃(𝑜)
 

𝑃𝑎𝑟𝑡𝑠(𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟) 𝑠𝑠𝑝𝑎𝑟𝑡(𝑜) = 𝑛 ∑ ∑ (�̅�𝑖𝑗.
𝑗𝑖

− �̅�𝑖..)² 

𝑜(𝑝 − 1) 𝑀𝑆𝑝(𝑜)

=
𝑠𝑠𝑝𝑎𝑟𝑡

𝑜(𝑝 − 1)
 

𝐹𝑃(𝑂) =
𝑀𝑆𝑝(𝑜)

𝑀𝑆𝐸
 

𝐸𝑟𝑟𝑜𝑟 𝑆𝑆𝐸 = ƩƩƩ(𝑦𝑖𝑗𝑘 − �̅�𝑖𝑗.)² 𝑜𝑝(𝑛 − 1) 𝑀𝑆𝐸 =
𝑠𝑠𝑒𝑟𝑟𝑜𝑟

𝑜𝑝(𝑛 − 1)
 

     𝑻𝒐𝒕𝒂𝒍                  𝑠𝑠𝑇𝑜𝑡𝑎𝑙 = ƩƩƩ(𝑦𝑖𝑗𝑘 − �̅�…)²         𝑜𝑝𝑛 − 1 

 
As we mentioned previously, nested Gage R&R is a measurement system 

analysis whereby the variation in the system is due to repeatability and 
reproducibility. Repeatability is a variation from a measurement instrument and, 
on the other hand, reproducibility is a variation from the operators using the 
instrument (Erdmann et al., 2009). 

In this design, the interest is to test for the operator effect and the part 
(operator) effect. The test on the operator effect is expected to be non-significant 
that implies operators have no difficulty in making consistent measurements. 

The part (operator) is anticipated to be significant, which indicates the ability 
of the Gage/instrument to distinguish between units of measurement.  
 The following hypothesis and test statistics in Equation 2 are used to test the 
operator’s effect: 
 

𝐻0: 𝜎2
𝑂 = 0 (No significant difference between the operator’s effects) 

𝐻1: 𝜎2
𝑂 > 0 (Significant difference between the operator’s effects) 

 

Test statistic: 𝐹 =
𝑀𝑆𝑂

𝑀𝑆𝑃(𝑜)

 (2) 

                                                               

The estimated variance of the operator’s effect can be formulated as follows: 

          𝐸(𝑀𝑆𝑂) − 𝐸(𝑀𝑆𝑃(𝑜)) = (𝜎² + 𝑛𝑝𝜎²𝜏 + 𝑛𝜎²𝛽(𝑖))- (𝜎² + 𝑛𝜎²𝛽(𝑖)) 

       𝑀𝑆𝑂 − 𝑀𝑆𝑃(𝑂) = �̂�2 + 𝑛𝑝�̂�2
𝜏 + 𝑛�̂�2

𝛽(𝑖) − �̂�2 − 𝑛�̂�2
𝛽(𝑖) 

      Therefore:  

�̂�2
𝜏 =

𝑀𝑆𝑂 − 𝑀𝑆𝑃(𝑂)

𝑝𝑛
 (3) 

 
        �̂�2

𝜏 is the estimated variance for the operator denoted as �̂�2
𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟.  

The following Equation (4) is used to test the part’s effect 

          𝐻0: 𝜎2
𝛽(𝑖) = 0  (No significant difference between the parts) 

          𝐻1: 𝜎2
𝛽(𝑖) > 0  (Significant difference between the parts)  
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Test statistic: 𝐹 =
𝑀𝑆𝑝(𝑂)

𝑀𝑆𝐸
 (4) 

                                   
With a similar approach as in Equation (3) and Equation (4), the estimated 
variance of the parts’ effect can be formulated as follows: 

𝐸(𝑀𝑆𝑃(𝑂)) − 𝐸(𝑀𝑆𝐸) = 𝜎2 + 𝑛𝜎2
𝛽(𝑖) − 𝜎2 

     𝑀𝑆𝑃(𝑂) − 𝑀𝑆𝐸 = �̂�2 + 𝑛�̂�2
𝛽(𝑖) − �̂�2 =  𝑛�̂�2

𝛽(𝑖) 

�̂�2
𝛽(𝑖) =

𝑀𝑆𝑃(𝑂) − 𝑀𝑆𝐸

𝑛
 (5) 

�̂�2
𝛽(𝑖) is the estimated variance for the part (operator) denoted as 

σ̂2
parts(operator). 

 

  �̂�𝑝𝑎𝑟𝑡(𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟) = √�̂�2
𝑝𝑎𝑟𝑡𝑠(𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟) (6) 

�̂�2
𝑒 = 𝑀𝑆𝐸 (7) 

                                                      

     �̂�2
𝑟𝑒𝑝𝑒𝑎𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑀𝑆𝐸 = �̂�2;  �̂� = √𝑀𝑆𝐸 

                                                  �̂�2
𝑟𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑏𝑖𝑙𝑖𝑡𝑦 = �̂�2

𝑂 

 

If the value of the variance components is less than 0, treat them as equal to 
0 because variance cannot be negative.  

The estimated variance for Gage R&R is given by:      

(8)                      �̂�2
𝐺𝑎𝑔𝑒 𝑅&𝑅 = �̂�2

𝑟𝑒𝑝𝑒𝑎𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 + �̂�2
𝑟𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑏𝑖𝑙𝑖𝑡𝑦 

(9) 

                                      = �̂�2 + �̂�2
𝑜 

             The standard deviation of Gage R&R = √�̂�2
𝐺𝑎𝑔𝑒 𝑅&𝑅 

          Estimated variance of Total variation= �̂�2
𝐺𝑎𝑔𝑒 𝑅&𝑅 + �̂�2

𝑝𝑎𝑟𝑡(𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟) 

 
(10) 

            The estimated standard deviation of Total variation = 

                                                                                                 √�̂�2
𝐺𝑎𝑔𝑒 𝑅&𝑅 + �̂�2

𝑝𝑎𝑟𝑡𝑠(𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟) 

 
 In the study of Gage R&R design, the Gage capability can be measured by 

using the precision-to-tolerance ratio (or 𝑃/𝑇 ratio), as follows: 
𝑃

𝑇
=

6�̂�𝐺𝑎𝑔𝑒 𝑅&𝑅

𝑈𝑆𝐿−𝐿𝑆𝐿
  where �̂�𝐺𝑎𝑔𝑒𝑅&𝑅 is the standard deviation of Gage R&R as stated 

in Equation (9). 

USL and LSL are the upper and lower specification limits of the product under 
study (given in each nested Gage R&R data). If the 𝑃/𝑇 ratio is 0.1 or less, this 
indicates acceptable Gage capability (Headquarters, 2015). But there are clear 
dangers in relying too much on the 𝑃/𝑇 ratio, in some nested Gage R&R data. 
For example, the ratio may be made randomly small by increasing the width of 
the specification tolerance (Stevens, 2013). As such other measures are 
employed such as using the percentage contribution of the variance component 
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of the total variation of Gage R&R and also the percentage contribution of the 
variation component of part (operator). 

 

Percentage contribution of Total variation of Gage R&R = 

                                                                                            
variation of Gage R&R 

𝑇𝑜𝑡𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 
 

 
(11) 

 

The percentage contribution of variation of Gage R&R measures the 
contribution of the nested Gage R&R in the total variation. The small value of per 
cent contribution of Gage R&R means adequate Gage. % contribution < 30% 
indicates the measurement system is capable. 

 

Another important measure is by using percentage contribution of variance 
component of part (operator) as follows: 

Percentage contribution of part (operator) =
the variance of part (operator)

𝑇𝑜𝑡𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛
 (12) 

 
A high percentage of contribution indicates good measurement, which implies 

that the measurement system can distinguish between parts. Most of the total 
variation in the measurement is due to differences between parts, which is 
desirable. 

 
An equivalent measure of Gage capability is by using the percentage 

contribution of standard deviation namely:  

%contribution of total sd of Gage R&R =
𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐺𝑎𝑔𝑒 𝑅&𝑅

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑇𝑜𝑡𝑎𝑙
 (13) 

%contribution of total 6 sd of Gage R&R =
6 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐺𝑎𝑔𝑒 𝑅&𝑅

6 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑎𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑇𝑜𝑡𝑎𝑙
 (14) 

%contribution of sd of part(operator) =
𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑝𝑎𝑟𝑡(𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟) 

standard deviation of Total
 (15) 

 

3. Methodology 

This section presents the methodology of this study. The study proposes 
a method to identify outliers in nested Gage R&R, namely, a method based on 
a highly efficient estimator which has a high breakdown point. Moreover, to 
reduce the negative effect of the outliers, a robust estimation method has been 
presented to obtain a reliable measurement with low variation after detecting the 
outliers. Then, two numerical examples and the analysis of the data are 
presented. Moreover, the simulation study is illustrated. 
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3.1.  Data analysis: how outliers affect the analysis of Gage R&R 

In this section, a numerical nested example is presented to show the effect of 
outliers on the nested Gage R&R measurements.   

This data is taken from (Excel, 2013), which described an industrial 
application whereby heat treating of parts is inducted to perform a Gage R&R 
analysis on the hardness tester.  For the reason of measuring the hardness, 
a piece of the product is cut, prepared and tested. That piece was altered, so it 
cannot be retested. It is assured that the parts within operators are 
homogeneous. For this process, three operators are included in the Gage R&R 
study, that is operator A, B and C. Each operator is needed to test two parts. But 
there are not always enough measurements for each operator to test parts from 
each operator. Based on that, a nested design has been used. Three operators 
are used and five parts from each operator and two measurements from each 
part have been taken. The total number of measurements is 30. Table 4 shows 
the collected data of industrial section. 

To see the effect of outliers on the variability’s measurements, we purposely 
contaminate the data with a certain number of outliers. The outliers are created by 
replacing one observation of each operator 
by ( 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 + 10 𝑠𝑑 𝑖𝑛 𝑒𝑎𝑐ℎ 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟). The outlier is 
represented in bold, in Table 4. 

Table 4.  Nested Gage R&R numerical example of three different operators from 
the industrial section 

Operators Parts 

A 

1 2 3 4 5 

1 2 1 2 1 2 1 2 1 2 

33.4 33.2 32.4  31.7 34.4 34.5 33.9 34.5 34.5 
35.7 
(47.4) 

B 

6 7 8 9 10 

1 2 1 2 1 2 1 2 1 2 

32.5 32.1 32.1 32.3 
35.1 
(48.1) 

34.7 32.4 33.1 34.8  34.9 

C 

11 12 13 14 15 

1 2 1 2 1 2 1 2 1 2 

32.6 32.7 32.3 32.1 
34.9 
(47.3) 

34.7 33.0 33.2 31.6 30.9 

 
Nested ANOVA or nested Gage R&R table is represented to show the 

significance of the parts and the operators and the table of variance components 
to measure the Gage variation, part-to-part variation and the total variation as 
shown in Table 5-A. The components of variance and standard deviations 
contribution are shown in Table 5-B and Table 5-C, respectively. Five useful 
graphs for the interpretation of the experimental results are displayed in Figure 3 
and Figure 4. 
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Table 5.  Gage R&R (nested) for results without and with outliers 

A. Nested ANOVA 
Source df SS MS F p 

  Without 
outlier 

With 
outlier 

Without 
outlier 

With 
outlier 

Without 
outlier 

With 
outlier 

Without 
outlier 

With 
outlier 

Operator 2 5.256 4.741 2.628 2.371 0.793 0.083 0.475 0.921 
Part 
(operator) 

12 37.766 342.178 3.133 28.514 26.024 1.687 10𝑒−5 0.168 

Repeatability 15 1.911 253.455 0.127 16.897 
Total 29 46.932 600.374 

B. Components of variance analysis 

Gage R&R 
%Contribution (of Var Comp) 

Source Var Comp 

 Without 
outlier 

With outlier Without outlier With outlier 

Total variation of Gage R&R 0.127 16.897 7.41 74.42 
Repeatability 0.127 16.897 7.41 74.42 
Reproducibility 10𝑒−5 10𝑒−5 10𝑒−5 10𝑒−5 

𝑝𝑎𝑟𝑡 𝑡𝑜 𝑝𝑎𝑟𝑡 𝑜𝑟 𝑝𝑎𝑟𝑡(𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟) 1.593 5.808 92.61 25.58 

Total variation 1.721 22.705 100.00 100.00 

C. Components of standard deviation and 

6 × standard deviation analysis 

Gage R&R Study Var 
(6 × SD) 

%Study Var (%SV) 
Source StdDev (SD) 

 Without 
outlier 

With 
outlier 

Without 
outlier 

With 
outlier 

Without 
outlier 

With 
outlier 

Total s.d of Gage R&R 0.356 4.111 2.141 24.663 27.21 86.27 
Repeatability 0.356 4.111 2.141 24.663 27.21 86.27 
Reproducibility 10𝑒−5 10𝑒−5 10𝑒−5 10𝑒−5 10𝑒−5 10𝑒−5 

𝑝𝑎𝑟𝑡 𝑡𝑜 𝑝𝑎𝑟𝑡 𝑜𝑟 𝑝𝑎𝑟𝑡(𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟) 1.262 2.411 7.573 14.461 96.23 50.58 

Total variation 1.311 4.765 7.871 28.591 100.00 100.00 

*Specification tolerance (upper specification limit-lower specification limit=8). 
From the example and process standard deviation is 2.5. 
 
 
 
 
  
 
 
 
 
 
 
 
 

Figure 1. Nested Gage R&R: components of variation, result by part (operator), R 
chart by the operator, X bar chart by the operator, result by part 
(operator), and result by the operator without outlier (left) and with 
outliers (right). 
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It can be observed from Table 5-A, when there are no outliers there is 
a significant difference between parts when nesting within operators (𝑝 − 𝑣𝑎𝑙𝑢𝑒 <
0.05). This results indicate that the Gage is capable of distinguishing between 
different units. The test on operator suggests that the operator has no difficulty of 
making consistent measurements (𝑝 − 𝑣𝑎𝑙𝑢𝑒 > 0.05). These two conditions are 
desired. Gage R&R studies quantify this by determining the % Gage R&R value. 
Based on these results, the hardness tester (Gage R&R) is responsible for about 
7% of the total variation.  This test method appears to be very reliable because 
the % contribution of Gage R&R variation is less than 30%. 

The percentage of contribution for the difference between parts, when nesting 
within operators (𝑝𝑎𝑟𝑡 − 𝑡𝑜 − 𝑝𝑎𝑟𝑡 = 96.23) as shown in Table 5-B, is high, which 
is close to 100%. The higher percentage contribution for the parts indicates good 
performance of system Gage R&R. These results can be seen from graphics. The 
components of the variation graph are placed in the upper left corner in Figure 3 
and that means reliable data. Also in Table 5-B, the reproducibility is 0 because 
all the variations are due to the Gage variation and part-to-part (the part when 
nesting within operator variation) not due to the interaction between operators and 
parts.  

Most of the variations are due to part-to-part (parts nested within operators) 
variation, with a low percentage of variation due to errors in the measurement 
system of Gage R&R at the 𝑥 ̅chart-located in the lower left corner in Figure 1. 

Most of the points in the 𝑥 ̅ chart are outside the control limits when the variation 
is mostly due to part-to-part variation, 27 points of 30 outside the control limits, i.e. 
about 90%, the Gage is capable (should be more than 75% is outside the control 
limits) (Headquarters, 2015). 

The percentage of contribution for total sd of Gage R&R =
(6 ×  SD)

𝑇𝑜𝑡𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛
 

 

= 2.141/7.871 =  27.2%. This means that the “spread” of the Gage R&R 
takes up to 27.2% of the total spread. This result implies that the Gage is 
acceptable (the Gage variation and spread should be less than 30%) 
(Headquarters, 2015). 

Now, let us focus on the results with outliers of Table 5-A (with outliers). It can 
be seen that the part (operator) effect is not significant (𝑝 − 𝑣𝑎𝑙𝑢𝑒 > 0.05). This 
indicates that the Gage cannot distinguish between different units, which is not 
desirable.  

From Table 5-B (with outlier’s columns), in particular, the percentage of 
contribution for the difference between parts (𝑝𝑎𝑟𝑡 − 𝑡𝑜 − 𝑝𝑎𝑟𝑡 = 25.58) is much 
smaller than the percentage of contribution to the variation of the measurement 
system 92.61 when there is no outlier. It is noticed that the % contribution of 
variation of hardness tester (Gage R&R) has increased to 74.42% of the total 
variation. This indicates that the Gage is not capable in the presence of outliers. 

Figure 1 shows that the components of the variation graph are placed in the 
upper left corner. Most of the variations are due to errors in the measurement 
variation Gage R&R, with a low percentage of variation due to the part-to-part 
(parts nested within operators) variation. 
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We have seen the effect of outliers on the measurement variation of the 
nested Gage R&R data in the numerical example just presented. 

 

3.2.  Outlier identification method 

We have seen in the previous section that an outlier has a negative effect on 
the nested Gage R&R analysis. In this situation, it is very crucial to detect an 
outlier in the nested Gage R&R model. To the best our knowledge no such work 
has been devoted to identifying an outlier in the nested Gage R&R, random effect 
model. 

Fearn (2001) and Walsh (2016) developed Cochran’s C test to decide if a 
single estimate of variance (or a standard deviation) is significantly larger than a 
group of variances. Rousseeuw and Mia Hubert (2011) developed a modified 
Rousseeuw and Mia Hubert method to identify outliers in univariate data. Tukey 
(2011) also discussed the method of identifying outliers in such type of data. 
Bagheri and Midi (2011) noted that the traditional approach of identifying outliers 

in univariate data is by using T statistics, 𝑇 =
𝑥−�̅�

𝑠
. 

 

3.2.1. Rousseeuw and Mia Hubert method 

Rousseeuw and Mia Hubert (2011) proposed a method to detect outliers 
in a univariate data as presented in the following steps: 

 Compute the median of all observations in a data set 

 Calculate 𝑀𝐴𝐷 = 1.483 𝑚𝑒𝑑𝑖𝑎𝑛 ⃒𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 − 𝑚𝑒𝑑𝑖𝑎𝑛 ⃒ 

 Calculate 𝑧𝑖 =
𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛−𝑚𝑒𝑑𝑖𝑎𝑛

𝑀𝐴𝐷
 

 Any value of |𝑧𝑖| > 2.5 is considered as an outlier 
 
This method is denoted as 𝑍𝑅𝑀 
 

3.2.2. Tukey method 

Hubert and Vandervieren (2008) defined the Tukey method in the following 
steps: 

 Compute Interquartile Range, IQR = 𝑄3 − 𝑄1 
where: 
          𝑄3 = 𝑋[3𝑛 4⁄ ]  

                  𝑄1 = 𝑋[𝑛 4⁄ ] 
                  𝑥 =  𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 

𝑛 =  𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒  
An observation is detected as an outlier if it lies outside the following interval 

[𝑄1 − 1.5 IQR,  𝑄3 + 1.5 IQR] 
This method is denoted as 𝐼𝑛𝑡𝑇 . 
 
 
 

https://en.wikipedia.org/wiki/Estimation_theory
https://en.wikipedia.org/wiki/Variance
https://en.wikipedia.org/wiki/Standard_deviation
https://en.wikipedia.org/wiki/Statistical_significance
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3.3.  Proposed method of outlier detection in nested Gage R&R data 

As already mentioned, no specific test is developed to identify outliers 
in nested Gage R&R. The Rousseeuw and Hubert method and the Tukey method 
is designed for univariate data. Hence, it can be adopted in the formulation of the 
detection of outliers in nested Gage R&R, with slight modification.  

Instead of using the observed value of x as noted in the Rousseeuw and 
Hubert method and the Tukey method, the residuals can be computed in this 
regard. It can be observed that MAD and IQR are used as the scale estimator in 
the Rousseeuw and Hubert and the Tukey method, respectively. 

Even though this estimator is resistant to outliers, its weakness is that it is not 
reliable under normality assumption (Lee et al., 2007). Another shortcoming of 
this method is that the use of the median is not very reliable because it has low 
efficiency under normal errors (Mazlina and Habshah, 2015). 

As such, we propose to formulate a new test measure, which is based on 
highly efficient 𝑚𝑚 estimator, which has a high breakdown point. 

 

The proposed method is summarized as follows: 

Step 1: Perform Analysis of the variance method to nested Gage R&R, random 
effect model. 

 

Step 2: Compute the fitted value as follows: 

   Referring to Equation 3.1; 𝐸(𝑦𝑖𝑗𝑘) = 𝜇 because: 

      𝜏𝑖~
𝑖𝑖𝑑  𝑁(0, 𝜎2

𝜏), 𝛽𝑗(𝑖)~𝑖𝑖𝑑  𝑁(0, 𝜎2
𝛽(𝜏)) and 𝜀𝑖𝑗𝑘~𝑖𝑖𝑑  𝑁(0, 𝜎²) 

   Hence, the fitted value is written as �̂�𝑖𝑗𝑘 = �̂� = �̅�…  where �̅�… =
∑ ∑ ∑ 𝑦𝑖𝑗𝑘

𝑜𝑝𝑛
 

 

Step 3: Compute the residual (𝑒𝑖𝑗𝑘) of each observation as follows: 

𝑒𝑖𝑗𝑘 = 𝑦𝑖𝑗𝑘 − �̅�… 

         Let 𝑒11, 𝑒21,……, 𝑒𝑜𝑝𝑛 be 𝑜𝑝𝑛 residuals represented by 𝑟1, 𝑟2, … . . , 𝑟𝑜𝑝𝑛 

         The location-scale model can be written as follows: 
𝑟𝑖 = 𝜇 + 𝜎𝜀𝑖 

         The 𝑚𝑚 location and scale of 𝑟𝑖 is computed in three steps: 

   Step i: Use robust S estimator to obtain the initial consistent estimator 𝜇0 

and scale 𝜎0. 
     Step ii: Compute m estimate of the scale of the residuals from the initial 

estimates of the location. 

     Step iii: Using m estimation method, compute the location and scale of the 
𝑚𝑚 estimates  

     denoted as �̂�𝑚𝑚 and �̂�𝑚𝑚.    
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Step 4: Compute the 𝑚𝑚 location and scale estimates of the residuals. The 𝑚𝑚 
location and 

       the scale estimates are chosen because according to [18] they has high  
        breakdown points and high efficiency under normal errors. 

 

Step 5: Compute 𝑇𝑚𝑚 =
𝑒𝑖𝑗𝑘−�̂�𝑚𝑚

�̂�𝑚𝑚
. 

 

Step 6: Any value of |𝑇𝑚𝑚| > 2.5 is declared as an outlier. 

 

3.3.1. Simulation study 

In order to assess the performance of our proposed method a simulation 
study is firstly carried out by considering three operators, five parts and two 
replicates. For each operator 𝑖 = 1,2,3; 𝑗 = 1,2,3,4,5; 𝑘 = 1,2. 

𝑦𝑖1𝑗  is generated from 𝑁(30,0.1) 

𝑦𝑖2𝑗  is generated from 𝑁(32,0.1) 

𝑦𝑖3𝑗  is generated from 𝑁(34,0.1) 

𝑦𝑖4𝑗  is generated from 𝑁(36,0.1) 

𝑦𝑖5𝑗  is generated from 𝑁(38,0.1) 

The above process is repeated for various number of operators, parts and 
samples; such as (3 operators, 5 parts and 2 samples), (3 operators, 10 parts and 
2 samples), (4 operators, 5 parts and 2 samples), (5 operators, 6 parts and 
2 samples), (5 operators, 8 parts and 2 samples), (6 operators, 10 parts and 
2 samples), (10 operators, 12 parts and 2 samples). For each design layout, the 
data is then contaminated by replacing good observation with a certain number of 
outliers. The outliers are created by taking the maximum value of each data set 
+3, 5 and10 standard deviation. The same process is repeated for samples equal 
to 4. Since in practice it is expensive to collect data, it is not recommended to 
have more than 5 sample sizes. The proposed method is evaluated based on the 
number of correct detection of outliers. The number of iterations for each design 
layout is equal to 1000. The results are presented in Tables (6, 7, 8, 9, 10 and 
11). 

 It can be observed from all tables that the 𝑇𝑚𝑚 is very successful in detecting 
outliers in the data set compared to the other two methods. The Rousseeuw and 
Tukey methods become very poor as the number of outliers increases. Both 
methods suffer from the masking effect. It is very interesting to see that our 
proposed method is capable of identifying the correct outliers with no masking 
effect. 
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Table 6.  Percentage of correct detection of an outlier for 3 standard deviations, 

𝒏 = 𝟐, the Rousseeuw method and the Tukey method  

 

Operator (part) 
and two samples 

Number of 
outliers 

Proposed Method. 
Number of correct 

detection 

Rousseeuw method 
in percentage 

Tukey method in 
percentage 

3(5) 

0 
1 
2 
3 

100 
100 
100 
100 

55.6 
53.4 
44.6 
36.3 

73.8 
43.8 
41.6 
19.4 

3(10) 

0 
1 
2 
3 
4 
5 
6 

100 
100 
100 
100 
100 
100 
100 

37.7 
33.5 
32.1 
30.9 
29.8 
19.3 

0 

72.2 
52.8 
38.3 
24.3 
12.4 
7.8 
0 

4(5) 

0 
1 
2 
3 
4 

100 
100 
100 
100 
100 

53.5 
45.8 
51.2 
35.4 
23.1 

72.7 
47.4 
29.3 
19.7 
11.9 

5(6) 

0 
1 

100 
100 

39.3 
36.4 

74.9 
56.6 

2 
3 
4 
5 
6 

100 
100 
100 
100 
100 

32.2 
30.9 
30.1 
18.5 

0 

36.7 
23.3 
10.3 
7.2 
0 

5(8) 

0 
1 

100 
100 

48.8 
42.6 

71.4 
59.6 

2 100 41.1 45.3 
3 100 40.3 30.7 
4 
5 
6 
7 
8 

100 
100 
100 
100 
100 

39 
26.8 
1.7 
0 
0 

15.5 
8 

0.7 
0 
0 

6(10) 

0 
1 

100 
100 

35.4 
31.8 

65.3 
61.7 

2 100 29 50 
3 100 28.5 37.1 
4 100 21.9 19.2 
5 100 24.1 13 
6 100 9.5 2.4 

12 100 0 0 

10(12) 

0 
1 

100 
100 

43.7 
18.5 

64 
45.5 

2 100 10.2 42.9 
3 100 8.3 40.6 
4 100 7.9 38.5 
5 100 7.4 33.5 
6 100 6.6 14.8 
7 100 1.1 0.4 
8 100 0 0 
9 100 0 0 

10 100 0 0 
11 100 0 0 
12 100 0 0 
24 100 0 0 
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Table 7.  Percentage of correct detection of an outlier for 3 standard deviations, 

𝒏 = 𝟒, the Rousseeuw method and the Tukey method 

 

Operator (part) 

and two samples 

Number of 

outliers 

Proposed method 

Number of correct 

detection 

Rousseeuw 

method in 

percentage 

Tukey method in 

percentage 

3(5) 

0 

1 

2 

3 

4 

5 

6 

100 

100 

100 

100 

100 

100 

100 

49.3 

36.3 

27.8 

13.6 

5.5 

3.7 

0 

74.9 

29.9 

16.6 

11.5 

6.7 

3.5 

0 

3(10) 

0 

1 

2 

3 

4 

5 

6 

12 

100 

100 

100 

100 

100 

100 

100 

100 

49 

34.7 

35.1 

24.3 

11.2 

5.1 

0.2 

0 

73.1 

37.2 

19.2 

9.8 

5.6 

3.3 

0.7 

0 

4(5) 

0 

1 

2 

3 

4 

5 

6 

7 

8 

100 

100 

100 

100 

100 

100 

100 

100 

100 

48.8 

39.3 

31.4 

15.6 

7.3 

2.7 

0.3 

0 

0 

71.4 

29.4 

15.9 

9.9 

7.6 

4.9 

0.4 

0 

0 

5(8) 

0 

1 

2 

3 

4 

5 

6 

12 

100 

100 

100 

100 

100 

100 

100 

100 

47.7 

42.6 

40.2 

26.1 

12.6 

6.7 

3.2 

0 

70.7 

39.7 

21.6 

10.1 

5 

2.3 

1.9 

0 

6(10) 

0 

1 

2 

3 

4 

5 

6 

12 

100 

100 

100 

100 

100 

100 

100 

100 

43.7 

33.1 

29.1 

25.9 

21.1 

12.6 

11.8 

0 

64 

42.6 

28.8 

12.9 

6.5 

2.7 

1.9 

0 
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Table 8. Percentage of correct detection of an outlier for 5 standard deviations, 

𝒏 = 𝟐, the Rousseeuw method and the Tukey method  

Operator (part) 
and two samples 

Number of 
outliers 

Proposed method. 
Number of correct 

detection 

Rousseeuw method 
in percentage 

Tukey method 
in percentage 

3(5) 

0 
1 
2 
3 

100 
100 
100 
100 

58.6 
56.9 
55.8 
46.4 

73.8 
65.8 
53.3 
38.4 

3(10) 

0 
1 
2 
3 
4 
5 
6 

100 
100 
100 
100 
100 
100 
100 

58.4 
58.1 
57.9 
54.7 
50.8 
27.8 

0 

68.5 
66.5 
66.5 
64.2 
61.9 
14.9 

0 

4(5) 

0 
1 
2 
3 
4 

100 
100 
100 
100 
100 

53.5 
49.8 
52 

43.5 
34.3 

72.7 
69.3 
59.1 
41.4 
22.7 

5(6) 

0 
1 

100 
100 

39.3 
35.3 

74.9 
74.2 

2 
3 
4 
5 
6 

100 
100 
100 
100 
100 

30.6 
28.9 
27 

26.3 
0 

65.6 
50.6 
29.1 
12.4 

0 

5(8) 

0 
1 

100 
100 

48.8 
33.1 

71.4 
70.8 

2 100 31.9 69.6 
3 100 30.6 58.8 
4 
5 
6 
7 
8 

100 
100 
100 
100 
100 

29.7 
26.9 
23.1 
19.5 
16.3 

38.3 
32.8 
29.6 
21.7 
18.5 

6(10) 

0 
1 

100 
100 

35.4 
30.6 

65.3 
61.3 

2 100 20.1 59.6 
3 100 17.7 58.7 
4 100 15.2 40.2 

5 
6 
12 

100 
100 
100 

13.7 
9.8 
6.4 

33.2 
26.9 
15.6 

10(12) 

0 
1 

100 
100 

43.7 
28.6 

64 
55.4 

2 100 24.9 52.7 
3 100 22.1 51 
4 100 19.3 48.5 
5 
6 
7 
8 
9 
10 
11 
12 
24 

100 
100 
100 
100 
100 
100 
100 
100 
100 

18.1 
15.4 
13.9 
10.6 
6.3 
4.5 
2.8 
1.3 
0 

43.9 
40.3 
29.5 
21.4 
18.2 
13.9 
5.4 
4.6 
0 
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Table 9. Percentage of correct detection of an outlier for 5 standard deviations, 

𝒏 = 𝟒, the Rousseeuw method and the Tukey method 

 

Operator(part) 

and two samples 

Number of 

outliers 

Proposed method. 

Number of correct 

detection 

Rousseeuw method 

in percentage 

Tukey method 

in percentage 

3(5) 

0 

1 

2 

100 

100 

100 

64.1 

32.7 

18.7 

72.3 

33.5 

16.6 

3(10) 

0 

1 

2 

3 

4 

5 

6 

12 

100 

100 

100 

100 

100 

100 

100 

100 

63.5 

43.7 

30.6 

22.1 

19.8 

16.1 

10.5 

0 

72 

46.2 

29.3 

20.3 

15.4 

12.9 

8.7 

0 

4(5) 

0 

1 

2 

3 

4 

5 

6 

7 

8 

100 

100 

100 

100 

100 

100 

100 

100 

100 

62.8 

44.3 

26.6 

22.9 

18.9 

16.2 

10.7 

0 

0 

72.3 

46.1 

25.8 

21.3 

20.8 

18.9 

13.2 

0 

0 

5(8) 

0 

1 

2 

3 

4 

5 

6 

12 

100 

100 

100 

100 

100 

100 

100 

100 

62.2 

40.4 

33.4 

22.7 

14.5 

11.8 

8.7 

0 

70.6 

47.9 

27.3 

19.8 

12.3 

9.6 

5.4 

0 

6(10) 

0 

1 

100 

100 

42.7 

35.8 

59.5 

45.5 

2 100 31.4 30.9 

3 100 24.7 21.7 

4 100 20.7 14.1 

5 100 16.2 9.8 

6 100 12.2 6.4 

7 100 6.3 4.4 

8 100 3.4 4.1 

9 100 1.7 2.9 

10 100 1.2 0.9 

11 100 0.4 0.7 

12 

24 

100 

100 

0.3 

0 

0.6 

0 
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Table 10. Percentage of correct detection of an outlier for 10 standard deviations, 

𝒏 = 𝟐, the Rousseeuw method and the Tukey method 

Operator (part) 
and two samples 

Number of 
outliers 

Proposed method 
Number of correct 

detection 

Rousseeuw 
method 

in percentage 

Tukey method 
in percentage 

3(5) 

0 
1 
2 
3 

100 
100 
100 
100 

58.6 
58 

57.4 
54.5 

73.8 
71.2 
62.1 
52.4 

3(10) 

0 
1 
2 
3 
4 
5 
6 

100 
100 
100 
100 
100 
100 
100 

55.4 
54.5 
54.3 
52.4 
44.9 
36.3 
28.5 

72.6 
71 

64.9 
60.6 
58.5 
51.2 
49.8 

4(5) 

0 
1 
2 
3 
4 

100 
100 
100 
100 
100 

53.5 
52.8 
51.9 
50.6 
42.5 

72.7 
71.8 
68.4 
55.4 
35.7 

5(6) 

0 
1 

100 
100 

39.3 
37.3 

74.9 
74.7 

2 
3 
4 
5 
6 

100 
100 
100 
100 
100 

34.3 
32.3 
30.4 
29.5 

0 

72.2 
61.9 
40.9 
33.1 

0 

5(8) 

0 
1 

100 
100 

48.8 
24.9 

71.4 
76.2 

2 100 22.5 74.4 
3 100 20.4 68.1 
4 
5 
6 
7 
8 

100 
100 
100 
100 
100 

19.3 
0 
0 
0 
0 

49.5 
0 
0 
0 
0 

6(10) 

0 
1 

100 
100 

35.4 
34.6 

65.3 
64.2 

2 100 32.8 61.9 
3 100 29.5 59.7 
4 100 24.6 56.7 
5 100 22.1 52.1 
6 100 19.8 44.9 
12 100 0 0 

10(12) 

0 
0 
1 

100 
100 
100 

43.7 
45.3 
42.9 

64 
66.9 
63.7 

2 100 37.3 59.8 
3 100 28.5 52.4 
4 100 21.8 49.6 
5 100 19.6 38.5 

 

6 
7 
8 
9 
10 
11 
12 
24 

100 
100 
100 
100 
100 
100 
100 
100 

16.5 
12.5 
9.8 
7.2 
5.4 
3.7 
2.1 
0 

32.4 
30.9 
28.4 
25.1 
22.9 
21.4 
17.6 

0 
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Table 11. Percentage of correct detection of an outlier for 10 standard deviations, 

𝒏 = 𝟒, the Rousseeuw method and the Tukey method 

 
  

Operator (part) 

and two samples 

Number of 

outliers 

Proposed method 

Number of correct 

detection 

Rousseeuw method 

in percentage 

Tukey method 

in percentage 

3(5) 

0 

1 

2 

3 

4 

5 

6 

100 

100 

100 

100 

100 

100 

100 

39.3 

38.9 

36.8 

33.7 

29.5 

14.6 

10.9 

74.9 

66.6 

54.5 

40.2 

38.4 

30.6 

25.4 

3(10) 

0 

1 

2 

3 

4 

5 

6 

12 

100 

100 

100 

100 

100 

100 

100 

100 

40.5 

56.1 

50.9 

44.5 

25.1 

23.9 

21.2 

0 

72.8 

54.5 

40.2 

38.6 

35.4 

32.4 

29.6 

0 

4(5) 

0 

1 

2 

3 

4 

5 

6 

7 

8 

100 

100 

100 

100 

100 

100 

100 

100 

100 

48.8 

52.2 

47.4 

32.1 

20.6 

2.5 

1.3 

0 

0 

71.4 

50.5 

33.6 

33.9 

25.3 

6.8 

4.1 

0 

0 

5(8) 

0 

1 

2 

3 

4 

5 

6 

7 

8 

100 

100 

100 

100 

100 

100 

100 

100 

100 

47.7 

46.1 

34.3 

40.2 

28.5 

21.9 

19.1 

12.9 

0 

70.7 

54.3 

36.9 

43.9 

33.7 

30.4 

28.5 

21.4 

0 

6(10) 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

24 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

43.7 

41.6 

38.4 

36.8 

35.2 

32.1 

29.4 

27.5 

24.3 

21.6 

18.7 

13.6 

10.2 

0 

64 

54.6 

45.3 

42.1 

38.8 

36.9 

34.6 

31.2 

29.5 

25.9 

23.1 

21.8 

17.3 

0 
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3.3.2. Proposed method on numerical example 

To show the superiority of the proposed method in outlier detection in nested 
Gage R&R study, a numerical example is presented. This data has been taken 
from (Erdmann et al., 2009), described in the health section. This features of the 
quality improvement were to take measurements for a body temperature of 
patients. The measurement of the temperature has been taken using an ear 
thermometer. The normal body temperature for any individual range from 35 °C, 
which is a lower specification limit (LSL), to 40 °C, which is an upper specification 
limit (USL). The quality of the temperature measurement is assessed through 
a Gage R&R study. The nurses handling the ear thermometer may cause some 
variation. The other group of variation for the experiment involved different 
healthy persons. A single ear thermometer is used by all the nurses. Each patient 
is measured in the right and left ear. The experiment has been assumed to 
involve 3 nurses (operators) and each nurse measures 10 different healthy 
persons, four times. Table 12 shows the collected data of the health section. 

To see the effect of outliers on the variability’s measurements, we purposely 
contaminate the data with a certain number of outliers. The outliers are created by 
replacing one observation of each operator 
with ( 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 + 10 𝑠𝑑 𝑖𝑛 𝑒𝑎𝑐ℎ 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟). The outlier is 
represented in bold, in Table 12. 

Table 12.  Data of the nested Gage R&R experiment showing 3 different 
 operators, 10 parts, and 4 samples in each part 

Patients 

Operator 1 Jolan Operator 2 Mariska Operator 3 Paula 

1 2 1 2 1 2 

r 1 r 1 r 1 r 1 r 1 r 1 

1 37.3 37.5 37.3 37.5 37.5 37.7 37.3 37.6 37.5 37.6 37.4 37.5 

2 37 37.3 36.7 36.8 37.5 37.3 37.4 37.2 37.4 37.4 37.3 37.1 

3 36.4 37 37.3 37 37.5 37.3 37.4 37.1 37.6 37.4 37.2 37 

4 37.6 37.5 37.6 37.4 37.5 37.5 37.5 37.7 37.7 37.6 37.6 37.5 

5 36.7 37.6 
37.8 

(41.8) 
37.5 37.9 37.5 37.6 37.6 37.9 37.6 

37.9 

(41.2) 
37.8 

6 37.5 37.7 37.6 37.3 
38.4 

(41.6) 
38 37.8 37.8 37.6 37.9 37.8 37.8 

7 37 36.9 37.1 37.3 37.1 37.3 37.4 37.5 37.2 37.4 37.1 37.2 

8 37.7 37.4 37.6 37.4 37.6 37.5 37.5 37.1 37.5 37.4 37.2 36.9 

9 36.4 36.5 37.6 36.1 37.1 36.9 36.7 36.8 37 36.4 36.9 36.8 

10 37.2 37.4 37 37.3 37.1 37.2 37.2 37.2 37.1 37.2 37 37.3 

 
The residuals 𝑟𝑖, the 𝑧𝑖 of the Rousseeuw and Mia Hubert method, the interval of 

the Tukey method and our proposed 𝑇𝑚𝑚 method are presented in [Table 13 A 
and Table 13 B]. 
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Table 13. A. Residuals 𝒓𝒊, 𝒛𝒊, the interval of Tukey and 𝑻𝒎𝒎 

No Residuals 𝒓𝒊 𝒛𝒊 Tukey interval 𝑻𝒎𝒎 

1 -0.0919549 -0.3372 (-0.46317,4.3683) -0.16531454 
2 -0.3157705 -1.3486 (-0.46317,4.3683) -0.56743098 
3 -0.7634017 -3.3715 (-0.46317,4.3683) -1.37166387 
4 0.13186072 0.67431 (-0.46317,4.3683) 0.236801906 
5 -0.5395861 -2.3601 (-0.46317,4.3683) -0.96954743 
6 0.05725552 0.33715 (-0.46317,4.3683) 0.102763091 
7 -0.3157705 -1.3486 (-0.46317,4.3683) -0.56743098 
8 0.20646592 1.01146 (-0.46317,4.3683) 0.370840721 
9 -0.7634017 -3.3715 (-0.46317,4.3683) -1.37166387 

10 -0.1665601 -0.6743 (-0.46317,4.3683) -0.29935335 
11 0.05725552 0.33715 (-0.46317,4.3683) 0.102763091 
12 -0.0919549 -0.3372 (-0.46317,4.3683) -0.16531454 
13 -0.3157705 -1.3486 (-0.46317,4.3683) -0.56743098 
14 0.05725552 0.33715 (-0.46317,4.3683) 0.102763091 
15 0.13186072 0.67431 (-0.46317,4.3683) 0.236801906 
16 0.20646592 1.01146 (-0.46317,4.3683) 0.370840721 
17 -0.3903757 -1.6858 (-0.46317,4.3683) -0.7014698 
18 -0.0173497 3.4E-15 (-0.46317,4.3683) -0.03127572 
19 -0.6887965 -3.0344 (-0.46317,4.3683) -1.23762506 
20 -0.0173497 3.4E-15 (-0.46317,4.3683) -0.03127572 
21 -0.0919549 -0.3372 (-0.46317,4.3683) -0.16531454 
22 -0.5395861 -2.3601 (-0.46317,4.3683) -0.96954743 
23 -0.0919549 -0.3372 (-0.46317,4.3683) -0.16531454 
24 0.13186072 0.67431 (-0.46317,4.3683) 0.236801906 
25 3.26527912 14.8348 (-0.46317,4.3683) 5.866432121 
26 0.13186072 0.67431 (-0.46317,4.3683) 0.236801906 
27 -0.2411653 -1.0115 (-0.46317,4.3683) -0.43339217 
28 0.13186072 0.67431 (-0.46317,4.3683) 0.236801906 
29 0.13186072 0.67431 (-0.46317,4.3683) 0.236801906 
30 -0.3157705 -1.3486 (-0.46317,4.3683) -0.56743098 
31 0.05725552 0.33715 (-0.46317,4.3683) 0.102763091 
32 -0.4649809 -2.0229 (-0.46317,4.3683) -0.83550861 
33 -0.3157705 -1.3486 (-0.46317,4.3683) -0.56743098 
34 -0.0173497 3.4E-15 (-0.46317,4.3683) -0.03127572 
35 0.05725552 0.33715 (-0.46317,4.3683) 0.102763091 
36 -0.0919549 -0.3372 (-0.46317,4.3683) -0.16531454 
37 -0.0919549 -0.3372 (-0.46317,4.3683) -0.16531454 
38 -0.0173497 3.4E-15 (-0.46317,4.3683) -0.03127572 
39 -0.9872173 -4.383 (-0.46317,4.3683) -1.77378031 
40 -0.0919549 -0.3372 (-0.46317,4.3683) -0.16531454 
41 0.05725552 0.33715 (-0.46317,4.3683) 0.102763091 
42 0.05725552 0.33715 (-0.46317,4.3683) 0.102763091 
43 0.05725552 0.33715 (-0.46317,4.3683) 0.102763091 
44 0.05725552 0.33715 (-0.46317,4.3683) 0.102763091 
45 0.35567632 1.68577 (-0.46317,4.3683) 0.63891835 
46 3.11606872 14.1605 (-0.46317,4.3683) 5.598354492 
47 -0.2411653 -1.0115 (-0.46317,4.3683) -0.43339217 
48 0.13186072 0.67431 (-0.46317,4.3683) 0.236801906 
49 -0.2411653 -1.0115 (-0.46317,4.3683) -0.43339217 
50 -0.2411653 -1.0115 (-0.46317,4.3683) -0.43339217 
51 0.20646592 1.01146 (-0.46317,4.3683) 0.370840721 
52 -0.0919549 -0.3372 (-0.46317,4.3683) -0.16531454 
53 -0.0919549 -0.3372 (-0.46317,4.3683) -0.16531454 
54 0.05725552 0.33715 (-0.46317,4.3683) 0.102763091 
55 0.05725552 0.33715 (-0.46317,4.3683) 0.102763091 
56 0.43028152 2.02293 (-0.46317,4.3683) 0.772957164 
57 -0.0919549 -0.3372 (-0.46317,4.3683) -0.16531454 
58 0.05725552 0.33715 (-0.46317,4.3683) 0.102763091 
59 -0.3903757 -1.6858 (-0.46317,4.3683) -0.7014698 
60 -0.1665601 -0.6743 (-0.46317,4.3683) -0.29935335 
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Table 13. B. Residuals 𝒓𝒊, 𝒛𝒊, the interval of Tukey and 𝑻𝒎𝒎 

No Residuals 𝒓𝒊 𝒛𝒊 Tukey interval 𝑻𝒎𝒎 

61 -0.0919549 -0.3372 (-0.46317,4.3683) -0.16531454 
62 -0.0173497 3.4E-15 (-0.46317,4.3683) -0.03127572 
63 -0.0173497 3.4E-15 (-0.46317,4.3683) -0.03127572 
64 0.05725552 0.33715 (-0.46317,4.3683) 0.102763091 
65 0.13186072 0.67431 (-0.46317,4.3683) 0.236801906 
66 0.28107112 1.34862 (-0.46317,4.3683) 0.504879535 
67 -0.0173497 3.4E-15 (-0.46317,4.3683) -0.03127572 
68 0.05725552 0.33715 (-0.46317,4.3683) 0.102763091 
69 -0.5395861 -2.3601 (-0.46317,4.3683) -0.96954743 
70 -0.1665601 -0.6743 (-0.46317,4.3683) -0.29935335 
71 0.13186072 0.67431 (-0.46317,4.3683) 0.236801906 
72 -0.1665601 -0.6743 (-0.46317,4.3683) -0.29935335 
73 -0.2411653 -1.0115 (-0.46317,4.3683) -0.43339217 
74 0.20646592 1.01146 (-0.46317,4.3683) 0.370840721 
75 0.13186072 0.67431 (-0.46317,4.3683) 0.236801906 
76 0.28107112 1.34862 (-0.46317,4.3683) 0.504879535 
77 0.05725552 0.33715 (-0.46317,4.3683) 0.102763091 
78 -0.2411653 -1.0115 (-0.46317,4.3683) -0.43339217 
79 -0.4649809 -2.0229 (-0.46317,4.3683) -0.83550861 
80 -0.1665601 -0.6743 (-0.46317,4.3683) -0.29935335 
81 0.05725552 0.33715 (-0.46317,4.3683) 0.102763091 
82 -0.0173497 3.4E-15 (-0.46317,4.3683) -0.03127572 
83 0.13186072 0.67431 (-0.46317,4.3683) 0.236801906 
84 0.20646592 1.01146 (-0.46317,4.3683) 0.370840721 
85 0.35567632 1.68577 (-0.46317,4.3683) 0.63891835 
86 0.13186072 0.67431 (-0.46317,4.3683) 0.236801906 
87 -0.1665601 -0.6743 (-0.46317,4.3683) -0.29935335 
88 0.05725552 0.33715 (-0.46317,4.3683) 0.102763091 
89 -0.3157705 -1.3486 (-0.46317,4.3683) -0.56743098 
90 -0.2411653 -1.0115 (-0.46317,4.3683) -0.43339217 
91 0.13186072 0.67431 (-0.46317,4.3683) 0.236801906 
92 -0.0173497 3.4E-15 (-0.46317,4.3683) -0.03127572 
93 -0.0173497 3.4E-15 (-0.46317,4.3683) -0.03127572 
94 0.13186072 0.67431 (-0.46317,4.3683) 0.236801906 
95 0.13186072 0.67431 (-0.46317,4.3683) 0.236801906 
96 0.35567632 1.68577 (-0.46317,4.3683) 0.63891835 
97 -0.0173497 3.4E-15 (-0.46317,4.3683) -0.03127572 
98 -0.0173497 3.4E-15 (-0.46317,4.3683) -0.03127572 
99 -0.7634017 -3.3715 (-0.46317,4.3683) -1.37166387 
100 -0.1665601 -0.6743 (-0.46317,4.3683) -0.29935335 
101 -0.0173497 3.4E-15 (-0.46317,4.3683) -0.03127572 
102 -0.0919549 -0.3372 (-0.46317,4.3683) -0.16531454 
103 -0.1665601 -0.6743 (-0.46317,4.3683) -0.29935335 
104 0.13186072 0.67431 (-0.46317,4.3683) 0.236801906 
105 2.81764792 12.8119 (-0.46317,4.3683) 5.062199233 
106 0.28107112 1.34862 (-0.46317,4.3683) 0.504879535 
107 -0.2411653 -1.0115 (-0.46317,4.3683) -0.43339217 
108 -0.1665601 -0.6743 (-0.46317,4.3683) -0.29935335 
109 -0.3903757 -1.6858 (-0.46317,4.3683) -0.7014698 
110 -0.3157705 -1.3486 (-0.46317,4.3683) -0.56743098 
111 0.05725552 0.33715 (-0.46317,4.3683) 0.102763091 
112 -0.2411653 -1.0115 (-0.46317,4.3683) -0.43339217 
113 -0.3157705 -1.3486 (-0.46317,4.3683) -0.56743098 
114 0.05725552 0.33715 (-0.46317,4.3683) 0.102763091 
115 0.28107112 1.34862 (-0.46317,4.3683) 0.504879535 
116 0.28107112 1.34862 (-0.46317,4.3683) 0.504879535 
117 -0.1665601 -0.6743 (-0.46317,4.3683) -0.29935335 
118 -0.3903757 -1.6858 (-0.46317,4.3683) -0.7014698 
119 -0.4649809 -2.0229 (-0.46317,4.3683) -0.83550861 
120 -0.0919549 -0.3372 (-0.46317,4.3683) -0.16531454 
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It can be observed from Tables [13 A and Table 13 B] that our proposed method 
can detect the 3 outliers that are purposely placed in the data set. However, the 
Rousseeuw method detects 8 outliers and the Tukey method detects 15 outliers. 

5 Conclusion 

Outliers have an adverse effect on the analysis of the nested Gage R&R 
measurements and give a misleading conclusion. Therefore, they should be 
detected at the outset before further analysis is carried out. Once the outlier is 
detected, the management should find out whether this outlier was caused by the 
parts or operators handling the equipment or it is a true error from random 
variation. Proper action should be taken if those outliers are due to operators or 
parts. As such, it is very crucial to have an efficient method of identifying outliers. 
We propose a new method, 𝑇𝑚𝑚  in this regard. The simulation study and the 
numerical example clearly show that our proposed method is able to successfully 
identify an outlier with no masking effect. Nonetheless, the other two methods are 
not performing well and suffer from masking effect.  
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